1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * super.c - NILFS module and super block management.
4  *
5  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6  *
7  * Written by Ryusuke Konishi.
8  */
9 /*
10  *  linux/fs/ext2/super.c
11  *
12  * Copyright (C) 1992, 1993, 1994, 1995
13  * Remy Card (card@masi.ibp.fr)
14  * Laboratoire MASI - Institut Blaise Pascal
15  * Universite Pierre et Marie Curie (Paris VI)
16  *
17  *  from
18  *
19  *  linux/fs/minix/inode.c
20  *
21  *  Copyright (C) 1991, 1992  Linus Torvalds
22  *
23  *  Big-endian to little-endian byte-swapping/bitmaps by
24  *        David S. Miller (davem@caip.rutgers.edu), 1995
25  */
26 
27 #include <linux/module.h>
28 #include <linux/string.h>
29 #include <linux/slab.h>
30 #include <linux/init.h>
31 #include <linux/blkdev.h>
32 #include <linux/parser.h>
33 #include <linux/crc32.h>
34 #include <linux/vfs.h>
35 #include <linux/writeback.h>
36 #include <linux/seq_file.h>
37 #include <linux/mount.h>
38 #include "nilfs.h"
39 #include "export.h"
40 #include "mdt.h"
41 #include "alloc.h"
42 #include "btree.h"
43 #include "btnode.h"
44 #include "page.h"
45 #include "cpfile.h"
46 #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
47 #include "ifile.h"
48 #include "dat.h"
49 #include "segment.h"
50 #include "segbuf.h"
51 
52 MODULE_AUTHOR("NTT Corp.");
53 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
54 		   "(NILFS)");
55 MODULE_LICENSE("GPL");
56 
57 static struct kmem_cache *nilfs_inode_cachep;
58 struct kmem_cache *nilfs_transaction_cachep;
59 struct kmem_cache *nilfs_segbuf_cachep;
60 struct kmem_cache *nilfs_btree_path_cache;
61 
62 static int nilfs_setup_super(struct super_block *sb, int is_mount);
63 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
64 
__nilfs_msg(struct super_block * sb,const char * level,const char * fmt,...)65 void __nilfs_msg(struct super_block *sb, const char *level, const char *fmt,
66 		 ...)
67 {
68 	struct va_format vaf;
69 	va_list args;
70 
71 	va_start(args, fmt);
72 	vaf.fmt = fmt;
73 	vaf.va = &args;
74 	if (sb)
75 		printk("%sNILFS (%s): %pV\n", level, sb->s_id, &vaf);
76 	else
77 		printk("%sNILFS: %pV\n", level, &vaf);
78 	va_end(args);
79 }
80 
nilfs_set_error(struct super_block * sb)81 static void nilfs_set_error(struct super_block *sb)
82 {
83 	struct the_nilfs *nilfs = sb->s_fs_info;
84 	struct nilfs_super_block **sbp;
85 
86 	down_write(&nilfs->ns_sem);
87 	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
88 		nilfs->ns_mount_state |= NILFS_ERROR_FS;
89 		sbp = nilfs_prepare_super(sb, 0);
90 		if (likely(sbp)) {
91 			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
92 			if (sbp[1])
93 				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
94 			nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
95 		}
96 	}
97 	up_write(&nilfs->ns_sem);
98 }
99 
100 /**
101  * __nilfs_error() - report failure condition on a filesystem
102  *
103  * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
104  * reporting an error message.  This function should be called when
105  * NILFS detects incoherences or defects of meta data on disk.
106  *
107  * This implements the body of nilfs_error() macro.  Normally,
108  * nilfs_error() should be used.  As for sustainable errors such as a
109  * single-shot I/O error, nilfs_msg() should be used instead.
110  *
111  * Callers should not add a trailing newline since this will do it.
112  */
__nilfs_error(struct super_block * sb,const char * function,const char * fmt,...)113 void __nilfs_error(struct super_block *sb, const char *function,
114 		   const char *fmt, ...)
115 {
116 	struct the_nilfs *nilfs = sb->s_fs_info;
117 	struct va_format vaf;
118 	va_list args;
119 
120 	va_start(args, fmt);
121 
122 	vaf.fmt = fmt;
123 	vaf.va = &args;
124 
125 	printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
126 	       sb->s_id, function, &vaf);
127 
128 	va_end(args);
129 
130 	if (!sb_rdonly(sb)) {
131 		nilfs_set_error(sb);
132 
133 		if (nilfs_test_opt(nilfs, ERRORS_RO)) {
134 			printk(KERN_CRIT "Remounting filesystem read-only\n");
135 			sb->s_flags |= SB_RDONLY;
136 		}
137 	}
138 
139 	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
140 		panic("NILFS (device %s): panic forced after error\n",
141 		      sb->s_id);
142 }
143 
nilfs_alloc_inode(struct super_block * sb)144 struct inode *nilfs_alloc_inode(struct super_block *sb)
145 {
146 	struct nilfs_inode_info *ii;
147 
148 	ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
149 	if (!ii)
150 		return NULL;
151 	ii->i_bh = NULL;
152 	ii->i_state = 0;
153 	ii->i_cno = 0;
154 	nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode);
155 	return &ii->vfs_inode;
156 }
157 
nilfs_i_callback(struct rcu_head * head)158 static void nilfs_i_callback(struct rcu_head *head)
159 {
160 	struct inode *inode = container_of(head, struct inode, i_rcu);
161 
162 	if (nilfs_is_metadata_file_inode(inode))
163 		nilfs_mdt_destroy(inode);
164 
165 	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
166 }
167 
nilfs_destroy_inode(struct inode * inode)168 void nilfs_destroy_inode(struct inode *inode)
169 {
170 	call_rcu(&inode->i_rcu, nilfs_i_callback);
171 }
172 
nilfs_sync_super(struct super_block * sb,int flag)173 static int nilfs_sync_super(struct super_block *sb, int flag)
174 {
175 	struct the_nilfs *nilfs = sb->s_fs_info;
176 	int err;
177 
178  retry:
179 	set_buffer_dirty(nilfs->ns_sbh[0]);
180 	if (nilfs_test_opt(nilfs, BARRIER)) {
181 		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
182 					  REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
183 	} else {
184 		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
185 	}
186 
187 	if (unlikely(err)) {
188 		nilfs_msg(sb, KERN_ERR, "unable to write superblock: err=%d",
189 			  err);
190 		if (err == -EIO && nilfs->ns_sbh[1]) {
191 			/*
192 			 * sbp[0] points to newer log than sbp[1],
193 			 * so copy sbp[0] to sbp[1] to take over sbp[0].
