1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * super.c - NILFS module and super block management.
4 *
5 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6 *
7 * Written by Ryusuke Konishi.
8 */
9 /*
10 * linux/fs/ext2/super.c
11 *
12 * Copyright (C) 1992, 1993, 1994, 1995
13 * Remy Card (card@masi.ibp.fr)
14 * Laboratoire MASI - Institut Blaise Pascal
15 * Universite Pierre et Marie Curie (Paris VI)
16 *
17 * from
18 *
19 * linux/fs/minix/inode.c
20 *
21 * Copyright (C) 1991, 1992 Linus Torvalds
22 *
23 * Big-endian to little-endian byte-swapping/bitmaps by
24 * David S. Miller (davem@caip.rutgers.edu), 1995
25 */
26
27 #include <linux/module.h>
28 #include <linux/string.h>
29 #include <linux/slab.h>
30 #include <linux/init.h>
31 #include <linux/blkdev.h>
32 #include <linux/parser.h>
33 #include <linux/crc32.h>
34 #include <linux/vfs.h>
35 #include <linux/writeback.h>
36 #include <linux/seq_file.h>
37 #include <linux/mount.h>
38 #include "nilfs.h"
39 #include "export.h"
40 #include "mdt.h"
41 #include "alloc.h"
42 #include "btree.h"
43 #include "btnode.h"
44 #include "page.h"
45 #include "cpfile.h"
46 #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
47 #include "ifile.h"
48 #include "dat.h"
49 #include "segment.h"
50 #include "segbuf.h"
51
52 MODULE_AUTHOR("NTT Corp.");
53 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
54 "(NILFS)");
55 MODULE_LICENSE("GPL");
56
57 static struct kmem_cache *nilfs_inode_cachep;
58 struct kmem_cache *nilfs_transaction_cachep;
59 struct kmem_cache *nilfs_segbuf_cachep;
60 struct kmem_cache *nilfs_btree_path_cache;
61
62 static int nilfs_setup_super(struct super_block *sb, int is_mount);
63 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
64
__nilfs_msg(struct super_block * sb,const char * level,const char * fmt,...)65 void __nilfs_msg(struct super_block *sb, const char *level, const char *fmt,
66 ...)
67 {
68 struct va_format vaf;
69 va_list args;
70
71 va_start(args, fmt);
72 vaf.fmt = fmt;
73 vaf.va = &args;
74 if (sb)
75 printk("%sNILFS (%s): %pV\n", level, sb->s_id, &vaf);
76 else
77 printk("%sNILFS: %pV\n", level, &vaf);
78 va_end(args);
79 }
80
nilfs_set_error(struct super_block * sb)81 static void nilfs_set_error(struct super_block *sb)
82 {
83 struct the_nilfs *nilfs = sb->s_fs_info;
84 struct nilfs_super_block **sbp;
85
86 down_write(&nilfs->ns_sem);
87 if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
88 nilfs->ns_mount_state |= NILFS_ERROR_FS;
89 sbp = nilfs_prepare_super(sb, 0);
90 if (likely(sbp)) {
91 sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
92 if (sbp[1])
93 sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
94 nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
95 }
96 }
97 up_write(&nilfs->ns_sem);
98 }
99
100 /**
101 * __nilfs_error() - report failure condition on a filesystem
102 *
103 * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
104 * reporting an error message. This function should be called when
105 * NILFS detects incoherences or defects of meta data on disk.
106 *
107 * This implements the body of nilfs_error() macro. Normally,
108 * nilfs_error() should be used. As for sustainable errors such as a
109 * single-shot I/O error, nilfs_msg() should be used instead.
110 *
111 * Callers should not add a trailing newline since this will do it.
112 */
__nilfs_error(struct super_block * sb,const char * function,const char * fmt,...)113 void __nilfs_error(struct super_block *sb, const char *function,
114 const char *fmt, ...)
115 {
116 struct the_nilfs *nilfs = sb->s_fs_info;
117 struct va_format vaf;
118 va_list args;
119
120 va_start(args, fmt);
121
122 vaf.fmt = fmt;
123 vaf.va = &args;
124
125 printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
126 sb->s_id, function, &vaf);
127
128 va_end(args);
129
130 if (!sb_rdonly(sb)) {
131 nilfs_set_error(sb);
132
133 if (nilfs_test_opt(nilfs, ERRORS_RO)) {
134 printk(KERN_CRIT "Remounting filesystem read-only\n");
135 sb->s_flags |= SB_RDONLY;
136 }
137 }
138
139 if (nilfs_test_opt(nilfs, ERRORS_PANIC))
140 panic("NILFS (device %s): panic forced after error\n",
141 sb->s_id);
142 }
143
nilfs_alloc_inode(struct super_block * sb)144 struct inode *nilfs_alloc_inode(struct super_block *sb)
145 {
146 struct nilfs_inode_info *ii;
147
148 ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
149 if (!ii)
150 return NULL;
151 ii->i_bh = NULL;
152 ii->i_state = 0;
153 ii->i_cno = 0;
154 nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode);
155 return &ii->vfs_inode;
156 }
157
nilfs_i_callback(struct rcu_head * head)158 static void nilfs_i_callback(struct rcu_head *head)
159 {
160 struct inode *inode = container_of(head, struct inode, i_rcu);
161
162 if (nilfs_is_metadata_file_inode(inode))
163 nilfs_mdt_destroy(inode);
164
165 kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
166 }
167
nilfs_destroy_inode(struct inode * inode)168 void nilfs_destroy_inode(struct inode *inode)
169 {
170 call_rcu(&inode->i_rcu, nilfs_i_callback);
171 }
172
nilfs_sync_super(struct super_block * sb,int flag)173 static int nilfs_sync_super(struct super_block *sb, int flag)
174 {
175 struct the_nilfs *nilfs = sb->s_fs_info;
176 int err;
177
178 retry:
179 set_buffer_dirty(nilfs->ns_sbh[0]);
180 if (nilfs_test_opt(nilfs, BARRIER)) {
181 err = __sync_dirty_buffer(nilfs->ns_sbh[0],
182 REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
183 } else {
184 err = sync_dirty_buffer(nilfs->ns_sbh[0]);
185 }
186
187 if (unlikely(err)) {
188 nilfs_msg(sb, KERN_ERR, "unable to write superblock: err=%d",
189 err);
190 if (err == -EIO && nilfs->ns_sbh[1]) {
191 /*
192 * sbp[0] points to newer log than sbp[1],
193 * so copy sbp[0] to sbp[1] to take over sbp[0].
