1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
2 /* Copyright (C) 2015-2018 Netronome Systems, Inc. */
3
4 /*
5 * nfp_net_common.c
6 * Netronome network device driver: Common functions between PF and VF
7 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com>
8 * Jason McMullan <jason.mcmullan@netronome.com>
9 * Rolf Neugebauer <rolf.neugebauer@netronome.com>
10 * Brad Petrus <brad.petrus@netronome.com>
11 * Chris Telfer <chris.telfer@netronome.com>
12 */
13
14 #include <linux/bitfield.h>
15 #include <linux/bpf.h>
16 #include <linux/bpf_trace.h>
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/fs.h>
21 #include <linux/netdevice.h>
22 #include <linux/etherdevice.h>
23 #include <linux/interrupt.h>
24 #include <linux/ip.h>
25 #include <linux/ipv6.h>
26 #include <linux/mm.h>
27 #include <linux/overflow.h>
28 #include <linux/page_ref.h>
29 #include <linux/pci.h>
30 #include <linux/pci_regs.h>
31 #include <linux/msi.h>
32 #include <linux/ethtool.h>
33 #include <linux/log2.h>
34 #include <linux/if_vlan.h>
35 #include <linux/random.h>
36 #include <linux/vmalloc.h>
37 #include <linux/ktime.h>
38
39 #include <net/tls.h>
40 #include <net/vxlan.h>
41
42 #include "nfpcore/nfp_nsp.h"
43 #include "ccm.h"
44 #include "nfp_app.h"
45 #include "nfp_net_ctrl.h"
46 #include "nfp_net.h"
47 #include "nfp_net_sriov.h"
48 #include "nfp_port.h"
49 #include "crypto/crypto.h"
50
51 /**
52 * nfp_net_get_fw_version() - Read and parse the FW version
53 * @fw_ver: Output fw_version structure to read to
54 * @ctrl_bar: Mapped address of the control BAR
55 */
nfp_net_get_fw_version(struct nfp_net_fw_version * fw_ver,void __iomem * ctrl_bar)56 void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver,
57 void __iomem *ctrl_bar)
58 {
59 u32 reg;
60
61 reg = readl(ctrl_bar + NFP_NET_CFG_VERSION);
62 put_unaligned_le32(reg, fw_ver);
63 }
64
nfp_net_dma_map_rx(struct nfp_net_dp * dp,void * frag)65 static dma_addr_t nfp_net_dma_map_rx(struct nfp_net_dp *dp, void *frag)
66 {
67 return dma_map_single_attrs(dp->dev, frag + NFP_NET_RX_BUF_HEADROOM,
68 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
69 dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
70 }
71
72 static void
nfp_net_dma_sync_dev_rx(const struct nfp_net_dp * dp,dma_addr_t dma_addr)73 nfp_net_dma_sync_dev_rx(const struct nfp_net_dp *dp, dma_addr_t dma_addr)
74 {
75 dma_sync_single_for_device(dp->dev, dma_addr,
76 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
77 dp->rx_dma_dir);
78 }
79
nfp_net_dma_unmap_rx(struct nfp_net_dp * dp,dma_addr_t dma_addr)80 static void nfp_net_dma_unmap_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr)
81 {
82 dma_unmap_single_attrs(dp->dev, dma_addr,
83 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
84 dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
85 }
86
nfp_net_dma_sync_cpu_rx(struct nfp_net_dp * dp,dma_addr_t dma_addr,unsigned int len)87 static void nfp_net_dma_sync_cpu_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr,
88 unsigned int len)
89 {
90 dma_sync_single_for_cpu(dp->dev, dma_addr - NFP_NET_RX_BUF_HEADROOM,
91 len, dp->rx_dma_dir);
92 }
93
94 /* Firmware reconfig
95 *
96 * Firmware reconfig may take a while so we have two versions of it -
97 * synchronous and asynchronous (posted). All synchronous callers are holding
98 * RTNL so we don't have to worry about serializing them.
99 */
nfp_net_reconfig_start(struct nfp_net * nn,u32 update)100 static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update)
101 {
102 nn_writel(nn, NFP_NET_CFG_UPDATE, update);
103 /* ensure update is written before pinging HW */
104 nn_pci_flush(nn);
105 nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1);
106 nn->reconfig_in_progress_update = update;
107 }
108
109 /* Pass 0 as update to run posted reconfigs. */
nfp_net_reconfig_start_async(struct nfp_net * nn,u32 update)110 static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update)
111 {
112 update |= nn->reconfig_posted;
113 nn->reconfig_posted = 0;
114
115 nfp_net_reconfig_start(nn, update);
116
117 nn->reconfig_timer_active = true;
118 mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ);
119 }
120
nfp_net_reconfig_check_done(struct nfp_net * nn,bool last_check)121 static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check)
122 {
123 u32 reg;
124
125 reg = nn_readl(nn, NFP_NET_CFG_UPDATE);
126 if (reg == 0)
127 return true;
128 if (reg & NFP_NET_CFG_UPDATE_ERR) {
129 nn_err(nn, "Reconfig error (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n",
130 reg, nn->reconfig_in_progress_update,
131 nn_readl(nn, NFP_NET_CFG_CTRL));
132 return true;
133 } else if (last_check) {
134 nn_err(nn, "Reconfig timeout (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n",
135 reg, nn->reconfig_in_progress_update,
136 nn_readl(nn, NFP_NET_CFG_CTRL));
137 return true;
138 }
139
140 return false;
141 }
142
__nfp_net_reconfig_wait(struct nfp_net * nn,unsigned long deadline)143 static bool __nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
144 {
145 bool timed_out = false;
146 int i;
147
148 /* Poll update field, waiting for NFP to ack the config.
149 * Do an opportunistic wait-busy loop, afterward sleep.
150 */
151 for (i = 0; i < 50; i++) {
152 if (nfp_net_reconfig_check_done(nn, false))
153 return false;
154 udelay(4);
155 }
156
157 while (!nfp_net_reconfig_check_done(nn, timed_out)) {
158 usleep_range(250, 500);
159 timed_out = time_is_before_eq_jiffies(deadline);
160 }
161
162 return timed_out;
163 }
164
nfp_net_reconfig_wait(struct nfp_net * nn,unsigned long deadline)165 static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
166 {
167 if (__nfp_net_reconfig_wait(nn, deadline))
168 return -EIO;
169
170 if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR)
171 return -EIO;
172
173 return 0;
174 }
175
nfp_net_reconfig_timer(struct timer_list * t)176 static void nfp_net_reconfig_timer(struct timer_list *t)
177 {
178 struct nfp_net *nn = from_timer(nn, t, reconfig_timer);
179
180 spin_lock_bh(&nn->reconfig_lock);
181
182 nn->reconfig_timer_active = false;
183
184 /* If sync caller is present it will take over from us */
185 if (nn->reconfig_sync_present)
186 goto done;
187
188 /* Read reconfig status and report errors */
189 nfp_net_reconfig_check_done(nn, true);
190
191 if (nn->reconfig_posted)
192 nfp_net_reconfig_start_async(nn, 0);
193 done:
194 spin_unlock_bh(&nn->reconfig_lock);
195 }
196
197 /**
198 * nfp_net_reconfig_post() - Post async reconfig request
199 * @nn: NFP Net device to reconfigure
200 * @update: The value for the update field in the BAR config
201 *
202 * Record FW reconfiguration request. Reconfiguration will be kicked off
203 * whenever reconfiguration machinery is idle. Multiple requests can be
204 * merged together!
205 */
nfp_net_reconfig_post(struct nfp_net * nn,u32 update)206 static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update)
207 {
208 spin_lock_bh(&nn->reconfig_lock);
209
210 /* Sync caller will kick off async reconf when it's done, just post */
211 if (nn->reconfig_sync_present) {
212 nn->reconfig_posted |= update;
213 goto done;
214 }
215
216 /* Opportunistically check if the previous command is done */
217 if (!nn->reconfig_timer_active ||
218 nfp_net_reconfig_check_done(nn, false))
219 nfp_net_reconfig_start_async(nn, update);
220 else
221 nn->reconfig_posted |= update;
222 done:
223 spin_unlock_bh(&nn->reconfig_lock);
224 }
225
nfp_net_reconfig_sync_enter(struct nfp_net * nn)226 static void nfp_net_reconfig_sync_enter(struct nfp_net *nn)
227 {
228 bool cancelled_timer = false;
229 u32 pre_posted_requests;
230
231 spin_lock_bh(&nn->reconfig_lock);
232
233 WARN_ON(nn->reconfig_sync_present);
234 nn->reconfig_sync_present = true;
235
236 if (nn->reconfig_timer_active) {
237 nn->reconfig_timer_active = false;
238 cancelled_timer = true;
239 }
240 pre_posted_requests = nn->reconfig_posted;
241 nn->reconfig_posted = 0;
242
243 spin_unlock_bh(&nn->reconfig_lock);
244
245 if (cancelled_timer) {
246 del_timer_sync(&nn->reconfig_timer);
247 nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires);
248 }
249
250 /* Run the posted reconfigs which were issued before we started */
251 if (pre_posted_requests) {
252 nfp_net_reconfig_start(nn, pre_posted_requests);
253 nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
254 }
255 }
256
nfp_net_reconfig_wait_posted(struct nfp_net * nn)257 static void nfp_net_reconfig_wait_posted(struct nfp_net *nn)
258 {
259 nfp_net_reconfig_sync_enter(nn);
260
261 spin_lock_bh(&nn->reconfig_lock);
262 nn->reconfig_sync_present = false;
263 spin_unlock_bh(&nn->reconfig_lock);
264 }
265
266 /**
267 * __nfp_net_reconfig() - Reconfigure the firmware
268 * @nn: NFP Net device to reconfigure
269 * @update: The value for the update field in the BAR config
270 *
271 * Write the update word to the BAR and ping the reconfig queue. The
272 * poll until the firmware has acknowledged the update by zeroing the
273 * update word.
274 *
275 * Return: Negative errno on error, 0 on success
276 */
__nfp_net_reconfig(struct nfp_net * nn,u32 update)277 int __nfp_net_reconfig(struct nfp_net *nn, u32 update)
278 {
279 int ret;
280
281 nfp_net_reconfig_sync_enter(nn);
282
283 nfp_net_reconfig_start(nn, update);
284 ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
285
286 spin_lock_bh(&nn->reconfig_lock);
287
288 if (nn->reconfig_posted)
289 nfp_net_reconfig_start_async(nn, 0);
290
291 nn->reconfig_sync_present = false;
292
293 spin_unlock_bh(&nn->reconfig_lock);
294
295 return ret;
296 }
297
nfp_net_reconfig(struct nfp_net * nn,u32 update)298 int nfp_net_reconfig(struct nfp_net *nn, u32 update)
299 {
300 int ret;
301
302 nn_ctrl_bar_lock(nn);
303 ret = __nfp_net_reconfig(nn, update);
304 nn_ctrl_bar_unlock(nn);
305
306 return ret;
307 }
308
nfp_net_mbox_lock(struct nfp_net * nn,unsigned int data_size)309 int nfp_net_mbox_lock(struct nfp_net *nn, unsigned int data_size)
310 {
311 if (nn->tlv_caps.mbox_len < NFP_NET_CFG_MBOX_SIMPLE_VAL + data_size) {
312 nn_err(nn, "mailbox too small for %u of data (%u)\n",
313 data_size, nn->tlv_caps.mbox_len);
314 return -EIO;
315 }
316
317 nn_ctrl_bar_lock(nn);
318 return 0;
319 }
320
321 /**
322 * nfp_net_mbox_reconfig() - Reconfigure the firmware via the mailbox
323 * @nn: NFP Net device to reconfigure
324 * @mbox_cmd: The value for the mailbox command
325 *
326 * Helper function for mailbox updates
327 *
328 * Return: Negative errno on error, 0 on success
329 */
nfp_net_mbox_reconfig(struct nfp_net * nn,u32 mbox_cmd)330 int nfp_net_mbox_reconfig(struct nfp_net *nn, u32 mbox_cmd)
331 {
332 u32 mbox = nn->tlv_caps.mbox_off;
333 int ret;
334
335 nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd);
336
337 ret = __nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MBOX);
338 if (ret) {
339 nn_err(nn, "Mailbox update error\n");
340 return ret;
341 }
342
343 return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET);
344 }
345
nfp_net_mbox_reconfig_post(struct nfp_net * nn,u32 mbox_cmd)346 void nfp_net_mbox_reconfig_post(struct nfp_net *nn, u32 mbox_cmd)
347 {
348 u32 mbox = nn->tlv_caps.mbox_off;
349
350 nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd);
351
352 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_MBOX);
353 }
354
nfp_net_mbox_reconfig_wait_posted(struct nfp_net * nn)355 int nfp_net_mbox_reconfig_wait_posted(struct nfp_net *nn)
356 {
357 u32 mbox = nn->tlv_caps.mbox_off;
358
359 nfp_net_reconfig_wait_posted(nn);
360
361 return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET);
362 }
363
nfp_net_mbox_reconfig_and_unlock(struct nfp_net * nn,u32 mbox_cmd)364 int nfp_net_mbox_reconfig_and_unlock(struct nfp_net *nn, u32 mbox_cmd)
365 {
366 int ret;
367
368 ret = nfp_net_mbox_reconfig(nn, mbox_cmd);
369 nn_ctrl_bar_unlock(nn);
370 return ret;
371 }
372
373 /* Interrupt configuration and handling
374 */
375
376 /**
377 * nfp_net_irq_unmask() - Unmask automasked interrupt
378 * @nn: NFP Network structure
379 * @entry_nr: MSI-X table entry
380 *
381 * Clear the ICR for the IRQ entry.
382 */
nfp_net_irq_unmask(struct nfp_net * nn,unsigned int entry_nr)383 static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr)
384 {
385 nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED);
386 nn_pci_flush(nn);
387 }
388
389 /**
390 * nfp_net_irqs_alloc() - allocates MSI-X irqs
391 * @pdev: PCI device structure
392 * @irq_entries: Array to be initialized and used to hold the irq entries
393 * @min_irqs: Minimal acceptable number of interrupts
394 * @wanted_irqs: Target number of interrupts to allocate
395 *
396 * Return: Number of irqs obtained or 0 on error.
397 */
398 unsigned int
nfp_net_irqs_alloc(struct pci_dev * pdev,struct msix_entry * irq_entries,unsigned int min_irqs,unsigned int wanted_irqs)399 nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries,
400 unsigned int min_irqs, unsigned int wanted_irqs)
401 {
402 unsigned int i;
403 int got_irqs;
404
405 for (i = 0; i < wanted_irqs; i++)
406 irq_entries[i].entry = i;
407
408 got_irqs = pci_enable_msix_range(pdev, irq_entries,
409 min_irqs, wanted_irqs);
410 if (got_irqs < 0) {
411 dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n",
412 min_irqs, wanted_irqs, got_irqs);
413 return 0;
414 }
415
416 if (got_irqs < wanted_irqs)
417 dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n",
418 wanted_irqs, got_irqs);
419
420 return got_irqs;
421 }
422
423 /**
424 * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev
425 * @nn: NFP Network structure
426 * @irq_entries: Table of allocated interrupts
427 * @n: Size of @irq_entries (number of entries to grab)
428 *
429 * After interrupts are allocated with nfp_net_irqs_alloc() this function
430 * should be called to assign them to a specific netdev (port).
431 */
432 void
nfp_net_irqs_assign(struct nfp_net * nn,struct msix_entry * irq_entries,unsigned int n)433 nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries,
434 unsigned int n)
435 {
436 struct nfp_net_dp *dp = &nn->dp;
437
438 nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS;
439 dp->num_r_vecs = nn->max_r_vecs;
440
441 memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n);
442
443 if (dp->num_rx_rings > dp->num_r_vecs ||
444 dp->num_tx_rings > dp->num_r_vecs)
445 dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n",
446 dp->num_rx_rings, dp->num_tx_rings,
447 dp->num_r_vecs);
448
449 dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings);
450 dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings);
451 dp->num_stack_tx_rings = dp->num_tx_rings;
452 }
453
454 /**
455 * nfp_net_irqs_disable() - Disable interrupts
456 * @pdev: PCI device structure
457 *
458 * Undoes what @nfp_net_irqs_alloc() does.
459 */
nfp_net_irqs_disable(struct pci_dev * pdev)460 void nfp_net_irqs_disable(struct pci_dev *pdev)
461 {
462 pci_disable_msix(pdev);
463 }
464
465 /**
466 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings.
467 * @irq: Interrupt
468 * @data: Opaque data structure
469 *
470 * Return: Indicate if the interrupt has been handled.
471 */
nfp_net_irq_rxtx(int irq,void * data)472 static irqreturn_t nfp_net_irq_rxtx(int irq, void *data)
473 {
474 struct nfp_net_r_vector *r_vec = data;
475
476 napi_schedule_irqoff(&r_vec->napi);
477
478 /* The FW auto-masks any interrupt, either via the MASK bit in
479 * the MSI-X table or via the per entry ICR field. So there
480 * is no need to disable interrupts here.
481 */
482 return IRQ_HANDLED;
483 }
484
nfp_ctrl_irq_rxtx(int irq,void * data)485 static irqreturn_t nfp_ctrl_irq_rxtx(int irq, void *data)
486 {
487 struct nfp_net_r_vector *r_vec = data;
488
489 tasklet_schedule(&r_vec->tasklet);
490
491 return IRQ_HANDLED;
492 }
493
494 /**
495 * nfp_net_read_link_status() - Reread link status from control BAR
496 * @nn: NFP Network structure
497 */
nfp_net_read_link_status(struct nfp_net * nn)498 static void nfp_net_read_link_status(struct nfp_net *nn)
499 {
500 unsigned long flags;
501 bool link_up;
502 u32 sts;
503
504 spin_lock_irqsave(&nn->link_status_lock, flags);
505
506 sts = nn_readl(nn, NFP_NET_CFG_STS);
507 link_up = !!(sts & NFP_NET_CFG_STS_LINK);
508
509 if (nn->link_up == link_up)
510 goto out;
511
512 nn->link_up = link_up;
513 if (nn->port)
514 set_bit(NFP_PORT_CHANGED, &nn->port->flags);
515
516 if (nn->link_up) {
517 netif_carrier_on(nn->dp.netdev);
518 netdev_info(nn->dp.netdev, "NIC Link is Up\n");
519 } else {
520 netif_carrier_off(nn->dp.netdev);
521 netdev_info(nn->dp.netdev, "NIC Link is Down\n");
522 }
523 out:
524 spin_unlock_irqrestore(&nn->link_status_lock, flags);
525 }
526
527 /**
528 * nfp_net_irq_lsc() - Interrupt service routine for link state changes
529 * @irq: Interrupt
530 * @data: Opaque data structure
531 *
532 * Return: Indicate if the interrupt has been handled.
