1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Connection state tracking for netfilter.  This is separated from,
3    but required by, the NAT layer; it can also be used by an iptables
4    extension. */
5 
6 /* (C) 1999-2001 Paul `Rusty' Russell
7  * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
8  * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
9  * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
10  */
11 
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 
14 #include <linux/types.h>
15 #include <linux/netfilter.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/skbuff.h>
19 #include <linux/proc_fs.h>
20 #include <linux/vmalloc.h>
21 #include <linux/stddef.h>
22 #include <linux/slab.h>
23 #include <linux/random.h>
24 #include <linux/siphash.h>
25 #include <linux/err.h>
26 #include <linux/percpu.h>
27 #include <linux/moduleparam.h>
28 #include <linux/notifier.h>
29 #include <linux/kernel.h>
30 #include <linux/netdevice.h>
31 #include <linux/socket.h>
32 #include <linux/mm.h>
33 #include <linux/nsproxy.h>
34 #include <linux/rculist_nulls.h>
35 
36 #include <net/netfilter/nf_conntrack.h>
37 #include <net/netfilter/nf_conntrack_l4proto.h>
38 #include <net/netfilter/nf_conntrack_expect.h>
39 #include <net/netfilter/nf_conntrack_helper.h>
40 #include <net/netfilter/nf_conntrack_seqadj.h>
41 #include <net/netfilter/nf_conntrack_core.h>
42 #include <net/netfilter/nf_conntrack_extend.h>
43 #include <net/netfilter/nf_conntrack_acct.h>
44 #include <net/netfilter/nf_conntrack_ecache.h>
45 #include <net/netfilter/nf_conntrack_zones.h>
46 #include <net/netfilter/nf_conntrack_timestamp.h>
47 #include <net/netfilter/nf_conntrack_timeout.h>
48 #include <net/netfilter/nf_conntrack_labels.h>
49 #include <net/netfilter/nf_conntrack_synproxy.h>
50 #include <net/netfilter/nf_nat.h>
51 #include <net/netfilter/nf_nat_helper.h>
52 #include <net/netns/hash.h>
53 #include <net/ip.h>
54 
55 #include "nf_internals.h"
56 
57 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
58 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
59 
60 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
61 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
62 
63 struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
64 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
65 
66 struct conntrack_gc_work {
67 	struct delayed_work	dwork;
68 	u32			next_bucket;
69 	bool			exiting;
70 	bool			early_drop;
71 };
72 
73 static __read_mostly struct kmem_cache *nf_conntrack_cachep;
74 static DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
75 static __read_mostly bool nf_conntrack_locks_all;
76 
77 /* serialize hash resizes and nf_ct_iterate_cleanup */
78 static DEFINE_MUTEX(nf_conntrack_mutex);
79 
80 #define GC_SCAN_INTERVAL	(120u * HZ)
81 #define GC_SCAN_MAX_DURATION	msecs_to_jiffies(10)
82 
83 #define MIN_CHAINLEN	8u
84 #define MAX_CHAINLEN	(32u - MIN_CHAINLEN)
85 
86 static struct conntrack_gc_work conntrack_gc_work;
87 
nf_conntrack_lock(spinlock_t * lock)88 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
89 {
90 	/* 1) Acquire the lock */
91 	spin_lock(lock);
92 
93 	/* 2) read nf_conntrack_locks_all, with ACQUIRE semantics
94 	 * It pairs with the smp_store_release() in nf_conntrack_all_unlock()
95 	 */
96 	if (likely(smp_load_acquire(&nf_conntrack_locks_all) == false))
97 		return;
98 
99 	/* fast path failed, unlock */
100 	spin_unlock(lock);
101 
102 	/* Slow path 1) get global lock */
103 	spin_lock(&nf_conntrack_locks_all_lock);
104 
105 	/* Slow path 2) get the lock we want */
106 	spin_lock(lock);
107 
108 	/* Slow path 3) release the global lock */
109 	spin_unlock(&nf_conntrack_locks_all_lock);
110 }
111 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
112 
nf_conntrack_double_unlock(unsigned int h1,unsigned int h2)113 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
114 {
115 	h1 %= CONNTRACK_LOCKS;
116 	h2 %= CONNTRACK_LOCKS;
117 	spin_unlock(&nf_conntrack_locks[h1]);
118 	if (h1 != h2)
119 		spin_unlock(&nf_conntrack_locks[h2]);
120 }
121 
122 /* return true if we need to recompute hashes (in case hash table was resized) */
nf_conntrack_double_lock(struct net * net,unsigned int h1,unsigned int h2,unsigned int sequence)123 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
124 				     unsigned int h2, unsigned int sequence)
125 {
126 	h1 %= CONNTRACK_LOCKS;
127 	h2 %= CONNTRACK_LOCKS;
128 	if (h1 <= h2) {
129 		nf_conntrack_lock(&nf_conntrack_locks[h1]);
130 		if (h1 != h2)
131 			spin_lock_nested(&nf_conntrack_locks[h2],
132 					 SINGLE_DEPTH_NESTING);
133 	} else {
134 		nf_conntrack_lock(&nf_conntrack_locks[h2]);
135 		spin_lock_nested(&nf_conntrack_locks[h1],
136 				 SINGLE_DEPTH_NESTING);
137 	}
138 	if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
139 		nf_conntrack_double_unlock(h1, h2);
140 		return true;
141 	}
142 	return false;
143 }
144 
nf_conntrack_all_lock(void)145 static void nf_conntrack_all_lock(void)
146 	__acquires(&nf_conntrack_locks_all_lock)
147 {
148 	int i;
149 
150 	spin_lock(&nf_conntrack_locks_all_lock);
151 
152 	/* For nf_contrack_locks_all, only the latest time when another
153 	 * CPU will see an update is controlled, by the "release" of the
154 	 * spin_lock below.
155 	 * The earliest time is not controlled, an thus KCSAN could detect
156 	 * a race when nf_conntract_lock() reads the variable.
157 	 * WRITE_ONCE() is used to ensure the compiler will not
158 	 * optimize the write.
159 	 */
160 	WRITE_ONCE(nf_conntrack_locks_all, true);
161 
162 	for (i = 0; i < CONNTRACK_LOCKS; i++) {
163 		spin_lock(&nf_conntrack_locks[i]);
164 
165 		/* This spin_unlock provides the "release" to ensure that
166 		 * nf_conntrack_locks_all==true is visible to everyone that
167 		 * acquired spin_lock(&nf_conntrack_locks[]).
168 		 */
169 		spin_unlock(&nf_conntrack_locks[i]);
170 	}
171 }
172 
nf_conntrack_all_unlock(void)173 static void nf_conntrack_all_unlock(void)
174 	__releases(&nf_conntrack_locks_all_lock)
175 {
176 	/* All prior stores must be complete before we clear
177 	 * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
178 	 * might observe the false value but not the entire
179 	 * critical section.
180 	 * It pairs with the smp_load_acquire() in nf_conntrack_lock()
181 	 */
182 	smp_store_release(&nf_conntrack_locks_all, false);
183 	spin_unlock(&nf_conntrack_locks_all_lock);
184 }
185 
186 unsigned int nf_conntrack_htable_size __read_mostly;
187 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
188 
189 unsigned int nf_conntrack_max __read_mostly;
190 EXPORT_SYMBOL_GPL(nf_conntrack_max);
191 seqcount_spinlock_t nf_conntrack_generation __read_mostly;
192 static siphash_key_t nf_conntrack_hash_rnd __read_mostly;
193 
hash_conntrack_raw(const struct nf_conntrack_tuple * tuple,unsigned int zoneid,const struct net * net)194 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
195 			      unsigned int zoneid,
196 			      const struct net *net)
197 {
198 	struct {
199 		struct nf_conntrack_man src;
200 		union nf_inet_addr dst_addr;
201 		unsigned int zone;
202 		u32 net_mix;
203 		u16 dport;
204 		u16 proto;
205 	} __aligned(SIPHASH_ALIGNMENT) combined;
206 
207 	get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
208 
209 	memset(&combined, 0, sizeof(combined));
210 
211 	/* The direction must be ignored, so handle usable members manually. */
212 	combined.src = tuple->src;
213 	combined.dst_addr = tuple->dst.u3;
214 	combined.zone = zoneid;
215 	combined.net_mix = net_hash_mix(net);
216 	combined.dport = (__force __u16)tuple->dst.u.all;
217 	combined.proto = tuple->dst.protonum;
218 
219 	return (u32)siphash(&combined, sizeof(combined), &nf_conntrack_hash_rnd);
220 }
221 
scale_hash(u32 hash)222 static u32 scale_hash(u32 hash)
223 {
224 	return reciprocal_scale(hash, nf_conntrack_htable_size);
225 }
