1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
2 /* Copyright (C) 2017-2018 Netronome Systems, Inc. */
3
4 #include <linux/skbuff.h>
5 #include <net/devlink.h>
6 #include <net/pkt_cls.h>
7
8 #include "cmsg.h"
9 #include "main.h"
10 #include "../nfpcore/nfp_cpp.h"
11 #include "../nfpcore/nfp_nsp.h"
12 #include "../nfp_app.h"
13 #include "../nfp_main.h"
14 #include "../nfp_net.h"
15 #include "../nfp_port.h"
16
17 #define NFP_FLOWER_SUPPORTED_TCPFLAGS \
18 (TCPHDR_FIN | TCPHDR_SYN | TCPHDR_RST | \
19 TCPHDR_PSH | TCPHDR_URG)
20
21 #define NFP_FLOWER_SUPPORTED_CTLFLAGS \
22 (FLOW_DIS_IS_FRAGMENT | \
23 FLOW_DIS_FIRST_FRAG)
24
25 #define NFP_FLOWER_WHITELIST_DISSECTOR \
26 (BIT(FLOW_DISSECTOR_KEY_CONTROL) | \
27 BIT(FLOW_DISSECTOR_KEY_BASIC) | \
28 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | \
29 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | \
30 BIT(FLOW_DISSECTOR_KEY_TCP) | \
31 BIT(FLOW_DISSECTOR_KEY_PORTS) | \
32 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | \
33 BIT(FLOW_DISSECTOR_KEY_VLAN) | \
34 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID) | \
35 BIT(FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) | \
36 BIT(FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) | \
37 BIT(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \
38 BIT(FLOW_DISSECTOR_KEY_ENC_PORTS) | \
39 BIT(FLOW_DISSECTOR_KEY_ENC_OPTS) | \
40 BIT(FLOW_DISSECTOR_KEY_ENC_IP) | \
41 BIT(FLOW_DISSECTOR_KEY_MPLS) | \
42 BIT(FLOW_DISSECTOR_KEY_IP))
43
44 #define NFP_FLOWER_WHITELIST_TUN_DISSECTOR \
45 (BIT(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \
46 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID) | \
47 BIT(FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) | \
48 BIT(FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) | \
49 BIT(FLOW_DISSECTOR_KEY_ENC_OPTS) | \
50 BIT(FLOW_DISSECTOR_KEY_ENC_PORTS) | \
51 BIT(FLOW_DISSECTOR_KEY_ENC_IP))
52
53 #define NFP_FLOWER_WHITELIST_TUN_DISSECTOR_R \
54 (BIT(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \
55 BIT(FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS))
56
57 #define NFP_FLOWER_MERGE_FIELDS \
58 (NFP_FLOWER_LAYER_PORT | \
59 NFP_FLOWER_LAYER_MAC | \
60 NFP_FLOWER_LAYER_TP | \
61 NFP_FLOWER_LAYER_IPV4 | \
62 NFP_FLOWER_LAYER_IPV6)
63
64 #define NFP_FLOWER_PRE_TUN_RULE_FIELDS \
65 (NFP_FLOWER_LAYER_PORT | \
66 NFP_FLOWER_LAYER_MAC | \
67 NFP_FLOWER_LAYER_IPV4)
68
69 struct nfp_flower_merge_check {
70 union {
71 struct {
72 __be16 tci;
73 struct nfp_flower_mac_mpls l2;
74 struct nfp_flower_tp_ports l4;
75 union {
76 struct nfp_flower_ipv4 ipv4;
77 struct nfp_flower_ipv6 ipv6;
78 };
79 };
80 unsigned long vals[8];
81 };
82 };
83
84 static int
nfp_flower_xmit_flow(struct nfp_app * app,struct nfp_fl_payload * nfp_flow,u8 mtype)85 nfp_flower_xmit_flow(struct nfp_app *app, struct nfp_fl_payload *nfp_flow,
86 u8 mtype)
87 {
88 u32 meta_len, key_len, mask_len, act_len, tot_len;
89 struct sk_buff *skb;
90 unsigned char *msg;
91
92 meta_len = sizeof(struct nfp_fl_rule_metadata);
93 key_len = nfp_flow->meta.key_len;
94 mask_len = nfp_flow->meta.mask_len;
95 act_len = nfp_flow->meta.act_len;
96
97 tot_len = meta_len + key_len + mask_len + act_len;
98
99 /* Convert to long words as firmware expects
100 * lengths in units of NFP_FL_LW_SIZ.
101 */
102 nfp_flow->meta.key_len >>= NFP_FL_LW_SIZ;
103 nfp_flow->meta.mask_len >>= NFP_FL_LW_SIZ;
104 nfp_flow->meta.act_len >>= NFP_FL_LW_SIZ;
105
106 skb = nfp_flower_cmsg_alloc(app, tot_len, mtype, GFP_KERNEL);
107 if (!skb)
108 return -ENOMEM;
109
110 msg = nfp_flower_cmsg_get_data(skb);
111 memcpy(msg, &nfp_flow->meta, meta_len);
112 memcpy(&msg[meta_len], nfp_flow->unmasked_data, key_len);
113 memcpy(&msg[meta_len + key_len], nfp_flow->mask_data, mask_len);
114 memcpy(&msg[meta_len + key_len + mask_len],
115 nfp_flow->action_data, act_len);
116
117 /* Convert back to bytes as software expects
118 * lengths in units of bytes.
119 */
120 nfp_flow->meta.key_len <<= NFP_FL_LW_SIZ;
121 nfp_flow->meta.mask_len <<= NFP_FL_LW_SIZ;
122 nfp_flow->meta.act_len <<= NFP_FL_LW_SIZ;
123
124 nfp_ctrl_tx(app->ctrl, skb);
125
126 return 0;
127 }
128
nfp_flower_check_higher_than_mac(struct flow_cls_offload * f)129 static bool nfp_flower_check_higher_than_mac(struct flow_cls_offload *f)
130 {
131 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
132
133 return flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IPV4_ADDRS) ||
134 flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IPV6_ADDRS) ||
135 flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS) ||
136 flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ICMP);
137 }
138
nfp_flower_check_higher_than_l3(struct flow_cls_offload * f)139 static bool nfp_flower_check_higher_than_l3(struct flow_cls_offload *f)
140 {
141 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
142
143 return flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS) ||
144 flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ICMP);
145 }
146
147 static int
nfp_flower_calc_opt_layer(struct flow_dissector_key_enc_opts * enc_opts,u32 * key_layer_two,int * key_size,struct netlink_ext_ack * extack)148 nfp_flower_calc_opt_layer(struct flow_dissector_key_enc_opts *enc_opts,
149 u32 *key_layer_two, int *key_size,
150 struct netlink_ext_ack *extack)
151 {
152 if (enc_opts->len > NFP_FL_MAX_GENEVE_OPT_KEY) {
153 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: geneve options exceed maximum length");
154 return -EOPNOTSUPP;
155 }
156
157 if (enc_opts->len > 0) {
158 *key_layer_two |= NFP_FLOWER_LAYER2_GENEVE_OP;
159 *key_size += sizeof(struct nfp_flower_geneve_options);
160 }
161
162 return 0;
163 }
164
165 static int
nfp_flower_calc_udp_tun_layer(struct flow_dissector_key_ports * enc_ports,struct flow_dissector_key_enc_opts * enc_op,u32 * key_layer_two,u8 * key_layer,int * key_size,struct nfp_flower_priv * priv,enum nfp_flower_tun_type * tun_type,struct netlink_ext_ack * extack)166 nfp_flower_calc_udp_tun_layer(struct flow_dissector_key_ports *enc_ports,
167 struct flow_dissector_key_enc_opts *enc_op,
168 u32 *key_layer_two, u8 *key_layer, int *key_size,
169 struct nfp_flower_priv *priv,
170 enum nfp_flower_tun_type *tun_type,
171 struct netlink_ext_ack *extack)
172 {
173 int err;
174
175 switch (enc_ports->dst) {
176 case htons(IANA_VXLAN_UDP_PORT):
177 *tun_type = NFP_FL_TUNNEL_VXLAN;
178 *key_layer |= NFP_FLOWER_LAYER_VXLAN;
179 *key_size += sizeof(struct nfp_flower_ipv4_udp_tun);
180
181 if (enc_op) {
182 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: encap options not supported on vxlan tunnels");
183 return -EOPNOTSUPP;
184 }
185 break;
186 case htons(GENEVE_UDP_PORT):
187 if (!(priv->flower_ext_feats & NFP_FL_FEATS_GENEVE)) {
188 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: loaded firmware does not support geneve offload");
189 return -EOPNOTSUPP;
190 }
191 *tun_type = NFP_FL_TUNNEL_GENEVE;
192 *key_layer |= NFP_FLOWER_LAYER_EXT_META;
193 *key_size += sizeof(struct nfp_flower_ext_meta);
194 *key_layer_two |= NFP_FLOWER_LAYER2_GENEVE;
195 *key_size += sizeof(struct nfp_flower_ipv4_udp_tun);
196
197 if (!enc_op)
198 break;
199 if (!(priv->flower_ext_feats & NFP_FL_FEATS_GENEVE_OPT)) {
200 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: loaded firmware does not support geneve option offload");
201 return -EOPNOTSUPP;
202 }
203 err = nfp_flower_calc_opt_layer(enc_op, key_layer_two,
204 key_size, extack);
205 if (err)
206 return err;
207 break;
208 default:
209 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: tunnel type unknown");
210 return -EOPNOTSUPP;
211 }
212
213 return 0;
214 }
215