194 			 */
195 			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
196 			       nilfs->ns_sbsize);
197 			nilfs_fall_back_super_block(nilfs);
198 			goto retry;
199 		}
200 	} else {
201 		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
202 
203 		nilfs->ns_sbwcount++;
204 
205 		/*
206 		 * The latest segment becomes trailable from the position
207 		 * written in superblock.
208 		 */
209 		clear_nilfs_discontinued(nilfs);
210 
211 		/* update GC protection for recent segments */
212 		if (nilfs->ns_sbh[1]) {
213 			if (flag == NILFS_SB_COMMIT_ALL) {
214 				set_buffer_dirty(nilfs->ns_sbh[1]);
215 				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
216 					goto out;
217 			}
218 			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
219 			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
220 				sbp = nilfs->ns_sbp[1];
221 		}
222 
223 		spin_lock(&nilfs->ns_last_segment_lock);
224 		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
225 		spin_unlock(&nilfs->ns_last_segment_lock);
226 	}
227  out:
228 	return err;
229 }
230 
nilfs_set_log_cursor(struct nilfs_super_block * sbp,struct the_nilfs * nilfs)231 void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
232 			  struct the_nilfs *nilfs)
233 {
234 	sector_t nfreeblocks;
235 
236 	/* nilfs->ns_sem must be locked by the caller. */
237 	nilfs_count_free_blocks(nilfs, &nfreeblocks);
238 	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
239 
240 	spin_lock(&nilfs->ns_last_segment_lock);
241 	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
242 	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
243 	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
244 	spin_unlock(&nilfs->ns_last_segment_lock);
245 }
246 
nilfs_prepare_super(struct super_block * sb,int flip)247 struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
248 					       int flip)
249 {
250 	struct the_nilfs *nilfs = sb->s_fs_info;
251 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
252 
253 	/* nilfs->ns_sem must be locked by the caller. */
254 	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
255 		if (sbp[1] &&
256 		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
257 			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
258 		} else {
259 			nilfs_msg(sb, KERN_CRIT, "superblock broke");
260 			return NULL;
261 		}
262 	} else if (sbp[1] &&
263 		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
264 		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
265 	}
266 
267 	if (flip && sbp[1])
268 		nilfs_swap_super_block(nilfs);
269 
270 	return sbp;
271 }
272 
nilfs_commit_super(struct super_block * sb,int flag)273 int nilfs_commit_super(struct super_block *sb, int flag)
274 {
275 	struct the_nilfs *nilfs = sb->s_fs_info;
276 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
277 	time64_t t;
278 
279 	/* nilfs->ns_sem must be locked by the caller. */
280 	t = ktime_get_real_seconds();
281 	nilfs->ns_sbwtime = t;
282 	sbp[0]->s_wtime = cpu_to_le64(t);
283 	sbp[0]->s_sum = 0;
284 	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
285 					     (unsigned char *)sbp[0],
286 					     nilfs->ns_sbsize));
287 	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
288 		sbp[1]->s_wtime = sbp[0]->s_wtime;
289 		sbp[1]->s_sum = 0;
290 		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
291 					    (unsigned char *)sbp[1],
292 					    nilfs->ns_sbsize));
293 	}
294 	clear_nilfs_sb_dirty(nilfs);
295 	nilfs->ns_flushed_device = 1;
296 	/* make sure store to ns_flushed_device cannot be reordered */
297 	smp_wmb();
298 	return nilfs_sync_super(sb, flag);
299 }
300 
301 /**
302  * nilfs_cleanup_super() - write filesystem state for cleanup
303  * @sb: super block instance to be unmounted or degraded to read-only
304  *
305  * This function restores state flags in the on-disk super block.
306  * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
307  * filesystem was not clean previously.
308  */
nilfs_cleanup_super(struct super_block * sb)309 int nilfs_cleanup_super(struct super_block *sb)
310 {
311 	struct the_nilfs *nilfs = sb->s_fs_info;
312 	struct nilfs_super_block **sbp;
313 	int flag = NILFS_SB_COMMIT;
314 	int ret = -EIO;
315 
316 	sbp = nilfs_prepare_super(sb, 0);
317 	if (sbp) {
318 		sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
319 		nilfs_set_log_cursor(sbp[0], nilfs);
320 		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
321 			/*
322 			 * make the "clean" flag also to the opposite
323 			 * super block if both super blocks point to
324 			 * the same checkpoint.
325 			 */
326 			sbp[1]->s_state = sbp[0]->s_state;
327 			flag = NILFS_SB_COMMIT_ALL;
328 		}
329 		ret = nilfs_commit_super(sb, flag);
330 	}
331 	return ret;
332 }
333 
334 /**
335  * nilfs_move_2nd_super - relocate secondary super block
336  * @sb: super block instance
337  * @sb2off: new offset of the secondary super block (in bytes)
338  */
nilfs_move_2nd_super(struct super_block * sb,loff_t sb2off)339 static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
340 {
341 	struct the_nilfs *nilfs = sb->s_fs_info;
342 	struct buffer_head *nsbh;
343 	struct nilfs_super_block *nsbp;
344 	sector_t blocknr, newblocknr;
345 	unsigned long offset;
346 	int sb2i;  /* array index of the secondary superblock */
347 	int ret = 0;
348 
349 	/* nilfs->ns_sem must be locked by the caller. */
350 	if (nilfs->ns_sbh[1] &&
351 	    nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
352 		sb2i = 1;
353 		blocknr = nilfs->ns_sbh[1]->b_blocknr;
354 	} else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
355 		sb2i = 0;
356 		blocknr = nilfs->ns_sbh[0]->b_blocknr;
357 	} else {
358 		sb2i = -1;
359 		blocknr = 0;
360 	}
361 	if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
362 		goto out;  /* super block location is unchanged */
363 
364 	/* Get new super block buffer */
365 	newblocknr = sb2off >> nilfs->ns_blocksize_bits;
366 	offset = sb2off & (nilfs->ns_blocksize - 1);
367 	nsbh = sb_getblk(sb, newblocknr);
368 	if (!nsbh) {
369 		nilfs_msg(sb, KERN_WARNING,
370 			  "unable to move secondary superblock to block %llu",
371 			  (unsigned long long)newblocknr);
372 		ret = -EIO;
373 		goto out;
374 	}
375 	nsbp = (void *)nsbh->b_data + offset;
376 	memset(nsbp, 0, nilfs->ns_blocksize);
377 
378 	if (sb2i >= 0) {
379 		memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
380 		brelse(nilfs->ns_sbh[sb2i]);
381 		nilfs->ns_sbh[sb2i] = nsbh;
382 		nilfs->ns_sbp[sb2i] = nsbp;
383 	} else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
384 		/* secondary super block will be restored to index 1 */
385 		nilfs->ns_sbh[1] = nsbh;
386 		nilfs->ns_sbp[1] = nsbp;
387 	} else {
388 		brelse(nsbh);
389 	}
390 out:
391 	return ret;
392 }
393 
394 /**
395  * nilfs_resize_fs - resize the filesystem
396  * @sb: super block instance
397  * @newsize: new size of the filesystem (in bytes)
398  */
nilfs_resize_fs(struct super_block * sb,__u64 newsize)399 int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
400 {
401 	struct the_nilfs *nilfs = sb->s_fs_info;
402 	struct nilfs_super_block **sbp;
403 	__u64 devsize, newnsegs;
404 	loff_t sb2off;
405 	int ret;
406 
407 	ret = -ERANGE;
408 	devsize = i_size_read(sb->s_bdev->bd_inode);
409 	if (newsize > devsize)
410 		goto out;
411 
412 	/*
413 	 * Write lock is required to protect some functions depending
414 	 * on the number of segments, the number of reserved segments,
415 	 * and so forth.
