1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * super.c - NILFS module and super block management.
4 *
5 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6 *
7 * Written by Ryusuke Konishi.
8 */
9 /*
10 * linux/fs/ext2/super.c
11 *
12 * Copyright (C) 1992, 1993, 1994, 1995
13 * Remy Card (card@masi.ibp.fr)
14 * Laboratoire MASI - Institut Blaise Pascal
15 * Universite Pierre et Marie Curie (Paris VI)
16 *
17 * from
18 *
19 * linux/fs/minix/inode.c
20 *
21 * Copyright (C) 1991, 1992 Linus Torvalds
22 *
23 * Big-endian to little-endian byte-swapping/bitmaps by
24 * David S. Miller (davem@caip.rutgers.edu), 1995
25 */
26
27 #include <linux/module.h>
28 #include <linux/string.h>
29 #include <linux/slab.h>
30 #include <linux/init.h>
31 #include <linux/blkdev.h>
32 #include <linux/parser.h>
33 #include <linux/crc32.h>
34 #include <linux/vfs.h>
35 #include <linux/writeback.h>
36 #include <linux/seq_file.h>
37 #include <linux/mount.h>
38 #include "nilfs.h"
39 #include "export.h"
40 #include "mdt.h"
41 #include "alloc.h"
42 #include "btree.h"
43 #include "btnode.h"
44 #include "page.h"
45 #include "cpfile.h"
46 #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
47 #include "ifile.h"
48 #include "dat.h"
49 #include "segment.h"
50 #include "segbuf.h"
51
52 MODULE_AUTHOR("NTT Corp.");
53 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
54 "(NILFS)");
55 MODULE_LICENSE("GPL");
56
57 static struct kmem_cache *nilfs_inode_cachep;
58 struct kmem_cache *nilfs_transaction_cachep;
59 struct kmem_cache *nilfs_segbuf_cachep;
60 struct kmem_cache *nilfs_btree_path_cache;
61
62 static int nilfs_setup_super(struct super_block *sb, int is_mount);
63 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
64
__nilfs_msg(struct super_block * sb,const char * level,const char * fmt,...)65 void __nilfs_msg(struct super_block *sb, const char *level, const char *fmt,
66 ...)
67 {
68 struct va_format vaf;
69 va_list args;
70
71 va_start(args, fmt);
72 vaf.fmt = fmt;
73 vaf.va = &args;
74 if (sb)
75 printk("%sNILFS (%s): %pV\n", level, sb->s_id, &vaf);
76 else
77 printk("%sNILFS: %pV\n", level, &vaf);
78 va_end(args);
79 }
80
nilfs_set_error(struct super_block * sb)81 static void nilfs_set_error(struct super_block *sb)
82 {
83 struct the_nilfs *nilfs = sb->s_fs_info;
84 struct nilfs_super_block **sbp;
85
86 down_write(&nilfs->ns_sem);
87 if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
88 nilfs->ns_mount_state |= NILFS_ERROR_FS;
89 sbp = nilfs_prepare_super(sb, 0);
90 if (likely(sbp)) {
91 sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
92 if (sbp[1])
93 sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
94 nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
95 }
96 }
97 up_write(&nilfs->ns_sem);
98 }
99
100 /**
101 * __nilfs_error() - report failure condition on a filesystem
102 *
103 * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
104 * reporting an error message. This function should be called when
105 * NILFS detects incoherences or defects of meta data on disk.
106 *
107 * This implements the body of nilfs_error() macro. Normally,
108 * nilfs_error() should be used. As for sustainable errors such as a
109 * single-shot I/O error, nilfs_msg() should be used instead.
110 *
111 * Callers should not add a trailing newline since this will do it.
112 */
__nilfs_error(struct super_block * sb,const char * function,const char * fmt,...)113 void __nilfs_error(struct super_block *sb, const char *function,
114 const char *fmt, ...)
115 {
116 struct the_nilfs *nilfs = sb->s_fs_info;
117 struct va_format vaf;
118 va_list args;
119
120 va_start(args, fmt);
121
122 vaf.fmt = fmt;
123 vaf.va = &args;
124
125 printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
126 sb->s_id, function, &vaf);
127
128 va_end(args);
129
130 if (!sb_rdonly(sb)) {
131 nilfs_set_error(sb);
132
133 if (nilfs_test_opt(nilfs, ERRORS_RO)) {
134 printk(KERN_CRIT "Remounting filesystem read-only\n");
135 sb->s_flags |= SB_RDONLY;
136 }
137 }
138
139 if (nilfs_test_opt(nilfs, ERRORS_PANIC))
140 panic("NILFS (device %s): panic forced after error\n",
141 sb->s_id);
142 }
143
nilfs_alloc_inode(struct super_block * sb)144 struct inode *nilfs_alloc_inode(struct super_block *sb)
145 {
146 struct nilfs_inode_info *ii;
147
148 ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
149 if (!ii)
150 return NULL;
151 ii->i_bh = NULL;
152 ii->i_state = 0;
153 ii->i_cno = 0;
154 nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode);
155 return &ii->vfs_inode;
156 }
157
nilfs_free_inode(struct inode * inode)158 static void nilfs_free_inode(struct inode *inode)
159 {
160 if (nilfs_is_metadata_file_inode(inode))
161 nilfs_mdt_destroy(inode);
162
163 kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
164 }
165
nilfs_sync_super(struct super_block * sb,int flag)166 static int nilfs_sync_super(struct super_block *sb, int flag)
167 {
168 struct the_nilfs *nilfs = sb->s_fs_info;
169 int err;
170
171 retry:
172 set_buffer_dirty(nilfs->ns_sbh[0]);
173 if (nilfs_test_opt(nilfs, BARRIER)) {
174 err = __sync_dirty_buffer(nilfs->ns_sbh[0],
175 REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
176 } else {
177 err = sync_dirty_buffer(nilfs->ns_sbh[0]);
178 }
179
180 if (unlikely(err)) {
181 nilfs_msg(sb, KERN_ERR, "unable to write superblock: err=%d",
182 err);
183 if (err == -EIO && nilfs->ns_sbh[1]) {
184 /*
185 * sbp[0] points to newer log than sbp[1],
186 * so copy sbp[0] to sbp[1] to take over sbp[0].