226 
__hash_conntrack(const struct net * net,const struct nf_conntrack_tuple * tuple,unsigned int zoneid,unsigned int size)227 static u32 __hash_conntrack(const struct net *net,
228 			    const struct nf_conntrack_tuple *tuple,
229 			    unsigned int zoneid,
230 			    unsigned int size)
231 {
232 	return reciprocal_scale(hash_conntrack_raw(tuple, zoneid, net), size);
233 }
234 
hash_conntrack(const struct net * net,const struct nf_conntrack_tuple * tuple,unsigned int zoneid)235 static u32 hash_conntrack(const struct net *net,
236 			  const struct nf_conntrack_tuple *tuple,
237 			  unsigned int zoneid)
238 {
239 	return scale_hash(hash_conntrack_raw(tuple, zoneid, net));
240 }
241 
nf_ct_get_tuple_ports(const struct sk_buff * skb,unsigned int dataoff,struct nf_conntrack_tuple * tuple)242 static bool nf_ct_get_tuple_ports(const struct sk_buff *skb,
243 				  unsigned int dataoff,
244 				  struct nf_conntrack_tuple *tuple)
245 {	struct {
246 		__be16 sport;
247 		__be16 dport;
248 	} _inet_hdr, *inet_hdr;
249 
250 	/* Actually only need first 4 bytes to get ports. */
251 	inet_hdr = skb_header_pointer(skb, dataoff, sizeof(_inet_hdr), &_inet_hdr);
252 	if (!inet_hdr)
253 		return false;
254 
255 	tuple->src.u.udp.port = inet_hdr->sport;
256 	tuple->dst.u.udp.port = inet_hdr->dport;
257 	return true;
258 }
259 
260 static bool
nf_ct_get_tuple(const struct sk_buff * skb,unsigned int nhoff,unsigned int dataoff,u_int16_t l3num,u_int8_t protonum,struct net * net,struct nf_conntrack_tuple * tuple)261 nf_ct_get_tuple(const struct sk_buff *skb,
262 		unsigned int nhoff,
263 		unsigned int dataoff,
264 		u_int16_t l3num,
265 		u_int8_t protonum,
266 		struct net *net,
267 		struct nf_conntrack_tuple *tuple)
268 {
269 	unsigned int size;
270 	const __be32 *ap;
271 	__be32 _addrs[8];
272 
273 	memset(tuple, 0, sizeof(*tuple));
274 
275 	tuple->src.l3num = l3num;
276 	switch (l3num) {
277 	case NFPROTO_IPV4:
278 		nhoff += offsetof(struct iphdr, saddr);
279 		size = 2 * sizeof(__be32);
280 		break;
281 	case NFPROTO_IPV6:
282 		nhoff += offsetof(struct ipv6hdr, saddr);
283 		size = sizeof(_addrs);
284 		break;
285 	default:
286 		return true;
287 	}
288 
289 	ap = skb_header_pointer(skb, nhoff, size, _addrs);
290 	if (!ap)
291 		return false;
292 
293 	switch (l3num) {
294 	case NFPROTO_IPV4:
295 		tuple->src.u3.ip = ap[0];
296 		tuple->dst.u3.ip = ap[1];
297 		break;
298 	case NFPROTO_IPV6:
299 		memcpy(tuple->src.u3.ip6, ap, sizeof(tuple->src.u3.ip6));
300 		memcpy(tuple->dst.u3.ip6, ap + 4, sizeof(tuple->dst.u3.ip6));
301 		break;
302 	}
303 
304 	tuple->dst.protonum = protonum;
305 	tuple->dst.dir = IP_CT_DIR_ORIGINAL;
306 
307 	switch (protonum) {
308 #if IS_ENABLED(CONFIG_IPV6)
309 	case IPPROTO_ICMPV6:
310 		return icmpv6_pkt_to_tuple(skb, dataoff, net, tuple);
311 #endif
312 	case IPPROTO_ICMP:
313 		return icmp_pkt_to_tuple(skb, dataoff, net, tuple);
314 #ifdef CONFIG_NF_CT_PROTO_GRE
315 	case IPPROTO_GRE:
316 		return gre_pkt_to_tuple(skb, dataoff, net, tuple);
317 #endif
318 	case IPPROTO_TCP:
319 	case IPPROTO_UDP: /* fallthrough */
320 		return nf_ct_get_tuple_ports(skb, dataoff, tuple);
321 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
322 	case IPPROTO_UDPLITE:
323 		return nf_ct_get_tuple_ports(skb, dataoff, tuple);
324 #endif
325 #ifdef CONFIG_NF_CT_PROTO_SCTP
326 	case IPPROTO_SCTP:
327 		return nf_ct_get_tuple_ports(skb, dataoff, tuple);
328 #endif
329 #ifdef CONFIG_NF_CT_PROTO_DCCP
330 	case IPPROTO_DCCP:
331 		return nf_ct_get_tuple_ports(skb, dataoff, tuple);
332 #endif
333 	default:
334 		break;
335 	}
336 
337 	return true;
338 }
339 
ipv4_get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u_int8_t * protonum)340 static int ipv4_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
341 			    u_int8_t *protonum)
342 {
343 	int dataoff = -1;
344 	const struct iphdr *iph;
345 	struct iphdr _iph;
346 
347 	iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
348 	if (!iph)
349 		return -1;
350 
351 	/* Conntrack defragments packets, we might still see fragments
352 	 * inside ICMP packets though.
353 	 */
354 	if (iph->frag_off & htons(IP_OFFSET))
355 		return -1;
356 
357 	dataoff = nhoff + (iph->ihl << 2);
358 	*protonum = iph->protocol;
359 
360 	/* Check bogus IP headers */
361 	if (dataoff > skb->len) {
362 		pr_debug("bogus IPv4 packet: nhoff %u, ihl %u, skblen %u\n",
363 			 nhoff, iph->ihl << 2, skb->len);
364 		return -1;
365 	}
366 	return dataoff;
367 }
368 
369 #if IS_ENABLED(CONFIG_IPV6)
ipv6_get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u8 * protonum)370 static int ipv6_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
371 			    u8 *protonum)
372 {
373 	int protoff = -1;
374 	unsigned int extoff = nhoff + sizeof(struct ipv6hdr);
375 	__be16 frag_off;
376 	u8 nexthdr;
377 
378 	if (skb_copy_bits(skb, nhoff + offsetof(struct ipv6hdr, nexthdr),
379 			  &nexthdr, sizeof(nexthdr)) != 0) {
380 		pr_debug("can't get nexthdr\n");
381 		return -1;
382 	}
383 	protoff = ipv6_skip_exthdr(skb, extoff, &nexthdr, &frag_off);
384 	/*
385 	 * (protoff == skb->len) means the packet has not data, just
386 	 * IPv6 and possibly extensions headers, but it is tracked anyway
387 	 */
388 	if (protoff < 0 || (frag_off & htons(~0x7)) != 0) {
389 		pr_debug("can't find proto in pkt\n");
390 		return -1;
391 	}
392 
393 	*protonum = nexthdr;
394 	return protoff;
395 }
396 #endif
397 
get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u8 pf,u8 * l4num)398 static int get_l4proto(const struct sk_buff *skb,
399 		       unsigned int nhoff, u8 pf, u8 *l4num)
400 {
401 	switch (pf) {
402 	case NFPROTO_IPV4:
403 		return ipv4_get_l4proto(skb, nhoff, l4num);
404 #if IS_ENABLED(CONFIG_IPV6)
405 	case NFPROTO_IPV6:
406 		return ipv6_get_l4proto(skb, nhoff, l4num);
407 #endif
408 	default:
409 		*l4num = 0;
410 		break;
411 	}
412 	return -1;
413 }
414 
nf_ct_get_tuplepr(const struct sk_buff * skb,unsigned int nhoff,u_int16_t l3num,struct net * net,struct nf_conntrack_tuple * tuple)415 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
416 		       u_int16_t l3num,
417 		       struct net *net, struct nf_conntrack_tuple *tuple)
418 {
419 	u8 protonum;
420 	int protoff;
421 
422 	protoff = get_l4proto(skb, nhoff, l3num, &protonum);
423 	if (protoff <= 0)
424 		return false;
425 
426 	return nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple);
427 }
428 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
429 
430 bool
nf_ct_invert_tuple(struct nf_conntrack_tuple * inverse,const struct nf_conntrack_tuple * orig)431 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
432 		   const struct nf_conntrack_tuple *orig)
433 {
434 	memset(inverse, 0, sizeof(*inverse));
435 
436 	inverse->src.l3num = orig->src.l3num;
437 
438 	switch (orig->src.l3num) {
439 	case NFPROTO_IPV4:
440 		inverse->src.u3.ip = orig->dst.u3.ip;
441 		inverse->dst.u3.ip = orig->src.u3.ip;
442 		break;
443 	case NFPROTO_IPV6:
444 		inverse->src.u3.in6 = orig->dst.u3.in6;
445 		inverse->dst.u3.in6 = orig->src.u3.in6;
446 		break;
447 	default:
448 		break;
449 	}
450 
451 	inverse->dst.dir = !orig->dst.dir;
452 
453 	inverse->dst.protonum = orig->dst.protonum;
454 
455 	switch (orig->dst.protonum) {
456 	case IPPROTO_ICMP:
457 		return nf_conntrack_invert_icmp_tuple(inverse, orig);
458 #if IS_ENABLED(CONFIG_IPV6)
459 	case IPPROTO_ICMPV6:
460 		return nf_conntrack_invert_icmpv6_tuple(inverse, orig);
461 #endif
462 	}
463 
464 	inverse->src.u.all = orig->dst.u.all;
465 	inverse->dst.u.all = orig->src.u.all;
466 	return true;
467 }
468 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
469 
470 /* Generate a almost-unique pseudo-id for a given conntrack.
471  *
472  * intentionally doesn't re-use any of the seeds used for hash
473  * table location, we assume id gets exposed to userspace.
