1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
2 /* Copyright (C) 2015-2019 Netronome Systems, Inc. */
3
4 #include <linux/bpf_trace.h>
5 #include <linux/netdevice.h>
6 #include <linux/bitfield.h>
7
8 #include "../nfp_app.h"
9 #include "../nfp_net.h"
10 #include "../nfp_net_dp.h"
11 #include "../nfp_net_xsk.h"
12 #include "../crypto/crypto.h"
13 #include "../crypto/fw.h"
14 #include "nfd3.h"
15
16 /* Transmit processing
17 *
18 * One queue controller peripheral queue is used for transmit. The
19 * driver en-queues packets for transmit by advancing the write
20 * pointer. The device indicates that packets have transmitted by
21 * advancing the read pointer. The driver maintains a local copy of
22 * the read and write pointer in @struct nfp_net_tx_ring. The driver
23 * keeps @wr_p in sync with the queue controller write pointer and can
24 * determine how many packets have been transmitted by comparing its
25 * copy of the read pointer @rd_p with the read pointer maintained by
26 * the queue controller peripheral.
27 */
28
29 /* Wrappers for deciding when to stop and restart TX queues */
nfp_nfd3_tx_ring_should_wake(struct nfp_net_tx_ring * tx_ring)30 static int nfp_nfd3_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring)
31 {
32 return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4);
33 }
34
nfp_nfd3_tx_ring_should_stop(struct nfp_net_tx_ring * tx_ring)35 static int nfp_nfd3_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring)
36 {
37 return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1);
38 }
39
40 /**
41 * nfp_nfd3_tx_ring_stop() - stop tx ring
42 * @nd_q: netdev queue
43 * @tx_ring: driver tx queue structure
44 *
45 * Safely stop TX ring. Remember that while we are running .start_xmit()
46 * someone else may be cleaning the TX ring completions so we need to be
47 * extra careful here.
48 */
49 static void
nfp_nfd3_tx_ring_stop(struct netdev_queue * nd_q,struct nfp_net_tx_ring * tx_ring)50 nfp_nfd3_tx_ring_stop(struct netdev_queue *nd_q,
51 struct nfp_net_tx_ring *tx_ring)
52 {
53 netif_tx_stop_queue(nd_q);
54
55 /* We can race with the TX completion out of NAPI so recheck */
56 smp_mb();
57 if (unlikely(nfp_nfd3_tx_ring_should_wake(tx_ring)))
58 netif_tx_start_queue(nd_q);
59 }
60
61 /**
62 * nfp_nfd3_tx_tso() - Set up Tx descriptor for LSO
63 * @r_vec: per-ring structure
64 * @txbuf: Pointer to driver soft TX descriptor
65 * @txd: Pointer to HW TX descriptor
66 * @skb: Pointer to SKB
67 * @md_bytes: Prepend length
68 *
69 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs.
70 * Return error on packet header greater than maximum supported LSO header size.
71 */
72 static void
nfp_nfd3_tx_tso(struct nfp_net_r_vector * r_vec,struct nfp_nfd3_tx_buf * txbuf,struct nfp_nfd3_tx_desc * txd,struct sk_buff * skb,u32 md_bytes)73 nfp_nfd3_tx_tso(struct nfp_net_r_vector *r_vec, struct nfp_nfd3_tx_buf *txbuf,
74 struct nfp_nfd3_tx_desc *txd, struct sk_buff *skb, u32 md_bytes)
75 {
76 u32 l3_offset, l4_offset, hdrlen;
77 u16 mss;
78
79 if (!skb_is_gso(skb))
80 return;
81
82 if (!skb->encapsulation) {
83 l3_offset = skb_network_offset(skb);
84 l4_offset = skb_transport_offset(skb);
85 hdrlen = skb_tcp_all_headers(skb);
86 } else {
87 l3_offset = skb_inner_network_offset(skb);
88 l4_offset = skb_inner_transport_offset(skb);
89 hdrlen = skb_inner_tcp_all_headers(skb);
90 }
91
92 txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs;
93 txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1);
94
95 mss = skb_shinfo(skb)->gso_size & NFD3_DESC_TX_MSS_MASK;
96 txd->l3_offset = l3_offset - md_bytes;
97 txd->l4_offset = l4_offset - md_bytes;
98 txd->lso_hdrlen = hdrlen - md_bytes;
99 txd->mss = cpu_to_le16(mss);
100 txd->flags |= NFD3_DESC_TX_LSO;
101
102 u64_stats_update_begin(&r_vec->tx_sync);
103 r_vec->tx_lso++;
104 u64_stats_update_end(&r_vec->tx_sync);
105 }
106
107 /**
108 * nfp_nfd3_tx_csum() - Set TX CSUM offload flags in TX descriptor
109 * @dp: NFP Net data path struct
110 * @r_vec: per-ring structure
111 * @txbuf: Pointer to driver soft TX descriptor
112 * @txd: Pointer to TX descriptor
113 * @skb: Pointer to SKB
114 *
115 * This function sets the TX checksum flags in the TX descriptor based
116 * on the configuration and the protocol of the packet to be transmitted.