187 */
188 memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
189 nilfs->ns_sbsize);
190 nilfs_fall_back_super_block(nilfs);
191 goto retry;
192 }
193 } else {
194 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
195
196 nilfs->ns_sbwcount++;
197
198 /*
199 * The latest segment becomes trailable from the position
200 * written in superblock.
201 */
202 clear_nilfs_discontinued(nilfs);
203
204 /* update GC protection for recent segments */
205 if (nilfs->ns_sbh[1]) {
206 if (flag == NILFS_SB_COMMIT_ALL) {
207 set_buffer_dirty(nilfs->ns_sbh[1]);
208 if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
209 goto out;
210 }
211 if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
212 le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
213 sbp = nilfs->ns_sbp[1];
214 }
215
216 spin_lock(&nilfs->ns_last_segment_lock);
217 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
218 spin_unlock(&nilfs->ns_last_segment_lock);
219 }
220 out:
221 return err;
222 }
223
nilfs_set_log_cursor(struct nilfs_super_block * sbp,struct the_nilfs * nilfs)224 void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
225 struct the_nilfs *nilfs)
226 {
227 sector_t nfreeblocks;
228
229 /* nilfs->ns_sem must be locked by the caller. */
230 nilfs_count_free_blocks(nilfs, &nfreeblocks);
231 sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
232
233 spin_lock(&nilfs->ns_last_segment_lock);
234 sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
235 sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
236 sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
237 spin_unlock(&nilfs->ns_last_segment_lock);
238 }
239
nilfs_prepare_super(struct super_block * sb,int flip)240 struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
241 int flip)
242 {
243 struct the_nilfs *nilfs = sb->s_fs_info;
244 struct nilfs_super_block **sbp = nilfs->ns_sbp;
245
246 /* nilfs->ns_sem must be locked by the caller. */
247 if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
248 if (sbp[1] &&
249 sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
250 memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
251 } else {
252 nilfs_msg(sb, KERN_CRIT, "superblock broke");
253 return NULL;
254 }
255 } else if (sbp[1] &&
256 sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
257 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
258 }
259
260 if (flip && sbp[1])
261 nilfs_swap_super_block(nilfs);
262
263 return sbp;
264 }
265
nilfs_commit_super(struct super_block * sb,int flag)266 int nilfs_commit_super(struct super_block *sb, int flag)
267 {
268 struct the_nilfs *nilfs = sb->s_fs_info;
269 struct nilfs_super_block **sbp = nilfs->ns_sbp;
270 time64_t t;
271
272 /* nilfs->ns_sem must be locked by the caller. */
273 t = ktime_get_real_seconds();
274 nilfs->ns_sbwtime = t;
275 sbp[0]->s_wtime = cpu_to_le64(t);
276 sbp[0]->s_sum = 0;
277 sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
278 (unsigned char *)sbp[0],
279 nilfs->ns_sbsize));
280 if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
281 sbp[1]->s_wtime = sbp[0]->s_wtime;
282 sbp[1]->s_sum = 0;
283 sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
284 (unsigned char *)sbp[1],
285 nilfs->ns_sbsize));
286 }
287 clear_nilfs_sb_dirty(nilfs);
288 nilfs->ns_flushed_device = 1;
289 /* make sure store to ns_flushed_device cannot be reordered */
290 smp_wmb();
291 return nilfs_sync_super(sb, flag);
292 }
293
294 /**
295 * nilfs_cleanup_super() - write filesystem state for cleanup
296 * @sb: super block instance to be unmounted or degraded to read-only
297 *
298 * This function restores state flags in the on-disk super block.
299 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
300 * filesystem was not clean previously.
301 */
nilfs_cleanup_super(struct super_block * sb)302 int nilfs_cleanup_super(struct super_block *sb)
303 {
304 struct the_nilfs *nilfs = sb->s_fs_info;
305 struct nilfs_super_block **sbp;
306 int flag = NILFS_SB_COMMIT;
307 int ret = -EIO;
308
309 sbp = nilfs_prepare_super(sb, 0);
310 if (sbp) {
311 sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
312 nilfs_set_log_cursor(sbp[0], nilfs);
313 if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
314 /*
315 * make the "clean" flag also to the opposite
316 * super block if both super blocks point to
317 * the same checkpoint.
318 */
319 sbp[1]->s_state = sbp[0]->s_state;
320 flag = NILFS_SB_COMMIT_ALL;
321 }
322 ret = nilfs_commit_super(sb, flag);
323 }
324 return ret;
325 }
326
327 /**
328 * nilfs_move_2nd_super - relocate secondary super block
329 * @sb: super block instance
330 * @sb2off: new offset of the secondary super block (in bytes)
331 */
nilfs_move_2nd_super(struct super_block * sb,loff_t sb2off)332 static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
333 {
334 struct the_nilfs *nilfs = sb->s_fs_info;
335 struct buffer_head *nsbh;
336 struct nilfs_super_block *nsbp;
337 sector_t blocknr, newblocknr;
338 unsigned long offset;
339 int sb2i; /* array index of the secondary superblock */
340 int ret = 0;
341
342 /* nilfs->ns_sem must be locked by the caller. */
343 if (nilfs->ns_sbh[1] &&
344 nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
345 sb2i = 1;
346 blocknr = nilfs->ns_sbh[1]->b_blocknr;
347 } else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
348 sb2i = 0;
349 blocknr = nilfs->ns_sbh[0]->b_blocknr;
350 } else {
351 sb2i = -1;
352 blocknr = 0;
353 }
354 if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
355 goto out; /* super block location is unchanged */
356
357 /* Get new super block buffer */
358 newblocknr = sb2off >> nilfs->ns_blocksize_bits;
359 offset = sb2off & (nilfs->ns_blocksize - 1);
360 nsbh = sb_getblk(sb, newblocknr);
361 if (!nsbh) {
362 nilfs_msg(sb, KERN_WARNING,
363 "unable to move secondary superblock to block %llu",
364 (unsigned long long)newblocknr);
365 ret = -EIO;
366 goto out;
367 }
368 nsbp = (void *)nsbh->b_data + offset;
369 memset(nsbp, 0, nilfs->ns_blocksize);
370
371 if (sb2i >= 0) {
372 memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
373 brelse(nilfs->ns_sbh[sb2i]);
374 nilfs->ns_sbh[sb2i] = nsbh;
375 nilfs->ns_sbp[sb2i] = nsbp;
376 } else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
377 /* secondary super block will be restored to index 1 */
378 nilfs->ns_sbh[1] = nsbh;
379 nilfs->ns_sbp[1] = nsbp;
380 } else {
381 brelse(nsbh);
382 }
383 out:
384 return ret;
385 }
386
387 /**
388 * nilfs_resize_fs - resize the filesystem
389 * @sb: super block instance
390 * @newsize: new size of the filesystem (in bytes)
391 */
nilfs_resize_fs(struct super_block * sb,__u64 newsize)392 int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
393 {
394 struct the_nilfs *nilfs = sb->s_fs_info;
395 struct nilfs_super_block **sbp;
396 __u64 devsize, newnsegs;
397 loff_t sb2off;
398 int ret;
399
400 ret = -ERANGE;
401 devsize = i_size_read(sb->s_bdev->bd_inode);
402 if (newsize > devsize)
403 goto out;
404
405 /*
406 * Write lock is required to protect some functions depending
407 * on the number of segments, the number of reserved segments,
408 * and so forth.
