1 /* Connection state tracking for netfilter. This is separated from,
2 but required by, the NAT layer; it can also be used by an iptables
3 extension. */
4
5 /* (C) 1999-2001 Paul `Rusty' Russell
6 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
7 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
8 * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/types.h>
18 #include <linux/netfilter.h>
19 #include <linux/module.h>
20 #include <linux/sched.h>
21 #include <linux/skbuff.h>
22 #include <linux/proc_fs.h>
23 #include <linux/vmalloc.h>
24 #include <linux/stddef.h>
25 #include <linux/slab.h>
26 #include <linux/random.h>
27 #include <linux/jhash.h>
28 #include <linux/err.h>
29 #include <linux/percpu.h>
30 #include <linux/moduleparam.h>
31 #include <linux/notifier.h>
32 #include <linux/kernel.h>
33 #include <linux/netdevice.h>
34 #include <linux/socket.h>
35 #include <linux/mm.h>
36 #include <linux/nsproxy.h>
37 #include <linux/rculist_nulls.h>
38
39 #include <net/netfilter/nf_conntrack.h>
40 #include <net/netfilter/nf_conntrack_l4proto.h>
41 #include <net/netfilter/nf_conntrack_expect.h>
42 #include <net/netfilter/nf_conntrack_helper.h>
43 #include <net/netfilter/nf_conntrack_seqadj.h>
44 #include <net/netfilter/nf_conntrack_core.h>
45 #include <net/netfilter/nf_conntrack_extend.h>
46 #include <net/netfilter/nf_conntrack_acct.h>
47 #include <net/netfilter/nf_conntrack_ecache.h>
48 #include <net/netfilter/nf_conntrack_zones.h>
49 #include <net/netfilter/nf_conntrack_timestamp.h>
50 #include <net/netfilter/nf_conntrack_timeout.h>
51 #include <net/netfilter/nf_conntrack_labels.h>
52 #include <net/netfilter/nf_conntrack_synproxy.h>
53 #include <net/netfilter/nf_nat.h>
54 #include <net/netfilter/nf_nat_core.h>
55 #include <net/netfilter/nf_nat_helper.h>
56 #include <net/netns/hash.h>
57 #include <net/ip.h>
58
59 #include "nf_internals.h"
60
61 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
62 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
63
64 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
65 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
66
67 struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
68 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
69
70 struct conntrack_gc_work {
71 struct delayed_work dwork;
72 u32 last_bucket;
73 bool exiting;
74 bool early_drop;
75 long next_gc_run;
76 };
77
78 static __read_mostly struct kmem_cache *nf_conntrack_cachep;
79 static __read_mostly spinlock_t nf_conntrack_locks_all_lock;
80 static __read_mostly DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
81 static __read_mostly bool nf_conntrack_locks_all;
82
83 /* every gc cycle scans at most 1/GC_MAX_BUCKETS_DIV part of table */
84 #define GC_MAX_BUCKETS_DIV 128u
85 /* upper bound of full table scan */
86 #define GC_MAX_SCAN_JIFFIES (16u * HZ)
87 /* desired ratio of entries found to be expired */
88 #define GC_EVICT_RATIO 50u
89
90 static struct conntrack_gc_work conntrack_gc_work;
91
nf_conntrack_lock(spinlock_t * lock)92 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
93 {
94 /* 1) Acquire the lock */
95 spin_lock(lock);
96
97 /* 2) read nf_conntrack_locks_all, with ACQUIRE semantics
98 * It pairs with the smp_store_release() in nf_conntrack_all_unlock()
99 */
100 if (likely(smp_load_acquire(&nf_conntrack_locks_all) == false))
101 return;
102
103 /* fast path failed, unlock */
104 spin_unlock(lock);
105
106 /* Slow path 1) get global lock */
107 spin_lock(&nf_conntrack_locks_all_lock);
108
109 /* Slow path 2) get the lock we want */
110 spin_lock(lock);
111
112 /* Slow path 3) release the global lock */
113 spin_unlock(&nf_conntrack_locks_all_lock);
114 }
115 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
116
nf_conntrack_double_unlock(unsigned int h1,unsigned int h2)117 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
118 {
119 h1 %= CONNTRACK_LOCKS;
120 h2 %= CONNTRACK_LOCKS;
121 spin_unlock(&nf_conntrack_locks[h1]);
122 if (h1 != h2)
123 spin_unlock(&nf_conntrack_locks[h2]);
124 }
125
126 /* return true if we need to recompute hashes (in case hash table was resized) */
nf_conntrack_double_lock(struct net * net,unsigned int h1,unsigned int h2,unsigned int sequence)127 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
128 unsigned int h2, unsigned int sequence)
129 {
130 h1 %= CONNTRACK_LOCKS;
131 h2 %= CONNTRACK_LOCKS;
132 if (h1 <= h2) {
133 nf_conntrack_lock(&nf_conntrack_locks[h1]);
134 if (h1 != h2)
135 spin_lock_nested(&nf_conntrack_locks[h2],
136 SINGLE_DEPTH_NESTING);
137 } else {
138 nf_conntrack_lock(&nf_conntrack_locks[h2]);
139 spin_lock_nested(&nf_conntrack_locks[h1],
140 SINGLE_DEPTH_NESTING);
141 }
142 if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
143 nf_conntrack_double_unlock(h1, h2);
144 return true;
145 }
146 return false;
147 }
148
nf_conntrack_all_lock(void)149 static void nf_conntrack_all_lock(void)
150 {
151 int i;
152
153 spin_lock(&nf_conntrack_locks_all_lock);
154
155 nf_conntrack_locks_all = true;
156
157 for (i = 0; i < CONNTRACK_LOCKS; i++) {
158 spin_lock(&nf_conntrack_locks[i]);
159
160 /* This spin_unlock provides the "release" to ensure that
161 * nf_conntrack_locks_all==true is visible to everyone that
162 * acquired spin_lock(&nf_conntrack_locks[]).
163 */
164 spin_unlock(&nf_conntrack_locks[i]);
165 }
166 }
167
nf_conntrack_all_unlock(void)168 static void nf_conntrack_all_unlock(void)
169 {
170 /* All prior stores must be complete before we clear
171 * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
172 * might observe the false value but not the entire
173 * critical section.
174 * It pairs with the smp_load_acquire() in nf_conntrack_lock()
175 */
176 smp_store_release(&nf_conntrack_locks_all, false);
177 spin_unlock(&nf_conntrack_locks_all_lock);
178 }
179
180 unsigned int nf_conntrack_htable_size __read_mostly;
181 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
182
183 unsigned int nf_conntrack_max __read_mostly;
184 EXPORT_SYMBOL_GPL(nf_conntrack_max);
185 seqcount_t nf_conntrack_generation __read_mostly;
186 static unsigned int nf_conntrack_hash_rnd __read_mostly;
187
hash_conntrack_raw(const struct nf_conntrack_tuple * tuple,const struct net * net)188 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
189 const struct net *net)
190 {
191 unsigned int n;
192 u32 seed;
193
194 get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
195
196 /* The direction must be ignored, so we hash everything up to the
197 * destination ports (which is a multiple of 4) and treat the last
198 * three bytes manually.
199 */
200 seed = nf_conntrack_hash_rnd ^ net_hash_mix(net);
201 n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
202 return jhash2((u32 *)tuple, n, seed ^
203 (((__force __u16)tuple->dst.u.all << 16) |
204 tuple->dst.protonum));
205 }
206
scale_hash(u32 hash)207 static u32 scale_hash(u32 hash)
208 {
209 return reciprocal_scale(hash, nf_conntrack_htable_size);
210 }
211
__hash_conntrack(const struct net * net,const struct nf_conntrack_tuple * tuple,unsigned int size)212 static u32 __hash_conntrack(const struct net *net,
213 const struct nf_conntrack_tuple *tuple,
214 unsigned int size)
215 {
216 return reciprocal_scale(hash_conntrack_raw(tuple, net), size);
217 }
218
hash_conntrack(const struct net * net,const struct nf_conntrack_tuple * tuple)219 static u32 hash_conntrack(const struct net *net,
220 const struct nf_conntrack_tuple *tuple)
221 {
222 return scale_hash(hash_conntrack_raw(tuple, net));
223 }
224
225 static bool
nf_ct_get_tuple(const struct sk_buff * skb,unsigned int nhoff,unsigned int dataoff,u_int16_t l3num,u_int8_t protonum,struct net * net,struct nf_conntrack_tuple * tuple,const struct nf_conntrack_l4proto * l4proto)226 nf_ct_get_tuple(const struct sk_buff *skb,
227 unsigned int nhoff,
228 unsigned int dataoff,
229 u_int16_t l3num,
230 u_int8_t protonum,
231 struct net *net,
232 struct nf_conntrack_tuple *tuple,
233 const struct nf_conntrack_l4proto *l4proto)
234 {
235 unsigned int size;
236 const __be32 *ap;
237 __be32 _addrs[8];
238 struct {
239 __be16 sport;
240 __be16 dport;
241 } _inet_hdr, *inet_hdr;
242
243 memset(tuple, 0, sizeof(*tuple));
244
245 tuple->src.l3num = l3num;
246 switch (l3num) {
247 case NFPROTO_IPV4:
248 nhoff += offsetof(struct iphdr, saddr);
249 size = 2 * sizeof(__be32);
250 break;
251 case NFPROTO_IPV6:
252 nhoff += offsetof(struct ipv6hdr, saddr);
253 size = sizeof(_addrs);
254 break;
255 default:
256 return true;
257 }
258
259 ap = skb_header_pointer(skb, nhoff, size, _addrs);
260 if (!ap)
261 return false;
262
263 switch (l3num) {
264 case NFPROTO_IPV4:
265 tuple->src.u3.ip = ap[0];
266 tuple->dst.u3.ip = ap[1];
267 break;
268 case NFPROTO_IPV6:
269 memcpy(tuple->src.u3.ip6, ap, sizeof(tuple->src.u3.ip6));
270 memcpy(tuple->dst.u3.ip6, ap + 4, sizeof(tuple->dst.u3.ip6));
271 break;
272 }
273
274 tuple->dst.protonum = protonum;
275 tuple->dst.dir = IP_CT_DIR_ORIGINAL;
276
277 if (unlikely(l4proto->pkt_to_tuple))
278 return l4proto->pkt_to_tuple(skb, dataoff, net, tuple);
279
280 /* Actually only need first 4 bytes to get ports. */
281 inet_hdr = skb_header_pointer(skb, dataoff, sizeof(_inet_hdr), &_inet_hdr);
282 if (!inet_hdr)
283 return false;
284
285 tuple->src.u.udp.port = inet_hdr->sport;
286 tuple->dst.u.udp.port = inet_hdr->dport;
287 return true;
288 }
289
ipv4_get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u_int8_t * protonum)290 static int ipv4_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
291 u_int8_t *protonum)
292 {
293 int dataoff = -1;
294 const struct iphdr *iph;
295 struct iphdr _iph;
296
297 iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
298 if (!iph)
299 return -1;
300
301 /* Conntrack defragments packets, we might still see fragments
302 * inside ICMP packets though.