474  *
475  * Following nf_conn items do not change throughout lifetime
476  * of the nf_conn:
477  *
478  * 1. nf_conn address
479  * 2. nf_conn->master address (normally NULL)
480  * 3. the associated net namespace
481  * 4. the original direction tuple
482  */
nf_ct_get_id(const struct nf_conn * ct)483 u32 nf_ct_get_id(const struct nf_conn *ct)
484 {
485 	static __read_mostly siphash_key_t ct_id_seed;
486 	unsigned long a, b, c, d;
487 
488 	net_get_random_once(&ct_id_seed, sizeof(ct_id_seed));
489 
490 	a = (unsigned long)ct;
491 	b = (unsigned long)ct->master;
492 	c = (unsigned long)nf_ct_net(ct);
493 	d = (unsigned long)siphash(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
494 				   sizeof(ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple),
495 				   &ct_id_seed);
496 #ifdef CONFIG_64BIT
497 	return siphash_4u64((u64)a, (u64)b, (u64)c, (u64)d, &ct_id_seed);
498 #else
499 	return siphash_4u32((u32)a, (u32)b, (u32)c, (u32)d, &ct_id_seed);
500 #endif
501 }
502 EXPORT_SYMBOL_GPL(nf_ct_get_id);
503 
504 static void
clean_from_lists(struct nf_conn * ct)505 clean_from_lists(struct nf_conn *ct)
506 {
507 	pr_debug("clean_from_lists(%p)\n", ct);
508 	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
509 	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
510 
511 	/* Destroy all pending expectations */
512 	nf_ct_remove_expectations(ct);
513 }
514 
515 /* must be called with local_bh_disable */
nf_ct_add_to_dying_list(struct nf_conn * ct)516 static void nf_ct_add_to_dying_list(struct nf_conn *ct)
517 {
518 	struct ct_pcpu *pcpu;
519 
520 	/* add this conntrack to the (per cpu) dying list */
521 	ct->cpu = smp_processor_id();
522 	pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
523 
524 	spin_lock(&pcpu->lock);
525 	hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
526 			     &pcpu->dying);
527 	spin_unlock(&pcpu->lock);
528 }
529 
530 /* must be called with local_bh_disable */
nf_ct_add_to_unconfirmed_list(struct nf_conn * ct)531 static void nf_ct_add_to_unconfirmed_list(struct nf_conn *ct)
532 {
533 	struct ct_pcpu *pcpu;
534 
535 	/* add this conntrack to the (per cpu) unconfirmed list */
536 	ct->cpu = smp_processor_id();
537 	pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
538 
539 	spin_lock(&pcpu->lock);
540 	hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
541 			     &pcpu->unconfirmed);
542 	spin_unlock(&pcpu->lock);
543 }
544 
545 /* must be called with local_bh_disable */
nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn * ct)546 static void nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn *ct)
547 {
548 	struct ct_pcpu *pcpu;
549 
550 	/* We overload first tuple to link into unconfirmed or dying list.*/
551 	pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
552 
553 	spin_lock(&pcpu->lock);
554 	BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
555 	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
556 	spin_unlock(&pcpu->lock);
557 }
558 
559 #define NFCT_ALIGN(len)	(((len) + NFCT_INFOMASK) & ~NFCT_INFOMASK)
560 
561 /* Released via destroy_conntrack() */
nf_ct_tmpl_alloc(struct net * net,const struct nf_conntrack_zone * zone,gfp_t flags)562 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
563 				 const struct nf_conntrack_zone *zone,
564 				 gfp_t flags)
565 {
566 	struct nf_conn *tmpl, *p;
567 
568 	if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK) {
569 		tmpl = kzalloc(sizeof(*tmpl) + NFCT_INFOMASK, flags);
570 		if (!tmpl)
571 			return NULL;
572 
573 		p = tmpl;
574 		tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
575 		if (tmpl != p) {
576 			tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
577 			tmpl->proto.tmpl_padto = (char *)tmpl - (char *)p;
578 		}
579 	} else {
580 		tmpl = kzalloc(sizeof(*tmpl), flags);
581 		if (!tmpl)
582 			return NULL;
583 	}
584 
585 	tmpl->status = IPS_TEMPLATE;
586 	write_pnet(&tmpl->ct_net, net);
587 	nf_ct_zone_add(tmpl, zone);
588 	atomic_set(&tmpl->ct_general.use, 0);
589 
590 	return tmpl;
591 }
592 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
593 
nf_ct_tmpl_free(struct nf_conn * tmpl)594 void nf_ct_tmpl_free(struct nf_conn *tmpl)
595 {
596 	nf_ct_ext_destroy(tmpl);
597 
598 	if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK)
599 		kfree((char *)tmpl - tmpl->proto.tmpl_padto);
600 	else
601 		kfree(tmpl);
602 }
603 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
604 
destroy_gre_conntrack(struct nf_conn * ct)605 static void destroy_gre_conntrack(struct nf_conn *ct)
606 {
607 #ifdef CONFIG_NF_CT_PROTO_GRE
608 	struct nf_conn *master = ct->master;
609 
610 	if (master)
611 		nf_ct_gre_keymap_destroy(master);
612 #endif
613 }
614 
615 static void
destroy_conntrack(struct nf_conntrack * nfct)616 destroy_conntrack(struct nf_conntrack *nfct)
617 {
618 	struct nf_conn *ct = (struct nf_conn *)nfct;
619 
620 	pr_debug("destroy_conntrack(%p)\n", ct);
621 	WARN_ON(atomic_read(&nfct->use) != 0);
622 
623 	if (unlikely(nf_ct_is_template(ct))) {
624 		nf_ct_tmpl_free(ct);
625 		return;
626 	}
627 
628 	if (unlikely(nf_ct_protonum(ct) == IPPROTO_GRE))
629 		destroy_gre_conntrack(ct);
630 
631 	local_bh_disable();
632 	/* Expectations will have been removed in clean_from_lists,
633 	 * except TFTP can create an expectation on the first packet,
634 	 * before connection is in the list, so we need to clean here,
635 	 * too.
636 	 */
637 	nf_ct_remove_expectations(ct);
638 
639 	nf_ct_del_from_dying_or_unconfirmed_list(ct);
640 
641 	local_bh_enable();
642 
643 	if (ct->master)
644 		nf_ct_put(ct->master);
645 
646 	pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
647 	nf_conntrack_free(ct);
648 }
649 
nf_ct_delete_from_lists(struct nf_conn * ct)650 static void nf_ct_delete_from_lists(struct nf_conn *ct)
651 {
652 	struct net *net = nf_ct_net(ct);
653 	unsigned int hash, reply_hash;
654 	unsigned int sequence;
655 
656 	nf_ct_helper_destroy(ct);
657 
658 	local_bh_disable();
659 	do {
660 		sequence = read_seqcount_begin(&nf_conntrack_generation);
661 		hash = hash_conntrack(net,
662 				      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
663 				      nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_ORIGINAL));
664 		reply_hash = hash_conntrack(net,
665 					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
666 					   nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
667 	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
668 
669 	clean_from_lists(ct);
670 	nf_conntrack_double_unlock(hash, reply_hash);
671 
672 	nf_ct_add_to_dying_list(ct);
673 
674 	local_bh_enable();
675 }
676 
nf_ct_delete(struct nf_conn * ct,u32 portid,int report)677 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
678 {
679 	struct nf_conn_tstamp *tstamp;
680 	struct net *net;
681 
682 	if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
683 		return false;
684 
685 	tstamp = nf_conn_tstamp_find(ct);
686 	if (tstamp) {
687 		s32 timeout = ct->timeout - nfct_time_stamp;
688 
689 		tstamp->stop = ktime_get_real_ns();
690 		if (timeout < 0)
691 			tstamp->stop -= jiffies_to_nsecs(-timeout);
692 	}
693 
694 	if (nf_conntrack_event_report(IPCT_DESTROY, ct,
695 				    portid, report) < 0) {
696 		/* destroy event was not delivered. nf_ct_put will
697 		 * be done by event cache worker on redelivery.
698 		 */
699 		nf_ct_delete_from_lists(ct);
700 		nf_conntrack_ecache_work(nf_ct_net(ct), NFCT_ECACHE_DESTROY_FAIL);
701 		return false;
702 	}
703 
704 	net = nf_ct_net(ct);
705 	if (nf_conntrack_ecache_dwork_pending(net))
706 		nf_conntrack_ecache_work(net, NFCT_ECACHE_DESTROY_SENT);
707 	nf_ct_delete_from_lists(ct);
708 	nf_ct_put(ct);
709 	return true;
710 }
711 EXPORT_SYMBOL_GPL(nf_ct_delete);
712 
713 static inline bool
nf_ct_key_equal(struct nf_conntrack_tuple_hash * h,const struct nf_conntrack_tuple * tuple,const struct nf_conntrack_zone * zone,const struct net * net)714 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
715 		const struct nf_conntrack_tuple *tuple,
716 		const struct nf_conntrack_zone *zone,
717 		const struct net *net)
718 {
719 	struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
720 
721 	/* A conntrack can be recreated with the equal tuple,
722 	 * so we need to check that the conntrack is confirmed
723 	 */
724 	return nf_ct_tuple_equal(tuple, &h->tuple) &&
725 	       nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
726 	       nf_ct_is_confirmed(ct) &&
727 	       net_eq(net, nf_ct_net(ct));
728 }
729 
730 static inline bool
nf_ct_match(const struct nf_conn * ct1,const struct nf_conn * ct2)731 nf_ct_match(const struct nf_conn *ct1, const struct nf_conn *ct2)
732 {
733 	return nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
734 				 &ct2->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
735 	       nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_REPLY].tuple,
736 				 &ct2->tuplehash[IP_CT_DIR_REPLY].tuple) &&
737 	       nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_ORIGINAL) &&
738 	       nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_REPLY) &&
739 	       net_eq(nf_ct_net(ct1), nf_ct_net(ct2));
740 }
741 
742 /* caller must hold rcu readlock and none of the nf_conntrack_locks */
nf_ct_gc_expired(struct nf_conn * ct)743 static void nf_ct_gc_expired(struct nf_conn *ct)
744 {
745 	if (!atomic_inc_not_zero(&ct->ct_general.use))
746 		return;
747 
748 	if (nf_ct_should_gc(ct))
749 		nf_ct_kill(ct);
750 
751 	nf_ct_put(ct);
752 }
753 
754 /*
755  * Warning :
756  * - Caller must take a reference on returned object
757  *   and recheck nf_ct_tuple_equal(tuple, &h->tuple)
758  */
759 static struct nf_conntrack_tuple_hash *
____nf_conntrack_find(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple,u32 hash)760 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
761 		      const struct nf_conntrack_tuple *tuple, u32 hash)
762 {
763 	struct nf_conntrack_tuple_hash *h;
764 	struct hlist_nulls_head *ct_hash;
765 	struct hlist_nulls_node *n;
766 	unsigned int bucket, hsize;
767 
768 begin:
769 	nf_conntrack_get_ht(&ct_hash, &hsize);
770 	bucket = reciprocal_scale(hash, hsize);
771 
772 	hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
773 		struct nf_conn *ct;
774 
775 		ct = nf_ct_tuplehash_to_ctrack(h);
776 		if (nf_ct_is_expired(ct)) {
777 			nf_ct_gc_expired(ct);
778 			continue;
779 		}
780 
781 		if (nf_ct_key_equal(h, tuple, zone, net))
782 			return h;
783 	}
784 	/*
785 	 * if the nulls value we got at the end of this lookup is
786 	 * not the expected one, we must restart lookup.