194 */
195 memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
196 nilfs->ns_sbsize);
197 nilfs_fall_back_super_block(nilfs);
198 goto retry;
199 }
200 } else {
201 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
202
203 nilfs->ns_sbwcount++;
204
205 /*
206 * The latest segment becomes trailable from the position
207 * written in superblock.
208 */
209 clear_nilfs_discontinued(nilfs);
210
211 /* update GC protection for recent segments */
212 if (nilfs->ns_sbh[1]) {
213 if (flag == NILFS_SB_COMMIT_ALL) {
214 set_buffer_dirty(nilfs->ns_sbh[1]);
215 if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
216 goto out;
217 }
218 if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
219 le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
220 sbp = nilfs->ns_sbp[1];
221 }
222
223 spin_lock(&nilfs->ns_last_segment_lock);
224 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
225 spin_unlock(&nilfs->ns_last_segment_lock);
226 }
227 out:
228 return err;
229 }
230
nilfs_set_log_cursor(struct nilfs_super_block * sbp,struct the_nilfs * nilfs)231 void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
232 struct the_nilfs *nilfs)
233 {
234 sector_t nfreeblocks;
235
236 /* nilfs->ns_sem must be locked by the caller. */
237 nilfs_count_free_blocks(nilfs, &nfreeblocks);
238 sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
239
240 spin_lock(&nilfs->ns_last_segment_lock);
241 sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
242 sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
243 sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
244 spin_unlock(&nilfs->ns_last_segment_lock);
245 }
246
nilfs_prepare_super(struct super_block * sb,int flip)247 struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
248 int flip)
249 {
250 struct the_nilfs *nilfs = sb->s_fs_info;
251 struct nilfs_super_block **sbp = nilfs->ns_sbp;
252
253 /* nilfs->ns_sem must be locked by the caller. */
254 if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
255 if (sbp[1] &&
256 sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
257 memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
258 } else {
259 nilfs_msg(sb, KERN_CRIT, "superblock broke");
260 return NULL;
261 }
262 } else if (sbp[1] &&
263 sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
264 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
265 }
266
267 if (flip && sbp[1])
268 nilfs_swap_super_block(nilfs);
269
270 return sbp;
271 }
272
nilfs_commit_super(struct super_block * sb,int flag)273 int nilfs_commit_super(struct super_block *sb, int flag)
274 {
275 struct the_nilfs *nilfs = sb->s_fs_info;
276 struct nilfs_super_block **sbp = nilfs->ns_sbp;
277 time64_t t;
278
279 /* nilfs->ns_sem must be locked by the caller. */
280 t = ktime_get_real_seconds();
281 nilfs->ns_sbwtime = t;
282 sbp[0]->s_wtime = cpu_to_le64(t);
283 sbp[0]->s_sum = 0;
284 sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
285 (unsigned char *)sbp[0],
286 nilfs->ns_sbsize));
287 if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
288 sbp[1]->s_wtime = sbp[0]->s_wtime;
289 sbp[1]->s_sum = 0;
290 sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
291 (unsigned char *)sbp[1],
292 nilfs->ns_sbsize));
293 }
294 clear_nilfs_sb_dirty(nilfs);
295 nilfs->ns_flushed_device = 1;
296 /* make sure store to ns_flushed_device cannot be reordered */
297 smp_wmb();
298 return nilfs_sync_super(sb, flag);
299 }
300
301 /**
302 * nilfs_cleanup_super() - write filesystem state for cleanup
303 * @sb: super block instance to be unmounted or degraded to read-only
304 *
305 * This function restores state flags in the on-disk super block.
306 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
307 * filesystem was not clean previously.
308 */
nilfs_cleanup_super(struct super_block * sb)309 int nilfs_cleanup_super(struct super_block *sb)
310 {
311 struct the_nilfs *nilfs = sb->s_fs_info;
312 struct nilfs_super_block **sbp;
313 int flag = NILFS_SB_COMMIT;
314 int ret = -EIO;
315
316 sbp = nilfs_prepare_super(sb, 0);
317 if (sbp) {
318 sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
319 nilfs_set_log_cursor(sbp[0], nilfs);
320 if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
321 /*
322 * make the "clean" flag also to the opposite
323 * super block if both super blocks point to
324 * the same checkpoint.