416 	 */
417 	down_write(&nilfs->ns_segctor_sem);
418 
419 	sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
420 	newnsegs = sb2off >> nilfs->ns_blocksize_bits;
421 	do_div(newnsegs, nilfs->ns_blocks_per_segment);
422 
423 	ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
424 	up_write(&nilfs->ns_segctor_sem);
425 	if (ret < 0)
426 		goto out;
427 
428 	ret = nilfs_construct_segment(sb);
429 	if (ret < 0)
430 		goto out;
431 
432 	down_write(&nilfs->ns_sem);
433 	nilfs_move_2nd_super(sb, sb2off);
434 	ret = -EIO;
435 	sbp = nilfs_prepare_super(sb, 0);
436 	if (likely(sbp)) {
437 		nilfs_set_log_cursor(sbp[0], nilfs);
438 		/*
439 		 * Drop NILFS_RESIZE_FS flag for compatibility with
440 		 * mount-time resize which may be implemented in a
441 		 * future release.
442 		 */
443 		sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
444 					      ~NILFS_RESIZE_FS);
445 		sbp[0]->s_dev_size = cpu_to_le64(newsize);
446 		sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
447 		if (sbp[1])
448 			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
449 		ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
450 	}
451 	up_write(&nilfs->ns_sem);
452 
453 	/*
454 	 * Reset the range of allocatable segments last.  This order
455 	 * is important in the case of expansion because the secondary
456 	 * superblock must be protected from log write until migration
457 	 * completes.
458 	 */
459 	if (!ret)
460 		nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
461 out:
462 	return ret;
463 }
464 
nilfs_put_super(struct super_block * sb)465 static void nilfs_put_super(struct super_block *sb)
466 {
467 	struct the_nilfs *nilfs = sb->s_fs_info;
468 
469 	nilfs_detach_log_writer(sb);
470 
471 	if (!sb_rdonly(sb)) {
472 		down_write(&nilfs->ns_sem);
473 		nilfs_cleanup_super(sb);
474 		up_write(&nilfs->ns_sem);
475 	}
476 
477 	iput(nilfs->ns_sufile);
478 	iput(nilfs->ns_cpfile);
479 	iput(nilfs->ns_dat);
480 
481 	destroy_nilfs(nilfs);
482 	sb->s_fs_info = NULL;
483 }
484 
nilfs_sync_fs(struct super_block * sb,int wait)485 static int nilfs_sync_fs(struct super_block *sb, int wait)
486 {
487 	struct the_nilfs *nilfs = sb->s_fs_info;
488 	struct nilfs_super_block **sbp;
489 	int err = 0;
490 
491 	/* This function is called when super block should be written back */
492 	if (wait)
493 		err = nilfs_construct_segment(sb);
494 
495 	down_write(&nilfs->ns_sem);
496 	if (nilfs_sb_dirty(nilfs)) {
497 		sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
498 		if (likely(sbp)) {
499 			nilfs_set_log_cursor(sbp[0], nilfs);
500 			nilfs_commit_super(sb, NILFS_SB_COMMIT);
501 		}
502 	}
503 	up_write(&nilfs->ns_sem);
504 
505 	if (!err)
506 		err = nilfs_flush_device(nilfs);
507 
508 	return err;
509 }
510 
nilfs_attach_checkpoint(struct super_block * sb,__u64 cno,int curr_mnt,struct nilfs_root ** rootp)511 int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
512 			    struct nilfs_root **rootp)
513 {
514 	struct the_nilfs *nilfs = sb->s_fs_info;
515 	struct nilfs_root *root;
516 	struct nilfs_checkpoint *raw_cp;
517 	struct buffer_head *bh_cp;
518 	int err = -ENOMEM;
519 
520 	root = nilfs_find_or_create_root(
521 		nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
522 	if (!root)
523 		return err;
524 
525 	if (root->ifile)
526 		goto reuse; /* already attached checkpoint */
527 
528 	down_read(&nilfs->ns_segctor_sem);
529 	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
530 					  &bh_cp);
531 	up_read(&nilfs->ns_segctor_sem);
532 	if (unlikely(err)) {
533 		if (err == -ENOENT || err == -EINVAL) {
534 			nilfs_msg(sb, KERN_ERR,
535 				  "Invalid checkpoint (checkpoint number=%llu)",
536 				  (unsigned long long)cno);
537 			err = -EINVAL;
538 		}
539 		goto failed;
540 	}
541 
542 	err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
543 			       &raw_cp->cp_ifile_inode, &root->ifile);
544 	if (err)
545 		goto failed_bh;
546 
547 	atomic64_set(&root->inodes_count,
548 			le64_to_cpu(raw_cp->cp_inodes_count));
549 	atomic64_set(&root->blocks_count,
550 			le64_to_cpu(raw_cp->cp_blocks_count));
551 
552 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
553 
554  reuse:
555 	*rootp = root;
556 	return 0;
557 
558  failed_bh:
559 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
560  failed:
561 	nilfs_put_root(root);
562 
563 	return err;
564 }
565 
nilfs_freeze(struct super_block * sb)566 static int nilfs_freeze(struct super_block *sb)
567 {
568 	struct the_nilfs *nilfs = sb->s_fs_info;
569 	int err;
570 
571 	if (sb_rdonly(sb))
572 		return 0;
573 
574 	/* Mark super block clean */
575 	down_write(&nilfs->ns_sem);
576 	err = nilfs_cleanup_super(sb);
577 	up_write(&nilfs->ns_sem);
578 	return err;
579 }
580 
nilfs_unfreeze(struct super_block * sb)581 static int nilfs_unfreeze(struct super_block *sb)
582 {
583 	struct the_nilfs *nilfs = sb->s_fs_info;
584 
585 	if (sb_rdonly(sb))
586 		return 0;
587 
588 	down_write(&nilfs->ns_sem);
589 	nilfs_setup_super(sb, false);
590 	up_write(&nilfs->ns_sem);
591 	return 0;
592 }
593 
nilfs_statfs(struct dentry * dentry,struct kstatfs * buf)594 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
595 {
596 	struct super_block *sb = dentry->d_sb;
597 	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
598 	struct the_nilfs *nilfs = root->nilfs;
599 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
600 	unsigned long long blocks;
601 	unsigned long overhead;
602 	unsigned long nrsvblocks;
603 	sector_t nfreeblocks;
604 	u64 nmaxinodes, nfreeinodes;
605 	int err;
606 
607 	/*
608 	 * Compute all of the segment blocks
609 	 *
610 	 * The blocks before first segment and after last segment
611 	 * are excluded.
