1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Request reply cache. This is currently a global cache, but this may
4 * change in the future and be a per-client cache.
5 *
6 * This code is heavily inspired by the 44BSD implementation, although
7 * it does things a bit differently.
8 *
9 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
10 */
11
12 #include <linux/sunrpc/svc_xprt.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/sunrpc/addr.h>
16 #include <linux/highmem.h>
17 #include <linux/log2.h>
18 #include <linux/hash.h>
19 #include <net/checksum.h>
20
21 #include "nfsd.h"
22 #include "cache.h"
23
24 #define NFSDDBG_FACILITY NFSDDBG_REPCACHE
25
26 /*
27 * We use this value to determine the number of hash buckets from the max
28 * cache size, the idea being that when the cache is at its maximum number
29 * of entries, then this should be the average number of entries per bucket.
30 */
31 #define TARGET_BUCKET_SIZE 64
32
33 struct nfsd_drc_bucket {
34 struct rb_root rb_head;
35 struct list_head lru_head;
36 spinlock_t cache_lock;
37 };
38
39 static int nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec);
40 static unsigned long nfsd_reply_cache_count(struct shrinker *shrink,
41 struct shrink_control *sc);
42 static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink,
43 struct shrink_control *sc);
44
45 /*
46 * Put a cap on the size of the DRC based on the amount of available
47 * low memory in the machine.
48 *
49 * 64MB: 8192
50 * 128MB: 11585
51 * 256MB: 16384
52 * 512MB: 23170
53 * 1GB: 32768
54 * 2GB: 46340
55 * 4GB: 65536
56 * 8GB: 92681
57 * 16GB: 131072
58 *
59 * ...with a hard cap of 256k entries. In the worst case, each entry will be
60 * ~1k, so the above numbers should give a rough max of the amount of memory
61 * used in k.
62 *
63 * XXX: these limits are per-container, so memory used will increase
64 * linearly with number of containers. Maybe that's OK.
65 */
66 static unsigned int
nfsd_cache_size_limit(void)67 nfsd_cache_size_limit(void)
68 {
69 unsigned int limit;
70 unsigned long low_pages = totalram_pages() - totalhigh_pages();
71
72 limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10);
73 return min_t(unsigned int, limit, 256*1024);
74 }
75
76 /*
77 * Compute the number of hash buckets we need. Divide the max cachesize by
78 * the "target" max bucket size, and round up to next power of two.
79 */
80 static unsigned int
nfsd_hashsize(unsigned int limit)81 nfsd_hashsize(unsigned int limit)
82 {
83 return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE);
84 }
85
86 static u32
nfsd_cache_hash(__be32 xid,struct nfsd_net * nn)87 nfsd_cache_hash(__be32 xid, struct nfsd_net *nn)
88 {
89 return hash_32(be32_to_cpu(xid), nn->maskbits);
90 }
91
92 static struct svc_cacherep *
nfsd_reply_cache_alloc(struct svc_rqst * rqstp,__wsum csum,struct nfsd_net * nn)93 nfsd_reply_cache_alloc(struct svc_rqst *rqstp, __wsum csum,
94 struct nfsd_net *nn)
95 {
96 struct svc_cacherep *rp;
97
98 rp = kmem_cache_alloc(nn->drc_slab, GFP_KERNEL);
99 if (rp) {
100 rp->c_state = RC_UNUSED;
101 rp->c_type = RC_NOCACHE;
102 RB_CLEAR_NODE(&rp->c_node);
103 INIT_LIST_HEAD(&rp->c_lru);
104
105 memset(&rp->c_key, 0, sizeof(rp->c_key));
106 rp->c_key.k_xid = rqstp->rq_xid;
107 rp->c_key.k_proc = rqstp->rq_proc;
108 rpc_copy_addr((struct sockaddr *)&rp->c_key.k_addr, svc_addr(rqstp));
109 rpc_set_port((struct sockaddr *)&rp->c_key.k_addr, rpc_get_port(svc_addr(rqstp)));