409 */
410 down_write(&nilfs->ns_segctor_sem);
411
412 sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
413 newnsegs = sb2off >> nilfs->ns_blocksize_bits;
414 do_div(newnsegs, nilfs->ns_blocks_per_segment);
415
416 ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
417 up_write(&nilfs->ns_segctor_sem);
418 if (ret < 0)
419 goto out;
420
421 ret = nilfs_construct_segment(sb);
422 if (ret < 0)
423 goto out;
424
425 down_write(&nilfs->ns_sem);
426 nilfs_move_2nd_super(sb, sb2off);
427 ret = -EIO;
428 sbp = nilfs_prepare_super(sb, 0);
429 if (likely(sbp)) {
430 nilfs_set_log_cursor(sbp[0], nilfs);
431 /*
432 * Drop NILFS_RESIZE_FS flag for compatibility with
433 * mount-time resize which may be implemented in a
434 * future release.
435 */
436 sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
437 ~NILFS_RESIZE_FS);
438 sbp[0]->s_dev_size = cpu_to_le64(newsize);
439 sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
440 if (sbp[1])
441 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
442 ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
443 }
444 up_write(&nilfs->ns_sem);
445
446 /*
447 * Reset the range of allocatable segments last. This order
448 * is important in the case of expansion because the secondary
449 * superblock must be protected from log write until migration
450 * completes.
451 */
452 if (!ret)
453 nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
454 out:
455 return ret;
456 }
457
nilfs_put_super(struct super_block * sb)458 static void nilfs_put_super(struct super_block *sb)
459 {
460 struct the_nilfs *nilfs = sb->s_fs_info;
461
462 nilfs_detach_log_writer(sb);
463
464 if (!sb_rdonly(sb)) {
465 down_write(&nilfs->ns_sem);
466 nilfs_cleanup_super(sb);
467 up_write(&nilfs->ns_sem);
468 }
469
470 iput(nilfs->ns_sufile);
471 iput(nilfs->ns_cpfile);
472 iput(nilfs->ns_dat);
473
474 destroy_nilfs(nilfs);
475 sb->s_fs_info = NULL;
476 }
477
nilfs_sync_fs(struct super_block * sb,int wait)478 static int nilfs_sync_fs(struct super_block *sb, int wait)
479 {
480 struct the_nilfs *nilfs = sb->s_fs_info;
481 struct nilfs_super_block **sbp;
482 int err = 0;
483
484 /* This function is called when super block should be written back */
485 if (wait)
486 err = nilfs_construct_segment(sb);
487
488 down_write(&nilfs->ns_sem);
489 if (nilfs_sb_dirty(nilfs)) {
490 sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
491 if (likely(sbp)) {
492 nilfs_set_log_cursor(sbp[0], nilfs);
493 nilfs_commit_super(sb, NILFS_SB_COMMIT);
494 }
495 }
496 up_write(&nilfs->ns_sem);
497
498 if (!err)
499 err = nilfs_flush_device(nilfs);
500
501 return err;
502 }
503
nilfs_attach_checkpoint(struct super_block * sb,__u64 cno,int curr_mnt,struct nilfs_root ** rootp)504 int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
505 struct nilfs_root **rootp)
506 {
507 struct the_nilfs *nilfs = sb->s_fs_info;
508 struct nilfs_root *root;
509 struct nilfs_checkpoint *raw_cp;
510 struct buffer_head *bh_cp;
511 int err = -ENOMEM;
512
513 root = nilfs_find_or_create_root(
514 nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
515 if (!root)
516 return err;
517
518 if (root->ifile)
519 goto reuse; /* already attached checkpoint */
520
521 down_read(&nilfs->ns_segctor_sem);
522 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
523 &bh_cp);
524 up_read(&nilfs->ns_segctor_sem);
525 if (unlikely(err)) {
526 if (err == -ENOENT || err == -EINVAL) {
527 nilfs_msg(sb, KERN_ERR,
528 "Invalid checkpoint (checkpoint number=%llu)",
529 (unsigned long long)cno);
530 err = -EINVAL;
531 }
532 goto failed;
533 }
534
535 err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
536 &raw_cp->cp_ifile_inode, &root->ifile);
537 if (err)
538 goto failed_bh;
539
540 atomic64_set(&root->inodes_count,
541 le64_to_cpu(raw_cp->cp_inodes_count));
542 atomic64_set(&root->blocks_count,
543 le64_to_cpu(raw_cp->cp_blocks_count));
544
545 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
546
547 reuse:
548 *rootp = root;
549 return 0;
550
551 failed_bh:
552 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
553 failed:
554 nilfs_put_root(root);
555
556 return err;
557 }
558
nilfs_freeze(struct super_block * sb)559 static int nilfs_freeze(struct super_block *sb)
560 {
561 struct the_nilfs *nilfs = sb->s_fs_info;
562 int err;
563
564 if (sb_rdonly(sb))
565 return 0;
566
567 /* Mark super block clean */
568 down_write(&nilfs->ns_sem);
569 err = nilfs_cleanup_super(sb);
570 up_write(&nilfs->ns_sem);
571 return err;
572 }
573
nilfs_unfreeze(struct super_block * sb)574 static int nilfs_unfreeze(struct super_block *sb)
575 {
576 struct the_nilfs *nilfs = sb->s_fs_info;
577
578 if (sb_rdonly(sb))
579 return 0;
580
581 down_write(&nilfs->ns_sem);
582 nilfs_setup_super(sb, false);
583 up_write(&nilfs->ns_sem);
584 return 0;
585 }
586
nilfs_statfs(struct dentry * dentry,struct kstatfs * buf)587 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
588 {
589 struct super_block *sb = dentry->d_sb;
590 struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
591 struct the_nilfs *nilfs = root->nilfs;
592 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
593 unsigned long long blocks;
594 unsigned long overhead;
595 unsigned long nrsvblocks;
596 sector_t nfreeblocks;
597 u64 nmaxinodes, nfreeinodes;
598 int err;
599
600 /*
601 * Compute all of the segment blocks
602 *
603 * The blocks before first segment and after last segment
604 * are excluded.