117 */
118 static void
nfp_nfd3_tx_csum(struct nfp_net_dp * dp,struct nfp_net_r_vector * r_vec,struct nfp_nfd3_tx_buf * txbuf,struct nfp_nfd3_tx_desc * txd,struct sk_buff * skb)119 nfp_nfd3_tx_csum(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
120 struct nfp_nfd3_tx_buf *txbuf, struct nfp_nfd3_tx_desc *txd,
121 struct sk_buff *skb)
122 {
123 struct ipv6hdr *ipv6h;
124 struct iphdr *iph;
125 u8 l4_hdr;
126
127 if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM))
128 return;
129
130 if (skb->ip_summed != CHECKSUM_PARTIAL)
131 return;
132
133 txd->flags |= NFD3_DESC_TX_CSUM;
134 if (skb->encapsulation)
135 txd->flags |= NFD3_DESC_TX_ENCAP;
136
137 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
138 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
139
140 if (iph->version == 4) {
141 txd->flags |= NFD3_DESC_TX_IP4_CSUM;
142 l4_hdr = iph->protocol;
143 } else if (ipv6h->version == 6) {
144 l4_hdr = ipv6h->nexthdr;
145 } else {
146 nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version);
147 return;
148 }
149
150 switch (l4_hdr) {
151 case IPPROTO_TCP:
152 txd->flags |= NFD3_DESC_TX_TCP_CSUM;
153 break;
154 case IPPROTO_UDP:
155 txd->flags |= NFD3_DESC_TX_UDP_CSUM;
156 break;
157 default:
158 nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr);
159 return;
160 }
161
162 u64_stats_update_begin(&r_vec->tx_sync);
163 if (skb->encapsulation)
164 r_vec->hw_csum_tx_inner += txbuf->pkt_cnt;
165 else
166 r_vec->hw_csum_tx += txbuf->pkt_cnt;
167 u64_stats_update_end(&r_vec->tx_sync);
168 }
169
nfp_nfd3_prep_tx_meta(struct nfp_net_dp * dp,struct sk_buff * skb,u64 tls_handle)170 static int nfp_nfd3_prep_tx_meta(struct nfp_net_dp *dp, struct sk_buff *skb, u64 tls_handle)
171 {
172 struct metadata_dst *md_dst = skb_metadata_dst(skb);
173 unsigned char *data;
174 bool vlan_insert;
175 u32 meta_id = 0;
176 int md_bytes;
177
178 if (unlikely(md_dst || tls_handle)) {
179 if (unlikely(md_dst && md_dst->type != METADATA_HW_PORT_MUX))
180 md_dst = NULL;
181 }
182
183 vlan_insert = skb_vlan_tag_present(skb) && (dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN_V2);
184
185 if (!(md_dst || tls_handle || vlan_insert))
186 return 0;
187
188 md_bytes = sizeof(meta_id) +
189 !!md_dst * NFP_NET_META_PORTID_SIZE +
190 !!tls_handle * NFP_NET_META_CONN_HANDLE_SIZE +
191 vlan_insert * NFP_NET_META_VLAN_SIZE;
192
193 if (unlikely(skb_cow_head(skb, md_bytes)))
194 return -ENOMEM;
195
196 data = skb_push(skb, md_bytes) + md_bytes;
197 if (md_dst) {
198 data -= NFP_NET_META_PORTID_SIZE;
199 put_unaligned_be32(md_dst->u.port_info.port_id, data);
200 meta_id = NFP_NET_META_PORTID;
201 }
202 if (tls_handle) {
203 /* conn handle is opaque, we just use u64 to be able to quickly
204 * compare it to zero
205 */
206 data -= NFP_NET_META_CONN_HANDLE_SIZE;
207 memcpy(data, &tls_handle, sizeof(tls_handle));
208 meta_id <<= NFP_NET_META_FIELD_SIZE;
209 meta_id |= NFP_NET_META_CONN_HANDLE;
210 }
211 if (vlan_insert) {
212 data -= NFP_NET_META_VLAN_SIZE;
213 /* data type of skb->vlan_proto is __be16
214 * so it fills metadata without calling put_unaligned_be16
215 */
216 memcpy(data, &skb->vlan_proto, sizeof(skb->vlan_proto));
217 put_unaligned_be16(skb_vlan_tag_get(skb), data + sizeof(skb->vlan_proto));
218 meta_id <<= NFP_NET_META_FIELD_SIZE;
219 meta_id |= NFP_NET_META_VLAN;
220 }
221
222 data -= sizeof(meta_id);
223 put_unaligned_be32(meta_id, data);
224
225 return md_bytes;
226 }
227
228 /**
229 * nfp_nfd3_tx() - Main transmit entry point
230 * @skb: SKB to transmit
231 * @netdev: netdev structure
232 *
233 * Return: NETDEV_TX_OK on success.
234 */
nfp_nfd3_tx(struct sk_buff * skb,struct net_device * netdev)235 netdev_tx_t nfp_nfd3_tx(struct sk_buff *skb, struct net_device *netdev)
236 {
237 struct nfp_net *nn = netdev_priv(netdev);
238 int f, nr_frags, wr_idx, md_bytes;
239 struct nfp_net_tx_ring *tx_ring;
240 struct nfp_net_r_vector *r_vec;
241 struct nfp_nfd3_tx_buf *txbuf;
242 struct nfp_nfd3_tx_desc *txd;
243 struct netdev_queue *nd_q;
244 const skb_frag_t *frag;
245 struct nfp_net_dp *dp;
246 dma_addr_t dma_addr;
247 unsigned int fsize;
248 u64 tls_handle = 0;
249 u16 qidx;
250
251 dp = &nn->dp;
252 qidx = skb_get_queue_mapping(skb);
253 tx_ring = &dp->tx_rings[qidx];
254 r_vec = tx_ring->r_vec;
255
256 nr_frags = skb_shinfo(skb)->nr_frags;
257
258 if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) {
259 nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n",
260 qidx, tx_ring->wr_p, tx_ring->rd_p);
261 nd_q = netdev_get_tx_queue(dp->netdev, qidx);
262 netif_tx_stop_queue(nd_q);
263 nfp_net_tx_xmit_more_flush(tx_ring);
264 u64_stats_update_begin(&r_vec->tx_sync);
265 r_vec->tx_busy++;
266 u64_stats_update_end(&r_vec->tx_sync);
267 return NETDEV_TX_BUSY;
268 }
269
270 skb = nfp_net_tls_tx(dp, r_vec, skb, &tls_handle, &nr_frags);
271 if (unlikely(!skb)) {
272 nfp_net_tx_xmit_more_flush(tx_ring);
273 return NETDEV_TX_OK;
274 }
275
276 md_bytes = nfp_nfd3_prep_tx_meta(dp, skb, tls_handle);
277 if (unlikely(md_bytes < 0))
278 goto err_flush;
279
280 /* Start with the head skbuf */
281 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
282 DMA_TO_DEVICE);
283 if (dma_mapping_error(dp->dev, dma_addr))
284 goto err_dma_err;
285
286 wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
287
288 /* Stash the soft descriptor of the head then initialize it */
289 txbuf = &tx_ring->txbufs[wr_idx];
290 txbuf->skb = skb;
291 txbuf->dma_addr = dma_addr;
292 txbuf->fidx = -1;
293 txbuf->pkt_cnt = 1;
294 txbuf->real_len = skb->len;
295
296 /* Build TX descriptor */
297 txd = &tx_ring->txds[wr_idx];
298 txd->offset_eop = (nr_frags ? 0 : NFD3_DESC_TX_EOP) | md_bytes;
299 txd->dma_len = cpu_to_le16(skb_headlen(skb));