787 	 * We probably met an item that was moved to another chain.
788 	 */
789 	if (get_nulls_value(n) != bucket) {
790 		NF_CT_STAT_INC_ATOMIC(net, search_restart);
791 		goto begin;
792 	}
793 
794 	return NULL;
795 }
796 
797 /* Find a connection corresponding to a tuple. */
798 static struct nf_conntrack_tuple_hash *
__nf_conntrack_find_get(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple,u32 hash)799 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
800 			const struct nf_conntrack_tuple *tuple, u32 hash)
801 {
802 	struct nf_conntrack_tuple_hash *h;
803 	struct nf_conn *ct;
804 
805 	rcu_read_lock();
806 
807 	h = ____nf_conntrack_find(net, zone, tuple, hash);
808 	if (h) {
809 		/* We have a candidate that matches the tuple we're interested
810 		 * in, try to obtain a reference and re-check tuple
811 		 */
812 		ct = nf_ct_tuplehash_to_ctrack(h);
813 		if (likely(atomic_inc_not_zero(&ct->ct_general.use))) {
814 			if (likely(nf_ct_key_equal(h, tuple, zone, net)))
815 				goto found;
816 
817 			/* TYPESAFE_BY_RCU recycled the candidate */
818 			nf_ct_put(ct);
819 		}
820 
821 		h = NULL;
822 	}
823 found:
824 	rcu_read_unlock();
825 
826 	return h;
827 }
828 
829 struct nf_conntrack_tuple_hash *
nf_conntrack_find_get(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple)830 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
831 		      const struct nf_conntrack_tuple *tuple)
832 {
833 	unsigned int rid, zone_id = nf_ct_zone_id(zone, IP_CT_DIR_ORIGINAL);
834 	struct nf_conntrack_tuple_hash *thash;
835 
836 	thash = __nf_conntrack_find_get(net, zone, tuple,
837 					hash_conntrack_raw(tuple, zone_id, net));
838 
839 	if (thash)
840 		return thash;
841 
842 	rid = nf_ct_zone_id(zone, IP_CT_DIR_REPLY);
843 	if (rid != zone_id)
844 		return __nf_conntrack_find_get(net, zone, tuple,
845 					       hash_conntrack_raw(tuple, rid, net));
846 	return thash;
847 }
848 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
849 
__nf_conntrack_hash_insert(struct nf_conn * ct,unsigned int hash,unsigned int reply_hash)850 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
851 				       unsigned int hash,
852 				       unsigned int reply_hash)
853 {
854 	hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
855 			   &nf_conntrack_hash[hash]);
856 	hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
857 			   &nf_conntrack_hash[reply_hash]);
858 }
859 
860 int
nf_conntrack_hash_check_insert(struct nf_conn * ct)861 nf_conntrack_hash_check_insert(struct nf_conn *ct)
862 {
863 	const struct nf_conntrack_zone *zone;
864 	struct net *net = nf_ct_net(ct);
865 	unsigned int hash, reply_hash;
866 	struct nf_conntrack_tuple_hash *h;
867 	struct hlist_nulls_node *n;
868 	unsigned int max_chainlen;
869 	unsigned int chainlen = 0;
870 	unsigned int sequence;
871 	int err = -EEXIST;
872 
873 	zone = nf_ct_zone(ct);
874 
875 	local_bh_disable();
876 	do {
877 		sequence = read_seqcount_begin(&nf_conntrack_generation);
878 		hash = hash_conntrack(net,
879 				      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
880 				      nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_ORIGINAL));
881 		reply_hash = hash_conntrack(net,
882 					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
883 					   nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
884 	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
885 
886 	max_chainlen = MIN_CHAINLEN + prandom_u32_max(MAX_CHAINLEN);
887 
888 	/* See if there's one in the list already, including reverse */
889 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode) {
890 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
891 				    zone, net))
892 			goto out;
893 
894 		if (chainlen++ > max_chainlen)
895 			goto chaintoolong;
896 	}
897 
898 	chainlen = 0;
899 
900 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode) {
901 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
902 				    zone, net))
903 			goto out;
904 		if (chainlen++ > max_chainlen)
905 			goto chaintoolong;
906 	}
907 
908 	smp_wmb();
909 	/* The caller holds a reference to this object */
910 	atomic_set(&ct->ct_general.use, 2);
911 	__nf_conntrack_hash_insert(ct, hash, reply_hash);
912 	nf_conntrack_double_unlock(hash, reply_hash);
913 	NF_CT_STAT_INC(net, insert);
914 	local_bh_enable();
915 	return 0;
916 chaintoolong:
917 	NF_CT_STAT_INC(net, chaintoolong);
918 	err = -ENOSPC;
919 out:
920 	nf_conntrack_double_unlock(hash, reply_hash);
921 	local_bh_enable();
922 	return err;
923 }
924 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
925 
nf_ct_acct_add(struct nf_conn * ct,u32 dir,unsigned int packets,unsigned int bytes)926 void nf_ct_acct_add(struct nf_conn *ct, u32 dir, unsigned int packets,
927 		    unsigned int bytes)
928 {
929 	struct nf_conn_acct *acct;
930 
931 	acct = nf_conn_acct_find(ct);
932 	if (acct) {
933 		struct nf_conn_counter *counter = acct->counter;
934 
935 		atomic64_add(packets, &counter[dir].packets);
936 		atomic64_add(bytes, &counter[dir].bytes);
937 	}
938 }
939 EXPORT_SYMBOL_GPL(nf_ct_acct_add);
940 
nf_ct_acct_merge(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct nf_conn * loser_ct)941 static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
942 			     const struct nf_conn *loser_ct)
943 {
944 	struct nf_conn_acct *acct;
945 
946 	acct = nf_conn_acct_find(loser_ct);
947 	if (acct) {
948 		struct nf_conn_counter *counter = acct->counter;
949 		unsigned int bytes;
950 
951 		/* u32 should be fine since we must have seen one packet. */
952 		bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
953 		nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), bytes);
954 	}
955 }
956 
__nf_conntrack_insert_prepare(struct nf_conn * ct)957 static void __nf_conntrack_insert_prepare(struct nf_conn *ct)
958 {
959 	struct nf_conn_tstamp *tstamp;
960 
961 	atomic_inc(&ct->ct_general.use);
962 	ct->status |= IPS_CONFIRMED;
963 
964 	/* set conntrack timestamp, if enabled. */
965 	tstamp = nf_conn_tstamp_find(ct);
966 	if (tstamp)
967 		tstamp->start = ktime_get_real_ns();
968 }
969 
970 /* caller must hold locks to prevent concurrent changes */
__nf_ct_resolve_clash(struct sk_buff * skb,struct nf_conntrack_tuple_hash * h)971 static int __nf_ct_resolve_clash(struct sk_buff *skb,
972 				 struct nf_conntrack_tuple_hash *h)
973 {
974 	/* This is the conntrack entry already in hashes that won race. */
975 	struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
976 	enum ip_conntrack_info ctinfo;
977 	struct nf_conn *loser_ct;
978 
979 	loser_ct = nf_ct_get(skb, &ctinfo);
980 
981 	if (nf_ct_is_dying(ct))
982 		return NF_DROP;
983 
984 	if (((ct->status & IPS_NAT_DONE_MASK) == 0) ||
985 	    nf_ct_match(ct, loser_ct)) {
986 		struct net *net = nf_ct_net(ct);
987 
988 		nf_conntrack_get(&ct->ct_general);
989 
990 		nf_ct_acct_merge(ct, ctinfo, loser_ct);
991 		nf_ct_add_to_dying_list(loser_ct);
992 		nf_conntrack_put(&loser_ct->ct_general);
993 		nf_ct_set(skb, ct, ctinfo);
994 
995 		NF_CT_STAT_INC(net, clash_resolve);
996 		return NF_ACCEPT;
997 	}
998 
999 	return NF_DROP;
1000 }
1001 
1002 /**
1003  * nf_ct_resolve_clash_harder - attempt to insert clashing conntrack entry
1004  *
1005  * @skb: skb that causes the collision
1006  * @repl_idx: hash slot for reply direction
1007  *
1008  * Called when origin or reply direction had a clash.
1009  * The skb can be handled without packet drop provided the reply direction
1010  * is unique or there the existing entry has the identical tuple in both
1011  * directions.
1012  *
1013  * Caller must hold conntrack table locks to prevent concurrent updates.
1014  *
1015  * Returns NF_DROP if the clash could not be handled.
1016  */
nf_ct_resolve_clash_harder(struct sk_buff * skb,u32 repl_idx)1017 static int nf_ct_resolve_clash_harder(struct sk_buff *skb, u32 repl_idx)
1018 {
1019 	struct nf_conn *loser_ct = (struct nf_conn *)skb_nfct(skb);
1020 	const struct nf_conntrack_zone *zone;
1021 	struct nf_conntrack_tuple_hash *h;
1022 	struct hlist_nulls_node *n;
1023 	struct net *net;
1024 
1025 	zone = nf_ct_zone(loser_ct);
1026 	net = nf_ct_net(loser_ct);
1027 
1028 	/* Reply direction must never result in a clash, unless both origin
1029 	 * and reply tuples are identical.