303 */
304 if (iph->frag_off & htons(IP_OFFSET))
305 return -1;
306
307 dataoff = nhoff + (iph->ihl << 2);
308 *protonum = iph->protocol;
309
310 /* Check bogus IP headers */
311 if (dataoff > skb->len) {
312 pr_debug("bogus IPv4 packet: nhoff %u, ihl %u, skblen %u\n",
313 nhoff, iph->ihl << 2, skb->len);
314 return -1;
315 }
316 return dataoff;
317 }
318
319 #if IS_ENABLED(CONFIG_IPV6)
ipv6_get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u8 * protonum)320 static int ipv6_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
321 u8 *protonum)
322 {
323 int protoff = -1;
324 unsigned int extoff = nhoff + sizeof(struct ipv6hdr);
325 __be16 frag_off;
326 u8 nexthdr;
327
328 if (skb_copy_bits(skb, nhoff + offsetof(struct ipv6hdr, nexthdr),
329 &nexthdr, sizeof(nexthdr)) != 0) {
330 pr_debug("can't get nexthdr\n");
331 return -1;
332 }
333 protoff = ipv6_skip_exthdr(skb, extoff, &nexthdr, &frag_off);
334 /*
335 * (protoff == skb->len) means the packet has not data, just
336 * IPv6 and possibly extensions headers, but it is tracked anyway
337 */
338 if (protoff < 0 || (frag_off & htons(~0x7)) != 0) {
339 pr_debug("can't find proto in pkt\n");
340 return -1;
341 }
342
343 *protonum = nexthdr;
344 return protoff;
345 }
346 #endif
347
get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u8 pf,u8 * l4num)348 static int get_l4proto(const struct sk_buff *skb,
349 unsigned int nhoff, u8 pf, u8 *l4num)
350 {
351 switch (pf) {
352 case NFPROTO_IPV4:
353 return ipv4_get_l4proto(skb, nhoff, l4num);
354 #if IS_ENABLED(CONFIG_IPV6)
355 case NFPROTO_IPV6:
356 return ipv6_get_l4proto(skb, nhoff, l4num);
357 #endif
358 default:
359 *l4num = 0;
360 break;
361 }
362 return -1;
363 }
364
nf_ct_get_tuplepr(const struct sk_buff * skb,unsigned int nhoff,u_int16_t l3num,struct net * net,struct nf_conntrack_tuple * tuple)365 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
366 u_int16_t l3num,
367 struct net *net, struct nf_conntrack_tuple *tuple)
368 {
369 const struct nf_conntrack_l4proto *l4proto;
370 u8 protonum;
371 int protoff;
372 int ret;
373
374 rcu_read_lock();
375
376 protoff = get_l4proto(skb, nhoff, l3num, &protonum);
377 if (protoff <= 0) {
378 rcu_read_unlock();
379 return false;
380 }
381
382 l4proto = __nf_ct_l4proto_find(l3num, protonum);
383
384 ret = nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple,
385 l4proto);
386
387 rcu_read_unlock();
388 return ret;
389 }
390 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
391
392 bool
nf_ct_invert_tuple(struct nf_conntrack_tuple * inverse,const struct nf_conntrack_tuple * orig,const struct nf_conntrack_l4proto * l4proto)393 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
394 const struct nf_conntrack_tuple *orig,
395 const struct nf_conntrack_l4proto *l4proto)
396 {
397 memset(inverse, 0, sizeof(*inverse));
398
399 inverse->src.l3num = orig->src.l3num;
400
401 switch (orig->src.l3num) {
402 case NFPROTO_IPV4:
403 inverse->src.u3.ip = orig->dst.u3.ip;
404 inverse->dst.u3.ip = orig->src.u3.ip;
405 break;
406 case NFPROTO_IPV6:
407 inverse->src.u3.in6 = orig->dst.u3.in6;
408 inverse->dst.u3.in6 = orig->src.u3.in6;
409 break;
410 default:
411 break;
412 }
413
414 inverse->dst.dir = !orig->dst.dir;
415
416 inverse->dst.protonum = orig->dst.protonum;
417
418 if (unlikely(l4proto->invert_tuple))
419 return l4proto->invert_tuple(inverse, orig);
420
421 inverse->src.u.all = orig->dst.u.all;
422 inverse->dst.u.all = orig->src.u.all;
423 return true;
424 }
425 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
426
427 static void
clean_from_lists(struct nf_conn * ct)428 clean_from_lists(struct nf_conn *ct)
429 {
430 pr_debug("clean_from_lists(%p)\n", ct);
431 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
432 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
433
434 /* Destroy all pending expectations */
435 nf_ct_remove_expectations(ct);
436 }
437
438 /* must be called with local_bh_disable */
nf_ct_add_to_dying_list(struct nf_conn * ct)439 static void nf_ct_add_to_dying_list(struct nf_conn *ct)
440 {
441 struct ct_pcpu *pcpu;
442
443 /* add this conntrack to the (per cpu) dying list */
444 ct->cpu = smp_processor_id();
445 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
446
447 spin_lock(&pcpu->lock);
448 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
449 &pcpu->dying);
450 spin_unlock(&pcpu->lock);
451 }
452
453 /* must be called with local_bh_disable */
nf_ct_add_to_unconfirmed_list(struct nf_conn * ct)454 static void nf_ct_add_to_unconfirmed_list(struct nf_conn *ct)
455 {
456 struct ct_pcpu *pcpu;
457
458 /* add this conntrack to the (per cpu) unconfirmed list */
459 ct->cpu = smp_processor_id();
460 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
461
462 spin_lock(&pcpu->lock);
463 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
464 &pcpu->unconfirmed);
465 spin_unlock(&pcpu->lock);
466 }
467
468 /* must be called with local_bh_disable */
nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn * ct)469 static void nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn *ct)
470 {
471 struct ct_pcpu *pcpu;
472
473 /* We overload first tuple to link into unconfirmed or dying list.*/
474 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
475
476 spin_lock(&pcpu->lock);
477 BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
478 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
479 spin_unlock(&pcpu->lock);
480 }
481
482 #define NFCT_ALIGN(len) (((len) + NFCT_INFOMASK) & ~NFCT_INFOMASK)
483
484 /* Released via destroy_conntrack() */
nf_ct_tmpl_alloc(struct net * net,const struct nf_conntrack_zone * zone,gfp_t flags)485 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
486 const struct nf_conntrack_zone *zone,
487 gfp_t flags)
488 {
489 struct nf_conn *tmpl, *p;
490
491 if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK) {
492 tmpl = kzalloc(sizeof(*tmpl) + NFCT_INFOMASK, flags);
493 if (!tmpl)
494 return NULL;
495
496 p = tmpl;
497 tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
498 if (tmpl != p) {
499 tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
500 tmpl->proto.tmpl_padto = (char *)tmpl - (char *)p;
501 }
502 } else {
503 tmpl = kzalloc(sizeof(*tmpl), flags);
504 if (!tmpl)
505 return NULL;
506 }
507
508 tmpl->status = IPS_TEMPLATE;
509 write_pnet(&tmpl->ct_net, net);
510 nf_ct_zone_add(tmpl, zone);
511 atomic_set(&tmpl->ct_general.use, 0);
512
513 return tmpl;
514 }
515 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
516
nf_ct_tmpl_free(struct nf_conn * tmpl)517 void nf_ct_tmpl_free(struct nf_conn *tmpl)
518 {
519 nf_ct_ext_destroy(tmpl);
520 nf_ct_ext_free(tmpl);
521
522 if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK)
523 kfree((char *)tmpl - tmpl->proto.tmpl_padto);
524 else
525 kfree(tmpl);
526 }
527 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
528
529 static void
destroy_conntrack(struct nf_conntrack * nfct)530 destroy_conntrack(struct nf_conntrack *nfct)
531 {
532 struct nf_conn *ct = (struct nf_conn *)nfct;
533 const struct nf_conntrack_l4proto *l4proto;
534
535 pr_debug("destroy_conntrack(%p)\n", ct);
536 WARN_ON(atomic_read(&nfct->use) != 0);
537
538 if (unlikely(nf_ct_is_template(ct))) {
539 nf_ct_tmpl_free(ct);
540 return;
541 }
542 l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
543 if (l4proto->destroy)
544 l4proto->destroy(ct);
545
546 local_bh_disable();
547 /* Expectations will have been removed in clean_from_lists,
548 * except TFTP can create an expectation on the first packet,
549 * before connection is in the list, so we need to clean here,
550 * too.
551 */
552 nf_ct_remove_expectations(ct);
553
554 nf_ct_del_from_dying_or_unconfirmed_list(ct);
555
556 local_bh_enable();
557
558 if (ct->master)
559 nf_ct_put(ct->master);
560
561 pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
562 nf_conntrack_free(ct);
563 }
564
nf_ct_delete_from_lists(struct nf_conn * ct)565 static void nf_ct_delete_from_lists(struct nf_conn *ct)
566 {
567 struct net *net = nf_ct_net(ct);
568 unsigned int hash, reply_hash;
569 unsigned int sequence;
570
571 nf_ct_helper_destroy(ct);
572
573 local_bh_disable();
574 do {
575 sequence = read_seqcount_begin(&nf_conntrack_generation);
576 hash = hash_conntrack(net,
577 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
578 reply_hash = hash_conntrack(net,
579 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
580 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
581
582 clean_from_lists(ct);
583 nf_conntrack_double_unlock(hash, reply_hash);
584
585 nf_ct_add_to_dying_list(ct);
586
587 local_bh_enable();
588 }
589
nf_ct_delete(struct nf_conn * ct,u32 portid,int report)590 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
591 {
592 struct nf_conn_tstamp *tstamp;
593
594 if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
595 return false;
596
597 tstamp = nf_conn_tstamp_find(ct);
598 if (tstamp && tstamp->stop == 0)
599 tstamp->stop = ktime_get_real_ns();
600
601 if (nf_conntrack_event_report(IPCT_DESTROY, ct,
602 portid, report) < 0) {
603 /* destroy event was not delivered. nf_ct_put will
604 * be done by event cache worker on redelivery.
