1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
40 
41 #include "delegation.h"
42 #include "iostat.h"
43 #include "internal.h"
44 #include "fscache.h"
45 
46 #include "nfstrace.h"
47 
48 /* #define NFS_DEBUG_VERBOSE 1 */
49 
50 static int nfs_opendir(struct inode *, struct file *);
51 static int nfs_closedir(struct inode *, struct file *);
52 static int nfs_readdir(struct file *, struct dir_context *);
53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55 static void nfs_readdir_clear_array(struct page*);
56 
57 const struct file_operations nfs_dir_operations = {
58 	.llseek		= nfs_llseek_dir,
59 	.read		= generic_read_dir,
60 	.iterate	= nfs_readdir,
61 	.open		= nfs_opendir,
62 	.release	= nfs_closedir,
63 	.fsync		= nfs_fsync_dir,
64 };
65 
66 const struct address_space_operations nfs_dir_aops = {
67 	.freepage = nfs_readdir_clear_array,
68 };
69 
alloc_nfs_open_dir_context(struct inode * dir,struct rpc_cred * cred)70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
71 {
72 	struct nfs_inode *nfsi = NFS_I(dir);
73 	struct nfs_open_dir_context *ctx;
74 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75 	if (ctx != NULL) {
76 		ctx->duped = 0;
77 		ctx->attr_gencount = nfsi->attr_gencount;
78 		ctx->dir_cookie = 0;
79 		ctx->dup_cookie = 0;
80 		ctx->cred = get_rpccred(cred);
81 		spin_lock(&dir->i_lock);
82 		list_add(&ctx->list, &nfsi->open_files);
83 		spin_unlock(&dir->i_lock);
84 		return ctx;
85 	}
86 	return  ERR_PTR(-ENOMEM);
87 }
88 
put_nfs_open_dir_context(struct inode * dir,struct nfs_open_dir_context * ctx)89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
90 {
91 	spin_lock(&dir->i_lock);
92 	list_del(&ctx->list);
93 	spin_unlock(&dir->i_lock);
94 	put_rpccred(ctx->cred);
95 	kfree(ctx);
96 }
97 
98 /*
99  * Open file
100  */
101 static int
nfs_opendir(struct inode * inode,struct file * filp)102 nfs_opendir(struct inode *inode, struct file *filp)
103 {
104 	int res = 0;
105 	struct nfs_open_dir_context *ctx;
106 	struct rpc_cred *cred;
107 
108 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
109 
110 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
111 
112 	cred = rpc_lookup_cred();
113 	if (IS_ERR(cred))
114 		return PTR_ERR(cred);
115 	ctx = alloc_nfs_open_dir_context(inode, cred);
116 	if (IS_ERR(ctx)) {
117 		res = PTR_ERR(ctx);
118 		goto out;
119 	}
120 	filp->private_data = ctx;
121 out:
122 	put_rpccred(cred);
123 	return res;
124 }
125 
126 static int
nfs_closedir(struct inode * inode,struct file * filp)127 nfs_closedir(struct inode *inode, struct file *filp)
128 {
129 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
130 	return 0;
131 }
132 
133 struct nfs_cache_array_entry {
134 	u64 cookie;
135 	u64 ino;
136 	struct qstr string;
137 	unsigned char d_type;
138 };
139 
140 struct nfs_cache_array {
141 	int size;
142 	int eof_index;
143 	u64 last_cookie;
144 	struct nfs_cache_array_entry array[0];
145 };
146 
147 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, bool);
148 typedef struct {
149 	struct file	*file;
150 	struct page	*page;
151 	struct dir_context *ctx;
152 	unsigned long	page_index;
153 	u64		*dir_cookie;
154 	u64		last_cookie;
155 	loff_t		current_index;
156 	decode_dirent_t	decode;
157 
158 	unsigned long	timestamp;
159 	unsigned long	gencount;
160 	unsigned int	cache_entry_index;
161 	bool plus;
162 	bool eof;
163 } nfs_readdir_descriptor_t;
164 
165 /*
166  * we are freeing strings created by nfs_add_to_readdir_array()
167  */
168 static
nfs_readdir_clear_array(struct page * page)169 void nfs_readdir_clear_array(struct page *page)
170 {
171 	struct nfs_cache_array *array;
172 	int i;
173 
174 	array = kmap_atomic(page);
175 	for (i = 0; i < array->size; i++)
176 		kfree(array->array[i].string.name);
177 	kunmap_atomic(array);
178 }
179 
180 /*
181  * the caller is responsible for freeing qstr.name
182  * when called by nfs_readdir_add_to_array, the strings will be freed in
183  * nfs_clear_readdir_array()
184  */
185 static
nfs_readdir_make_qstr(struct qstr * string,const char * name,unsigned int len)186 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
187 {
188 	string->len = len;
189 	string->name = kmemdup(name, len, GFP_KERNEL);
190 	if (string->name == NULL)
191 		return -ENOMEM;
192 	/*
193 	 * Avoid a kmemleak false positive. The pointer to the name is stored
194 	 * in a page cache page which kmemleak does not scan.
195 	 */
196 	kmemleak_not_leak(string->name);
197 	string->hash = full_name_hash(NULL, name, len);
198 	return 0;
199 }
200 
201 static
nfs_readdir_add_to_array(struct nfs_entry * entry,struct page * page)202 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
203 {
204 	struct nfs_cache_array *array = kmap(page);
205 	struct nfs_cache_array_entry *cache_entry;
206 	int ret;
207 
208 	cache_entry = &array->array[array->size];
209 
210 	/* Check that this entry lies within the page bounds */
211 	ret = -ENOSPC;
212 	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
213 		goto out;
214 
215 	cache_entry->cookie = entry->prev_cookie;
216 	cache_entry->ino = entry->ino;
217 	cache_entry->d_type = entry->d_type;
218 	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
219 	if (ret)
220 		goto out;
221 	array->last_cookie = entry->cookie;
222 	array->size++;
223 	if (entry->eof != 0)
224 		array->eof_index = array->size;
225 out:
226 	kunmap(page);
227 	return ret;
228 }
229 
230 static
nfs_readdir_search_for_pos(struct nfs_cache_array * array,nfs_readdir_descriptor_t * desc)231 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
232 {
233 	loff_t diff = desc->ctx->pos - desc->current_index;
234 	unsigned int index;
235 
236 	if (diff < 0)
237 		goto out_eof;
238 	if (diff >= array->size) {
239 		if (array->eof_index >= 0)
240 			goto out_eof;
241 		return -EAGAIN;
242 	}
243 
244 	index = (unsigned int)diff;
245 	*desc->dir_cookie = array->array[index].cookie;
246 	desc->cache_entry_index = index;
247 	return 0;
248 out_eof:
249 	desc->eof = true;
250 	return -EBADCOOKIE;
251 }
252 
253 static bool
nfs_readdir_inode_mapping_valid(struct nfs_inode * nfsi)254 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
255 {
256 	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
257 		return false;
258 	smp_rmb();
259 	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
260 }
261 
262 static
nfs_readdir_search_for_cookie(struct nfs_cache_array * array,nfs_readdir_descriptor_t * desc)263 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
264 {
265 	int i;
266 	loff_t new_pos;
267 	int status = -EAGAIN;
268 
269 	for (i = 0; i < array->size; i++) {
270 		if (array->array[i].cookie == *desc->dir_cookie) {
271 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
272 			struct nfs_open_dir_context *ctx = desc->file->private_data;
273 
274 			new_pos = desc->current_index + i;
275 			if (ctx->attr_gencount != nfsi->attr_gencount ||
276 			    !nfs_readdir_inode_mapping_valid(nfsi)) {
277 				ctx->duped = 0;
278 				ctx->attr_gencount = nfsi->attr_gencount;
279 			} else if (new_pos < desc->ctx->pos) {
280 				if (ctx->duped > 0
281 				    && ctx->dup_cookie == *desc->dir_cookie) {
282 					if (printk_ratelimit()) {
283 						pr_notice("NFS: directory %pD2 contains a readdir loop."
284 								"Please contact your server vendor.  "
285 								"The file: %.*s has duplicate cookie %llu\n",
286 								desc->file, array->array[i].string.len,
287 								array->array[i].string.name, *desc->dir_cookie);
288 					}
289 					status = -ELOOP;
290 					goto out;
291 				}
292 				ctx->dup_cookie = *desc->dir_cookie;
293 				ctx->duped = -1;
294 			}
295 			desc->ctx->pos = new_pos;
296 			desc->cache_entry_index = i;
297 			return 0;
298 		}
299 	}
300 	if (array->eof_index >= 0) {
301 		status = -EBADCOOKIE;
302 		if (*desc->dir_cookie == array->last_cookie)
303 			desc->eof = true;
304 	}
305 out:
306 	return status;
307 }
308 
309 static
nfs_readdir_search_array(nfs_readdir_descriptor_t * desc)310 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
311 {
312 	struct nfs_cache_array *array;
313 	int status;
314 
315 	array = kmap(desc->page);
316 
317 	if (*desc->dir_cookie == 0)
318 		status = nfs_readdir_search_for_pos(array, desc);
319 	else
320 		status = nfs_readdir_search_for_cookie(array, desc);
321 
322 	if (status == -EAGAIN) {
323 		desc->last_cookie = array->last_cookie;
324 		desc->current_index += array->size;
325 		desc->page_index++;
326 	}
327 	kunmap(desc->page);
328 	return status;
329 }
330 
331 /* Fill a page with xdr information before transferring to the cache page */
332 static
nfs_readdir_xdr_filler(struct page ** pages,nfs_readdir_descriptor_t * desc,struct nfs_entry * entry,struct file * file,struct inode * inode)333 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
334 			struct nfs_entry *entry, struct file *file, struct inode *inode)
335 {
336 	struct nfs_open_dir_context *ctx = file->private_data;
337 	struct rpc_cred	*cred = ctx->cred;
338 	unsigned long	timestamp, gencount;
339 	int		error;
340 
341  again:
342 	timestamp = jiffies;
343 	gencount = nfs_inc_attr_generation_counter();
344 	error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
345 					  NFS_SERVER(inode)->dtsize, desc->plus);
346 	if (error < 0) {
347 		/* We requested READDIRPLUS, but the server doesn't grok it */
348 		if (error == -ENOTSUPP && desc->plus) {
349 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
350 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
351 			desc->plus = false;
352 			goto again;
353 		}
354 		goto error;
355 	}
356 	desc->timestamp = timestamp;
357 	desc->gencount = gencount;
358 error:
359 	return error;
360 }
361 
xdr_decode(nfs_readdir_descriptor_t * desc,struct nfs_entry * entry,struct xdr_stream * xdr)362 static int xdr_decode(nfs_readdir_descriptor_t *desc,
363 		      struct nfs_entry *entry, struct xdr_stream *xdr)
364 {
365 	int error;
366 
367 	error = desc->decode(xdr, entry, desc->plus);
368 	if (error)
369 		return error;
370 	entry->fattr->time_start = desc->timestamp;
371 	entry->fattr->gencount = desc->gencount;
372 	return 0;
373 }
374 
375 /* Match file and dirent using either filehandle or fileid
376  * Note: caller is responsible for checking the fsid
377  */
378 static
nfs_same_file(struct dentry * dentry,struct nfs_entry * entry)379 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
380 {
381 	struct inode *inode;
382 	struct nfs_inode *nfsi;
383 
384 	if (d_really_is_negative(dentry))
385 		return 0;
386 
387 	inode = d_inode(dentry);
388 	if (is_bad_inode(inode) || NFS_STALE(inode))
389 		return 0;
390 
391 	nfsi = NFS_I(inode);
392 	if (entry->fattr->fileid != nfsi->fileid)
393 		return 0;
394 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
395 		return 0;
396 	return 1;
397 }
398 
399 static
nfs_use_readdirplus(struct inode * dir,struct dir_context * ctx)400 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
401 {
402 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
403 		return false;
404 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
405 		return true;
406 	if (ctx->pos == 0)
407 		return true;
408 	return false;
409 }
410 
411 /*
412  * This function is called by the lookup and getattr code to request the
413  * use of readdirplus to accelerate any future lookups in the same
414  * directory.