300 nfp_desc_set_dma_addr_40b(txd, dma_addr);
301 txd->data_len = cpu_to_le16(skb->len);
302
303 txd->flags = 0;
304 txd->mss = 0;
305 txd->lso_hdrlen = 0;
306
307 /* Do not reorder - tso may adjust pkt cnt, vlan may override fields */
308 nfp_nfd3_tx_tso(r_vec, txbuf, txd, skb, md_bytes);
309 nfp_nfd3_tx_csum(dp, r_vec, txbuf, txd, skb);
310 if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) {
311 txd->flags |= NFD3_DESC_TX_VLAN;
312 txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
313 }
314
315 /* Gather DMA */
316 if (nr_frags > 0) {
317 __le64 second_half;
318
319 /* all descs must match except for in addr, length and eop */
320 second_half = txd->vals8[1];
321
322 for (f = 0; f < nr_frags; f++) {
323 frag = &skb_shinfo(skb)->frags[f];
324 fsize = skb_frag_size(frag);
325
326 dma_addr = skb_frag_dma_map(dp->dev, frag, 0,
327 fsize, DMA_TO_DEVICE);
328 if (dma_mapping_error(dp->dev, dma_addr))
329 goto err_unmap;
330
331 wr_idx = D_IDX(tx_ring, wr_idx + 1);
332 tx_ring->txbufs[wr_idx].skb = skb;
333 tx_ring->txbufs[wr_idx].dma_addr = dma_addr;
334 tx_ring->txbufs[wr_idx].fidx = f;
335
336 txd = &tx_ring->txds[wr_idx];
337 txd->dma_len = cpu_to_le16(fsize);
338 nfp_desc_set_dma_addr_40b(txd, dma_addr);
339 txd->offset_eop = md_bytes |
340 ((f == nr_frags - 1) ? NFD3_DESC_TX_EOP : 0);
341 txd->vals8[1] = second_half;
342 }
343
344 u64_stats_update_begin(&r_vec->tx_sync);
345 r_vec->tx_gather++;
346 u64_stats_update_end(&r_vec->tx_sync);
347 }
348
349 skb_tx_timestamp(skb);
350
351 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
352
353 tx_ring->wr_p += nr_frags + 1;
354 if (nfp_nfd3_tx_ring_should_stop(tx_ring))
355 nfp_nfd3_tx_ring_stop(nd_q, tx_ring);
356
357 tx_ring->wr_ptr_add += nr_frags + 1;
358 if (__netdev_tx_sent_queue(nd_q, txbuf->real_len, netdev_xmit_more()))
359 nfp_net_tx_xmit_more_flush(tx_ring);
360
361 return NETDEV_TX_OK;
362
363 err_unmap:
364 while (--f >= 0) {
365 frag = &skb_shinfo(skb)->frags[f];
366 dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
367 skb_frag_size(frag), DMA_TO_DEVICE);
368 tx_ring->txbufs[wr_idx].skb = NULL;
369 tx_ring->txbufs[wr_idx].dma_addr = 0;
370 tx_ring->txbufs[wr_idx].fidx = -2;
371 wr_idx = wr_idx - 1;
372 if (wr_idx < 0)
373 wr_idx += tx_ring->cnt;
374 }
375 dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
376 skb_headlen(skb), DMA_TO_DEVICE);
377 tx_ring->txbufs[wr_idx].skb = NULL;
378 tx_ring->txbufs[wr_idx].dma_addr = 0;
379 tx_ring->txbufs[wr_idx].fidx = -2;
380 err_dma_err:
381 nn_dp_warn(dp, "Failed to map DMA TX buffer\n");
382 err_flush:
383 nfp_net_tx_xmit_more_flush(tx_ring);
384 u64_stats_update_begin(&r_vec->tx_sync);
385 r_vec->tx_errors++;
386 u64_stats_update_end(&r_vec->tx_sync);
387 nfp_net_tls_tx_undo(skb, tls_handle);
388 dev_kfree_skb_any(skb);
389 return NETDEV_TX_OK;
390 }
391
392 /**
393 * nfp_nfd3_tx_complete() - Handled completed TX packets
394 * @tx_ring: TX ring structure
395 * @budget: NAPI budget (only used as bool to determine if in NAPI context)
396 */
nfp_nfd3_tx_complete(struct nfp_net_tx_ring * tx_ring,int budget)397 void nfp_nfd3_tx_complete(struct nfp_net_tx_ring *tx_ring, int budget)
398 {
399 struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
400 struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
401 u32 done_pkts = 0, done_bytes = 0;
402 struct netdev_queue *nd_q;
403 u32 qcp_rd_p;
404 int todo;
405
406 if (tx_ring->wr_p == tx_ring->rd_p)
407 return;
408
409 /* Work out how many descriptors have been transmitted */
410 qcp_rd_p = nfp_net_read_tx_cmpl(tx_ring, dp);
411
412 if (qcp_rd_p == tx_ring->qcp_rd_p)
413 return;
414
415 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
416
417 while (todo--) {
418 const skb_frag_t *frag;
419 struct nfp_nfd3_tx_buf *tx_buf;
420 struct sk_buff *skb;
421 int fidx, nr_frags;
422 int idx;
423
424 idx = D_IDX(tx_ring, tx_ring->rd_p++);
425 tx_buf = &tx_ring->txbufs[idx];
426
427 skb = tx_buf->skb;
428 if (!skb)
429 continue;
430
431 nr_frags = skb_shinfo(skb)->nr_frags;
432 fidx = tx_buf->fidx;
433
434 if (fidx == -1) {
435 /* unmap head */
436 dma_unmap_single(dp->dev, tx_buf->dma_addr,
437 skb_headlen(skb), DMA_TO_DEVICE);
438
439 done_pkts += tx_buf->pkt_cnt;
440 done_bytes += tx_buf->real_len;
441 } else {
442 /* unmap fragment */
443 frag = &skb_shinfo(skb)->frags[fidx];
444 dma_unmap_page(dp->dev, tx_buf->dma_addr,
445 skb_frag_size(frag), DMA_TO_DEVICE);
446 }
447
448 /* check for last gather fragment */
449 if (fidx == nr_frags - 1)
450 napi_consume_skb(skb, budget);
451
452 tx_buf->dma_addr = 0;
453 tx_buf->skb = NULL;
454 tx_buf->fidx = -2;
455 }
456
457 tx_ring->qcp_rd_p = qcp_rd_p;
458
459 u64_stats_update_begin(&r_vec->tx_sync);
460 r_vec->tx_bytes += done_bytes;
461 r_vec->tx_pkts += done_pkts;
462 u64_stats_update_end(&r_vec->tx_sync);
463
464 if (!dp->netdev)
465 return;
466
467 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
468 netdev_tx_completed_queue(nd_q, done_pkts, done_bytes);
469 if (nfp_nfd3_tx_ring_should_wake(tx_ring)) {
470 /* Make sure TX thread will see updated tx_ring->rd_p */
471 smp_mb();
472
473 if (unlikely(netif_tx_queue_stopped(nd_q)))
474 netif_tx_wake_queue(nd_q);
475 }
476
477 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
478 "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
479 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
480 }
481
nfp_nfd3_xdp_complete(struct nfp_net_tx_ring * tx_ring)482 static bool nfp_nfd3_xdp_complete(struct nfp_net_tx_ring *tx_ring)
483 {
484 struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
485 struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
486 u32 done_pkts = 0, done_bytes = 0;
487 bool done_all;
488 int idx, todo;