216 static int
nfp_flower_calculate_key_layers(struct nfp_app * app,struct net_device * netdev,struct nfp_fl_key_ls * ret_key_ls,struct flow_cls_offload * flow,enum nfp_flower_tun_type * tun_type,struct netlink_ext_ack * extack)217 nfp_flower_calculate_key_layers(struct nfp_app *app,
218 struct net_device *netdev,
219 struct nfp_fl_key_ls *ret_key_ls,
220 struct flow_cls_offload *flow,
221 enum nfp_flower_tun_type *tun_type,
222 struct netlink_ext_ack *extack)
223 {
224 struct flow_rule *rule = flow_cls_offload_flow_rule(flow);
225 struct flow_dissector *dissector = rule->match.dissector;
226 struct flow_match_basic basic = { NULL, NULL};
227 struct nfp_flower_priv *priv = app->priv;
228 u32 key_layer_two;
229 u8 key_layer;
230 int key_size;
231 int err;
232
233 if (dissector->used_keys & ~NFP_FLOWER_WHITELIST_DISSECTOR) {
234 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: match not supported");
235 return -EOPNOTSUPP;
236 }
237
238 /* If any tun dissector is used then the required set must be used. */
239 if (dissector->used_keys & NFP_FLOWER_WHITELIST_TUN_DISSECTOR &&
240 (dissector->used_keys & NFP_FLOWER_WHITELIST_TUN_DISSECTOR_R)
241 != NFP_FLOWER_WHITELIST_TUN_DISSECTOR_R) {
242 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: tunnel match not supported");
243 return -EOPNOTSUPP;
244 }
245
246 key_layer_two = 0;
247 key_layer = NFP_FLOWER_LAYER_PORT;
248 key_size = sizeof(struct nfp_flower_meta_tci) +
249 sizeof(struct nfp_flower_in_port);
250
251 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS) ||
252 flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_MPLS)) {
253 key_layer |= NFP_FLOWER_LAYER_MAC;
254 key_size += sizeof(struct nfp_flower_mac_mpls);
255 }
256
257 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
258 struct flow_match_vlan vlan;
259
260 flow_rule_match_vlan(rule, &vlan);
261 if (!(priv->flower_ext_feats & NFP_FL_FEATS_VLAN_PCP) &&
262 vlan.key->vlan_priority) {
263 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: loaded firmware does not support VLAN PCP offload");
264 return -EOPNOTSUPP;
265 }
266 }
267
268 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_CONTROL)) {
269 struct flow_match_enc_opts enc_op = { NULL, NULL };
270 struct flow_match_ipv4_addrs ipv4_addrs;
271 struct flow_match_control enc_ctl;
272 struct flow_match_ports enc_ports;
273
274 flow_rule_match_enc_control(rule, &enc_ctl);
275
276 if (enc_ctl.mask->addr_type != 0xffff) {
277 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: wildcarded protocols on tunnels are not supported");
278 return -EOPNOTSUPP;
279 }
280 if (enc_ctl.key->addr_type != FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
281 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: only IPv4 tunnels are supported");
282 return -EOPNOTSUPP;
283 }
284
285 /* These fields are already verified as used. */
286 flow_rule_match_enc_ipv4_addrs(rule, &ipv4_addrs);
287 if (ipv4_addrs.mask->dst != cpu_to_be32(~0)) {
288 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: only an exact match IPv4 destination address is supported");
289 return -EOPNOTSUPP;
290 }
291
292 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_OPTS))
293 flow_rule_match_enc_opts(rule, &enc_op);
294
295
296 if (!flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_PORTS)) {
297 /* check if GRE, which has no enc_ports */
298 if (netif_is_gretap(netdev)) {
299 *tun_type = NFP_FL_TUNNEL_GRE;
300 key_layer |= NFP_FLOWER_LAYER_EXT_META;
301 key_size += sizeof(struct nfp_flower_ext_meta);
302 key_layer_two |= NFP_FLOWER_LAYER2_GRE;
303 key_size +=
304 sizeof(struct nfp_flower_ipv4_gre_tun);
305
306 if (enc_op.key) {
307 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: encap options not supported on GRE tunnels");
308 return -EOPNOTSUPP;
309 }
310 } else {
311 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: an exact match on L4 destination port is required for non-GRE tunnels");
312 return -EOPNOTSUPP;
313 }
314 } else {
315 flow_rule_match_enc_ports(rule, &enc_ports);
316 if (enc_ports.mask->dst != cpu_to_be16(~0)) {
317 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: only an exact match L4 destination port is supported");
318 return -EOPNOTSUPP;
319 }
320
321 err = nfp_flower_calc_udp_tun_layer(enc_ports.key,
322 enc_op.key,
323 &key_layer_two,
324 &key_layer,
325 &key_size, priv,
326 tun_type, extack);
327 if (err)
328 return err;
329
330 /* Ensure the ingress netdev matches the expected
331 * tun type.
332 */
333 if (!nfp_fl_netdev_is_tunnel_type(netdev, *tun_type)) {
334 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: ingress netdev does not match the expected tunnel type");
335 return -EOPNOTSUPP;
336 }
337 }
338 }
339
340 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC))
341 flow_rule_match_basic(rule, &basic);
342
343 if (basic.mask && basic.mask->n_proto) {
344 /* Ethernet type is present in the key. */
345 switch (basic.key->n_proto) {
346 case cpu_to_be16(ETH_P_IP):
347 key_layer |= NFP_FLOWER_LAYER_IPV4;
348 key_size += sizeof(struct nfp_flower_ipv4);
349 break;
350
351 case cpu_to_be16(ETH_P_IPV6):
352 key_layer |= NFP_FLOWER_LAYER_IPV6;
353 key_size += sizeof(struct nfp_flower_ipv6);
354 break;
355
356 /* Currently we do not offload ARP
357 * because we rely on it to get to the host.
358 */
359 case cpu_to_be16(ETH_P_ARP):
360 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: ARP not supported");
361 return -EOPNOTSUPP;
362
363 case cpu_to_be16(ETH_P_MPLS_UC):
364 case cpu_to_be16(ETH_P_MPLS_MC):
365 if (!(key_layer & NFP_FLOWER_LAYER_MAC)) {
366 key_layer |= NFP_FLOWER_LAYER_MAC;
367 key_size += sizeof(struct nfp_flower_mac_mpls);
368 }
369 break;
370
371 /* Will be included in layer 2. */
372 case cpu_to_be16(ETH_P_8021Q):
373 break;
374
375 default:
376 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: match on given EtherType is not supported");
377 return -EOPNOTSUPP;
378 }
379 } else if (nfp_flower_check_higher_than_mac(flow)) {
380 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: cannot match above L2 without specified EtherType");
381 return -EOPNOTSUPP;
382 }
383
384 if (basic.mask && basic.mask->ip_proto) {
385 switch (basic.key->ip_proto) {
386 case IPPROTO_TCP:
387 case IPPROTO_UDP:
388 case IPPROTO_SCTP:
389 case IPPROTO_ICMP:
390 case IPPROTO_ICMPV6:
391 key_layer |= NFP_FLOWER_LAYER_TP;
392 key_size += sizeof(struct nfp_flower_tp_ports);
393 break;
394 }
395 }
396
397 if (!(key_layer & NFP_FLOWER_LAYER_TP) &&
398 nfp_flower_check_higher_than_l3(flow)) {
399 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: cannot match on L4 information without specified IP protocol type");
400 return -EOPNOTSUPP;
401 }
402
403 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_TCP)) {
404 struct flow_match_tcp tcp;
405 u32 tcp_flags;
406
407 flow_rule_match_tcp(rule, &tcp);
408 tcp_flags = be16_to_cpu(tcp.key->flags);
409
410 if (tcp_flags & ~NFP_FLOWER_SUPPORTED_TCPFLAGS) {
411 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: no match support for selected TCP flags");
412 return -EOPNOTSUPP;
413 }
414
415 /* We only support PSH and URG flags when either
416 * FIN, SYN or RST is present as well.
417 */
418 if ((tcp_flags & (TCPHDR_PSH | TCPHDR_URG)) &&
419 !(tcp_flags & (TCPHDR_FIN | TCPHDR_SYN | TCPHDR_RST))) {
420 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: PSH and URG is only supported when used with FIN, SYN or RST");
421 return -EOPNOTSUPP;
422 }
423
424 /* We need to store TCP flags in the either the IPv4 or IPv6 key
425 * space, thus we need to ensure we include a IPv4/IPv6 key
426 * layer if we have not done so already.