605 */
606 nf_ct_delete_from_lists(ct);
607 nf_conntrack_ecache_delayed_work(nf_ct_net(ct));
608 return false;
609 }
610
611 nf_conntrack_ecache_work(nf_ct_net(ct));
612 nf_ct_delete_from_lists(ct);
613 nf_ct_put(ct);
614 return true;
615 }
616 EXPORT_SYMBOL_GPL(nf_ct_delete);
617
618 static inline bool
nf_ct_key_equal(struct nf_conntrack_tuple_hash * h,const struct nf_conntrack_tuple * tuple,const struct nf_conntrack_zone * zone,const struct net * net)619 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
620 const struct nf_conntrack_tuple *tuple,
621 const struct nf_conntrack_zone *zone,
622 const struct net *net)
623 {
624 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
625
626 /* A conntrack can be recreated with the equal tuple,
627 * so we need to check that the conntrack is confirmed
628 */
629 return nf_ct_tuple_equal(tuple, &h->tuple) &&
630 nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
631 nf_ct_is_confirmed(ct) &&
632 net_eq(net, nf_ct_net(ct));
633 }
634
635 static inline bool
nf_ct_match(const struct nf_conn * ct1,const struct nf_conn * ct2)636 nf_ct_match(const struct nf_conn *ct1, const struct nf_conn *ct2)
637 {
638 return nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
639 &ct2->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
640 nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_REPLY].tuple,
641 &ct2->tuplehash[IP_CT_DIR_REPLY].tuple) &&
642 nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_ORIGINAL) &&
643 nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_REPLY) &&
644 net_eq(nf_ct_net(ct1), nf_ct_net(ct2));
645 }
646
647 /* caller must hold rcu readlock and none of the nf_conntrack_locks */
nf_ct_gc_expired(struct nf_conn * ct)648 static void nf_ct_gc_expired(struct nf_conn *ct)
649 {
650 if (!atomic_inc_not_zero(&ct->ct_general.use))
651 return;
652
653 if (nf_ct_should_gc(ct))
654 nf_ct_kill(ct);
655
656 nf_ct_put(ct);
657 }
658
659 /*
660 * Warning :
661 * - Caller must take a reference on returned object
662 * and recheck nf_ct_tuple_equal(tuple, &h->tuple)
663 */
664 static struct nf_conntrack_tuple_hash *
____nf_conntrack_find(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple,u32 hash)665 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
666 const struct nf_conntrack_tuple *tuple, u32 hash)
667 {
668 struct nf_conntrack_tuple_hash *h;
669 struct hlist_nulls_head *ct_hash;
670 struct hlist_nulls_node *n;
671 unsigned int bucket, hsize;
672
673 begin:
674 nf_conntrack_get_ht(&ct_hash, &hsize);
675 bucket = reciprocal_scale(hash, hsize);
676
677 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
678 struct nf_conn *ct;
679
680 ct = nf_ct_tuplehash_to_ctrack(h);
681 if (nf_ct_is_expired(ct)) {
682 nf_ct_gc_expired(ct);
683 continue;
684 }
685
686 if (nf_ct_is_dying(ct))
687 continue;
688
689 if (nf_ct_key_equal(h, tuple, zone, net))
690 return h;
691 }
692 /*
693 * if the nulls value we got at the end of this lookup is
694 * not the expected one, we must restart lookup.
695 * We probably met an item that was moved to another chain.
696 */
697 if (get_nulls_value(n) != bucket) {
698 NF_CT_STAT_INC_ATOMIC(net, search_restart);
699 goto begin;
700 }
701
702 return NULL;
703 }
704
705 /* Find a connection corresponding to a tuple. */
706 static struct nf_conntrack_tuple_hash *
__nf_conntrack_find_get(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple,u32 hash)707 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
708 const struct nf_conntrack_tuple *tuple, u32 hash)
709 {
710 struct nf_conntrack_tuple_hash *h;
711 struct nf_conn *ct;
712
713 rcu_read_lock();
714 begin:
715 h = ____nf_conntrack_find(net, zone, tuple, hash);
716 if (h) {
717 ct = nf_ct_tuplehash_to_ctrack(h);
718 if (unlikely(nf_ct_is_dying(ct) ||
719 !atomic_inc_not_zero(&ct->ct_general.use)))
720 h = NULL;
721 else {
722 if (unlikely(!nf_ct_key_equal(h, tuple, zone, net))) {
723 nf_ct_put(ct);
724 goto begin;
725 }
726 }
727 }
728 rcu_read_unlock();
729
730 return h;
731 }
732
733 struct nf_conntrack_tuple_hash *
nf_conntrack_find_get(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple)734 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
735 const struct nf_conntrack_tuple *tuple)
736 {
737 return __nf_conntrack_find_get(net, zone, tuple,
738 hash_conntrack_raw(tuple, net));
739 }
740 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
741
__nf_conntrack_hash_insert(struct nf_conn * ct,unsigned int hash,unsigned int reply_hash)742 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
743 unsigned int hash,
744 unsigned int reply_hash)
745 {
746 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
747 &nf_conntrack_hash[hash]);
748 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
749 &nf_conntrack_hash[reply_hash]);
750 }
751
752 int
nf_conntrack_hash_check_insert(struct nf_conn * ct)753 nf_conntrack_hash_check_insert(struct nf_conn *ct)
754 {
755 const struct nf_conntrack_zone *zone;
756 struct net *net = nf_ct_net(ct);
757 unsigned int hash, reply_hash;
758 struct nf_conntrack_tuple_hash *h;
759 struct hlist_nulls_node *n;
760 unsigned int sequence;
761
762 zone = nf_ct_zone(ct);
763
764 local_bh_disable();
765 do {
766 sequence = read_seqcount_begin(&nf_conntrack_generation);
767 hash = hash_conntrack(net,
768 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
769 reply_hash = hash_conntrack(net,
770 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
771 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
772
773 /* See if there's one in the list already, including reverse */
774 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
775 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
776 zone, net))
777 goto out;
778
779 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
780 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
781 zone, net))
782 goto out;
783
784 smp_wmb();
785 /* The caller holds a reference to this object */
786 atomic_set(&ct->ct_general.use, 2);
787 __nf_conntrack_hash_insert(ct, hash, reply_hash);
788 nf_conntrack_double_unlock(hash, reply_hash);
789 NF_CT_STAT_INC(net, insert);
790 local_bh_enable();
791 return 0;
792
793 out:
794 nf_conntrack_double_unlock(hash, reply_hash);
795 NF_CT_STAT_INC(net, insert_failed);
796 local_bh_enable();
797 return -EEXIST;
798 }
799 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
800
nf_ct_acct_update(struct nf_conn * ct,enum ip_conntrack_info ctinfo,unsigned int len)801 static inline void nf_ct_acct_update(struct nf_conn *ct,
802 enum ip_conntrack_info ctinfo,
803 unsigned int len)
804 {
805 struct nf_conn_acct *acct;
806
807 acct = nf_conn_acct_find(ct);
808 if (acct) {
809 struct nf_conn_counter *counter = acct->counter;
810
811 atomic64_inc(&counter[CTINFO2DIR(ctinfo)].packets);
812 atomic64_add(len, &counter[CTINFO2DIR(ctinfo)].bytes);
813 }
814 }
815
nf_ct_acct_merge(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct nf_conn * loser_ct)816 static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
817 const struct nf_conn *loser_ct)
818 {
819 struct nf_conn_acct *acct;
820
821 acct = nf_conn_acct_find(loser_ct);
822 if (acct) {
823 struct nf_conn_counter *counter = acct->counter;
824 unsigned int bytes;
825
826 /* u32 should be fine since we must have seen one packet. */
827 bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
828 nf_ct_acct_update(ct, ctinfo, bytes);
829 }
830 }
831
832 /* Resolve race on insertion if this protocol allows this. */
nf_ct_resolve_clash(struct net * net,struct sk_buff * skb,enum ip_conntrack_info ctinfo,struct nf_conntrack_tuple_hash * h)833 static int nf_ct_resolve_clash(struct net *net, struct sk_buff *skb,
834 enum ip_conntrack_info ctinfo,
835 struct nf_conntrack_tuple_hash *h)
836 {
837 /* This is the conntrack entry already in hashes that won race. */
838 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
839 const struct nf_conntrack_l4proto *l4proto;
840 enum ip_conntrack_info oldinfo;
841 struct nf_conn *loser_ct = nf_ct_get(skb, &oldinfo);
842
843 l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
844 if (l4proto->allow_clash &&
845 !nf_ct_is_dying(ct) &&
846 atomic_inc_not_zero(&ct->ct_general.use)) {
847 if (((ct->status & IPS_NAT_DONE_MASK) == 0) ||
848 nf_ct_match(ct, loser_ct)) {
849 nf_ct_acct_merge(ct, ctinfo, loser_ct);
850 nf_conntrack_put(&loser_ct->ct_general);
851 nf_ct_set(skb, ct, oldinfo);
852 return NF_ACCEPT;
853 }
854 nf_ct_put(ct);
855 }
856 NF_CT_STAT_INC(net, drop);
857 return NF_DROP;
858 }
859
860 /* Confirm a connection given skb; places it in hash table */
861 int
__nf_conntrack_confirm(struct sk_buff * skb)862 __nf_conntrack_confirm(struct sk_buff *skb)
863 {
864 const struct nf_conntrack_zone *zone;
865 unsigned int hash, reply_hash;
866 struct nf_conntrack_tuple_hash *h;
867 struct nf_conn *ct;
868 struct nf_conn_help *help;
869 struct nf_conn_tstamp *tstamp;
870 struct hlist_nulls_node *n;
871 enum ip_conntrack_info ctinfo;
872 struct net *net;
873 unsigned int sequence;
874 int ret = NF_DROP;
875
876 ct = nf_ct_get(skb, &ctinfo);
877 net = nf_ct_net(ct);
878
879 /* ipt_REJECT uses nf_conntrack_attach to attach related
880 ICMP/TCP RST packets in other direction. Actual packet
881 which created connection will be IP_CT_NEW or for an
882 expected connection, IP_CT_RELATED. */
883 if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
884 return NF_ACCEPT;
885
886 zone = nf_ct_zone(ct);
887 local_bh_disable();
888
889 do {
890 sequence = read_seqcount_begin(&nf_conntrack_generation);
891 /* reuse the hash saved before */
892 hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
893 hash = scale_hash(hash);
894 reply_hash = hash_conntrack(net,
895 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
896
897 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
898
899 /* We're not in hash table, and we refuse to set up related
900 * connections for unconfirmed conns. But packet copies and
901 * REJECT will give spurious warnings here.
902 */
903
904 /* No external references means no one else could have
905 * confirmed us.
906 */
907 WARN_ON(nf_ct_is_confirmed(ct));
908 pr_debug("Confirming conntrack %p\n", ct);
909 /* We have to check the DYING flag after unlink to prevent
910 * a race against nf_ct_get_next_corpse() possibly called from
911 * user context, else we insert an already 'dead' hash, blocking
912 * further use of that particular connection -JM.
913 */
914 nf_ct_del_from_dying_or_unconfirmed_list(ct);
915
916 if (unlikely(nf_ct_is_dying(ct))) {
917 nf_ct_add_to_dying_list(ct);
918 goto dying;
919 }
920
921 /* See if there's one in the list already, including reverse:
922 NAT could have grabbed it without realizing, since we're
923 not in the hash. If there is, we lost race. */
924 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
925 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
926 zone, net))
927 goto out;
928
929 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
930 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
931 zone, net))
932 goto out;
933
934 /* Timer relative to confirmation time, not original
935 setting time, otherwise we'd get timer wrap in
936 weird delay cases. */
937 ct->timeout += nfct_time_stamp;
938 atomic_inc(&ct->ct_general.use);
939 ct->status |= IPS_CONFIRMED;
940
941 /* set conntrack timestamp, if enabled. */
942 tstamp = nf_conn_tstamp_find(ct);
943 if (tstamp) {
944 if (skb->tstamp == 0)
945 __net_timestamp(skb);
946
947 tstamp->start = ktime_to_ns(skb->tstamp);
948 }
949 /* Since the lookup is lockless, hash insertion must be done after
950 * starting the timer and setting the CONFIRMED bit. The RCU barriers
951 * guarantee that no other CPU can find the conntrack before the above
952 * stores are visible.