489 u32 qcp_rd_p;
490
491 /* Work out how many descriptors have been transmitted */
492 qcp_rd_p = nfp_net_read_tx_cmpl(tx_ring, dp);
493
494 if (qcp_rd_p == tx_ring->qcp_rd_p)
495 return true;
496
497 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
498
499 done_all = todo <= NFP_NET_XDP_MAX_COMPLETE;
500 todo = min(todo, NFP_NET_XDP_MAX_COMPLETE);
501
502 tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + todo);
503
504 done_pkts = todo;
505 while (todo--) {
506 idx = D_IDX(tx_ring, tx_ring->rd_p);
507 tx_ring->rd_p++;
508
509 done_bytes += tx_ring->txbufs[idx].real_len;
510 }
511
512 u64_stats_update_begin(&r_vec->tx_sync);
513 r_vec->tx_bytes += done_bytes;
514 r_vec->tx_pkts += done_pkts;
515 u64_stats_update_end(&r_vec->tx_sync);
516
517 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
518 "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
519 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
520
521 return done_all;
522 }
523
524 /* Receive processing
525 */
526
527 static void *
nfp_nfd3_napi_alloc_one(struct nfp_net_dp * dp,dma_addr_t * dma_addr)528 nfp_nfd3_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
529 {
530 void *frag;
531
532 if (!dp->xdp_prog) {
533 frag = napi_alloc_frag(dp->fl_bufsz);
534 if (unlikely(!frag))
535 return NULL;
536 } else {
537 struct page *page;
538
539 page = dev_alloc_page();
540 if (unlikely(!page))
541 return NULL;
542 frag = page_address(page);
543 }
544
545 *dma_addr = nfp_net_dma_map_rx(dp, frag);
546 if (dma_mapping_error(dp->dev, *dma_addr)) {
547 nfp_net_free_frag(frag, dp->xdp_prog);
548 nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
549 return NULL;
550 }
551
552 return frag;
553 }
554
555 /**
556 * nfp_nfd3_rx_give_one() - Put mapped skb on the software and hardware rings
557 * @dp: NFP Net data path struct
558 * @rx_ring: RX ring structure
559 * @frag: page fragment buffer
560 * @dma_addr: DMA address of skb mapping
561 */
562 static void
nfp_nfd3_rx_give_one(const struct nfp_net_dp * dp,struct nfp_net_rx_ring * rx_ring,void * frag,dma_addr_t dma_addr)563 nfp_nfd3_rx_give_one(const struct nfp_net_dp *dp,
564 struct nfp_net_rx_ring *rx_ring,
565 void *frag, dma_addr_t dma_addr)
566 {
567 unsigned int wr_idx;
568
569 wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
570
571 nfp_net_dma_sync_dev_rx(dp, dma_addr);
572
573 /* Stash SKB and DMA address away */
574 rx_ring->rxbufs[wr_idx].frag = frag;
575 rx_ring->rxbufs[wr_idx].dma_addr = dma_addr;
576
577 /* Fill freelist descriptor */
578 rx_ring->rxds[wr_idx].fld.reserved = 0;
579 rx_ring->rxds[wr_idx].fld.meta_len_dd = 0;
580 /* DMA address is expanded to 48-bit width in freelist for NFP3800,
581 * so the *_48b macro is used accordingly, it's also OK to fill
582 * a 40-bit address since the top 8 bits are get set to 0.
583 */
584 nfp_desc_set_dma_addr_48b(&rx_ring->rxds[wr_idx].fld,
585 dma_addr + dp->rx_dma_off);
586
587 rx_ring->wr_p++;
588 if (!(rx_ring->wr_p % NFP_NET_FL_BATCH)) {
589 /* Update write pointer of the freelist queue. Make
590 * sure all writes are flushed before telling the hardware.
591 */
592 wmb();
593 nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, NFP_NET_FL_BATCH);
594 }
595 }
596
597 /**
598 * nfp_nfd3_rx_ring_fill_freelist() - Give buffers from the ring to FW
599 * @dp: NFP Net data path struct
600 * @rx_ring: RX ring to fill
601 */
nfp_nfd3_rx_ring_fill_freelist(struct nfp_net_dp * dp,struct nfp_net_rx_ring * rx_ring)602 void nfp_nfd3_rx_ring_fill_freelist(struct nfp_net_dp *dp,
603 struct nfp_net_rx_ring *rx_ring)
604 {
605 unsigned int i;
606
607 if (nfp_net_has_xsk_pool_slow(dp, rx_ring->idx))
608 return nfp_net_xsk_rx_ring_fill_freelist(rx_ring);
609
610 for (i = 0; i < rx_ring->cnt - 1; i++)
611 nfp_nfd3_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag,
612 rx_ring->rxbufs[i].dma_addr);
613 }
614
615 /**
616 * nfp_nfd3_rx_csum_has_errors() - group check if rxd has any csum errors
617 * @flags: RX descriptor flags field in CPU byte order
618 */
nfp_nfd3_rx_csum_has_errors(u16 flags)619 static int nfp_nfd3_rx_csum_has_errors(u16 flags)
620 {
621 u16 csum_all_checked, csum_all_ok;
622
623 csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL;
624 csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK;
625
626 return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT);
627 }
628
629 /**
630 * nfp_nfd3_rx_csum() - set SKB checksum field based on RX descriptor flags
631 * @dp: NFP Net data path struct
632 * @r_vec: per-ring structure
633 * @rxd: Pointer to RX descriptor
634 * @meta: Parsed metadata prepend
635 * @skb: Pointer to SKB
636 */
637 void
nfp_nfd3_rx_csum(const struct nfp_net_dp * dp,struct nfp_net_r_vector * r_vec,const struct nfp_net_rx_desc * rxd,const struct nfp_meta_parsed * meta,struct sk_buff * skb)638 nfp_nfd3_rx_csum(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
639 const struct nfp_net_rx_desc *rxd,
640 const struct nfp_meta_parsed *meta, struct sk_buff *skb)
641 {
642 skb_checksum_none_assert(skb);
643
644 if (!(dp->netdev->features & NETIF_F_RXCSUM))
645 return;
646
647 if (meta->csum_type) {
648 skb->ip_summed = meta->csum_type;
649 skb->csum = meta->csum;
650 u64_stats_update_begin(&r_vec->rx_sync);
651 r_vec->hw_csum_rx_complete++;
652 u64_stats_update_end(&r_vec->rx_sync);
653 return;
654 }
655
656 if (nfp_nfd3_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) {
657 u64_stats_update_begin(&r_vec->rx_sync);
658 r_vec->hw_csum_rx_error++;
659 u64_stats_update_end(&r_vec->rx_sync);
660 return;
661 }
662
663 /* Assume that the firmware will never report inner CSUM_OK unless outer
664 * L4 headers were successfully parsed. FW will always report zero UDP
665 * checksum as CSUM_OK.