605 */
606 blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
607 - nilfs->ns_first_data_block;
608 nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
609
610 /*
611 * Compute the overhead
612 *
613 * When distributing meta data blocks outside segment structure,
614 * We must count them as the overhead.
615 */
616 overhead = 0;
617
618 err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
619 if (unlikely(err))
620 return err;
621
622 err = nilfs_ifile_count_free_inodes(root->ifile,
623 &nmaxinodes, &nfreeinodes);
624 if (unlikely(err)) {
625 nilfs_msg(sb, KERN_WARNING,
626 "failed to count free inodes: err=%d", err);
627 if (err == -ERANGE) {
628 /*
629 * If nilfs_palloc_count_max_entries() returns
630 * -ERANGE error code then we simply treat
631 * curent inodes count as maximum possible and
632 * zero as free inodes value.
633 */
634 nmaxinodes = atomic64_read(&root->inodes_count);
635 nfreeinodes = 0;
636 err = 0;
637 } else
638 return err;
639 }
640
641 buf->f_type = NILFS_SUPER_MAGIC;
642 buf->f_bsize = sb->s_blocksize;
643 buf->f_blocks = blocks - overhead;
644 buf->f_bfree = nfreeblocks;
645 buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
646 (buf->f_bfree - nrsvblocks) : 0;
647 buf->f_files = nmaxinodes;
648 buf->f_ffree = nfreeinodes;
649 buf->f_namelen = NILFS_NAME_LEN;
650 buf->f_fsid.val[0] = (u32)id;
651 buf->f_fsid.val[1] = (u32)(id >> 32);
652
653 return 0;
654 }
655
nilfs_show_options(struct seq_file * seq,struct dentry * dentry)656 static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
657 {
658 struct super_block *sb = dentry->d_sb;
659 struct the_nilfs *nilfs = sb->s_fs_info;
660 struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
661
662 if (!nilfs_test_opt(nilfs, BARRIER))
663 seq_puts(seq, ",nobarrier");
664 if (root->cno != NILFS_CPTREE_CURRENT_CNO)
665 seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
666 if (nilfs_test_opt(nilfs, ERRORS_PANIC))
667 seq_puts(seq, ",errors=panic");
668 if (nilfs_test_opt(nilfs, ERRORS_CONT))
669 seq_puts(seq, ",errors=continue");
670 if (nilfs_test_opt(nilfs, STRICT_ORDER))
671 seq_puts(seq, ",order=strict");
672 if (nilfs_test_opt(nilfs, NORECOVERY))
673 seq_puts(seq, ",norecovery");
674 if (nilfs_test_opt(nilfs, DISCARD))
675 seq_puts(seq, ",discard");
676
677 return 0;
678 }
679
680 static const struct super_operations nilfs_sops = {
681 .alloc_inode = nilfs_alloc_inode,
682 .free_inode = nilfs_free_inode,
683 .dirty_inode = nilfs_dirty_inode,
684 .evict_inode = nilfs_evict_inode,
685 .put_super = nilfs_put_super,
686 .sync_fs = nilfs_sync_fs,
687 .freeze_fs = nilfs_freeze,
688 .unfreeze_fs = nilfs_unfreeze,
689 .statfs = nilfs_statfs,
690 .remount_fs = nilfs_remount,
691 .show_options = nilfs_show_options
692 };
693
694 enum {
695 Opt_err_cont, Opt_err_panic, Opt_err_ro,
696 Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
697 Opt_discard, Opt_nodiscard, Opt_err,
698 };
699
700 static match_table_t tokens = {
701 {Opt_err_cont, "errors=continue"},
702 {Opt_err_panic, "errors=panic"},
703 {Opt_err_ro, "errors=remount-ro"},
704 {Opt_barrier, "barrier"},
705 {Opt_nobarrier, "nobarrier"},
706 {Opt_snapshot, "cp=%u"},
707 {Opt_order, "order=%s"},
708 {Opt_norecovery, "norecovery"},
709 {Opt_discard, "discard"},
710 {Opt_nodiscard, "nodiscard"},
711 {Opt_err, NULL}
712 };
713
parse_options(char * options,struct super_block * sb,int is_remount)714 static int parse_options(char *options, struct super_block *sb, int is_remount)
715 {
716 struct the_nilfs *nilfs = sb->s_fs_info;
717 char *p;
718 substring_t args[MAX_OPT_ARGS];
719
720 if (!options)
721 return 1;
722
723 while ((p = strsep(&options, ",")) != NULL) {
724 int token;
725
726 if (!*p)
727 continue;
728
729 token = match_token(p, tokens, args);
730 switch (token) {
731 case Opt_barrier:
732 nilfs_set_opt(nilfs, BARRIER);
733 break;
734 case Opt_nobarrier:
735 nilfs_clear_opt(nilfs, BARRIER);
736 break;
737 case Opt_order:
738 if (strcmp(args[0].from, "relaxed") == 0)
739 /* Ordered data semantics */
740 nilfs_clear_opt(nilfs, STRICT_ORDER);
741 else if (strcmp(args[0].from, "strict") == 0)
742 /* Strict in-order semantics */
743 nilfs_set_opt(nilfs, STRICT_ORDER);
744 else
745 return 0;
746 break;
747 case Opt_err_panic:
748 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
749 break;
750 case Opt_err_ro:
751 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
752 break;
753 case Opt_err_cont:
754 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
755 break;
756 case Opt_snapshot:
757 if (is_remount) {
758 nilfs_msg(sb, KERN_ERR,
759 "\"%s\" option is invalid for remount",
760 p);
761 return 0;
762 }
763 break;
764 case Opt_norecovery:
765 nilfs_set_opt(nilfs, NORECOVERY);
766 break;
767 case Opt_discard:
768 nilfs_set_opt(nilfs, DISCARD);
769 break;
770 case Opt_nodiscard:
771 nilfs_clear_opt(nilfs, DISCARD);
772 break;
773 default:
774 nilfs_msg(sb, KERN_ERR,
775 "unrecognized mount option \"%s\"", p);
776 return 0;
777 }
778 }
779 return 1;
780 }
781
782 static inline void
nilfs_set_default_options(struct super_block * sb,struct nilfs_super_block * sbp)783 nilfs_set_default_options(struct super_block *sb,