325 */
326 sbp[1]->s_state = sbp[0]->s_state;
327 flag = NILFS_SB_COMMIT_ALL;
328 }
329 ret = nilfs_commit_super(sb, flag);
330 }
331 return ret;
332 }
333
334 /**
335 * nilfs_move_2nd_super - relocate secondary super block
336 * @sb: super block instance
337 * @sb2off: new offset of the secondary super block (in bytes)
338 */
nilfs_move_2nd_super(struct super_block * sb,loff_t sb2off)339 static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
340 {
341 struct the_nilfs *nilfs = sb->s_fs_info;
342 struct buffer_head *nsbh;
343 struct nilfs_super_block *nsbp;
344 sector_t blocknr, newblocknr;
345 unsigned long offset;
346 int sb2i; /* array index of the secondary superblock */
347 int ret = 0;
348
349 /* nilfs->ns_sem must be locked by the caller. */
350 if (nilfs->ns_sbh[1] &&
351 nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
352 sb2i = 1;
353 blocknr = nilfs->ns_sbh[1]->b_blocknr;
354 } else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
355 sb2i = 0;
356 blocknr = nilfs->ns_sbh[0]->b_blocknr;
357 } else {
358 sb2i = -1;
359 blocknr = 0;
360 }
361 if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
362 goto out; /* super block location is unchanged */
363
364 /* Get new super block buffer */
365 newblocknr = sb2off >> nilfs->ns_blocksize_bits;
366 offset = sb2off & (nilfs->ns_blocksize - 1);
367 nsbh = sb_getblk(sb, newblocknr);
368 if (!nsbh) {
369 nilfs_msg(sb, KERN_WARNING,
370 "unable to move secondary superblock to block %llu",
371 (unsigned long long)newblocknr);
372 ret = -EIO;
373 goto out;
374 }
375 nsbp = (void *)nsbh->b_data + offset;
376 memset(nsbp, 0, nilfs->ns_blocksize);
377
378 if (sb2i >= 0) {
379 memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
380 brelse(nilfs->ns_sbh[sb2i]);
381 nilfs->ns_sbh[sb2i] = nsbh;
382 nilfs->ns_sbp[sb2i] = nsbp;
383 } else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
384 /* secondary super block will be restored to index 1 */
385 nilfs->ns_sbh[1] = nsbh;
386 nilfs->ns_sbp[1] = nsbp;
387 } else {
388 brelse(nsbh);
389 }
390 out:
391 return ret;
392 }
393
394 /**
395 * nilfs_resize_fs - resize the filesystem
396 * @sb: super block instance
397 * @newsize: new size of the filesystem (in bytes)
398 */
nilfs_resize_fs(struct super_block * sb,__u64 newsize)399 int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
400 {
401 struct the_nilfs *nilfs = sb->s_fs_info;
402 struct nilfs_super_block **sbp;
403 __u64 devsize, newnsegs;
404 loff_t sb2off;
405 int ret;
406
407 ret = -ERANGE;
408 devsize = i_size_read(sb->s_bdev->bd_inode);
409 if (newsize > devsize)
410 goto out;
411
412 /*
413 * Write lock is required to protect some functions depending
414 * on the number of segments, the number of reserved segments,
415 * and so forth.
416 */
417 down_write(&nilfs->ns_segctor_sem);
418
419 sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
420 newnsegs = sb2off >> nilfs->ns_blocksize_bits;
421 do_div(newnsegs, nilfs->ns_blocks_per_segment);
422
423 ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
424 up_write(&nilfs->ns_segctor_sem);
425 if (ret < 0)
426 goto out;
427
428 ret = nilfs_construct_segment(sb);
429 if (ret < 0)
430 goto out;
431
432 down_write(&nilfs->ns_sem);
433 nilfs_move_2nd_super(sb, sb2off);
434 ret = -EIO;
435 sbp = nilfs_prepare_super(sb, 0);
436 if (likely(sbp)) {
437 nilfs_set_log_cursor(sbp[0], nilfs);
438 /*
439 * Drop NILFS_RESIZE_FS flag for compatibility with
440 * mount-time resize which may be implemented in a
441 * future release.
442 */
443 sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
444 ~NILFS_RESIZE_FS);
445 sbp[0]->s_dev_size = cpu_to_le64(newsize);
446 sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
447 if (sbp[1])
448 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
449 ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
450 }
451 up_write(&nilfs->ns_sem);
452
453 /*
454 * Reset the range of allocatable segments last. This order
455 * is important in the case of expansion because the secondary
456 * superblock must be protected from log write until migration
457 * completes.
458 */
459 if (!ret)
460 nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
461 out:
462 return ret;
463 }
464
nilfs_put_super(struct super_block * sb)465 static void nilfs_put_super(struct super_block *sb)
466 {
467 struct the_nilfs *nilfs = sb->s_fs_info;
468
469 nilfs_detach_log_writer(sb);
470
471 if (!sb_rdonly(sb)) {
472 down_write(&nilfs->ns_sem);
473 nilfs_cleanup_super(sb);
474 up_write(&nilfs->ns_sem);
475 }
476
477 iput(nilfs->ns_sufile);
478 iput(nilfs->ns_cpfile);
479 iput(nilfs->ns_dat);
480
481 destroy_nilfs(nilfs);
482 sb->s_fs_info = NULL;
483 }
484
nilfs_sync_fs(struct super_block * sb,int wait)485 static int nilfs_sync_fs(struct super_block *sb, int wait)
486 {
487 struct the_nilfs *nilfs = sb->s_fs_info;
488 struct nilfs_super_block **sbp;
489 int err = 0;
490
491 /* This function is called when super block should be written back */
492 if (wait)
493 err = nilfs_construct_segment(sb);
494
495 down_write(&nilfs->ns_sem);
496 if (nilfs_sb_dirty(nilfs)) {
497 sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
498 if (likely(sbp)) {
499 nilfs_set_log_cursor(sbp[0], nilfs);
500 nilfs_commit_super(sb, NILFS_SB_COMMIT);
501 }
502 }
503 up_write(&nilfs->ns_sem);
504
505 if (!err)
506 err = nilfs_flush_device(nilfs);
507
508 return err;
509 }
510
nilfs_attach_checkpoint(struct super_block * sb,__u64 cno,int curr_mnt,struct nilfs_root ** rootp)511 int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
512 struct nilfs_root **rootp)
513 {
514 struct the_nilfs *nilfs = sb->s_fs_info;
515 struct nilfs_root *root;
516 struct nilfs_checkpoint *raw_cp;
517 struct buffer_head *bh_cp;
518 int err = -ENOMEM;
519
520 root = nilfs_find_or_create_root(
521 nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
522 if (!root)
523 return err;
524
525 if (root->ifile)
526 goto reuse; /* already attached checkpoint */
527
528 down_read(&nilfs->ns_segctor_sem);
529 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
530 &bh_cp);
531 up_read(&nilfs->ns_segctor_sem);
532 if (unlikely(err)) {
533 if (err == -ENOENT || err == -EINVAL) {
534 nilfs_msg(sb, KERN_ERR,
535 "Invalid checkpoint (checkpoint number=%llu)",
536 (unsigned long long)cno);
537 err = -EINVAL;
538 }
539 goto failed;
540 }
541
542 err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
543 &raw_cp->cp_ifile_inode, &root->ifile);
544 if (err)
545 goto failed_bh;
546
547 atomic64_set(&root->inodes_count,
548 le64_to_cpu(raw_cp->cp_inodes_count));
549 atomic64_set(&root->blocks_count,
550 le64_to_cpu(raw_cp->cp_blocks_count));
551
552 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
553
554 reuse:
555 *rootp = root;
556 return 0;
557
558 failed_bh:
559 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
560 failed:
561 nilfs_put_root(root);
562
563 return err;
564 }
565
nilfs_freeze(struct super_block * sb)566 static int nilfs_freeze(struct super_block *sb)
567 {
568 struct the_nilfs *nilfs = sb->s_fs_info;
569 int err;
570
571 if (sb_rdonly(sb))
572 return 0;
573
574 /* Mark super block clean */
575 down_write(&nilfs->ns_sem);
576 err = nilfs_cleanup_super(sb);
577 up_write(&nilfs->ns_sem);
578 return err;
579 }
580
nilfs_unfreeze(struct super_block * sb)581 static int nilfs_unfreeze(struct super_block *sb)
582 {
583 struct the_nilfs *nilfs = sb->s_fs_info;
584
585 if (sb_rdonly(sb))
586 return 0;
587
588 down_write(&nilfs->ns_sem);
589 nilfs_setup_super(sb, false);
590 up_write(&nilfs->ns_sem);
591 return 0;
592 }
593
nilfs_statfs(struct dentry * dentry,struct kstatfs * buf)594 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
595 {
596 struct super_block *sb = dentry->d_sb;
597 struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
598 struct the_nilfs *nilfs = root->nilfs;
599 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
600 unsigned long long blocks;
601 unsigned long overhead;
602 unsigned long nrsvblocks;
603 sector_t nfreeblocks;
604 u64 nmaxinodes, nfreeinodes;
605 int err;
606
607 /*
608 * Compute all of the segment blocks
609 *
610 * The blocks before first segment and after last segment
611 * are excluded.