1030 	 */
1031 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[repl_idx], hnnode) {
1032 		if (nf_ct_key_equal(h,
1033 				    &loser_ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1034 				    zone, net))
1035 			return __nf_ct_resolve_clash(skb, h);
1036 	}
1037 
1038 	/* We want the clashing entry to go away real soon: 1 second timeout. */
1039 	loser_ct->timeout = nfct_time_stamp + HZ;
1040 
1041 	/* IPS_NAT_CLASH removes the entry automatically on the first
1042 	 * reply.  Also prevents UDP tracker from moving the entry to
1043 	 * ASSURED state, i.e. the entry can always be evicted under
1044 	 * pressure.
1045 	 */
1046 	loser_ct->status |= IPS_FIXED_TIMEOUT | IPS_NAT_CLASH;
1047 
1048 	__nf_conntrack_insert_prepare(loser_ct);
1049 
1050 	/* fake add for ORIGINAL dir: we want lookups to only find the entry
1051 	 * already in the table.  This also hides the clashing entry from
1052 	 * ctnetlink iteration, i.e. conntrack -L won't show them.
1053 	 */
1054 	hlist_nulls_add_fake(&loser_ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
1055 
1056 	hlist_nulls_add_head_rcu(&loser_ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
1057 				 &nf_conntrack_hash[repl_idx]);
1058 
1059 	NF_CT_STAT_INC(net, clash_resolve);
1060 	return NF_ACCEPT;
1061 }
1062 
1063 /**
1064  * nf_ct_resolve_clash - attempt to handle clash without packet drop
1065  *
1066  * @skb: skb that causes the clash
1067  * @h: tuplehash of the clashing entry already in table
1068  * @reply_hash: hash slot for reply direction
1069  *
1070  * A conntrack entry can be inserted to the connection tracking table
1071  * if there is no existing entry with an identical tuple.
1072  *
1073  * If there is one, @skb (and the assocated, unconfirmed conntrack) has
1074  * to be dropped.  In case @skb is retransmitted, next conntrack lookup
1075  * will find the already-existing entry.
1076  *
1077  * The major problem with such packet drop is the extra delay added by
1078  * the packet loss -- it will take some time for a retransmit to occur
1079  * (or the sender to time out when waiting for a reply).
1080  *
1081  * This function attempts to handle the situation without packet drop.
1082  *
1083  * If @skb has no NAT transformation or if the colliding entries are
1084  * exactly the same, only the to-be-confirmed conntrack entry is discarded
1085  * and @skb is associated with the conntrack entry already in the table.
1086  *
1087  * Failing that, the new, unconfirmed conntrack is still added to the table
1088  * provided that the collision only occurs in the ORIGINAL direction.
1089  * The new entry will be added only in the non-clashing REPLY direction,
1090  * so packets in the ORIGINAL direction will continue to match the existing
1091  * entry.  The new entry will also have a fixed timeout so it expires --
1092  * due to the collision, it will only see reply traffic.
1093  *
1094  * Returns NF_DROP if the clash could not be resolved.
1095  */
1096 static __cold noinline int
nf_ct_resolve_clash(struct sk_buff * skb,struct nf_conntrack_tuple_hash * h,u32 reply_hash)1097 nf_ct_resolve_clash(struct sk_buff *skb, struct nf_conntrack_tuple_hash *h,
1098 		    u32 reply_hash)
1099 {
1100 	/* This is the conntrack entry already in hashes that won race. */
1101 	struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
1102 	const struct nf_conntrack_l4proto *l4proto;
1103 	enum ip_conntrack_info ctinfo;
1104 	struct nf_conn *loser_ct;
1105 	struct net *net;
1106 	int ret;
1107 
1108 	loser_ct = nf_ct_get(skb, &ctinfo);
1109 	net = nf_ct_net(loser_ct);
1110 
1111 	l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1112 	if (!l4proto->allow_clash)
1113 		goto drop;
1114 
1115 	ret = __nf_ct_resolve_clash(skb, h);
1116 	if (ret == NF_ACCEPT)
1117 		return ret;
1118 
1119 	ret = nf_ct_resolve_clash_harder(skb, reply_hash);
1120 	if (ret == NF_ACCEPT)
1121 		return ret;
1122 
1123 drop:
1124 	nf_ct_add_to_dying_list(loser_ct);
1125 	NF_CT_STAT_INC(net, drop);
1126 	NF_CT_STAT_INC(net, insert_failed);
1127 	return NF_DROP;
1128 }
1129 
1130 /* Confirm a connection given skb; places it in hash table */
1131 int
__nf_conntrack_confirm(struct sk_buff * skb)1132 __nf_conntrack_confirm(struct sk_buff *skb)
1133 {
1134 	unsigned int chainlen = 0, sequence, max_chainlen;
1135 	const struct nf_conntrack_zone *zone;
1136 	unsigned int hash, reply_hash;
1137 	struct nf_conntrack_tuple_hash *h;
1138 	struct nf_conn *ct;
1139 	struct nf_conn_help *help;
1140 	struct hlist_nulls_node *n;
1141 	enum ip_conntrack_info ctinfo;
1142 	struct net *net;
1143 	int ret = NF_DROP;
1144 
1145 	ct = nf_ct_get(skb, &ctinfo);
1146 	net = nf_ct_net(ct);
1147 
1148 	/* ipt_REJECT uses nf_conntrack_attach to attach related
1149 	   ICMP/TCP RST packets in other direction.  Actual packet
1150 	   which created connection will be IP_CT_NEW or for an
1151 	   expected connection, IP_CT_RELATED. */
1152 	if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
1153 		return NF_ACCEPT;
1154 
1155 	zone = nf_ct_zone(ct);
1156 	local_bh_disable();
1157 
1158 	do {
1159 		sequence = read_seqcount_begin(&nf_conntrack_generation);
1160 		/* reuse the hash saved before */
1161 		hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
1162 		hash = scale_hash(hash);
1163 		reply_hash = hash_conntrack(net,
1164 					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1165 					   nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
1166 	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
1167 
1168 	/* We're not in hash table, and we refuse to set up related
1169 	 * connections for unconfirmed conns.  But packet copies and
1170 	 * REJECT will give spurious warnings here.
1171 	 */
1172 
1173 	/* Another skb with the same unconfirmed conntrack may
1174 	 * win the race. This may happen for bridge(br_flood)
1175 	 * or broadcast/multicast packets do skb_clone with
1176 	 * unconfirmed conntrack.
1177 	 */
1178 	if (unlikely(nf_ct_is_confirmed(ct))) {
1179 		WARN_ON_ONCE(1);
1180 		nf_conntrack_double_unlock(hash, reply_hash);
1181 		local_bh_enable();
1182 		return NF_DROP;
1183 	}
1184 
1185 	pr_debug("Confirming conntrack %p\n", ct);
1186 	/* We have to check the DYING flag after unlink to prevent
1187 	 * a race against nf_ct_get_next_corpse() possibly called from
1188 	 * user context, else we insert an already 'dead' hash, blocking
1189 	 * further use of that particular connection -JM.
1190 	 */
1191 	nf_ct_del_from_dying_or_unconfirmed_list(ct);
1192 
1193 	if (unlikely(nf_ct_is_dying(ct))) {
1194 		nf_ct_add_to_dying_list(ct);
1195 		NF_CT_STAT_INC(net, insert_failed);
1196 		goto dying;
1197 	}
1198 
1199 	max_chainlen = MIN_CHAINLEN + prandom_u32_max(MAX_CHAINLEN);
1200 	/* See if there's one in the list already, including reverse:
1201 	   NAT could have grabbed it without realizing, since we're
1202 	   not in the hash.  If there is, we lost race. */
1203 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode) {
1204 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1205 				    zone, net))
1206 			goto out;
1207 		if (chainlen++ > max_chainlen)
1208 			goto chaintoolong;
1209 	}
1210 
1211 	chainlen = 0;
1212 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode) {
1213 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1214 				    zone, net))
1215 			goto out;
1216 		if (chainlen++ > max_chainlen) {
1217 chaintoolong:
1218 			nf_ct_add_to_dying_list(ct);
1219 			NF_CT_STAT_INC(net, chaintoolong);
1220 			NF_CT_STAT_INC(net, insert_failed);
1221 			ret = NF_DROP;
1222 			goto dying;
1223 		}
1224 	}
1225 
1226 	/* Timer relative to confirmation time, not original
1227 	   setting time, otherwise we'd get timer wrap in
1228 	   weird delay cases. */
1229 	ct->timeout += nfct_time_stamp;
1230 
1231 	__nf_conntrack_insert_prepare(ct);
1232 
1233 	/* Since the lookup is lockless, hash insertion must be done after
1234 	 * starting the timer and setting the CONFIRMED bit. The RCU barriers
1235 	 * guarantee that no other CPU can find the conntrack before the above
1236 	 * stores are visible.
1237 	 */
1238 	__nf_conntrack_hash_insert(ct, hash, reply_hash);
1239 	nf_conntrack_double_unlock(hash, reply_hash);
1240 	local_bh_enable();
1241 
1242 	help = nfct_help(ct);
1243 	if (help && help->helper)
1244 		nf_conntrack_event_cache(IPCT_HELPER, ct);
1245 
1246 	nf_conntrack_event_cache(master_ct(ct) ?