784 struct nilfs_super_block *sbp)
785 {
786 struct the_nilfs *nilfs = sb->s_fs_info;
787
788 nilfs->ns_mount_opt =
789 NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
790 }
791
nilfs_setup_super(struct super_block * sb,int is_mount)792 static int nilfs_setup_super(struct super_block *sb, int is_mount)
793 {
794 struct the_nilfs *nilfs = sb->s_fs_info;
795 struct nilfs_super_block **sbp;
796 int max_mnt_count;
797 int mnt_count;
798
799 /* nilfs->ns_sem must be locked by the caller. */
800 sbp = nilfs_prepare_super(sb, 0);
801 if (!sbp)
802 return -EIO;
803
804 if (!is_mount)
805 goto skip_mount_setup;
806
807 max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
808 mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
809
810 if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
811 nilfs_msg(sb, KERN_WARNING, "mounting fs with errors");
812 #if 0
813 } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
814 nilfs_msg(sb, KERN_WARNING, "maximal mount count reached");
815 #endif
816 }
817 if (!max_mnt_count)
818 sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
819
820 sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
821 sbp[0]->s_mtime = cpu_to_le64(ktime_get_real_seconds());
822
823 skip_mount_setup:
824 sbp[0]->s_state =
825 cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
826 /* synchronize sbp[1] with sbp[0] */
827 if (sbp[1])
828 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
829 return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
830 }
831
nilfs_read_super_block(struct super_block * sb,u64 pos,int blocksize,struct buffer_head ** pbh)832 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
833 u64 pos, int blocksize,
834 struct buffer_head **pbh)
835 {
836 unsigned long long sb_index = pos;
837 unsigned long offset;
838
839 offset = do_div(sb_index, blocksize);
840 *pbh = sb_bread(sb, sb_index);
841 if (!*pbh)
842 return NULL;
843 return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
844 }
845
nilfs_store_magic_and_option(struct super_block * sb,struct nilfs_super_block * sbp,char * data)846 int nilfs_store_magic_and_option(struct super_block *sb,
847 struct nilfs_super_block *sbp,
848 char *data)
849 {
850 struct the_nilfs *nilfs = sb->s_fs_info;
851
852 sb->s_magic = le16_to_cpu(sbp->s_magic);
853
854 /* FS independent flags */
855 #ifdef NILFS_ATIME_DISABLE
856 sb->s_flags |= SB_NOATIME;
857 #endif
858
859 nilfs_set_default_options(sb, sbp);
860
861 nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
862 nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
863 nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
864 nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
865
866 return !parse_options(data, sb, 0) ? -EINVAL : 0;
867 }
868
nilfs_check_feature_compatibility(struct super_block * sb,struct nilfs_super_block * sbp)869 int nilfs_check_feature_compatibility(struct super_block *sb,
870 struct nilfs_super_block *sbp)
871 {
872 __u64 features;
873
874 features = le64_to_cpu(sbp->s_feature_incompat) &
875 ~NILFS_FEATURE_INCOMPAT_SUPP;
876 if (features) {
877 nilfs_msg(sb, KERN_ERR,
878 "couldn't mount because of unsupported optional features (%llx)",
879 (unsigned long long)features);
880 return -EINVAL;
881 }
882 features = le64_to_cpu(sbp->s_feature_compat_ro) &
883 ~NILFS_FEATURE_COMPAT_RO_SUPP;
884 if (!sb_rdonly(sb) && features) {
885 nilfs_msg(sb, KERN_ERR,
886 "couldn't mount RDWR because of unsupported optional features (%llx)",
887 (unsigned long long)features);
888 return -EINVAL;
889 }
890 return 0;
891 }
892
nilfs_get_root_dentry(struct super_block * sb,struct nilfs_root * root,struct dentry ** root_dentry)893 static int nilfs_get_root_dentry(struct super_block *sb,
894 struct nilfs_root *root,
895 struct dentry **root_dentry)
896 {
897 struct inode *inode;
898 struct dentry *dentry;
899 int ret = 0;
900
901 inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
902 if (IS_ERR(inode)) {
903 ret = PTR_ERR(inode);
904 nilfs_msg(sb, KERN_ERR, "error %d getting root inode", ret);
905 goto out;
906 }
907 if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
908 iput(inode);
909 nilfs_msg(sb, KERN_ERR, "corrupt root inode");
910 ret = -EINVAL;
911 goto out;
912 }
913
914 if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
915 dentry = d_find_alias(inode);
916 if (!dentry) {
917 dentry = d_make_root(inode);
918 if (!dentry) {
919 ret = -ENOMEM;
920 goto failed_dentry;
921 }
922 } else {
923 iput(inode);
924 }
925 } else {
926 dentry = d_obtain_root(inode);
927 if (IS_ERR(dentry)) {
928 ret = PTR_ERR(dentry);
929 goto failed_dentry;
930 }
931 }
932 *root_dentry = dentry;
933 out:
934 return ret;
935
936 failed_dentry:
937 nilfs_msg(sb, KERN_ERR, "error %d getting root dentry", ret);
938 goto out;
939 }
940
nilfs_attach_snapshot(struct super_block * s,__u64 cno,struct dentry ** root_dentry)941 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
942 struct dentry **root_dentry)
943 {
944 struct the_nilfs *nilfs = s->s_fs_info;
945 struct nilfs_root *root;
946 int ret;
947
948 mutex_lock(&nilfs->ns_snapshot_mount_mutex);