612 */
613 blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
614 - nilfs->ns_first_data_block;
615 nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
616
617 /*
618 * Compute the overhead
619 *
620 * When distributing meta data blocks outside segment structure,
621 * We must count them as the overhead.
622 */
623 overhead = 0;
624
625 err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
626 if (unlikely(err))
627 return err;
628
629 err = nilfs_ifile_count_free_inodes(root->ifile,
630 &nmaxinodes, &nfreeinodes);
631 if (unlikely(err)) {
632 nilfs_msg(sb, KERN_WARNING,
633 "failed to count free inodes: err=%d", err);
634 if (err == -ERANGE) {
635 /*
636 * If nilfs_palloc_count_max_entries() returns
637 * -ERANGE error code then we simply treat
638 * curent inodes count as maximum possible and
639 * zero as free inodes value.
640 */
641 nmaxinodes = atomic64_read(&root->inodes_count);
642 nfreeinodes = 0;
643 err = 0;
644 } else
645 return err;
646 }
647
648 buf->f_type = NILFS_SUPER_MAGIC;
649 buf->f_bsize = sb->s_blocksize;
650 buf->f_blocks = blocks - overhead;
651 buf->f_bfree = nfreeblocks;
652 buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
653 (buf->f_bfree - nrsvblocks) : 0;
654 buf->f_files = nmaxinodes;
655 buf->f_ffree = nfreeinodes;
656 buf->f_namelen = NILFS_NAME_LEN;
657 buf->f_fsid.val[0] = (u32)id;
658 buf->f_fsid.val[1] = (u32)(id >> 32);
659
660 return 0;
661 }
662
nilfs_show_options(struct seq_file * seq,struct dentry * dentry)663 static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
664 {
665 struct super_block *sb = dentry->d_sb;
666 struct the_nilfs *nilfs = sb->s_fs_info;
667 struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
668
669 if (!nilfs_test_opt(nilfs, BARRIER))
670 seq_puts(seq, ",nobarrier");
671 if (root->cno != NILFS_CPTREE_CURRENT_CNO)
672 seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
673 if (nilfs_test_opt(nilfs, ERRORS_PANIC))
674 seq_puts(seq, ",errors=panic");
675 if (nilfs_test_opt(nilfs, ERRORS_CONT))
676 seq_puts(seq, ",errors=continue");
677 if (nilfs_test_opt(nilfs, STRICT_ORDER))
678 seq_puts(seq, ",order=strict");
679 if (nilfs_test_opt(nilfs, NORECOVERY))
680 seq_puts(seq, ",norecovery");
681 if (nilfs_test_opt(nilfs, DISCARD))
682 seq_puts(seq, ",discard");
683
684 return 0;
685 }
686
687 static const struct super_operations nilfs_sops = {
688 .alloc_inode = nilfs_alloc_inode,
689 .destroy_inode = nilfs_destroy_inode,
690 .dirty_inode = nilfs_dirty_inode,
691 .evict_inode = nilfs_evict_inode,
692 .put_super = nilfs_put_super,
693 .sync_fs = nilfs_sync_fs,
694 .freeze_fs = nilfs_freeze,
695 .unfreeze_fs = nilfs_unfreeze,
696 .statfs = nilfs_statfs,
697 .remount_fs = nilfs_remount,
698 .show_options = nilfs_show_options
699 };
700
701 enum {
702 Opt_err_cont, Opt_err_panic, Opt_err_ro,
703 Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
704 Opt_discard, Opt_nodiscard, Opt_err,
705 };
706
707 static match_table_t tokens = {
708 {Opt_err_cont, "errors=continue"},
709 {Opt_err_panic, "errors=panic"},
710 {Opt_err_ro, "errors=remount-ro"},
711 {Opt_barrier, "barrier"},
712 {Opt_nobarrier, "nobarrier"},
713 {Opt_snapshot, "cp=%u"},
714 {Opt_order, "order=%s"},
715 {Opt_norecovery, "norecovery"},
716 {Opt_discard, "discard"},
717 {Opt_nodiscard, "nodiscard"},
718 {Opt_err, NULL}
719 };
720
parse_options(char * options,struct super_block * sb,int is_remount)721 static int parse_options(char *options, struct super_block *sb, int is_remount)
722 {
723 struct the_nilfs *nilfs = sb->s_fs_info;
724 char *p;
725 substring_t args[MAX_OPT_ARGS];
726
727 if (!options)
728 return 1;
729
730 while ((p = strsep(&options, ",")) != NULL) {
731 int token;
732
733 if (!*p)
734 continue;
735
736 token = match_token(p, tokens, args);
737 switch (token) {
738 case Opt_barrier:
739 nilfs_set_opt(nilfs, BARRIER);
740 break;
741 case Opt_nobarrier:
742 nilfs_clear_opt(nilfs, BARRIER);
743 break;
744 case Opt_order:
745 if (strcmp(args[0].from, "relaxed") == 0)
746 /* Ordered data semantics */
747 nilfs_clear_opt(nilfs, STRICT_ORDER);
748 else if (strcmp(args[0].from, "strict") == 0)
749 /* Strict in-order semantics */
750 nilfs_set_opt(nilfs, STRICT_ORDER);
751 else
752 return 0;
753 break;
754 case Opt_err_panic:
755 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
756 break;
757 case Opt_err_ro:
758 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
759 break;
760 case Opt_err_cont:
761 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
762 break;
763 case Opt_snapshot:
764 if (is_remount) {
765 nilfs_msg(sb, KERN_ERR,
766 "\"%s\" option is invalid for remount",
767 p);
768 return 0;
769 }
770 break;
771 case Opt_norecovery:
772 nilfs_set_opt(nilfs, NORECOVERY);
773 break;
774 case Opt_discard:
775 nilfs_set_opt(nilfs, DISCARD);
776 break;
777 case Opt_nodiscard:
778 nilfs_clear_opt(nilfs, DISCARD);
779 break;
780 default:
781 nilfs_msg(sb, KERN_ERR,
782 "unrecognized mount option \"%s\"", p);
783 return 0;
784 }
785 }
786 return 1;
787 }
788
789 static inline void
nilfs_set_default_options(struct super_block * sb,struct nilfs_super_block * sbp)790 nilfs_set_default_options(struct super_block *sb,