1247 				 IPCT_RELATED : IPCT_NEW, ct);
1248 	return NF_ACCEPT;
1249 
1250 out:
1251 	ret = nf_ct_resolve_clash(skb, h, reply_hash);
1252 dying:
1253 	nf_conntrack_double_unlock(hash, reply_hash);
1254 	local_bh_enable();
1255 	return ret;
1256 }
1257 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
1258 
1259 /* Returns true if a connection correspondings to the tuple (required
1260    for NAT). */
1261 int
nf_conntrack_tuple_taken(const struct nf_conntrack_tuple * tuple,const struct nf_conn * ignored_conntrack)1262 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
1263 			 const struct nf_conn *ignored_conntrack)
1264 {
1265 	struct net *net = nf_ct_net(ignored_conntrack);
1266 	const struct nf_conntrack_zone *zone;
1267 	struct nf_conntrack_tuple_hash *h;
1268 	struct hlist_nulls_head *ct_hash;
1269 	unsigned int hash, hsize;
1270 	struct hlist_nulls_node *n;
1271 	struct nf_conn *ct;
1272 
1273 	zone = nf_ct_zone(ignored_conntrack);
1274 
1275 	rcu_read_lock();
1276  begin:
1277 	nf_conntrack_get_ht(&ct_hash, &hsize);
1278 	hash = __hash_conntrack(net, tuple, nf_ct_zone_id(zone, IP_CT_DIR_REPLY), hsize);
1279 
1280 	hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
1281 		ct = nf_ct_tuplehash_to_ctrack(h);
1282 
1283 		if (ct == ignored_conntrack)
1284 			continue;
1285 
1286 		if (nf_ct_is_expired(ct)) {
1287 			nf_ct_gc_expired(ct);
1288 			continue;
1289 		}
1290 
1291 		if (nf_ct_key_equal(h, tuple, zone, net)) {
1292 			/* Tuple is taken already, so caller will need to find
1293 			 * a new source port to use.
1294 			 *
1295 			 * Only exception:
1296 			 * If the *original tuples* are identical, then both
1297 			 * conntracks refer to the same flow.
1298 			 * This is a rare situation, it can occur e.g. when
1299 			 * more than one UDP packet is sent from same socket
1300 			 * in different threads.
1301 			 *
1302 			 * Let nf_ct_resolve_clash() deal with this later.
1303 			 */
1304 			if (nf_ct_tuple_equal(&ignored_conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1305 					      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
1306 					      nf_ct_zone_equal(ct, zone, IP_CT_DIR_ORIGINAL))
1307 				continue;
1308 
1309 			NF_CT_STAT_INC_ATOMIC(net, found);
1310 			rcu_read_unlock();
1311 			return 1;
1312 		}
1313 	}
1314 
1315 	if (get_nulls_value(n) != hash) {
1316 		NF_CT_STAT_INC_ATOMIC(net, search_restart);
1317 		goto begin;
1318 	}
1319 
1320 	rcu_read_unlock();
1321 
1322 	return 0;
1323 }
1324 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
1325 
1326 #define NF_CT_EVICTION_RANGE	8
1327 
1328 /* There's a small race here where we may free a just-assured
1329    connection.  Too bad: we're in trouble anyway. */
early_drop_list(struct net * net,struct hlist_nulls_head * head)1330 static unsigned int early_drop_list(struct net *net,
1331 				    struct hlist_nulls_head *head)
1332 {
1333 	struct nf_conntrack_tuple_hash *h;
1334 	struct hlist_nulls_node *n;
1335 	unsigned int drops = 0;
1336 	struct nf_conn *tmp;
1337 
1338 	hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
1339 		tmp = nf_ct_tuplehash_to_ctrack(h);
1340 
1341 		if (test_bit(IPS_OFFLOAD_BIT, &tmp->status))
1342 			continue;
1343 
1344 		if (nf_ct_is_expired(tmp)) {
1345 			nf_ct_gc_expired(tmp);
1346 			continue;
1347 		}
1348 
1349 		if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
1350 		    !net_eq(nf_ct_net(tmp), net) ||
1351 		    nf_ct_is_dying(tmp))
1352 			continue;
1353 
1354 		if (!atomic_inc_not_zero(&tmp->ct_general.use))
1355 			continue;
1356 
1357 		/* kill only if still in same netns -- might have moved due to
1358 		 * SLAB_TYPESAFE_BY_RCU rules.
1359 		 *
1360 		 * We steal the timer reference.  If that fails timer has
1361 		 * already fired or someone else deleted it. Just drop ref
1362 		 * and move to next entry.
1363 		 */
1364 		if (net_eq(nf_ct_net(tmp), net) &&
1365 		    nf_ct_is_confirmed(tmp) &&
1366 		    nf_ct_delete(tmp, 0, 0))
1367 			drops++;
1368 
1369 		nf_ct_put(tmp);
1370 	}
1371 
1372 	return drops;
1373 }
1374 
early_drop(struct net * net,unsigned int hash)1375 static noinline int early_drop(struct net *net, unsigned int hash)
1376 {
1377 	unsigned int i, bucket;
1378 
1379 	for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
1380 		struct hlist_nulls_head *ct_hash;
1381 		unsigned int hsize, drops;
1382 
1383 		rcu_read_lock();
1384 		nf_conntrack_get_ht(&ct_hash, &hsize);
1385 		if (!i)
1386 			bucket = reciprocal_scale(hash, hsize);
1387 		else
1388 			bucket = (bucket + 1) % hsize;
1389 
1390 		drops = early_drop_list(net, &ct_hash[bucket]);
1391 		rcu_read_unlock();
1392 
1393 		if (drops) {
1394 			NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
1395 			return true;
1396 		}
1397 	}
1398 
1399 	return false;
1400 }
1401 
gc_worker_skip_ct(const struct nf_conn * ct)1402 static bool gc_worker_skip_ct(const struct nf_conn *ct)
1403 {
1404 	return !nf_ct_is_confirmed(ct) || nf_ct_is_dying(ct);
1405 }
1406 
gc_worker_can_early_drop(const struct nf_conn * ct)1407 static bool gc_worker_can_early_drop(const struct nf_conn *ct)
1408 {
1409 	const struct nf_conntrack_l4proto *l4proto;
1410 
1411 	if (!test_bit(IPS_ASSURED_BIT, &ct->status))
1412 		return true;
1413 
1414 	l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1415 	if (l4proto->can_early_drop && l4proto->can_early_drop(ct))
1416 		return true;
1417 
1418 	return false;
1419 }
1420 
gc_worker(struct work_struct * work)1421 static void gc_worker(struct work_struct *work)
1422 {
1423 	unsigned long end_time = jiffies + GC_SCAN_MAX_DURATION;
1424 	unsigned int i, hashsz, nf_conntrack_max95 = 0;
1425 	unsigned long next_run = GC_SCAN_INTERVAL;
1426 	struct conntrack_gc_work *gc_work;
1427 	gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
1428 
1429 	i = gc_work->next_bucket;
1430 	if (gc_work->early_drop)
1431 		nf_conntrack_max95 = nf_conntrack_max / 100u * 95u;
1432 
1433 	do {
1434 		struct nf_conntrack_tuple_hash *h;
1435 		struct hlist_nulls_head *ct_hash;
1436 		struct hlist_nulls_node *n;
1437 		struct nf_conn *tmp;
1438 
1439 		rcu_read_lock();
1440 
1441 		nf_conntrack_get_ht(&ct_hash, &hashsz);
1442 		if (i >= hashsz) {
1443 			rcu_read_unlock();
1444 			break;
1445 		}
1446 
1447 		hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
1448 			struct nf_conntrack_net *cnet;
1449 			struct net *net;
1450 
1451 			tmp = nf_ct_tuplehash_to_ctrack(h);
1452 
1453 			if (test_bit(IPS_OFFLOAD_BIT, &tmp->status)) {
1454 				nf_ct_offload_timeout(tmp);
1455 				continue;
1456 			}
1457 
1458 			if (nf_ct_is_expired(tmp)) {
1459 				nf_ct_gc_expired(tmp);
1460 				continue;
1461 			}
1462 
1463 			if (nf_conntrack_max95 == 0 || gc_worker_skip_ct(tmp))
1464 				continue;
1465 
1466 			net = nf_ct_net(tmp);
1467 			cnet = nf_ct_pernet(net);
1468 			if (atomic_read(&cnet->count) < nf_conntrack_max95)
1469 				continue;
1470 
1471 			/* need to take reference to avoid possible races */
1472 			if (!atomic_inc_not_zero(&tmp->ct_general.use))
1473 				continue;
1474 
1475 			if (gc_worker_skip_ct(tmp)) {
1476 				nf_ct_put(tmp);
1477 				continue;
1478 			}
1479 
1480 			if (gc_worker_can_early_drop(tmp))
1481 				nf_ct_kill(tmp);
1482 
1483 			nf_ct_put(tmp);
1484 		}
1485 
1486 		/* could check get_nulls_value() here and restart if ct
1487 		 * was moved to another chain.  But given gc is best-effort
1488 		 * we will just continue with next hash slot.
1489 		 */
1490 		rcu_read_unlock();
1491 		cond_resched();
1492 		i++;
1493 
1494 		if (time_after(jiffies, end_time) && i < hashsz) {
1495 			gc_work->next_bucket = i;
1496 			next_run = 0;
1497 			break;
1498 		}
1499 	} while (i < hashsz);
1500 
1501 	if (gc_work->exiting)
1502 		return;
1503 
1504 	/*
1505 	 * Eviction will normally happen from the packet path, and not
1506 	 * from this gc worker.
1507 	 *
1508 	 * This worker is only here to reap expired entries when system went
1509 	 * idle after a busy period.
1510 	 */
1511 	if (next_run) {
1512 		gc_work->early_drop = false;
1513 		gc_work->next_bucket = 0;
1514 	}
1515 	queue_delayed_work(system_power_efficient_wq, &gc_work->dwork, next_run);
1516 }
1517 
conntrack_gc_work_init(struct conntrack_gc_work * gc_work)1518 static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1519 {
1520 	INIT_DEFERRABLE_WORK(&gc_work->dwork, gc_worker);
1521 	gc_work->exiting = false;
1522 }
1523 
1524 static struct nf_conn *
__nf_conntrack_alloc(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * orig,const struct nf_conntrack_tuple * repl,gfp_t gfp,u32 hash)1525 __nf_conntrack_alloc(struct net *net,
1526 		     const struct nf_conntrack_zone *zone,
1527 		     const struct nf_conntrack_tuple *orig,
1528 		     const struct nf_conntrack_tuple *repl,
1529 		     gfp_t gfp, u32 hash)
1530 {
1531 	struct nf_conntrack_net *cnet = nf_ct_pernet(net);
1532 	unsigned int ct_count;
1533 	struct nf_conn *ct;
1534 
1535 	/* We don't want any race condition at early drop stage */
1536 	ct_count = atomic_inc_return(&cnet->count);
1537 
1538 	if (nf_conntrack_max && unlikely(ct_count > nf_conntrack_max)) {
1539 		if (!early_drop(net, hash)) {
1540 			if (!conntrack_gc_work.early_drop)
1541 				conntrack_gc_work.early_drop = true;
1542 			atomic_dec(&cnet->count);
1543 			net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1544 			return ERR_PTR(-ENOMEM);
1545 		}
1546 	}
1547 
1548 	/*
1549 	 * Do not use kmem_cache_zalloc(), as this cache uses
1550 	 * SLAB_TYPESAFE_BY_RCU.