666 */
667 if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK ||
668 rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) {
669 __skb_incr_checksum_unnecessary(skb);
670 u64_stats_update_begin(&r_vec->rx_sync);
671 r_vec->hw_csum_rx_ok++;
672 u64_stats_update_end(&r_vec->rx_sync);
673 }
674
675 if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK ||
676 rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) {
677 __skb_incr_checksum_unnecessary(skb);
678 u64_stats_update_begin(&r_vec->rx_sync);
679 r_vec->hw_csum_rx_inner_ok++;
680 u64_stats_update_end(&r_vec->rx_sync);
681 }
682 }
683
684 static void
nfp_nfd3_set_hash(struct net_device * netdev,struct nfp_meta_parsed * meta,unsigned int type,__be32 * hash)685 nfp_nfd3_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta,
686 unsigned int type, __be32 *hash)
687 {
688 if (!(netdev->features & NETIF_F_RXHASH))
689 return;
690
691 switch (type) {
692 case NFP_NET_RSS_IPV4:
693 case NFP_NET_RSS_IPV6:
694 case NFP_NET_RSS_IPV6_EX:
695 meta->hash_type = PKT_HASH_TYPE_L3;
696 break;
697 default:
698 meta->hash_type = PKT_HASH_TYPE_L4;
699 break;
700 }
701
702 meta->hash = get_unaligned_be32(hash);
703 }
704
705 static void
nfp_nfd3_set_hash_desc(struct net_device * netdev,struct nfp_meta_parsed * meta,void * data,struct nfp_net_rx_desc * rxd)706 nfp_nfd3_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta,
707 void *data, struct nfp_net_rx_desc *rxd)
708 {
709 struct nfp_net_rx_hash *rx_hash = data;
710
711 if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS))
712 return;
713
714 nfp_nfd3_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type),
715 &rx_hash->hash);
716 }
717
718 bool
nfp_nfd3_parse_meta(struct net_device * netdev,struct nfp_meta_parsed * meta,void * data,void * pkt,unsigned int pkt_len,int meta_len)719 nfp_nfd3_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta,
720 void *data, void *pkt, unsigned int pkt_len, int meta_len)
721 {
722 u32 meta_info, vlan_info;
723
724 meta_info = get_unaligned_be32(data);
725 data += 4;
726
727 while (meta_info) {
728 switch (meta_info & NFP_NET_META_FIELD_MASK) {
729 case NFP_NET_META_HASH:
730 meta_info >>= NFP_NET_META_FIELD_SIZE;
731 nfp_nfd3_set_hash(netdev, meta,
732 meta_info & NFP_NET_META_FIELD_MASK,
733 (__be32 *)data);
734 data += 4;
735 break;
736 case NFP_NET_META_MARK:
737 meta->mark = get_unaligned_be32(data);
738 data += 4;
739 break;
740 case NFP_NET_META_VLAN:
741 vlan_info = get_unaligned_be32(data);
742 if (FIELD_GET(NFP_NET_META_VLAN_STRIP, vlan_info)) {
743 meta->vlan.stripped = true;
744 meta->vlan.tpid = FIELD_GET(NFP_NET_META_VLAN_TPID_MASK,
745 vlan_info);
746 meta->vlan.tci = FIELD_GET(NFP_NET_META_VLAN_TCI_MASK,
747 vlan_info);
748 }
749 data += 4;
750 break;
751 case NFP_NET_META_PORTID:
752 meta->portid = get_unaligned_be32(data);
753 data += 4;
754 break;
755 case NFP_NET_META_CSUM:
756 meta->csum_type = CHECKSUM_COMPLETE;
757 meta->csum =
758 (__force __wsum)__get_unaligned_cpu32(data);
759 data += 4;
760 break;
761 case NFP_NET_META_RESYNC_INFO:
762 if (nfp_net_tls_rx_resync_req(netdev, data, pkt,
763 pkt_len))
764 return false;
765 data += sizeof(struct nfp_net_tls_resync_req);
766 break;
767 default:
768 return true;
769 }
770
771 meta_info >>= NFP_NET_META_FIELD_SIZE;
772 }
773
774 return data != pkt;
775 }
776
777 static void
nfp_nfd3_rx_drop(const struct nfp_net_dp * dp,struct nfp_net_r_vector * r_vec,struct nfp_net_rx_ring * rx_ring,struct nfp_net_rx_buf * rxbuf,struct sk_buff * skb)778 nfp_nfd3_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
779 struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf,
780 struct sk_buff *skb)
781 {
782 u64_stats_update_begin(&r_vec->rx_sync);
783 r_vec->rx_drops++;
784 /* If we have both skb and rxbuf the replacement buffer allocation
785 * must have failed, count this as an alloc failure.
786 */
787 if (skb && rxbuf)
788 r_vec->rx_replace_buf_alloc_fail++;
789 u64_stats_update_end(&r_vec->rx_sync);
790
791 /* skb is build based on the frag, free_skb() would free the frag
792 * so to be able to reuse it we need an extra ref.
793 */
794 if (skb && rxbuf && skb->head == rxbuf->frag)
795 page_ref_inc(virt_to_head_page(rxbuf->frag));
796 if (rxbuf)
797 nfp_nfd3_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr);
798 if (skb)
799 dev_kfree_skb_any(skb);
800 }
801
802 static bool
nfp_nfd3_tx_xdp_buf(struct nfp_net_dp * dp,struct nfp_net_rx_ring * rx_ring,struct nfp_net_tx_ring * tx_ring,struct nfp_net_rx_buf * rxbuf,unsigned int dma_off,unsigned int pkt_len,bool * completed)803 nfp_nfd3_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring,
804 struct nfp_net_tx_ring *tx_ring,
805 struct nfp_net_rx_buf *rxbuf, unsigned int dma_off,
806 unsigned int pkt_len, bool *completed)
807 {
808 unsigned int dma_map_sz = dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA;
809 struct nfp_nfd3_tx_buf *txbuf;
810 struct nfp_nfd3_tx_desc *txd;
811 int wr_idx;
812
813 /* Reject if xdp_adjust_tail grow packet beyond DMA area */
814 if (pkt_len + dma_off > dma_map_sz)
815 return false;
816
817 if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
818 if (!*completed) {
819 nfp_nfd3_xdp_complete(tx_ring);
820 *completed = true;
821 }
822
823 if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
824 nfp_nfd3_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf,
825 NULL);
826 return false;
827 }
828 }
829
830 wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
831
832 /* Stash the soft descriptor of the head then initialize it */
833 txbuf = &tx_ring->txbufs[wr_idx];
834
835 nfp_nfd3_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr);
836
837 txbuf->frag = rxbuf->frag;
838 txbuf->dma_addr = rxbuf->dma_addr;
839 txbuf->fidx = -1;
840 txbuf->pkt_cnt = 1;
841 txbuf->real_len = pkt_len;
842
843 dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off,
844 pkt_len, DMA_BIDIRECTIONAL);
845
846 /* Build TX descriptor */
847 txd = &tx_ring->txds[wr_idx];
848 txd->offset_eop = NFD3_DESC_TX_EOP;
849 txd->dma_len = cpu_to_le16(pkt_len);
850 nfp_desc_set_dma_addr_40b(txd, rxbuf->dma_addr + dma_off);
851 txd->data_len = cpu_to_le16(pkt_len);
852
853 txd->flags = 0;
854 txd->mss = 0;
855 txd->lso_hdrlen = 0;
856
857 tx_ring->wr_p++;
858 tx_ring->wr_ptr_add++;
859 return true;
860 }
861
862 /**
863 * nfp_nfd3_rx() - receive up to @budget packets on @rx_ring
864 * @rx_ring: RX ring to receive from
865 * @budget: NAPI budget
866 *
867 * Note, this function is separated out from the napi poll function to
868 * more cleanly separate packet receive code from other bookkeeping
869 * functions performed in the napi poll function.