533 */
nfp_net_irq_lsc(int irq,void * data)534 static irqreturn_t nfp_net_irq_lsc(int irq, void *data)
535 {
536 struct nfp_net *nn = data;
537 struct msix_entry *entry;
538
539 entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX];
540
541 nfp_net_read_link_status(nn);
542
543 nfp_net_irq_unmask(nn, entry->entry);
544
545 return IRQ_HANDLED;
546 }
547
548 /**
549 * nfp_net_irq_exn() - Interrupt service routine for exceptions
550 * @irq: Interrupt
551 * @data: Opaque data structure
552 *
553 * Return: Indicate if the interrupt has been handled.
554 */
nfp_net_irq_exn(int irq,void * data)555 static irqreturn_t nfp_net_irq_exn(int irq, void *data)
556 {
557 struct nfp_net *nn = data;
558
559 nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__);
560 /* XXX TO BE IMPLEMENTED */
561 return IRQ_HANDLED;
562 }
563
564 /**
565 * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring
566 * @tx_ring: TX ring structure
567 * @r_vec: IRQ vector servicing this ring
568 * @idx: Ring index
569 * @is_xdp: Is this an XDP TX ring?
570 */
571 static void
nfp_net_tx_ring_init(struct nfp_net_tx_ring * tx_ring,struct nfp_net_r_vector * r_vec,unsigned int idx,bool is_xdp)572 nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring,
573 struct nfp_net_r_vector *r_vec, unsigned int idx,
574 bool is_xdp)
575 {
576 struct nfp_net *nn = r_vec->nfp_net;
577
578 tx_ring->idx = idx;
579 tx_ring->r_vec = r_vec;
580 tx_ring->is_xdp = is_xdp;
581 u64_stats_init(&tx_ring->r_vec->tx_sync);
582
583 tx_ring->qcidx = tx_ring->idx * nn->stride_tx;
584 tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx);
585 }
586
587 /**
588 * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring
589 * @rx_ring: RX ring structure
590 * @r_vec: IRQ vector servicing this ring
591 * @idx: Ring index
592 */
593 static void
nfp_net_rx_ring_init(struct nfp_net_rx_ring * rx_ring,struct nfp_net_r_vector * r_vec,unsigned int idx)594 nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring,
595 struct nfp_net_r_vector *r_vec, unsigned int idx)
596 {
597 struct nfp_net *nn = r_vec->nfp_net;
598
599 rx_ring->idx = idx;
600 rx_ring->r_vec = r_vec;
601 u64_stats_init(&rx_ring->r_vec->rx_sync);
602
603 rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx;
604 rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx);
605 }
606
607 /**
608 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN)
609 * @nn: NFP Network structure
610 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
611 * @format: printf-style format to construct the interrupt name
612 * @name: Pointer to allocated space for interrupt name
613 * @name_sz: Size of space for interrupt name
614 * @vector_idx: Index of MSI-X vector used for this interrupt
615 * @handler: IRQ handler to register for this interrupt
616 */
617 static int
nfp_net_aux_irq_request(struct nfp_net * nn,u32 ctrl_offset,const char * format,char * name,size_t name_sz,unsigned int vector_idx,irq_handler_t handler)618 nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset,
619 const char *format, char *name, size_t name_sz,
620 unsigned int vector_idx, irq_handler_t handler)
621 {
622 struct msix_entry *entry;
623 int err;
624
625 entry = &nn->irq_entries[vector_idx];
626
627 snprintf(name, name_sz, format, nfp_net_name(nn));
628 err = request_irq(entry->vector, handler, 0, name, nn);
629 if (err) {
630 nn_err(nn, "Failed to request IRQ %d (err=%d).\n",
631 entry->vector, err);
632 return err;
633 }
634 nn_writeb(nn, ctrl_offset, entry->entry);
635 nfp_net_irq_unmask(nn, entry->entry);
636
637 return 0;
638 }
639
640 /**
641 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN)
642 * @nn: NFP Network structure
643 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
644 * @vector_idx: Index of MSI-X vector used for this interrupt
645 */
nfp_net_aux_irq_free(struct nfp_net * nn,u32 ctrl_offset,unsigned int vector_idx)646 static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset,
647 unsigned int vector_idx)
648 {
649 nn_writeb(nn, ctrl_offset, 0xff);
650 nn_pci_flush(nn);
651 free_irq(nn->irq_entries[vector_idx].vector, nn);
652 }
653
654 /* Transmit
655 *
656 * One queue controller peripheral queue is used for transmit. The
657 * driver en-queues packets for transmit by advancing the write
658 * pointer. The device indicates that packets have transmitted by
659 * advancing the read pointer. The driver maintains a local copy of
660 * the read and write pointer in @struct nfp_net_tx_ring. The driver
661 * keeps @wr_p in sync with the queue controller write pointer and can
662 * determine how many packets have been transmitted by comparing its
663 * copy of the read pointer @rd_p with the read pointer maintained by
664 * the queue controller peripheral.
665 */
666
667 /**
668 * nfp_net_tx_full() - Check if the TX ring is full
669 * @tx_ring: TX ring to check
670 * @dcnt: Number of descriptors that need to be enqueued (must be >= 1)
671 *
672 * This function checks, based on the *host copy* of read/write
673 * pointer if a given TX ring is full. The real TX queue may have
674 * some newly made available slots.
675 *
676 * Return: True if the ring is full.
677 */
nfp_net_tx_full(struct nfp_net_tx_ring * tx_ring,int dcnt)678 static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt)
679 {
680 return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt);
681 }
682
683 /* Wrappers for deciding when to stop and restart TX queues */
nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring * tx_ring)684 static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring)
685 {
686 return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4);
687 }
688
nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring * tx_ring)689 static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring)
690 {
691 return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1);
692 }
693
694 /**
695 * nfp_net_tx_ring_stop() - stop tx ring
696 * @nd_q: netdev queue
697 * @tx_ring: driver tx queue structure
698 *
699 * Safely stop TX ring. Remember that while we are running .start_xmit()
700 * someone else may be cleaning the TX ring completions so we need to be
701 * extra careful here.
702 */
nfp_net_tx_ring_stop(struct netdev_queue * nd_q,struct nfp_net_tx_ring * tx_ring)703 static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q,
704 struct nfp_net_tx_ring *tx_ring)
705 {
706 netif_tx_stop_queue(nd_q);
707
708 /* We can race with the TX completion out of NAPI so recheck */
709 smp_mb();
710 if (unlikely(nfp_net_tx_ring_should_wake(tx_ring)))
711 netif_tx_start_queue(nd_q);
712 }
713
714 /**
715 * nfp_net_tx_tso() - Set up Tx descriptor for LSO
716 * @r_vec: per-ring structure
717 * @txbuf: Pointer to driver soft TX descriptor
718 * @txd: Pointer to HW TX descriptor
719 * @skb: Pointer to SKB
720 * @md_bytes: Prepend length
721 *
722 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs.
723 * Return error on packet header greater than maximum supported LSO header size.
724 */
nfp_net_tx_tso(struct nfp_net_r_vector * r_vec,struct nfp_net_tx_buf * txbuf,struct nfp_net_tx_desc * txd,struct sk_buff * skb,u32 md_bytes)725 static void nfp_net_tx_tso(struct nfp_net_r_vector *r_vec,
726 struct nfp_net_tx_buf *txbuf,
727 struct nfp_net_tx_desc *txd, struct sk_buff *skb,
728 u32 md_bytes)
729 {
730 u32 l3_offset, l4_offset, hdrlen;
731 u16 mss;
732
733 if (!skb_is_gso(skb))
734 return;
735
736 if (!skb->encapsulation) {
737 l3_offset = skb_network_offset(skb);
738 l4_offset = skb_transport_offset(skb);
739 hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb);
740 } else {
741 l3_offset = skb_inner_network_offset(skb);
742 l4_offset = skb_inner_transport_offset(skb);
743 hdrlen = skb_inner_transport_header(skb) - skb->data +
744 inner_tcp_hdrlen(skb);
745 }
746
747 txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs;
748 txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1);
749
750 mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK;
751 txd->l3_offset = l3_offset - md_bytes;
752 txd->l4_offset = l4_offset - md_bytes;
753 txd->lso_hdrlen = hdrlen - md_bytes;
754 txd->mss = cpu_to_le16(mss);
755 txd->flags |= PCIE_DESC_TX_LSO;
756
757 u64_stats_update_begin(&r_vec->tx_sync);
758 r_vec->tx_lso++;
759 u64_stats_update_end(&r_vec->tx_sync);
760 }
761
762 /**
763 * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor
764 * @dp: NFP Net data path struct
765 * @r_vec: per-ring structure
766 * @txbuf: Pointer to driver soft TX descriptor
767 * @txd: Pointer to TX descriptor
768 * @skb: Pointer to SKB
769 *
770 * This function sets the TX checksum flags in the TX descriptor based
771 * on the configuration and the protocol of the packet to be transmitted.
772 */
nfp_net_tx_csum(struct nfp_net_dp * dp,struct nfp_net_r_vector * r_vec,struct nfp_net_tx_buf * txbuf,struct nfp_net_tx_desc * txd,struct sk_buff * skb)773 static void nfp_net_tx_csum(struct nfp_net_dp *dp,
774 struct nfp_net_r_vector *r_vec,
775 struct nfp_net_tx_buf *txbuf,
776 struct nfp_net_tx_desc *txd, struct sk_buff *skb)
777 {
778 struct ipv6hdr *ipv6h;
779 struct iphdr *iph;
780 u8 l4_hdr;
781
782 if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM))
783 return;
784
785 if (skb->ip_summed != CHECKSUM_PARTIAL)
786 return;
787
788 txd->flags |= PCIE_DESC_TX_CSUM;
789 if (skb->encapsulation)
790 txd->flags |= PCIE_DESC_TX_ENCAP;
791
792 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
793 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
794
795 if (iph->version == 4) {
796 txd->flags |= PCIE_DESC_TX_IP4_CSUM;
797 l4_hdr = iph->protocol;
798 } else if (ipv6h->version == 6) {
799 l4_hdr = ipv6h->nexthdr;
800 } else {
801 nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version);
802 return;
803 }
804
805 switch (l4_hdr) {
806 case IPPROTO_TCP:
807 txd->flags |= PCIE_DESC_TX_TCP_CSUM;
808 break;
809 case IPPROTO_UDP:
810 txd->flags |= PCIE_DESC_TX_UDP_CSUM;
811 break;
812 default:
813 nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr);
814 return;
815 }
816
817 u64_stats_update_begin(&r_vec->tx_sync);
818 if (skb->encapsulation)
819 r_vec->hw_csum_tx_inner += txbuf->pkt_cnt;
820 else
821 r_vec->hw_csum_tx += txbuf->pkt_cnt;
822 u64_stats_update_end(&r_vec->tx_sync);
823 }
824
825 static struct sk_buff *
nfp_net_tls_tx(struct nfp_net_dp * dp,struct nfp_net_r_vector * r_vec,struct sk_buff * skb,u64 * tls_handle,int * nr_frags)826 nfp_net_tls_tx(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
827 struct sk_buff *skb, u64 *tls_handle, int *nr_frags)
828 {
829 #ifdef CONFIG_TLS_DEVICE
830 struct nfp_net_tls_offload_ctx *ntls;
831 struct sk_buff *nskb;
832 bool resync_pending;
833 u32 datalen, seq;
834
835 if (likely(!dp->ktls_tx))
836 return skb;
837 if (!skb->sk || !tls_is_sk_tx_device_offloaded(skb->sk))
838 return skb;
839
840 datalen = skb->len - (skb_transport_offset(skb) + tcp_hdrlen(skb));
841 seq = ntohl(tcp_hdr(skb)->seq);
842 ntls = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX);
843 resync_pending = tls_offload_tx_resync_pending(skb->sk);
844 if (unlikely(resync_pending || ntls->next_seq != seq)) {
845 /* Pure ACK out of order already */
846 if (!datalen)
847 return skb;
848
849 u64_stats_update_begin(&r_vec->tx_sync);
850 r_vec->tls_tx_fallback++;
851 u64_stats_update_end(&r_vec->tx_sync);
852
853 nskb = tls_encrypt_skb(skb);
854 if (!nskb) {
855 u64_stats_update_begin(&r_vec->tx_sync);
856 r_vec->tls_tx_no_fallback++;
857 u64_stats_update_end(&r_vec->tx_sync);
858 return NULL;
859 }
860 /* encryption wasn't necessary */
861 if (nskb == skb)
862 return skb;
863 /* we don't re-check ring space */
864 if (unlikely(skb_is_nonlinear(nskb))) {
865 nn_dp_warn(dp, "tls_encrypt_skb() produced fragmented frame\n");
866 u64_stats_update_begin(&r_vec->tx_sync);
867 r_vec->tx_errors++;
868 u64_stats_update_end(&r_vec->tx_sync);
869 dev_kfree_skb_any(nskb);
870 return NULL;
871 }
872
873 /* jump forward, a TX may have gotten lost, need to sync TX */
874 if (!resync_pending && seq - ntls->next_seq < U32_MAX / 4)
875 tls_offload_tx_resync_request(nskb->sk);
876
877 *nr_frags = 0;
878 return nskb;
879 }
880
881 if (datalen) {
882 u64_stats_update_begin(&r_vec->tx_sync);
883 if (!skb_is_gso(skb))
884 r_vec->hw_tls_tx++;
885 else
886 r_vec->hw_tls_tx += skb_shinfo(skb)->gso_segs;
887 u64_stats_update_end(&r_vec->tx_sync);
888 }
889
890 memcpy(tls_handle, ntls->fw_handle, sizeof(ntls->fw_handle));
891 ntls->next_seq += datalen;
892 #endif
893 return skb;
894 }
895
nfp_net_tls_tx_undo(struct sk_buff * skb,u64 tls_handle)896 static void nfp_net_tls_tx_undo(struct sk_buff *skb, u64 tls_handle)
897 {
898 #ifdef CONFIG_TLS_DEVICE
899 struct nfp_net_tls_offload_ctx *ntls;
900 u32 datalen, seq;
901
902 if (!tls_handle)
903 return;
904 if (WARN_ON_ONCE(!skb->sk || !tls_is_sk_tx_device_offloaded(skb->sk)))
905 return;
906
907 datalen = skb->len - (skb_transport_offset(skb) + tcp_hdrlen(skb));
908 seq = ntohl(tcp_hdr(skb)->seq);
909
910 ntls = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX);
911 if (ntls->next_seq == seq + datalen)
912 ntls->next_seq = seq;
913 else
914 WARN_ON_ONCE(1);
915 #endif
916 }
917
nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring * tx_ring)918 static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring)
919 {
920 wmb();
921 nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add);
922 tx_ring->wr_ptr_add = 0;
923 }
924
nfp_net_prep_tx_meta(struct sk_buff * skb,u64 tls_handle)925 static int nfp_net_prep_tx_meta(struct sk_buff *skb, u64 tls_handle)
926 {
927 struct metadata_dst *md_dst = skb_metadata_dst(skb);
928 unsigned char *data;
929 u32 meta_id = 0;
930 int md_bytes;
931
932 if (likely(!md_dst && !tls_handle))
933 return 0;
934 if (unlikely(md_dst && md_dst->type != METADATA_HW_PORT_MUX)) {
935 if (!tls_handle)
936 return 0;
937 md_dst = NULL;
938 }
939
940 md_bytes = 4 + !!md_dst * 4 + !!tls_handle * 8;
941
942 if (unlikely(skb_cow_head(skb, md_bytes)))
943 return -ENOMEM;
944
945 meta_id = 0;
946 data = skb_push(skb, md_bytes) + md_bytes;
947 if (md_dst) {
948 data -= 4;
949 put_unaligned_be32(md_dst->u.port_info.port_id, data);
950 meta_id = NFP_NET_META_PORTID;
951 }
952 if (tls_handle) {
953 /* conn handle is opaque, we just use u64 to be able to quickly
954 * compare it to zero
955 */
956 data -= 8;
957 memcpy(data, &tls_handle, sizeof(tls_handle));
958 meta_id <<= NFP_NET_META_FIELD_SIZE;
959 meta_id |= NFP_NET_META_CONN_HANDLE;
960 }
961
962 data -= 4;
963 put_unaligned_be32(meta_id, data);
964
965 return md_bytes;
966 }
967
968 /**
969 * nfp_net_tx() - Main transmit entry point
970 * @skb: SKB to transmit
971 * @netdev: netdev structure
972 *
973 * Return: NETDEV_TX_OK on success.