415  */
nfs_advise_use_readdirplus(struct inode * dir)416 void nfs_advise_use_readdirplus(struct inode *dir)
417 {
418 	struct nfs_inode *nfsi = NFS_I(dir);
419 
420 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
421 	    !list_empty(&nfsi->open_files))
422 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
423 }
424 
425 /*
426  * This function is mainly for use by nfs_getattr().
427  *
428  * If this is an 'ls -l', we want to force use of readdirplus.
429  * Do this by checking if there is an active file descriptor
430  * and calling nfs_advise_use_readdirplus, then forcing a
431  * cache flush.
432  */
nfs_force_use_readdirplus(struct inode * dir)433 void nfs_force_use_readdirplus(struct inode *dir)
434 {
435 	struct nfs_inode *nfsi = NFS_I(dir);
436 
437 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
438 	    !list_empty(&nfsi->open_files)) {
439 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
440 		invalidate_mapping_pages(dir->i_mapping, 0, -1);
441 	}
442 }
443 
444 static
nfs_prime_dcache(struct dentry * parent,struct nfs_entry * entry)445 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
446 {
447 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
448 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
449 	struct dentry *dentry;
450 	struct dentry *alias;
451 	struct inode *dir = d_inode(parent);
452 	struct inode *inode;
453 	int status;
454 
455 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
456 		return;
457 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
458 		return;
459 	if (filename.len == 0)
460 		return;
461 	/* Validate that the name doesn't contain any illegal '\0' */
462 	if (strnlen(filename.name, filename.len) != filename.len)
463 		return;
464 	/* ...or '/' */
465 	if (strnchr(filename.name, filename.len, '/'))
466 		return;
467 	if (filename.name[0] == '.') {
468 		if (filename.len == 1)
469 			return;
470 		if (filename.len == 2 && filename.name[1] == '.')
471 			return;
472 	}
473 	filename.hash = full_name_hash(parent, filename.name, filename.len);
474 
475 	dentry = d_lookup(parent, &filename);
476 again:
477 	if (!dentry) {
478 		dentry = d_alloc_parallel(parent, &filename, &wq);
479 		if (IS_ERR(dentry))
480 			return;
481 	}
482 	if (!d_in_lookup(dentry)) {
483 		/* Is there a mountpoint here? If so, just exit */
484 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
485 					&entry->fattr->fsid))
486 			goto out;
487 		if (nfs_same_file(dentry, entry)) {
488 			if (!entry->fh->size)
489 				goto out;
490 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
491 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
492 			if (!status)
493 				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
494 			goto out;
495 		} else {
496 			d_invalidate(dentry);
497 			dput(dentry);
498 			dentry = NULL;
499 			goto again;
500 		}
501 	}
502 	if (!entry->fh->size) {
503 		d_lookup_done(dentry);
504 		goto out;
505 	}
506 
507 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
508 	alias = d_splice_alias(inode, dentry);
509 	d_lookup_done(dentry);
510 	if (alias) {
511 		if (IS_ERR(alias))
512 			goto out;
513 		dput(dentry);
514 		dentry = alias;
515 	}
516 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
517 out:
518 	dput(dentry);
519 }
520 
521 /* Perform conversion from xdr to cache array */
522 static
nfs_readdir_page_filler(nfs_readdir_descriptor_t * desc,struct nfs_entry * entry,struct page ** xdr_pages,struct page * page,unsigned int buflen)523 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
524 				struct page **xdr_pages, struct page *page, unsigned int buflen)
525 {
526 	struct xdr_stream stream;
527 	struct xdr_buf buf;
528 	struct page *scratch;
529 	struct nfs_cache_array *array;
530 	unsigned int count = 0;
531 	int status;
532 
533 	scratch = alloc_page(GFP_KERNEL);
534 	if (scratch == NULL)
535 		return -ENOMEM;
536 
537 	if (buflen == 0)
538 		goto out_nopages;
539 
540 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
541 	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
542 
543 	do {
544 		status = xdr_decode(desc, entry, &stream);
545 		if (status != 0) {
546 			if (status == -EAGAIN)
547 				status = 0;
548 			break;
549 		}
550 
551 		count++;
552 
553 		if (desc->plus)
554 			nfs_prime_dcache(file_dentry(desc->file), entry);
555 
556 		status = nfs_readdir_add_to_array(entry, page);
557 		if (status != 0)
558 			break;
559 	} while (!entry->eof);
560 
561 out_nopages:
562 	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
563 		array = kmap(page);
564 		array->eof_index = array->size;
565 		status = 0;
566 		kunmap(page);
567 	}
568 
569 	put_page(scratch);
570 	return status;
571 }
572 
573 static
nfs_readdir_free_pages(struct page ** pages,unsigned int npages)574 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
575 {
576 	unsigned int i;
577 	for (i = 0; i < npages; i++)
578 		put_page(pages[i]);
579 }
580 
581 /*
582  * nfs_readdir_large_page will allocate pages that must be freed with a call
583  * to nfs_readdir_free_pagearray
584  */
585 static
nfs_readdir_alloc_pages(struct page ** pages,unsigned int npages)586 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
587 {
588 	unsigned int i;
589 
590 	for (i = 0; i < npages; i++) {
591 		struct page *page = alloc_page(GFP_KERNEL);
592 		if (page == NULL)
593 			goto out_freepages;
594 		pages[i] = page;
595 	}
596 	return 0;
597 
598 out_freepages:
599 	nfs_readdir_free_pages(pages, i);
600 	return -ENOMEM;
601 }
602 
603 static
nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t * desc,struct page * page,struct inode * inode)604 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
605 {
606 	struct page *pages[NFS_MAX_READDIR_PAGES];
607 	struct nfs_entry entry;
608 	struct file	*file = desc->file;
609 	struct nfs_cache_array *array;
610 	int status = -ENOMEM;
611 	unsigned int array_size = ARRAY_SIZE(pages);
612 
613 	entry.prev_cookie = 0;
614 	entry.cookie = desc->last_cookie;
615 	entry.eof = 0;
616 	entry.fh = nfs_alloc_fhandle();
617 	entry.fattr = nfs_alloc_fattr();
618 	entry.server = NFS_SERVER(inode);
619 	if (entry.fh == NULL || entry.fattr == NULL)
620 		goto out;
621 
622 	entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
623 	if (IS_ERR(entry.label)) {
624 		status = PTR_ERR(entry.label);
625 		goto out;
626 	}
627 
628 	array = kmap(page);
629 	memset(array, 0, sizeof(struct nfs_cache_array));
630 	array->eof_index = -1;
631 
632 	status = nfs_readdir_alloc_pages(pages, array_size);
633 	if (status < 0)
634 		goto out_release_array;
635 	do {
636 		unsigned int pglen;
637 		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
638 
639 		if (status < 0)
640 			break;
641 		pglen = status;
642 		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
643 		if (status < 0) {
644 			if (status == -ENOSPC)
645 				status = 0;
646 			break;
647 		}
648 	} while (array->eof_index < 0);
649 
650 	nfs_readdir_free_pages(pages, array_size);
651 out_release_array:
652 	kunmap(page);
653 	nfs4_label_free(entry.label);
654 out:
655 	nfs_free_fattr(entry.fattr);
656 	nfs_free_fhandle(entry.fh);
657 	return status;
658 }
659 
660 /*
661  * Now we cache directories properly, by converting xdr information
662  * to an array that can be used for lookups later.  This results in
663  * fewer cache pages, since we can store more information on each page.