110 rp->c_key.k_prot = rqstp->rq_prot;
111 rp->c_key.k_vers = rqstp->rq_vers;
112 rp->c_key.k_len = rqstp->rq_arg.len;
113 rp->c_key.k_csum = csum;
114 }
115 return rp;
116 }
117
118 static void
nfsd_reply_cache_free_locked(struct nfsd_drc_bucket * b,struct svc_cacherep * rp,struct nfsd_net * nn)119 nfsd_reply_cache_free_locked(struct nfsd_drc_bucket *b, struct svc_cacherep *rp,
120 struct nfsd_net *nn)
121 {
122 if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base) {
123 nn->drc_mem_usage -= rp->c_replvec.iov_len;
124 kfree(rp->c_replvec.iov_base);
125 }
126 if (rp->c_state != RC_UNUSED) {
127 rb_erase(&rp->c_node, &b->rb_head);
128 list_del(&rp->c_lru);
129 atomic_dec(&nn->num_drc_entries);
130 nn->drc_mem_usage -= sizeof(*rp);
131 }
132 kmem_cache_free(nn->drc_slab, rp);
133 }
134
135 static void
nfsd_reply_cache_free(struct nfsd_drc_bucket * b,struct svc_cacherep * rp,struct nfsd_net * nn)136 nfsd_reply_cache_free(struct nfsd_drc_bucket *b, struct svc_cacherep *rp,
137 struct nfsd_net *nn)
138 {
139 spin_lock(&b->cache_lock);
140 nfsd_reply_cache_free_locked(b, rp, nn);
141 spin_unlock(&b->cache_lock);
142 }
143
nfsd_reply_cache_init(struct nfsd_net * nn)144 int nfsd_reply_cache_init(struct nfsd_net *nn)
145 {
146 unsigned int hashsize;
147 unsigned int i;
148 int status = 0;
149
150 nn->max_drc_entries = nfsd_cache_size_limit();
151 atomic_set(&nn->num_drc_entries, 0);
152 hashsize = nfsd_hashsize(nn->max_drc_entries);
153 nn->maskbits = ilog2(hashsize);
154
155 nn->nfsd_reply_cache_shrinker.scan_objects = nfsd_reply_cache_scan;
156 nn->nfsd_reply_cache_shrinker.count_objects = nfsd_reply_cache_count;
157 nn->nfsd_reply_cache_shrinker.seeks = 1;
158 status = register_shrinker(&nn->nfsd_reply_cache_shrinker);
159 if (status)
160 goto out_nomem;
161
162 nn->drc_slab = kmem_cache_create("nfsd_drc",
163 sizeof(struct svc_cacherep), 0, 0, NULL);
164 if (!nn->drc_slab)
165 goto out_shrinker;
166
167 nn->drc_hashtbl = kcalloc(hashsize,
168 sizeof(*nn->drc_hashtbl), GFP_KERNEL);
169 if (!nn->drc_hashtbl) {
170 nn->drc_hashtbl = vzalloc(array_size(hashsize,
171 sizeof(*nn->drc_hashtbl)));
172 if (!nn->drc_hashtbl)
173 goto out_slab;
174 }
175
176 for (i = 0; i < hashsize; i++) {
177 INIT_LIST_HEAD(&nn->drc_hashtbl[i].lru_head);
178 spin_lock_init(&nn->drc_hashtbl[i].cache_lock);
179 }
180 nn->drc_hashsize = hashsize;
181
182 return 0;
183 out_slab:
184 kmem_cache_destroy(nn->drc_slab);
185 out_shrinker:
186 unregister_shrinker(&nn->nfsd_reply_cache_shrinker);
187 out_nomem:
188 printk(KERN_ERR "nfsd: failed to allocate reply cache\n");
189 return -ENOMEM;
190 }
191
nfsd_reply_cache_shutdown(struct nfsd_net * nn)192 void nfsd_reply_cache_shutdown(struct nfsd_net *nn)
193 {
194 struct svc_cacherep *rp;
195 unsigned int i;
196
197 unregister_shrinker(&nn->nfsd_reply_cache_shrinker);
198
199 for (i = 0; i < nn->drc_hashsize; i++) {
200 struct list_head *head = &nn->drc_hashtbl[i].lru_head;
201 while (!list_empty(head)) {
202 rp = list_first_entry(head, struct svc_cacherep, c_lru);
203 nfsd_reply_cache_free_locked(&nn->drc_hashtbl[i],
204 rp, nn);
205 }
206 }
207
208 kvfree(nn->drc_hashtbl);
209 nn->drc_hashtbl = NULL;
210 nn->drc_hashsize = 0;
211
212 kmem_cache_destroy(nn->drc_slab);
213 nn->drc_slab = NULL;
214 }
215
216 /*
217 * Move cache entry to end of LRU list, and queue the cleaner to run if it's
218 * not already scheduled.