974 */
nfp_net_tx(struct sk_buff * skb,struct net_device * netdev)975 static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev)
976 {
977 struct nfp_net *nn = netdev_priv(netdev);
978 const skb_frag_t *frag;
979 int f, nr_frags, wr_idx, md_bytes;
980 struct nfp_net_tx_ring *tx_ring;
981 struct nfp_net_r_vector *r_vec;
982 struct nfp_net_tx_buf *txbuf;
983 struct nfp_net_tx_desc *txd;
984 struct netdev_queue *nd_q;
985 struct nfp_net_dp *dp;
986 dma_addr_t dma_addr;
987 unsigned int fsize;
988 u64 tls_handle = 0;
989 u16 qidx;
990
991 dp = &nn->dp;
992 qidx = skb_get_queue_mapping(skb);
993 tx_ring = &dp->tx_rings[qidx];
994 r_vec = tx_ring->r_vec;
995
996 nr_frags = skb_shinfo(skb)->nr_frags;
997
998 if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) {
999 nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n",
1000 qidx, tx_ring->wr_p, tx_ring->rd_p);
1001 nd_q = netdev_get_tx_queue(dp->netdev, qidx);
1002 netif_tx_stop_queue(nd_q);
1003 nfp_net_tx_xmit_more_flush(tx_ring);
1004 u64_stats_update_begin(&r_vec->tx_sync);
1005 r_vec->tx_busy++;
1006 u64_stats_update_end(&r_vec->tx_sync);
1007 return NETDEV_TX_BUSY;
1008 }
1009
1010 skb = nfp_net_tls_tx(dp, r_vec, skb, &tls_handle, &nr_frags);
1011 if (unlikely(!skb)) {
1012 nfp_net_tx_xmit_more_flush(tx_ring);
1013 return NETDEV_TX_OK;
1014 }
1015
1016 md_bytes = nfp_net_prep_tx_meta(skb, tls_handle);
1017 if (unlikely(md_bytes < 0))
1018 goto err_flush;
1019
1020 /* Start with the head skbuf */
1021 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
1022 DMA_TO_DEVICE);
1023 if (dma_mapping_error(dp->dev, dma_addr))
1024 goto err_dma_err;
1025
1026 wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
1027
1028 /* Stash the soft descriptor of the head then initialize it */
1029 txbuf = &tx_ring->txbufs[wr_idx];
1030 txbuf->skb = skb;
1031 txbuf->dma_addr = dma_addr;
1032 txbuf->fidx = -1;
1033 txbuf->pkt_cnt = 1;
1034 txbuf->real_len = skb->len;
1035
1036 /* Build TX descriptor */
1037 txd = &tx_ring->txds[wr_idx];
1038 txd->offset_eop = (nr_frags ? 0 : PCIE_DESC_TX_EOP) | md_bytes;
1039 txd->dma_len = cpu_to_le16(skb_headlen(skb));
1040 nfp_desc_set_dma_addr(txd, dma_addr);
1041 txd->data_len = cpu_to_le16(skb->len);
1042
1043 txd->flags = 0;
1044 txd->mss = 0;
1045 txd->lso_hdrlen = 0;
1046
1047 /* Do not reorder - tso may adjust pkt cnt, vlan may override fields */
1048 nfp_net_tx_tso(r_vec, txbuf, txd, skb, md_bytes);
1049 nfp_net_tx_csum(dp, r_vec, txbuf, txd, skb);
1050 if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) {
1051 txd->flags |= PCIE_DESC_TX_VLAN;
1052 txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
1053 }
1054
1055 /* Gather DMA */
1056 if (nr_frags > 0) {
1057 __le64 second_half;
1058
1059 /* all descs must match except for in addr, length and eop */
1060 second_half = txd->vals8[1];
1061
1062 for (f = 0; f < nr_frags; f++) {
1063 frag = &skb_shinfo(skb)->frags[f];
1064 fsize = skb_frag_size(frag);
1065
1066 dma_addr = skb_frag_dma_map(dp->dev, frag, 0,
1067 fsize, DMA_TO_DEVICE);
1068 if (dma_mapping_error(dp->dev, dma_addr))
1069 goto err_unmap;
1070
1071 wr_idx = D_IDX(tx_ring, wr_idx + 1);
1072 tx_ring->txbufs[wr_idx].skb = skb;
1073 tx_ring->txbufs[wr_idx].dma_addr = dma_addr;
1074 tx_ring->txbufs[wr_idx].fidx = f;
1075
1076 txd = &tx_ring->txds[wr_idx];
1077 txd->dma_len = cpu_to_le16(fsize);
1078 nfp_desc_set_dma_addr(txd, dma_addr);
1079 txd->offset_eop = md_bytes |
1080 ((f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0);
1081 txd->vals8[1] = second_half;
1082 }
1083
1084 u64_stats_update_begin(&r_vec->tx_sync);
1085 r_vec->tx_gather++;
1086 u64_stats_update_end(&r_vec->tx_sync);
1087 }
1088
1089 skb_tx_timestamp(skb);
1090
1091 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1092
1093 tx_ring->wr_p += nr_frags + 1;
1094 if (nfp_net_tx_ring_should_stop(tx_ring))
1095 nfp_net_tx_ring_stop(nd_q, tx_ring);
1096
1097 tx_ring->wr_ptr_add += nr_frags + 1;
1098 if (__netdev_tx_sent_queue(nd_q, txbuf->real_len, netdev_xmit_more()))
1099 nfp_net_tx_xmit_more_flush(tx_ring);
1100
1101 return NETDEV_TX_OK;
1102
1103 err_unmap:
1104 while (--f >= 0) {
1105 frag = &skb_shinfo(skb)->frags[f];
1106 dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
1107 skb_frag_size(frag), DMA_TO_DEVICE);
1108 tx_ring->txbufs[wr_idx].skb = NULL;
1109 tx_ring->txbufs[wr_idx].dma_addr = 0;
1110 tx_ring->txbufs[wr_idx].fidx = -2;
1111 wr_idx = wr_idx - 1;
1112 if (wr_idx < 0)
1113 wr_idx += tx_ring->cnt;
1114 }
1115 dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
1116 skb_headlen(skb), DMA_TO_DEVICE);
1117 tx_ring->txbufs[wr_idx].skb = NULL;
1118 tx_ring->txbufs[wr_idx].dma_addr = 0;
1119 tx_ring->txbufs[wr_idx].fidx = -2;
1120 err_dma_err:
1121 nn_dp_warn(dp, "Failed to map DMA TX buffer\n");
1122 err_flush:
1123 nfp_net_tx_xmit_more_flush(tx_ring);
1124 u64_stats_update_begin(&r_vec->tx_sync);
1125 r_vec->tx_errors++;
1126 u64_stats_update_end(&r_vec->tx_sync);
1127 nfp_net_tls_tx_undo(skb, tls_handle);
1128 dev_kfree_skb_any(skb);
1129 return NETDEV_TX_OK;
1130 }
1131
1132 /**
1133 * nfp_net_tx_complete() - Handled completed TX packets
1134 * @tx_ring: TX ring structure
1135 * @budget: NAPI budget (only used as bool to determine if in NAPI context)
1136 */
nfp_net_tx_complete(struct nfp_net_tx_ring * tx_ring,int budget)1137 static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring, int budget)
1138 {
1139 struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1140 struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1141 struct netdev_queue *nd_q;
1142 u32 done_pkts = 0, done_bytes = 0;
1143 u32 qcp_rd_p;
1144 int todo;
1145
1146 if (tx_ring->wr_p == tx_ring->rd_p)
1147 return;
1148
1149 /* Work out how many descriptors have been transmitted */
1150 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);
1151
1152 if (qcp_rd_p == tx_ring->qcp_rd_p)
1153 return;
1154
1155 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
1156
1157 while (todo--) {
1158 const skb_frag_t *frag;
1159 struct nfp_net_tx_buf *tx_buf;
1160 struct sk_buff *skb;
1161 int fidx, nr_frags;
1162 int idx;
1163
1164 idx = D_IDX(tx_ring, tx_ring->rd_p++);
1165 tx_buf = &tx_ring->txbufs[idx];
1166
1167 skb = tx_buf->skb;
1168 if (!skb)
1169 continue;
1170
1171 nr_frags = skb_shinfo(skb)->nr_frags;
1172 fidx = tx_buf->fidx;
1173
1174 if (fidx == -1) {
1175 /* unmap head */
1176 dma_unmap_single(dp->dev, tx_buf->dma_addr,
1177 skb_headlen(skb), DMA_TO_DEVICE);
1178
1179 done_pkts += tx_buf->pkt_cnt;
1180 done_bytes += tx_buf->real_len;
1181 } else {
1182 /* unmap fragment */
1183 frag = &skb_shinfo(skb)->frags[fidx];
1184 dma_unmap_page(dp->dev, tx_buf->dma_addr,
1185 skb_frag_size(frag), DMA_TO_DEVICE);
1186 }
1187
1188 /* check for last gather fragment */
1189 if (fidx == nr_frags - 1)
1190 napi_consume_skb(skb, budget);
1191
1192 tx_buf->dma_addr = 0;
1193 tx_buf->skb = NULL;
1194 tx_buf->fidx = -2;
1195 }
1196
1197 tx_ring->qcp_rd_p = qcp_rd_p;
1198
1199 u64_stats_update_begin(&r_vec->tx_sync);
1200 r_vec->tx_bytes += done_bytes;
1201 r_vec->tx_pkts += done_pkts;
1202 u64_stats_update_end(&r_vec->tx_sync);
1203
1204 if (!dp->netdev)
1205 return;
1206
1207 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1208 netdev_tx_completed_queue(nd_q, done_pkts, done_bytes);
1209 if (nfp_net_tx_ring_should_wake(tx_ring)) {
1210 /* Make sure TX thread will see updated tx_ring->rd_p */
1211 smp_mb();
1212
1213 if (unlikely(netif_tx_queue_stopped(nd_q)))
1214 netif_tx_wake_queue(nd_q);
1215 }
1216
1217 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
1218 "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
1219 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
1220 }
1221
nfp_net_xdp_complete(struct nfp_net_tx_ring * tx_ring)1222 static bool nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring)
1223 {
1224 struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1225 u32 done_pkts = 0, done_bytes = 0;
1226 bool done_all;
1227 int idx, todo;
1228 u32 qcp_rd_p;
1229
1230 /* Work out how many descriptors have been transmitted */
1231 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);
1232
1233 if (qcp_rd_p == tx_ring->qcp_rd_p)
1234 return true;
1235
1236 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
1237
1238 done_all = todo <= NFP_NET_XDP_MAX_COMPLETE;
1239 todo = min(todo, NFP_NET_XDP_MAX_COMPLETE);
1240
1241 tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + todo);
1242
1243 done_pkts = todo;
1244 while (todo--) {
1245 idx = D_IDX(tx_ring, tx_ring->rd_p);
1246 tx_ring->rd_p++;
1247
1248 done_bytes += tx_ring->txbufs[idx].real_len;
1249 }
1250
1251 u64_stats_update_begin(&r_vec->tx_sync);
1252 r_vec->tx_bytes += done_bytes;
1253 r_vec->tx_pkts += done_pkts;
1254 u64_stats_update_end(&r_vec->tx_sync);
1255
1256 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
1257 "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
1258 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
1259
1260 return done_all;
1261 }
1262
1263 /**
1264 * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers
1265 * @dp: NFP Net data path struct
1266 * @tx_ring: TX ring structure
1267 *
1268 * Assumes that the device is stopped, must be idempotent.
1269 */
1270 static void
nfp_net_tx_ring_reset(struct nfp_net_dp * dp,struct nfp_net_tx_ring * tx_ring)1271 nfp_net_tx_ring_reset(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
1272 {
1273 const skb_frag_t *frag;
1274 struct netdev_queue *nd_q;
1275
1276 while (!tx_ring->is_xdp && tx_ring->rd_p != tx_ring->wr_p) {
1277 struct nfp_net_tx_buf *tx_buf;
1278 struct sk_buff *skb;
1279 int idx, nr_frags;
1280
1281 idx = D_IDX(tx_ring, tx_ring->rd_p);
1282 tx_buf = &tx_ring->txbufs[idx];
1283
1284 skb = tx_ring->txbufs[idx].skb;
1285 nr_frags = skb_shinfo(skb)->nr_frags;
1286
1287 if (tx_buf->fidx == -1) {
1288 /* unmap head */
1289 dma_unmap_single(dp->dev, tx_buf->dma_addr,
1290 skb_headlen(skb), DMA_TO_DEVICE);
1291 } else {
1292 /* unmap fragment */
1293 frag = &skb_shinfo(skb)->frags[tx_buf->fidx];
1294 dma_unmap_page(dp->dev, tx_buf->dma_addr,
1295 skb_frag_size(frag), DMA_TO_DEVICE);
1296 }
1297
1298 /* check for last gather fragment */
1299 if (tx_buf->fidx == nr_frags - 1)
1300 dev_kfree_skb_any(skb);
1301
1302 tx_buf->dma_addr = 0;
1303 tx_buf->skb = NULL;
1304 tx_buf->fidx = -2;
1305
1306 tx_ring->qcp_rd_p++;
1307 tx_ring->rd_p++;
1308 }
1309
1310 memset(tx_ring->txds, 0, tx_ring->size);
1311 tx_ring->wr_p = 0;
1312 tx_ring->rd_p = 0;
1313 tx_ring->qcp_rd_p = 0;
1314 tx_ring->wr_ptr_add = 0;
1315
1316 if (tx_ring->is_xdp || !dp->netdev)
1317 return;
1318
1319 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1320 netdev_tx_reset_queue(nd_q);
1321 }
1322
nfp_net_tx_timeout(struct net_device * netdev)1323 static void nfp_net_tx_timeout(struct net_device *netdev)
1324 {
1325 struct nfp_net *nn = netdev_priv(netdev);
1326 int i;
1327
1328 for (i = 0; i < nn->dp.netdev->real_num_tx_queues; i++) {
1329 if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i)))
1330 continue;
1331 nn_warn(nn, "TX timeout on ring: %d\n", i);
1332 }
1333 nn_warn(nn, "TX watchdog timeout\n");
1334 }
1335
1336 /* Receive processing
1337 */
1338 static unsigned int
nfp_net_calc_fl_bufsz(struct nfp_net_dp * dp)1339 nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp)
1340 {
1341 unsigned int fl_bufsz;
1342
1343 fl_bufsz = NFP_NET_RX_BUF_HEADROOM;
1344 fl_bufsz += dp->rx_dma_off;
1345 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1346 fl_bufsz += NFP_NET_MAX_PREPEND;
1347 else
1348 fl_bufsz += dp->rx_offset;
1349 fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu;
1350
1351 fl_bufsz = SKB_DATA_ALIGN(fl_bufsz);
1352 fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1353
1354 return fl_bufsz;
1355 }
1356
1357 static void
nfp_net_free_frag(void * frag,bool xdp)1358 nfp_net_free_frag(void *frag, bool xdp)
1359 {
1360 if (!xdp)
1361 skb_free_frag(frag);
1362 else
1363 __free_page(virt_to_page(frag));
1364 }
1365
1366 /**
1367 * nfp_net_rx_alloc_one() - Allocate and map page frag for RX
1368 * @dp: NFP Net data path struct
1369 * @dma_addr: Pointer to storage for DMA address (output param)
1370 *
1371 * This function will allcate a new page frag, map it for DMA.
1372 *
1373 * Return: allocated page frag or NULL on failure.
1374 */
nfp_net_rx_alloc_one(struct nfp_net_dp * dp,dma_addr_t * dma_addr)1375 static void *nfp_net_rx_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1376 {
1377 void *frag;
1378
1379 if (!dp->xdp_prog) {
1380 frag = netdev_alloc_frag(dp->fl_bufsz);
1381 } else {
1382 struct page *page;
1383
1384 page = alloc_page(GFP_KERNEL);
1385 frag = page ? page_address(page) : NULL;
1386 }
1387 if (!frag) {
1388 nn_dp_warn(dp, "Failed to alloc receive page frag\n");
1389 return NULL;
1390 }
1391
1392 *dma_addr = nfp_net_dma_map_rx(dp, frag);
1393 if (dma_mapping_error(dp->dev, *dma_addr)) {
1394 nfp_net_free_frag(frag, dp->xdp_prog);
1395 nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1396 return NULL;
1397 }
1398
1399 return frag;
1400 }
1401
nfp_net_napi_alloc_one(struct nfp_net_dp * dp,dma_addr_t * dma_addr)1402 static void *nfp_net_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1403 {
1404 void *frag;
1405
1406 if (!dp->xdp_prog) {
1407 frag = napi_alloc_frag(dp->fl_bufsz);
1408 if (unlikely(!frag))
1409 return NULL;
1410 } else {
1411 struct page *page;
1412
1413 page = dev_alloc_page();
1414 if (unlikely(!page))
1415 return NULL;
1416 frag = page_address(page);
1417 }
1418
1419 *dma_addr = nfp_net_dma_map_rx(dp, frag);
1420 if (dma_mapping_error(dp->dev, *dma_addr)) {
1421 nfp_net_free_frag(frag, dp->xdp_prog);
1422 nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1423 return NULL;
1424 }
1425
1426 return frag;
1427 }
1428
1429 /**
1430 * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings
1431 * @dp: NFP Net data path struct
1432 * @rx_ring: RX ring structure
1433 * @frag: page fragment buffer
1434 * @dma_addr: DMA address of skb mapping
1435 */
nfp_net_rx_give_one(const struct nfp_net_dp * dp,struct nfp_net_rx_ring * rx_ring,void * frag,dma_addr_t dma_addr)1436 static void nfp_net_rx_give_one(const struct nfp_net_dp *dp,
1437 struct nfp_net_rx_ring *rx_ring,
1438 void *frag, dma_addr_t dma_addr)
1439 {
1440 unsigned int wr_idx;
1441
1442 wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
1443
1444 nfp_net_dma_sync_dev_rx(dp, dma_addr);
1445
1446 /* Stash SKB and DMA address away */
1447 rx_ring->rxbufs[wr_idx].frag = frag;
1448 rx_ring->rxbufs[wr_idx].dma_addr = dma_addr;
1449
1450 /* Fill freelist descriptor */
1451 rx_ring->rxds[wr_idx].fld.reserved = 0;
1452 rx_ring->rxds[wr_idx].fld.meta_len_dd = 0;
1453 nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld,
1454 dma_addr + dp->rx_dma_off);
1455
1456 rx_ring->wr_p++;
1457 if (!(rx_ring->wr_p % NFP_NET_FL_BATCH)) {
1458 /* Update write pointer of the freelist queue. Make
1459 * sure all writes are flushed before telling the hardware.
1460 */
1461 wmb();
1462 nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, NFP_NET_FL_BATCH);
1463 }
1464 }
1465
1466 /**
1467 * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable
1468 * @rx_ring: RX ring structure
1469 *
1470 * Assumes that the device is stopped, must be idempotent.
1471 */
nfp_net_rx_ring_reset(struct nfp_net_rx_ring * rx_ring)1472 static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring)
1473 {
1474 unsigned int wr_idx, last_idx;
1475
1476 /* wr_p == rd_p means ring was never fed FL bufs. RX rings are always
1477 * kept at cnt - 1 FL bufs.
1478 */
1479 if (rx_ring->wr_p == 0 && rx_ring->rd_p == 0)
1480 return;
1481
1482 /* Move the empty entry to the end of the list */
1483 wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
1484 last_idx = rx_ring->cnt - 1;
1485 rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr;
1486 rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag;
1487 rx_ring->rxbufs[last_idx].dma_addr = 0;
1488 rx_ring->rxbufs[last_idx].frag = NULL;
1489
1490 memset(rx_ring->rxds, 0, rx_ring->size);
1491 rx_ring->wr_p = 0;
1492 rx_ring->rd_p = 0;
1493 }
1494
1495 /**
1496 * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring
1497 * @dp: NFP Net data path struct
1498 * @rx_ring: RX ring to remove buffers from
1499 *
1500 * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1)
1501 * entries. After device is disabled nfp_net_rx_ring_reset() must be called
1502 * to restore required ring geometry.
1503 */
1504 static void
nfp_net_rx_ring_bufs_free(struct nfp_net_dp * dp,struct nfp_net_rx_ring * rx_ring)1505 nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp,
1506 struct nfp_net_rx_ring *rx_ring)
1507 {
1508 unsigned int i;
1509
1510 for (i = 0; i < rx_ring->cnt - 1; i++) {
1511 /* NULL skb can only happen when initial filling of the ring
1512 * fails to allocate enough buffers and calls here to free
1513 * already allocated ones.