664  * We only need to convert from xdr once so future lookups are much simpler
665  */
666 static
nfs_readdir_filler(nfs_readdir_descriptor_t * desc,struct page * page)667 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
668 {
669 	struct inode	*inode = file_inode(desc->file);
670 	int ret;
671 
672 	ret = nfs_readdir_xdr_to_array(desc, page, inode);
673 	if (ret < 0)
674 		goto error;
675 	SetPageUptodate(page);
676 
677 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
678 		/* Should never happen */
679 		nfs_zap_mapping(inode, inode->i_mapping);
680 	}
681 	unlock_page(page);
682 	return 0;
683  error:
684 	unlock_page(page);
685 	return ret;
686 }
687 
688 static
cache_page_release(nfs_readdir_descriptor_t * desc)689 void cache_page_release(nfs_readdir_descriptor_t *desc)
690 {
691 	if (!desc->page->mapping)
692 		nfs_readdir_clear_array(desc->page);
693 	put_page(desc->page);
694 	desc->page = NULL;
695 }
696 
697 static
get_cache_page(nfs_readdir_descriptor_t * desc)698 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
699 {
700 	return read_cache_page(desc->file->f_mapping,
701 			desc->page_index, (filler_t *)nfs_readdir_filler, desc);
702 }
703 
704 /*
705  * Returns 0 if desc->dir_cookie was found on page desc->page_index
706  */
707 static
find_cache_page(nfs_readdir_descriptor_t * desc)708 int find_cache_page(nfs_readdir_descriptor_t *desc)
709 {
710 	int res;
711 
712 	desc->page = get_cache_page(desc);
713 	if (IS_ERR(desc->page))
714 		return PTR_ERR(desc->page);
715 
716 	res = nfs_readdir_search_array(desc);
717 	if (res != 0)
718 		cache_page_release(desc);
719 	return res;
720 }
721 
722 /* Search for desc->dir_cookie from the beginning of the page cache */
723 static inline
readdir_search_pagecache(nfs_readdir_descriptor_t * desc)724 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
725 {
726 	int res;
727 
728 	if (desc->page_index == 0) {
729 		desc->current_index = 0;
730 		desc->last_cookie = 0;
731 	}
732 	do {
733 		res = find_cache_page(desc);
734 	} while (res == -EAGAIN);
735 	return res;
736 }
737 
738 /*
739  * Once we've found the start of the dirent within a page: fill 'er up...
740  */
741 static
nfs_do_filldir(nfs_readdir_descriptor_t * desc)742 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
743 {
744 	struct file	*file = desc->file;
745 	int i = 0;
746 	int res = 0;
747 	struct nfs_cache_array *array = NULL;
748 	struct nfs_open_dir_context *ctx = file->private_data;
749 
750 	array = kmap(desc->page);
751 	for (i = desc->cache_entry_index; i < array->size; i++) {
752 		struct nfs_cache_array_entry *ent;
753 
754 		ent = &array->array[i];
755 		if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
756 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
757 			desc->eof = true;
758 			break;
759 		}
760 		desc->ctx->pos++;
761 		if (i < (array->size-1))
762 			*desc->dir_cookie = array->array[i+1].cookie;
763 		else
764 			*desc->dir_cookie = array->last_cookie;
765 		if (ctx->duped != 0)
766 			ctx->duped = 1;
767 	}
768 	if (array->eof_index >= 0)
769 		desc->eof = true;
770 
771 	kunmap(desc->page);
772 	cache_page_release(desc);
773 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
774 			(unsigned long long)*desc->dir_cookie, res);
775 	return res;
776 }
777 
778 /*
779  * If we cannot find a cookie in our cache, we suspect that this is
780  * because it points to a deleted file, so we ask the server to return
781  * whatever it thinks is the next entry. We then feed this to filldir.
782  * If all goes well, we should then be able to find our way round the
783  * cache on the next call to readdir_search_pagecache();
784  *
785  * NOTE: we cannot add the anonymous page to the pagecache because
786  *	 the data it contains might not be page aligned. Besides,
787  *	 we should already have a complete representation of the
788  *	 directory in the page cache by the time we get here.
789  */
790 static inline
uncached_readdir(nfs_readdir_descriptor_t * desc)791 int uncached_readdir(nfs_readdir_descriptor_t *desc)
792 {
793 	struct page	*page = NULL;
794 	int		status;
795 	struct inode *inode = file_inode(desc->file);
796 	struct nfs_open_dir_context *ctx = desc->file->private_data;
797 
798 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
799 			(unsigned long long)*desc->dir_cookie);
800 
801 	page = alloc_page(GFP_HIGHUSER);
802 	if (!page) {
803 		status = -ENOMEM;
804 		goto out;
805 	}
806 
807 	desc->page_index = 0;
808 	desc->last_cookie = *desc->dir_cookie;
809 	desc->page = page;
810 	ctx->duped = 0;
811 
812 	status = nfs_readdir_xdr_to_array(desc, page, inode);
813 	if (status < 0)
814 		goto out_release;
815 
816 	status = nfs_do_filldir(desc);
817 
818  out:
819 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
820 			__func__, status);
821 	return status;
822  out_release:
823 	cache_page_release(desc);
824 	goto out;
825 }
826 
827 /* The file offset position represents the dirent entry number.  A
828    last cookie cache takes care of the common case of reading the
829    whole directory.
830  */
nfs_readdir(struct file * file,struct dir_context * ctx)831 static int nfs_readdir(struct file *file, struct dir_context *ctx)
832 {
833 	struct dentry	*dentry = file_dentry(file);
834 	struct inode	*inode = d_inode(dentry);
835 	nfs_readdir_descriptor_t my_desc,
836 			*desc = &my_desc;
837 	struct nfs_open_dir_context *dir_ctx = file->private_data;
838 	int res = 0;
839 
840 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
841 			file, (long long)ctx->pos);
842 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
843 
844 	/*
845 	 * ctx->pos points to the dirent entry number.
846 	 * *desc->dir_cookie has the cookie for the next entry. We have
847 	 * to either find the entry with the appropriate number or
848 	 * revalidate the cookie.
849 	 */
850 	memset(desc, 0, sizeof(*desc));
851 
852 	desc->file = file;
853 	desc->ctx = ctx;
854 	desc->dir_cookie = &dir_ctx->dir_cookie;
855 	desc->decode = NFS_PROTO(inode)->decode_dirent;
856 	desc->plus = nfs_use_readdirplus(inode, ctx);
857 
858 	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
859 		res = nfs_revalidate_mapping(inode, file->f_mapping);
860 	if (res < 0)
861 		goto out;
862 
863 	do {
864 		res = readdir_search_pagecache(desc);
865 
866 		if (res == -EBADCOOKIE) {
867 			res = 0;
868 			/* This means either end of directory */
869 			if (*desc->dir_cookie && !desc->eof) {
870 				/* Or that the server has 'lost' a cookie */
871 				res = uncached_readdir(desc);
872 				if (res == 0)
873 					continue;
874 			}
875 			break;
876 		}
877 		if (res == -ETOOSMALL && desc->plus) {
878 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
879 			nfs_zap_caches(inode);
880 			desc->page_index = 0;
881 			desc->plus = false;
882 			desc->eof = false;
883 			continue;
884 		}
885 		if (res < 0)
886 			break;
887 
888 		res = nfs_do_filldir(desc);
889 		if (res < 0)
890 			break;
891 	} while (!desc->eof);
892 out:
893 	if (res > 0)
894 		res = 0;
895 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
896 	return res;
897 }
898 
nfs_llseek_dir(struct file * filp,loff_t offset,int whence)899 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
900 {
901 	struct inode *inode = file_inode(filp);
902 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
903 
904 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
905 			filp, offset, whence);
906 
907 	switch (whence) {
908 	default:
909 		return -EINVAL;
910 	case SEEK_SET:
911 		if (offset < 0)
912 			return -EINVAL;
913 		inode_lock(inode);
914 		break;
915 	case SEEK_CUR:
916 		if (offset == 0)
917 			return filp->f_pos;
918 		inode_lock(inode);
919 		offset += filp->f_pos;
920 		if (offset < 0) {
921 			inode_unlock(inode);
922 			return -EINVAL;
923 		}
924 	}
925 	if (offset != filp->f_pos) {
926 		filp->f_pos = offset;
927 		dir_ctx->dir_cookie = 0;
928 		dir_ctx->duped = 0;
929 	}
930 	inode_unlock(inode);
931 	return offset;
932 }
933 
934 /*
935  * All directory operations under NFS are synchronous, so fsync()
936  * is a dummy operation.
937  */
nfs_fsync_dir(struct file * filp,loff_t start,loff_t end,int datasync)938 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
939 			 int datasync)
940 {
941 	struct inode *inode = file_inode(filp);
942 
943 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
944 
945 	inode_lock(inode);
946 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
947 	inode_unlock(inode);
948 	return 0;
949 }
950 
951 /**
952  * nfs_force_lookup_revalidate - Mark the directory as having changed
953  * @dir - pointer to directory inode
954  *
955  * This forces the revalidation code in nfs_lookup_revalidate() to do a
956  * full lookup on all child dentries of 'dir' whenever a change occurs
957  * on the server that might have invalidated our dcache.
958  *
959  * The caller should be holding dir->i_lock
960  */
nfs_force_lookup_revalidate(struct inode * dir)961 void nfs_force_lookup_revalidate(struct inode *dir)
962 {
963 	NFS_I(dir)->cache_change_attribute++;
964 }
965 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
966 
967 /*
968  * A check for whether or not the parent directory has changed.
969  * In the case it has, we assume that the dentries are untrustworthy
970  * and may need to be looked up again.
971  * If rcu_walk prevents us from performing a full check, return 0.
972  */
nfs_check_verifier(struct inode * dir,struct dentry * dentry,int rcu_walk)973 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
974 			      int rcu_walk)
975 {
976 	if (IS_ROOT(dentry))
977 		return 1;
978 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
979 		return 0;
980 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
981 		return 0;
982 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
983 	if (nfs_mapping_need_revalidate_inode(dir)) {
984 		if (rcu_walk)
985 			return 0;
986 		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
987 			return 0;
988 	}
989 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
990 		return 0;
991 	return 1;
992 }
993 
994 /*
995  * Use intent information to check whether or not we're going to do
996  * an O_EXCL create using this path component.
997  */
nfs_is_exclusive_create(struct inode * dir,unsigned int flags)998 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
999 {
1000 	if (NFS_PROTO(dir)->version == 2)
1001 		return 0;
1002 	return flags & LOOKUP_EXCL;
1003 }
1004 
1005 /*
1006  * Inode and filehandle revalidation for lookups.
1007  *
1008  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1009  * or if the intent information indicates that we're about to open this
1010  * particular file and the "nocto" mount flag is not set.