427 */
428 if (!basic.key) {
429 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: match on TCP flags requires a match on L3 protocol");
430 return -EOPNOTSUPP;
431 }
432
433 if (!(key_layer & NFP_FLOWER_LAYER_IPV4) &&
434 !(key_layer & NFP_FLOWER_LAYER_IPV6)) {
435 switch (basic.key->n_proto) {
436 case cpu_to_be16(ETH_P_IP):
437 key_layer |= NFP_FLOWER_LAYER_IPV4;
438 key_size += sizeof(struct nfp_flower_ipv4);
439 break;
440
441 case cpu_to_be16(ETH_P_IPV6):
442 key_layer |= NFP_FLOWER_LAYER_IPV6;
443 key_size += sizeof(struct nfp_flower_ipv6);
444 break;
445
446 default:
447 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: match on TCP flags requires a match on IPv4/IPv6");
448 return -EOPNOTSUPP;
449 }
450 }
451 }
452
453 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
454 struct flow_match_control ctl;
455
456 flow_rule_match_control(rule, &ctl);
457 if (ctl.key->flags & ~NFP_FLOWER_SUPPORTED_CTLFLAGS) {
458 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: match on unknown control flag");
459 return -EOPNOTSUPP;
460 }
461 }
462
463 ret_key_ls->key_layer = key_layer;
464 ret_key_ls->key_layer_two = key_layer_two;
465 ret_key_ls->key_size = key_size;
466
467 return 0;
468 }
469
470 static struct nfp_fl_payload *
nfp_flower_allocate_new(struct nfp_fl_key_ls * key_layer)471 nfp_flower_allocate_new(struct nfp_fl_key_ls *key_layer)
472 {
473 struct nfp_fl_payload *flow_pay;
474
475 flow_pay = kmalloc(sizeof(*flow_pay), GFP_KERNEL);
476 if (!flow_pay)
477 return NULL;
478
479 flow_pay->meta.key_len = key_layer->key_size;
480 flow_pay->unmasked_data = kmalloc(key_layer->key_size, GFP_KERNEL);
481 if (!flow_pay->unmasked_data)
482 goto err_free_flow;
483
484 flow_pay->meta.mask_len = key_layer->key_size;
485 flow_pay->mask_data = kmalloc(key_layer->key_size, GFP_KERNEL);
486 if (!flow_pay->mask_data)
487 goto err_free_unmasked;
488
489 flow_pay->action_data = kmalloc(NFP_FL_MAX_A_SIZ, GFP_KERNEL);
490 if (!flow_pay->action_data)
491 goto err_free_mask;
492
493 flow_pay->nfp_tun_ipv4_addr = 0;
494 flow_pay->meta.flags = 0;
495 INIT_LIST_HEAD(&flow_pay->linked_flows);
496 flow_pay->in_hw = false;
497 flow_pay->pre_tun_rule.dev = NULL;
498
499 return flow_pay;
500
501 err_free_mask:
502 kfree(flow_pay->mask_data);
503 err_free_unmasked:
504 kfree(flow_pay->unmasked_data);
505 err_free_flow:
506 kfree(flow_pay);
507 return NULL;
508 }
509
510 static int
nfp_flower_update_merge_with_actions(struct nfp_fl_payload * flow,struct nfp_flower_merge_check * merge,u8 * last_act_id,int * act_out)511 nfp_flower_update_merge_with_actions(struct nfp_fl_payload *flow,
512 struct nfp_flower_merge_check *merge,
513 u8 *last_act_id, int *act_out)
514 {
515 struct nfp_fl_set_ipv6_tc_hl_fl *ipv6_tc_hl_fl;
516 struct nfp_fl_set_ip4_ttl_tos *ipv4_ttl_tos;
517 struct nfp_fl_set_ip4_addrs *ipv4_add;
518 struct nfp_fl_set_ipv6_addr *ipv6_add;
519 struct nfp_fl_push_vlan *push_vlan;
520 struct nfp_fl_set_tport *tport;
521 struct nfp_fl_set_eth *eth;
522 struct nfp_fl_act_head *a;
523 unsigned int act_off = 0;
524 u8 act_id = 0;
525 u8 *ports;
526 int i;
527
528 while (act_off < flow->meta.act_len) {
529 a = (struct nfp_fl_act_head *)&flow->action_data[act_off];
530 act_id = a->jump_id;
531
532 switch (act_id) {
533 case NFP_FL_ACTION_OPCODE_OUTPUT:
534 if (act_out)
535 (*act_out)++;
536 break;
537 case NFP_FL_ACTION_OPCODE_PUSH_VLAN:
538 push_vlan = (struct nfp_fl_push_vlan *)a;
539 if (push_vlan->vlan_tci)
540 merge->tci = cpu_to_be16(0xffff);
541 break;
542 case NFP_FL_ACTION_OPCODE_POP_VLAN:
543 merge->tci = cpu_to_be16(0);
544 break;
545 case NFP_FL_ACTION_OPCODE_SET_IPV4_TUNNEL:
546 /* New tunnel header means l2 to l4 can be matched. */
547 eth_broadcast_addr(&merge->l2.mac_dst[0]);
548 eth_broadcast_addr(&merge->l2.mac_src[0]);
549 memset(&merge->l4, 0xff,
550 sizeof(struct nfp_flower_tp_ports));
551 memset(&merge->ipv4, 0xff,
552 sizeof(struct nfp_flower_ipv4));
553 break;
554 case NFP_FL_ACTION_OPCODE_SET_ETHERNET:
555 eth = (struct nfp_fl_set_eth *)a;
556 for (i = 0; i < ETH_ALEN; i++)
557 merge->l2.mac_dst[i] |= eth->eth_addr_mask[i];
558 for (i = 0; i < ETH_ALEN; i++)
559 merge->l2.mac_src[i] |=
560 eth->eth_addr_mask[ETH_ALEN + i];
561 break;
562 case NFP_FL_ACTION_OPCODE_SET_IPV4_ADDRS:
563 ipv4_add = (struct nfp_fl_set_ip4_addrs *)a;
564 merge->ipv4.ipv4_src |= ipv4_add->ipv4_src_mask;
565 merge->ipv4.ipv4_dst |= ipv4_add->ipv4_dst_mask;
566 break;
567 case NFP_FL_ACTION_OPCODE_SET_IPV4_TTL_TOS:
568 ipv4_ttl_tos = (struct nfp_fl_set_ip4_ttl_tos *)a;
569 merge->ipv4.ip_ext.ttl |= ipv4_ttl_tos->ipv4_ttl_mask;
570 merge->ipv4.ip_ext.tos |= ipv4_ttl_tos->ipv4_tos_mask;
571 break;
572 case NFP_FL_ACTION_OPCODE_SET_IPV6_SRC:
573 ipv6_add = (struct nfp_fl_set_ipv6_addr *)a;
574 for (i = 0; i < 4; i++)
575 merge->ipv6.ipv6_src.in6_u.u6_addr32[i] |=
576 ipv6_add->ipv6[i].mask;
577 break;
578 case NFP_FL_ACTION_OPCODE_SET_IPV6_DST:
579 ipv6_add = (struct nfp_fl_set_ipv6_addr *)a;
580 for (i = 0; i < 4; i++)
581 merge->ipv6.ipv6_dst.in6_u.u6_addr32[i] |=
582 ipv6_add->ipv6[i].mask;
583 break;
584 case NFP_FL_ACTION_OPCODE_SET_IPV6_TC_HL_FL:
585 ipv6_tc_hl_fl = (struct nfp_fl_set_ipv6_tc_hl_fl *)a;
586 merge->ipv6.ip_ext.ttl |=
587 ipv6_tc_hl_fl->ipv6_hop_limit_mask;
588 merge->ipv6.ip_ext.tos |= ipv6_tc_hl_fl->ipv6_tc_mask;
589 merge->ipv6.ipv6_flow_label_exthdr |=
590 ipv6_tc_hl_fl->ipv6_label_mask;
591 break;
592 case NFP_FL_ACTION_OPCODE_SET_UDP:
593 case NFP_FL_ACTION_OPCODE_SET_TCP:
594 tport = (struct nfp_fl_set_tport *)a;
595 ports = (u8 *)&merge->l4.port_src;
596 for (i = 0; i < 4; i++)
597 ports[i] |= tport->tp_port_mask[i];
598 break;
599 case NFP_FL_ACTION_OPCODE_PRE_TUNNEL:
600 case NFP_FL_ACTION_OPCODE_PRE_LAG:
601 case NFP_FL_ACTION_OPCODE_PUSH_GENEVE:
602 break;
603 default:
604 return -EOPNOTSUPP;
605 }
606
607 act_off += a->len_lw << NFP_FL_LW_SIZ;
608 }
609
610 if (last_act_id)
611 *last_act_id = act_id;
612
613 return 0;
614 }
615
616 static int
nfp_flower_populate_merge_match(struct nfp_fl_payload * flow,struct nfp_flower_merge_check * merge,bool extra_fields)617 nfp_flower_populate_merge_match(struct nfp_fl_payload *flow,
618 struct nfp_flower_merge_check *merge,
619 bool extra_fields)
620 {
621 struct nfp_flower_meta_tci *meta_tci;
622 u8 *mask = flow->mask_data;
623 u8 key_layer, match_size;
624
625 memset(merge, 0, sizeof(struct nfp_flower_merge_check));
626
627 meta_tci = (struct nfp_flower_meta_tci *)mask;
628 key_layer = meta_tci->nfp_flow_key_layer;
629
630 if (key_layer & ~NFP_FLOWER_MERGE_FIELDS && !extra_fields)
631 return -EOPNOTSUPP;
632
633 merge->tci = meta_tci->tci;
634 mask += sizeof(struct nfp_flower_meta_tci);
635
636 if (key_layer & NFP_FLOWER_LAYER_EXT_META)
637 mask += sizeof(struct nfp_flower_ext_meta);
638
639 mask += sizeof(struct nfp_flower_in_port);
640
641 if (key_layer & NFP_FLOWER_LAYER_MAC) {
642 match_size = sizeof(struct nfp_flower_mac_mpls);
643 memcpy(&merge->l2, mask, match_size);
644 mask += match_size;
645 }
646
647 if (key_layer & NFP_FLOWER_LAYER_TP) {
648 match_size = sizeof(struct nfp_flower_tp_ports);
649 memcpy(&merge->l4, mask, match_size);
650 mask += match_size;
651 }
652
653 if (key_layer & NFP_FLOWER_LAYER_IPV4) {
654 match_size = sizeof(struct nfp_flower_ipv4);
655 memcpy(&merge->ipv4, mask, match_size);
656 }
657
658 if (key_layer & NFP_FLOWER_LAYER_IPV6) {
659 match_size = sizeof(struct nfp_flower_ipv6);
660 memcpy(&merge->ipv6, mask, match_size);
661 }
662
663 return 0;
664 }
665
666 static int
nfp_flower_can_merge(struct nfp_fl_payload * sub_flow1,struct nfp_fl_payload * sub_flow2)667 nfp_flower_can_merge(struct nfp_fl_payload *sub_flow1,
668 struct nfp_fl_payload *sub_flow2)
669 {
670 /* Two flows can be merged if sub_flow2 only matches on bits that are
671 * either matched by sub_flow1 or set by a sub_flow1 action. This
672 * ensures that every packet that hits sub_flow1 and recirculates is
673 * guaranteed to hit sub_flow2.