219 */
220 static void
lru_put_end(struct nfsd_drc_bucket * b,struct svc_cacherep * rp)221 lru_put_end(struct nfsd_drc_bucket *b, struct svc_cacherep *rp)
222 {
223 rp->c_timestamp = jiffies;
224 list_move_tail(&rp->c_lru, &b->lru_head);
225 }
226
227 static long
prune_bucket(struct nfsd_drc_bucket * b,struct nfsd_net * nn)228 prune_bucket(struct nfsd_drc_bucket *b, struct nfsd_net *nn)
229 {
230 struct svc_cacherep *rp, *tmp;
231 long freed = 0;
232
233 list_for_each_entry_safe(rp, tmp, &b->lru_head, c_lru) {
234 /*
235 * Don't free entries attached to calls that are still
236 * in-progress, but do keep scanning the list.
237 */
238 if (rp->c_state == RC_INPROG)
239 continue;
240 if (atomic_read(&nn->num_drc_entries) <= nn->max_drc_entries &&
241 time_before(jiffies, rp->c_timestamp + RC_EXPIRE))
242 break;
243 nfsd_reply_cache_free_locked(b, rp, nn);
244 freed++;
245 }
246 return freed;
247 }
248
249 /*
250 * Walk the LRU list and prune off entries that are older than RC_EXPIRE.
251 * Also prune the oldest ones when the total exceeds the max number of entries.
252 */
253 static long
prune_cache_entries(struct nfsd_net * nn)254 prune_cache_entries(struct nfsd_net *nn)
255 {
256 unsigned int i;
257 long freed = 0;
258
259 for (i = 0; i < nn->drc_hashsize; i++) {
260 struct nfsd_drc_bucket *b = &nn->drc_hashtbl[i];
261
262 if (list_empty(&b->lru_head))
263 continue;
264 spin_lock(&b->cache_lock);
265 freed += prune_bucket(b, nn);
266 spin_unlock(&b->cache_lock);
267 }
268 return freed;
269 }
270
271 static unsigned long
nfsd_reply_cache_count(struct shrinker * shrink,struct shrink_control * sc)272 nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc)
273 {
274 struct nfsd_net *nn = container_of(shrink,
275 struct nfsd_net, nfsd_reply_cache_shrinker);
276
277 return atomic_read(&nn->num_drc_entries);
278 }
279
280 static unsigned long
nfsd_reply_cache_scan(struct shrinker * shrink,struct shrink_control * sc)281 nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
282 {
283 struct nfsd_net *nn = container_of(shrink,
284 struct nfsd_net, nfsd_reply_cache_shrinker);
285
286 return prune_cache_entries(nn);
287 }
288 /*
289 * Walk an xdr_buf and get a CRC for at most the first RC_CSUMLEN bytes
290 */
291 static __wsum
nfsd_cache_csum(struct svc_rqst * rqstp)292 nfsd_cache_csum(struct svc_rqst *rqstp)
293 {
294 int idx;
295 unsigned int base;
296 __wsum csum;
297 struct xdr_buf *buf = &rqstp->rq_arg;
298 const unsigned char *p = buf->head[0].iov_base;
299 size_t csum_len = min_t(size_t, buf->head[0].iov_len + buf->page_len,
300 RC_CSUMLEN);
301 size_t len = min(buf->head[0].iov_len, csum_len);
302
303 /* rq_arg.head first */