612 	 */
613 	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
614 		- nilfs->ns_first_data_block;
615 	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
616 
617 	/*
618 	 * Compute the overhead
619 	 *
620 	 * When distributing meta data blocks outside segment structure,
621 	 * We must count them as the overhead.
622 	 */
623 	overhead = 0;
624 
625 	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
626 	if (unlikely(err))
627 		return err;
628 
629 	err = nilfs_ifile_count_free_inodes(root->ifile,
630 					    &nmaxinodes, &nfreeinodes);
631 	if (unlikely(err)) {
632 		nilfs_msg(sb, KERN_WARNING,
633 			  "failed to count free inodes: err=%d", err);
634 		if (err == -ERANGE) {
635 			/*
636 			 * If nilfs_palloc_count_max_entries() returns
637 			 * -ERANGE error code then we simply treat
638 			 * curent inodes count as maximum possible and
639 			 * zero as free inodes value.
640 			 */
641 			nmaxinodes = atomic64_read(&root->inodes_count);
642 			nfreeinodes = 0;
643 			err = 0;
644 		} else
645 			return err;
646 	}
647 
648 	buf->f_type = NILFS_SUPER_MAGIC;
649 	buf->f_bsize = sb->s_blocksize;
650 	buf->f_blocks = blocks - overhead;
651 	buf->f_bfree = nfreeblocks;
652 	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
653 		(buf->f_bfree - nrsvblocks) : 0;
654 	buf->f_files = nmaxinodes;
655 	buf->f_ffree = nfreeinodes;
656 	buf->f_namelen = NILFS_NAME_LEN;
657 	buf->f_fsid.val[0] = (u32)id;
658 	buf->f_fsid.val[1] = (u32)(id >> 32);
659 
660 	return 0;
661 }
662 
nilfs_show_options(struct seq_file * seq,struct dentry * dentry)663 static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
664 {
665 	struct super_block *sb = dentry->d_sb;
666 	struct the_nilfs *nilfs = sb->s_fs_info;
667 	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
668 
669 	if (!nilfs_test_opt(nilfs, BARRIER))
670 		seq_puts(seq, ",nobarrier");
671 	if (root->cno != NILFS_CPTREE_CURRENT_CNO)
672 		seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
673 	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
674 		seq_puts(seq, ",errors=panic");
675 	if (nilfs_test_opt(nilfs, ERRORS_CONT))
676 		seq_puts(seq, ",errors=continue");
677 	if (nilfs_test_opt(nilfs, STRICT_ORDER))
678 		seq_puts(seq, ",order=strict");
679 	if (nilfs_test_opt(nilfs, NORECOVERY))
680 		seq_puts(seq, ",norecovery");
681 	if (nilfs_test_opt(nilfs, DISCARD))
682 		seq_puts(seq, ",discard");
683 
684 	return 0;
685 }
686 
687 static const struct super_operations nilfs_sops = {
688 	.alloc_inode    = nilfs_alloc_inode,
689 	.destroy_inode  = nilfs_destroy_inode,
690 	.dirty_inode    = nilfs_dirty_inode,
691 	.evict_inode    = nilfs_evict_inode,
692 	.put_super      = nilfs_put_super,
693 	.sync_fs        = nilfs_sync_fs,
694 	.freeze_fs	= nilfs_freeze,
695 	.unfreeze_fs	= nilfs_unfreeze,
696 	.statfs         = nilfs_statfs,
697 	.remount_fs     = nilfs_remount,
698 	.show_options = nilfs_show_options
699 };
700 
701 enum {
702 	Opt_err_cont, Opt_err_panic, Opt_err_ro,
703 	Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
704 	Opt_discard, Opt_nodiscard, Opt_err,
705 };
706 
707 static match_table_t tokens = {
708 	{Opt_err_cont, "errors=continue"},
709 	{Opt_err_panic, "errors=panic"},
710 	{Opt_err_ro, "errors=remount-ro"},
711 	{Opt_barrier, "barrier"},
712 	{Opt_nobarrier, "nobarrier"},
713 	{Opt_snapshot, "cp=%u"},
714 	{Opt_order, "order=%s"},
715 	{Opt_norecovery, "norecovery"},
716 	{Opt_discard, "discard"},
717 	{Opt_nodiscard, "nodiscard"},
718 	{Opt_err, NULL}
719 };
720 
parse_options(char * options,struct super_block * sb,int is_remount)721 static int parse_options(char *options, struct super_block *sb, int is_remount)
722 {
723 	struct the_nilfs *nilfs = sb->s_fs_info;
724 	char *p;
725 	substring_t args[MAX_OPT_ARGS];
726 
727 	if (!options)
728 		return 1;
729 
730 	while ((p = strsep(&options, ",")) != NULL) {
731 		int token;
732 
733 		if (!*p)
734 			continue;
735 
736 		token = match_token(p, tokens, args);
737 		switch (token) {
738 		case Opt_barrier:
739 			nilfs_set_opt(nilfs, BARRIER);
740 			break;
741 		case Opt_nobarrier:
742 			nilfs_clear_opt(nilfs, BARRIER);
743 			break;
744 		case Opt_order:
745 			if (strcmp(args[0].from, "relaxed") == 0)
746 				/* Ordered data semantics */
747 				nilfs_clear_opt(nilfs, STRICT_ORDER);
748 			else if (strcmp(args[0].from, "strict") == 0)
749 				/* Strict in-order semantics */
750 				nilfs_set_opt(nilfs, STRICT_ORDER);
751 			else
752 				return 0;
753 			break;
754 		case Opt_err_panic:
755 			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
756 			break;
757 		case Opt_err_ro:
758 			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
759 			break;
760 		case Opt_err_cont:
761 			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
762 			break;
763 		case Opt_snapshot:
764 			if (is_remount) {
765 				nilfs_msg(sb, KERN_ERR,
766 					  "\"%s\" option is invalid for remount",
767 					  p);
768 				return 0;
769 			}
770 			break;
771 		case Opt_norecovery:
772 			nilfs_set_opt(nilfs, NORECOVERY);
773 			break;
774 		case Opt_discard:
775 			nilfs_set_opt(nilfs, DISCARD);
776 			break;
777 		case Opt_nodiscard:
778 			nilfs_clear_opt(nilfs, DISCARD);
779 			break;
780 		default:
781 			nilfs_msg(sb, KERN_ERR,
782 				  "unrecognized mount option \"%s\"", p);
783 			return 0;
784 		}
785 	}
786 	return 1;
787 }
788 
789 static inline void