1011  *
1012  */
1013 static
nfs_lookup_verify_inode(struct inode * inode,unsigned int flags)1014 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1015 {
1016 	struct nfs_server *server = NFS_SERVER(inode);
1017 	int ret;
1018 
1019 	if (IS_AUTOMOUNT(inode))
1020 		return 0;
1021 
1022 	if (flags & LOOKUP_OPEN) {
1023 		switch (inode->i_mode & S_IFMT) {
1024 		case S_IFREG:
1025 			/* A NFSv4 OPEN will revalidate later */
1026 			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1027 				goto out;
1028 			/* Fallthrough */
1029 		case S_IFDIR:
1030 			if (server->flags & NFS_MOUNT_NOCTO)
1031 				break;
1032 			/* NFS close-to-open cache consistency validation */
1033 			goto out_force;
1034 		}
1035 	}
1036 
1037 	/* VFS wants an on-the-wire revalidation */
1038 	if (flags & LOOKUP_REVAL)
1039 		goto out_force;
1040 out:
1041 	return (inode->i_nlink == 0) ? -ESTALE : 0;
1042 out_force:
1043 	if (flags & LOOKUP_RCU)
1044 		return -ECHILD;
1045 	ret = __nfs_revalidate_inode(server, inode);
1046 	if (ret != 0)
1047 		return ret;
1048 	goto out;
1049 }
1050 
1051 /*
1052  * We judge how long we want to trust negative
1053  * dentries by looking at the parent inode mtime.
1054  *
1055  * If parent mtime has changed, we revalidate, else we wait for a
1056  * period corresponding to the parent's attribute cache timeout value.
1057  *
1058  * If LOOKUP_RCU prevents us from performing a full check, return 1
1059  * suggesting a reval is needed.
1060  *
1061  * Note that when creating a new file, or looking up a rename target,
1062  * then it shouldn't be necessary to revalidate a negative dentry.
1063  */
1064 static inline
nfs_neg_need_reval(struct inode * dir,struct dentry * dentry,unsigned int flags)1065 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1066 		       unsigned int flags)
1067 {
1068 	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1069 		return 0;
1070 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1071 		return 1;
1072 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1073 }
1074 
1075 /*
1076  * This is called every time the dcache has a lookup hit,
1077  * and we should check whether we can really trust that
1078  * lookup.
1079  *
1080  * NOTE! The hit can be a negative hit too, don't assume
1081  * we have an inode!
1082  *
1083  * If the parent directory is seen to have changed, we throw out the
1084  * cached dentry and do a new lookup.
1085  */
nfs_lookup_revalidate(struct dentry * dentry,unsigned int flags)1086 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1087 {
1088 	struct inode *dir;
1089 	struct inode *inode;
1090 	struct dentry *parent;
1091 	struct nfs_fh *fhandle = NULL;
1092 	struct nfs_fattr *fattr = NULL;
1093 	struct nfs4_label *label = NULL;
1094 	int error;
1095 
1096 	if (flags & LOOKUP_RCU) {
1097 		parent = READ_ONCE(dentry->d_parent);
1098 		dir = d_inode_rcu(parent);
1099 		if (!dir)
1100 			return -ECHILD;
1101 	} else {
1102 		parent = dget_parent(dentry);
1103 		dir = d_inode(parent);
1104 	}
1105 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1106 	inode = d_inode(dentry);
1107 
1108 	if (!inode) {
1109 		if (nfs_neg_need_reval(dir, dentry, flags)) {
1110 			if (flags & LOOKUP_RCU)
1111 				return -ECHILD;
1112 			goto out_bad;
1113 		}
1114 		goto out_valid;
1115 	}
1116 
1117 	if (is_bad_inode(inode)) {
1118 		if (flags & LOOKUP_RCU)
1119 			return -ECHILD;
1120 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1121 				__func__, dentry);
1122 		goto out_bad;
1123 	}
1124 
1125 	if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1126 		goto out_set_verifier;
1127 
1128 	/* Force a full look up iff the parent directory has changed */
1129 	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1130 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1131 		error = nfs_lookup_verify_inode(inode, flags);
1132 		if (error) {
1133 			if (flags & LOOKUP_RCU)
1134 				return -ECHILD;
1135 			if (error == -ESTALE)
1136 				goto out_zap_parent;
1137 			goto out_error;
1138 		}
1139 		nfs_advise_use_readdirplus(dir);
1140 		goto out_valid;
1141 	}
1142 
1143 	if (flags & LOOKUP_RCU)
1144 		return -ECHILD;
1145 
1146 	if (NFS_STALE(inode))
1147 		goto out_bad;
1148 
1149 	error = -ENOMEM;
1150 	fhandle = nfs_alloc_fhandle();
1151 	fattr = nfs_alloc_fattr();
1152 	if (fhandle == NULL || fattr == NULL)
1153 		goto out_error;
1154 
1155 	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1156 	if (IS_ERR(label))
1157 		goto out_error;
1158 
1159 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1160 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1161 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1162 	if (error == -ESTALE || error == -ENOENT)
1163 		goto out_bad;
1164 	if (error)
1165 		goto out_error;
1166 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1167 		goto out_bad;
1168 	if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1169 		goto out_bad;
1170 
1171 	nfs_setsecurity(inode, fattr, label);
1172 
1173 	nfs_free_fattr(fattr);
1174 	nfs_free_fhandle(fhandle);
1175 	nfs4_label_free(label);
1176 
1177 	/* set a readdirplus hint that we had a cache miss */
1178 	nfs_force_use_readdirplus(dir);
1179 
1180 out_set_verifier:
1181 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1182  out_valid:
1183 	if (flags & LOOKUP_RCU) {
1184 		if (parent != READ_ONCE(dentry->d_parent))
1185 			return -ECHILD;
1186 	} else
1187 		dput(parent);
1188 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1189 			__func__, dentry);
1190 	return 1;
1191 out_zap_parent:
1192 	nfs_zap_caches(dir);
1193  out_bad:
1194 	WARN_ON(flags & LOOKUP_RCU);
1195 	nfs_free_fattr(fattr);
1196 	nfs_free_fhandle(fhandle);
1197 	nfs4_label_free(label);
1198 	nfs_mark_for_revalidate(dir);
1199 	if (inode && S_ISDIR(inode->i_mode)) {
1200 		/* Purge readdir caches. */
1201 		nfs_zap_caches(inode);
1202 		/*
1203 		 * We can't d_drop the root of a disconnected tree:
1204 		 * its d_hash is on the s_anon list and d_drop() would hide
1205 		 * it from shrink_dcache_for_unmount(), leading to busy
1206 		 * inodes on unmount and further oopses.
1207 		 */
1208 		if (IS_ROOT(dentry))
1209 			goto out_valid;
1210 	}
1211 	dput(parent);
1212 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1213 			__func__, dentry);
1214 	return 0;
1215 out_error:
1216 	WARN_ON(flags & LOOKUP_RCU);
1217 	nfs_free_fattr(fattr);
1218 	nfs_free_fhandle(fhandle);
1219 	nfs4_label_free(label);
1220 	dput(parent);
1221 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1222 			__func__, dentry, error);
1223 	return error;
1224 }
1225 
1226 /*
1227  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1228  * when we don't really care about the dentry name. This is called when a
1229  * pathwalk ends on a dentry that was not found via a normal lookup in the
1230  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1231  *
1232  * In this situation, we just want to verify that the inode itself is OK
1233  * since the dentry might have changed on the server.
1234  */
nfs_weak_revalidate(struct dentry * dentry,unsigned int flags)1235 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1236 {
1237 	struct inode *inode = d_inode(dentry);
1238 	int error = 0;
1239 
1240 	/*
1241 	 * I believe we can only get a negative dentry here in the case of a
1242 	 * procfs-style symlink. Just assume it's correct for now, but we may
1243 	 * eventually need to do something more here.
1244 	 */
1245 	if (!inode) {
1246 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1247 				__func__, dentry);
1248 		return 1;
1249 	}
1250 
1251 	if (is_bad_inode(inode)) {
1252 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1253 				__func__, dentry);
1254 		return 0;
1255 	}
1256 
1257 	error = nfs_lookup_verify_inode(inode, flags);
1258 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1259 			__func__, inode->i_ino, error ? "invalid" : "valid");
1260 	return !error;
1261 }
1262 
1263 /*
1264  * This is called from dput() when d_count is going to 0.
1265  */
nfs_dentry_delete(const struct dentry * dentry)1266 static int nfs_dentry_delete(const struct dentry *dentry)
1267 {
1268 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1269 		dentry, dentry->d_flags);
1270 
1271 	/* Unhash any dentry with a stale inode */
1272 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1273 		return 1;
1274 
1275 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1276 		/* Unhash it, so that ->d_iput() would be called */
1277 		return 1;
1278 	}
1279 	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1280 		/* Unhash it, so that ancestors of killed async unlink
1281 		 * files will be cleaned up during umount */
1282 		return 1;
1283 	}
1284 	return 0;
1285 
1286 }
1287 
1288 /* Ensure that we revalidate inode->i_nlink */
nfs_drop_nlink(struct inode * inode)1289 static void nfs_drop_nlink(struct inode *inode)
1290 {
1291 	spin_lock(&inode->i_lock);
1292 	/* drop the inode if we're reasonably sure this is the last link */
1293 	if (inode->i_nlink > 0)
1294 		drop_nlink(inode);
1295 	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1296 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE
1297 		| NFS_INO_INVALID_CTIME
1298 		| NFS_INO_INVALID_OTHER
1299 		| NFS_INO_REVAL_FORCED;
1300 	spin_unlock(&inode->i_lock);
1301 }
1302 
1303 /*
1304  * Called when the dentry loses inode.
1305  * We use it to clean up silly-renamed files.
1306  */
nfs_dentry_iput(struct dentry * dentry,struct inode * inode)1307 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1308 {
1309 	if (S_ISDIR(inode->i_mode))
1310 		/* drop any readdir cache as it could easily be old */
1311 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1312 
1313 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1314 		nfs_complete_unlink(dentry, inode);
1315 		nfs_drop_nlink(inode);
1316 	}
1317 	iput(inode);
1318 }
1319 
nfs_d_release(struct dentry * dentry)1320 static void nfs_d_release(struct dentry *dentry)
1321 {
1322 	/* free cached devname value, if it survived that far */
1323 	if (unlikely(dentry->d_fsdata)) {
1324 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1325 			WARN_ON(1);
1326 		else
1327 			kfree(dentry->d_fsdata);
1328 	}
1329 }
1330 
1331 const struct dentry_operations nfs_dentry_operations = {
1332 	.d_revalidate	= nfs_lookup_revalidate,
1333 	.d_weak_revalidate	= nfs_weak_revalidate,
1334 	.d_delete	= nfs_dentry_delete,
1335 	.d_iput		= nfs_dentry_iput,
1336 	.d_automount	= nfs_d_automount,
1337 	.d_release	= nfs_d_release,
1338 };
1339 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1340 
nfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1341 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1342 {
1343 	struct dentry *res;
1344 	struct inode *inode = NULL;
1345 	struct nfs_fh *fhandle = NULL;
1346 	struct nfs_fattr *fattr = NULL;
1347 	struct nfs4_label *label = NULL;
1348 	int error;
1349 
1350 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1351 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1352 
1353 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1354 		return ERR_PTR(-ENAMETOOLONG);
1355 
1356 	/*
1357 	 * If we're doing an exclusive create, optimize away the lookup
1358 	 * but don't hash the dentry.