304 csum = csum_partial(p, len, 0);
305 csum_len -= len;
306
307 /* Continue into page array */
308 idx = buf->page_base / PAGE_SIZE;
309 base = buf->page_base & ~PAGE_MASK;
310 while (csum_len) {
311 p = page_address(buf->pages[idx]) + base;
312 len = min_t(size_t, PAGE_SIZE - base, csum_len);
313 csum = csum_partial(p, len, csum);
314 csum_len -= len;
315 base = 0;
316 ++idx;
317 }
318 return csum;
319 }
320
321 static int
nfsd_cache_key_cmp(const struct svc_cacherep * key,const struct svc_cacherep * rp,struct nfsd_net * nn)322 nfsd_cache_key_cmp(const struct svc_cacherep *key,
323 const struct svc_cacherep *rp, struct nfsd_net *nn)
324 {
325 if (key->c_key.k_xid == rp->c_key.k_xid &&
326 key->c_key.k_csum != rp->c_key.k_csum)
327 ++nn->payload_misses;
328
329 return memcmp(&key->c_key, &rp->c_key, sizeof(key->c_key));
330 }
331
332 /*
333 * Search the request hash for an entry that matches the given rqstp.
334 * Must be called with cache_lock held. Returns the found entry or
335 * inserts an empty key on failure.
336 */
337 static struct svc_cacherep *
nfsd_cache_insert(struct nfsd_drc_bucket * b,struct svc_cacherep * key,struct nfsd_net * nn)338 nfsd_cache_insert(struct nfsd_drc_bucket *b, struct svc_cacherep *key,
339 struct nfsd_net *nn)
340 {
341 struct svc_cacherep *rp, *ret = key;
342 struct rb_node **p = &b->rb_head.rb_node,
343 *parent = NULL;
344 unsigned int entries = 0;
345 int cmp;
346
347 while (*p != NULL) {
348 ++entries;
349 parent = *p;
350 rp = rb_entry(parent, struct svc_cacherep, c_node);
351
352 cmp = nfsd_cache_key_cmp(key, rp, nn);
353 if (cmp < 0)
354 p = &parent->rb_left;
355 else if (cmp > 0)
356 p = &parent->rb_right;
357 else {
358 ret = rp;
359 goto out;
360 }
361 }
362 rb_link_node(&key->c_node, parent, p);
363 rb_insert_color(&key->c_node, &b->rb_head);
364 out:
365 /* tally hash chain length stats */
366 if (entries > nn->longest_chain) {
367 nn->longest_chain = entries;
368 nn->longest_chain_cachesize = atomic_read(&nn->num_drc_entries);
369 } else if (entries == nn->longest_chain) {
370 /* prefer to keep the smallest cachesize possible here */
371 nn->longest_chain_cachesize = min_t(unsigned int,
372 nn->longest_chain_cachesize,
373 atomic_read(&nn->num_drc_entries));
374 }
375
376 lru_put_end(b, ret);
377 return ret;
378 }
379
380 /*
381 * Try to find an entry matching the current call in the cache. When none
382 * is found, we try to grab the oldest expired entry off the LRU list. If
383 * a suitable one isn't there, then drop the cache_lock and allocate a
384 * new one, then search again in case one got inserted while this thread
385 * didn't hold the lock.