nilfs_set_default_options(struct super_block * sb,struct nilfs_super_block * sbp)790 nilfs_set_default_options(struct super_block *sb,
791 			  struct nilfs_super_block *sbp)
792 {
793 	struct the_nilfs *nilfs = sb->s_fs_info;
794 
795 	nilfs->ns_mount_opt =
796 		NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
797 }
798 
nilfs_setup_super(struct super_block * sb,int is_mount)799 static int nilfs_setup_super(struct super_block *sb, int is_mount)
800 {
801 	struct the_nilfs *nilfs = sb->s_fs_info;
802 	struct nilfs_super_block **sbp;
803 	int max_mnt_count;
804 	int mnt_count;
805 
806 	/* nilfs->ns_sem must be locked by the caller. */
807 	sbp = nilfs_prepare_super(sb, 0);
808 	if (!sbp)
809 		return -EIO;
810 
811 	if (!is_mount)
812 		goto skip_mount_setup;
813 
814 	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
815 	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
816 
817 	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
818 		nilfs_msg(sb, KERN_WARNING, "mounting fs with errors");
819 #if 0
820 	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
821 		nilfs_msg(sb, KERN_WARNING, "maximal mount count reached");
822 #endif
823 	}
824 	if (!max_mnt_count)
825 		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
826 
827 	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
828 	sbp[0]->s_mtime = cpu_to_le64(ktime_get_real_seconds());
829 
830 skip_mount_setup:
831 	sbp[0]->s_state =
832 		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
833 	/* synchronize sbp[1] with sbp[0] */
834 	if (sbp[1])
835 		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
836 	return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
837 }
838 
nilfs_read_super_block(struct super_block * sb,u64 pos,int blocksize,struct buffer_head ** pbh)839 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
840 						 u64 pos, int blocksize,
841 						 struct buffer_head **pbh)
842 {
843 	unsigned long long sb_index = pos;
844 	unsigned long offset;
845 
846 	offset = do_div(sb_index, blocksize);
847 	*pbh = sb_bread(sb, sb_index);
848 	if (!*pbh)
849 		return NULL;
850 	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
851 }
852 
nilfs_store_magic_and_option(struct super_block * sb,struct nilfs_super_block * sbp,char * data)853 int nilfs_store_magic_and_option(struct super_block *sb,
854 				 struct nilfs_super_block *sbp,
855 				 char *data)
856 {
857 	struct the_nilfs *nilfs = sb->s_fs_info;
858 
859 	sb->s_magic = le16_to_cpu(sbp->s_magic);
860 
861 	/* FS independent flags */
862 #ifdef NILFS_ATIME_DISABLE
863 	sb->s_flags |= SB_NOATIME;
864 #endif
865 
866 	nilfs_set_default_options(sb, sbp);
867 
868 	nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
869 	nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
870 	nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
871 	nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
872 
873 	return !parse_options(data, sb, 0) ? -EINVAL : 0;
874 }
875 
nilfs_check_feature_compatibility(struct super_block * sb,struct nilfs_super_block * sbp)876 int nilfs_check_feature_compatibility(struct super_block *sb,
877 				      struct nilfs_super_block *sbp)
878 {
879 	__u64 features;
880 
881 	features = le64_to_cpu(sbp->s_feature_incompat) &
882 		~NILFS_FEATURE_INCOMPAT_SUPP;
883 	if (features) {
884 		nilfs_msg(sb, KERN_ERR,
885 			  "couldn't mount because of unsupported optional features (%llx)",
886 			  (unsigned long long)features);
887 		return -EINVAL;
888 	}
889 	features = le64_to_cpu(sbp->s_feature_compat_ro) &
890 		~NILFS_FEATURE_COMPAT_RO_SUPP;
891 	if (!sb_rdonly(sb) && features) {
892 		nilfs_msg(sb, KERN_ERR,
893 			  "couldn't mount RDWR because of unsupported optional features (%llx)",
894 			  (unsigned long long)features);
895 		return -EINVAL;
896 	}
897 	return 0;
898 }
899 
nilfs_get_root_dentry(struct super_block * sb,struct nilfs_root * root,struct dentry ** root_dentry)900 static int nilfs_get_root_dentry(struct super_block *sb,
901 				 struct nilfs_root *root,
902 				 struct dentry **root_dentry)
903 {
904 	struct inode *inode;
905 	struct dentry *dentry;
906 	int ret = 0;
907 
908 	inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
909 	if (IS_ERR(inode)) {
910 		ret = PTR_ERR(inode);
911 		nilfs_msg(sb, KERN_ERR, "error %d getting root inode", ret);
912 		goto out;
913 	}
914 	if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
915 		iput(inode);
916 		nilfs_msg(sb, KERN_ERR, "corrupt root inode");
917 		ret = -EINVAL;
918 		goto out;
919 	}
920 
921 	if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
922 		dentry = d_find_alias(inode);
923 		if (!dentry) {
924 			dentry = d_make_root(inode);
925 			if (!dentry) {
926 				ret = -ENOMEM;
927 				goto failed_dentry;
928 			}
929 		} else {
930 			iput(inode);
931 		}
932 	} else {
933 		dentry = d_obtain_root(inode);
934 		if (IS_ERR(dentry)) {
935 			ret = PTR_ERR(dentry);
936 			goto failed_dentry;
937 		}
938 	}
939 	*root_dentry = dentry;
940  out:
941 	return ret;
942 
943  failed_dentry:
944 	nilfs_msg(sb, KERN_ERR, "error %d getting root dentry", ret);
945 	goto out;
946 }
947 
nilfs_attach_snapshot(struct super_block * s,__u64 cno,struct dentry ** root_dentry)948 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
949 				 struct dentry **root_dentry)
950 {
951 	struct the_nilfs *nilfs = s->s_fs_info;
952 	struct nilfs_root *root;
953 	int ret;
954 