870 *
871 * Return: Number of packets received.
872 */
nfp_nfd3_rx(struct nfp_net_rx_ring * rx_ring,int budget)873 static int nfp_nfd3_rx(struct nfp_net_rx_ring *rx_ring, int budget)
874 {
875 struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
876 struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
877 struct nfp_net_tx_ring *tx_ring;
878 struct bpf_prog *xdp_prog;
879 bool xdp_tx_cmpl = false;
880 unsigned int true_bufsz;
881 struct sk_buff *skb;
882 int pkts_polled = 0;
883 struct xdp_buff xdp;
884 int idx;
885
886 xdp_prog = READ_ONCE(dp->xdp_prog);
887 true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz;
888 xdp_init_buff(&xdp, PAGE_SIZE - NFP_NET_RX_BUF_HEADROOM,
889 &rx_ring->xdp_rxq);
890 tx_ring = r_vec->xdp_ring;
891
892 while (pkts_polled < budget) {
893 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
894 struct nfp_net_rx_buf *rxbuf;
895 struct nfp_net_rx_desc *rxd;
896 struct nfp_meta_parsed meta;
897 bool redir_egress = false;
898 struct net_device *netdev;
899 dma_addr_t new_dma_addr;
900 u32 meta_len_xdp = 0;
901 void *new_frag;
902
903 idx = D_IDX(rx_ring, rx_ring->rd_p);
904
905 rxd = &rx_ring->rxds[idx];
906 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
907 break;
908
909 /* Memory barrier to ensure that we won't do other reads
910 * before the DD bit.
911 */
912 dma_rmb();
913
914 memset(&meta, 0, sizeof(meta));
915
916 rx_ring->rd_p++;
917 pkts_polled++;
918
919 rxbuf = &rx_ring->rxbufs[idx];
920 /* < meta_len >
921 * <-- [rx_offset] -->
922 * ---------------------------------------------------------
923 * | [XX] | metadata | packet | XXXX |
924 * ---------------------------------------------------------
925 * <---------------- data_len --------------->
926 *
927 * The rx_offset is fixed for all packets, the meta_len can vary
928 * on a packet by packet basis. If rx_offset is set to zero
929 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the
930 * buffer and is immediately followed by the packet (no [XX]).
931 */
932 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
933 data_len = le16_to_cpu(rxd->rxd.data_len);
934 pkt_len = data_len - meta_len;
935
936 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
937 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
938 pkt_off += meta_len;
939 else
940 pkt_off += dp->rx_offset;
941 meta_off = pkt_off - meta_len;
942
943 /* Stats update */
944 u64_stats_update_begin(&r_vec->rx_sync);
945 r_vec->rx_pkts++;
946 r_vec->rx_bytes += pkt_len;
947 u64_stats_update_end(&r_vec->rx_sync);
948
949 if (unlikely(meta_len > NFP_NET_MAX_PREPEND ||
950 (dp->rx_offset && meta_len > dp->rx_offset))) {
951 nn_dp_warn(dp, "oversized RX packet metadata %u\n",
952 meta_len);
953 nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
954 continue;
955 }
956
957 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off,
958 data_len);
959
960 if (!dp->chained_metadata_format) {
961 nfp_nfd3_set_hash_desc(dp->netdev, &meta,
962 rxbuf->frag + meta_off, rxd);
963 } else if (meta_len) {
964 if (unlikely(nfp_nfd3_parse_meta(dp->netdev, &meta,
965 rxbuf->frag + meta_off,
966 rxbuf->frag + pkt_off,
967 pkt_len, meta_len))) {
968 nn_dp_warn(dp, "invalid RX packet metadata\n");
969 nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf,
970 NULL);
971 continue;
972 }
973 }
974
975 if (xdp_prog && !meta.portid) {
976 void *orig_data = rxbuf->frag + pkt_off;
977 unsigned int dma_off;
978 int act;
979
980 xdp_prepare_buff(&xdp,
981 rxbuf->frag + NFP_NET_RX_BUF_HEADROOM,
982 pkt_off - NFP_NET_RX_BUF_HEADROOM,
983 pkt_len, true);
984
985 act = bpf_prog_run_xdp(xdp_prog, &xdp);
986
987 pkt_len = xdp.data_end - xdp.data;
988 pkt_off += xdp.data - orig_data;
989
990 switch (act) {
991 case XDP_PASS:
992 meta_len_xdp = xdp.data - xdp.data_meta;
993 break;
994 case XDP_TX:
995 dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM;
996 if (unlikely(!nfp_nfd3_tx_xdp_buf(dp, rx_ring,
997 tx_ring,
998 rxbuf,
999 dma_off,
1000 pkt_len,
1001 &xdp_tx_cmpl)))
1002 trace_xdp_exception(dp->netdev,
1003 xdp_prog, act);
1004 continue;
1005 default:
1006 bpf_warn_invalid_xdp_action(dp->netdev, xdp_prog, act);
1007 fallthrough;
1008 case XDP_ABORTED:
1009 trace_xdp_exception(dp->netdev, xdp_prog, act);
1010 fallthrough;
1011 case XDP_DROP:
1012 nfp_nfd3_rx_give_one(dp, rx_ring, rxbuf->frag,
1013 rxbuf->dma_addr);
1014 continue;
1015 }
1016 }
1017
1018 if (likely(!meta.portid)) {
1019 netdev = dp->netdev;
1020 } else if (meta.portid == NFP_META_PORT_ID_CTRL) {
1021 struct nfp_net *nn = netdev_priv(dp->netdev);
1022
1023 nfp_app_ctrl_rx_raw(nn->app, rxbuf->frag + pkt_off,
1024 pkt_len);
1025 nfp_nfd3_rx_give_one(dp, rx_ring, rxbuf->frag,
1026 rxbuf->dma_addr);
1027 continue;
1028 } else {
1029 struct nfp_net *nn;
1030
1031 nn = netdev_priv(dp->netdev);
1032 netdev = nfp_app_dev_get(nn->app, meta.portid,
1033 &redir_egress);
1034 if (unlikely(!netdev)) {
1035 nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf,
1036 NULL);
1037 continue;
1038 }
1039
1040 if (nfp_netdev_is_nfp_repr(netdev))
1041 nfp_repr_inc_rx_stats(netdev, pkt_len);
1042 }
1043