953 */
954 __nf_conntrack_hash_insert(ct, hash, reply_hash);
955 nf_conntrack_double_unlock(hash, reply_hash);
956 local_bh_enable();
957
958 help = nfct_help(ct);
959 if (help && help->helper)
960 nf_conntrack_event_cache(IPCT_HELPER, ct);
961
962 nf_conntrack_event_cache(master_ct(ct) ?
963 IPCT_RELATED : IPCT_NEW, ct);
964 return NF_ACCEPT;
965
966 out:
967 nf_ct_add_to_dying_list(ct);
968 ret = nf_ct_resolve_clash(net, skb, ctinfo, h);
969 dying:
970 nf_conntrack_double_unlock(hash, reply_hash);
971 NF_CT_STAT_INC(net, insert_failed);
972 local_bh_enable();
973 return ret;
974 }
975 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
976
977 /* Returns true if a connection correspondings to the tuple (required
978 for NAT). */
979 int
nf_conntrack_tuple_taken(const struct nf_conntrack_tuple * tuple,const struct nf_conn * ignored_conntrack)980 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
981 const struct nf_conn *ignored_conntrack)
982 {
983 struct net *net = nf_ct_net(ignored_conntrack);
984 const struct nf_conntrack_zone *zone;
985 struct nf_conntrack_tuple_hash *h;
986 struct hlist_nulls_head *ct_hash;
987 unsigned int hash, hsize;
988 struct hlist_nulls_node *n;
989 struct nf_conn *ct;
990
991 zone = nf_ct_zone(ignored_conntrack);
992
993 rcu_read_lock();
994 begin:
995 nf_conntrack_get_ht(&ct_hash, &hsize);
996 hash = __hash_conntrack(net, tuple, hsize);
997
998 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
999 ct = nf_ct_tuplehash_to_ctrack(h);
1000
1001 if (ct == ignored_conntrack)
1002 continue;
1003
1004 if (nf_ct_is_expired(ct)) {
1005 nf_ct_gc_expired(ct);
1006 continue;
1007 }
1008
1009 if (nf_ct_key_equal(h, tuple, zone, net)) {
1010 NF_CT_STAT_INC_ATOMIC(net, found);
1011 rcu_read_unlock();
1012 return 1;
1013 }
1014 }
1015
1016 if (get_nulls_value(n) != hash) {
1017 NF_CT_STAT_INC_ATOMIC(net, search_restart);
1018 goto begin;
1019 }
1020
1021 rcu_read_unlock();
1022
1023 return 0;
1024 }
1025 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
1026
1027 #define NF_CT_EVICTION_RANGE 8
1028
1029 /* There's a small race here where we may free a just-assured
1030 connection. Too bad: we're in trouble anyway. */
early_drop_list(struct net * net,struct hlist_nulls_head * head)1031 static unsigned int early_drop_list(struct net *net,
1032 struct hlist_nulls_head *head)
1033 {
1034 struct nf_conntrack_tuple_hash *h;
1035 struct hlist_nulls_node *n;
1036 unsigned int drops = 0;
1037 struct nf_conn *tmp;
1038
1039 hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
1040 tmp = nf_ct_tuplehash_to_ctrack(h);
1041
1042 if (test_bit(IPS_OFFLOAD_BIT, &tmp->status))
1043 continue;
1044
1045 if (nf_ct_is_expired(tmp)) {
1046 nf_ct_gc_expired(tmp);
1047 continue;
1048 }
1049
1050 if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
1051 !net_eq(nf_ct_net(tmp), net) ||
1052 nf_ct_is_dying(tmp))
1053 continue;
1054
1055 if (!atomic_inc_not_zero(&tmp->ct_general.use))
1056 continue;
1057
1058 /* kill only if still in same netns -- might have moved due to
1059 * SLAB_TYPESAFE_BY_RCU rules.
1060 *
1061 * We steal the timer reference. If that fails timer has
1062 * already fired or someone else deleted it. Just drop ref
1063 * and move to next entry.
1064 */
1065 if (net_eq(nf_ct_net(tmp), net) &&
1066 nf_ct_is_confirmed(tmp) &&
1067 nf_ct_delete(tmp, 0, 0))
1068 drops++;
1069
1070 nf_ct_put(tmp);
1071 }
1072
1073 return drops;
1074 }
1075
early_drop(struct net * net,unsigned int _hash)1076 static noinline int early_drop(struct net *net, unsigned int _hash)
1077 {
1078 unsigned int i;
1079
1080 for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
1081 struct hlist_nulls_head *ct_hash;
1082 unsigned int hash, hsize, drops;
1083
1084 rcu_read_lock();
1085 nf_conntrack_get_ht(&ct_hash, &hsize);
1086 hash = reciprocal_scale(_hash++, hsize);
1087
1088 drops = early_drop_list(net, &ct_hash[hash]);
1089 rcu_read_unlock();
1090
1091 if (drops) {
1092 NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
1093 return true;
1094 }
1095 }
1096
1097 return false;
1098 }
1099
gc_worker_skip_ct(const struct nf_conn * ct)1100 static bool gc_worker_skip_ct(const struct nf_conn *ct)
1101 {
1102 return !nf_ct_is_confirmed(ct) || nf_ct_is_dying(ct);
1103 }
1104
gc_worker_can_early_drop(const struct nf_conn * ct)1105 static bool gc_worker_can_early_drop(const struct nf_conn *ct)
1106 {
1107 const struct nf_conntrack_l4proto *l4proto;
1108
1109 if (!test_bit(IPS_ASSURED_BIT, &ct->status))
1110 return true;
1111
1112 l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
1113 if (l4proto->can_early_drop && l4proto->can_early_drop(ct))
1114 return true;
1115
1116 return false;
1117 }
1118
1119 #define DAY (86400 * HZ)
1120
1121 /* Set an arbitrary timeout large enough not to ever expire, this save
1122 * us a check for the IPS_OFFLOAD_BIT from the packet path via
1123 * nf_ct_is_expired().
1124 */
nf_ct_offload_timeout(struct nf_conn * ct)1125 static void nf_ct_offload_timeout(struct nf_conn *ct)
1126 {
1127 if (nf_ct_expires(ct) < DAY / 2)
1128 ct->timeout = nfct_time_stamp + DAY;
1129 }
1130
gc_worker(struct work_struct * work)1131 static void gc_worker(struct work_struct *work)
1132 {
1133 unsigned int min_interval = max(HZ / GC_MAX_BUCKETS_DIV, 1u);
1134 unsigned int i, goal, buckets = 0, expired_count = 0;
1135 unsigned int nf_conntrack_max95 = 0;
1136 struct conntrack_gc_work *gc_work;
1137 unsigned int ratio, scanned = 0;
1138 unsigned long next_run;
1139
1140 gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
1141
1142 goal = nf_conntrack_htable_size / GC_MAX_BUCKETS_DIV;
1143 i = gc_work->last_bucket;
1144 if (gc_work->early_drop)
1145 nf_conntrack_max95 = nf_conntrack_max / 100u * 95u;
1146
1147 do {
1148 struct nf_conntrack_tuple_hash *h;
1149 struct hlist_nulls_head *ct_hash;
1150 struct hlist_nulls_node *n;
1151 unsigned int hashsz;
1152 struct nf_conn *tmp;
1153
1154 i++;
1155 rcu_read_lock();
1156
1157 nf_conntrack_get_ht(&ct_hash, &hashsz);
1158 if (i >= hashsz)
1159 i = 0;
1160
1161 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
1162 struct net *net;
1163
1164 tmp = nf_ct_tuplehash_to_ctrack(h);
1165
1166 scanned++;
1167 if (test_bit(IPS_OFFLOAD_BIT, &tmp->status)) {
1168 nf_ct_offload_timeout(tmp);
1169 continue;
1170 }
1171
1172 if (nf_ct_is_expired(tmp)) {
1173 nf_ct_gc_expired(tmp);
1174 expired_count++;
1175 continue;
1176 }
1177
1178 if (nf_conntrack_max95 == 0 || gc_worker_skip_ct(tmp))
1179 continue;
1180
1181 net = nf_ct_net(tmp);
1182 if (atomic_read(&net->ct.count) < nf_conntrack_max95)
1183 continue;
1184
1185 /* need to take reference to avoid possible races */
1186 if (!atomic_inc_not_zero(&tmp->ct_general.use))
1187 continue;
1188
1189 if (gc_worker_skip_ct(tmp)) {
1190 nf_ct_put(tmp);
1191 continue;
1192 }
1193
1194 if (gc_worker_can_early_drop(tmp))
1195 nf_ct_kill(tmp);
1196
1197 nf_ct_put(tmp);
1198 }
1199
1200 /* could check get_nulls_value() here and restart if ct
1201 * was moved to another chain. But given gc is best-effort
1202 * we will just continue with next hash slot.
1203 */
1204 rcu_read_unlock();
1205 cond_resched();
1206 } while (++buckets < goal);
1207
1208 if (gc_work->exiting)
1209 return;
1210
1211 /*
1212 * Eviction will normally happen from the packet path, and not
1213 * from this gc worker.
1214 *
1215 * This worker is only here to reap expired entries when system went
1216 * idle after a busy period.
1217 *
1218 * The heuristics below are supposed to balance conflicting goals:
1219 *
1220 * 1. Minimize time until we notice a stale entry
1221 * 2. Maximize scan intervals to not waste cycles
1222 *
1223 * Normally, expire ratio will be close to 0.
1224 *
1225 * As soon as a sizeable fraction of the entries have expired
1226 * increase scan frequency.