1514 */
1515 if (!rx_ring->rxbufs[i].frag)
1516 continue;
1517
1518 nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr);
1519 nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog);
1520 rx_ring->rxbufs[i].dma_addr = 0;
1521 rx_ring->rxbufs[i].frag = NULL;
1522 }
1523 }
1524
1525 /**
1526 * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW)
1527 * @dp: NFP Net data path struct
1528 * @rx_ring: RX ring to remove buffers from
1529 */
1530 static int
nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp * dp,struct nfp_net_rx_ring * rx_ring)1531 nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp,
1532 struct nfp_net_rx_ring *rx_ring)
1533 {
1534 struct nfp_net_rx_buf *rxbufs;
1535 unsigned int i;
1536
1537 rxbufs = rx_ring->rxbufs;
1538
1539 for (i = 0; i < rx_ring->cnt - 1; i++) {
1540 rxbufs[i].frag = nfp_net_rx_alloc_one(dp, &rxbufs[i].dma_addr);
1541 if (!rxbufs[i].frag) {
1542 nfp_net_rx_ring_bufs_free(dp, rx_ring);
1543 return -ENOMEM;
1544 }
1545 }
1546
1547 return 0;
1548 }
1549
1550 /**
1551 * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW
1552 * @dp: NFP Net data path struct
1553 * @rx_ring: RX ring to fill
1554 */
1555 static void
nfp_net_rx_ring_fill_freelist(struct nfp_net_dp * dp,struct nfp_net_rx_ring * rx_ring)1556 nfp_net_rx_ring_fill_freelist(struct nfp_net_dp *dp,
1557 struct nfp_net_rx_ring *rx_ring)
1558 {
1559 unsigned int i;
1560
1561 for (i = 0; i < rx_ring->cnt - 1; i++)
1562 nfp_net_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag,
1563 rx_ring->rxbufs[i].dma_addr);
1564 }
1565
1566 /**
1567 * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors
1568 * @flags: RX descriptor flags field in CPU byte order
1569 */
nfp_net_rx_csum_has_errors(u16 flags)1570 static int nfp_net_rx_csum_has_errors(u16 flags)
1571 {
1572 u16 csum_all_checked, csum_all_ok;
1573
1574 csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL;
1575 csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK;
1576
1577 return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT);
1578 }
1579
1580 /**
1581 * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags
1582 * @dp: NFP Net data path struct
1583 * @r_vec: per-ring structure
1584 * @rxd: Pointer to RX descriptor
1585 * @meta: Parsed metadata prepend
1586 * @skb: Pointer to SKB
1587 */
nfp_net_rx_csum(struct nfp_net_dp * dp,struct nfp_net_r_vector * r_vec,struct nfp_net_rx_desc * rxd,struct nfp_meta_parsed * meta,struct sk_buff * skb)1588 static void nfp_net_rx_csum(struct nfp_net_dp *dp,
1589 struct nfp_net_r_vector *r_vec,
1590 struct nfp_net_rx_desc *rxd,
1591 struct nfp_meta_parsed *meta, struct sk_buff *skb)
1592 {
1593 skb_checksum_none_assert(skb);
1594
1595 if (!(dp->netdev->features & NETIF_F_RXCSUM))
1596 return;
1597
1598 if (meta->csum_type) {
1599 skb->ip_summed = meta->csum_type;
1600 skb->csum = meta->csum;
1601 u64_stats_update_begin(&r_vec->rx_sync);
1602 r_vec->hw_csum_rx_complete++;
1603 u64_stats_update_end(&r_vec->rx_sync);
1604 return;
1605 }
1606
1607 if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) {
1608 u64_stats_update_begin(&r_vec->rx_sync);
1609 r_vec->hw_csum_rx_error++;
1610 u64_stats_update_end(&r_vec->rx_sync);
1611 return;
1612 }
1613
1614 /* Assume that the firmware will never report inner CSUM_OK unless outer
1615 * L4 headers were successfully parsed. FW will always report zero UDP
1616 * checksum as CSUM_OK.
1617 */
1618 if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK ||
1619 rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) {
1620 __skb_incr_checksum_unnecessary(skb);
1621 u64_stats_update_begin(&r_vec->rx_sync);
1622 r_vec->hw_csum_rx_ok++;
1623 u64_stats_update_end(&r_vec->rx_sync);
1624 }
1625
1626 if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK ||
1627 rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) {
1628 __skb_incr_checksum_unnecessary(skb);
1629 u64_stats_update_begin(&r_vec->rx_sync);
1630 r_vec->hw_csum_rx_inner_ok++;
1631 u64_stats_update_end(&r_vec->rx_sync);
1632 }
1633 }
1634
1635 static void
nfp_net_set_hash(struct net_device * netdev,struct nfp_meta_parsed * meta,unsigned int type,__be32 * hash)1636 nfp_net_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta,
1637 unsigned int type, __be32 *hash)
1638 {
1639 if (!(netdev->features & NETIF_F_RXHASH))
1640 return;
1641
1642 switch (type) {
1643 case NFP_NET_RSS_IPV4:
1644 case NFP_NET_RSS_IPV6:
1645 case NFP_NET_RSS_IPV6_EX:
1646 meta->hash_type = PKT_HASH_TYPE_L3;
1647 break;
1648 default:
1649 meta->hash_type = PKT_HASH_TYPE_L4;
1650 break;
1651 }
1652
1653 meta->hash = get_unaligned_be32(hash);
1654 }
1655
1656 static void
nfp_net_set_hash_desc(struct net_device * netdev,struct nfp_meta_parsed * meta,void * data,struct nfp_net_rx_desc * rxd)1657 nfp_net_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta,
1658 void *data, struct nfp_net_rx_desc *rxd)
1659 {
1660 struct nfp_net_rx_hash *rx_hash = data;
1661
1662 if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS))
1663 return;
1664
1665 nfp_net_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type),
1666 &rx_hash->hash);
1667 }
1668
1669 static void *
nfp_net_parse_meta(struct net_device * netdev,struct nfp_meta_parsed * meta,void * data,int meta_len)1670 nfp_net_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta,
1671 void *data, int meta_len)
1672 {
1673 u32 meta_info;
1674
1675 meta_info = get_unaligned_be32(data);
1676 data += 4;
1677
1678 while (meta_info) {
1679 switch (meta_info & NFP_NET_META_FIELD_MASK) {
1680 case NFP_NET_META_HASH:
1681 meta_info >>= NFP_NET_META_FIELD_SIZE;
1682 nfp_net_set_hash(netdev, meta,
1683 meta_info & NFP_NET_META_FIELD_MASK,
1684 (__be32 *)data);
1685 data += 4;
1686 break;
1687 case NFP_NET_META_MARK:
1688 meta->mark = get_unaligned_be32(data);
1689 data += 4;
1690 break;
1691 case NFP_NET_META_PORTID:
1692 meta->portid = get_unaligned_be32(data);
1693 data += 4;
1694 break;
1695 case NFP_NET_META_CSUM:
1696 meta->csum_type = CHECKSUM_COMPLETE;
1697 meta->csum =
1698 (__force __wsum)__get_unaligned_cpu32(data);
1699 data += 4;
1700 break;
1701 default:
1702 return NULL;
1703 }
1704
1705 meta_info >>= NFP_NET_META_FIELD_SIZE;
1706 }
1707
1708 return data;
1709 }
1710
1711 static void
nfp_net_rx_drop(const struct nfp_net_dp * dp,struct nfp_net_r_vector * r_vec,struct nfp_net_rx_ring * rx_ring,struct nfp_net_rx_buf * rxbuf,struct sk_buff * skb)1712 nfp_net_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
1713 struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf,
1714 struct sk_buff *skb)
1715 {
1716 u64_stats_update_begin(&r_vec->rx_sync);
1717 r_vec->rx_drops++;
1718 /* If we have both skb and rxbuf the replacement buffer allocation
1719 * must have failed, count this as an alloc failure.
1720 */
1721 if (skb && rxbuf)
1722 r_vec->rx_replace_buf_alloc_fail++;
1723 u64_stats_update_end(&r_vec->rx_sync);
1724
1725 /* skb is build based on the frag, free_skb() would free the frag
1726 * so to be able to reuse it we need an extra ref.
1727 */
1728 if (skb && rxbuf && skb->head == rxbuf->frag)
1729 page_ref_inc(virt_to_head_page(rxbuf->frag));
1730 if (rxbuf)
1731 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr);
1732 if (skb)
1733 dev_kfree_skb_any(skb);
1734 }
1735
1736 static bool
nfp_net_tx_xdp_buf(struct nfp_net_dp * dp,struct nfp_net_rx_ring * rx_ring,struct nfp_net_tx_ring * tx_ring,struct nfp_net_rx_buf * rxbuf,unsigned int dma_off,unsigned int pkt_len,bool * completed)1737 nfp_net_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring,
1738 struct nfp_net_tx_ring *tx_ring,
1739 struct nfp_net_rx_buf *rxbuf, unsigned int dma_off,
1740 unsigned int pkt_len, bool *completed)
1741 {
1742 struct nfp_net_tx_buf *txbuf;
1743 struct nfp_net_tx_desc *txd;
1744 int wr_idx;
1745
1746 if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1747 if (!*completed) {
1748 nfp_net_xdp_complete(tx_ring);
1749 *completed = true;
1750 }
1751
1752 if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1753 nfp_net_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf,
1754 NULL);
1755 return false;
1756 }
1757 }
1758
1759 wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
1760
1761 /* Stash the soft descriptor of the head then initialize it */
1762 txbuf = &tx_ring->txbufs[wr_idx];
1763
1764 nfp_net_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr);
1765
1766 txbuf->frag = rxbuf->frag;
1767 txbuf->dma_addr = rxbuf->dma_addr;
1768 txbuf->fidx = -1;
1769 txbuf->pkt_cnt = 1;
1770 txbuf->real_len = pkt_len;
1771
1772 dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off,
1773 pkt_len, DMA_BIDIRECTIONAL);
1774
1775 /* Build TX descriptor */
1776 txd = &tx_ring->txds[wr_idx];
1777 txd->offset_eop = PCIE_DESC_TX_EOP;
1778 txd->dma_len = cpu_to_le16(pkt_len);
1779 nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + dma_off);
1780 txd->data_len = cpu_to_le16(pkt_len);
1781
1782 txd->flags = 0;
1783 txd->mss = 0;
1784 txd->lso_hdrlen = 0;
1785
1786 tx_ring->wr_p++;
1787 tx_ring->wr_ptr_add++;
1788 return true;
1789 }
1790
1791 /**
1792 * nfp_net_rx() - receive up to @budget packets on @rx_ring
1793 * @rx_ring: RX ring to receive from
1794 * @budget: NAPI budget
1795 *
1796 * Note, this function is separated out from the napi poll function to
1797 * more cleanly separate packet receive code from other bookkeeping
1798 * functions performed in the napi poll function.
1799 *
1800 * Return: Number of packets received.
1801 */
nfp_net_rx(struct nfp_net_rx_ring * rx_ring,int budget)1802 static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget)
1803 {
1804 struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1805 struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1806 struct nfp_net_tx_ring *tx_ring;
1807 struct bpf_prog *xdp_prog;
1808 bool xdp_tx_cmpl = false;
1809 unsigned int true_bufsz;
1810 struct sk_buff *skb;
1811 int pkts_polled = 0;
1812 struct xdp_buff xdp;
1813 int idx;
1814
1815 rcu_read_lock();
1816 xdp_prog = READ_ONCE(dp->xdp_prog);
1817 true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz;
1818 xdp.rxq = &rx_ring->xdp_rxq;
1819 tx_ring = r_vec->xdp_ring;
1820
1821 while (pkts_polled < budget) {
1822 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
1823 struct nfp_net_rx_buf *rxbuf;
1824 struct nfp_net_rx_desc *rxd;
1825 struct nfp_meta_parsed meta;
1826 bool redir_egress = false;
1827 struct net_device *netdev;
1828 dma_addr_t new_dma_addr;
1829 u32 meta_len_xdp = 0;
1830 void *new_frag;
1831
1832 idx = D_IDX(rx_ring, rx_ring->rd_p);
1833
1834 rxd = &rx_ring->rxds[idx];
1835 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1836 break;
1837
1838 /* Memory barrier to ensure that we won't do other reads
1839 * before the DD bit.
1840 */
1841 dma_rmb();
1842
1843 memset(&meta, 0, sizeof(meta));
1844
1845 rx_ring->rd_p++;
1846 pkts_polled++;
1847
1848 rxbuf = &rx_ring->rxbufs[idx];
1849 /* < meta_len >
1850 * <-- [rx_offset] -->
1851 * ---------------------------------------------------------
1852 * | [XX] | metadata | packet | XXXX |
1853 * ---------------------------------------------------------
1854 * <---------------- data_len --------------->
1855 *
1856 * The rx_offset is fixed for all packets, the meta_len can vary
1857 * on a packet by packet basis. If rx_offset is set to zero
1858 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the
1859 * buffer and is immediately followed by the packet (no [XX]).
1860 */
1861 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
1862 data_len = le16_to_cpu(rxd->rxd.data_len);
1863 pkt_len = data_len - meta_len;
1864
1865 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
1866 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1867 pkt_off += meta_len;
1868 else
1869 pkt_off += dp->rx_offset;
1870 meta_off = pkt_off - meta_len;
1871
1872 /* Stats update */
1873 u64_stats_update_begin(&r_vec->rx_sync);
1874 r_vec->rx_pkts++;
1875 r_vec->rx_bytes += pkt_len;
1876 u64_stats_update_end(&r_vec->rx_sync);
1877
1878 if (unlikely(meta_len > NFP_NET_MAX_PREPEND ||
1879 (dp->rx_offset && meta_len > dp->rx_offset))) {
1880 nn_dp_warn(dp, "oversized RX packet metadata %u\n",
1881 meta_len);
1882 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1883 continue;
1884 }
1885
1886 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off,
1887 data_len);
1888
1889 if (!dp->chained_metadata_format) {
1890 nfp_net_set_hash_desc(dp->netdev, &meta,
1891 rxbuf->frag + meta_off, rxd);
1892 } else if (meta_len) {
1893 void *end;
1894
1895 end = nfp_net_parse_meta(dp->netdev, &meta,
1896 rxbuf->frag + meta_off,
1897 meta_len);
1898 if (unlikely(end != rxbuf->frag + pkt_off)) {
1899 nn_dp_warn(dp, "invalid RX packet metadata\n");
1900 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf,
1901 NULL);
1902 continue;
1903 }
1904 }
1905
1906 if (xdp_prog && !meta.portid) {
1907 void *orig_data = rxbuf->frag + pkt_off;
1908 unsigned int dma_off;
1909 int act;
1910
1911 xdp.data_hard_start = rxbuf->frag + NFP_NET_RX_BUF_HEADROOM;
1912 xdp.data = orig_data;
1913 xdp.data_meta = orig_data;
1914 xdp.data_end = orig_data + pkt_len;
1915
1916 act = bpf_prog_run_xdp(xdp_prog, &xdp);
1917
1918 pkt_len = xdp.data_end - xdp.data;
1919 pkt_off += xdp.data - orig_data;
1920
1921 switch (act) {
1922 case XDP_PASS:
1923 meta_len_xdp = xdp.data - xdp.data_meta;
1924 break;
1925 case XDP_TX:
1926 dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM;
1927 if (unlikely(!nfp_net_tx_xdp_buf(dp, rx_ring,
1928 tx_ring, rxbuf,
1929 dma_off,
1930 pkt_len,
1931 &xdp_tx_cmpl)))
1932 trace_xdp_exception(dp->netdev,
1933 xdp_prog, act);
1934 continue;
1935 default:
1936 bpf_warn_invalid_xdp_action(act);
1937 /* fall through */
1938 case XDP_ABORTED:
1939 trace_xdp_exception(dp->netdev, xdp_prog, act);
1940 /* fall through */
1941 case XDP_DROP:
1942 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag,
1943 rxbuf->dma_addr);
1944 continue;
1945 }
1946 }
1947
1948 if (likely(!meta.portid)) {
1949 netdev = dp->netdev;
1950 } else if (meta.portid == NFP_META_PORT_ID_CTRL) {
1951 struct nfp_net *nn = netdev_priv(dp->netdev);
1952
1953 nfp_app_ctrl_rx_raw(nn->app, rxbuf->frag + pkt_off,
1954 pkt_len);
1955 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag,
1956 rxbuf->dma_addr);
1957 continue;
1958 } else {
1959 struct nfp_net *nn;
1960
1961 nn = netdev_priv(dp->netdev);
1962 netdev = nfp_app_dev_get(nn->app, meta.portid,
1963 &redir_egress);
1964 if (unlikely(!netdev)) {
1965 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf,
1966 NULL);
1967 continue;
1968 }
1969
1970 if (nfp_netdev_is_nfp_repr(netdev))
1971 nfp_repr_inc_rx_stats(netdev, pkt_len);
1972 }
1973
1974 skb = build_skb(rxbuf->frag, true_bufsz);
1975 if (unlikely(!skb)) {
1976 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1977 continue;
1978 }
1979 new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
1980 if (unlikely(!new_frag)) {
1981 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
1982 continue;
1983 }
1984
1985 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
1986
1987 nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
1988
1989 skb_reserve(skb, pkt_off);
1990 skb_put(skb, pkt_len);
1991
1992 skb->mark = meta.mark;
1993 skb_set_hash(skb, meta.hash, meta.hash_type);
1994
1995 skb_record_rx_queue(skb, rx_ring->idx);
1996 skb->protocol = eth_type_trans(skb, netdev);
1997
1998 nfp_net_rx_csum(dp, r_vec, rxd, &meta, skb);
1999
2000 #ifdef CONFIG_TLS_DEVICE
2001 if (rxd->rxd.flags & PCIE_DESC_RX_DECRYPTED) {
2002 skb->decrypted = true;
2003 u64_stats_update_begin(&r_vec->rx_sync);
2004 r_vec->hw_tls_rx++;
2005 u64_stats_update_end(&r_vec->rx_sync);
2006 }
2007 #endif
2008
2009 if (rxd->rxd.flags & PCIE_DESC_RX_VLAN)
2010 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2011 le16_to_cpu(rxd->rxd.vlan));
2012 if (meta_len_xdp)
2013 skb_metadata_set(skb, meta_len_xdp);
2014
2015 if (likely(!redir_egress)) {
2016 napi_gro_receive(&rx_ring->r_vec->napi, skb);
2017 } else {
2018 skb->dev = netdev;
2019 skb_reset_network_header(skb);
2020 __skb_push(skb, ETH_HLEN);
2021 dev_queue_xmit(skb);
2022 }
2023 }
2024
2025 if (xdp_prog) {
2026 if (tx_ring->wr_ptr_add)
2027 nfp_net_tx_xmit_more_flush(tx_ring);
2028 else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) &&
2029 !xdp_tx_cmpl)
2030 if (!nfp_net_xdp_complete(tx_ring))
2031 pkts_polled = budget;
2032 }
2033 rcu_read_unlock();
2034
2035 return pkts_polled;
2036 }
2037
2038 /**
2039 * nfp_net_poll() - napi poll function
2040 * @napi: NAPI structure
2041 * @budget: NAPI budget
2042 *
2043 * Return: number of packets polled.