949
950 down_read(&nilfs->ns_segctor_sem);
951 ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
952 up_read(&nilfs->ns_segctor_sem);
953 if (ret < 0) {
954 ret = (ret == -ENOENT) ? -EINVAL : ret;
955 goto out;
956 } else if (!ret) {
957 nilfs_msg(s, KERN_ERR,
958 "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
959 (unsigned long long)cno);
960 ret = -EINVAL;
961 goto out;
962 }
963
964 ret = nilfs_attach_checkpoint(s, cno, false, &root);
965 if (ret) {
966 nilfs_msg(s, KERN_ERR,
967 "error %d while loading snapshot (checkpoint number=%llu)",
968 ret, (unsigned long long)cno);
969 goto out;
970 }
971 ret = nilfs_get_root_dentry(s, root, root_dentry);
972 nilfs_put_root(root);
973 out:
974 mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
975 return ret;
976 }
977
978 /**
979 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
980 * @root_dentry: root dentry of the tree to be shrunk
981 *
982 * This function returns true if the tree was in-use.
983 */
nilfs_tree_is_busy(struct dentry * root_dentry)984 static bool nilfs_tree_is_busy(struct dentry *root_dentry)
985 {
986 shrink_dcache_parent(root_dentry);
987 return d_count(root_dentry) > 1;
988 }
989
nilfs_checkpoint_is_mounted(struct super_block * sb,__u64 cno)990 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
991 {
992 struct the_nilfs *nilfs = sb->s_fs_info;
993 struct nilfs_root *root;
994 struct inode *inode;
995 struct dentry *dentry;
996 int ret;
997
998 if (cno > nilfs->ns_cno)
999 return false;
1000
1001 if (cno >= nilfs_last_cno(nilfs))
1002 return true; /* protect recent checkpoints */
1003
1004 ret = false;
1005 root = nilfs_lookup_root(nilfs, cno);
1006 if (root) {
1007 inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1008 if (inode) {
1009 dentry = d_find_alias(inode);
1010 if (dentry) {
1011 ret = nilfs_tree_is_busy(dentry);
1012 dput(dentry);
1013 }
1014 iput(inode);
1015 }
1016 nilfs_put_root(root);
1017 }
1018 return ret;
1019 }
1020
1021 /**
1022 * nilfs_fill_super() - initialize a super block instance
1023 * @sb: super_block
1024 * @data: mount options
1025 * @silent: silent mode flag
1026 *
1027 * This function is called exclusively by nilfs->ns_mount_mutex.
1028 * So, the recovery process is protected from other simultaneous mounts.
1029 */
1030 static int
nilfs_fill_super(struct super_block * sb,void * data,int silent)1031 nilfs_fill_super(struct super_block *sb, void *data, int silent)
1032 {
1033 struct the_nilfs *nilfs;
1034 struct nilfs_root *fsroot;
1035 __u64 cno;
1036 int err;
1037
1038 nilfs = alloc_nilfs(sb);
1039 if (!nilfs)
1040 return -ENOMEM;
1041
1042 sb->s_fs_info = nilfs;
1043
1044 err = init_nilfs(nilfs, sb, (char *)data);
1045 if (err)
1046 goto failed_nilfs;
1047
1048 sb->s_op = &nilfs_sops;
1049 sb->s_export_op = &nilfs_export_ops;
1050 sb->s_root = NULL;
1051 sb->s_time_gran = 1;
1052 sb->s_max_links = NILFS_LINK_MAX;
1053
1054 sb->s_bdi = bdi_get(sb->s_bdev->bd_bdi);
1055
1056 err = load_nilfs(nilfs, sb);
1057 if (err)
1058 goto failed_nilfs;
1059
1060 cno = nilfs_last_cno(nilfs);
1061 err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1062 if (err) {
1063 nilfs_msg(sb, KERN_ERR,
1064 "error %d while loading last checkpoint (checkpoint number=%llu)",
1065 err, (unsigned long long)cno);
1066 goto failed_unload;
1067 }
1068
1069 if (!sb_rdonly(sb)) {
1070 err = nilfs_attach_log_writer(sb, fsroot);
1071 if (err)
1072 goto failed_checkpoint;
1073 }
1074
1075 err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1076 if (err)
1077 goto failed_segctor;
1078
1079 nilfs_put_root(fsroot);
1080
1081 if (!sb_rdonly(sb)) {
1082 down_write(&nilfs->ns_sem);
1083 nilfs_setup_super(sb, true);
1084 up_write(&nilfs->ns_sem);
1085 }
1086
1087 return 0;
1088
1089 failed_segctor:
1090 nilfs_detach_log_writer(sb);
1091
1092 failed_checkpoint:
1093 nilfs_put_root(fsroot);
1094
1095 failed_unload:
1096 iput(nilfs->ns_sufile);
1097 iput(nilfs->ns_cpfile);
1098 iput(nilfs->ns_dat);
1099
1100 failed_nilfs:
1101 destroy_nilfs(nilfs);
1102 return err;
1103 }
1104
nilfs_remount(struct super_block * sb,int * flags,char * data)1105 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1106 {
1107 struct the_nilfs *nilfs = sb->s_fs_info;
1108 unsigned long old_sb_flags;
1109 unsigned long old_mount_opt;
1110 int err;
1111
1112 sync_filesystem(sb);
1113 old_sb_flags = sb->s_flags;
1114 old_mount_opt = nilfs->ns_mount_opt;
1115
1116 if (!parse_options(data, sb, 1)) {
1117 err = -EINVAL;
1118 goto restore_opts;
1119 }
1120 sb->s_flags = (sb->s_flags & ~SB_POSIXACL);
1121
1122 err = -EINVAL;
1123
1124 if (!nilfs_valid_fs(nilfs)) {
1125 nilfs_msg(sb, KERN_WARNING,
1126 "couldn't remount because the filesystem is in an incomplete recovery state");
1127 goto restore_opts;
1128 }
1129
1130 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1131 goto out;
1132 if (*flags & SB_RDONLY) {
1133 /* Shutting down log writer */
1134 nilfs_detach_log_writer(sb);
1135 sb->s_flags |= SB_RDONLY;
1136
1137 /*
1138 * Remounting a valid RW partition RDONLY, so set
1139 * the RDONLY flag and then mark the partition as valid again.