1227 */
1228 ratio = scanned ? expired_count * 100 / scanned : 0;
1229 if (ratio > GC_EVICT_RATIO) {
1230 gc_work->next_gc_run = min_interval;
1231 } else {
1232 unsigned int max = GC_MAX_SCAN_JIFFIES / GC_MAX_BUCKETS_DIV;
1233
1234 BUILD_BUG_ON((GC_MAX_SCAN_JIFFIES / GC_MAX_BUCKETS_DIV) == 0);
1235
1236 gc_work->next_gc_run += min_interval;
1237 if (gc_work->next_gc_run > max)
1238 gc_work->next_gc_run = max;
1239 }
1240
1241 next_run = gc_work->next_gc_run;
1242 gc_work->last_bucket = i;
1243 gc_work->early_drop = false;
1244 queue_delayed_work(system_power_efficient_wq, &gc_work->dwork, next_run);
1245 }
1246
conntrack_gc_work_init(struct conntrack_gc_work * gc_work)1247 static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1248 {
1249 INIT_DEFERRABLE_WORK(&gc_work->dwork, gc_worker);
1250 gc_work->next_gc_run = HZ;
1251 gc_work->exiting = false;
1252 }
1253
1254 static struct nf_conn *
__nf_conntrack_alloc(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * orig,const struct nf_conntrack_tuple * repl,gfp_t gfp,u32 hash)1255 __nf_conntrack_alloc(struct net *net,
1256 const struct nf_conntrack_zone *zone,
1257 const struct nf_conntrack_tuple *orig,
1258 const struct nf_conntrack_tuple *repl,
1259 gfp_t gfp, u32 hash)
1260 {
1261 struct nf_conn *ct;
1262
1263 /* We don't want any race condition at early drop stage */
1264 atomic_inc(&net->ct.count);
1265
1266 if (nf_conntrack_max &&
1267 unlikely(atomic_read(&net->ct.count) > nf_conntrack_max)) {
1268 if (!early_drop(net, hash)) {
1269 if (!conntrack_gc_work.early_drop)
1270 conntrack_gc_work.early_drop = true;
1271 atomic_dec(&net->ct.count);
1272 net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1273 return ERR_PTR(-ENOMEM);
1274 }
1275 }
1276
1277 /*
1278 * Do not use kmem_cache_zalloc(), as this cache uses
1279 * SLAB_TYPESAFE_BY_RCU.
1280 */
1281 ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1282 if (ct == NULL)
1283 goto out;
1284
1285 spin_lock_init(&ct->lock);
1286 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1287 ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1288 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1289 /* save hash for reusing when confirming */
1290 *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1291 ct->status = 0;
1292 write_pnet(&ct->ct_net, net);
1293 memset(&ct->__nfct_init_offset[0], 0,
1294 offsetof(struct nf_conn, proto) -
1295 offsetof(struct nf_conn, __nfct_init_offset[0]));
1296
1297 nf_ct_zone_add(ct, zone);
1298
1299 /* Because we use RCU lookups, we set ct_general.use to zero before
1300 * this is inserted in any list.
1301 */
1302 atomic_set(&ct->ct_general.use, 0);
1303 return ct;
1304 out:
1305 atomic_dec(&net->ct.count);
1306 return ERR_PTR(-ENOMEM);
1307 }
1308
nf_conntrack_alloc(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * orig,const struct nf_conntrack_tuple * repl,gfp_t gfp)1309 struct nf_conn *nf_conntrack_alloc(struct net *net,
1310 const struct nf_conntrack_zone *zone,
1311 const struct nf_conntrack_tuple *orig,
1312 const struct nf_conntrack_tuple *repl,
1313 gfp_t gfp)
1314 {
1315 return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1316 }
1317 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1318
nf_conntrack_free(struct nf_conn * ct)1319 void nf_conntrack_free(struct nf_conn *ct)
1320 {
1321 struct net *net = nf_ct_net(ct);
1322
1323 /* A freed object has refcnt == 0, that's
1324 * the golden rule for SLAB_TYPESAFE_BY_RCU
1325 */
1326 WARN_ON(atomic_read(&ct->ct_general.use) != 0);
1327
1328 nf_ct_ext_destroy(ct);
1329 nf_ct_ext_free(ct);
1330 kmem_cache_free(nf_conntrack_cachep, ct);
1331 smp_mb__before_atomic();
1332 atomic_dec(&net->ct.count);
1333 }
1334 EXPORT_SYMBOL_GPL(nf_conntrack_free);
1335
1336
1337 /* Allocate a new conntrack: we return -ENOMEM if classification
1338 failed due to stress. Otherwise it really is unclassifiable. */
1339 static noinline struct nf_conntrack_tuple_hash *
init_conntrack(struct net * net,struct nf_conn * tmpl,const struct nf_conntrack_tuple * tuple,const struct nf_conntrack_l4proto * l4proto,struct sk_buff * skb,unsigned int dataoff,u32 hash)1340 init_conntrack(struct net *net, struct nf_conn *tmpl,
1341 const struct nf_conntrack_tuple *tuple,
1342 const struct nf_conntrack_l4proto *l4proto,
1343 struct sk_buff *skb,
1344 unsigned int dataoff, u32 hash)
1345 {
1346 struct nf_conn *ct;
1347 struct nf_conn_help *help;
1348 struct nf_conntrack_tuple repl_tuple;
1349 struct nf_conntrack_ecache *ecache;
1350 struct nf_conntrack_expect *exp = NULL;
1351 const struct nf_conntrack_zone *zone;
1352 struct nf_conn_timeout *timeout_ext;
1353 struct nf_conntrack_zone tmp;
1354
1355 if (!nf_ct_invert_tuple(&repl_tuple, tuple, l4proto)) {
1356 pr_debug("Can't invert tuple.\n");
1357 return NULL;
1358 }
1359
1360 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1361 ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1362 hash);
1363 if (IS_ERR(ct))
1364 return (struct nf_conntrack_tuple_hash *)ct;
1365
1366 if (!nf_ct_add_synproxy(ct, tmpl)) {
1367 nf_conntrack_free(ct);
1368 return ERR_PTR(-ENOMEM);
1369 }
1370
1371 timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1372
1373 if (!l4proto->new(ct, skb, dataoff)) {
1374 nf_conntrack_free(ct);
1375 pr_debug("can't track with proto module\n");
1376 return NULL;
1377 }
1378
1379 if (timeout_ext)
1380 nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1381 GFP_ATOMIC);
1382
1383 nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1384 nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1385 nf_ct_labels_ext_add(ct);
1386
1387 ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1388 nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1389 ecache ? ecache->expmask : 0,
1390 GFP_ATOMIC);
1391
1392 local_bh_disable();
1393 if (net->ct.expect_count) {
1394 spin_lock(&nf_conntrack_expect_lock);
1395 exp = nf_ct_find_expectation(net, zone, tuple);
1396 if (exp) {
1397 pr_debug("expectation arrives ct=%p exp=%p\n",
1398 ct, exp);
1399 /* Welcome, Mr. Bond. We've been expecting you... */
1400 __set_bit(IPS_EXPECTED_BIT, &ct->status);
1401 /* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1402 ct->master = exp->master;
1403 if (exp->helper) {
1404 help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
1405 if (help)
1406 rcu_assign_pointer(help->helper, exp->helper);
1407 }
1408
1409 #ifdef CONFIG_NF_CONNTRACK_MARK
1410 ct->mark = exp->master->mark;
1411 #endif
1412 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1413 ct->secmark = exp->master->secmark;
1414 #endif
1415 NF_CT_STAT_INC(net, expect_new);
1416 }
1417 spin_unlock(&nf_conntrack_expect_lock);
1418 }
1419 if (!exp)
1420 __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1421
1422 /* Now it is inserted into the unconfirmed list, bump refcount */
1423 nf_conntrack_get(&ct->ct_general);
1424 nf_ct_add_to_unconfirmed_list(ct);
1425
1426 local_bh_enable();
1427
1428 if (exp) {
1429 if (exp->expectfn)
1430 exp->expectfn(ct, exp);
1431 nf_ct_expect_put(exp);
1432 }
1433
1434 return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1435 }
1436
1437 /* On success, returns 0, sets skb->_nfct | ctinfo */
1438 static int
resolve_normal_ct(struct net * net,struct nf_conn * tmpl,struct sk_buff * skb,unsigned int dataoff,u_int16_t l3num,u_int8_t protonum,const struct nf_conntrack_l4proto * l4proto)1439 resolve_normal_ct(struct net *net, struct nf_conn *tmpl,
1440 struct sk_buff *skb,
1441 unsigned int dataoff,
1442 u_int16_t l3num,
1443 u_int8_t protonum,
1444 const struct nf_conntrack_l4proto *l4proto)
1445 {
1446 const struct nf_conntrack_zone *zone;
1447 struct nf_conntrack_tuple tuple;
1448 struct nf_conntrack_tuple_hash *h;
1449 enum ip_conntrack_info ctinfo;
1450 struct nf_conntrack_zone tmp;
1451 struct nf_conn *ct;
1452 u32 hash;
1453
1454 if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1455 dataoff, l3num, protonum, net, &tuple, l4proto)) {
1456 pr_debug("Can't get tuple\n");
1457 return 0;
1458 }
1459
1460 /* look for tuple match */
1461 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1462 hash = hash_conntrack_raw(&tuple, net);
1463 h = __nf_conntrack_find_get(net, zone, &tuple, hash);
1464 if (!h) {
1465 h = init_conntrack(net, tmpl, &tuple, l4proto,
1466 skb, dataoff, hash);
1467 if (!h)
1468 return 0;
1469 if (IS_ERR(h))
1470 return PTR_ERR(h);
1471 }
1472 ct = nf_ct_tuplehash_to_ctrack(h);
1473
1474 /* It exists; we have (non-exclusive) reference. */
1475 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1476 ctinfo = IP_CT_ESTABLISHED_REPLY;
1477 } else {
1478 /* Once we've had two way comms, always ESTABLISHED. */
1479 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1480 pr_debug("normal packet for %p\n", ct);
1481 ctinfo = IP_CT_ESTABLISHED;
1482 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1483 pr_debug("related packet for %p\n", ct);
1484 ctinfo = IP_CT_RELATED;
1485 } else {
1486 pr_debug("new packet for %p\n", ct);
1487 ctinfo = IP_CT_NEW;
1488 }
1489 }
1490 nf_ct_set(skb, ct, ctinfo);
1491 return 0;
1492 }
1493
1494 unsigned int
nf_conntrack_in(struct net * net,u_int8_t pf,unsigned int hooknum,struct sk_buff * skb)1495 nf_conntrack_in(struct net *net, u_int8_t pf, unsigned int hooknum,
1496 struct sk_buff *skb)
1497 {
1498 const struct nf_conntrack_l4proto *l4proto;
1499 struct nf_conn *ct, *tmpl;
1500 enum ip_conntrack_info ctinfo;
1501 u_int8_t protonum;
1502 int dataoff, ret;
1503
1504 tmpl = nf_ct_get(skb, &ctinfo);
1505 if (tmpl || ctinfo == IP_CT_UNTRACKED) {
1506 /* Previously seen (loopback or untracked)? Ignore. */
1507 if ((tmpl && !nf_ct_is_template(tmpl)) ||
1508 ctinfo == IP_CT_UNTRACKED) {
1509 NF_CT_STAT_INC_ATOMIC(net, ignore);
1510 return NF_ACCEPT;
1511 }
1512 skb->_nfct = 0;
1513 }
1514
1515 /* rcu_read_lock()ed by nf_hook_thresh */
1516 dataoff = get_l4proto(skb, skb_network_offset(skb), pf, &protonum);
1517 if (dataoff <= 0) {
1518 pr_debug("not prepared to track yet or error occurred\n");
1519 NF_CT_STAT_INC_ATOMIC(net, error);
1520 NF_CT_STAT_INC_ATOMIC(net, invalid);
1521 ret = NF_ACCEPT;
1522 goto out;
1523 }
1524
1525 l4proto = __nf_ct_l4proto_find(pf, protonum);
1526
1527 /* It may be an special packet, error, unclean...