955 	mutex_lock(&nilfs->ns_snapshot_mount_mutex);
956 
957 	down_read(&nilfs->ns_segctor_sem);
958 	ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
959 	up_read(&nilfs->ns_segctor_sem);
960 	if (ret < 0) {
961 		ret = (ret == -ENOENT) ? -EINVAL : ret;
962 		goto out;
963 	} else if (!ret) {
964 		nilfs_msg(s, KERN_ERR,
965 			  "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
966 			  (unsigned long long)cno);
967 		ret = -EINVAL;
968 		goto out;
969 	}
970 
971 	ret = nilfs_attach_checkpoint(s, cno, false, &root);
972 	if (ret) {
973 		nilfs_msg(s, KERN_ERR,
974 			  "error %d while loading snapshot (checkpoint number=%llu)",
975 			  ret, (unsigned long long)cno);
976 		goto out;
977 	}
978 	ret = nilfs_get_root_dentry(s, root, root_dentry);
979 	nilfs_put_root(root);
980  out:
981 	mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
982 	return ret;
983 }
984 
985 /**
986  * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
987  * @root_dentry: root dentry of the tree to be shrunk
988  *
989  * This function returns true if the tree was in-use.
990  */
nilfs_tree_is_busy(struct dentry * root_dentry)991 static bool nilfs_tree_is_busy(struct dentry *root_dentry)
992 {
993 	shrink_dcache_parent(root_dentry);
994 	return d_count(root_dentry) > 1;
995 }
996 
nilfs_checkpoint_is_mounted(struct super_block * sb,__u64 cno)997 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
998 {
999 	struct the_nilfs *nilfs = sb->s_fs_info;
1000 	struct nilfs_root *root;
1001 	struct inode *inode;
1002 	struct dentry *dentry;
1003 	int ret;
1004 
1005 	if (cno > nilfs->ns_cno)
1006 		return false;
1007 
1008 	if (cno >= nilfs_last_cno(nilfs))
1009 		return true;	/* protect recent checkpoints */
1010 
1011 	ret = false;
1012 	root = nilfs_lookup_root(nilfs, cno);
1013 	if (root) {
1014 		inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1015 		if (inode) {
1016 			dentry = d_find_alias(inode);
1017 			if (dentry) {
1018 				ret = nilfs_tree_is_busy(dentry);
1019 				dput(dentry);
1020 			}
1021 			iput(inode);
1022 		}
1023 		nilfs_put_root(root);
1024 	}
1025 	return ret;
1026 }
1027 
1028 /**
1029  * nilfs_fill_super() - initialize a super block instance
1030  * @sb: super_block
1031  * @data: mount options
1032  * @silent: silent mode flag
1033  *
1034  * This function is called exclusively by nilfs->ns_mount_mutex.
1035  * So, the recovery process is protected from other simultaneous mounts.
1036  */
1037 static int
nilfs_fill_super(struct super_block * sb,void * data,int silent)1038 nilfs_fill_super(struct super_block *sb, void *data, int silent)
1039 {
1040 	struct the_nilfs *nilfs;
1041 	struct nilfs_root *fsroot;
1042 	__u64 cno;
1043 	int err;
1044 
1045 	nilfs = alloc_nilfs(sb);
1046 	if (!nilfs)
1047 		return -ENOMEM;
1048 
1049 	sb->s_fs_info = nilfs;
1050 
1051 	err = init_nilfs(nilfs, sb, (char *)data);
1052 	if (err)
1053 		goto failed_nilfs;
1054 
1055 	sb->s_op = &nilfs_sops;
1056 	sb->s_export_op = &nilfs_export_ops;
1057 	sb->s_root = NULL;
1058 	sb->s_time_gran = 1;
1059 	sb->s_max_links = NILFS_LINK_MAX;
1060 
1061 	sb->s_bdi = bdi_get(sb->s_bdev->bd_bdi);
1062 
1063 	err = load_nilfs(nilfs, sb);
1064 	if (err)
1065 		goto failed_nilfs;
1066 
1067 	cno = nilfs_last_cno(nilfs);
1068 	err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1069 	if (err) {
1070 		nilfs_msg(sb, KERN_ERR,
1071 			  "error %d while loading last checkpoint (checkpoint number=%llu)",
1072 			  err, (unsigned long long)cno);
1073 		goto failed_unload;
1074 	}
1075 
1076 	if (!sb_rdonly(sb)) {
1077 		err = nilfs_attach_log_writer(sb, fsroot);
1078 		if (err)
1079 			goto failed_checkpoint;
1080 	}
1081 
1082 	err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1083 	if (err)
1084 		goto failed_segctor;
1085 
1086 	nilfs_put_root(fsroot);
1087 
1088 	if (!sb_rdonly(sb)) {
1089 		down_write(&nilfs->ns_sem);
1090 		nilfs_setup_super(sb, true);
1091 		up_write(&nilfs->ns_sem);
1092 	}
1093 
1094 	return 0;
1095 
1096  failed_segctor:
1097 	nilfs_detach_log_writer(sb);
1098 
1099  failed_checkpoint:
1100 	nilfs_put_root(fsroot);
1101 
1102  failed_unload:
1103 	iput(nilfs->ns_sufile);
1104 	iput(nilfs->ns_cpfile);
1105 	iput(nilfs->ns_dat);
1106 
1107  failed_nilfs:
1108 	destroy_nilfs(nilfs);
1109 	return err;
1110 }
1111 
nilfs_remount(struct super_block * sb,int * flags,char * data)1112 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1113 {
1114 	struct the_nilfs *nilfs = sb->s_fs_info;
1115 	unsigned long old_sb_flags;
1116 	unsigned long old_mount_opt;
1117 	int err;
1118 
1119 	sync_filesystem(sb);
1120 	old_sb_flags = sb->s_flags;
1121 	old_mount_opt = nilfs->ns_mount_opt;
1122 
1123 	if (!parse_options(data, sb, 1)) {
1124 		err = -EINVAL;
1125 		goto restore_opts;
1126 	}
1127 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL);
1128 
1129 	err = -EINVAL;
1130 
1131 	if (!nilfs_valid_fs(nilfs)) {
1132 		nilfs_msg(sb, KERN_WARNING,
1133 			  "couldn't remount because the filesystem is in an incomplete recovery state");
1134 		goto restore_opts;
1135 	}
1136 
1137 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1138 		goto out;
1139 	if (*flags & SB_RDONLY) {
1140 		/* Shutting down log writer */
1141 		nilfs_detach_log_writer(sb);
1142 		sb->s_flags |= SB_RDONLY;
1143 
1144 		/*
1145 		 * Remounting a valid RW partition RDONLY, so set
1146 		 * the RDONLY flag and then mark the partition as valid again.