1140 */
1141 down_write(&nilfs->ns_sem);
1142 nilfs_cleanup_super(sb);
1143 up_write(&nilfs->ns_sem);
1144 } else {
1145 __u64 features;
1146 struct nilfs_root *root;
1147
1148 /*
1149 * Mounting a RDONLY partition read-write, so reread and
1150 * store the current valid flag. (It may have been changed
1151 * by fsck since we originally mounted the partition.)
1152 */
1153 down_read(&nilfs->ns_sem);
1154 features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1155 ~NILFS_FEATURE_COMPAT_RO_SUPP;
1156 up_read(&nilfs->ns_sem);
1157 if (features) {
1158 nilfs_msg(sb, KERN_WARNING,
1159 "couldn't remount RDWR because of unsupported optional features (%llx)",
1160 (unsigned long long)features);
1161 err = -EROFS;
1162 goto restore_opts;
1163 }
1164
1165 sb->s_flags &= ~SB_RDONLY;
1166
1167 root = NILFS_I(d_inode(sb->s_root))->i_root;
1168 err = nilfs_attach_log_writer(sb, root);
1169 if (err)
1170 goto restore_opts;
1171
1172 down_write(&nilfs->ns_sem);
1173 nilfs_setup_super(sb, true);
1174 up_write(&nilfs->ns_sem);
1175 }
1176 out:
1177 return 0;
1178
1179 restore_opts:
1180 sb->s_flags = old_sb_flags;
1181 nilfs->ns_mount_opt = old_mount_opt;
1182 return err;
1183 }
1184
1185 struct nilfs_super_data {
1186 struct block_device *bdev;
1187 __u64 cno;
1188 int flags;
1189 };
1190
nilfs_parse_snapshot_option(const char * option,const substring_t * arg,struct nilfs_super_data * sd)1191 static int nilfs_parse_snapshot_option(const char *option,
1192 const substring_t *arg,
1193 struct nilfs_super_data *sd)
1194 {
1195 unsigned long long val;
1196 const char *msg = NULL;
1197 int err;
1198
1199 if (!(sd->flags & SB_RDONLY)) {
1200 msg = "read-only option is not specified";
1201 goto parse_error;
1202 }
1203
1204 err = kstrtoull(arg->from, 0, &val);
1205 if (err) {
1206 if (err == -ERANGE)
1207 msg = "too large checkpoint number";
1208 else
1209 msg = "malformed argument";
1210 goto parse_error;
1211 } else if (val == 0) {
1212 msg = "invalid checkpoint number 0";
1213 goto parse_error;
1214 }
1215 sd->cno = val;
1216 return 0;
1217
1218 parse_error:
1219 nilfs_msg(NULL, KERN_ERR, "invalid option \"%s\": %s", option, msg);
1220 return 1;
1221 }
1222
1223 /**
1224 * nilfs_identify - pre-read mount options needed to identify mount instance
1225 * @data: mount options
1226 * @sd: nilfs_super_data
1227 */
nilfs_identify(char * data,struct nilfs_super_data * sd)1228 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1229 {
1230 char *p, *options = data;
1231 substring_t args[MAX_OPT_ARGS];
1232 int token;
1233 int ret = 0;
1234
1235 do {
1236 p = strsep(&options, ",");
1237 if (p != NULL && *p) {
1238 token = match_token(p, tokens, args);
1239 if (token == Opt_snapshot)
1240 ret = nilfs_parse_snapshot_option(p, &args[0],
1241 sd);
1242 }
1243 if (!options)
1244 break;
1245 BUG_ON(options == data);
1246 *(options - 1) = ',';
1247 } while (!ret);
1248 return ret;
1249 }
1250
nilfs_set_bdev_super(struct super_block * s,void * data)1251 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1252 {
1253 s->s_bdev = data;
1254 s->s_dev = s->s_bdev->bd_dev;
1255 return 0;
1256 }
1257
nilfs_test_bdev_super(struct super_block * s,void * data)1258 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1259 {
1260 return (void *)s->s_bdev == data;
1261 }
1262
1263 static struct dentry *
nilfs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)1264 nilfs_mount(struct file_system_type *fs_type, int flags,
1265 const char *dev_name, void *data)
1266 {
1267 struct nilfs_super_data sd;
1268 struct super_block *s;
1269 fmode_t mode = FMODE_READ | FMODE_EXCL;
1270 struct dentry *root_dentry;
1271 int err, s_new = false;
1272
1273 if (!(flags & SB_RDONLY))
1274 mode |= FMODE_WRITE;
1275
1276 sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1277 if (IS_ERR(sd.bdev))
1278 return ERR_CAST(sd.bdev);
1279
1280 sd.cno = 0;
1281 sd.flags = flags;
1282 if (nilfs_identify((char *)data, &sd)) {
1283 err = -EINVAL;
1284 goto failed;
1285 }
1286
1287 /*
1288 * once the super is inserted into the list by sget, s_umount
1289 * will protect the lockfs code from trying to start a snapshot
1290 * while we are mounting
1291 */
1292 mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1293 if (sd.bdev->bd_fsfreeze_count > 0) {
1294 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1295 err = -EBUSY;
1296 goto failed;
1297 }
1298 s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1299 sd.bdev);
1300 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1301 if (IS_ERR(s)) {
1302 err = PTR_ERR(s);
1303 goto failed;
1304 }
1305
1306 if (!s->s_root) {
1307 s_new = true;
1308
1309 /* New superblock instance created */
1310 s->s_mode = mode;
1311 snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev);
1312 sb_set_blocksize(s, block_size(sd.bdev));
1313
1314 err = nilfs_fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1315 if (err)
1316 goto failed_super;
1317
1318 s->s_flags |= SB_ACTIVE;
1319 } else if (!sd.cno) {
1320 if (nilfs_tree_is_busy(s->s_root)) {
1321 if ((flags ^ s->s_flags) & SB_RDONLY) {
1322 nilfs_msg(s, KERN_ERR,
1323 "the device already has a %s mount.",
1324 sb_rdonly(s) ? "read-only" : "read/write");
1325 err = -EBUSY;
1326 goto failed_super;
1327 }
1328 } else {
1329 /*
1330 * Try remount to setup mount states if the current
1331 * tree is not mounted and only snapshots use this sb.