1359 	 */
1360 	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1361 		return NULL;
1362 
1363 	res = ERR_PTR(-ENOMEM);
1364 	fhandle = nfs_alloc_fhandle();
1365 	fattr = nfs_alloc_fattr();
1366 	if (fhandle == NULL || fattr == NULL)
1367 		goto out;
1368 
1369 	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1370 	if (IS_ERR(label))
1371 		goto out;
1372 
1373 	trace_nfs_lookup_enter(dir, dentry, flags);
1374 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1375 	if (error == -ENOENT)
1376 		goto no_entry;
1377 	if (error < 0) {
1378 		res = ERR_PTR(error);
1379 		goto out_label;
1380 	}
1381 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1382 	res = ERR_CAST(inode);
1383 	if (IS_ERR(res))
1384 		goto out_label;
1385 
1386 	/* Notify readdir to use READDIRPLUS */
1387 	nfs_force_use_readdirplus(dir);
1388 
1389 no_entry:
1390 	res = d_splice_alias(inode, dentry);
1391 	if (res != NULL) {
1392 		if (IS_ERR(res))
1393 			goto out_label;
1394 		dentry = res;
1395 	}
1396 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1397 out_label:
1398 	trace_nfs_lookup_exit(dir, dentry, flags, error);
1399 	nfs4_label_free(label);
1400 out:
1401 	nfs_free_fattr(fattr);
1402 	nfs_free_fhandle(fhandle);
1403 	return res;
1404 }
1405 EXPORT_SYMBOL_GPL(nfs_lookup);
1406 
1407 #if IS_ENABLED(CONFIG_NFS_V4)
1408 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1409 
1410 const struct dentry_operations nfs4_dentry_operations = {
1411 	.d_revalidate	= nfs4_lookup_revalidate,
1412 	.d_weak_revalidate	= nfs_weak_revalidate,
1413 	.d_delete	= nfs_dentry_delete,
1414 	.d_iput		= nfs_dentry_iput,
1415 	.d_automount	= nfs_d_automount,
1416 	.d_release	= nfs_d_release,
1417 };
1418 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1419 
flags_to_mode(int flags)1420 static fmode_t flags_to_mode(int flags)
1421 {
1422 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1423 	if ((flags & O_ACCMODE) != O_WRONLY)
1424 		res |= FMODE_READ;
1425 	if ((flags & O_ACCMODE) != O_RDONLY)
1426 		res |= FMODE_WRITE;
1427 	return res;
1428 }
1429 
create_nfs_open_context(struct dentry * dentry,int open_flags,struct file * filp)1430 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1431 {
1432 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1433 }
1434 
do_open(struct inode * inode,struct file * filp)1435 static int do_open(struct inode *inode, struct file *filp)
1436 {
1437 	nfs_fscache_open_file(inode, filp);
1438 	return 0;
1439 }
1440 
nfs_finish_open(struct nfs_open_context * ctx,struct dentry * dentry,struct file * file,unsigned open_flags)1441 static int nfs_finish_open(struct nfs_open_context *ctx,
1442 			   struct dentry *dentry,
1443 			   struct file *file, unsigned open_flags)
1444 {
1445 	int err;
1446 
1447 	err = finish_open(file, dentry, do_open);
1448 	if (err)
1449 		goto out;
1450 	if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1451 		nfs_file_set_open_context(file, ctx);
1452 	else
1453 		err = -ESTALE;
1454 out:
1455 	return err;
1456 }
1457 
nfs_atomic_open(struct inode * dir,struct dentry * dentry,struct file * file,unsigned open_flags,umode_t mode)1458 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1459 		    struct file *file, unsigned open_flags,
1460 		    umode_t mode)
1461 {
1462 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1463 	struct nfs_open_context *ctx;
1464 	struct dentry *res;
1465 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1466 	struct inode *inode;
1467 	unsigned int lookup_flags = 0;
1468 	bool switched = false;
1469 	int created = 0;
1470 	int err;
1471 
1472 	/* Expect a negative dentry */
1473 	BUG_ON(d_inode(dentry));
1474 
1475 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1476 			dir->i_sb->s_id, dir->i_ino, dentry);
1477 
1478 	err = nfs_check_flags(open_flags);
1479 	if (err)
1480 		return err;
1481 
1482 	/* NFS only supports OPEN on regular files */
1483 	if ((open_flags & O_DIRECTORY)) {
1484 		if (!d_in_lookup(dentry)) {
1485 			/*
1486 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1487 			 * revalidated and is fine, no need to perform lookup
1488 			 * again
1489 			 */
1490 			return -ENOENT;
1491 		}
1492 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1493 		goto no_open;
1494 	}
1495 
1496 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1497 		return -ENAMETOOLONG;
1498 
1499 	if (open_flags & O_CREAT) {
1500 		struct nfs_server *server = NFS_SERVER(dir);
1501 
1502 		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1503 			mode &= ~current_umask();
1504 
1505 		attr.ia_valid |= ATTR_MODE;
1506 		attr.ia_mode = mode;
1507 	}
1508 	if (open_flags & O_TRUNC) {
1509 		attr.ia_valid |= ATTR_SIZE;
1510 		attr.ia_size = 0;
1511 	}
1512 
1513 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1514 		d_drop(dentry);
1515 		switched = true;
1516 		dentry = d_alloc_parallel(dentry->d_parent,
1517 					  &dentry->d_name, &wq);
1518 		if (IS_ERR(dentry))
1519 			return PTR_ERR(dentry);
1520 		if (unlikely(!d_in_lookup(dentry)))
1521 			return finish_no_open(file, dentry);
1522 	}
1523 
1524 	ctx = create_nfs_open_context(dentry, open_flags, file);
1525 	err = PTR_ERR(ctx);
1526 	if (IS_ERR(ctx))
1527 		goto out;
1528 
1529 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1530 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1531 	if (created)
1532 		file->f_mode |= FMODE_CREATED;
1533 	if (IS_ERR(inode)) {
1534 		err = PTR_ERR(inode);
1535 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1536 		put_nfs_open_context(ctx);
1537 		d_drop(dentry);
1538 		switch (err) {
1539 		case -ENOENT:
1540 			d_splice_alias(NULL, dentry);
1541 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1542 			break;
1543 		case -EISDIR:
1544 		case -ENOTDIR:
1545 			goto no_open;
1546 		case -ELOOP:
1547 			if (!(open_flags & O_NOFOLLOW))
1548 				goto no_open;
1549 			break;
1550 			/* case -EINVAL: */
1551 		default:
1552 			break;
1553 		}
1554 		goto out;
1555 	}
1556 
1557 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1558 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1559 	put_nfs_open_context(ctx);
1560 out:
1561 	if (unlikely(switched)) {
1562 		d_lookup_done(dentry);
1563 		dput(dentry);
1564 	}
1565 	return err;
1566 
1567 no_open:
1568 	res = nfs_lookup(dir, dentry, lookup_flags);
1569 	if (switched) {
1570 		d_lookup_done(dentry);
1571 		if (!res)
1572 			res = dentry;
1573 		else
1574 			dput(dentry);
1575 	}
1576 	if (IS_ERR(res))
1577 		return PTR_ERR(res);
1578 	return finish_no_open(file, res);
1579 }
1580 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1581 
nfs4_lookup_revalidate(struct dentry * dentry,unsigned int flags)1582 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1583 {
1584 	struct inode *inode;
1585 	int ret = 0;
1586 
1587 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1588 		goto no_open;
1589 	if (d_mountpoint(dentry))
1590 		goto no_open;
1591 	if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1592 		goto no_open;
1593 
1594 	inode = d_inode(dentry);
1595 
1596 	/* We can't create new files in nfs_open_revalidate(), so we
1597 	 * optimize away revalidation of negative dentries.
1598 	 */
1599 	if (inode == NULL) {
1600 		struct dentry *parent;
1601 		struct inode *dir;
1602 
1603 		if (flags & LOOKUP_RCU) {
1604 			parent = READ_ONCE(dentry->d_parent);
1605 			dir = d_inode_rcu(parent);
1606 			if (!dir)
1607 				return -ECHILD;
1608 		} else {
1609 			parent = dget_parent(dentry);
1610 			dir = d_inode(parent);
1611 		}
1612 		if (!nfs_neg_need_reval(dir, dentry, flags))
1613 			ret = 1;
1614 		else if (flags & LOOKUP_RCU)
1615 			ret = -ECHILD;
1616 		if (!(flags & LOOKUP_RCU))
1617 			dput(parent);
1618 		else if (parent != READ_ONCE(dentry->d_parent))
1619 			return -ECHILD;
1620 		goto out;
1621 	}
1622 
1623 	/* NFS only supports OPEN on regular files */
1624 	if (!S_ISREG(inode->i_mode))
1625 		goto no_open;
1626 	/* We cannot do exclusive creation on a positive dentry */
1627 	if (flags & LOOKUP_EXCL)
1628 		goto no_open;
1629 
1630 	/* Let f_op->open() actually open (and revalidate) the file */
1631 	ret = 1;
1632 
1633 out:
1634 	return ret;
1635 
1636 no_open:
1637 	return nfs_lookup_revalidate(dentry, flags);
1638 }
1639 
1640 #endif /* CONFIG_NFSV4 */
1641 
1642 /*
1643  * Code common to create, mkdir, and mknod.