674 */
675 struct nfp_flower_merge_check sub_flow1_merge, sub_flow2_merge;
676 int err, act_out = 0;
677 u8 last_act_id = 0;
678
679 err = nfp_flower_populate_merge_match(sub_flow1, &sub_flow1_merge,
680 true);
681 if (err)
682 return err;
683
684 err = nfp_flower_populate_merge_match(sub_flow2, &sub_flow2_merge,
685 false);
686 if (err)
687 return err;
688
689 err = nfp_flower_update_merge_with_actions(sub_flow1, &sub_flow1_merge,
690 &last_act_id, &act_out);
691 if (err)
692 return err;
693
694 /* Must only be 1 output action and it must be the last in sequence. */
695 if (act_out != 1 || last_act_id != NFP_FL_ACTION_OPCODE_OUTPUT)
696 return -EOPNOTSUPP;
697
698 /* Reject merge if sub_flow2 matches on something that is not matched
699 * on or set in an action by sub_flow1.
700 */
701 err = bitmap_andnot(sub_flow2_merge.vals, sub_flow2_merge.vals,
702 sub_flow1_merge.vals,
703 sizeof(struct nfp_flower_merge_check) * 8);
704 if (err)
705 return -EINVAL;
706
707 return 0;
708 }
709
710 static unsigned int
nfp_flower_copy_pre_actions(char * act_dst,char * act_src,int len,bool * tunnel_act)711 nfp_flower_copy_pre_actions(char *act_dst, char *act_src, int len,
712 bool *tunnel_act)
713 {
714 unsigned int act_off = 0, act_len;
715 struct nfp_fl_act_head *a;
716 u8 act_id = 0;
717
718 while (act_off < len) {
719 a = (struct nfp_fl_act_head *)&act_src[act_off];
720 act_len = a->len_lw << NFP_FL_LW_SIZ;
721 act_id = a->jump_id;
722
723 switch (act_id) {
724 case NFP_FL_ACTION_OPCODE_PRE_TUNNEL:
725 if (tunnel_act)
726 *tunnel_act = true;
727 /* fall through */
728 case NFP_FL_ACTION_OPCODE_PRE_LAG:
729 memcpy(act_dst + act_off, act_src + act_off, act_len);
730 break;
731 default:
732 return act_off;
733 }
734
735 act_off += act_len;
736 }
737
738 return act_off;
739 }
740
741 static int
nfp_fl_verify_post_tun_acts(char * acts,int len,struct nfp_fl_push_vlan ** vlan)742 nfp_fl_verify_post_tun_acts(char *acts, int len, struct nfp_fl_push_vlan **vlan)
743 {
744 struct nfp_fl_act_head *a;
745 unsigned int act_off = 0;
746
747 while (act_off < len) {
748 a = (struct nfp_fl_act_head *)&acts[act_off];
749
750 if (a->jump_id == NFP_FL_ACTION_OPCODE_PUSH_VLAN && !act_off)
751 *vlan = (struct nfp_fl_push_vlan *)a;
752 else if (a->jump_id != NFP_FL_ACTION_OPCODE_OUTPUT)
753 return -EOPNOTSUPP;
754
755 act_off += a->len_lw << NFP_FL_LW_SIZ;
756 }
757
758 /* Ensure any VLAN push also has an egress action. */
759 if (*vlan && act_off <= sizeof(struct nfp_fl_push_vlan))
760 return -EOPNOTSUPP;
761
762 return 0;
763 }
764
765 static int
nfp_fl_push_vlan_after_tun(char * acts,int len,struct nfp_fl_push_vlan * vlan)766 nfp_fl_push_vlan_after_tun(char *acts, int len, struct nfp_fl_push_vlan *vlan)
767 {
768 struct nfp_fl_set_ipv4_tun *tun;
769 struct nfp_fl_act_head *a;
770 unsigned int act_off = 0;
771
772 while (act_off < len) {
773 a = (struct nfp_fl_act_head *)&acts[act_off];
774
775 if (a->jump_id == NFP_FL_ACTION_OPCODE_SET_IPV4_TUNNEL) {
776 tun = (struct nfp_fl_set_ipv4_tun *)a;
777 tun->outer_vlan_tpid = vlan->vlan_tpid;
778 tun->outer_vlan_tci = vlan->vlan_tci;
779
780 return 0;
781 }
782
783 act_off += a->len_lw << NFP_FL_LW_SIZ;
784 }
785
786 /* Return error if no tunnel action is found. */
787 return -EOPNOTSUPP;
788 }
789
790 static int
nfp_flower_merge_action(struct nfp_fl_payload * sub_flow1,struct nfp_fl_payload * sub_flow2,struct nfp_fl_payload * merge_flow)791 nfp_flower_merge_action(struct nfp_fl_payload *sub_flow1,
792 struct nfp_fl_payload *sub_flow2,
793 struct nfp_fl_payload *merge_flow)
794 {
795 unsigned int sub1_act_len, sub2_act_len, pre_off1, pre_off2;
796 struct nfp_fl_push_vlan *post_tun_push_vlan = NULL;
797 bool tunnel_act = false;
798 char *merge_act;
799 int err;
800
801 /* The last action of sub_flow1 must be output - do not merge this. */
802 sub1_act_len = sub_flow1->meta.act_len - sizeof(struct nfp_fl_output);
803 sub2_act_len = sub_flow2->meta.act_len;
804
805 if (!sub2_act_len)
806 return -EINVAL;
807
808 if (sub1_act_len + sub2_act_len > NFP_FL_MAX_A_SIZ)
809 return -EINVAL;
810
811 /* A shortcut can only be applied if there is a single action. */
812 if (sub1_act_len)
813 merge_flow->meta.shortcut = cpu_to_be32(NFP_FL_SC_ACT_NULL);
814 else
815 merge_flow->meta.shortcut = sub_flow2->meta.shortcut;
816
817 merge_flow->meta.act_len = sub1_act_len + sub2_act_len;
818 merge_act = merge_flow->action_data;
819
820 /* Copy any pre-actions to the start of merge flow action list. */
821 pre_off1 = nfp_flower_copy_pre_actions(merge_act,
822 sub_flow1->action_data,
823 sub1_act_len, &tunnel_act);
824 merge_act += pre_off1;
825 sub1_act_len -= pre_off1;
826 pre_off2 = nfp_flower_copy_pre_actions(merge_act,
827 sub_flow2->action_data,
828 sub2_act_len, NULL);
829 merge_act += pre_off2;
830 sub2_act_len -= pre_off2;
831
832 /* FW does a tunnel push when egressing, therefore, if sub_flow 1 pushes
833 * a tunnel, there are restrictions on what sub_flow 2 actions lead to a
834 * valid merge.