791 struct nilfs_super_block *sbp)
792 {
793 struct the_nilfs *nilfs = sb->s_fs_info;
794
795 nilfs->ns_mount_opt =
796 NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
797 }
798
nilfs_setup_super(struct super_block * sb,int is_mount)799 static int nilfs_setup_super(struct super_block *sb, int is_mount)
800 {
801 struct the_nilfs *nilfs = sb->s_fs_info;
802 struct nilfs_super_block **sbp;
803 int max_mnt_count;
804 int mnt_count;
805
806 /* nilfs->ns_sem must be locked by the caller. */
807 sbp = nilfs_prepare_super(sb, 0);
808 if (!sbp)
809 return -EIO;
810
811 if (!is_mount)
812 goto skip_mount_setup;
813
814 max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
815 mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
816
817 if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
818 nilfs_msg(sb, KERN_WARNING, "mounting fs with errors");
819 #if 0
820 } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
821 nilfs_msg(sb, KERN_WARNING, "maximal mount count reached");
822 #endif
823 }
824 if (!max_mnt_count)
825 sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
826
827 sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
828 sbp[0]->s_mtime = cpu_to_le64(ktime_get_real_seconds());
829
830 skip_mount_setup:
831 sbp[0]->s_state =
832 cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
833 /* synchronize sbp[1] with sbp[0] */
834 if (sbp[1])
835 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
836 return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
837 }
838
nilfs_read_super_block(struct super_block * sb,u64 pos,int blocksize,struct buffer_head ** pbh)839 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
840 u64 pos, int blocksize,
841 struct buffer_head **pbh)
842 {
843 unsigned long long sb_index = pos;
844 unsigned long offset;
845
846 offset = do_div(sb_index, blocksize);
847 *pbh = sb_bread(sb, sb_index);
848 if (!*pbh)
849 return NULL;
850 return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
851 }
852
nilfs_store_magic_and_option(struct super_block * sb,struct nilfs_super_block * sbp,char * data)853 int nilfs_store_magic_and_option(struct super_block *sb,
854 struct nilfs_super_block *sbp,
855 char *data)
856 {
857 struct the_nilfs *nilfs = sb->s_fs_info;
858
859 sb->s_magic = le16_to_cpu(sbp->s_magic);
860
861 /* FS independent flags */
862 #ifdef NILFS_ATIME_DISABLE
863 sb->s_flags |= SB_NOATIME;
864 #endif
865
866 nilfs_set_default_options(sb, sbp);
867
868 nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
869 nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
870 nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
871 nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
872
873 return !parse_options(data, sb, 0) ? -EINVAL : 0;
874 }
875
nilfs_check_feature_compatibility(struct super_block * sb,struct nilfs_super_block * sbp)876 int nilfs_check_feature_compatibility(struct super_block *sb,
877 struct nilfs_super_block *sbp)
878 {
879 __u64 features;
880
881 features = le64_to_cpu(sbp->s_feature_incompat) &
882 ~NILFS_FEATURE_INCOMPAT_SUPP;
883 if (features) {
884 nilfs_msg(sb, KERN_ERR,
885 "couldn't mount because of unsupported optional features (%llx)",
886 (unsigned long long)features);
887 return -EINVAL;
888 }
889 features = le64_to_cpu(sbp->s_feature_compat_ro) &
890 ~NILFS_FEATURE_COMPAT_RO_SUPP;
891 if (!sb_rdonly(sb) && features) {
892 nilfs_msg(sb, KERN_ERR,
893 "couldn't mount RDWR because of unsupported optional features (%llx)",
894 (unsigned long long)features);
895 return -EINVAL;
896 }
897 return 0;
898 }
899
nilfs_get_root_dentry(struct super_block * sb,struct nilfs_root * root,struct dentry ** root_dentry)900 static int nilfs_get_root_dentry(struct super_block *sb,
901 struct nilfs_root *root,
902 struct dentry **root_dentry)
903 {
904 struct inode *inode;
905 struct dentry *dentry;
906 int ret = 0;
907
908 inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
909 if (IS_ERR(inode)) {
910 ret = PTR_ERR(inode);
911 nilfs_msg(sb, KERN_ERR, "error %d getting root inode", ret);
912 goto out;
913 }
914 if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
915 iput(inode);
916 nilfs_msg(sb, KERN_ERR, "corrupt root inode");
917 ret = -EINVAL;
918 goto out;
919 }
920
921 if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
922 dentry = d_find_alias(inode);
923 if (!dentry) {
924 dentry = d_make_root(inode);
925 if (!dentry) {
926 ret = -ENOMEM;
927 goto failed_dentry;
928 }
929 } else {
930 iput(inode);
931 }
932 } else {
933 dentry = d_obtain_root(inode);
934 if (IS_ERR(dentry)) {
935 ret = PTR_ERR(dentry);
936 goto failed_dentry;
937 }
938 }
939 *root_dentry = dentry;
940 out:
941 return ret;
942
943 failed_dentry:
944 nilfs_msg(sb, KERN_ERR, "error %d getting root dentry", ret);
945 goto out;
946 }
947
nilfs_attach_snapshot(struct super_block * s,__u64 cno,struct dentry ** root_dentry)948 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
949 struct dentry **root_dentry)
950 {
951 struct the_nilfs *nilfs = s->s_fs_info;
952 struct nilfs_root *root;
953 int ret;
954
955 mutex_lock(&nilfs->ns_snapshot_mount_mutex);