1528 * inverse of the return code tells to the netfilter
1529 * core what to do with the packet. */
1530 if (l4proto->error != NULL) {
1531 ret = l4proto->error(net, tmpl, skb, dataoff, pf, hooknum);
1532 if (ret <= 0) {
1533 NF_CT_STAT_INC_ATOMIC(net, error);
1534 NF_CT_STAT_INC_ATOMIC(net, invalid);
1535 ret = -ret;
1536 goto out;
1537 }
1538 /* ICMP[v6] protocol trackers may assign one conntrack. */
1539 if (skb->_nfct)
1540 goto out;
1541 }
1542 repeat:
1543 ret = resolve_normal_ct(net, tmpl, skb, dataoff, pf, protonum, l4proto);
1544 if (ret < 0) {
1545 /* Too stressed to deal. */
1546 NF_CT_STAT_INC_ATOMIC(net, drop);
1547 ret = NF_DROP;
1548 goto out;
1549 }
1550
1551 ct = nf_ct_get(skb, &ctinfo);
1552 if (!ct) {
1553 /* Not valid part of a connection */
1554 NF_CT_STAT_INC_ATOMIC(net, invalid);
1555 ret = NF_ACCEPT;
1556 goto out;
1557 }
1558
1559 ret = l4proto->packet(ct, skb, dataoff, ctinfo);
1560 if (ret <= 0) {
1561 /* Invalid: inverse of the return code tells
1562 * the netfilter core what to do */
1563 pr_debug("nf_conntrack_in: Can't track with proto module\n");
1564 nf_conntrack_put(&ct->ct_general);
1565 skb->_nfct = 0;
1566 NF_CT_STAT_INC_ATOMIC(net, invalid);
1567 if (ret == -NF_DROP)
1568 NF_CT_STAT_INC_ATOMIC(net, drop);
1569 /* Special case: TCP tracker reports an attempt to reopen a
1570 * closed/aborted connection. We have to go back and create a
1571 * fresh conntrack.
1572 */
1573 if (ret == -NF_REPEAT)
1574 goto repeat;
1575 ret = -ret;
1576 goto out;
1577 }
1578
1579 if (ctinfo == IP_CT_ESTABLISHED_REPLY &&
1580 !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1581 nf_conntrack_event_cache(IPCT_REPLY, ct);
1582 out:
1583 if (tmpl)
1584 nf_ct_put(tmpl);
1585
1586 return ret;
1587 }
1588 EXPORT_SYMBOL_GPL(nf_conntrack_in);
1589
nf_ct_invert_tuplepr(struct nf_conntrack_tuple * inverse,const struct nf_conntrack_tuple * orig)1590 bool nf_ct_invert_tuplepr(struct nf_conntrack_tuple *inverse,
1591 const struct nf_conntrack_tuple *orig)
1592 {
1593 bool ret;
1594
1595 rcu_read_lock();
1596 ret = nf_ct_invert_tuple(inverse, orig,
1597 __nf_ct_l4proto_find(orig->src.l3num,
1598 orig->dst.protonum));
1599 rcu_read_unlock();
1600 return ret;
1601 }
1602 EXPORT_SYMBOL_GPL(nf_ct_invert_tuplepr);
1603
1604 /* Alter reply tuple (maybe alter helper). This is for NAT, and is
1605 implicitly racy: see __nf_conntrack_confirm */
nf_conntrack_alter_reply(struct nf_conn * ct,const struct nf_conntrack_tuple * newreply)1606 void nf_conntrack_alter_reply(struct nf_conn *ct,
1607 const struct nf_conntrack_tuple *newreply)
1608 {
1609 struct nf_conn_help *help = nfct_help(ct);
1610
1611 /* Should be unconfirmed, so not in hash table yet */
1612 WARN_ON(nf_ct_is_confirmed(ct));
1613
1614 pr_debug("Altering reply tuple of %p to ", ct);
1615 nf_ct_dump_tuple(newreply);
1616
1617 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1618 if (ct->master || (help && !hlist_empty(&help->expectations)))
1619 return;
1620
1621 rcu_read_lock();
1622 __nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1623 rcu_read_unlock();
1624 }
1625 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1626
1627 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
__nf_ct_refresh_acct(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct sk_buff * skb,unsigned long extra_jiffies,int do_acct)1628 void __nf_ct_refresh_acct(struct nf_conn *ct,
1629 enum ip_conntrack_info ctinfo,
1630 const struct sk_buff *skb,
1631 unsigned long extra_jiffies,
1632 int do_acct)
1633 {
1634 WARN_ON(!skb);
1635
1636 /* Only update if this is not a fixed timeout */
1637 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1638 goto acct;
1639
1640 /* If not in hash table, timer will not be active yet */
1641 if (nf_ct_is_confirmed(ct))
1642 extra_jiffies += nfct_time_stamp;
1643
1644 ct->timeout = extra_jiffies;
1645 acct:
1646 if (do_acct)
1647 nf_ct_acct_update(ct, ctinfo, skb->len);
1648 }
1649 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1650
nf_ct_kill_acct(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct sk_buff * skb)1651 bool nf_ct_kill_acct(struct nf_conn *ct,
1652 enum ip_conntrack_info ctinfo,
1653 const struct sk_buff *skb)
1654 {
1655 nf_ct_acct_update(ct, ctinfo, skb->len);
1656
1657 return nf_ct_delete(ct, 0, 0);
1658 }
1659 EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
1660
1661 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1662
1663 #include <linux/netfilter/nfnetlink.h>
1664 #include <linux/netfilter/nfnetlink_conntrack.h>
1665 #include <linux/mutex.h>
1666
1667 /* Generic function for tcp/udp/sctp/dccp and alike. This needs to be
1668 * in ip_conntrack_core, since we don't want the protocols to autoload
1669 * or depend on ctnetlink */
nf_ct_port_tuple_to_nlattr(struct sk_buff * skb,const struct nf_conntrack_tuple * tuple)1670 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
1671 const struct nf_conntrack_tuple *tuple)
1672 {
1673 if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
1674 nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
1675 goto nla_put_failure;
1676 return 0;
1677
1678 nla_put_failure:
1679 return -1;
1680 }
1681 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
1682
1683 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
1684 [CTA_PROTO_SRC_PORT] = { .type = NLA_U16 },
1685 [CTA_PROTO_DST_PORT] = { .type = NLA_U16 },
1686 };
1687 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
1688
nf_ct_port_nlattr_to_tuple(struct nlattr * tb[],struct nf_conntrack_tuple * t)1689 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
1690 struct nf_conntrack_tuple *t)
1691 {
1692 if (!tb[CTA_PROTO_SRC_PORT] || !tb[CTA_PROTO_DST_PORT])
1693 return -EINVAL;
1694
1695 t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
1696 t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
1697
1698 return 0;
1699 }
1700 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
1701
nf_ct_port_nlattr_tuple_size(void)1702 unsigned int nf_ct_port_nlattr_tuple_size(void)
1703 {
1704 static unsigned int size __read_mostly;
1705
1706 if (!size)
1707 size = nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
1708
1709 return size;
1710 }
1711 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
1712 #endif
1713
1714 /* Used by ipt_REJECT and ip6t_REJECT. */
nf_conntrack_attach(struct sk_buff * nskb,const struct sk_buff * skb)1715 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
1716 {
1717 struct nf_conn *ct;
1718 enum ip_conntrack_info ctinfo;
1719
1720 /* This ICMP is in reverse direction to the packet which caused it */
1721 ct = nf_ct_get(skb, &ctinfo);
1722 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
1723 ctinfo = IP_CT_RELATED_REPLY;
1724 else
1725 ctinfo = IP_CT_RELATED;
1726
1727 /* Attach to new skbuff, and increment count */
1728 nf_ct_set(nskb, ct, ctinfo);
1729 nf_conntrack_get(skb_nfct(nskb));
1730 }
1731
nf_conntrack_update(struct net * net,struct sk_buff * skb)1732 static int nf_conntrack_update(struct net *net, struct sk_buff *skb)
1733 {
1734 const struct nf_conntrack_l4proto *l4proto;
1735 struct nf_conntrack_tuple_hash *h;
1736 struct nf_conntrack_tuple tuple;
1737 enum ip_conntrack_info ctinfo;
1738 struct nf_nat_hook *nat_hook;
1739 unsigned int status;
1740 struct nf_conn *ct;
1741 int dataoff;
1742 u16 l3num;
1743 u8 l4num;
1744
1745 ct = nf_ct_get(skb, &ctinfo);
1746 if (!ct || nf_ct_is_confirmed(ct))
1747 return 0;
1748
1749 l3num = nf_ct_l3num(ct);
1750
1751 dataoff = get_l4proto(skb, skb_network_offset(skb), l3num, &l4num);
1752 if (dataoff <= 0)
1753 return -1;
1754
1755 l4proto = nf_ct_l4proto_find_get(l3num, l4num);
1756
1757 if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
1758 l4num, net, &tuple, l4proto))
1759 return -1;
1760
1761 if (ct->status & IPS_SRC_NAT) {
1762 memcpy(tuple.src.u3.all,
1763 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u3.all,
1764 sizeof(tuple.src.u3.all));
1765 tuple.src.u.all =
1766 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.all;
1767 }
1768
1769 if (ct->status & IPS_DST_NAT) {
1770 memcpy(tuple.dst.u3.all,
1771 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u3.all,
1772 sizeof(tuple.dst.u3.all));
1773 tuple.dst.u.all =
1774 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u.all;
1775 }
1776
1777 h = nf_conntrack_find_get(net, nf_ct_zone(ct), &tuple);
1778 if (!h)
1779 return 0;
1780
1781 /* Store status bits of the conntrack that is clashing to re-do NAT
1782 * mangling according to what it has been done already to this packet.