835 */
836 if (tunnel_act) {
837 char *post_tun_acts = &sub_flow2->action_data[pre_off2];
838
839 err = nfp_fl_verify_post_tun_acts(post_tun_acts, sub2_act_len,
840 &post_tun_push_vlan);
841 if (err)
842 return err;
843
844 if (post_tun_push_vlan) {
845 pre_off2 += sizeof(*post_tun_push_vlan);
846 sub2_act_len -= sizeof(*post_tun_push_vlan);
847 }
848 }
849
850 /* Copy remaining actions from sub_flows 1 and 2. */
851 memcpy(merge_act, sub_flow1->action_data + pre_off1, sub1_act_len);
852
853 if (post_tun_push_vlan) {
854 /* Update tunnel action in merge to include VLAN push. */
855 err = nfp_fl_push_vlan_after_tun(merge_act, sub1_act_len,
856 post_tun_push_vlan);
857 if (err)
858 return err;
859
860 merge_flow->meta.act_len -= sizeof(*post_tun_push_vlan);
861 }
862
863 merge_act += sub1_act_len;
864 memcpy(merge_act, sub_flow2->action_data + pre_off2, sub2_act_len);
865
866 return 0;
867 }
868
869 /* Flow link code should only be accessed under RTNL. */
nfp_flower_unlink_flow(struct nfp_fl_payload_link * link)870 static void nfp_flower_unlink_flow(struct nfp_fl_payload_link *link)
871 {
872 list_del(&link->merge_flow.list);
873 list_del(&link->sub_flow.list);
874 kfree(link);
875 }
876
nfp_flower_unlink_flows(struct nfp_fl_payload * merge_flow,struct nfp_fl_payload * sub_flow)877 static void nfp_flower_unlink_flows(struct nfp_fl_payload *merge_flow,
878 struct nfp_fl_payload *sub_flow)
879 {
880 struct nfp_fl_payload_link *link;
881
882 list_for_each_entry(link, &merge_flow->linked_flows, merge_flow.list)
883 if (link->sub_flow.flow == sub_flow) {
884 nfp_flower_unlink_flow(link);
885 return;
886 }
887 }
888
nfp_flower_link_flows(struct nfp_fl_payload * merge_flow,struct nfp_fl_payload * sub_flow)889 static int nfp_flower_link_flows(struct nfp_fl_payload *merge_flow,
890 struct nfp_fl_payload *sub_flow)
891 {
892 struct nfp_fl_payload_link *link;
893
894 link = kmalloc(sizeof(*link), GFP_KERNEL);
895 if (!link)
896 return -ENOMEM;
897
898 link->merge_flow.flow = merge_flow;
899 list_add_tail(&link->merge_flow.list, &merge_flow->linked_flows);
900 link->sub_flow.flow = sub_flow;
901 list_add_tail(&link->sub_flow.list, &sub_flow->linked_flows);
902
903 return 0;
904 }
905
906 /**
907 * nfp_flower_merge_offloaded_flows() - Merge 2 existing flows to single flow.
908 * @app: Pointer to the APP handle
909 * @sub_flow1: Initial flow matched to produce merge hint
910 * @sub_flow2: Post recirculation flow matched in merge hint
911 *
912 * Combines 2 flows (if valid) to a single flow, removing the initial from hw
913 * and offloading the new, merged flow.
914 *
915 * Return: negative value on error, 0 in success.
916 */
nfp_flower_merge_offloaded_flows(struct nfp_app * app,struct nfp_fl_payload * sub_flow1,struct nfp_fl_payload * sub_flow2)917 int nfp_flower_merge_offloaded_flows(struct nfp_app *app,
918 struct nfp_fl_payload *sub_flow1,
919 struct nfp_fl_payload *sub_flow2)
920 {
921 struct flow_cls_offload merge_tc_off;
922 struct nfp_flower_priv *priv = app->priv;
923 struct netlink_ext_ack *extack = NULL;
924 struct nfp_fl_payload *merge_flow;
925 struct nfp_fl_key_ls merge_key_ls;
926 int err;
927
928 ASSERT_RTNL();
929
930 extack = merge_tc_off.common.extack;
931 if (sub_flow1 == sub_flow2 ||
932 nfp_flower_is_merge_flow(sub_flow1) ||
933 nfp_flower_is_merge_flow(sub_flow2))
934 return -EINVAL;
935
936 err = nfp_flower_can_merge(sub_flow1, sub_flow2);
937 if (err)
938 return err;
939
940 merge_key_ls.key_size = sub_flow1->meta.key_len;
941
942 merge_flow = nfp_flower_allocate_new(&merge_key_ls);
943 if (!merge_flow)
944 return -ENOMEM;
945
946 merge_flow->tc_flower_cookie = (unsigned long)merge_flow;
947 merge_flow->ingress_dev = sub_flow1->ingress_dev;
948
949 memcpy(merge_flow->unmasked_data, sub_flow1->unmasked_data,
950 sub_flow1->meta.key_len);
951 memcpy(merge_flow->mask_data, sub_flow1->mask_data,
952 sub_flow1->meta.mask_len);
953
954 err = nfp_flower_merge_action(sub_flow1, sub_flow2, merge_flow);
955 if (err)
956 goto err_destroy_merge_flow;
957
958 err = nfp_flower_link_flows(merge_flow, sub_flow1);
959 if (err)
960 goto err_destroy_merge_flow;
961
962 err = nfp_flower_link_flows(merge_flow, sub_flow2);
963 if (err)
964 goto err_unlink_sub_flow1;
965
966 merge_tc_off.cookie = merge_flow->tc_flower_cookie;
967 err = nfp_compile_flow_metadata(app, &merge_tc_off, merge_flow,
968 merge_flow->ingress_dev, extack);
969 if (err)
970 goto err_unlink_sub_flow2;
971
972 err = rhashtable_insert_fast(&priv->flow_table, &merge_flow->fl_node,
973 nfp_flower_table_params);
974 if (err)
975 goto err_release_metadata;
976
977 err = nfp_flower_xmit_flow(app, merge_flow,
978 NFP_FLOWER_CMSG_TYPE_FLOW_MOD);
979 if (err)
980 goto err_remove_rhash;
981
982 merge_flow->in_hw = true;
983 sub_flow1->in_hw = false;
984
985 return 0;
986
987 err_remove_rhash:
988 WARN_ON_ONCE(rhashtable_remove_fast(&priv->flow_table,
989 &merge_flow->fl_node,
990 nfp_flower_table_params));
991 err_release_metadata:
992 nfp_modify_flow_metadata(app, merge_flow);
993 err_unlink_sub_flow2:
994 nfp_flower_unlink_flows(merge_flow, sub_flow2);
995 err_unlink_sub_flow1:
996 nfp_flower_unlink_flows(merge_flow, sub_flow1);
997 err_destroy_merge_flow:
998 kfree(merge_flow->action_data);
999 kfree(merge_flow->mask_data);
1000 kfree(merge_flow->unmasked_data);
1001 kfree(merge_flow);
1002 return err;
1003 }
1004
1005 /**
1006 * nfp_flower_validate_pre_tun_rule()
1007 * @app: Pointer to the APP handle
1008 * @flow: Pointer to NFP flow representation of rule
1009 * @extack: Netlink extended ACK report
1010 *
1011 * Verifies the flow as a pre-tunnel rule.
1012 *
1013 * Return: negative value on error, 0 if verified.