956
957 down_read(&nilfs->ns_segctor_sem);
958 ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
959 up_read(&nilfs->ns_segctor_sem);
960 if (ret < 0) {
961 ret = (ret == -ENOENT) ? -EINVAL : ret;
962 goto out;
963 } else if (!ret) {
964 nilfs_msg(s, KERN_ERR,
965 "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
966 (unsigned long long)cno);
967 ret = -EINVAL;
968 goto out;
969 }
970
971 ret = nilfs_attach_checkpoint(s, cno, false, &root);
972 if (ret) {
973 nilfs_msg(s, KERN_ERR,
974 "error %d while loading snapshot (checkpoint number=%llu)",
975 ret, (unsigned long long)cno);
976 goto out;
977 }
978 ret = nilfs_get_root_dentry(s, root, root_dentry);
979 nilfs_put_root(root);
980 out:
981 mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
982 return ret;
983 }
984
985 /**
986 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
987 * @root_dentry: root dentry of the tree to be shrunk
988 *
989 * This function returns true if the tree was in-use.
990 */
nilfs_tree_is_busy(struct dentry * root_dentry)991 static bool nilfs_tree_is_busy(struct dentry *root_dentry)
992 {
993 shrink_dcache_parent(root_dentry);
994 return d_count(root_dentry) > 1;
995 }
996
nilfs_checkpoint_is_mounted(struct super_block * sb,__u64 cno)997 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
998 {
999 struct the_nilfs *nilfs = sb->s_fs_info;
1000 struct nilfs_root *root;
1001 struct inode *inode;
1002 struct dentry *dentry;
1003 int ret;
1004
1005 if (cno > nilfs->ns_cno)
1006 return false;
1007
1008 if (cno >= nilfs_last_cno(nilfs))
1009 return true; /* protect recent checkpoints */
1010
1011 ret = false;
1012 root = nilfs_lookup_root(nilfs, cno);
1013 if (root) {
1014 inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1015 if (inode) {
1016 dentry = d_find_alias(inode);
1017 if (dentry) {
1018 ret = nilfs_tree_is_busy(dentry);
1019 dput(dentry);
1020 }
1021 iput(inode);
1022 }
1023 nilfs_put_root(root);
1024 }
1025 return ret;
1026 }
1027
1028 /**
1029 * nilfs_fill_super() - initialize a super block instance
1030 * @sb: super_block
1031 * @data: mount options
1032 * @silent: silent mode flag
1033 *
1034 * This function is called exclusively by nilfs->ns_mount_mutex.
1035 * So, the recovery process is protected from other simultaneous mounts.
1036 */
1037 static int
nilfs_fill_super(struct super_block * sb,void * data,int silent)1038 nilfs_fill_super(struct super_block *sb, void *data, int silent)
1039 {
1040 struct the_nilfs *nilfs;
1041 struct nilfs_root *fsroot;
1042 __u64 cno;
1043 int err;
1044
1045 nilfs = alloc_nilfs(sb);
1046 if (!nilfs)
1047 return -ENOMEM;
1048
1049 sb->s_fs_info = nilfs;
1050
1051 err = init_nilfs(nilfs, sb, (char *)data);
1052 if (err)
1053 goto failed_nilfs;
1054
1055 sb->s_op = &nilfs_sops;
1056 sb->s_export_op = &nilfs_export_ops;
1057 sb->s_root = NULL;
1058 sb->s_time_gran = 1;
1059 sb->s_max_links = NILFS_LINK_MAX;
1060
1061 sb->s_bdi = bdi_get(sb->s_bdev->bd_bdi);
1062
1063 err = load_nilfs(nilfs, sb);
1064 if (err)
1065 goto failed_nilfs;
1066
1067 cno = nilfs_last_cno(nilfs);
1068 err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1069 if (err) {
1070 nilfs_msg(sb, KERN_ERR,
1071 "error %d while loading last checkpoint (checkpoint number=%llu)",
1072 err, (unsigned long long)cno);
1073 goto failed_unload;
1074 }
1075
1076 if (!sb_rdonly(sb)) {
1077 err = nilfs_attach_log_writer(sb, fsroot);
1078 if (err)
1079 goto failed_checkpoint;
1080 }
1081
1082 err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1083 if (err)
1084 goto failed_segctor;
1085
1086 nilfs_put_root(fsroot);
1087
1088 if (!sb_rdonly(sb)) {
1089 down_write(&nilfs->ns_sem);
1090 nilfs_setup_super(sb, true);
1091 up_write(&nilfs->ns_sem);
1092 }
1093
1094 return 0;
1095
1096 failed_segctor:
1097 nilfs_detach_log_writer(sb);
1098
1099 failed_checkpoint:
1100 nilfs_put_root(fsroot);
1101
1102 failed_unload:
1103 iput(nilfs->ns_sufile);
1104 iput(nilfs->ns_cpfile);
1105 iput(nilfs->ns_dat);
1106
1107 failed_nilfs:
1108 destroy_nilfs(nilfs);
1109 return err;
1110 }
1111
nilfs_remount(struct super_block * sb,int * flags,char * data)1112 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1113 {
1114 struct the_nilfs *nilfs = sb->s_fs_info;
1115 unsigned long old_sb_flags;
1116 unsigned long old_mount_opt;
1117 int err;
1118
1119 sync_filesystem(sb);
1120 old_sb_flags = sb->s_flags;
1121 old_mount_opt = nilfs->ns_mount_opt;
1122
1123 if (!parse_options(data, sb, 1)) {
1124 err = -EINVAL;
1125 goto restore_opts;
1126 }
1127 sb->s_flags = (sb->s_flags & ~SB_POSIXACL);
1128
1129 err = -EINVAL;
1130
1131 if (!nilfs_valid_fs(nilfs)) {
1132 nilfs_msg(sb, KERN_WARNING,
1133 "couldn't remount because the filesystem is in an incomplete recovery state");
1134 goto restore_opts;
1135 }
1136
1137 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1138 goto out;
1139 if (*flags & SB_RDONLY) {
1140 /* Shutting down log writer */
1141 nilfs_detach_log_writer(sb);
1142 sb->s_flags |= SB_RDONLY;
1143
1144 /*
1145 * Remounting a valid RW partition RDONLY, so set
1146 * the RDONLY flag and then mark the partition as valid again.