386 */
387 int
nfsd_cache_lookup(struct svc_rqst * rqstp)388 nfsd_cache_lookup(struct svc_rqst *rqstp)
389 {
390 struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
391 struct svc_cacherep *rp, *found;
392 __be32 xid = rqstp->rq_xid;
393 __wsum csum;
394 u32 hash = nfsd_cache_hash(xid, nn);
395 struct nfsd_drc_bucket *b = &nn->drc_hashtbl[hash];
396 int type = rqstp->rq_cachetype;
397 int rtn = RC_DOIT;
398
399 rqstp->rq_cacherep = NULL;
400 if (type == RC_NOCACHE) {
401 nfsdstats.rcnocache++;
402 return rtn;
403 }
404
405 csum = nfsd_cache_csum(rqstp);
406
407 /*
408 * Since the common case is a cache miss followed by an insert,
409 * preallocate an entry.
410 */
411 rp = nfsd_reply_cache_alloc(rqstp, csum, nn);
412 if (!rp) {
413 dprintk("nfsd: unable to allocate DRC entry!\n");
414 return rtn;
415 }
416
417 spin_lock(&b->cache_lock);
418 found = nfsd_cache_insert(b, rp, nn);
419 if (found != rp) {
420 nfsd_reply_cache_free_locked(NULL, rp, nn);
421 rp = found;
422 goto found_entry;
423 }
424
425 nfsdstats.rcmisses++;
426 rqstp->rq_cacherep = rp;
427 rp->c_state = RC_INPROG;
428
429 atomic_inc(&nn->num_drc_entries);
430 nn->drc_mem_usage += sizeof(*rp);
431
432 /* go ahead and prune the cache */
433 prune_bucket(b, nn);
434 out:
435 spin_unlock(&b->cache_lock);
436 return rtn;
437
438 found_entry:
439 /* We found a matching entry which is either in progress or done. */
440 nfsdstats.rchits++;
441 rtn = RC_DROPIT;
442
443 /* Request being processed */
444 if (rp->c_state == RC_INPROG)
445 goto out;
446
447 /* From the hall of fame of impractical attacks:
448 * Is this a user who tries to snoop on the cache? */
449 rtn = RC_DOIT;
450 if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && rp->c_secure)
451 goto out;
452
453 /* Compose RPC reply header */
454 switch (rp->c_type) {
455 case RC_NOCACHE:
456 break;
457 case RC_REPLSTAT:
458 svc_putu32(&rqstp->rq_res.head[0], rp->c_replstat);
459 rtn = RC_REPLY;
460 break;
461 case RC_REPLBUFF:
462 if (!nfsd_cache_append(rqstp, &rp->c_replvec))
463 goto out; /* should not happen */
464 rtn = RC_REPLY;
465 break;
466 default:
467 printk(KERN_WARNING "nfsd: bad repcache type %d\n", rp->c_type);
468 nfsd_reply_cache_free_locked(b, rp, nn);
469 }
470
471 goto out;
472 }
473
474 /*
475 * Update a cache entry. This is called from nfsd_dispatch when
476 * the procedure has been executed and the complete reply is in
477 * rqstp->rq_res.
478 *
479 * We're copying around data here rather than swapping buffers because
480 * the toplevel loop requires max-sized buffers, which would be a waste
481 * of memory for a cache with a max reply size of 100 bytes (diropokres).
482 *
483 * If we should start to use different types of cache entries tailored
484 * specifically for attrstat and fh's, we may save even more space.
485 *
486 * Also note that a cachetype of RC_NOCACHE can legally be passed when
487 * nfsd failed to encode a reply that otherwise would have been cached.
488 * In this case, nfsd_cache_update is called with statp == NULL.