1014 */
1015 static int
nfp_flower_validate_pre_tun_rule(struct nfp_app * app,struct nfp_fl_payload * flow,struct netlink_ext_ack * extack)1016 nfp_flower_validate_pre_tun_rule(struct nfp_app *app,
1017 struct nfp_fl_payload *flow,
1018 struct netlink_ext_ack *extack)
1019 {
1020 struct nfp_flower_meta_tci *meta_tci;
1021 struct nfp_flower_mac_mpls *mac;
1022 struct nfp_fl_act_head *act;
1023 u8 *mask = flow->mask_data;
1024 bool vlan = false;
1025 int act_offset;
1026 u8 key_layer;
1027
1028 meta_tci = (struct nfp_flower_meta_tci *)flow->unmasked_data;
1029 if (meta_tci->tci & cpu_to_be16(NFP_FLOWER_MASK_VLAN_PRESENT)) {
1030 u16 vlan_tci = be16_to_cpu(meta_tci->tci);
1031
1032 vlan_tci &= ~NFP_FLOWER_MASK_VLAN_PRESENT;
1033 flow->pre_tun_rule.vlan_tci = cpu_to_be16(vlan_tci);
1034 vlan = true;
1035 } else {
1036 flow->pre_tun_rule.vlan_tci = cpu_to_be16(0xffff);
1037 }
1038
1039 key_layer = meta_tci->nfp_flow_key_layer;
1040 if (key_layer & ~NFP_FLOWER_PRE_TUN_RULE_FIELDS) {
1041 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: too many match fields");
1042 return -EOPNOTSUPP;
1043 }
1044
1045 if (!(key_layer & NFP_FLOWER_LAYER_MAC)) {
1046 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: MAC fields match required");
1047 return -EOPNOTSUPP;
1048 }
1049
1050 /* Skip fields known to exist. */
1051 mask += sizeof(struct nfp_flower_meta_tci);
1052 mask += sizeof(struct nfp_flower_in_port);
1053
1054 /* Ensure destination MAC address is fully matched. */
1055 mac = (struct nfp_flower_mac_mpls *)mask;
1056 if (!is_broadcast_ether_addr(&mac->mac_dst[0])) {
1057 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: dest MAC field must not be masked");
1058 return -EOPNOTSUPP;
1059 }
1060
1061 if (key_layer & NFP_FLOWER_LAYER_IPV4) {
1062 int ip_flags = offsetof(struct nfp_flower_ipv4, ip_ext.flags);
1063 int ip_proto = offsetof(struct nfp_flower_ipv4, ip_ext.proto);
1064 int i;
1065
1066 mask += sizeof(struct nfp_flower_mac_mpls);
1067
1068 /* Ensure proto and flags are the only IP layer fields. */
1069 for (i = 0; i < sizeof(struct nfp_flower_ipv4); i++)
1070 if (mask[i] && i != ip_flags && i != ip_proto) {
1071 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: only flags and proto can be matched in ip header");
1072 return -EOPNOTSUPP;
1073 }
1074 }
1075
1076 /* Action must be a single egress or pop_vlan and egress. */
1077 act_offset = 0;
1078 act = (struct nfp_fl_act_head *)&flow->action_data[act_offset];
1079 if (vlan) {
1080 if (act->jump_id != NFP_FL_ACTION_OPCODE_POP_VLAN) {
1081 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: match on VLAN must have VLAN pop as first action");
1082 return -EOPNOTSUPP;
1083 }
1084
1085 act_offset += act->len_lw << NFP_FL_LW_SIZ;
1086 act = (struct nfp_fl_act_head *)&flow->action_data[act_offset];
1087 }
1088
1089 if (act->jump_id != NFP_FL_ACTION_OPCODE_OUTPUT) {
1090 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: non egress action detected where egress was expected");
1091 return -EOPNOTSUPP;
1092 }
1093
1094 act_offset += act->len_lw << NFP_FL_LW_SIZ;
1095
1096 /* Ensure there are no more actions after egress. */
1097 if (act_offset != flow->meta.act_len) {
1098 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: egress is not the last action");
1099 return -EOPNOTSUPP;
1100 }
1101
1102 return 0;
1103 }
1104
1105 /**
1106 * nfp_flower_add_offload() - Adds a new flow to hardware.
1107 * @app: Pointer to the APP handle
1108 * @netdev: netdev structure.
1109 * @flow: TC flower classifier offload structure.
1110 *
1111 * Adds a new flow to the repeated hash structure and action payload.
1112 *
1113 * Return: negative value on error, 0 if configured successfully.
1114 */
1115 static int
nfp_flower_add_offload(struct nfp_app * app,struct net_device * netdev,struct flow_cls_offload * flow)1116 nfp_flower_add_offload(struct nfp_app *app, struct net_device *netdev,
1117 struct flow_cls_offload *flow)
1118 {
1119 enum nfp_flower_tun_type tun_type = NFP_FL_TUNNEL_NONE;
1120 struct nfp_flower_priv *priv = app->priv;
1121 struct netlink_ext_ack *extack = NULL;
1122 struct nfp_fl_payload *flow_pay;
1123 struct nfp_fl_key_ls *key_layer;
1124 struct nfp_port *port = NULL;
1125 int err;
1126
1127 extack = flow->common.extack;
1128 if (nfp_netdev_is_nfp_repr(netdev))
1129 port = nfp_port_from_netdev(netdev);
1130
1131 key_layer = kmalloc(sizeof(*key_layer), GFP_KERNEL);
1132 if (!key_layer)
1133 return -ENOMEM;
1134
1135 err = nfp_flower_calculate_key_layers(app, netdev, key_layer, flow,
1136 &tun_type, extack);
1137 if (err)
1138 goto err_free_key_ls;
1139
1140 flow_pay = nfp_flower_allocate_new(key_layer);
1141 if (!flow_pay) {
1142 err = -ENOMEM;
1143 goto err_free_key_ls;
1144 }
1145
1146 err = nfp_flower_compile_flow_match(app, flow, key_layer, netdev,
1147 flow_pay, tun_type, extack);
1148 if (err)
1149 goto err_destroy_flow;
1150
1151 err = nfp_flower_compile_action(app, flow, netdev, flow_pay, extack);
1152 if (err)
1153 goto err_destroy_flow;
1154
1155 if (flow_pay->pre_tun_rule.dev) {
1156 err = nfp_flower_validate_pre_tun_rule(app, flow_pay, extack);
1157 if (err)
1158 goto err_destroy_flow;
1159 }
1160
1161 err = nfp_compile_flow_metadata(app, flow, flow_pay, netdev, extack);
1162 if (err)
1163 goto err_destroy_flow;
1164
1165 flow_pay->tc_flower_cookie = flow->cookie;
1166 err = rhashtable_insert_fast(&priv->flow_table, &flow_pay->fl_node,
1167 nfp_flower_table_params);
1168 if (err) {
1169 NL_SET_ERR_MSG_MOD(extack, "invalid entry: cannot insert flow into tables for offloads");
1170 goto err_release_metadata;
1171 }
1172
1173 if (flow_pay->pre_tun_rule.dev)
1174 err = nfp_flower_xmit_pre_tun_flow(app, flow_pay);
1175 else
1176 err = nfp_flower_xmit_flow(app, flow_pay,
1177 NFP_FLOWER_CMSG_TYPE_FLOW_ADD);
1178 if (err)
1179 goto err_remove_rhash;
1180
1181 if (port)
1182 port->tc_offload_cnt++;
1183
1184 flow_pay->in_hw = true;
1185
1186 /* Deallocate flow payload when flower rule has been destroyed. */
1187 kfree(key_layer);
1188
1189 return 0;
1190
1191 err_remove_rhash:
1192 WARN_ON_ONCE(rhashtable_remove_fast(&priv->flow_table,
1193 &flow_pay->fl_node,
1194 nfp_flower_table_params));
1195 err_release_metadata:
1196 nfp_modify_flow_metadata(app, flow_pay);
1197 err_destroy_flow:
1198 kfree(flow_pay->action_data);
1199 kfree(flow_pay->mask_data);
1200 kfree(flow_pay->unmasked_data);
1201 kfree(flow_pay);
1202 err_free_key_ls:
1203 kfree(key_layer);
1204 return err;
1205 }
1206
1207 static void
nfp_flower_remove_merge_flow(struct nfp_app * app,struct nfp_fl_payload * del_sub_flow,struct nfp_fl_payload * merge_flow)1208 nfp_flower_remove_merge_flow(struct nfp_app *app,
1209 struct nfp_fl_payload *del_sub_flow,
1210 struct nfp_fl_payload *merge_flow)
1211 {
1212 struct nfp_flower_priv *priv = app->priv;
1213 struct nfp_fl_payload_link *link, *temp;
1214 struct nfp_fl_payload *origin;
1215 bool mod = false;
1216 int err;
1217
1218 link = list_first_entry(&merge_flow->linked_flows,
1219 struct nfp_fl_payload_link, merge_flow.list);
1220 origin = link->sub_flow.flow;
1221
1222 /* Re-add rule the merge had overwritten if it has not been deleted. */
1223 if (origin != del_sub_flow)
1224 mod = true;
1225
1226 err = nfp_modify_flow_metadata(app, merge_flow);
1227 if (err) {
1228 nfp_flower_cmsg_warn(app, "Metadata fail for merge flow delete.\n");
1229 goto err_free_links;
1230 }
1231
1232 if (!mod) {
1233 err = nfp_flower_xmit_flow(app, merge_flow,
1234 NFP_FLOWER_CMSG_TYPE_FLOW_DEL);
1235 if (err) {
1236 nfp_flower_cmsg_warn(app, "Failed to delete merged flow.\n");
1237 goto err_free_links;
1238 }
1239 } else {
1240 __nfp_modify_flow_metadata(priv, origin);
1241 err = nfp_flower_xmit_flow(app, origin,
1242 NFP_FLOWER_CMSG_TYPE_FLOW_MOD);
1243 if (err)
1244 nfp_flower_cmsg_warn(app, "Failed to revert merge flow.\n");
1245 origin->in_hw = true;
1246 }
1247
1248 err_free_links:
1249 /* Clean any links connected with the merged flow. */
1250 list_for_each_entry_safe(link, temp, &merge_flow->linked_flows,
1251 merge_flow.list)
1252 nfp_flower_unlink_flow(link);
1253
1254 kfree(merge_flow->action_data);
1255 kfree(merge_flow->mask_data);
1256 kfree(merge_flow->unmasked_data);
1257 WARN_ON_ONCE(rhashtable_remove_fast(&priv->flow_table,
1258 &merge_flow->fl_node,
1259 nfp_flower_table_params));
1260 kfree_rcu(merge_flow, rcu);
1261 }
1262
1263 static void
nfp_flower_del_linked_merge_flows(struct nfp_app * app,struct nfp_fl_payload * sub_flow)1264 nfp_flower_del_linked_merge_flows(struct nfp_app *app,
1265 struct nfp_fl_payload *sub_flow)
1266 {
1267 struct nfp_fl_payload_link *link, *temp;
1268
1269 /* Remove any merge flow formed from the deleted sub_flow. */
1270 list_for_each_entry_safe(link, temp, &sub_flow->linked_flows,
1271 sub_flow.list)
1272 nfp_flower_remove_merge_flow(app, sub_flow,
1273 link->merge_flow.flow);
1274 }
1275
1276 /**
1277 * nfp_flower_del_offload() - Removes a flow from hardware.