1147 */
1148 down_write(&nilfs->ns_sem);
1149 nilfs_cleanup_super(sb);
1150 up_write(&nilfs->ns_sem);
1151 } else {
1152 __u64 features;
1153 struct nilfs_root *root;
1154
1155 /*
1156 * Mounting a RDONLY partition read-write, so reread and
1157 * store the current valid flag. (It may have been changed
1158 * by fsck since we originally mounted the partition.)
1159 */
1160 down_read(&nilfs->ns_sem);
1161 features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1162 ~NILFS_FEATURE_COMPAT_RO_SUPP;
1163 up_read(&nilfs->ns_sem);
1164 if (features) {
1165 nilfs_msg(sb, KERN_WARNING,
1166 "couldn't remount RDWR because of unsupported optional features (%llx)",
1167 (unsigned long long)features);
1168 err = -EROFS;
1169 goto restore_opts;
1170 }
1171
1172 sb->s_flags &= ~SB_RDONLY;
1173
1174 root = NILFS_I(d_inode(sb->s_root))->i_root;
1175 err = nilfs_attach_log_writer(sb, root);
1176 if (err)
1177 goto restore_opts;
1178
1179 down_write(&nilfs->ns_sem);
1180 nilfs_setup_super(sb, true);
1181 up_write(&nilfs->ns_sem);
1182 }
1183 out:
1184 return 0;
1185
1186 restore_opts:
1187 sb->s_flags = old_sb_flags;
1188 nilfs->ns_mount_opt = old_mount_opt;
1189 return err;
1190 }
1191
1192 struct nilfs_super_data {
1193 struct block_device *bdev;
1194 __u64 cno;
1195 int flags;
1196 };
1197
nilfs_parse_snapshot_option(const char * option,const substring_t * arg,struct nilfs_super_data * sd)1198 static int nilfs_parse_snapshot_option(const char *option,
1199 const substring_t *arg,
1200 struct nilfs_super_data *sd)
1201 {
1202 unsigned long long val;
1203 const char *msg = NULL;
1204 int err;
1205
1206 if (!(sd->flags & SB_RDONLY)) {
1207 msg = "read-only option is not specified";
1208 goto parse_error;
1209 }
1210
1211 err = kstrtoull(arg->from, 0, &val);
1212 if (err) {
1213 if (err == -ERANGE)
1214 msg = "too large checkpoint number";
1215 else
1216 msg = "malformed argument";
1217 goto parse_error;
1218 } else if (val == 0) {
1219 msg = "invalid checkpoint number 0";
1220 goto parse_error;
1221 }
1222 sd->cno = val;
1223 return 0;
1224
1225 parse_error:
1226 nilfs_msg(NULL, KERN_ERR, "invalid option \"%s\": %s", option, msg);
1227 return 1;
1228 }
1229
1230 /**
1231 * nilfs_identify - pre-read mount options needed to identify mount instance
1232 * @data: mount options
1233 * @sd: nilfs_super_data
1234 */
nilfs_identify(char * data,struct nilfs_super_data * sd)1235 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1236 {
1237 char *p, *options = data;
1238 substring_t args[MAX_OPT_ARGS];
1239 int token;
1240 int ret = 0;
1241
1242 do {
1243 p = strsep(&options, ",");
1244 if (p != NULL && *p) {
1245 token = match_token(p, tokens, args);
1246 if (token == Opt_snapshot)
1247 ret = nilfs_parse_snapshot_option(p, &args[0],
1248 sd);
1249 }
1250 if (!options)
1251 break;
1252 BUG_ON(options == data);
1253 *(options - 1) = ',';
1254 } while (!ret);
1255 return ret;
1256 }
1257
nilfs_set_bdev_super(struct super_block * s,void * data)1258 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1259 {
1260 s->s_bdev = data;
1261 s->s_dev = s->s_bdev->bd_dev;
1262 return 0;
1263 }
1264
nilfs_test_bdev_super(struct super_block * s,void * data)1265 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1266 {
1267 return (void *)s->s_bdev == data;
1268 }
1269
1270 static struct dentry *
nilfs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)1271 nilfs_mount(struct file_system_type *fs_type, int flags,
1272 const char *dev_name, void *data)
1273 {
1274 struct nilfs_super_data sd;
1275 struct super_block *s;
1276 fmode_t mode = FMODE_READ | FMODE_EXCL;
1277 struct dentry *root_dentry;
1278 int err, s_new = false;
1279
1280 if (!(flags & SB_RDONLY))
1281 mode |= FMODE_WRITE;
1282
1283 sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1284 if (IS_ERR(sd.bdev))
1285 return ERR_CAST(sd.bdev);
1286
1287 sd.cno = 0;
1288 sd.flags = flags;
1289 if (nilfs_identify((char *)data, &sd)) {
1290 err = -EINVAL;
1291 goto failed;
1292 }
1293
1294 /*
1295 * once the super is inserted into the list by sget, s_umount
1296 * will protect the lockfs code from trying to start a snapshot
1297 * while we are mounting
1298 */
1299 mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1300 if (sd.bdev->bd_fsfreeze_count > 0) {
1301 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1302 err = -EBUSY;
1303 goto failed;
1304 }
1305 s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1306 sd.bdev);
1307 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1308 if (IS_ERR(s)) {
1309 err = PTR_ERR(s);
1310 goto failed;
1311 }
1312
1313 if (!s->s_root) {
1314 s_new = true;
1315
1316 /* New superblock instance created */
1317 s->s_mode = mode;
1318 snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev);
1319 sb_set_blocksize(s, block_size(sd.bdev));
1320
1321 err = nilfs_fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1322 if (err)
1323 goto failed_super;
1324
1325 s->s_flags |= SB_ACTIVE;
1326 } else if (!sd.cno) {
1327 if (nilfs_tree_is_busy(s->s_root)) {
1328 if ((flags ^ s->s_flags) & SB_RDONLY) {
1329 nilfs_msg(s, KERN_ERR,
1330 "the device already has a %s mount.",
1331 sb_rdonly(s) ? "read-only" : "read/write");
1332 err = -EBUSY;
1333 goto failed_super;
1334 }
1335 } else {
1336 /*
1337 * Try remount to setup mount states if the current
1338 * tree is not mounted and only snapshots use this sb.