1783 */
1784 status = ct->status;
1785
1786 nf_ct_put(ct);
1787 ct = nf_ct_tuplehash_to_ctrack(h);
1788 nf_ct_set(skb, ct, ctinfo);
1789
1790 nat_hook = rcu_dereference(nf_nat_hook);
1791 if (!nat_hook)
1792 return 0;
1793
1794 if (status & IPS_SRC_NAT &&
1795 nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_SRC,
1796 IP_CT_DIR_ORIGINAL) == NF_DROP)
1797 return -1;
1798
1799 if (status & IPS_DST_NAT &&
1800 nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_DST,
1801 IP_CT_DIR_ORIGINAL) == NF_DROP)
1802 return -1;
1803
1804 return 0;
1805 }
1806
nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple * dst_tuple,const struct sk_buff * skb)1807 static bool nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple *dst_tuple,
1808 const struct sk_buff *skb)
1809 {
1810 const struct nf_conntrack_tuple *src_tuple;
1811 const struct nf_conntrack_tuple_hash *hash;
1812 struct nf_conntrack_tuple srctuple;
1813 enum ip_conntrack_info ctinfo;
1814 struct nf_conn *ct;
1815
1816 ct = nf_ct_get(skb, &ctinfo);
1817 if (ct) {
1818 src_tuple = nf_ct_tuple(ct, CTINFO2DIR(ctinfo));
1819 memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
1820 return true;
1821 }
1822
1823 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb),
1824 NFPROTO_IPV4, dev_net(skb->dev),
1825 &srctuple))
1826 return false;
1827
1828 hash = nf_conntrack_find_get(dev_net(skb->dev),
1829 &nf_ct_zone_dflt,
1830 &srctuple);
1831 if (!hash)
1832 return false;
1833
1834 ct = nf_ct_tuplehash_to_ctrack(hash);
1835 src_tuple = nf_ct_tuple(ct, !hash->tuple.dst.dir);
1836 memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
1837 nf_ct_put(ct);
1838
1839 return true;
1840 }
1841
1842 /* Bring out ya dead! */
1843 static struct nf_conn *
get_next_corpse(int (* iter)(struct nf_conn * i,void * data),void * data,unsigned int * bucket)1844 get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
1845 void *data, unsigned int *bucket)
1846 {
1847 struct nf_conntrack_tuple_hash *h;
1848 struct nf_conn *ct;
1849 struct hlist_nulls_node *n;
1850 spinlock_t *lockp;
1851
1852 for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
1853 lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
1854 local_bh_disable();
1855 nf_conntrack_lock(lockp);
1856 if (*bucket < nf_conntrack_htable_size) {
1857 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[*bucket], hnnode) {
1858 if (NF_CT_DIRECTION(h) != IP_CT_DIR_ORIGINAL)
1859 continue;
1860 ct = nf_ct_tuplehash_to_ctrack(h);
1861 if (iter(ct, data))
1862 goto found;
1863 }
1864 }
1865 spin_unlock(lockp);
1866 local_bh_enable();
1867 cond_resched();
1868 }
1869
1870 return NULL;
1871 found:
1872 atomic_inc(&ct->ct_general.use);
1873 spin_unlock(lockp);
1874 local_bh_enable();
1875 return ct;
1876 }
1877
nf_ct_iterate_cleanup(int (* iter)(struct nf_conn * i,void * data),void * data,u32 portid,int report)1878 static void nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data),
1879 void *data, u32 portid, int report)
1880 {
1881 unsigned int bucket = 0, sequence;
1882 struct nf_conn *ct;
1883
1884 might_sleep();
1885
1886 for (;;) {
1887 sequence = read_seqcount_begin(&nf_conntrack_generation);
1888
1889 while ((ct = get_next_corpse(iter, data, &bucket)) != NULL) {
1890 /* Time to push up daises... */
1891
1892 nf_ct_delete(ct, portid, report);
1893 nf_ct_put(ct);
1894 cond_resched();
1895 }
1896
1897 if (!read_seqcount_retry(&nf_conntrack_generation, sequence))
1898 break;
1899 bucket = 0;
1900 }
1901 }
1902
1903 struct iter_data {
1904 int (*iter)(struct nf_conn *i, void *data);
1905 void *data;
1906 struct net *net;
1907 };
1908
iter_net_only(struct nf_conn * i,void * data)1909 static int iter_net_only(struct nf_conn *i, void *data)
1910 {
1911 struct iter_data *d = data;
1912
1913 if (!net_eq(d->net, nf_ct_net(i)))
1914 return 0;
1915
1916 return d->iter(i, d->data);
1917 }
1918
1919 static void
__nf_ct_unconfirmed_destroy(struct net * net)1920 __nf_ct_unconfirmed_destroy(struct net *net)
1921 {
1922 int cpu;
1923
1924 for_each_possible_cpu(cpu) {
1925 struct nf_conntrack_tuple_hash *h;
1926 struct hlist_nulls_node *n;
1927 struct ct_pcpu *pcpu;
1928
1929 pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
1930
1931 spin_lock_bh(&pcpu->lock);
1932 hlist_nulls_for_each_entry(h, n, &pcpu->unconfirmed, hnnode) {
1933 struct nf_conn *ct;
1934
1935 ct = nf_ct_tuplehash_to_ctrack(h);
1936
1937 /* we cannot call iter() on unconfirmed list, the
1938 * owning cpu can reallocate ct->ext at any time.
1939 */
1940 set_bit(IPS_DYING_BIT, &ct->status);
1941 }
1942 spin_unlock_bh(&pcpu->lock);
1943 cond_resched();
1944 }
1945 }
1946
nf_ct_unconfirmed_destroy(struct net * net)1947 void nf_ct_unconfirmed_destroy(struct net *net)
1948 {
1949 might_sleep();
1950
1951 if (atomic_read(&net->ct.count) > 0) {
1952 __nf_ct_unconfirmed_destroy(net);
1953 nf_queue_nf_hook_drop(net);
1954 synchronize_net();
1955 }
1956 }
1957 EXPORT_SYMBOL_GPL(nf_ct_unconfirmed_destroy);
1958
nf_ct_iterate_cleanup_net(struct net * net,int (* iter)(struct nf_conn * i,void * data),void * data,u32 portid,int report)1959 void nf_ct_iterate_cleanup_net(struct net *net,
1960 int (*iter)(struct nf_conn *i, void *data),
1961 void *data, u32 portid, int report)
1962 {
1963 struct iter_data d;
1964
1965 might_sleep();
1966
1967 if (atomic_read(&net->ct.count) == 0)
1968 return;
1969
1970 d.iter = iter;
1971 d.data = data;
1972 d.net = net;
1973
1974 nf_ct_iterate_cleanup(iter_net_only, &d, portid, report);
1975 }
1976 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup_net);
1977
1978 /**
1979 * nf_ct_iterate_destroy - destroy unconfirmed conntracks and iterate table
1980 * @iter: callback to invoke for each conntrack
1981 * @data: data to pass to @iter
1982 *
1983 * Like nf_ct_iterate_cleanup, but first marks conntracks on the
1984 * unconfirmed list as dying (so they will not be inserted into
1985 * main table).
1986 *
1987 * Can only be called in module exit path.
1988 */
1989 void
nf_ct_iterate_destroy(int (* iter)(struct nf_conn * i,void * data),void * data)1990 nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data)
1991 {
1992 struct net *net;
1993
1994 down_read(&net_rwsem);
1995 for_each_net(net) {
1996 if (atomic_read(&net->ct.count) == 0)
1997 continue;
1998 __nf_ct_unconfirmed_destroy(net);
1999 nf_queue_nf_hook_drop(net);
2000 }
2001 up_read(&net_rwsem);
2002
2003 /* Need to wait for netns cleanup worker to finish, if its
2004 * running -- it might have deleted a net namespace from
2005 * the global list, so our __nf_ct_unconfirmed_destroy() might
2006 * not have affected all namespaces.
2007 */
2008 net_ns_barrier();
2009
2010 /* a conntrack could have been unlinked from unconfirmed list
2011 * before we grabbed pcpu lock in __nf_ct_unconfirmed_destroy().
2012 * This makes sure its inserted into conntrack table.
2013 */
2014 synchronize_net();
2015
2016 nf_ct_iterate_cleanup(iter, data, 0, 0);
2017 }
2018 EXPORT_SYMBOL_GPL(nf_ct_iterate_destroy);
2019
kill_all(struct nf_conn * i,void * data)2020 static int kill_all(struct nf_conn *i, void *data)
2021 {
2022 return net_eq(nf_ct_net(i), data);
2023 }
2024
nf_conntrack_cleanup_start(void)2025 void nf_conntrack_cleanup_start(void)
2026 {
2027 conntrack_gc_work.exiting = true;
2028 RCU_INIT_POINTER(ip_ct_attach, NULL);
2029 }
2030
nf_conntrack_cleanup_end(void)2031 void nf_conntrack_cleanup_end(void)
2032 {
2033 RCU_INIT_POINTER(nf_ct_hook, NULL);
2034 cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2035 kvfree(nf_conntrack_hash);
2036
2037 nf_conntrack_proto_fini();
2038 nf_conntrack_seqadj_fini();
2039 nf_conntrack_labels_fini();
2040 nf_conntrack_helper_fini();
2041 nf_conntrack_timeout_fini();
2042 nf_conntrack_ecache_fini();
2043 nf_conntrack_tstamp_fini();
2044 nf_conntrack_acct_fini();
2045 nf_conntrack_expect_fini();
2046
2047 kmem_cache_destroy(nf_conntrack_cachep);
2048 }
2049
2050 /*
2051 * Mishearing the voices in his head, our hero wonders how he's
2052 * supposed to kill the mall.
2053 */
nf_conntrack_cleanup_net(struct net * net)2054 void nf_conntrack_cleanup_net(struct net *net)
2055 {
2056 LIST_HEAD(single);
2057
2058 list_add(&net->exit_list, &single);
2059 nf_conntrack_cleanup_net_list(&single);
2060 }
2061
nf_conntrack_cleanup_net_list(struct list_head * net_exit_list)2062 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
2063 {
2064 int busy;
2065 struct net *net;
2066
2067 /*
2068 * This makes sure all current packets have passed through
2069 * netfilter framework. Roll on, two-stage module
2070 * delete...
2071 */
2072 synchronize_net();
2073 i_see_dead_people:
2074 busy = 0;
2075 list_for_each_entry(net, net_exit_list, exit_list) {
2076 nf_ct_iterate_cleanup(kill_all, net, 0, 0);
2077 if (atomic_read(&net->ct.count) != 0)
2078 busy = 1;
2079 }
2080 if (busy) {
2081 schedule();
2082 goto i_see_dead_people;
2083 }
2084
2085 list_for_each_entry(net, net_exit_list, exit_list) {
2086 nf_conntrack_proto_pernet_fini(net);
2087 nf_conntrack_helper_pernet_fini(net);
2088 nf_conntrack_ecache_pernet_fini(net);
2089 nf_conntrack_tstamp_pernet_fini(net);
2090 nf_conntrack_acct_pernet_fini(net);
2091 nf_conntrack_expect_pernet_fini(net);
2092 free_percpu(net->ct.stat);
2093 free_percpu(net->ct.pcpu_lists);
2094 }
2095 }
2096
nf_ct_alloc_hashtable(unsigned int * sizep,int nulls)2097 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
2098 {
2099 struct hlist_nulls_head *hash;
2100 unsigned int nr_slots, i;
2101
2102 if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
2103 return NULL;
2104
2105 BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
2106 nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
2107
2108 hash = kvmalloc_array(nr_slots, sizeof(struct hlist_nulls_head),
2109 GFP_KERNEL | __GFP_ZERO);
2110
2111 if (hash && nulls)
2112 for (i = 0; i < nr_slots; i++)
2113 INIT_HLIST_NULLS_HEAD(&hash[i], i);
2114
2115 return hash;
2116 }
2117 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
2118
nf_conntrack_hash_resize(unsigned int hashsize)2119 int nf_conntrack_hash_resize(unsigned int hashsize)
2120 {
2121 int i, bucket;
2122 unsigned int old_size;
2123 struct hlist_nulls_head *hash, *old_hash;
2124 struct nf_conntrack_tuple_hash *h;
2125 struct nf_conn *ct;
2126
2127 if (!hashsize)
2128 return -EINVAL;
2129
2130 hash = nf_ct_alloc_hashtable(&hashsize, 1);
2131 if (!hash)
2132 return -ENOMEM;
2133
2134 old_size = nf_conntrack_htable_size;
2135 if (old_size == hashsize) {
2136 kvfree(hash);
2137 return 0;
2138 }
2139
2140 local_bh_disable();
2141 nf_conntrack_all_lock();
2142 write_seqcount_begin(&nf_conntrack_generation);
2143
2144 /* Lookups in the old hash might happen in parallel, which means we
2145 * might get false negatives during connection lookup. New connections
2146 * created because of a false negative won't make it into the hash
2147 * though since that required taking the locks.