2044 */
nfp_net_poll(struct napi_struct * napi,int budget)2045 static int nfp_net_poll(struct napi_struct *napi, int budget)
2046 {
2047 struct nfp_net_r_vector *r_vec =
2048 container_of(napi, struct nfp_net_r_vector, napi);
2049 unsigned int pkts_polled = 0;
2050
2051 if (r_vec->tx_ring)
2052 nfp_net_tx_complete(r_vec->tx_ring, budget);
2053 if (r_vec->rx_ring)
2054 pkts_polled = nfp_net_rx(r_vec->rx_ring, budget);
2055
2056 if (pkts_polled < budget)
2057 if (napi_complete_done(napi, pkts_polled))
2058 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
2059
2060 return pkts_polled;
2061 }
2062
2063 /* Control device data path
2064 */
2065
2066 static bool
nfp_ctrl_tx_one(struct nfp_net * nn,struct nfp_net_r_vector * r_vec,struct sk_buff * skb,bool old)2067 nfp_ctrl_tx_one(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
2068 struct sk_buff *skb, bool old)
2069 {
2070 unsigned int real_len = skb->len, meta_len = 0;
2071 struct nfp_net_tx_ring *tx_ring;
2072 struct nfp_net_tx_buf *txbuf;
2073 struct nfp_net_tx_desc *txd;
2074 struct nfp_net_dp *dp;
2075 dma_addr_t dma_addr;
2076 int wr_idx;
2077
2078 dp = &r_vec->nfp_net->dp;
2079 tx_ring = r_vec->tx_ring;
2080
2081 if (WARN_ON_ONCE(skb_shinfo(skb)->nr_frags)) {
2082 nn_dp_warn(dp, "Driver's CTRL TX does not implement gather\n");
2083 goto err_free;
2084 }
2085
2086 if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
2087 u64_stats_update_begin(&r_vec->tx_sync);
2088 r_vec->tx_busy++;
2089 u64_stats_update_end(&r_vec->tx_sync);
2090 if (!old)
2091 __skb_queue_tail(&r_vec->queue, skb);
2092 else
2093 __skb_queue_head(&r_vec->queue, skb);
2094 return true;
2095 }
2096
2097 if (nfp_app_ctrl_has_meta(nn->app)) {
2098 if (unlikely(skb_headroom(skb) < 8)) {
2099 nn_dp_warn(dp, "CTRL TX on skb without headroom\n");
2100 goto err_free;
2101 }
2102 meta_len = 8;
2103 put_unaligned_be32(NFP_META_PORT_ID_CTRL, skb_push(skb, 4));
2104 put_unaligned_be32(NFP_NET_META_PORTID, skb_push(skb, 4));
2105 }
2106
2107 /* Start with the head skbuf */
2108 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
2109 DMA_TO_DEVICE);
2110 if (dma_mapping_error(dp->dev, dma_addr))
2111 goto err_dma_warn;
2112
2113 wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
2114
2115 /* Stash the soft descriptor of the head then initialize it */
2116 txbuf = &tx_ring->txbufs[wr_idx];
2117 txbuf->skb = skb;
2118 txbuf->dma_addr = dma_addr;
2119 txbuf->fidx = -1;
2120 txbuf->pkt_cnt = 1;
2121 txbuf->real_len = real_len;
2122
2123 /* Build TX descriptor */
2124 txd = &tx_ring->txds[wr_idx];
2125 txd->offset_eop = meta_len | PCIE_DESC_TX_EOP;
2126 txd->dma_len = cpu_to_le16(skb_headlen(skb));
2127 nfp_desc_set_dma_addr(txd, dma_addr);
2128 txd->data_len = cpu_to_le16(skb->len);
2129
2130 txd->flags = 0;
2131 txd->mss = 0;
2132 txd->lso_hdrlen = 0;
2133
2134 tx_ring->wr_p++;
2135 tx_ring->wr_ptr_add++;
2136 nfp_net_tx_xmit_more_flush(tx_ring);
2137
2138 return false;
2139
2140 err_dma_warn:
2141 nn_dp_warn(dp, "Failed to DMA map TX CTRL buffer\n");
2142 err_free:
2143 u64_stats_update_begin(&r_vec->tx_sync);
2144 r_vec->tx_errors++;
2145 u64_stats_update_end(&r_vec->tx_sync);
2146 dev_kfree_skb_any(skb);
2147 return false;
2148 }
2149
__nfp_ctrl_tx(struct nfp_net * nn,struct sk_buff * skb)2150 bool __nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb)
2151 {
2152 struct nfp_net_r_vector *r_vec = &nn->r_vecs[0];
2153
2154 return nfp_ctrl_tx_one(nn, r_vec, skb, false);
2155 }
2156
nfp_ctrl_tx(struct nfp_net * nn,struct sk_buff * skb)2157 bool nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb)
2158 {
2159 struct nfp_net_r_vector *r_vec = &nn->r_vecs[0];
2160 bool ret;
2161
2162 spin_lock_bh(&r_vec->lock);
2163 ret = nfp_ctrl_tx_one(nn, r_vec, skb, false);
2164 spin_unlock_bh(&r_vec->lock);
2165
2166 return ret;
2167 }
2168
__nfp_ctrl_tx_queued(struct nfp_net_r_vector * r_vec)2169 static void __nfp_ctrl_tx_queued(struct nfp_net_r_vector *r_vec)
2170 {
2171 struct sk_buff *skb;
2172
2173 while ((skb = __skb_dequeue(&r_vec->queue)))
2174 if (nfp_ctrl_tx_one(r_vec->nfp_net, r_vec, skb, true))
2175 return;
2176 }
2177
2178 static bool
nfp_ctrl_meta_ok(struct nfp_net * nn,void * data,unsigned int meta_len)2179 nfp_ctrl_meta_ok(struct nfp_net *nn, void *data, unsigned int meta_len)
2180 {
2181 u32 meta_type, meta_tag;
2182
2183 if (!nfp_app_ctrl_has_meta(nn->app))
2184 return !meta_len;
2185
2186 if (meta_len != 8)
2187 return false;
2188
2189 meta_type = get_unaligned_be32(data);
2190 meta_tag = get_unaligned_be32(data + 4);
2191
2192 return (meta_type == NFP_NET_META_PORTID &&
2193 meta_tag == NFP_META_PORT_ID_CTRL);
2194 }
2195
2196 static bool
nfp_ctrl_rx_one(struct nfp_net * nn,struct nfp_net_dp * dp,struct nfp_net_r_vector * r_vec,struct nfp_net_rx_ring * rx_ring)2197 nfp_ctrl_rx_one(struct nfp_net *nn, struct nfp_net_dp *dp,
2198 struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring)
2199 {
2200 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
2201 struct nfp_net_rx_buf *rxbuf;
2202 struct nfp_net_rx_desc *rxd;
2203 dma_addr_t new_dma_addr;
2204 struct sk_buff *skb;
2205 void *new_frag;
2206 int idx;
2207
2208 idx = D_IDX(rx_ring, rx_ring->rd_p);
2209
2210 rxd = &rx_ring->rxds[idx];
2211 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
2212 return false;
2213
2214 /* Memory barrier to ensure that we won't do other reads
2215 * before the DD bit.
2216 */
2217 dma_rmb();
2218
2219 rx_ring->rd_p++;
2220
2221 rxbuf = &rx_ring->rxbufs[idx];
2222 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
2223 data_len = le16_to_cpu(rxd->rxd.data_len);
2224 pkt_len = data_len - meta_len;
2225
2226 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
2227 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
2228 pkt_off += meta_len;
2229 else
2230 pkt_off += dp->rx_offset;
2231 meta_off = pkt_off - meta_len;
2232
2233 /* Stats update */
2234 u64_stats_update_begin(&r_vec->rx_sync);
2235 r_vec->rx_pkts++;
2236 r_vec->rx_bytes += pkt_len;
2237 u64_stats_update_end(&r_vec->rx_sync);
2238
2239 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, data_len);
2240
2241 if (unlikely(!nfp_ctrl_meta_ok(nn, rxbuf->frag + meta_off, meta_len))) {
2242 nn_dp_warn(dp, "incorrect metadata for ctrl packet (%d)\n",
2243 meta_len);
2244 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
2245 return true;
2246 }
2247
2248 skb = build_skb(rxbuf->frag, dp->fl_bufsz);
2249 if (unlikely(!skb)) {
2250 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
2251 return true;
2252 }
2253 new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
2254 if (unlikely(!new_frag)) {
2255 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
2256 return true;
2257 }
2258
2259 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
2260
2261 nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
2262
2263 skb_reserve(skb, pkt_off);
2264 skb_put(skb, pkt_len);
2265
2266 nfp_app_ctrl_rx(nn->app, skb);
2267
2268 return true;
2269 }
2270
nfp_ctrl_rx(struct nfp_net_r_vector * r_vec)2271 static bool nfp_ctrl_rx(struct nfp_net_r_vector *r_vec)
2272 {
2273 struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring;
2274 struct nfp_net *nn = r_vec->nfp_net;
2275 struct nfp_net_dp *dp = &nn->dp;
2276 unsigned int budget = 512;
2277
2278 while (nfp_ctrl_rx_one(nn, dp, r_vec, rx_ring) && budget--)
2279 continue;
2280
2281 return budget;
2282 }
2283
nfp_ctrl_poll(unsigned long arg)2284 static void nfp_ctrl_poll(unsigned long arg)
2285 {
2286 struct nfp_net_r_vector *r_vec = (void *)arg;
2287
2288 spin_lock(&r_vec->lock);
2289 nfp_net_tx_complete(r_vec->tx_ring, 0);
2290 __nfp_ctrl_tx_queued(r_vec);
2291 spin_unlock(&r_vec->lock);
2292
2293 if (nfp_ctrl_rx(r_vec)) {
2294 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
2295 } else {
2296 tasklet_schedule(&r_vec->tasklet);
2297 nn_dp_warn(&r_vec->nfp_net->dp,
2298 "control message budget exceeded!\n");
2299 }
2300 }
2301
2302 /* Setup and Configuration
2303 */
2304
2305 /**
2306 * nfp_net_vecs_init() - Assign IRQs and setup rvecs.
2307 * @nn: NFP Network structure
2308 */
nfp_net_vecs_init(struct nfp_net * nn)2309 static void nfp_net_vecs_init(struct nfp_net *nn)
2310 {
2311 struct nfp_net_r_vector *r_vec;
2312 int r;
2313
2314 nn->lsc_handler = nfp_net_irq_lsc;
2315 nn->exn_handler = nfp_net_irq_exn;
2316
2317 for (r = 0; r < nn->max_r_vecs; r++) {
2318 struct msix_entry *entry;
2319
2320 entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r];
2321
2322 r_vec = &nn->r_vecs[r];
2323 r_vec->nfp_net = nn;
2324 r_vec->irq_entry = entry->entry;
2325 r_vec->irq_vector = entry->vector;
2326
2327 if (nn->dp.netdev) {
2328 r_vec->handler = nfp_net_irq_rxtx;
2329 } else {
2330 r_vec->handler = nfp_ctrl_irq_rxtx;
2331
2332 __skb_queue_head_init(&r_vec->queue);
2333 spin_lock_init(&r_vec->lock);
2334 tasklet_init(&r_vec->tasklet, nfp_ctrl_poll,
2335 (unsigned long)r_vec);
2336 tasklet_disable(&r_vec->tasklet);
2337 }
2338
2339 cpumask_set_cpu(r, &r_vec->affinity_mask);
2340 }
2341 }
2342
2343 /**
2344 * nfp_net_tx_ring_free() - Free resources allocated to a TX ring
2345 * @tx_ring: TX ring to free
2346 */
nfp_net_tx_ring_free(struct nfp_net_tx_ring * tx_ring)2347 static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring)
2348 {
2349 struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
2350 struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
2351
2352 kvfree(tx_ring->txbufs);
2353
2354 if (tx_ring->txds)
2355 dma_free_coherent(dp->dev, tx_ring->size,
2356 tx_ring->txds, tx_ring->dma);
2357
2358 tx_ring->cnt = 0;
2359 tx_ring->txbufs = NULL;
2360 tx_ring->txds = NULL;
2361 tx_ring->dma = 0;
2362 tx_ring->size = 0;
2363 }
2364
2365 /**
2366 * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring
2367 * @dp: NFP Net data path struct
2368 * @tx_ring: TX Ring structure to allocate
2369 *
2370 * Return: 0 on success, negative errno otherwise.
2371 */
2372 static int
nfp_net_tx_ring_alloc(struct nfp_net_dp * dp,struct nfp_net_tx_ring * tx_ring)2373 nfp_net_tx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
2374 {
2375 struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
2376
2377 tx_ring->cnt = dp->txd_cnt;
2378
2379 tx_ring->size = array_size(tx_ring->cnt, sizeof(*tx_ring->txds));
2380 tx_ring->txds = dma_alloc_coherent(dp->dev, tx_ring->size,
2381 &tx_ring->dma,
2382 GFP_KERNEL | __GFP_NOWARN);
2383 if (!tx_ring->txds) {
2384 netdev_warn(dp->netdev, "failed to allocate TX descriptor ring memory, requested descriptor count: %d, consider lowering descriptor count\n",
2385 tx_ring->cnt);
2386 goto err_alloc;
2387 }
2388
2389 tx_ring->txbufs = kvcalloc(tx_ring->cnt, sizeof(*tx_ring->txbufs),
2390 GFP_KERNEL);
2391 if (!tx_ring->txbufs)
2392 goto err_alloc;
2393
2394 if (!tx_ring->is_xdp && dp->netdev)
2395 netif_set_xps_queue(dp->netdev, &r_vec->affinity_mask,
2396 tx_ring->idx);
2397
2398 return 0;
2399
2400 err_alloc:
2401 nfp_net_tx_ring_free(tx_ring);
2402 return -ENOMEM;
2403 }
2404
2405 static void
nfp_net_tx_ring_bufs_free(struct nfp_net_dp * dp,struct nfp_net_tx_ring * tx_ring)2406 nfp_net_tx_ring_bufs_free(struct nfp_net_dp *dp,
2407 struct nfp_net_tx_ring *tx_ring)
2408 {
2409 unsigned int i;
2410
2411 if (!tx_ring->is_xdp)
2412 return;
2413
2414 for (i = 0; i < tx_ring->cnt; i++) {
2415 if (!tx_ring->txbufs[i].frag)
2416 return;
2417
2418 nfp_net_dma_unmap_rx(dp, tx_ring->txbufs[i].dma_addr);
2419 __free_page(virt_to_page(tx_ring->txbufs[i].frag));
2420 }
2421 }
2422
2423 static int
nfp_net_tx_ring_bufs_alloc(struct nfp_net_dp * dp,struct nfp_net_tx_ring * tx_ring)2424 nfp_net_tx_ring_bufs_alloc(struct nfp_net_dp *dp,
2425 struct nfp_net_tx_ring *tx_ring)
2426 {
2427 struct nfp_net_tx_buf *txbufs = tx_ring->txbufs;
2428 unsigned int i;
2429
2430 if (!tx_ring->is_xdp)
2431 return 0;
2432
2433 for (i = 0; i < tx_ring->cnt; i++) {
2434 txbufs[i].frag = nfp_net_rx_alloc_one(dp, &txbufs[i].dma_addr);
2435 if (!txbufs[i].frag) {
2436 nfp_net_tx_ring_bufs_free(dp, tx_ring);
2437 return -ENOMEM;
2438 }
2439 }
2440
2441 return 0;
2442 }
2443
nfp_net_tx_rings_prepare(struct nfp_net * nn,struct nfp_net_dp * dp)2444 static int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
2445 {
2446 unsigned int r;
2447
2448 dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings),
2449 GFP_KERNEL);
2450 if (!dp->tx_rings)
2451 return -ENOMEM;
2452
2453 for (r = 0; r < dp->num_tx_rings; r++) {
2454 int bias = 0;
2455
2456 if (r >= dp->num_stack_tx_rings)
2457 bias = dp->num_stack_tx_rings;
2458
2459 nfp_net_tx_ring_init(&dp->tx_rings[r], &nn->r_vecs[r - bias],
2460 r, bias);
2461
2462 if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r]))
2463 goto err_free_prev;
2464
2465 if (nfp_net_tx_ring_bufs_alloc(dp, &dp->tx_rings[r]))
2466 goto err_free_ring;
2467 }
2468
2469 return 0;
2470
2471 err_free_prev:
2472 while (r--) {
2473 nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
2474 err_free_ring:
2475 nfp_net_tx_ring_free(&dp->tx_rings[r]);
2476 }
2477 kfree(dp->tx_rings);
2478 return -ENOMEM;
2479 }
2480
nfp_net_tx_rings_free(struct nfp_net_dp * dp)2481 static void nfp_net_tx_rings_free(struct nfp_net_dp *dp)
2482 {
2483 unsigned int r;
2484
2485 for (r = 0; r < dp->num_tx_rings; r++) {
2486 nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
2487 nfp_net_tx_ring_free(&dp->tx_rings[r]);
2488 }
2489
2490 kfree(dp->tx_rings);
2491 }
2492
2493 /**
2494 * nfp_net_rx_ring_free() - Free resources allocated to a RX ring
2495 * @rx_ring: RX ring to free
2496 */
nfp_net_rx_ring_free(struct nfp_net_rx_ring * rx_ring)2497 static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring)
2498 {
2499 struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
2500 struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
2501
2502 if (dp->netdev)
2503 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
2504 kvfree(rx_ring->rxbufs);
2505
2506 if (rx_ring->rxds)
2507 dma_free_coherent(dp->dev, rx_ring->size,
2508 rx_ring->rxds, rx_ring->dma);
2509
2510 rx_ring->cnt = 0;
2511 rx_ring->rxbufs = NULL;
2512 rx_ring->rxds = NULL;
2513 rx_ring->dma = 0;
2514 rx_ring->size = 0;
2515 }
2516
2517 /**
2518 * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring
2519 * @dp: NFP Net data path struct
2520 * @rx_ring: RX ring to allocate
2521 *
2522 * Return: 0 on success, negative errno otherwise.
2523 */
2524 static int
nfp_net_rx_ring_alloc(struct nfp_net_dp * dp,struct nfp_net_rx_ring * rx_ring)2525 nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring)
2526 {
2527 int err;
2528
2529 if (dp->netdev) {
2530 err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, dp->netdev,
2531 rx_ring->idx);
2532 if (err < 0)
2533 return err;
2534 }
2535
2536 rx_ring->cnt = dp->rxd_cnt;
2537 rx_ring->size = array_size(rx_ring->cnt, sizeof(*rx_ring->rxds));
2538 rx_ring->rxds = dma_alloc_coherent(dp->dev, rx_ring->size,
2539 &rx_ring->dma,
2540 GFP_KERNEL | __GFP_NOWARN);
2541 if (!rx_ring->rxds) {
2542 netdev_warn(dp->netdev, "failed to allocate RX descriptor ring memory, requested descriptor count: %d, consider lowering descriptor count\n",
2543 rx_ring->cnt);
2544 goto err_alloc;
2545 }
2546
2547 rx_ring->rxbufs = kvcalloc(rx_ring->cnt, sizeof(*rx_ring->rxbufs),
2548 GFP_KERNEL);
2549 if (!rx_ring->rxbufs)
2550 goto err_alloc;
2551
2552 return 0;
2553
2554 err_alloc:
2555 nfp_net_rx_ring_free(rx_ring);
2556 return -ENOMEM;
2557 }
2558
nfp_net_rx_rings_prepare(struct nfp_net * nn,struct nfp_net_dp * dp)2559 static int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
2560 {
2561 unsigned int r;
2562
2563 dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings),
2564 GFP_KERNEL);
2565 if (!dp->rx_rings)
2566 return -ENOMEM;
2567
2568 for (r = 0; r < dp->num_rx_rings; r++) {
2569 nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r);
2570
2571 if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r]))
2572 goto err_free_prev;
2573
2574 if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r]))
2575 goto err_free_ring;
2576 }
2577
2578 return 0;
2579
2580 err_free_prev:
2581 while (r--) {
2582 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
2583 err_free_ring:
2584 nfp_net_rx_ring_free(&dp->rx_rings[r]);
2585 }
2586 kfree(dp->rx_rings);
2587 return -ENOMEM;
2588 }
2589
nfp_net_rx_rings_free(struct nfp_net_dp * dp)2590 static void nfp_net_rx_rings_free(struct nfp_net_dp *dp)
2591 {
2592 unsigned int r;
2593
2594 for (r = 0; r < dp->num_rx_rings; r++) {
2595 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
2596 nfp_net_rx_ring_free(&dp->rx_rings[r]);
2597 }
2598
2599 kfree(dp->rx_rings);
2600 }
2601
2602 static void
nfp_net_vector_assign_rings(struct nfp_net_dp * dp,struct nfp_net_r_vector * r_vec,int idx)2603 nfp_net_vector_assign_rings(struct nfp_net_dp *dp,
2604 struct nfp_net_r_vector *r_vec, int idx)
2605 {
2606 r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL;
2607 r_vec->tx_ring =
2608 idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL;
2609
2610 r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ?