1339 */
1340 err = nilfs_remount(s, &flags, data);
1341 if (err)
1342 goto failed_super;
1343 }
1344 }
1345
1346 if (sd.cno) {
1347 err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1348 if (err)
1349 goto failed_super;
1350 } else {
1351 root_dentry = dget(s->s_root);
1352 }
1353
1354 if (!s_new)
1355 blkdev_put(sd.bdev, mode);
1356
1357 return root_dentry;
1358
1359 failed_super:
1360 deactivate_locked_super(s);
1361
1362 failed:
1363 if (!s_new)
1364 blkdev_put(sd.bdev, mode);
1365 return ERR_PTR(err);
1366 }
1367
1368 struct file_system_type nilfs_fs_type = {
1369 .owner = THIS_MODULE,
1370 .name = "nilfs2",
1371 .mount = nilfs_mount,
1372 .kill_sb = kill_block_super,
1373 .fs_flags = FS_REQUIRES_DEV,
1374 };
1375 MODULE_ALIAS_FS("nilfs2");
1376
nilfs_inode_init_once(void * obj)1377 static void nilfs_inode_init_once(void *obj)
1378 {
1379 struct nilfs_inode_info *ii = obj;
1380
1381 INIT_LIST_HEAD(&ii->i_dirty);
1382 #ifdef CONFIG_NILFS_XATTR
1383 init_rwsem(&ii->xattr_sem);
1384 #endif
1385 address_space_init_once(&ii->i_btnode_cache);
1386 ii->i_bmap = &ii->i_bmap_data;
1387 inode_init_once(&ii->vfs_inode);
1388 }
1389
nilfs_segbuf_init_once(void * obj)1390 static void nilfs_segbuf_init_once(void *obj)
1391 {
1392 memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1393 }
1394
nilfs_destroy_cachep(void)1395 static void nilfs_destroy_cachep(void)
1396 {
1397 /*
1398 * Make sure all delayed rcu free inodes are flushed before we
1399 * destroy cache.
1400 */
1401 rcu_barrier();
1402
1403 kmem_cache_destroy(nilfs_inode_cachep);
1404 kmem_cache_destroy(nilfs_transaction_cachep);
1405 kmem_cache_destroy(nilfs_segbuf_cachep);
1406 kmem_cache_destroy(nilfs_btree_path_cache);
1407 }
1408
nilfs_init_cachep(void)1409 static int __init nilfs_init_cachep(void)
1410 {
1411 nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1412 sizeof(struct nilfs_inode_info), 0,
1413 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1414 nilfs_inode_init_once);
1415 if (!nilfs_inode_cachep)
1416 goto fail;
1417
1418 nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1419 sizeof(struct nilfs_transaction_info), 0,
1420 SLAB_RECLAIM_ACCOUNT, NULL);
1421 if (!nilfs_transaction_cachep)
1422 goto fail;
1423
1424 nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1425 sizeof(struct nilfs_segment_buffer), 0,
1426 SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1427 if (!nilfs_segbuf_cachep)
1428 goto fail;
1429
1430 nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1431 sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1432 0, 0, NULL);
1433 if (!nilfs_btree_path_cache)
1434 goto fail;
1435
1436 return 0;
1437
1438 fail:
1439 nilfs_destroy_cachep();
1440 return -ENOMEM;
1441 }
1442
init_nilfs_fs(void)1443 static int __init init_nilfs_fs(void)
1444 {
1445 int err;
1446
1447 err = nilfs_init_cachep();
1448 if (err)
1449 goto fail;
1450
1451 err = nilfs_sysfs_init();
1452 if (err)
1453 goto free_cachep;
1454
1455 err = register_filesystem(&nilfs_fs_type);
1456 if (err)
1457 goto deinit_sysfs_entry;
1458
1459 printk(KERN_INFO "NILFS version 2 loaded\n");
1460 return 0;
1461
1462 deinit_sysfs_entry:
1463 nilfs_sysfs_exit();
1464 free_cachep:
1465 nilfs_destroy_cachep();
1466 fail:
1467 return err;
1468 }
1469
exit_nilfs_fs(void)1470 static void __exit exit_nilfs_fs(void)
1471 {
1472 nilfs_destroy_cachep();
1473 nilfs_sysfs_exit();
1474 unregister_filesystem(&nilfs_fs_type);
1475 }
1476
1477 module_init(init_nilfs_fs)
1478 module_exit(exit_nilfs_fs)
1479