1332 */
1333 err = nilfs_remount(s, &flags, data);
1334 if (err)
1335 goto failed_super;
1336 }
1337 }
1338
1339 if (sd.cno) {
1340 err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1341 if (err)
1342 goto failed_super;
1343 } else {
1344 root_dentry = dget(s->s_root);
1345 }
1346
1347 if (!s_new)
1348 blkdev_put(sd.bdev, mode);
1349
1350 return root_dentry;
1351
1352 failed_super:
1353 deactivate_locked_super(s);
1354
1355 failed:
1356 if (!s_new)
1357 blkdev_put(sd.bdev, mode);
1358 return ERR_PTR(err);
1359 }
1360
1361 struct file_system_type nilfs_fs_type = {
1362 .owner = THIS_MODULE,
1363 .name = "nilfs2",
1364 .mount = nilfs_mount,
1365 .kill_sb = kill_block_super,
1366 .fs_flags = FS_REQUIRES_DEV,
1367 };
1368 MODULE_ALIAS_FS("nilfs2");
1369
nilfs_inode_init_once(void * obj)1370 static void nilfs_inode_init_once(void *obj)
1371 {
1372 struct nilfs_inode_info *ii = obj;
1373
1374 INIT_LIST_HEAD(&ii->i_dirty);
1375 #ifdef CONFIG_NILFS_XATTR
1376 init_rwsem(&ii->xattr_sem);
1377 #endif
1378 address_space_init_once(&ii->i_btnode_cache);
1379 ii->i_bmap = &ii->i_bmap_data;
1380 inode_init_once(&ii->vfs_inode);
1381 }
1382
nilfs_segbuf_init_once(void * obj)1383 static void nilfs_segbuf_init_once(void *obj)
1384 {
1385 memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1386 }
1387
nilfs_destroy_cachep(void)1388 static void nilfs_destroy_cachep(void)
1389 {
1390 /*
1391 * Make sure all delayed rcu free inodes are flushed before we
1392 * destroy cache.
1393 */
1394 rcu_barrier();
1395
1396 kmem_cache_destroy(nilfs_inode_cachep);
1397 kmem_cache_destroy(nilfs_transaction_cachep);
1398 kmem_cache_destroy(nilfs_segbuf_cachep);
1399 kmem_cache_destroy(nilfs_btree_path_cache);
1400 }
1401
nilfs_init_cachep(void)1402 static int __init nilfs_init_cachep(void)
1403 {
1404 nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1405 sizeof(struct nilfs_inode_info), 0,
1406 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1407 nilfs_inode_init_once);
1408 if (!nilfs_inode_cachep)
1409 goto fail;
1410
1411 nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1412 sizeof(struct nilfs_transaction_info), 0,
1413 SLAB_RECLAIM_ACCOUNT, NULL);
1414 if (!nilfs_transaction_cachep)
1415 goto fail;
1416
1417 nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1418 sizeof(struct nilfs_segment_buffer), 0,
1419 SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1420 if (!nilfs_segbuf_cachep)
1421 goto fail;
1422
1423 nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1424 sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1425 0, 0, NULL);
1426 if (!nilfs_btree_path_cache)
1427 goto fail;
1428
1429 return 0;
1430
1431 fail:
1432 nilfs_destroy_cachep();
1433 return -ENOMEM;
1434 }
1435
init_nilfs_fs(void)1436 static int __init init_nilfs_fs(void)
1437 {
1438 int err;
1439
1440 err = nilfs_init_cachep();
1441 if (err)
1442 goto fail;
1443
1444 err = nilfs_sysfs_init();
1445 if (err)
1446 goto free_cachep;
1447
1448 err = register_filesystem(&nilfs_fs_type);
1449 if (err)
1450 goto deinit_sysfs_entry;
1451
1452 printk(KERN_INFO "NILFS version 2 loaded\n");
1453 return 0;
1454
1455 deinit_sysfs_entry:
1456 nilfs_sysfs_exit();
1457 free_cachep:
1458 nilfs_destroy_cachep();
1459 fail:
1460 return err;
1461 }
1462
exit_nilfs_fs(void)1463 static void __exit exit_nilfs_fs(void)
1464 {
1465 nilfs_destroy_cachep();
1466 nilfs_sysfs_exit();
1467 unregister_filesystem(&nilfs_fs_type);
1468 }
1469
1470 module_init(init_nilfs_fs)
1471 module_exit(exit_nilfs_fs)
1472