489 */
490 void
nfsd_cache_update(struct svc_rqst * rqstp,int cachetype,__be32 * statp)491 nfsd_cache_update(struct svc_rqst *rqstp, int cachetype, __be32 *statp)
492 {
493 struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
494 struct svc_cacherep *rp = rqstp->rq_cacherep;
495 struct kvec *resv = &rqstp->rq_res.head[0], *cachv;
496 u32 hash;
497 struct nfsd_drc_bucket *b;
498 int len;
499 size_t bufsize = 0;
500
501 if (!rp)
502 return;
503
504 hash = nfsd_cache_hash(rp->c_key.k_xid, nn);
505 b = &nn->drc_hashtbl[hash];
506
507 len = resv->iov_len - ((char*)statp - (char*)resv->iov_base);
508 len >>= 2;
509
510 /* Don't cache excessive amounts of data and XDR failures */
511 if (!statp || len > (256 >> 2)) {
512 nfsd_reply_cache_free(b, rp, nn);
513 return;
514 }
515
516 switch (cachetype) {
517 case RC_REPLSTAT:
518 if (len != 1)
519 printk("nfsd: RC_REPLSTAT/reply len %d!\n",len);
520 rp->c_replstat = *statp;
521 break;
522 case RC_REPLBUFF:
523 cachv = &rp->c_replvec;
524 bufsize = len << 2;
525 cachv->iov_base = kmalloc(bufsize, GFP_KERNEL);
526 if (!cachv->iov_base) {
527 nfsd_reply_cache_free(b, rp, nn);
528 return;
529 }
530 cachv->iov_len = bufsize;
531 memcpy(cachv->iov_base, statp, bufsize);
532 break;
533 case RC_NOCACHE:
534 nfsd_reply_cache_free(b, rp, nn);
535 return;
536 }
537 spin_lock(&b->cache_lock);
538 nn->drc_mem_usage += bufsize;
539 lru_put_end(b, rp);
540 rp->c_secure = test_bit(RQ_SECURE, &rqstp->rq_flags);
541 rp->c_type = cachetype;
542 rp->c_state = RC_DONE;
543 spin_unlock(&b->cache_lock);
544 return;
545 }
546
547 /*
548 * Copy cached reply to current reply buffer. Should always fit.
549 * FIXME as reply is in a page, we should just attach the page, and
550 * keep a refcount....
551 */
552 static int
nfsd_cache_append(struct svc_rqst * rqstp,struct kvec * data)553 nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data)
554 {
555 struct kvec *vec = &rqstp->rq_res.head[0];
556
557 if (vec->iov_len + data->iov_len > PAGE_SIZE) {
558 printk(KERN_WARNING "nfsd: cached reply too large (%zd).\n",
559 data->iov_len);
560 return 0;
561 }
562 memcpy((char*)vec->iov_base + vec->iov_len, data->iov_base, data->iov_len);
563 vec->iov_len += data->iov_len;
564 return 1;
565 }
566
567 /*
568 * Note that fields may be added, removed or reordered in the future. Programs
569 * scraping this file for info should test the labels to ensure they're
570 * getting the correct field.
571 */
nfsd_reply_cache_stats_show(struct seq_file * m,void * v)572 static int nfsd_reply_cache_stats_show(struct seq_file *m, void *v)
573 {
574 struct nfsd_net *nn = m->private;
575
576 seq_printf(m, "max entries: %u\n", nn->max_drc_entries);
577 seq_printf(m, "num entries: %u\n",
578 atomic_read(&nn->num_drc_entries));
579 seq_printf(m, "hash buckets: %u\n", 1 << nn->maskbits);
580 seq_printf(m, "mem usage: %u\n", nn->drc_mem_usage);
581 seq_printf(m, "cache hits: %u\n", nfsdstats.rchits);
582 seq_printf(m, "cache misses: %u\n", nfsdstats.rcmisses);
583 seq_printf(m, "not cached: %u\n", nfsdstats.rcnocache);
584 seq_printf(m, "payload misses: %u\n", nn->payload_misses);
585 seq_printf(m, "longest chain len: %u\n", nn->longest_chain);
586 seq_printf(m, "cachesize at longest: %u\n", nn->longest_chain_cachesize);
587 return 0;
588 }
589
nfsd_reply_cache_stats_open(struct inode * inode,struct file * file)590 int nfsd_reply_cache_stats_open(struct inode *inode, struct file *file)
591 {
592 struct nfsd_net *nn = net_generic(file_inode(file)->i_sb->s_fs_info,
593 nfsd_net_id);
594
595 return single_open(file, nfsd_reply_cache_stats_show, nn);
596 }
597