2611 &dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL;
2612 }
2613
2614 static int
nfp_net_prepare_vector(struct nfp_net * nn,struct nfp_net_r_vector * r_vec,int idx)2615 nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
2616 int idx)
2617 {
2618 int err;
2619
2620 /* Setup NAPI */
2621 if (nn->dp.netdev)
2622 netif_napi_add(nn->dp.netdev, &r_vec->napi,
2623 nfp_net_poll, NAPI_POLL_WEIGHT);
2624 else
2625 tasklet_enable(&r_vec->tasklet);
2626
2627 snprintf(r_vec->name, sizeof(r_vec->name),
2628 "%s-rxtx-%d", nfp_net_name(nn), idx);
2629 err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name,
2630 r_vec);
2631 if (err) {
2632 if (nn->dp.netdev)
2633 netif_napi_del(&r_vec->napi);
2634 else
2635 tasklet_disable(&r_vec->tasklet);
2636
2637 nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector);
2638 return err;
2639 }
2640 disable_irq(r_vec->irq_vector);
2641
2642 irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask);
2643
2644 nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector,
2645 r_vec->irq_entry);
2646
2647 return 0;
2648 }
2649
2650 static void
nfp_net_cleanup_vector(struct nfp_net * nn,struct nfp_net_r_vector * r_vec)2651 nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec)
2652 {
2653 irq_set_affinity_hint(r_vec->irq_vector, NULL);
2654 if (nn->dp.netdev)
2655 netif_napi_del(&r_vec->napi);
2656 else
2657 tasklet_disable(&r_vec->tasklet);
2658
2659 free_irq(r_vec->irq_vector, r_vec);
2660 }
2661
2662 /**
2663 * nfp_net_rss_write_itbl() - Write RSS indirection table to device
2664 * @nn: NFP Net device to reconfigure
2665 */
nfp_net_rss_write_itbl(struct nfp_net * nn)2666 void nfp_net_rss_write_itbl(struct nfp_net *nn)
2667 {
2668 int i;
2669
2670 for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4)
2671 nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i,
2672 get_unaligned_le32(nn->rss_itbl + i));
2673 }
2674
2675 /**
2676 * nfp_net_rss_write_key() - Write RSS hash key to device
2677 * @nn: NFP Net device to reconfigure
2678 */
nfp_net_rss_write_key(struct nfp_net * nn)2679 void nfp_net_rss_write_key(struct nfp_net *nn)
2680 {
2681 int i;
2682
2683 for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4)
2684 nn_writel(nn, NFP_NET_CFG_RSS_KEY + i,
2685 get_unaligned_le32(nn->rss_key + i));
2686 }
2687
2688 /**
2689 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW
2690 * @nn: NFP Net device to reconfigure
2691 */
nfp_net_coalesce_write_cfg(struct nfp_net * nn)2692 void nfp_net_coalesce_write_cfg(struct nfp_net *nn)
2693 {
2694 u8 i;
2695 u32 factor;
2696 u32 value;
2697
2698 /* Compute factor used to convert coalesce '_usecs' parameters to
2699 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp
2700 * count.
2701 */
2702 factor = nn->tlv_caps.me_freq_mhz / 16;
2703
2704 /* copy RX interrupt coalesce parameters */
2705 value = (nn->rx_coalesce_max_frames << 16) |
2706 (factor * nn->rx_coalesce_usecs);
2707 for (i = 0; i < nn->dp.num_rx_rings; i++)
2708 nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value);
2709
2710 /* copy TX interrupt coalesce parameters */
2711 value = (nn->tx_coalesce_max_frames << 16) |
2712 (factor * nn->tx_coalesce_usecs);
2713 for (i = 0; i < nn->dp.num_tx_rings; i++)
2714 nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value);
2715 }
2716
2717 /**
2718 * nfp_net_write_mac_addr() - Write mac address to the device control BAR
2719 * @nn: NFP Net device to reconfigure
2720 * @addr: MAC address to write
2721 *
2722 * Writes the MAC address from the netdev to the device control BAR. Does not
2723 * perform the required reconfig. We do a bit of byte swapping dance because
2724 * firmware is LE.
2725 */
nfp_net_write_mac_addr(struct nfp_net * nn,const u8 * addr)2726 static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *addr)
2727 {
2728 nn_writel(nn, NFP_NET_CFG_MACADDR + 0, get_unaligned_be32(addr));
2729 nn_writew(nn, NFP_NET_CFG_MACADDR + 6, get_unaligned_be16(addr + 4));
2730 }
2731
nfp_net_vec_clear_ring_data(struct nfp_net * nn,unsigned int idx)2732 static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx)
2733 {
2734 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0);
2735 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0);
2736 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0);
2737
2738 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0);
2739 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0);
2740 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0);
2741 }
2742
2743 /**
2744 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP
2745 * @nn: NFP Net device to reconfigure
2746 *
2747 * Warning: must be fully idempotent.
2748 */
nfp_net_clear_config_and_disable(struct nfp_net * nn)2749 static void nfp_net_clear_config_and_disable(struct nfp_net *nn)
2750 {
2751 u32 new_ctrl, update;
2752 unsigned int r;
2753 int err;
2754
2755 new_ctrl = nn->dp.ctrl;
2756 new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE;
2757 update = NFP_NET_CFG_UPDATE_GEN;
2758 update |= NFP_NET_CFG_UPDATE_MSIX;
2759 update |= NFP_NET_CFG_UPDATE_RING;
2760
2761 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
2762 new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG;
2763
2764 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
2765 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
2766
2767 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2768 err = nfp_net_reconfig(nn, update);
2769 if (err)
2770 nn_err(nn, "Could not disable device: %d\n", err);
2771
2772 for (r = 0; r < nn->dp.num_rx_rings; r++)
2773 nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]);
2774 for (r = 0; r < nn->dp.num_tx_rings; r++)
2775 nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]);
2776 for (r = 0; r < nn->dp.num_r_vecs; r++)
2777 nfp_net_vec_clear_ring_data(nn, r);
2778
2779 nn->dp.ctrl = new_ctrl;
2780 }
2781
2782 static void
nfp_net_rx_ring_hw_cfg_write(struct nfp_net * nn,struct nfp_net_rx_ring * rx_ring,unsigned int idx)2783 nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn,
2784 struct nfp_net_rx_ring *rx_ring, unsigned int idx)
2785 {
2786 /* Write the DMA address, size and MSI-X info to the device */
2787 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma);
2788 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt));
2789 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry);
2790 }
2791
2792 static void
nfp_net_tx_ring_hw_cfg_write(struct nfp_net * nn,struct nfp_net_tx_ring * tx_ring,unsigned int idx)2793 nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn,
2794 struct nfp_net_tx_ring *tx_ring, unsigned int idx)
2795 {
2796 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma);
2797 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt));
2798 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry);
2799 }
2800
2801 /**
2802 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP
2803 * @nn: NFP Net device to reconfigure
2804 */
nfp_net_set_config_and_enable(struct nfp_net * nn)2805 static int nfp_net_set_config_and_enable(struct nfp_net *nn)
2806 {
2807 u32 bufsz, new_ctrl, update = 0;
2808 unsigned int r;
2809 int err;
2810
2811 new_ctrl = nn->dp.ctrl;
2812
2813 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS_ANY) {
2814 nfp_net_rss_write_key(nn);
2815 nfp_net_rss_write_itbl(nn);
2816 nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg);
2817 update |= NFP_NET_CFG_UPDATE_RSS;
2818 }
2819
2820 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) {
2821 nfp_net_coalesce_write_cfg(nn);
2822 update |= NFP_NET_CFG_UPDATE_IRQMOD;
2823 }
2824
2825 for (r = 0; r < nn->dp.num_tx_rings; r++)
2826 nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r);
2827 for (r = 0; r < nn->dp.num_rx_rings; r++)
2828 nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r);
2829
2830 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->dp.num_tx_rings == 64 ?
2831 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_tx_rings) - 1);
2832
2833 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->dp.num_rx_rings == 64 ?
2834 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_rx_rings) - 1);
2835
2836 if (nn->dp.netdev)
2837 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr);
2838
2839 nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.mtu);
2840
2841 bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA;
2842 nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz);
2843
2844 /* Enable device */
2845 new_ctrl |= NFP_NET_CFG_CTRL_ENABLE;
2846 update |= NFP_NET_CFG_UPDATE_GEN;
2847 update |= NFP_NET_CFG_UPDATE_MSIX;
2848 update |= NFP_NET_CFG_UPDATE_RING;
2849 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
2850 new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG;
2851
2852 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2853 err = nfp_net_reconfig(nn, update);
2854 if (err) {
2855 nfp_net_clear_config_and_disable(nn);
2856 return err;
2857 }
2858
2859 nn->dp.ctrl = new_ctrl;
2860
2861 for (r = 0; r < nn->dp.num_rx_rings; r++)
2862 nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]);
2863
2864 /* Since reconfiguration requests while NFP is down are ignored we
2865 * have to wipe the entire VXLAN configuration and reinitialize it.
2866 */
2867 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN) {
2868 memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports));
2869 memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt));
2870 udp_tunnel_get_rx_info(nn->dp.netdev);
2871 }
2872
2873 return 0;
2874 }
2875
2876 /**
2877 * nfp_net_close_stack() - Quiesce the stack (part of close)
2878 * @nn: NFP Net device to reconfigure
2879 */
nfp_net_close_stack(struct nfp_net * nn)2880 static void nfp_net_close_stack(struct nfp_net *nn)
2881 {
2882 unsigned int r;
2883
2884 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2885 netif_carrier_off(nn->dp.netdev);
2886 nn->link_up = false;
2887
2888 for (r = 0; r < nn->dp.num_r_vecs; r++) {
2889 disable_irq(nn->r_vecs[r].irq_vector);
2890 napi_disable(&nn->r_vecs[r].napi);
2891 }
2892
2893 netif_tx_disable(nn->dp.netdev);
2894 }
2895
2896 /**
2897 * nfp_net_close_free_all() - Free all runtime resources
2898 * @nn: NFP Net device to reconfigure
2899 */
nfp_net_close_free_all(struct nfp_net * nn)2900 static void nfp_net_close_free_all(struct nfp_net *nn)
2901 {
2902 unsigned int r;
2903
2904 nfp_net_tx_rings_free(&nn->dp);
2905 nfp_net_rx_rings_free(&nn->dp);
2906
2907 for (r = 0; r < nn->dp.num_r_vecs; r++)
2908 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2909
2910 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2911 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2912 }
2913
2914 /**
2915 * nfp_net_netdev_close() - Called when the device is downed
2916 * @netdev: netdev structure
2917 */
nfp_net_netdev_close(struct net_device * netdev)2918 static int nfp_net_netdev_close(struct net_device *netdev)
2919 {
2920 struct nfp_net *nn = netdev_priv(netdev);
2921
2922 /* Step 1: Disable RX and TX rings from the Linux kernel perspective
2923 */
2924 nfp_net_close_stack(nn);
2925
2926 /* Step 2: Tell NFP
2927 */
2928 nfp_net_clear_config_and_disable(nn);
2929 nfp_port_configure(netdev, false);
2930
2931 /* Step 3: Free resources
2932 */
2933 nfp_net_close_free_all(nn);
2934
2935 nn_dbg(nn, "%s down", netdev->name);
2936 return 0;
2937 }
2938
nfp_ctrl_close(struct nfp_net * nn)2939 void nfp_ctrl_close(struct nfp_net *nn)
2940 {
2941 int r;
2942
2943 rtnl_lock();
2944
2945 for (r = 0; r < nn->dp.num_r_vecs; r++) {
2946 disable_irq(nn->r_vecs[r].irq_vector);
2947 tasklet_disable(&nn->r_vecs[r].tasklet);
2948 }
2949
2950 nfp_net_clear_config_and_disable(nn);
2951
2952 nfp_net_close_free_all(nn);
2953
2954 rtnl_unlock();
2955 }
2956
2957 /**
2958 * nfp_net_open_stack() - Start the device from stack's perspective
2959 * @nn: NFP Net device to reconfigure
2960 */
nfp_net_open_stack(struct nfp_net * nn)2961 static void nfp_net_open_stack(struct nfp_net *nn)
2962 {
2963 unsigned int r;
2964
2965 for (r = 0; r < nn->dp.num_r_vecs; r++) {
2966 napi_enable(&nn->r_vecs[r].napi);
2967 enable_irq(nn->r_vecs[r].irq_vector);
2968 }
2969
2970 netif_tx_wake_all_queues(nn->dp.netdev);
2971
2972 enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2973 nfp_net_read_link_status(nn);
2974 }
2975
nfp_net_open_alloc_all(struct nfp_net * nn)2976 static int nfp_net_open_alloc_all(struct nfp_net *nn)
2977 {
2978 int err, r;
2979
2980 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn",
2981 nn->exn_name, sizeof(nn->exn_name),
2982 NFP_NET_IRQ_EXN_IDX, nn->exn_handler);
2983 if (err)
2984 return err;
2985 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc",
2986 nn->lsc_name, sizeof(nn->lsc_name),
2987 NFP_NET_IRQ_LSC_IDX, nn->lsc_handler);
2988 if (err)
2989 goto err_free_exn;
2990 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2991
2992 for (r = 0; r < nn->dp.num_r_vecs; r++) {
2993 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
2994 if (err)
2995 goto err_cleanup_vec_p;
2996 }
2997
2998 err = nfp_net_rx_rings_prepare(nn, &nn->dp);
2999 if (err)
3000 goto err_cleanup_vec;
3001
3002 err = nfp_net_tx_rings_prepare(nn, &nn->dp);
3003 if (err)
3004 goto err_free_rx_rings;
3005
3006 for (r = 0; r < nn->max_r_vecs; r++)
3007 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
3008
3009 return 0;
3010
3011 err_free_rx_rings:
3012 nfp_net_rx_rings_free(&nn->dp);
3013 err_cleanup_vec:
3014 r = nn->dp.num_r_vecs;
3015 err_cleanup_vec_p:
3016 while (r--)
3017 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
3018 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
3019 err_free_exn:
3020 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
3021 return err;
3022 }
3023
nfp_net_netdev_open(struct net_device * netdev)3024 static int nfp_net_netdev_open(struct net_device *netdev)
3025 {
3026 struct nfp_net *nn = netdev_priv(netdev);
3027 int err;
3028
3029 /* Step 1: Allocate resources for rings and the like
3030 * - Request interrupts
3031 * - Allocate RX and TX ring resources
3032 * - Setup initial RSS table
3033 */
3034 err = nfp_net_open_alloc_all(nn);
3035 if (err)
3036 return err;
3037
3038 err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings);
3039 if (err)
3040 goto err_free_all;
3041
3042 err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings);
3043 if (err)
3044 goto err_free_all;
3045
3046 /* Step 2: Configure the NFP
3047 * - Ifup the physical interface if it exists
3048 * - Enable rings from 0 to tx_rings/rx_rings - 1.