1644  */
nfs_instantiate(struct dentry * dentry,struct nfs_fh * fhandle,struct nfs_fattr * fattr,struct nfs4_label * label)1645 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1646 				struct nfs_fattr *fattr,
1647 				struct nfs4_label *label)
1648 {
1649 	struct dentry *parent = dget_parent(dentry);
1650 	struct inode *dir = d_inode(parent);
1651 	struct inode *inode;
1652 	struct dentry *d;
1653 	int error = -EACCES;
1654 
1655 	d_drop(dentry);
1656 
1657 	/* We may have been initialized further down */
1658 	if (d_really_is_positive(dentry))
1659 		goto out;
1660 	if (fhandle->size == 0) {
1661 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1662 		if (error)
1663 			goto out_error;
1664 	}
1665 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1666 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1667 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1668 		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
1669 				fattr, NULL, NULL);
1670 		if (error < 0)
1671 			goto out_error;
1672 	}
1673 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1674 	d = d_splice_alias(inode, dentry);
1675 	if (IS_ERR(d)) {
1676 		error = PTR_ERR(d);
1677 		goto out_error;
1678 	}
1679 	dput(d);
1680 out:
1681 	dput(parent);
1682 	return 0;
1683 out_error:
1684 	nfs_mark_for_revalidate(dir);
1685 	dput(parent);
1686 	return error;
1687 }
1688 EXPORT_SYMBOL_GPL(nfs_instantiate);
1689 
1690 /*
1691  * Following a failed create operation, we drop the dentry rather
1692  * than retain a negative dentry. This avoids a problem in the event
1693  * that the operation succeeded on the server, but an error in the
1694  * reply path made it appear to have failed.
1695  */
nfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)1696 int nfs_create(struct inode *dir, struct dentry *dentry,
1697 		umode_t mode, bool excl)
1698 {
1699 	struct iattr attr;
1700 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1701 	int error;
1702 
1703 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1704 			dir->i_sb->s_id, dir->i_ino, dentry);
1705 
1706 	attr.ia_mode = mode;
1707 	attr.ia_valid = ATTR_MODE;
1708 
1709 	trace_nfs_create_enter(dir, dentry, open_flags);
1710 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1711 	trace_nfs_create_exit(dir, dentry, open_flags, error);
1712 	if (error != 0)
1713 		goto out_err;
1714 	return 0;
1715 out_err:
1716 	d_drop(dentry);
1717 	return error;
1718 }
1719 EXPORT_SYMBOL_GPL(nfs_create);
1720 
1721 /*
1722  * See comments for nfs_proc_create regarding failed operations.
1723  */
1724 int
nfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)1725 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1726 {
1727 	struct iattr attr;
1728 	int status;
1729 
1730 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1731 			dir->i_sb->s_id, dir->i_ino, dentry);
1732 
1733 	attr.ia_mode = mode;
1734 	attr.ia_valid = ATTR_MODE;
1735 
1736 	trace_nfs_mknod_enter(dir, dentry);
1737 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1738 	trace_nfs_mknod_exit(dir, dentry, status);
1739 	if (status != 0)
1740 		goto out_err;
1741 	return 0;
1742 out_err:
1743 	d_drop(dentry);
1744 	return status;
1745 }
1746 EXPORT_SYMBOL_GPL(nfs_mknod);
1747 
1748 /*
1749  * See comments for nfs_proc_create regarding failed operations.
1750  */
nfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)1751 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1752 {
1753 	struct iattr attr;
1754 	int error;
1755 
1756 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1757 			dir->i_sb->s_id, dir->i_ino, dentry);
1758 
1759 	attr.ia_valid = ATTR_MODE;
1760 	attr.ia_mode = mode | S_IFDIR;
1761 
1762 	trace_nfs_mkdir_enter(dir, dentry);
1763 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1764 	trace_nfs_mkdir_exit(dir, dentry, error);
1765 	if (error != 0)
1766 		goto out_err;
1767 	return 0;
1768 out_err:
1769 	d_drop(dentry);
1770 	return error;
1771 }
1772 EXPORT_SYMBOL_GPL(nfs_mkdir);
1773 
nfs_dentry_handle_enoent(struct dentry * dentry)1774 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1775 {
1776 	if (simple_positive(dentry))
1777 		d_delete(dentry);
1778 }
1779 
nfs_rmdir(struct inode * dir,struct dentry * dentry)1780 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1781 {
1782 	int error;
1783 
1784 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1785 			dir->i_sb->s_id, dir->i_ino, dentry);
1786 
1787 	trace_nfs_rmdir_enter(dir, dentry);
1788 	if (d_really_is_positive(dentry)) {
1789 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1790 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1791 		/* Ensure the VFS deletes this inode */
1792 		switch (error) {
1793 		case 0:
1794 			clear_nlink(d_inode(dentry));
1795 			break;
1796 		case -ENOENT:
1797 			nfs_dentry_handle_enoent(dentry);
1798 		}
1799 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1800 	} else
1801 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1802 	trace_nfs_rmdir_exit(dir, dentry, error);
1803 
1804 	return error;
1805 }
1806 EXPORT_SYMBOL_GPL(nfs_rmdir);
1807 
1808 /*
1809  * Remove a file after making sure there are no pending writes,
1810  * and after checking that the file has only one user.
1811  *
1812  * We invalidate the attribute cache and free the inode prior to the operation
1813  * to avoid possible races if the server reuses the inode.
1814  */
nfs_safe_remove(struct dentry * dentry)1815 static int nfs_safe_remove(struct dentry *dentry)
1816 {
1817 	struct inode *dir = d_inode(dentry->d_parent);
1818 	struct inode *inode = d_inode(dentry);
1819 	int error = -EBUSY;
1820 
1821 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1822 
1823 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1824 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1825 		error = 0;
1826 		goto out;
1827 	}
1828 
1829 	trace_nfs_remove_enter(dir, dentry);
1830 	if (inode != NULL) {
1831 		error = NFS_PROTO(dir)->remove(dir, dentry);
1832 		if (error == 0)
1833 			nfs_drop_nlink(inode);
1834 	} else
1835 		error = NFS_PROTO(dir)->remove(dir, dentry);
1836 	if (error == -ENOENT)
1837 		nfs_dentry_handle_enoent(dentry);
1838 	trace_nfs_remove_exit(dir, dentry, error);
1839 out:
1840 	return error;
1841 }
1842 
1843 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1844  *  belongs to an active ".nfs..." file and we return -EBUSY.
1845  *
1846  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1847  */
nfs_unlink(struct inode * dir,struct dentry * dentry)1848 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1849 {
1850 	int error;
1851 	int need_rehash = 0;
1852 
1853 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1854 		dir->i_ino, dentry);
1855 
1856 	trace_nfs_unlink_enter(dir, dentry);
1857 	spin_lock(&dentry->d_lock);
1858 	if (d_count(dentry) > 1) {
1859 		spin_unlock(&dentry->d_lock);
1860 		/* Start asynchronous writeout of the inode */
1861 		write_inode_now(d_inode(dentry), 0);
1862 		error = nfs_sillyrename(dir, dentry);
1863 		goto out;
1864 	}
1865 	if (!d_unhashed(dentry)) {
1866 		__d_drop(dentry);
1867 		need_rehash = 1;
1868 	}
1869 	spin_unlock(&dentry->d_lock);
1870 	error = nfs_safe_remove(dentry);
1871 	if (!error || error == -ENOENT) {
1872 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1873 	} else if (need_rehash)
1874 		d_rehash(dentry);
1875 out:
1876 	trace_nfs_unlink_exit(dir, dentry, error);
1877 	return error;
1878 }
1879 EXPORT_SYMBOL_GPL(nfs_unlink);
1880 
1881 /*
1882  * To create a symbolic link, most file systems instantiate a new inode,
1883  * add a page to it containing the path, then write it out to the disk
1884  * using prepare_write/commit_write.
1885  *
1886  * Unfortunately the NFS client can't create the in-core inode first
1887  * because it needs a file handle to create an in-core inode (see
1888  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1889  * symlink request has completed on the server.
1890  *
1891  * So instead we allocate a raw page, copy the symname into it, then do
1892  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1893  * now have a new file handle and can instantiate an in-core NFS inode
1894  * and move the raw page into its mapping.
1895  */
nfs_symlink(struct inode * dir,struct dentry * dentry,const char * symname)1896 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1897 {
1898 	struct page *page;
1899 	char *kaddr;
1900 	struct iattr attr;
1901 	unsigned int pathlen = strlen(symname);
1902 	int error;
1903 
1904 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1905 		dir->i_ino, dentry, symname);
1906 
1907 	if (pathlen > PAGE_SIZE)
1908 		return -ENAMETOOLONG;
1909 
1910 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1911 	attr.ia_valid = ATTR_MODE;
1912 
1913 	page = alloc_page(GFP_USER);
1914 	if (!page)
1915 		return -ENOMEM;
1916 
1917 	kaddr = page_address(page);
1918 	memcpy(kaddr, symname, pathlen);
1919 	if (pathlen < PAGE_SIZE)
1920 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1921 
1922 	trace_nfs_symlink_enter(dir, dentry);
1923 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1924 	trace_nfs_symlink_exit(dir, dentry, error);
1925 	if (error != 0) {
1926 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1927 			dir->i_sb->s_id, dir->i_ino,
1928 			dentry, symname, error);
1929 		d_drop(dentry);
1930 		__free_page(page);
1931 		return error;
1932 	}
1933 
1934 	/*
1935 	 * No big deal if we can't add this page to the page cache here.
1936 	 * READLINK will get the missing page from the server if needed.
1937 	 */
1938 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
1939 							GFP_KERNEL)) {
1940 		SetPageUptodate(page);
1941 		unlock_page(page);
1942 		/*
1943 		 * add_to_page_cache_lru() grabs an extra page refcount.
1944 		 * Drop it here to avoid leaking this page later.
1945 		 */
1946 		put_page(page);
1947 	} else
1948 		__free_page(page);
1949 
1950 	return 0;
1951 }
1952 EXPORT_SYMBOL_GPL(nfs_symlink);
1953 
1954 int
nfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)1955 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1956 {
1957 	struct inode *inode = d_inode(old_dentry);
1958 	int error;
1959 
1960 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1961 		old_dentry, dentry);
1962 
1963 	trace_nfs_link_enter(inode, dir, dentry);
1964 	d_drop(dentry);
1965 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1966 	if (error == 0) {
1967 		ihold(inode);
1968 		d_add(dentry, inode);
1969 	}
1970 	trace_nfs_link_exit(inode, dir, dentry, error);
1971 	return error;
1972 }
1973 EXPORT_SYMBOL_GPL(nfs_link);
1974 
1975 /*
1976  * RENAME
1977  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1978  * different file handle for the same inode after a rename (e.g. when
1979  * moving to a different directory). A fail-safe method to do so would
1980  * be to look up old_dir/old_name, create a link to new_dir/new_name and
1981  * rename the old file using the sillyrename stuff. This way, the original
1982  * file in old_dir will go away when the last process iput()s the inode.