1147 		 */
1148 		down_write(&nilfs->ns_sem);
1149 		nilfs_cleanup_super(sb);
1150 		up_write(&nilfs->ns_sem);
1151 	} else {
1152 		__u64 features;
1153 		struct nilfs_root *root;
1154 
1155 		/*
1156 		 * Mounting a RDONLY partition read-write, so reread and
1157 		 * store the current valid flag.  (It may have been changed
1158 		 * by fsck since we originally mounted the partition.)
1159 		 */
1160 		down_read(&nilfs->ns_sem);
1161 		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1162 			~NILFS_FEATURE_COMPAT_RO_SUPP;
1163 		up_read(&nilfs->ns_sem);
1164 		if (features) {
1165 			nilfs_msg(sb, KERN_WARNING,
1166 				  "couldn't remount RDWR because of unsupported optional features (%llx)",
1167 				  (unsigned long long)features);
1168 			err = -EROFS;
1169 			goto restore_opts;
1170 		}
1171 
1172 		sb->s_flags &= ~SB_RDONLY;
1173 
1174 		root = NILFS_I(d_inode(sb->s_root))->i_root;
1175 		err = nilfs_attach_log_writer(sb, root);
1176 		if (err)
1177 			goto restore_opts;
1178 
1179 		down_write(&nilfs->ns_sem);
1180 		nilfs_setup_super(sb, true);
1181 		up_write(&nilfs->ns_sem);
1182 	}
1183  out:
1184 	return 0;
1185 
1186  restore_opts:
1187 	sb->s_flags = old_sb_flags;
1188 	nilfs->ns_mount_opt = old_mount_opt;
1189 	return err;
1190 }
1191 
1192 struct nilfs_super_data {
1193 	struct block_device *bdev;
1194 	__u64 cno;
1195 	int flags;
1196 };
1197 
nilfs_parse_snapshot_option(const char * option,const substring_t * arg,struct nilfs_super_data * sd)1198 static int nilfs_parse_snapshot_option(const char *option,
1199 				       const substring_t *arg,
1200 				       struct nilfs_super_data *sd)
1201 {
1202 	unsigned long long val;
1203 	const char *msg = NULL;
1204 	int err;
1205 
1206 	if (!(sd->flags & SB_RDONLY)) {
1207 		msg = "read-only option is not specified";
1208 		goto parse_error;
1209 	}
1210 
1211 	err = kstrtoull(arg->from, 0, &val);
1212 	if (err) {
1213 		if (err == -ERANGE)
1214 			msg = "too large checkpoint number";
1215 		else
1216 			msg = "malformed argument";
1217 		goto parse_error;
1218 	} else if (val == 0) {
1219 		msg = "invalid checkpoint number 0";
1220 		goto parse_error;
1221 	}
1222 	sd->cno = val;
1223 	return 0;
1224 
1225 parse_error:
1226 	nilfs_msg(NULL, KERN_ERR, "invalid option \"%s\": %s", option, msg);
1227 	return 1;
1228 }
1229 
1230 /**
1231  * nilfs_identify - pre-read mount options needed to identify mount instance
1232  * @data: mount options
1233  * @sd: nilfs_super_data
1234  */
nilfs_identify(char * data,struct nilfs_super_data * sd)1235 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1236 {
1237 	char *p, *options = data;
1238 	substring_t args[MAX_OPT_ARGS];
1239 	int token;
1240 	int ret = 0;
1241 
1242 	do {
1243 		p = strsep(&options, ",");
1244 		if (p != NULL && *p) {
1245 			token = match_token(p, tokens, args);
1246 			if (token == Opt_snapshot)
1247 				ret = nilfs_parse_snapshot_option(p, &args[0],
1248 								  sd);
1249 		}
1250 		if (!options)
1251 			break;
1252 		BUG_ON(options == data);
1253 		*(options - 1) = ',';
1254 	} while (!ret);
1255 	return ret;
1256 }
1257 
nilfs_set_bdev_super(struct super_block * s,void * data)1258 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1259 {
1260 	s->s_bdev = data;
1261 	s->s_dev = s->s_bdev->bd_dev;
1262 	return 0;
1263 }
1264 
nilfs_test_bdev_super(struct super_block * s,void * data)1265 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1266 {
1267 	return (void *)s->s_bdev == data;
1268 }
1269 
1270 static struct dentry *
nilfs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)1271 nilfs_mount(struct file_system_type *fs_type, int flags,
1272 	     const char *dev_name, void *data)
1273 {
1274 	struct nilfs_super_data sd;
1275 	struct super_block *s;
1276 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1277 	struct dentry *root_dentry;
1278 	int err, s_new = false;
1279 
1280 	if (!(flags & SB_RDONLY))
1281 		mode |= FMODE_WRITE;
1282 
1283 	sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1284 	if (IS_ERR(sd.bdev))
1285 		return ERR_CAST(sd.bdev);
1286 
1287 	sd.cno = 0;
1288 	sd.flags = flags;
1289 	if (nilfs_identify((char *)data, &sd)) {
1290 		err = -EINVAL;
1291 		goto failed;
1292 	}
1293 
1294 	/*
1295 	 * once the super is inserted into the list by sget, s_umount
1296 	 * will protect the lockfs code from trying to start a snapshot
1297 	 * while we are mounting
1298 	 */
1299 	mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1300 	if (sd.bdev->bd_fsfreeze_count > 0) {
1301 		mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1302 		err = -EBUSY;
1303 		goto failed;
1304 	}
1305 	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1306 		 sd.bdev);
1307 	mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1308 	if (IS_ERR(s)) {
1309 		err = PTR_ERR(s);
1310 		goto failed;
1311 	}
1312 
1313 	if (!s->s_root) {
1314 		s_new = true;
1315 
1316 		/* New superblock instance created */
1317 		s->s_mode = mode;
1318 		snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev);
1319 		sb_set_blocksize(s, block_size(sd.bdev));
1320 
1321 		err = nilfs_fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1322 		if (err)
1323 			goto failed_super;
1324 
1325 		s->s_flags |= SB_ACTIVE;
1326 	} else if (!sd.cno) {
1327 		if (nilfs_tree_is_busy(s->s_root)) {
1328 			if ((flags ^ s->s_flags) & SB_RDONLY) {
1329 				nilfs_msg(s, KERN_ERR,
1330 					  "the device already has a %s mount.",
1331 					  sb_rdonly(s) ? "read-only" : "read/write");
1332 				err = -EBUSY;
1333 				goto failed_super;
1334 			}
1335 		} else {
1336 			/*
1337 			 * Try remount to setup mount states if the current
1338 			 * tree is not mounted and only snapshots use this sb.