3049 * - Write MAC address (in case it changed)
3050 * - Set the MTU
3051 * - Set the Freelist buffer size
3052 * - Enable the FW
3053 */
3054 err = nfp_port_configure(netdev, true);
3055 if (err)
3056 goto err_free_all;
3057
3058 err = nfp_net_set_config_and_enable(nn);
3059 if (err)
3060 goto err_port_disable;
3061
3062 /* Step 3: Enable for kernel
3063 * - put some freelist descriptors on each RX ring
3064 * - enable NAPI on each ring
3065 * - enable all TX queues
3066 * - set link state
3067 */
3068 nfp_net_open_stack(nn);
3069
3070 return 0;
3071
3072 err_port_disable:
3073 nfp_port_configure(netdev, false);
3074 err_free_all:
3075 nfp_net_close_free_all(nn);
3076 return err;
3077 }
3078
nfp_ctrl_open(struct nfp_net * nn)3079 int nfp_ctrl_open(struct nfp_net *nn)
3080 {
3081 int err, r;
3082
3083 /* ring dumping depends on vNICs being opened/closed under rtnl */
3084 rtnl_lock();
3085
3086 err = nfp_net_open_alloc_all(nn);
3087 if (err)
3088 goto err_unlock;
3089
3090 err = nfp_net_set_config_and_enable(nn);
3091 if (err)
3092 goto err_free_all;
3093
3094 for (r = 0; r < nn->dp.num_r_vecs; r++)
3095 enable_irq(nn->r_vecs[r].irq_vector);
3096
3097 rtnl_unlock();
3098
3099 return 0;
3100
3101 err_free_all:
3102 nfp_net_close_free_all(nn);
3103 err_unlock:
3104 rtnl_unlock();
3105 return err;
3106 }
3107
nfp_net_set_rx_mode(struct net_device * netdev)3108 static void nfp_net_set_rx_mode(struct net_device *netdev)
3109 {
3110 struct nfp_net *nn = netdev_priv(netdev);
3111 u32 new_ctrl;
3112
3113 new_ctrl = nn->dp.ctrl;
3114
3115 if (!netdev_mc_empty(netdev) || netdev->flags & IFF_ALLMULTI)
3116 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_L2MC;
3117 else
3118 new_ctrl &= ~NFP_NET_CFG_CTRL_L2MC;
3119
3120 if (netdev->flags & IFF_PROMISC) {
3121 if (nn->cap & NFP_NET_CFG_CTRL_PROMISC)
3122 new_ctrl |= NFP_NET_CFG_CTRL_PROMISC;
3123 else
3124 nn_warn(nn, "FW does not support promiscuous mode\n");
3125 } else {
3126 new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC;
3127 }
3128
3129 if (new_ctrl == nn->dp.ctrl)
3130 return;
3131
3132 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
3133 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN);
3134
3135 nn->dp.ctrl = new_ctrl;
3136 }
3137
nfp_net_rss_init_itbl(struct nfp_net * nn)3138 static void nfp_net_rss_init_itbl(struct nfp_net *nn)
3139 {
3140 int i;
3141
3142 for (i = 0; i < sizeof(nn->rss_itbl); i++)
3143 nn->rss_itbl[i] =
3144 ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings);
3145 }
3146
nfp_net_dp_swap(struct nfp_net * nn,struct nfp_net_dp * dp)3147 static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp)
3148 {
3149 struct nfp_net_dp new_dp = *dp;
3150
3151 *dp = nn->dp;
3152 nn->dp = new_dp;
3153
3154 nn->dp.netdev->mtu = new_dp.mtu;
3155
3156 if (!netif_is_rxfh_configured(nn->dp.netdev))
3157 nfp_net_rss_init_itbl(nn);
3158 }
3159
nfp_net_dp_swap_enable(struct nfp_net * nn,struct nfp_net_dp * dp)3160 static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp)
3161 {
3162 unsigned int r;
3163 int err;
3164
3165 nfp_net_dp_swap(nn, dp);
3166
3167 for (r = 0; r < nn->max_r_vecs; r++)
3168 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
3169
3170 err = netif_set_real_num_rx_queues(nn->dp.netdev, nn->dp.num_rx_rings);
3171 if (err)
3172 return err;
3173
3174 if (nn->dp.netdev->real_num_tx_queues != nn->dp.num_stack_tx_rings) {
3175 err = netif_set_real_num_tx_queues(nn->dp.netdev,
3176 nn->dp.num_stack_tx_rings);
3177 if (err)
3178 return err;
3179 }
3180
3181 return nfp_net_set_config_and_enable(nn);
3182 }
3183
nfp_net_clone_dp(struct nfp_net * nn)3184 struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn)
3185 {
3186 struct nfp_net_dp *new;
3187
3188 new = kmalloc(sizeof(*new), GFP_KERNEL);
3189 if (!new)
3190 return NULL;
3191
3192 *new = nn->dp;
3193
3194 /* Clear things which need to be recomputed */
3195 new->fl_bufsz = 0;
3196 new->tx_rings = NULL;
3197 new->rx_rings = NULL;
3198 new->num_r_vecs = 0;
3199 new->num_stack_tx_rings = 0;
3200
3201 return new;
3202 }
3203
3204 static int
nfp_net_check_config(struct nfp_net * nn,struct nfp_net_dp * dp,struct netlink_ext_ack * extack)3205 nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp,
3206 struct netlink_ext_ack *extack)
3207 {
3208 /* XDP-enabled tests */
3209 if (!dp->xdp_prog)
3210 return 0;
3211 if (dp->fl_bufsz > PAGE_SIZE) {
3212 NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled");
3213 return -EINVAL;
3214 }
3215 if (dp->num_tx_rings > nn->max_tx_rings) {
3216 NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled");
3217 return -EINVAL;
3218 }
3219
3220 return 0;
3221 }
3222
nfp_net_ring_reconfig(struct nfp_net * nn,struct nfp_net_dp * dp,struct netlink_ext_ack * extack)3223 int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp,
3224 struct netlink_ext_ack *extack)
3225 {
3226 int r, err;
3227
3228 dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp);
3229
3230 dp->num_stack_tx_rings = dp->num_tx_rings;
3231 if (dp->xdp_prog)
3232 dp->num_stack_tx_rings -= dp->num_rx_rings;
3233
3234 dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings);
3235
3236 err = nfp_net_check_config(nn, dp, extack);
3237 if (err)
3238 goto exit_free_dp;
3239
3240 if (!netif_running(dp->netdev)) {
3241 nfp_net_dp_swap(nn, dp);
3242 err = 0;
3243 goto exit_free_dp;
3244 }
3245
3246 /* Prepare new rings */
3247 for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) {
3248 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
3249 if (err) {
3250 dp->num_r_vecs = r;
3251 goto err_cleanup_vecs;
3252 }
3253 }
3254
3255 err = nfp_net_rx_rings_prepare(nn, dp);
3256 if (err)
3257 goto err_cleanup_vecs;
3258
3259 err = nfp_net_tx_rings_prepare(nn, dp);
3260 if (err)
3261 goto err_free_rx;
3262
3263 /* Stop device, swap in new rings, try to start the firmware */
3264 nfp_net_close_stack(nn);
3265 nfp_net_clear_config_and_disable(nn);
3266
3267 err = nfp_net_dp_swap_enable(nn, dp);
3268 if (err) {
3269 int err2;
3270
3271 nfp_net_clear_config_and_disable(nn);
3272
3273 /* Try with old configuration and old rings */
3274 err2 = nfp_net_dp_swap_enable(nn, dp);
3275 if (err2)
3276 nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n",
3277 err, err2);
3278 }
3279 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
3280 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
3281
3282 nfp_net_rx_rings_free(dp);
3283 nfp_net_tx_rings_free(dp);
3284
3285 nfp_net_open_stack(nn);
3286 exit_free_dp:
3287 kfree(dp);
3288
3289 return err;
3290
3291 err_free_rx:
3292 nfp_net_rx_rings_free(dp);
3293 err_cleanup_vecs:
3294 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
3295 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
3296 kfree(dp);
3297 return err;
3298 }
3299
nfp_net_change_mtu(struct net_device * netdev,int new_mtu)3300 static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu)
3301 {
3302 struct nfp_net *nn = netdev_priv(netdev);
3303 struct nfp_net_dp *dp;
3304 int err;
3305
3306 err = nfp_app_check_mtu(nn->app, netdev, new_mtu);
3307 if (err)
3308 return err;
3309
3310 dp = nfp_net_clone_dp(nn);
3311 if (!dp)
3312 return -ENOMEM;
3313
3314 dp->mtu = new_mtu;
3315
3316 return nfp_net_ring_reconfig(nn, dp, NULL);
3317 }
3318
3319 static int
nfp_net_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)3320 nfp_net_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3321 {
3322 const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_ADD;
3323 struct nfp_net *nn = netdev_priv(netdev);
3324 int err;
3325
3326 /* Priority tagged packets with vlan id 0 are processed by the
3327 * NFP as untagged packets
3328 */
3329 if (!vid)
3330 return 0;
3331
3332 err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ);
3333 if (err)
3334 return err;
3335
3336 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid);
3337 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO,
3338 ETH_P_8021Q);
3339
3340 return nfp_net_mbox_reconfig_and_unlock(nn, cmd);
3341 }
3342
3343 static int
nfp_net_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)3344 nfp_net_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3345 {
3346 const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_KILL;
3347 struct nfp_net *nn = netdev_priv(netdev);
3348 int err;
3349
3350 /* Priority tagged packets with vlan id 0 are processed by the
3351 * NFP as untagged packets
3352 */
3353 if (!vid)
3354 return 0;
3355
3356 err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ);
3357 if (err)
3358 return err;
3359
3360 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid);
3361 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO,
3362 ETH_P_8021Q);
3363
3364 return nfp_net_mbox_reconfig_and_unlock(nn, cmd);
3365 }
3366
nfp_net_stat64(struct net_device * netdev,struct rtnl_link_stats64 * stats)3367 static void nfp_net_stat64(struct net_device *netdev,
3368 struct rtnl_link_stats64 *stats)
3369 {
3370 struct nfp_net *nn = netdev_priv(netdev);
3371 int r;
3372
3373 /* Collect software stats */
3374 for (r = 0; r < nn->max_r_vecs; r++) {
3375 struct nfp_net_r_vector *r_vec = &nn->r_vecs[r];
3376 u64 data[3];
3377 unsigned int start;
3378
3379 do {
3380 start = u64_stats_fetch_begin(&r_vec->rx_sync);
3381 data[0] = r_vec->rx_pkts;
3382 data[1] = r_vec->rx_bytes;
3383 data[2] = r_vec->rx_drops;
3384 } while (u64_stats_fetch_retry(&r_vec->rx_sync, start));
3385 stats->rx_packets += data[0];
3386 stats->rx_bytes += data[1];
3387 stats->rx_dropped += data[2];
3388
3389 do {
3390 start = u64_stats_fetch_begin(&r_vec->tx_sync);
3391 data[0] = r_vec->tx_pkts;
3392 data[1] = r_vec->tx_bytes;
3393 data[2] = r_vec->tx_errors;
3394 } while (u64_stats_fetch_retry(&r_vec->tx_sync, start));
3395 stats->tx_packets += data[0];
3396 stats->tx_bytes += data[1];
3397 stats->tx_errors += data[2];
3398 }
3399
3400 /* Add in device stats */
3401 stats->multicast += nn_readq(nn, NFP_NET_CFG_STATS_RX_MC_FRAMES);
3402 stats->rx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_RX_DISCARDS);
3403 stats->rx_errors += nn_readq(nn, NFP_NET_CFG_STATS_RX_ERRORS);
3404
3405 stats->tx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_TX_DISCARDS);
3406 stats->tx_errors += nn_readq(nn, NFP_NET_CFG_STATS_TX_ERRORS);
3407 }
3408
nfp_net_set_features(struct net_device * netdev,netdev_features_t features)3409 static int nfp_net_set_features(struct net_device *netdev,
3410 netdev_features_t features)
3411 {
3412 netdev_features_t changed = netdev->features ^ features;
3413 struct nfp_net *nn = netdev_priv(netdev);
3414 u32 new_ctrl;
3415 int err;
3416
3417 /* Assume this is not called with features we have not advertised */
3418
3419 new_ctrl = nn->dp.ctrl;
3420
3421 if (changed & NETIF_F_RXCSUM) {
3422 if (features & NETIF_F_RXCSUM)
3423 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
3424 else
3425 new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM_ANY;
3426 }
3427
3428 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3429 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
3430 new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3431 else
3432 new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM;
3433 }
3434
3435 if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
3436 if (features & (NETIF_F_TSO | NETIF_F_TSO6))
3437 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
3438 NFP_NET_CFG_CTRL_LSO;
3439 else
3440 new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
3441 }
3442
3443 if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
3444 if (features & NETIF_F_HW_VLAN_CTAG_RX)
3445 new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
3446 else
3447 new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN;
3448 }
3449
3450 if (changed & NETIF_F_HW_VLAN_CTAG_TX) {
3451 if (features & NETIF_F_HW_VLAN_CTAG_TX)
3452 new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
3453 else
3454 new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN;
3455 }
3456
3457 if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) {
3458 if (features & NETIF_F_HW_VLAN_CTAG_FILTER)
3459 new_ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER;
3460 else
3461 new_ctrl &= ~NFP_NET_CFG_CTRL_CTAG_FILTER;
3462 }
3463
3464 if (changed & NETIF_F_SG) {
3465 if (features & NETIF_F_SG)
3466 new_ctrl |= NFP_NET_CFG_CTRL_GATHER;
3467 else
3468 new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER;
3469 }
3470
3471 err = nfp_port_set_features(netdev, features);
3472 if (err)
3473 return err;
3474
3475 nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n",
3476 netdev->features, features, changed);
3477
3478 if (new_ctrl == nn->dp.ctrl)
3479 return 0;
3480
3481 nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl);
3482 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
3483 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN);
3484 if (err)
3485 return err;
3486
3487 nn->dp.ctrl = new_ctrl;
3488
3489 return 0;
3490 }
3491
3492 static netdev_features_t
nfp_net_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3493 nfp_net_features_check(struct sk_buff *skb, struct net_device *dev,
3494 netdev_features_t features)
3495 {
3496 u8 l4_hdr;
3497
3498 /* We can't do TSO over double tagged packets (802.1AD) */
3499 features &= vlan_features_check(skb, features);
3500
3501 if (!skb->encapsulation)
3502 return features;
3503
3504 /* Ensure that inner L4 header offset fits into TX descriptor field */
3505 if (skb_is_gso(skb)) {
3506 u32 hdrlen;
3507
3508 hdrlen = skb_inner_transport_header(skb) - skb->data +
3509 inner_tcp_hdrlen(skb);
3510
3511 /* Assume worst case scenario of having longest possible
3512 * metadata prepend - 8B
3513 */
3514 if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ - 8))
3515 features &= ~NETIF_F_GSO_MASK;
3516 }
3517
3518 /* VXLAN/GRE check */
3519 switch (vlan_get_protocol(skb)) {
3520 case htons(ETH_P_IP):
3521 l4_hdr = ip_hdr(skb)->protocol;
3522 break;
3523 case htons(ETH_P_IPV6):
3524 l4_hdr = ipv6_hdr(skb)->nexthdr;
3525 break;
3526 default:
3527 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3528 }
3529
3530 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
3531 skb->inner_protocol != htons(ETH_P_TEB) ||
3532 (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) ||
3533 (l4_hdr == IPPROTO_UDP &&
3534 (skb_inner_mac_header(skb) - skb_transport_header(skb) !=
3535 sizeof(struct udphdr) + sizeof(struct vxlanhdr))))
3536 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3537
3538 return features;
3539 }
3540
3541 static int
nfp_net_get_phys_port_name(struct net_device * netdev,char * name,size_t len)3542 nfp_net_get_phys_port_name(struct net_device *netdev, char *name, size_t len)
3543 {
3544 struct nfp_net *nn = netdev_priv(netdev);
3545 int n;
3546
3547 /* If port is defined, devlink_port is registered and devlink core
3548 * is taking care of name formatting.
3549 */
3550 if (nn->port)
3551 return -EOPNOTSUPP;
3552
3553 if (nn->dp.is_vf || nn->vnic_no_name)
3554 return -EOPNOTSUPP;
3555
3556 n = snprintf(name, len, "n%d", nn->id);
3557 if (n >= len)
3558 return -EINVAL;
3559
3560 return 0;
3561 }
3562
3563 /**
3564 * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW
3565 * @nn: NFP Net device to reconfigure
3566 * @idx: Index into the port table where new port should be written
3567 * @port: UDP port to configure (pass zero to remove VXLAN port)
3568 */
nfp_net_set_vxlan_port(struct nfp_net * nn,int idx,__be16 port)3569 static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port)
3570 {
3571 int i;
3572
3573 nn->vxlan_ports[idx] = port;
3574
3575 if (!(nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN))
3576 return;
3577
3578 BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1);
3579 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2)
3580 nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port),
3581 be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 |
3582 be16_to_cpu(nn->vxlan_ports[i]));
3583
3584 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN);
3585 }
3586
3587 /**
3588 * nfp_net_find_vxlan_idx() - find table entry of the port or a free one
3589 * @nn: NFP Network structure
3590 * @port: UDP port to look for
3591 *
3592 * Return: if the port is already in the table -- it's position;
3593 * if the port is not in the table -- free position to use;
3594 * if the table is full -- -ENOSPC.
3595 */
nfp_net_find_vxlan_idx(struct nfp_net * nn,__be16 port)3596 static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port)
3597 {
3598 int i, free_idx = -ENOSPC;
3599
3600 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) {
3601 if (nn->vxlan_ports[i] == port)
3602 return i;
3603 if (!nn->vxlan_usecnt[i])
3604 free_idx = i;
3605 }
3606
3607 return free_idx;
3608 }
3609
nfp_net_add_vxlan_port(struct net_device * netdev,struct udp_tunnel_info * ti)3610 static void nfp_net_add_vxlan_port(struct net_device *netdev,
3611 struct udp_tunnel_info *ti)
3612 {
3613 struct nfp_net *nn = netdev_priv(netdev);
3614 int idx;
3615
3616 if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3617 return;
3618
3619 idx = nfp_net_find_vxlan_idx(nn, ti->port);
3620 if (idx == -ENOSPC)
3621 return;
3622
3623 if (!nn->vxlan_usecnt[idx]++)
3624 nfp_net_set_vxlan_port(nn, idx, ti->port);
3625 }
3626
nfp_net_del_vxlan_port(struct net_device * netdev,struct udp_tunnel_info * ti)3627 static void nfp_net_del_vxlan_port(struct net_device *netdev,
3628 struct udp_tunnel_info *ti)
3629 {
3630 struct nfp_net *nn = netdev_priv(netdev);
3631 int idx;
3632
3633 if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3634 return;
3635
3636 idx = nfp_net_find_vxlan_idx(nn, ti->port);
3637 if (idx == -ENOSPC || !nn->vxlan_usecnt[idx])
3638 return;
3639
3640 if (!--nn->vxlan_usecnt[idx])
3641 nfp_net_set_vxlan_port(nn, idx, 0);
3642 }
3643
nfp_net_xdp_setup_drv(struct nfp_net * nn,struct netdev_bpf * bpf)3644 static int nfp_net_xdp_setup_drv(struct nfp_net *nn, struct netdev_bpf *bpf)
3645 {
3646 struct bpf_prog *prog = bpf->prog;
3647 struct nfp_net_dp *dp;
3648 int err;
3649
3650 if (!xdp_attachment_flags_ok(&nn->xdp, bpf))
3651 return -EBUSY;
3652
3653 if (!prog == !nn->dp.xdp_prog) {
3654 WRITE_ONCE(nn->dp.xdp_prog, prog);
3655 xdp_attachment_setup(&nn->xdp, bpf);
3656 return 0;
3657 }
3658
3659 dp = nfp_net_clone_dp(nn);
3660 if (!dp)
3661 return -ENOMEM;
3662
3663 dp->xdp_prog = prog;
3664 dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings;
3665 dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
3666 dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0;
3667
3668 /* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */
3669 err = nfp_net_ring_reconfig(nn, dp, bpf->extack);
3670 if (err)
3671 return err;
3672
3673 xdp_attachment_setup(&nn->xdp, bpf);
3674 return 0;
3675 }
3676
nfp_net_xdp_setup_hw(struct nfp_net * nn,struct netdev_bpf * bpf)3677 static int nfp_net_xdp_setup_hw(struct nfp_net *nn, struct netdev_bpf *bpf)
3678 {
3679 int err;
3680
3681 if (!xdp_attachment_flags_ok(&nn->xdp_hw, bpf))
3682 return -EBUSY;
3683
3684 err = nfp_app_xdp_offload(nn->app, nn, bpf->prog, bpf->extack);
3685 if (err)
3686 return err;
3687
3688 xdp_attachment_setup(&nn->xdp_hw, bpf);
3689 return 0;
3690 }
3691
nfp_net_xdp(struct net_device * netdev,struct netdev_bpf * xdp)3692 static int nfp_net_xdp(struct net_device *netdev, struct netdev_bpf *xdp)
3693 {
3694 struct nfp_net *nn = netdev_priv(netdev);
3695
3696 switch (xdp->command) {
3697 case XDP_SETUP_PROG:
3698 return nfp_net_xdp_setup_drv(nn, xdp);
3699 case XDP_SETUP_PROG_HW:
3700 return nfp_net_xdp_setup_hw(nn, xdp);
3701 case XDP_QUERY_PROG:
3702 return xdp_attachment_query(&nn->xdp, xdp);
3703 case XDP_QUERY_PROG_HW:
3704 return xdp_attachment_query(&nn->xdp_hw, xdp);
3705 default:
3706 return nfp_app_bpf(nn->app, nn, xdp);
3707 }
3708 }
3709
nfp_net_set_mac_address(struct net_device * netdev,void * addr)3710 static int nfp_net_set_mac_address(struct net_device *netdev, void *addr)
3711 {
3712 struct nfp_net *nn = netdev_priv(netdev);
3713 struct sockaddr *saddr = addr;
3714 int err;
3715
3716 err = eth_prepare_mac_addr_change(netdev, addr);
3717 if (err)
3718 return err;
3719
3720 nfp_net_write_mac_addr(nn, saddr->sa_data);
3721
3722 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MACADDR);
3723 if (err)
3724 return err;
3725
3726 eth_commit_mac_addr_change(netdev, addr);
3727
3728 return 0;
3729 }
3730
3731 const struct net_device_ops nfp_net_netdev_ops = {
3732 .ndo_init = nfp_app_ndo_init,
3733 .ndo_uninit = nfp_app_ndo_uninit,
3734 .ndo_open = nfp_net_netdev_open,
3735 .ndo_stop = nfp_net_netdev_close,
3736 .ndo_start_xmit = nfp_net_tx,
3737 .ndo_get_stats64 = nfp_net_stat64,
3738 .ndo_vlan_rx_add_vid = nfp_net_vlan_rx_add_vid,
3739 .ndo_vlan_rx_kill_vid = nfp_net_vlan_rx_kill_vid,
3740 .ndo_set_vf_mac = nfp_app_set_vf_mac,
3741 .ndo_set_vf_vlan = nfp_app_set_vf_vlan,
3742 .ndo_set_vf_spoofchk = nfp_app_set_vf_spoofchk,
3743 .ndo_set_vf_trust = nfp_app_set_vf_trust,
3744 .ndo_get_vf_config = nfp_app_get_vf_config,
3745 .ndo_set_vf_link_state = nfp_app_set_vf_link_state,
3746 .ndo_setup_tc = nfp_port_setup_tc,
3747 .ndo_tx_timeout = nfp_net_tx_timeout,
3748 .ndo_set_rx_mode = nfp_net_set_rx_mode,
3749 .ndo_change_mtu = nfp_net_change_mtu,
3750 .ndo_set_mac_address = nfp_net_set_mac_address,
3751 .ndo_set_features = nfp_net_set_features,
3752 .ndo_features_check = nfp_net_features_check,
3753 .ndo_get_phys_port_name = nfp_net_get_phys_port_name,
3754 .ndo_udp_tunnel_add = nfp_net_add_vxlan_port,
3755 .ndo_udp_tunnel_del = nfp_net_del_vxlan_port,
3756 .ndo_bpf = nfp_net_xdp,
3757 .ndo_get_devlink_port = nfp_devlink_get_devlink_port,
3758 };
3759
3760 /**
3761 * nfp_net_info() - Print general info about the NIC
3762 * @nn: NFP Net device to reconfigure
3763 */
nfp_net_info(struct nfp_net * nn)3764 void nfp_net_info(struct nfp_net *nn)
3765 {
3766 nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n",
3767 nn->dp.is_vf ? "VF " : "",
3768 nn->dp.num_tx_rings, nn->max_tx_rings,
3769 nn->dp.num_rx_rings, nn->max_rx_rings);
3770 nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n",
3771 nn->fw_ver.resv, nn->fw_ver.class,
3772 nn->fw_ver.major, nn->fw_ver.minor,
3773 nn->max_mtu);
3774 nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
3775 nn->cap,
3776 nn->cap & NFP_NET_CFG_CTRL_PROMISC ? "PROMISC " : "",
3777 nn->cap & NFP_NET_CFG_CTRL_L2BC ? "L2BCFILT " : "",
3778 nn->cap & NFP_NET_CFG_CTRL_L2MC ? "L2MCFILT " : "",
3779 nn->cap & NFP_NET_CFG_CTRL_RXCSUM ? "RXCSUM " : "",
3780 nn->cap & NFP_NET_CFG_CTRL_TXCSUM ? "TXCSUM " : "",
3781 nn->cap & NFP_NET_CFG_CTRL_RXVLAN ? "RXVLAN " : "",
3782 nn->cap & NFP_NET_CFG_CTRL_TXVLAN ? "TXVLAN " : "",
3783 nn->cap & NFP_NET_CFG_CTRL_SCATTER ? "SCATTER " : "",
3784 nn->cap & NFP_NET_CFG_CTRL_GATHER ? "GATHER " : "",
3785 nn->cap & NFP_NET_CFG_CTRL_LSO ? "TSO1 " : "",
3786 nn->cap & NFP_NET_CFG_CTRL_LSO2 ? "TSO2 " : "",
3787 nn->cap & NFP_NET_CFG_CTRL_RSS ? "RSS1 " : "",
3788 nn->cap & NFP_NET_CFG_CTRL_RSS2 ? "RSS2 " : "",
3789 nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER ? "CTAG_FILTER " : "",
3790 nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "",
3791 nn->cap & NFP_NET_CFG_CTRL_IRQMOD ? "IRQMOD " : "",
3792 nn->cap & NFP_NET_CFG_CTRL_VXLAN ? "VXLAN " : "",
3793 nn->cap & NFP_NET_CFG_CTRL_NVGRE ? "NVGRE " : "",
3794 nn->cap & NFP_NET_CFG_CTRL_CSUM_COMPLETE ?