1983  *
1984  * FIXED.
1985  *
1986  * It actually works quite well. One needs to have the possibility for
1987  * at least one ".nfs..." file in each directory the file ever gets
1988  * moved or linked to which happens automagically with the new
1989  * implementation that only depends on the dcache stuff instead of
1990  * using the inode layer
1991  *
1992  * Unfortunately, things are a little more complicated than indicated
1993  * above. For a cross-directory move, we want to make sure we can get
1994  * rid of the old inode after the operation.  This means there must be
1995  * no pending writes (if it's a file), and the use count must be 1.
1996  * If these conditions are met, we can drop the dentries before doing
1997  * the rename.
1998  */
nfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)1999 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2000 	       struct inode *new_dir, struct dentry *new_dentry,
2001 	       unsigned int flags)
2002 {
2003 	struct inode *old_inode = d_inode(old_dentry);
2004 	struct inode *new_inode = d_inode(new_dentry);
2005 	struct dentry *dentry = NULL, *rehash = NULL;
2006 	struct rpc_task *task;
2007 	int error = -EBUSY;
2008 
2009 	if (flags)
2010 		return -EINVAL;
2011 
2012 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2013 		 old_dentry, new_dentry,
2014 		 d_count(new_dentry));
2015 
2016 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2017 	/*
2018 	 * For non-directories, check whether the target is busy and if so,
2019 	 * make a copy of the dentry and then do a silly-rename. If the
2020 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2021 	 * the new target.
2022 	 */
2023 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2024 		/*
2025 		 * To prevent any new references to the target during the
2026 		 * rename, we unhash the dentry in advance.
2027 		 */
2028 		if (!d_unhashed(new_dentry)) {
2029 			d_drop(new_dentry);
2030 			rehash = new_dentry;
2031 		}
2032 
2033 		if (d_count(new_dentry) > 2) {
2034 			int err;
2035 
2036 			/* copy the target dentry's name */
2037 			dentry = d_alloc(new_dentry->d_parent,
2038 					 &new_dentry->d_name);
2039 			if (!dentry)
2040 				goto out;
2041 
2042 			/* silly-rename the existing target ... */
2043 			err = nfs_sillyrename(new_dir, new_dentry);
2044 			if (err)
2045 				goto out;
2046 
2047 			new_dentry = dentry;
2048 			rehash = NULL;
2049 			new_inode = NULL;
2050 		}
2051 	}
2052 
2053 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2054 	if (IS_ERR(task)) {
2055 		error = PTR_ERR(task);
2056 		goto out;
2057 	}
2058 
2059 	error = rpc_wait_for_completion_task(task);
2060 	if (error != 0) {
2061 		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2062 		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2063 		smp_wmb();
2064 	} else
2065 		error = task->tk_status;
2066 	rpc_put_task(task);
2067 	/* Ensure the inode attributes are revalidated */
2068 	if (error == 0) {
2069 		spin_lock(&old_inode->i_lock);
2070 		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2071 		NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE
2072 			| NFS_INO_INVALID_CTIME
2073 			| NFS_INO_REVAL_FORCED;
2074 		spin_unlock(&old_inode->i_lock);
2075 	}
2076 out:
2077 	if (rehash)
2078 		d_rehash(rehash);
2079 	trace_nfs_rename_exit(old_dir, old_dentry,
2080 			new_dir, new_dentry, error);
2081 	if (!error) {
2082 		if (new_inode != NULL)
2083 			nfs_drop_nlink(new_inode);
2084 		/*
2085 		 * The d_move() should be here instead of in an async RPC completion
2086 		 * handler because we need the proper locks to move the dentry.  If
2087 		 * we're interrupted by a signal, the async RPC completion handler
2088 		 * should mark the directories for revalidation.
2089 		 */
2090 		d_move(old_dentry, new_dentry);
2091 		nfs_set_verifier(old_dentry,
2092 					nfs_save_change_attribute(new_dir));
2093 	} else if (error == -ENOENT)
2094 		nfs_dentry_handle_enoent(old_dentry);
2095 
2096 	/* new dentry created? */
2097 	if (dentry)
2098 		dput(dentry);
2099 	return error;
2100 }
2101 EXPORT_SYMBOL_GPL(nfs_rename);
2102 
2103 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2104 static LIST_HEAD(nfs_access_lru_list);
2105 static atomic_long_t nfs_access_nr_entries;
2106 
2107 static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2108 module_param(nfs_access_max_cachesize, ulong, 0644);
2109 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2110 
nfs_access_free_entry(struct nfs_access_entry * entry)2111 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2112 {
2113 	put_rpccred(entry->cred);
2114 	kfree_rcu(entry, rcu_head);
2115 	smp_mb__before_atomic();
2116 	atomic_long_dec(&nfs_access_nr_entries);
2117 	smp_mb__after_atomic();
2118 }
2119 
nfs_access_free_list(struct list_head * head)2120 static void nfs_access_free_list(struct list_head *head)
2121 {
2122 	struct nfs_access_entry *cache;
2123 
2124 	while (!list_empty(head)) {
2125 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2126 		list_del(&cache->lru);
2127 		nfs_access_free_entry(cache);
2128 	}
2129 }
2130 
2131 static unsigned long
nfs_do_access_cache_scan(unsigned int nr_to_scan)2132 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2133 {
2134 	LIST_HEAD(head);
2135 	struct nfs_inode *nfsi, *next;
2136 	struct nfs_access_entry *cache;
2137 	long freed = 0;
2138 
2139 	spin_lock(&nfs_access_lru_lock);
2140 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2141 		struct inode *inode;
2142 
2143 		if (nr_to_scan-- == 0)
2144 			break;
2145 		inode = &nfsi->vfs_inode;
2146 		spin_lock(&inode->i_lock);
2147 		if (list_empty(&nfsi->access_cache_entry_lru))
2148 			goto remove_lru_entry;
2149 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2150 				struct nfs_access_entry, lru);
2151 		list_move(&cache->lru, &head);
2152 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2153 		freed++;
2154 		if (!list_empty(&nfsi->access_cache_entry_lru))
2155 			list_move_tail(&nfsi->access_cache_inode_lru,
2156 					&nfs_access_lru_list);
2157 		else {
2158 remove_lru_entry:
2159 			list_del_init(&nfsi->access_cache_inode_lru);
2160 			smp_mb__before_atomic();
2161 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2162 			smp_mb__after_atomic();
2163 		}
2164 		spin_unlock(&inode->i_lock);
2165 	}
2166 	spin_unlock(&nfs_access_lru_lock);
2167 	nfs_access_free_list(&head);
2168 	return freed;
2169 }
2170 
2171 unsigned long
nfs_access_cache_scan(struct shrinker * shrink,struct shrink_control * sc)2172 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2173 {
2174 	int nr_to_scan = sc->nr_to_scan;
2175 	gfp_t gfp_mask = sc->gfp_mask;
2176 
2177 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2178 		return SHRINK_STOP;
2179 	return nfs_do_access_cache_scan(nr_to_scan);
2180 }
2181 
2182 
2183 unsigned long
nfs_access_cache_count(struct shrinker * shrink,struct shrink_control * sc)2184 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2185 {
2186 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2187 }
2188 
2189 static void
nfs_access_cache_enforce_limit(void)2190 nfs_access_cache_enforce_limit(void)
2191 {
2192 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2193 	unsigned long diff;
2194 	unsigned int nr_to_scan;
2195 
2196 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2197 		return;
2198 	nr_to_scan = 100;
2199 	diff = nr_entries - nfs_access_max_cachesize;
2200 	if (diff < nr_to_scan)
2201 		nr_to_scan = diff;
2202 	nfs_do_access_cache_scan(nr_to_scan);
2203 }
2204 
__nfs_access_zap_cache(struct nfs_inode * nfsi,struct list_head * head)2205 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2206 {
2207 	struct rb_root *root_node = &nfsi->access_cache;
2208 	struct rb_node *n;
2209 	struct nfs_access_entry *entry;
2210 
2211 	/* Unhook entries from the cache */
2212 	while ((n = rb_first(root_node)) != NULL) {
2213 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2214 		rb_erase(n, root_node);
2215 		list_move(&entry->lru, head);
2216 	}
2217 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2218 }
2219 
nfs_access_zap_cache(struct inode * inode)2220 void nfs_access_zap_cache(struct inode *inode)
2221 {
2222 	LIST_HEAD(head);
2223 
2224 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2225 		return;
2226 	/* Remove from global LRU init */
2227 	spin_lock(&nfs_access_lru_lock);
2228 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2229 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2230 
2231 	spin_lock(&inode->i_lock);
2232 	__nfs_access_zap_cache(NFS_I(inode), &head);
2233 	spin_unlock(&inode->i_lock);
2234 	spin_unlock(&nfs_access_lru_lock);
2235 	nfs_access_free_list(&head);
2236 }
2237 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2238 
nfs_access_search_rbtree(struct inode * inode,struct rpc_cred * cred)2239 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2240 {
2241 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2242 	struct nfs_access_entry *entry;
2243 
2244 	while (n != NULL) {
2245 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2246 
2247 		if (cred < entry->cred)
2248 			n = n->rb_left;
2249 		else if (cred > entry->cred)
2250 			n = n->rb_right;
2251 		else
2252 			return entry;
2253 	}
2254 	return NULL;
2255 }
2256 
nfs_access_get_cached(struct inode * inode,struct rpc_cred * cred,struct nfs_access_entry * res,bool may_block)2257 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res, bool may_block)
2258 {
2259 	struct nfs_inode *nfsi = NFS_I(inode);
2260 	struct nfs_access_entry *cache;
2261 	bool retry = true;
2262 	int err;
2263 
2264 	spin_lock(&inode->i_lock);
2265 	for(;;) {
2266 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2267 			goto out_zap;
2268 		cache = nfs_access_search_rbtree(inode, cred);
2269 		err = -ENOENT;
2270 		if (cache == NULL)
2271 			goto out;
2272 		/* Found an entry, is our attribute cache valid? */
2273 		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2274 			break;
2275 		err = -ECHILD;
2276 		if (!may_block)
2277 			goto out;
2278 		if (!retry)
2279 			goto out_zap;
2280 		spin_unlock(&inode->i_lock);
2281 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2282 		if (err)
2283 			return err;
2284 		spin_lock(&inode->i_lock);
2285 		retry = false;
2286 	}
2287 	res->cred = cache->cred;
2288 	res->mask = cache->mask;
2289 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2290 	err = 0;
2291 out:
2292 	spin_unlock(&inode->i_lock);
2293 	return err;
2294 out_zap:
2295 	spin_unlock(&inode->i_lock);
2296 	nfs_access_zap_cache(inode);
2297 	return -ENOENT;
2298 }
2299 
nfs_access_get_cached_rcu(struct inode * inode,struct rpc_cred * cred,struct nfs_access_entry * res)2300 static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2301 {
2302 	/* Only check the most recently returned cache entry,
2303 	 * but do it without locking.