1339 			 */
1340 			err = nilfs_remount(s, &flags, data);
1341 			if (err)
1342 				goto failed_super;
1343 		}
1344 	}
1345 
1346 	if (sd.cno) {
1347 		err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1348 		if (err)
1349 			goto failed_super;
1350 	} else {
1351 		root_dentry = dget(s->s_root);
1352 	}
1353 
1354 	if (!s_new)
1355 		blkdev_put(sd.bdev, mode);
1356 
1357 	return root_dentry;
1358 
1359  failed_super:
1360 	deactivate_locked_super(s);
1361 
1362  failed:
1363 	if (!s_new)
1364 		blkdev_put(sd.bdev, mode);
1365 	return ERR_PTR(err);
1366 }
1367 
1368 struct file_system_type nilfs_fs_type = {
1369 	.owner    = THIS_MODULE,
1370 	.name     = "nilfs2",
1371 	.mount    = nilfs_mount,
1372 	.kill_sb  = kill_block_super,
1373 	.fs_flags = FS_REQUIRES_DEV,
1374 };
1375 MODULE_ALIAS_FS("nilfs2");
1376 
nilfs_inode_init_once(void * obj)1377 static void nilfs_inode_init_once(void *obj)
1378 {
1379 	struct nilfs_inode_info *ii = obj;
1380 
1381 	INIT_LIST_HEAD(&ii->i_dirty);
1382 #ifdef CONFIG_NILFS_XATTR
1383 	init_rwsem(&ii->xattr_sem);
1384 #endif
1385 	address_space_init_once(&ii->i_btnode_cache);
1386 	ii->i_bmap = &ii->i_bmap_data;
1387 	inode_init_once(&ii->vfs_inode);
1388 }
1389 
nilfs_segbuf_init_once(void * obj)1390 static void nilfs_segbuf_init_once(void *obj)
1391 {
1392 	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1393 }
1394 
nilfs_destroy_cachep(void)1395 static void nilfs_destroy_cachep(void)
1396 {
1397 	/*
1398 	 * Make sure all delayed rcu free inodes are flushed before we
1399 	 * destroy cache.
1400 	 */
1401 	rcu_barrier();
1402 
1403 	kmem_cache_destroy(nilfs_inode_cachep);
1404 	kmem_cache_destroy(nilfs_transaction_cachep);
1405 	kmem_cache_destroy(nilfs_segbuf_cachep);
1406 	kmem_cache_destroy(nilfs_btree_path_cache);
1407 }
1408 
nilfs_init_cachep(void)1409 static int __init nilfs_init_cachep(void)
1410 {
1411 	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1412 			sizeof(struct nilfs_inode_info), 0,
1413 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1414 			nilfs_inode_init_once);
1415 	if (!nilfs_inode_cachep)
1416 		goto fail;
1417 
1418 	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1419 			sizeof(struct nilfs_transaction_info), 0,
1420 			SLAB_RECLAIM_ACCOUNT, NULL);
1421 	if (!nilfs_transaction_cachep)
1422 		goto fail;
1423 
1424 	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1425 			sizeof(struct nilfs_segment_buffer), 0,
1426 			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1427 	if (!nilfs_segbuf_cachep)
1428 		goto fail;
1429 
1430 	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1431 			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1432 			0, 0, NULL);
1433 	if (!nilfs_btree_path_cache)
1434 		goto fail;
1435 
1436 	return 0;
1437 
1438 fail:
1439 	nilfs_destroy_cachep();
1440 	return -ENOMEM;
1441 }
1442 
init_nilfs_fs(void)1443 static int __init init_nilfs_fs(void)
1444 {
1445 	int err;
1446 
1447 	err = nilfs_init_cachep();
1448 	if (err)
1449 		goto fail;
1450 
1451 	err = nilfs_sysfs_init();
1452 	if (err)
1453 		goto free_cachep;
1454 
1455 	err = register_filesystem(&nilfs_fs_type);
1456 	if (err)
1457 		goto deinit_sysfs_entry;
1458 
1459 	printk(KERN_INFO "NILFS version 2 loaded\n");
1460 	return 0;
1461 
1462 deinit_sysfs_entry:
1463 	nilfs_sysfs_exit();
1464 free_cachep:
1465 	nilfs_destroy_cachep();
1466 fail:
1467 	return err;
1468 }
1469 
exit_nilfs_fs(void)1470 static void __exit exit_nilfs_fs(void)
1471 {
1472 	nilfs_destroy_cachep();
1473 	nilfs_sysfs_exit();
1474 	unregister_filesystem(&nilfs_fs_type);
1475 }
1476 
1477 module_init(init_nilfs_fs)
1478 module_exit(exit_nilfs_fs)
1479