1278 * @app: Pointer to the APP handle
1279 * @netdev: netdev structure.
1280 * @flow: TC flower classifier offload structure
1281 *
1282 * Removes a flow from the repeated hash structure and clears the
1283 * action payload. Any flows merged from this are also deleted.
1284 *
1285 * Return: negative value on error, 0 if removed successfully.
1286 */
1287 static int
nfp_flower_del_offload(struct nfp_app * app,struct net_device * netdev,struct flow_cls_offload * flow)1288 nfp_flower_del_offload(struct nfp_app *app, struct net_device *netdev,
1289 struct flow_cls_offload *flow)
1290 {
1291 struct nfp_flower_priv *priv = app->priv;
1292 struct netlink_ext_ack *extack = NULL;
1293 struct nfp_fl_payload *nfp_flow;
1294 struct nfp_port *port = NULL;
1295 int err;
1296
1297 extack = flow->common.extack;
1298 if (nfp_netdev_is_nfp_repr(netdev))
1299 port = nfp_port_from_netdev(netdev);
1300
1301 nfp_flow = nfp_flower_search_fl_table(app, flow->cookie, netdev);
1302 if (!nfp_flow) {
1303 NL_SET_ERR_MSG_MOD(extack, "invalid entry: cannot remove flow that does not exist");
1304 return -ENOENT;
1305 }
1306
1307 err = nfp_modify_flow_metadata(app, nfp_flow);
1308 if (err)
1309 goto err_free_merge_flow;
1310
1311 if (nfp_flow->nfp_tun_ipv4_addr)
1312 nfp_tunnel_del_ipv4_off(app, nfp_flow->nfp_tun_ipv4_addr);
1313
1314 if (!nfp_flow->in_hw) {
1315 err = 0;
1316 goto err_free_merge_flow;
1317 }
1318
1319 if (nfp_flow->pre_tun_rule.dev)
1320 err = nfp_flower_xmit_pre_tun_del_flow(app, nfp_flow);
1321 else
1322 err = nfp_flower_xmit_flow(app, nfp_flow,
1323 NFP_FLOWER_CMSG_TYPE_FLOW_DEL);
1324 /* Fall through on error. */
1325
1326 err_free_merge_flow:
1327 nfp_flower_del_linked_merge_flows(app, nfp_flow);
1328 if (port)
1329 port->tc_offload_cnt--;
1330 kfree(nfp_flow->action_data);
1331 kfree(nfp_flow->mask_data);
1332 kfree(nfp_flow->unmasked_data);
1333 WARN_ON_ONCE(rhashtable_remove_fast(&priv->flow_table,
1334 &nfp_flow->fl_node,
1335 nfp_flower_table_params));
1336 kfree_rcu(nfp_flow, rcu);
1337 return err;
1338 }
1339
1340 static void
__nfp_flower_update_merge_stats(struct nfp_app * app,struct nfp_fl_payload * merge_flow)1341 __nfp_flower_update_merge_stats(struct nfp_app *app,
1342 struct nfp_fl_payload *merge_flow)
1343 {
1344 struct nfp_flower_priv *priv = app->priv;
1345 struct nfp_fl_payload_link *link;
1346 struct nfp_fl_payload *sub_flow;
1347 u64 pkts, bytes, used;
1348 u32 ctx_id;
1349
1350 ctx_id = be32_to_cpu(merge_flow->meta.host_ctx_id);
1351 pkts = priv->stats[ctx_id].pkts;
1352 /* Do not cycle subflows if no stats to distribute. */
1353 if (!pkts)
1354 return;
1355 bytes = priv->stats[ctx_id].bytes;
1356 used = priv->stats[ctx_id].used;
1357
1358 /* Reset stats for the merge flow. */
1359 priv->stats[ctx_id].pkts = 0;
1360 priv->stats[ctx_id].bytes = 0;
1361
1362 /* The merge flow has received stats updates from firmware.
1363 * Distribute these stats to all subflows that form the merge.
1364 * The stats will collected from TC via the subflows.
1365 */
1366 list_for_each_entry(link, &merge_flow->linked_flows, merge_flow.list) {
1367 sub_flow = link->sub_flow.flow;
1368 ctx_id = be32_to_cpu(sub_flow->meta.host_ctx_id);
1369 priv->stats[ctx_id].pkts += pkts;
1370 priv->stats[ctx_id].bytes += bytes;
1371 max_t(u64, priv->stats[ctx_id].used, used);
1372 }
1373 }
1374
1375 static void
nfp_flower_update_merge_stats(struct nfp_app * app,struct nfp_fl_payload * sub_flow)1376 nfp_flower_update_merge_stats(struct nfp_app *app,
1377 struct nfp_fl_payload *sub_flow)
1378 {
1379 struct nfp_fl_payload_link *link;
1380
1381 /* Get merge flows that the subflow forms to distribute their stats. */
1382 list_for_each_entry(link, &sub_flow->linked_flows, sub_flow.list)
1383 __nfp_flower_update_merge_stats(app, link->merge_flow.flow);
1384 }
1385
1386 /**
1387 * nfp_flower_get_stats() - Populates flow stats obtained from hardware.
1388 * @app: Pointer to the APP handle
1389 * @netdev: Netdev structure.
1390 * @flow: TC flower classifier offload structure
1391 *
1392 * Populates a flow statistics structure which which corresponds to a
1393 * specific flow.
1394 *
1395 * Return: negative value on error, 0 if stats populated successfully.
1396 */
1397 static int
nfp_flower_get_stats(struct nfp_app * app,struct net_device * netdev,struct flow_cls_offload * flow)1398 nfp_flower_get_stats(struct nfp_app *app, struct net_device *netdev,
1399 struct flow_cls_offload *flow)
1400 {
1401 struct nfp_flower_priv *priv = app->priv;
1402 struct netlink_ext_ack *extack = NULL;
1403 struct nfp_fl_payload *nfp_flow;
1404 u32 ctx_id;
1405
1406 extack = flow->common.extack;
1407 nfp_flow = nfp_flower_search_fl_table(app, flow->cookie, netdev);
1408 if (!nfp_flow) {
1409 NL_SET_ERR_MSG_MOD(extack, "invalid entry: cannot dump stats for flow that does not exist");
1410 return -EINVAL;
1411 }
1412
1413 ctx_id = be32_to_cpu(nfp_flow->meta.host_ctx_id);
1414
1415 spin_lock_bh(&priv->stats_lock);
1416 /* If request is for a sub_flow, update stats from merged flows. */
1417 if (!list_empty(&nfp_flow->linked_flows))
1418 nfp_flower_update_merge_stats(app, nfp_flow);
1419
1420 flow_stats_update(&flow->stats, priv->stats[ctx_id].bytes,
1421 priv->stats[ctx_id].pkts, priv->stats[ctx_id].used);
1422
1423 priv->stats[ctx_id].pkts = 0;
1424 priv->stats[ctx_id].bytes = 0;
1425 spin_unlock_bh(&priv->stats_lock);
1426
1427 return 0;
1428 }
1429
1430 static int
nfp_flower_repr_offload(struct nfp_app * app,struct net_device * netdev,struct flow_cls_offload * flower)1431 nfp_flower_repr_offload(struct nfp_app *app, struct net_device *netdev,
1432 struct flow_cls_offload *flower)
1433 {
1434 if (!eth_proto_is_802_3(flower->common.protocol))
1435 return -EOPNOTSUPP;
1436
1437 switch (flower->command) {
1438 case FLOW_CLS_REPLACE:
1439 return nfp_flower_add_offload(app, netdev, flower);
1440 case FLOW_CLS_DESTROY:
1441 return nfp_flower_del_offload(app, netdev, flower);
1442 case FLOW_CLS_STATS:
1443 return nfp_flower_get_stats(app, netdev, flower);
1444 default:
1445 return -EOPNOTSUPP;
1446 }
1447 }
1448
nfp_flower_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)1449 static int nfp_flower_setup_tc_block_cb(enum tc_setup_type type,
1450 void *type_data, void *cb_priv)
1451 {
1452 struct nfp_repr *repr = cb_priv;
1453
1454 if (!tc_cls_can_offload_and_chain0(repr->netdev, type_data))
1455 return -EOPNOTSUPP;
1456
1457 switch (type) {
1458 case TC_SETUP_CLSFLOWER:
1459 return nfp_flower_repr_offload(repr->app, repr->netdev,
1460 type_data);
1461 case TC_SETUP_CLSMATCHALL:
1462 return nfp_flower_setup_qos_offload(repr->app, repr->netdev,