1551 	 */
1552 	ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1553 	if (ct == NULL)
1554 		goto out;
1555 
1556 	spin_lock_init(&ct->lock);
1557 	ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1558 	ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1559 	ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1560 	/* save hash for reusing when confirming */
1561 	*(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1562 	ct->status = 0;
1563 	ct->timeout = 0;
1564 	write_pnet(&ct->ct_net, net);
1565 	memset(&ct->__nfct_init_offset, 0,
1566 	       offsetof(struct nf_conn, proto) -
1567 	       offsetof(struct nf_conn, __nfct_init_offset));
1568 
1569 	nf_ct_zone_add(ct, zone);
1570 
1571 	/* Because we use RCU lookups, we set ct_general.use to zero before
1572 	 * this is inserted in any list.
1573 	 */
1574 	atomic_set(&ct->ct_general.use, 0);
1575 	return ct;
1576 out:
1577 	atomic_dec(&cnet->count);
1578 	return ERR_PTR(-ENOMEM);
1579 }
1580 
nf_conntrack_alloc(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * orig,const struct nf_conntrack_tuple * repl,gfp_t gfp)1581 struct nf_conn *nf_conntrack_alloc(struct net *net,
1582 				   const struct nf_conntrack_zone *zone,
1583 				   const struct nf_conntrack_tuple *orig,
1584 				   const struct nf_conntrack_tuple *repl,
1585 				   gfp_t gfp)
1586 {
1587 	return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1588 }
1589 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1590 
nf_conntrack_free(struct nf_conn * ct)1591 void nf_conntrack_free(struct nf_conn *ct)
1592 {
1593 	struct net *net = nf_ct_net(ct);
1594 	struct nf_conntrack_net *cnet;
1595 
1596 	/* A freed object has refcnt == 0, that's
1597 	 * the golden rule for SLAB_TYPESAFE_BY_RCU
1598 	 */
1599 	WARN_ON(atomic_read(&ct->ct_general.use) != 0);
1600 
1601 	nf_ct_ext_destroy(ct);
1602 	kmem_cache_free(nf_conntrack_cachep, ct);
1603 	cnet = nf_ct_pernet(net);
1604 
1605 	smp_mb__before_atomic();
1606 	atomic_dec(&cnet->count);
1607 }
1608 EXPORT_SYMBOL_GPL(nf_conntrack_free);
1609 
1610 
1611 /* Allocate a new conntrack: we return -ENOMEM if classification
1612    failed due to stress.  Otherwise it really is unclassifiable. */
1613 static noinline struct nf_conntrack_tuple_hash *
init_conntrack(struct net * net,struct nf_conn * tmpl,const struct nf_conntrack_tuple * tuple,struct sk_buff * skb,unsigned int dataoff,u32 hash)1614 init_conntrack(struct net *net, struct nf_conn *tmpl,
1615 	       const struct nf_conntrack_tuple *tuple,
1616 	       struct sk_buff *skb,
1617 	       unsigned int dataoff, u32 hash)
1618 {
1619 	struct nf_conn *ct;
1620 	struct nf_conn_help *help;
1621 	struct nf_conntrack_tuple repl_tuple;
1622 	struct nf_conntrack_ecache *ecache;
1623 	struct nf_conntrack_expect *exp = NULL;
1624 	const struct nf_conntrack_zone *zone;
1625 	struct nf_conn_timeout *timeout_ext;
1626 	struct nf_conntrack_zone tmp;
1627 	struct nf_conntrack_net *cnet;
1628 
1629 	if (!nf_ct_invert_tuple(&repl_tuple, tuple)) {
1630 		pr_debug("Can't invert tuple.\n");
1631 		return NULL;
1632 	}
1633 
1634 	zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1635 	ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1636 				  hash);
1637 	if (IS_ERR(ct))
1638 		return (struct nf_conntrack_tuple_hash *)ct;
1639 
1640 	if (!nf_ct_add_synproxy(ct, tmpl)) {
1641 		nf_conntrack_free(ct);
1642 		return ERR_PTR(-ENOMEM);
1643 	}
1644 
1645 	timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1646 
1647 	if (timeout_ext)
1648 		nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1649 				      GFP_ATOMIC);
1650 
1651 	nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1652 	nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1653 	nf_ct_labels_ext_add(ct);
1654 
1655 	ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1656 	nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1657 				 ecache ? ecache->expmask : 0,
1658 			     GFP_ATOMIC);
1659 
1660 	local_bh_disable();
1661 	cnet = nf_ct_pernet(net);
1662 	if (cnet->expect_count) {
1663 		spin_lock(&nf_conntrack_expect_lock);
1664 		exp = nf_ct_find_expectation(net, zone, tuple);
1665 		if (exp) {
1666 			pr_debug("expectation arrives ct=%p exp=%p\n",
1667 				 ct, exp);
1668 			/* Welcome, Mr. Bond.  We've been expecting you... */
1669 			__set_bit(IPS_EXPECTED_BIT, &ct->status);
1670 			/* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1671 			ct->master = exp->master;
1672 			if (exp->helper) {
1673 				help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
1674 				if (help)
1675 					rcu_assign_pointer(help->helper, exp->helper);
1676 			}
1677 
1678 #ifdef CONFIG_NF_CONNTRACK_MARK
1679 			ct->mark = exp->master->mark;
1680 #endif
1681 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1682 			ct->secmark = exp->master->secmark;
1683 #endif
1684 			NF_CT_STAT_INC(net, expect_new);
1685 		}
1686 		spin_unlock(&nf_conntrack_expect_lock);
1687 	}
1688 	if (!exp)
1689 		__nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1690 
1691 	/* Now it is inserted into the unconfirmed list, bump refcount */
1692 	nf_conntrack_get(&ct->ct_general);
1693 	nf_ct_add_to_unconfirmed_list(ct);
1694 
1695 	local_bh_enable();
1696 
1697 	if (exp) {
1698 		if (exp->expectfn)
1699 			exp->expectfn(ct, exp);
1700 		nf_ct_expect_put(exp);
1701 	}
1702 
1703 	return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1704 }
1705 
1706 /* On success, returns 0, sets skb->_nfct | ctinfo */
1707 static int
resolve_normal_ct(struct nf_conn * tmpl,struct sk_buff * skb,unsigned int dataoff,u_int8_t protonum,const struct nf_hook_state * state)1708 resolve_normal_ct(struct nf_conn *tmpl,
1709 		  struct sk_buff *skb,
1710 		  unsigned int dataoff,
1711 		  u_int8_t protonum,
1712 		  const struct nf_hook_state *state)
1713 {
1714 	const struct nf_conntrack_zone *zone;
1715 	struct nf_conntrack_tuple tuple;
1716 	struct nf_conntrack_tuple_hash *h;
1717 	enum ip_conntrack_info ctinfo;
1718 	struct nf_conntrack_zone tmp;
1719 	u32 hash, zone_id, rid;
1720 	struct nf_conn *ct;
1721 
1722 	if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1723 			     dataoff, state->pf, protonum, state->net,
1724 			     &tuple)) {
1725 		pr_debug("Can't get tuple\n");
1726 		return 0;
1727 	}
1728 
1729 	/* look for tuple match */
1730 	zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1731 
1732 	zone_id = nf_ct_zone_id(zone, IP_CT_DIR_ORIGINAL);
1733 	hash = hash_conntrack_raw(&tuple, zone_id, state->net);
1734 	h = __nf_conntrack_find_get(state->net, zone, &tuple, hash);
1735 
1736 	if (!h) {
1737 		rid = nf_ct_zone_id(zone, IP_CT_DIR_REPLY);
1738 		if (zone_id != rid) {
1739 			u32 tmp = hash_conntrack_raw(&tuple, rid, state->net);
1740 
1741 			h = __nf_conntrack_find_get(state->net, zone, &tuple, tmp);
1742 		}
1743 	}
1744 
1745 	if (!h) {
1746 		h = init_conntrack(state->net, tmpl, &tuple,
1747 				   skb, dataoff, hash);
1748 		if (!h)
1749 			return 0;
1750 		if (IS_ERR(h))
1751 			return PTR_ERR(h);
1752 	}
1753 	ct = nf_ct_tuplehash_to_ctrack(h);
1754 
1755 	/* It exists; we have (non-exclusive) reference. */
1756 	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1757 		ctinfo = IP_CT_ESTABLISHED_REPLY;
1758 	} else {
1759 		/* Once we've had two way comms, always ESTABLISHED. */
1760 		if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1761 			pr_debug("normal packet for %p\n", ct);
1762 			ctinfo = IP_CT_ESTABLISHED;
1763 		} else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1764 			pr_debug("related packet for %p\n", ct);
1765 			ctinfo = IP_CT_RELATED;
1766 		} else {
1767 			pr_debug("new packet for %p\n", ct);
1768 			ctinfo = IP_CT_NEW;
1769 		}
1770 	}
1771 	nf_ct_set(skb, ct, ctinfo);
1772 	return 0;
1773 }
1774 
1775 /*
1776  * icmp packets need special treatment to handle error messages that are
1777  * related to a connection.
1778  *
1779  * Callers need to check if skb has a conntrack assigned when this
1780  * helper returns; in such case skb belongs to an already known connection.