2304 	 */
2305 	struct nfs_inode *nfsi = NFS_I(inode);
2306 	struct nfs_access_entry *cache;
2307 	int err = -ECHILD;
2308 	struct list_head *lh;
2309 
2310 	rcu_read_lock();
2311 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2312 		goto out;
2313 	lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2314 	cache = list_entry(lh, struct nfs_access_entry, lru);
2315 	if (lh == &nfsi->access_cache_entry_lru ||
2316 	    cred != cache->cred)
2317 		cache = NULL;
2318 	if (cache == NULL)
2319 		goto out;
2320 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2321 		goto out;
2322 	res->cred = cache->cred;
2323 	res->mask = cache->mask;
2324 	err = 0;
2325 out:
2326 	rcu_read_unlock();
2327 	return err;
2328 }
2329 
nfs_access_add_rbtree(struct inode * inode,struct nfs_access_entry * set)2330 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2331 {
2332 	struct nfs_inode *nfsi = NFS_I(inode);
2333 	struct rb_root *root_node = &nfsi->access_cache;
2334 	struct rb_node **p = &root_node->rb_node;
2335 	struct rb_node *parent = NULL;
2336 	struct nfs_access_entry *entry;
2337 
2338 	spin_lock(&inode->i_lock);
2339 	while (*p != NULL) {
2340 		parent = *p;
2341 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2342 
2343 		if (set->cred < entry->cred)
2344 			p = &parent->rb_left;
2345 		else if (set->cred > entry->cred)
2346 			p = &parent->rb_right;
2347 		else
2348 			goto found;
2349 	}
2350 	rb_link_node(&set->rb_node, parent, p);
2351 	rb_insert_color(&set->rb_node, root_node);
2352 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2353 	spin_unlock(&inode->i_lock);
2354 	return;
2355 found:
2356 	rb_replace_node(parent, &set->rb_node, root_node);
2357 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2358 	list_del(&entry->lru);
2359 	spin_unlock(&inode->i_lock);
2360 	nfs_access_free_entry(entry);
2361 }
2362 
nfs_access_add_cache(struct inode * inode,struct nfs_access_entry * set)2363 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2364 {
2365 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2366 	if (cache == NULL)
2367 		return;
2368 	RB_CLEAR_NODE(&cache->rb_node);
2369 	cache->cred = get_rpccred(set->cred);
2370 	cache->mask = set->mask;
2371 
2372 	/* The above field assignments must be visible
2373 	 * before this item appears on the lru.  We cannot easily
2374 	 * use rcu_assign_pointer, so just force the memory barrier.
2375 	 */
2376 	smp_wmb();
2377 	nfs_access_add_rbtree(inode, cache);
2378 
2379 	/* Update accounting */
2380 	smp_mb__before_atomic();
2381 	atomic_long_inc(&nfs_access_nr_entries);
2382 	smp_mb__after_atomic();
2383 
2384 	/* Add inode to global LRU list */
2385 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2386 		spin_lock(&nfs_access_lru_lock);
2387 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2388 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2389 					&nfs_access_lru_list);
2390 		spin_unlock(&nfs_access_lru_lock);
2391 	}
2392 	nfs_access_cache_enforce_limit();
2393 }
2394 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2395 
2396 #define NFS_MAY_READ (NFS_ACCESS_READ)
2397 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2398 		NFS_ACCESS_EXTEND | \
2399 		NFS_ACCESS_DELETE)
2400 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2401 		NFS_ACCESS_EXTEND)
2402 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2403 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2404 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2405 static int
nfs_access_calc_mask(u32 access_result,umode_t umode)2406 nfs_access_calc_mask(u32 access_result, umode_t umode)
2407 {
2408 	int mask = 0;
2409 
2410 	if (access_result & NFS_MAY_READ)
2411 		mask |= MAY_READ;
2412 	if (S_ISDIR(umode)) {
2413 		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2414 			mask |= MAY_WRITE;
2415 		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2416 			mask |= MAY_EXEC;
2417 	} else if (S_ISREG(umode)) {
2418 		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2419 			mask |= MAY_WRITE;
2420 		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2421 			mask |= MAY_EXEC;
2422 	} else if (access_result & NFS_MAY_WRITE)
2423 			mask |= MAY_WRITE;
2424 	return mask;
2425 }
2426 
nfs_access_set_mask(struct nfs_access_entry * entry,u32 access_result)2427 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2428 {
2429 	entry->mask = access_result;
2430 }
2431 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2432 
nfs_do_access(struct inode * inode,struct rpc_cred * cred,int mask)2433 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2434 {
2435 	struct nfs_access_entry cache;
2436 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2437 	int cache_mask;
2438 	int status;
2439 
2440 	trace_nfs_access_enter(inode);
2441 
2442 	status = nfs_access_get_cached_rcu(inode, cred, &cache);
2443 	if (status != 0)
2444 		status = nfs_access_get_cached(inode, cred, &cache, may_block);
2445 	if (status == 0)
2446 		goto out_cached;
2447 
2448 	status = -ECHILD;
2449 	if (!may_block)
2450 		goto out;
2451 
2452 	/*
2453 	 * Determine which access bits we want to ask for...
2454 	 */
2455 	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2456 	if (S_ISDIR(inode->i_mode))
2457 		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2458 	else
2459 		cache.mask |= NFS_ACCESS_EXECUTE;
2460 	cache.cred = cred;
2461 	status = NFS_PROTO(inode)->access(inode, &cache);
2462 	if (status != 0) {
2463 		if (status == -ESTALE) {
2464 			nfs_zap_caches(inode);
2465 			if (!S_ISDIR(inode->i_mode))
2466 				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2467 		}
2468 		goto out;
2469 	}
2470 	nfs_access_add_cache(inode, &cache);
2471 out_cached:
2472 	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2473 	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2474 		status = -EACCES;
2475 out:
2476 	trace_nfs_access_exit(inode, status);
2477 	return status;
2478 }
2479 
nfs_open_permission_mask(int openflags)2480 static int nfs_open_permission_mask(int openflags)
2481 {
2482 	int mask = 0;
2483 
2484 	if (openflags & __FMODE_EXEC) {
2485 		/* ONLY check exec rights */
2486 		mask = MAY_EXEC;
2487 	} else {
2488 		if ((openflags & O_ACCMODE) != O_WRONLY)
2489 			mask |= MAY_READ;
2490 		if ((openflags & O_ACCMODE) != O_RDONLY)
2491 			mask |= MAY_WRITE;
2492 	}
2493 
2494 	return mask;
2495 }
2496 
nfs_may_open(struct inode * inode,struct rpc_cred * cred,int openflags)2497 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2498 {
2499 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2500 }
2501 EXPORT_SYMBOL_GPL(nfs_may_open);
2502 
nfs_execute_ok(struct inode * inode,int mask)2503 static int nfs_execute_ok(struct inode *inode, int mask)
2504 {
2505 	struct nfs_server *server = NFS_SERVER(inode);
2506 	int ret = 0;
2507 
2508 	if (S_ISDIR(inode->i_mode))
2509 		return 0;
2510 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) {
2511 		if (mask & MAY_NOT_BLOCK)
2512 			return -ECHILD;
2513 		ret = __nfs_revalidate_inode(server, inode);
2514 	}
2515 	if (ret == 0 && !execute_ok(inode))
2516 		ret = -EACCES;
2517 	return ret;
2518 }
2519 
nfs_permission(struct inode * inode,int mask)2520 int nfs_permission(struct inode *inode, int mask)
2521 {
2522 	struct rpc_cred *cred;
2523 	int res = 0;
2524 
2525 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2526 
2527 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2528 		goto out;
2529 	/* Is this sys_access() ? */
2530 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2531 		goto force_lookup;
2532 
2533 	switch (inode->i_mode & S_IFMT) {
2534 		case S_IFLNK:
2535 			goto out;
2536 		case S_IFREG:
2537 			if ((mask & MAY_OPEN) &&
2538 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2539 				return 0;
2540 			break;
2541 		case S_IFDIR:
2542 			/*
2543 			 * Optimize away all write operations, since the server
2544 			 * will check permissions when we perform the op.
2545 			 */
2546 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2547 				goto out;
2548 	}
2549 
2550 force_lookup:
2551 	if (!NFS_PROTO(inode)->access)
2552 		goto out_notsup;
2553 
2554 	/* Always try fast lookups first */
2555 	rcu_read_lock();
2556 	cred = rpc_lookup_cred_nonblock();
2557 	if (!IS_ERR(cred))
2558 		res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2559 	else
2560 		res = PTR_ERR(cred);
2561 	rcu_read_unlock();
2562 	if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2563 		/* Fast lookup failed, try the slow way */
2564 		cred = rpc_lookup_cred();
2565 		if (!IS_ERR(cred)) {
2566 			res = nfs_do_access(inode, cred, mask);
2567 			put_rpccred(cred);
2568 		} else
2569 			res = PTR_ERR(cred);
2570 	}
2571 out:
2572 	if (!res && (mask & MAY_EXEC))
2573 		res = nfs_execute_ok(inode, mask);
2574 
2575 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2576 		inode->i_sb->s_id, inode->i_ino, mask, res);
2577 	return res;
2578 out_notsup:
2579 	if (mask & MAY_NOT_BLOCK)
2580 		return -ECHILD;
2581 
2582 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2583 	if (res == 0)
2584 		res = generic_permission(inode, mask);
2585 	goto out;
2586 }
2587 EXPORT_SYMBOL_GPL(nfs_permission);
2588 
2589 /*
2590  * Local variables:
2591  *  version-control: t
2592  *  kept-new-versions: 5
2593  * End:
2594  */
2595