1463 type_data);
1464 default:
1465 return -EOPNOTSUPP;
1466 }
1467 }
1468
1469 static LIST_HEAD(nfp_block_cb_list);
1470
nfp_flower_setup_tc_block(struct net_device * netdev,struct flow_block_offload * f)1471 static int nfp_flower_setup_tc_block(struct net_device *netdev,
1472 struct flow_block_offload *f)
1473 {
1474 struct nfp_repr *repr = netdev_priv(netdev);
1475 struct nfp_flower_repr_priv *repr_priv;
1476 struct flow_block_cb *block_cb;
1477
1478 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
1479 return -EOPNOTSUPP;
1480
1481 repr_priv = repr->app_priv;
1482 repr_priv->block_shared = f->block_shared;
1483 f->driver_block_list = &nfp_block_cb_list;
1484
1485 switch (f->command) {
1486 case FLOW_BLOCK_BIND:
1487 if (flow_block_cb_is_busy(nfp_flower_setup_tc_block_cb, repr,
1488 &nfp_block_cb_list))
1489 return -EBUSY;
1490
1491 block_cb = flow_block_cb_alloc(nfp_flower_setup_tc_block_cb,
1492 repr, repr, NULL);
1493 if (IS_ERR(block_cb))
1494 return PTR_ERR(block_cb);
1495
1496 flow_block_cb_add(block_cb, f);
1497 list_add_tail(&block_cb->driver_list, &nfp_block_cb_list);
1498 return 0;
1499 case FLOW_BLOCK_UNBIND:
1500 block_cb = flow_block_cb_lookup(f->block,
1501 nfp_flower_setup_tc_block_cb,
1502 repr);
1503 if (!block_cb)
1504 return -ENOENT;
1505
1506 flow_block_cb_remove(block_cb, f);
1507 list_del(&block_cb->driver_list);
1508 return 0;
1509 default:
1510 return -EOPNOTSUPP;
1511 }
1512 }
1513
nfp_flower_setup_tc(struct nfp_app * app,struct net_device * netdev,enum tc_setup_type type,void * type_data)1514 int nfp_flower_setup_tc(struct nfp_app *app, struct net_device *netdev,
1515 enum tc_setup_type type, void *type_data)
1516 {
1517 switch (type) {
1518 case TC_SETUP_BLOCK:
1519 return nfp_flower_setup_tc_block(netdev, type_data);
1520 default:
1521 return -EOPNOTSUPP;
1522 }
1523 }
1524
1525 struct nfp_flower_indr_block_cb_priv {
1526 struct net_device *netdev;
1527 struct nfp_app *app;
1528 struct list_head list;
1529 };
1530
1531 static struct nfp_flower_indr_block_cb_priv *
nfp_flower_indr_block_cb_priv_lookup(struct nfp_app * app,struct net_device * netdev)1532 nfp_flower_indr_block_cb_priv_lookup(struct nfp_app *app,
1533 struct net_device *netdev)
1534 {
1535 struct nfp_flower_indr_block_cb_priv *cb_priv;
1536 struct nfp_flower_priv *priv = app->priv;
1537
1538 /* All callback list access should be protected by RTNL. */
1539 ASSERT_RTNL();
1540
1541 list_for_each_entry(cb_priv, &priv->indr_block_cb_priv, list)
1542 if (cb_priv->netdev == netdev)
1543 return cb_priv;
1544
1545 return NULL;
1546 }
1547
nfp_flower_setup_indr_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)1548 static int nfp_flower_setup_indr_block_cb(enum tc_setup_type type,
1549 void *type_data, void *cb_priv)
1550 {
1551 struct nfp_flower_indr_block_cb_priv *priv = cb_priv;
1552 struct flow_cls_offload *flower = type_data;
1553
1554 if (flower->common.chain_index)
1555 return -EOPNOTSUPP;
1556
1557 switch (type) {
1558 case TC_SETUP_CLSFLOWER:
1559 return nfp_flower_repr_offload(priv->app, priv->netdev,
1560 type_data);
1561 default:
1562 return -EOPNOTSUPP;
1563 }
1564 }
1565
nfp_flower_setup_indr_tc_release(void * cb_priv)1566 static void nfp_flower_setup_indr_tc_release(void *cb_priv)
1567 {
1568 struct nfp_flower_indr_block_cb_priv *priv = cb_priv;
1569
1570 list_del(&priv->list);
1571 kfree(priv);
1572 }
1573
1574 static int
nfp_flower_setup_indr_tc_block(struct net_device * netdev,struct nfp_app * app,struct flow_block_offload * f)1575 nfp_flower_setup_indr_tc_block(struct net_device *netdev, struct nfp_app *app,
1576 struct flow_block_offload *f)
1577 {
1578 struct nfp_flower_indr_block_cb_priv *cb_priv;
1579 struct nfp_flower_priv *priv = app->priv;
1580 struct flow_block_cb *block_cb;
1581
1582 if ((f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS &&
1583 !nfp_flower_internal_port_can_offload(app, netdev)) ||
1584 (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS &&
1585 nfp_flower_internal_port_can_offload(app, netdev)))
1586 return -EOPNOTSUPP;
1587
1588 switch (f->command) {
1589 case FLOW_BLOCK_BIND:
1590 cb_priv = nfp_flower_indr_block_cb_priv_lookup(app, netdev);
1591 if (cb_priv &&
1592 flow_block_cb_is_busy(nfp_flower_setup_indr_block_cb,
1593 cb_priv,
1594 &nfp_block_cb_list))
1595 return -EBUSY;
1596
1597 cb_priv = kmalloc(sizeof(*cb_priv), GFP_KERNEL);
1598 if (!cb_priv)
1599 return -ENOMEM;
1600
1601 cb_priv->netdev = netdev;
1602 cb_priv->app = app;
1603 list_add(&cb_priv->list, &priv->indr_block_cb_priv);
1604
1605 block_cb = flow_block_cb_alloc(nfp_flower_setup_indr_block_cb,
1606 cb_priv, cb_priv,
1607 nfp_flower_setup_indr_tc_release);
1608 if (IS_ERR(block_cb)) {
1609 list_del(&cb_priv->list);
1610 kfree(cb_priv);
1611 return PTR_ERR(block_cb);
1612 }
1613
1614 flow_block_cb_add(block_cb, f);
1615 list_add_tail(&block_cb->driver_list, &nfp_block_cb_list);
1616 return 0;
1617 case FLOW_BLOCK_UNBIND:
1618 cb_priv = nfp_flower_indr_block_cb_priv_lookup(app, netdev);
1619 if (!cb_priv)
1620 return -ENOENT;
1621
1622 block_cb = flow_block_cb_lookup(f->block,
1623 nfp_flower_setup_indr_block_cb,
1624 cb_priv);
1625 if (!block_cb)
1626 return -ENOENT;
1627
1628 flow_block_cb_remove(block_cb, f);
1629 list_del(&block_cb->driver_list);
1630 return 0;
1631 default:
1632 return -EOPNOTSUPP;
1633 }
1634 return 0;
1635 }
1636
1637 static int
nfp_flower_indr_setup_tc_cb(struct net_device * netdev,void * cb_priv,enum tc_setup_type type,void * type_data)1638 nfp_flower_indr_setup_tc_cb(struct net_device *netdev, void *cb_priv,
1639 enum tc_setup_type type, void *type_data)
1640 {
1641 switch (type) {
1642 case TC_SETUP_BLOCK:
1643 return nfp_flower_setup_indr_tc_block(netdev, cb_priv,
1644 type_data);
1645 default:
1646 return -EOPNOTSUPP;
1647 }
1648 }
1649
nfp_flower_reg_indir_block_handler(struct nfp_app * app,struct net_device * netdev,unsigned long event)1650 int nfp_flower_reg_indir_block_handler(struct nfp_app *app,
1651 struct net_device *netdev,
1652 unsigned long event)
1653 {
1654 int err;
1655
1656 if (!nfp_fl_is_netdev_to_offload(netdev))
1657 return NOTIFY_OK;
1658
1659 if (event == NETDEV_REGISTER) {
1660 err = __flow_indr_block_cb_register(netdev, app,
1661 nfp_flower_indr_setup_tc_cb,
1662 app);
1663 if (err)
1664 nfp_flower_cmsg_warn(app,
1665 "Indirect block reg failed - %s\n",
1666 netdev->name);
1667 } else if (event == NETDEV_UNREGISTER) {
1668 __flow_indr_block_cb_unregister(netdev,
1669 nfp_flower_indr_setup_tc_cb,
1670 app);
1671 }
1672
1673 return NOTIFY_OK;
1674 }
1675