1044 skb = build_skb(rxbuf->frag, true_bufsz);
1045 if (unlikely(!skb)) {
1046 nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1047 continue;
1048 }
1049 new_frag = nfp_nfd3_napi_alloc_one(dp, &new_dma_addr);
1050 if (unlikely(!new_frag)) {
1051 nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
1052 continue;
1053 }
1054
1055 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
1056
1057 nfp_nfd3_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
1058
1059 skb_reserve(skb, pkt_off);
1060 skb_put(skb, pkt_len);
1061
1062 skb->mark = meta.mark;
1063 skb_set_hash(skb, meta.hash, meta.hash_type);
1064
1065 skb_record_rx_queue(skb, rx_ring->idx);
1066 skb->protocol = eth_type_trans(skb, netdev);
1067
1068 nfp_nfd3_rx_csum(dp, r_vec, rxd, &meta, skb);
1069
1070 #ifdef CONFIG_TLS_DEVICE
1071 if (rxd->rxd.flags & PCIE_DESC_RX_DECRYPTED) {
1072 skb->decrypted = true;
1073 u64_stats_update_begin(&r_vec->rx_sync);
1074 r_vec->hw_tls_rx++;
1075 u64_stats_update_end(&r_vec->rx_sync);
1076 }
1077 #endif
1078
1079 if (unlikely(!nfp_net_vlan_strip(skb, rxd, &meta))) {
1080 nfp_nfd3_rx_drop(dp, r_vec, rx_ring, NULL, skb);
1081 continue;
1082 }
1083
1084 if (meta_len_xdp)
1085 skb_metadata_set(skb, meta_len_xdp);
1086
1087 if (likely(!redir_egress)) {
1088 napi_gro_receive(&rx_ring->r_vec->napi, skb);
1089 } else {
1090 skb->dev = netdev;
1091 skb_reset_network_header(skb);
1092 __skb_push(skb, ETH_HLEN);
1093 dev_queue_xmit(skb);
1094 }
1095 }
1096
1097 if (xdp_prog) {
1098 if (tx_ring->wr_ptr_add)
1099 nfp_net_tx_xmit_more_flush(tx_ring);
1100 else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) &&
1101 !xdp_tx_cmpl)
1102 if (!nfp_nfd3_xdp_complete(tx_ring))
1103 pkts_polled = budget;
1104 }
1105
1106 return pkts_polled;
1107 }
1108
1109 /**
1110 * nfp_nfd3_poll() - napi poll function
1111 * @napi: NAPI structure
1112 * @budget: NAPI budget
1113 *
1114 * Return: number of packets polled.
1115 */
nfp_nfd3_poll(struct napi_struct * napi,int budget)1116 int nfp_nfd3_poll(struct napi_struct *napi, int budget)
1117 {
1118 struct nfp_net_r_vector *r_vec =
1119 container_of(napi, struct nfp_net_r_vector, napi);
1120 unsigned int pkts_polled = 0;
1121
1122 if (r_vec->tx_ring)
1123 nfp_nfd3_tx_complete(r_vec->tx_ring, budget);
1124 if (r_vec->rx_ring)
1125 pkts_polled = nfp_nfd3_rx(r_vec->rx_ring, budget);
1126
1127 if (pkts_polled < budget)
1128 if (napi_complete_done(napi, pkts_polled))
1129 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
1130
1131 if (r_vec->nfp_net->rx_coalesce_adapt_on && r_vec->rx_ring) {
1132 struct dim_sample dim_sample = {};
1133 unsigned int start;
1134 u64 pkts, bytes;
1135
1136 do {
1137 start = u64_stats_fetch_begin(&r_vec->rx_sync);
1138 pkts = r_vec->rx_pkts;
1139 bytes = r_vec->rx_bytes;
1140 } while (u64_stats_fetch_retry(&r_vec->rx_sync, start));
1141
1142 dim_update_sample(r_vec->event_ctr, pkts, bytes, &dim_sample);
1143 net_dim(&r_vec->rx_dim, dim_sample);
1144 }
1145
1146 if (r_vec->nfp_net->tx_coalesce_adapt_on && r_vec->tx_ring) {
1147 struct dim_sample dim_sample = {};
1148 unsigned int start;
1149 u64 pkts, bytes;
1150
1151 do {
1152 start = u64_stats_fetch_begin(&r_vec->tx_sync);
1153 pkts = r_vec->tx_pkts;
1154 bytes = r_vec->tx_bytes;
1155 } while (u64_stats_fetch_retry(&r_vec->tx_sync, start));
1156
1157 dim_update_sample(r_vec->event_ctr, pkts, bytes, &dim_sample);
1158 net_dim(&r_vec->tx_dim, dim_sample);
1159 }
1160
1161 return pkts_polled;
1162 }
1163
1164 /* Control device data path
1165 */
1166
1167 bool
nfp_nfd3_ctrl_tx_one(struct nfp_net * nn,struct nfp_net_r_vector * r_vec,struct sk_buff * skb,bool old)1168 nfp_nfd3_ctrl_tx_one(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
1169 struct sk_buff *skb, bool old)
1170 {
1171 unsigned int real_len = skb->len, meta_len = 0;
1172 struct nfp_net_tx_ring *tx_ring;
1173 struct nfp_nfd3_tx_buf *txbuf;
1174 struct nfp_nfd3_tx_desc *txd;
1175 struct nfp_net_dp *dp;
1176 dma_addr_t dma_addr;
1177 int wr_idx;
1178
1179 dp = &r_vec->nfp_net->dp;
1180 tx_ring = r_vec->tx_ring;
1181
1182 if (WARN_ON_ONCE(skb_shinfo(skb)->nr_frags)) {
1183 nn_dp_warn(dp, "Driver's CTRL TX does not implement gather\n");
1184 goto err_free;
1185 }
1186
1187 if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1188 u64_stats_update_begin(&r_vec->tx_sync);
1189 r_vec->tx_busy++;
1190 u64_stats_update_end(&r_vec->tx_sync);
1191 if (!old)
1192 __skb_queue_tail(&r_vec->queue, skb);
1193 else
1194 __skb_queue_head(&r_vec->queue, skb);
1195 return true;
1196 }
1197
1198 if (nfp_app_ctrl_has_meta(nn->app)) {
1199 if (unlikely(skb_headroom(skb) < 8)) {
1200 nn_dp_warn(dp, "CTRL TX on skb without headroom\n");
1201 goto err_free;
1202 }
1203 meta_len = 8;
1204 put_unaligned_be32(NFP_META_PORT_ID_CTRL, skb_push(skb, 4));
1205 put_unaligned_be32(NFP_NET_META_PORTID, skb_push(skb, 4));
1206 }
1207
1208 /* Start with the head skbuf */
1209 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
1210 DMA_TO_DEVICE);
1211 if (dma_mapping_error(dp->dev, dma_addr))
1212 goto err_dma_warn;
1213
1214 wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
1215