3795 "RXCSUM_COMPLETE " : "",
3796 nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "",
3797 nfp_app_extra_cap(nn->app, nn));
3798 }
3799
3800 /**
3801 * nfp_net_alloc() - Allocate netdev and related structure
3802 * @pdev: PCI device
3803 * @ctrl_bar: PCI IOMEM with vNIC config memory
3804 * @needs_netdev: Whether to allocate a netdev for this vNIC
3805 * @max_tx_rings: Maximum number of TX rings supported by device
3806 * @max_rx_rings: Maximum number of RX rings supported by device
3807 *
3808 * This function allocates a netdev device and fills in the initial
3809 * part of the @struct nfp_net structure. In case of control device
3810 * nfp_net structure is allocated without the netdev.
3811 *
3812 * Return: NFP Net device structure, or ERR_PTR on error.
3813 */
3814 struct nfp_net *
nfp_net_alloc(struct pci_dev * pdev,void __iomem * ctrl_bar,bool needs_netdev,unsigned int max_tx_rings,unsigned int max_rx_rings)3815 nfp_net_alloc(struct pci_dev *pdev, void __iomem *ctrl_bar, bool needs_netdev,
3816 unsigned int max_tx_rings, unsigned int max_rx_rings)
3817 {
3818 struct nfp_net *nn;
3819 int err;
3820
3821 if (needs_netdev) {
3822 struct net_device *netdev;
3823
3824 netdev = alloc_etherdev_mqs(sizeof(struct nfp_net),
3825 max_tx_rings, max_rx_rings);
3826 if (!netdev)
3827 return ERR_PTR(-ENOMEM);
3828
3829 SET_NETDEV_DEV(netdev, &pdev->dev);
3830 nn = netdev_priv(netdev);
3831 nn->dp.netdev = netdev;
3832 } else {
3833 nn = vzalloc(sizeof(*nn));
3834 if (!nn)
3835 return ERR_PTR(-ENOMEM);
3836 }
3837
3838 nn->dp.dev = &pdev->dev;
3839 nn->dp.ctrl_bar = ctrl_bar;
3840 nn->pdev = pdev;
3841
3842 nn->max_tx_rings = max_tx_rings;
3843 nn->max_rx_rings = max_rx_rings;
3844
3845 nn->dp.num_tx_rings = min_t(unsigned int,
3846 max_tx_rings, num_online_cpus());
3847 nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings,
3848 netif_get_num_default_rss_queues());
3849
3850 nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings);
3851 nn->dp.num_r_vecs = min_t(unsigned int,
3852 nn->dp.num_r_vecs, num_online_cpus());
3853
3854 nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT;
3855 nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT;
3856
3857 sema_init(&nn->bar_lock, 1);
3858
3859 spin_lock_init(&nn->reconfig_lock);
3860 spin_lock_init(&nn->link_status_lock);
3861
3862 timer_setup(&nn->reconfig_timer, nfp_net_reconfig_timer, 0);
3863
3864 err = nfp_net_tlv_caps_parse(&nn->pdev->dev, nn->dp.ctrl_bar,
3865 &nn->tlv_caps);
3866 if (err)
3867 goto err_free_nn;
3868
3869 err = nfp_ccm_mbox_alloc(nn);
3870 if (err)
3871 goto err_free_nn;
3872
3873 return nn;
3874
3875 err_free_nn:
3876 if (nn->dp.netdev)
3877 free_netdev(nn->dp.netdev);
3878 else
3879 vfree(nn);
3880 return ERR_PTR(err);
3881 }
3882
3883 /**
3884 * nfp_net_free() - Undo what @nfp_net_alloc() did
3885 * @nn: NFP Net device to reconfigure
3886 */
nfp_net_free(struct nfp_net * nn)3887 void nfp_net_free(struct nfp_net *nn)
3888 {
3889 WARN_ON(timer_pending(&nn->reconfig_timer) || nn->reconfig_posted);
3890 nfp_ccm_mbox_free(nn);
3891
3892 if (nn->dp.netdev)
3893 free_netdev(nn->dp.netdev);
3894 else
3895 vfree(nn);
3896 }
3897
3898 /**
3899 * nfp_net_rss_key_sz() - Get current size of the RSS key
3900 * @nn: NFP Net device instance
3901 *
3902 * Return: size of the RSS key for currently selected hash function.
3903 */
nfp_net_rss_key_sz(struct nfp_net * nn)3904 unsigned int nfp_net_rss_key_sz(struct nfp_net *nn)
3905 {
3906 switch (nn->rss_hfunc) {
3907 case ETH_RSS_HASH_TOP:
3908 return NFP_NET_CFG_RSS_KEY_SZ;
3909 case ETH_RSS_HASH_XOR:
3910 return 0;
3911 case ETH_RSS_HASH_CRC32:
3912 return 4;
3913 }
3914
3915 nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc);
3916 return 0;
3917 }
3918
3919 /**
3920 * nfp_net_rss_init() - Set the initial RSS parameters
3921 * @nn: NFP Net device to reconfigure
3922 */
nfp_net_rss_init(struct nfp_net * nn)3923 static void nfp_net_rss_init(struct nfp_net *nn)
3924 {
3925 unsigned long func_bit, rss_cap_hfunc;
3926 u32 reg;
3927
3928 /* Read the RSS function capability and select first supported func */
3929 reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP);
3930 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg);
3931 if (!rss_cap_hfunc)
3932 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC,
3933 NFP_NET_CFG_RSS_TOEPLITZ);
3934
3935 func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS);
3936 if (func_bit == NFP_NET_CFG_RSS_HFUNCS) {
3937 dev_warn(nn->dp.dev,
3938 "Bad RSS config, defaulting to Toeplitz hash\n");
3939 func_bit = ETH_RSS_HASH_TOP_BIT;
3940 }
3941 nn->rss_hfunc = 1 << func_bit;
3942
3943 netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn));
3944
3945 nfp_net_rss_init_itbl(nn);
3946
3947 /* Enable IPv4/IPv6 TCP by default */
3948 nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP |
3949 NFP_NET_CFG_RSS_IPV6_TCP |
3950 FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) |
3951 NFP_NET_CFG_RSS_MASK;
3952 }
3953
3954 /**
3955 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters
3956 * @nn: NFP Net device to reconfigure
3957 */
nfp_net_irqmod_init(struct nfp_net * nn)3958 static void nfp_net_irqmod_init(struct nfp_net *nn)
3959 {
3960 nn->rx_coalesce_usecs = 50;
3961 nn->rx_coalesce_max_frames = 64;
3962 nn->tx_coalesce_usecs = 50;
3963 nn->tx_coalesce_max_frames = 64;
3964 }
3965
nfp_net_netdev_init(struct nfp_net * nn)3966 static void nfp_net_netdev_init(struct nfp_net *nn)
3967 {
3968 struct net_device *netdev = nn->dp.netdev;
3969
3970 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr);
3971
3972 netdev->mtu = nn->dp.mtu;
3973
3974 /* Advertise/enable offloads based on capabilities
3975 *
3976 * Note: netdev->features show the currently enabled features
3977 * and netdev->hw_features advertises which features are
3978 * supported. By default we enable most features.
3979 */
3980 if (nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR)
3981 netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3982
3983 netdev->hw_features = NETIF_F_HIGHDMA;
3984 if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY) {
3985 netdev->hw_features |= NETIF_F_RXCSUM;
3986 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
3987 }
3988 if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) {
3989 netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3990 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3991 }
3992 if (nn->cap & NFP_NET_CFG_CTRL_GATHER) {
3993 netdev->hw_features |= NETIF_F_SG;
3994 nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER;
3995 }
3996 if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) ||
3997 nn->cap & NFP_NET_CFG_CTRL_LSO2) {
3998 netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
3999 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
4000 NFP_NET_CFG_CTRL_LSO;
4001 }
4002 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY)
4003 netdev->hw_features |= NETIF_F_RXHASH;
4004 if (nn->cap & NFP_NET_CFG_CTRL_VXLAN) {
4005 if (nn->cap & NFP_NET_CFG_CTRL_LSO)
4006 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL;
4007 nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN;
4008 }
4009 if (nn->cap & NFP_NET_CFG_CTRL_NVGRE) {
4010 if (nn->cap & NFP_NET_CFG_CTRL_LSO)
4011 netdev->hw_features |= NETIF_F_GSO_GRE;
4012 nn->dp.ctrl |= NFP_NET_CFG_CTRL_NVGRE;
4013 }
4014 if (nn->cap & (NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE))
4015 netdev->hw_enc_features = netdev->hw_features;
4016
4017 netdev->vlan_features = netdev->hw_features;
4018
4019 if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) {
4020 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4021 nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
4022 }
4023 if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) {
4024 if (nn->cap & NFP_NET_CFG_CTRL_LSO2) {
4025 nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n");
4026 } else {
4027 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4028 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
4029 }
4030 }
4031 if (nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER) {
4032 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4033 nn->dp.ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER;
4034 }
4035
4036 netdev->features = netdev->hw_features;
4037
4038 if (nfp_app_has_tc(nn->app) && nn->port)
4039 netdev->hw_features |= NETIF_F_HW_TC;
4040
4041 /* Advertise but disable TSO by default. */
4042 netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
4043 nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
4044
4045 /* Finalise the netdev setup */
4046 netdev->netdev_ops = &nfp_net_netdev_ops;
4047 netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000);
4048
4049 /* MTU range: 68 - hw-specific max */
4050 netdev->min_mtu = ETH_MIN_MTU;
4051 netdev->max_mtu = nn->max_mtu;
4052
4053 netdev->gso_max_segs = NFP_NET_LSO_MAX_SEGS;
4054
4055 netif_carrier_off(netdev);
4056
4057 nfp_net_set_ethtool_ops(netdev);
4058 }
4059
nfp_net_read_caps(struct nfp_net * nn)4060 static int nfp_net_read_caps(struct nfp_net *nn)
4061 {
4062 /* Get some of the read-only fields from the BAR */
4063 nn->cap = nn_readl(nn, NFP_NET_CFG_CAP);
4064 nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU);
4065
4066 /* ABI 4.x and ctrl vNIC always use chained metadata, in other cases
4067 * we allow use of non-chained metadata if RSS(v1) is the only
4068 * advertised capability requiring metadata.
4069 */
4070 nn->dp.chained_metadata_format = nn->fw_ver.major == 4 ||
4071 !nn->dp.netdev ||
4072 !(nn->cap & NFP_NET_CFG_CTRL_RSS) ||
4073 nn->cap & NFP_NET_CFG_CTRL_CHAIN_META;
4074 /* RSS(v1) uses non-chained metadata format, except in ABI 4.x where
4075 * it has the same meaning as RSSv2.
4076 */
4077 if (nn->dp.chained_metadata_format && nn->fw_ver.major != 4)
4078 nn->cap &= ~NFP_NET_CFG_CTRL_RSS;
4079
4080 /* Determine RX packet/metadata boundary offset */
4081 if (nn->fw_ver.major >= 2) {
4082 u32 reg;
4083
4084 reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET);
4085 if (reg > NFP_NET_MAX_PREPEND) {
4086 nn_err(nn, "Invalid rx offset: %d\n", reg);
4087 return -EINVAL;
4088 }
4089 nn->dp.rx_offset = reg;
4090 } else {
4091 nn->dp.rx_offset = NFP_NET_RX_OFFSET;
4092 }
4093
4094 /* For control vNICs mask out the capabilities app doesn't want. */
4095 if (!nn->dp.netdev)
4096 nn->cap &= nn->app->type->ctrl_cap_mask;
4097
4098 return 0;
4099 }
4100
4101 /**
4102 * nfp_net_init() - Initialise/finalise the nfp_net structure
4103 * @nn: NFP Net device structure
4104 *
4105 * Return: 0 on success or negative errno on error.
4106 */
nfp_net_init(struct nfp_net * nn)4107 int nfp_net_init(struct nfp_net *nn)
4108 {
4109 int err;
4110
4111 nn->dp.rx_dma_dir = DMA_FROM_DEVICE;
4112
4113 err = nfp_net_read_caps(nn);
4114 if (err)
4115 return err;
4116
4117 /* Set default MTU and Freelist buffer size */
4118 if (!nfp_net_is_data_vnic(nn) && nn->app->ctrl_mtu) {
4119 nn->dp.mtu = min(nn->app->ctrl_mtu, nn->max_mtu);
4120 } else if (nn->max_mtu < NFP_NET_DEFAULT_MTU) {
4121 nn->dp.mtu = nn->max_mtu;
4122 } else {
4123 nn->dp.mtu = NFP_NET_DEFAULT_MTU;
4124 }
4125 nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp);
4126
4127 if (nfp_app_ctrl_uses_data_vnics(nn->app))
4128 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_CMSG_DATA;
4129
4130 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) {
4131 nfp_net_rss_init(nn);
4132 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RSS2 ?:
4133 NFP_NET_CFG_CTRL_RSS;
4134 }
4135
4136 /* Allow L2 Broadcast and Multicast through by default, if supported */
4137 if (nn->cap & NFP_NET_CFG_CTRL_L2BC)
4138 nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC;
4139
4140 /* Allow IRQ moderation, if supported */
4141 if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
4142 nfp_net_irqmod_init(nn);
4143 nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
4144 }
4145
4146 /* Stash the re-configuration queue away. First odd queue in TX Bar */
4147 nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ;
4148
4149 /* Make sure the FW knows the netdev is supposed to be disabled here */
4150 nn_writel(nn, NFP_NET_CFG_CTRL, 0);
4151 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
4152 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
4153 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING |
4154 NFP_NET_CFG_UPDATE_GEN);
4155 if (err)
4156 return err;
4157
4158 if (nn->dp.netdev) {
4159 nfp_net_netdev_init(nn);
4160
4161 err = nfp_ccm_mbox_init(nn);
4162 if (err)
4163 return err;
4164
4165 err = nfp_net_tls_init(nn);
4166 if (err)
4167 goto err_clean_mbox;
4168 }
4169
4170 nfp_net_vecs_init(nn);
4171
4172 if (!nn->dp.netdev)
4173 return 0;
4174 return register_netdev(nn->dp.netdev);
4175
4176 err_clean_mbox:
4177 nfp_ccm_mbox_clean(nn);
4178 return err;
4179 }
4180
4181 /**
4182 * nfp_net_clean() - Undo what nfp_net_init() did.
4183 * @nn: NFP Net device structure
4184 */
nfp_net_clean(struct nfp_net * nn)4185 void nfp_net_clean(struct nfp_net *nn)
4186 {
4187 if (!nn->dp.netdev)
4188 return;
4189
4190 unregister_netdev(nn->dp.netdev);
4191 nfp_ccm_mbox_clean(nn);
4192 nfp_net_reconfig_wait_posted(nn);
4193 }
4194