2148 */
2149
2150 for (i = 0; i < nf_conntrack_htable_size; i++) {
2151 while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
2152 h = hlist_nulls_entry(nf_conntrack_hash[i].first,
2153 struct nf_conntrack_tuple_hash, hnnode);
2154 ct = nf_ct_tuplehash_to_ctrack(h);
2155 hlist_nulls_del_rcu(&h->hnnode);
2156 bucket = __hash_conntrack(nf_ct_net(ct),
2157 &h->tuple, hashsize);
2158 hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
2159 }
2160 }
2161 old_size = nf_conntrack_htable_size;
2162 old_hash = nf_conntrack_hash;
2163
2164 nf_conntrack_hash = hash;
2165 nf_conntrack_htable_size = hashsize;
2166
2167 write_seqcount_end(&nf_conntrack_generation);
2168 nf_conntrack_all_unlock();
2169 local_bh_enable();
2170
2171 synchronize_net();
2172 kvfree(old_hash);
2173 return 0;
2174 }
2175
nf_conntrack_set_hashsize(const char * val,const struct kernel_param * kp)2176 int nf_conntrack_set_hashsize(const char *val, const struct kernel_param *kp)
2177 {
2178 unsigned int hashsize;
2179 int rc;
2180
2181 if (current->nsproxy->net_ns != &init_net)
2182 return -EOPNOTSUPP;
2183
2184 /* On boot, we can set this without any fancy locking. */
2185 if (!nf_conntrack_hash)
2186 return param_set_uint(val, kp);
2187
2188 rc = kstrtouint(val, 0, &hashsize);
2189 if (rc)
2190 return rc;
2191
2192 return nf_conntrack_hash_resize(hashsize);
2193 }
2194 EXPORT_SYMBOL_GPL(nf_conntrack_set_hashsize);
2195
total_extension_size(void)2196 static __always_inline unsigned int total_extension_size(void)
2197 {
2198 /* remember to add new extensions below */
2199 BUILD_BUG_ON(NF_CT_EXT_NUM > 9);
2200
2201 return sizeof(struct nf_ct_ext) +
2202 sizeof(struct nf_conn_help)
2203 #if IS_ENABLED(CONFIG_NF_NAT)
2204 + sizeof(struct nf_conn_nat)
2205 #endif
2206 + sizeof(struct nf_conn_seqadj)
2207 + sizeof(struct nf_conn_acct)
2208 #ifdef CONFIG_NF_CONNTRACK_EVENTS
2209 + sizeof(struct nf_conntrack_ecache)
2210 #endif
2211 #ifdef CONFIG_NF_CONNTRACK_TIMESTAMP
2212 + sizeof(struct nf_conn_tstamp)
2213 #endif
2214 #ifdef CONFIG_NF_CONNTRACK_TIMEOUT
2215 + sizeof(struct nf_conn_timeout)
2216 #endif
2217 #ifdef CONFIG_NF_CONNTRACK_LABELS
2218 + sizeof(struct nf_conn_labels)
2219 #endif
2220 #if IS_ENABLED(CONFIG_NETFILTER_SYNPROXY)
2221 + sizeof(struct nf_conn_synproxy)
2222 #endif
2223 ;
2224 };
2225
nf_conntrack_init_start(void)2226 int nf_conntrack_init_start(void)
2227 {
2228 int max_factor = 8;
2229 int ret = -ENOMEM;
2230 int i;
2231
2232 /* struct nf_ct_ext uses u8 to store offsets/size */
2233 BUILD_BUG_ON(total_extension_size() > 255u);
2234
2235 seqcount_init(&nf_conntrack_generation);
2236
2237 for (i = 0; i < CONNTRACK_LOCKS; i++)
2238 spin_lock_init(&nf_conntrack_locks[i]);
2239
2240 if (!nf_conntrack_htable_size) {
2241 /* Idea from tcp.c: use 1/16384 of memory.
2242 * On i386: 32MB machine has 512 buckets.
2243 * >= 1GB machines have 16384 buckets.
2244 * >= 4GB machines have 65536 buckets.
2245 */
2246 nf_conntrack_htable_size
2247 = (((totalram_pages << PAGE_SHIFT) / 16384)
2248 / sizeof(struct hlist_head));
2249 if (totalram_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
2250 nf_conntrack_htable_size = 65536;
2251 else if (totalram_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
2252 nf_conntrack_htable_size = 16384;
2253 if (nf_conntrack_htable_size < 32)
2254 nf_conntrack_htable_size = 32;
2255
2256 /* Use a max. factor of four by default to get the same max as
2257 * with the old struct list_heads. When a table size is given
2258 * we use the old value of 8 to avoid reducing the max.
2259 * entries. */
2260 max_factor = 4;
2261 }
2262
2263 nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
2264 if (!nf_conntrack_hash)
2265 return -ENOMEM;
2266
2267 nf_conntrack_max = max_factor * nf_conntrack_htable_size;
2268
2269 nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
2270 sizeof(struct nf_conn),
2271 NFCT_INFOMASK + 1,
2272 SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
2273 if (!nf_conntrack_cachep)
2274 goto err_cachep;
2275
2276 ret = nf_conntrack_expect_init();
2277 if (ret < 0)
2278 goto err_expect;
2279
2280 ret = nf_conntrack_acct_init();
2281 if (ret < 0)
2282 goto err_acct;
2283
2284 ret = nf_conntrack_tstamp_init();
2285 if (ret < 0)
2286 goto err_tstamp;
2287
2288 ret = nf_conntrack_ecache_init();
2289 if (ret < 0)
2290 goto err_ecache;
2291
2292 ret = nf_conntrack_timeout_init();
2293 if (ret < 0)
2294 goto err_timeout;
2295
2296 ret = nf_conntrack_helper_init();
2297 if (ret < 0)
2298 goto err_helper;
2299
2300 ret = nf_conntrack_labels_init();
2301 if (ret < 0)
2302 goto err_labels;
2303
2304 ret = nf_conntrack_seqadj_init();
2305 if (ret < 0)
2306 goto err_seqadj;
2307
2308 ret = nf_conntrack_proto_init();
2309 if (ret < 0)
2310 goto err_proto;
2311
2312 conntrack_gc_work_init(&conntrack_gc_work);
2313 queue_delayed_work(system_power_efficient_wq, &conntrack_gc_work.dwork, HZ);
2314
2315 return 0;
2316
2317 err_proto:
2318 nf_conntrack_seqadj_fini();
2319 err_seqadj:
2320 nf_conntrack_labels_fini();
2321 err_labels:
2322 nf_conntrack_helper_fini();
2323 err_helper:
2324 nf_conntrack_timeout_fini();
2325 err_timeout:
2326 nf_conntrack_ecache_fini();
2327 err_ecache:
2328 nf_conntrack_tstamp_fini();
2329 err_tstamp:
2330 nf_conntrack_acct_fini();
2331 err_acct:
2332 nf_conntrack_expect_fini();
2333 err_expect:
2334 kmem_cache_destroy(nf_conntrack_cachep);
2335 err_cachep:
2336 kvfree(nf_conntrack_hash);
2337 return ret;
2338 }
2339
2340 static struct nf_ct_hook nf_conntrack_hook = {
2341 .update = nf_conntrack_update,
2342 .destroy = destroy_conntrack,
2343 .get_tuple_skb = nf_conntrack_get_tuple_skb,
2344 };
2345
nf_conntrack_init_end(void)2346 void nf_conntrack_init_end(void)
2347 {
2348 /* For use by REJECT target */
2349 RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
2350 RCU_INIT_POINTER(nf_ct_hook, &nf_conntrack_hook);
2351 }
2352
2353 /*
2354 * We need to use special "null" values, not used in hash table
2355 */
2356 #define UNCONFIRMED_NULLS_VAL ((1<<30)+0)
2357 #define DYING_NULLS_VAL ((1<<30)+1)
2358 #define TEMPLATE_NULLS_VAL ((1<<30)+2)
2359
nf_conntrack_init_net(struct net * net)2360 int nf_conntrack_init_net(struct net *net)
2361 {
2362 int ret = -ENOMEM;
2363 int cpu;
2364
2365 BUILD_BUG_ON(IP_CT_UNTRACKED == IP_CT_NUMBER);
2366 atomic_set(&net->ct.count, 0);
2367
2368 net->ct.pcpu_lists = alloc_percpu(struct ct_pcpu);
2369 if (!net->ct.pcpu_lists)
2370 goto err_stat;
2371
2372 for_each_possible_cpu(cpu) {
2373 struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2374
2375 spin_lock_init(&pcpu->lock);
2376 INIT_HLIST_NULLS_HEAD(&pcpu->unconfirmed, UNCONFIRMED_NULLS_VAL);
2377 INIT_HLIST_NULLS_HEAD(&pcpu->dying, DYING_NULLS_VAL);
2378 }
2379
2380 net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
2381 if (!net->ct.stat)
2382 goto err_pcpu_lists;
2383
2384 ret = nf_conntrack_expect_pernet_init(net);
2385 if (ret < 0)
2386 goto err_expect;
2387 ret = nf_conntrack_acct_pernet_init(net);
2388 if (ret < 0)
2389 goto err_acct;
2390 ret = nf_conntrack_tstamp_pernet_init(net);
2391 if (ret < 0)
2392 goto err_tstamp;
2393 ret = nf_conntrack_ecache_pernet_init(net);
2394 if (ret < 0)
2395 goto err_ecache;
2396 ret = nf_conntrack_helper_pernet_init(net);
2397 if (ret < 0)
2398 goto err_helper;
2399 ret = nf_conntrack_proto_pernet_init(net);
2400 if (ret < 0)
2401 goto err_proto;
2402 return 0;
2403
2404 err_proto:
2405 nf_conntrack_helper_pernet_fini(net);
2406 err_helper:
2407 nf_conntrack_ecache_pernet_fini(net);
2408 err_ecache:
2409 nf_conntrack_tstamp_pernet_fini(net);
2410 err_tstamp:
2411 nf_conntrack_acct_pernet_fini(net);
2412 err_acct:
2413 nf_conntrack_expect_pernet_fini(net);
2414 err_expect:
2415 free_percpu(net->ct.stat);
2416 err_pcpu_lists:
2417 free_percpu(net->ct.pcpu_lists);
2418 err_stat:
2419 return ret;
2420 }
2421