1216 /* Stash the soft descriptor of the head then initialize it */
1217 txbuf = &tx_ring->txbufs[wr_idx];
1218 txbuf->skb = skb;
1219 txbuf->dma_addr = dma_addr;
1220 txbuf->fidx = -1;
1221 txbuf->pkt_cnt = 1;
1222 txbuf->real_len = real_len;
1223
1224 /* Build TX descriptor */
1225 txd = &tx_ring->txds[wr_idx];
1226 txd->offset_eop = meta_len | NFD3_DESC_TX_EOP;
1227 txd->dma_len = cpu_to_le16(skb_headlen(skb));
1228 nfp_desc_set_dma_addr_40b(txd, dma_addr);
1229 txd->data_len = cpu_to_le16(skb->len);
1230
1231 txd->flags = 0;
1232 txd->mss = 0;
1233 txd->lso_hdrlen = 0;
1234
1235 tx_ring->wr_p++;
1236 tx_ring->wr_ptr_add++;
1237 nfp_net_tx_xmit_more_flush(tx_ring);
1238
1239 return false;
1240
1241 err_dma_warn:
1242 nn_dp_warn(dp, "Failed to DMA map TX CTRL buffer\n");
1243 err_free:
1244 u64_stats_update_begin(&r_vec->tx_sync);
1245 r_vec->tx_errors++;
1246 u64_stats_update_end(&r_vec->tx_sync);
1247 dev_kfree_skb_any(skb);
1248 return false;
1249 }
1250
__nfp_ctrl_tx_queued(struct nfp_net_r_vector * r_vec)1251 static void __nfp_ctrl_tx_queued(struct nfp_net_r_vector *r_vec)
1252 {
1253 struct sk_buff *skb;
1254
1255 while ((skb = __skb_dequeue(&r_vec->queue)))
1256 if (nfp_nfd3_ctrl_tx_one(r_vec->nfp_net, r_vec, skb, true))
1257 return;
1258 }
1259
1260 static bool
nfp_ctrl_meta_ok(struct nfp_net * nn,void * data,unsigned int meta_len)1261 nfp_ctrl_meta_ok(struct nfp_net *nn, void *data, unsigned int meta_len)
1262 {
1263 u32 meta_type, meta_tag;
1264
1265 if (!nfp_app_ctrl_has_meta(nn->app))
1266 return !meta_len;
1267
1268 if (meta_len != 8)
1269 return false;
1270
1271 meta_type = get_unaligned_be32(data);
1272 meta_tag = get_unaligned_be32(data + 4);
1273
1274 return (meta_type == NFP_NET_META_PORTID &&
1275 meta_tag == NFP_META_PORT_ID_CTRL);
1276 }
1277
1278 static bool
nfp_ctrl_rx_one(struct nfp_net * nn,struct nfp_net_dp * dp,struct nfp_net_r_vector * r_vec,struct nfp_net_rx_ring * rx_ring)1279 nfp_ctrl_rx_one(struct nfp_net *nn, struct nfp_net_dp *dp,
1280 struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring)
1281 {
1282 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
1283 struct nfp_net_rx_buf *rxbuf;
1284 struct nfp_net_rx_desc *rxd;
1285 dma_addr_t new_dma_addr;
1286 struct sk_buff *skb;
1287 void *new_frag;
1288 int idx;
1289
1290 idx = D_IDX(rx_ring, rx_ring->rd_p);
1291
1292 rxd = &rx_ring->rxds[idx];
1293 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1294 return false;
1295
1296 /* Memory barrier to ensure that we won't do other reads
1297 * before the DD bit.
1298 */
1299 dma_rmb();
1300
1301 rx_ring->rd_p++;
1302
1303 rxbuf = &rx_ring->rxbufs[idx];
1304 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
1305 data_len = le16_to_cpu(rxd->rxd.data_len);
1306 pkt_len = data_len - meta_len;
1307
1308 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
1309 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1310 pkt_off += meta_len;
1311 else
1312 pkt_off += dp->rx_offset;
1313 meta_off = pkt_off - meta_len;
1314
1315 /* Stats update */
1316 u64_stats_update_begin(&r_vec->rx_sync);
1317 r_vec->rx_pkts++;
1318 r_vec->rx_bytes += pkt_len;
1319 u64_stats_update_end(&r_vec->rx_sync);
1320
1321 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, data_len);
1322
1323 if (unlikely(!nfp_ctrl_meta_ok(nn, rxbuf->frag + meta_off, meta_len))) {
1324 nn_dp_warn(dp, "incorrect metadata for ctrl packet (%d)\n",
1325 meta_len);
1326 nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1327 return true;
1328 }
1329
1330 skb = build_skb(rxbuf->frag, dp->fl_bufsz);
1331 if (unlikely(!skb)) {
1332 nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1333 return true;
1334 }
1335 new_frag = nfp_nfd3_napi_alloc_one(dp, &new_dma_addr);
1336 if (unlikely(!new_frag)) {
1337 nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
1338 return true;
1339 }
1340
1341 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
1342
1343 nfp_nfd3_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
1344
1345 skb_reserve(skb, pkt_off);
1346 skb_put(skb, pkt_len);
1347
1348 nfp_app_ctrl_rx(nn->app, skb);
1349
1350 return true;
1351 }
1352
nfp_ctrl_rx(struct nfp_net_r_vector * r_vec)1353 static bool nfp_ctrl_rx(struct nfp_net_r_vector *r_vec)
1354 {
1355 struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring;
1356 struct nfp_net *nn = r_vec->nfp_net;
1357 struct nfp_net_dp *dp = &nn->dp;
1358 unsigned int budget = 512;
1359
1360 while (nfp_ctrl_rx_one(nn, dp, r_vec, rx_ring) && budget--)
1361 continue;
1362
1363 return budget;
1364 }
1365
nfp_nfd3_ctrl_poll(struct tasklet_struct * t)1366 void nfp_nfd3_ctrl_poll(struct tasklet_struct *t)
1367 {
1368 struct nfp_net_r_vector *r_vec = from_tasklet(r_vec, t, tasklet);
1369
1370 spin_lock(&r_vec->lock);
1371 nfp_nfd3_tx_complete(r_vec->tx_ring, 0);
1372 __nfp_ctrl_tx_queued(r_vec);
1373 spin_unlock(&r_vec->lock);
1374
1375 if (nfp_ctrl_rx(r_vec)) {
1376 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
1377 } else {
1378 tasklet_schedule(&r_vec->tasklet);
1379 nn_dp_warn(&r_vec->nfp_net->dp,
1380 "control message budget exceeded!\n");
1381 }
1382 }
1383