1781  */
1782 static unsigned int __cold
nf_conntrack_handle_icmp(struct nf_conn * tmpl,struct sk_buff * skb,unsigned int dataoff,u8 protonum,const struct nf_hook_state * state)1783 nf_conntrack_handle_icmp(struct nf_conn *tmpl,
1784 			 struct sk_buff *skb,
1785 			 unsigned int dataoff,
1786 			 u8 protonum,
1787 			 const struct nf_hook_state *state)
1788 {
1789 	int ret;
1790 
1791 	if (state->pf == NFPROTO_IPV4 && protonum == IPPROTO_ICMP)
1792 		ret = nf_conntrack_icmpv4_error(tmpl, skb, dataoff, state);
1793 #if IS_ENABLED(CONFIG_IPV6)
1794 	else if (state->pf == NFPROTO_IPV6 && protonum == IPPROTO_ICMPV6)
1795 		ret = nf_conntrack_icmpv6_error(tmpl, skb, dataoff, state);
1796 #endif
1797 	else
1798 		return NF_ACCEPT;
1799 
1800 	if (ret <= 0)
1801 		NF_CT_STAT_INC_ATOMIC(state->net, error);
1802 
1803 	return ret;
1804 }
1805 
generic_packet(struct nf_conn * ct,struct sk_buff * skb,enum ip_conntrack_info ctinfo)1806 static int generic_packet(struct nf_conn *ct, struct sk_buff *skb,
1807 			  enum ip_conntrack_info ctinfo)
1808 {
1809 	const unsigned int *timeout = nf_ct_timeout_lookup(ct);
1810 
1811 	if (!timeout)
1812 		timeout = &nf_generic_pernet(nf_ct_net(ct))->timeout;
1813 
1814 	nf_ct_refresh_acct(ct, ctinfo, skb, *timeout);
1815 	return NF_ACCEPT;
1816 }
1817 
1818 /* Returns verdict for packet, or -1 for invalid. */
nf_conntrack_handle_packet(struct nf_conn * ct,struct sk_buff * skb,unsigned int dataoff,enum ip_conntrack_info ctinfo,const struct nf_hook_state * state)1819 static int nf_conntrack_handle_packet(struct nf_conn *ct,
1820 				      struct sk_buff *skb,
1821 				      unsigned int dataoff,
1822 				      enum ip_conntrack_info ctinfo,
1823 				      const struct nf_hook_state *state)
1824 {
1825 	switch (nf_ct_protonum(ct)) {
1826 	case IPPROTO_TCP:
1827 		return nf_conntrack_tcp_packet(ct, skb, dataoff,
1828 					       ctinfo, state);
1829 	case IPPROTO_UDP:
1830 		return nf_conntrack_udp_packet(ct, skb, dataoff,
1831 					       ctinfo, state);
1832 	case IPPROTO_ICMP:
1833 		return nf_conntrack_icmp_packet(ct, skb, ctinfo, state);
1834 #if IS_ENABLED(CONFIG_IPV6)
1835 	case IPPROTO_ICMPV6:
1836 		return nf_conntrack_icmpv6_packet(ct, skb, ctinfo, state);
1837 #endif
1838 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
1839 	case IPPROTO_UDPLITE:
1840 		return nf_conntrack_udplite_packet(ct, skb, dataoff,
1841 						   ctinfo, state);
1842 #endif
1843 #ifdef CONFIG_NF_CT_PROTO_SCTP
1844 	case IPPROTO_SCTP:
1845 		return nf_conntrack_sctp_packet(ct, skb, dataoff,
1846 						ctinfo, state);
1847 #endif
1848 #ifdef CONFIG_NF_CT_PROTO_DCCP
1849 	case IPPROTO_DCCP:
1850 		return nf_conntrack_dccp_packet(ct, skb, dataoff,
1851 						ctinfo, state);
1852 #endif
1853 #ifdef CONFIG_NF_CT_PROTO_GRE
1854 	case IPPROTO_GRE:
1855 		return nf_conntrack_gre_packet(ct, skb, dataoff,
1856 					       ctinfo, state);
1857 #endif
1858 	}
1859 
1860 	return generic_packet(ct, skb, ctinfo);
1861 }
1862 
1863 unsigned int
nf_conntrack_in(struct sk_buff * skb,const struct nf_hook_state * state)1864 nf_conntrack_in(struct sk_buff *skb, const struct nf_hook_state *state)
1865 {
1866 	enum ip_conntrack_info ctinfo;
1867 	struct nf_conn *ct, *tmpl;
1868 	u_int8_t protonum;
1869 	int dataoff, ret;
1870 
1871 	tmpl = nf_ct_get(skb, &ctinfo);
1872 	if (tmpl || ctinfo == IP_CT_UNTRACKED) {
1873 		/* Previously seen (loopback or untracked)?  Ignore. */
1874 		if ((tmpl && !nf_ct_is_template(tmpl)) ||
1875 		     ctinfo == IP_CT_UNTRACKED)
1876 			return NF_ACCEPT;
1877 		skb->_nfct = 0;
1878 	}
1879 
1880 	/* rcu_read_lock()ed by nf_hook_thresh */
1881 	dataoff = get_l4proto(skb, skb_network_offset(skb), state->pf, &protonum);
1882 	if (dataoff <= 0) {
1883 		pr_debug("not prepared to track yet or error occurred\n");
1884 		NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1885 		ret = NF_ACCEPT;
1886 		goto out;
1887 	}
1888 
1889 	if (protonum == IPPROTO_ICMP || protonum == IPPROTO_ICMPV6) {
1890 		ret = nf_conntrack_handle_icmp(tmpl, skb, dataoff,
1891 					       protonum, state);
1892 		if (ret <= 0) {
1893 			ret = -ret;
1894 			goto out;
1895 		}
1896 		/* ICMP[v6] protocol trackers may assign one conntrack. */
1897 		if (skb->_nfct)
1898 			goto out;
1899 	}
1900 repeat:
1901 	ret = resolve_normal_ct(tmpl, skb, dataoff,
1902 				protonum, state);
1903 	if (ret < 0) {
1904 		/* Too stressed to deal. */
1905 		NF_CT_STAT_INC_ATOMIC(state->net, drop);
1906 		ret = NF_DROP;
1907 		goto out;
1908 	}
1909 
1910 	ct = nf_ct_get(skb, &ctinfo);
1911 	if (!ct) {
1912 		/* Not valid part of a connection */
1913 		NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1914 		ret = NF_ACCEPT;
1915 		goto out;
1916 	}
1917 
1918 	ret = nf_conntrack_handle_packet(ct, skb, dataoff, ctinfo, state);
1919 	if (ret <= 0) {
1920 		/* Invalid: inverse of the return code tells
1921 		 * the netfilter core what to do */
1922 		pr_debug("nf_conntrack_in: Can't track with proto module\n");
1923 		nf_conntrack_put(&ct->ct_general);
1924 		skb->_nfct = 0;
1925 		NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1926 		if (ret == -NF_DROP)
1927 			NF_CT_STAT_INC_ATOMIC(state->net, drop);
1928 		/* Special case: TCP tracker reports an attempt to reopen a
1929 		 * closed/aborted connection. We have to go back and create a
1930 		 * fresh conntrack.
1931 		 */
1932 		if (ret == -NF_REPEAT)
1933 			goto repeat;
1934 		ret = -ret;
1935 		goto out;
1936 	}
1937 
1938 	if (ctinfo == IP_CT_ESTABLISHED_REPLY &&
1939 	    !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1940 		nf_conntrack_event_cache(IPCT_REPLY, ct);
1941 out:
1942 	if (tmpl)
1943 		nf_ct_put(tmpl);
1944 
1945 	return ret;
1946 }
1947 EXPORT_SYMBOL_GPL(nf_conntrack_in);
1948 
1949 /* Alter reply tuple (maybe alter helper).  This is for NAT, and is
1950    implicitly racy: see __nf_conntrack_confirm */
nf_conntrack_alter_reply(struct nf_conn * ct,const struct nf_conntrack_tuple * newreply)1951 void nf_conntrack_alter_reply(struct nf_conn *ct,
1952 			      const struct nf_conntrack_tuple *newreply)
1953 {
1954 	struct nf_conn_help *help = nfct_help(ct);
1955 
1956 	/* Should be unconfirmed, so not in hash table yet */
1957 	WARN_ON(nf_ct_is_confirmed(ct));
1958 
1959 	pr_debug("Altering reply tuple of %p to ", ct);
1960 	nf_ct_dump_tuple(newreply);
1961 
1962 	ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1963 	if (ct->master || (help && !hlist_empty(&help->expectations)))
1964 		return;
1965 
1966 	rcu_read_lock();
1967 	__nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1968 	rcu_read_unlock();
1969 }
1970 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1971 
1972 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
__nf_ct_refresh_acct(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct sk_buff * skb,u32 extra_jiffies,bool do_acct)1973 void __nf_ct_refresh_acct(struct nf_conn *ct,
1974 			  enum ip_conntrack_info ctinfo,
1975 			  const struct sk_buff *skb,
1976 			  u32 extra_jiffies,
1977 			  bool do_acct)
1978 {
1979 	/* Only update if this is not a fixed timeout */
1980 	if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1981 		goto acct;
1982 
1983 	/* If not in hash table, timer will not be active yet */
1984 	if (nf_ct_is_confirmed(ct))
1985 		extra_jiffies += nfct_time_stamp;
1986 
1987 	if (READ_ONCE(ct->timeout) != extra_jiffies)
1988 		WRITE_ONCE(ct->timeout, extra_jiffies);
1989 acct:
1990 	if (do_acct)
1991 		nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
1992 }
1993 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1994 
nf_ct_kill_acct(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct sk_buff * skb)1995 bool nf_ct_kill_acct(struct nf_conn *ct,
1996 		     enum ip_conntrack_info ctinfo,
1997 		     const struct sk_buff *skb)
1998 {
1999 	nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
2000 
2001 	return nf_ct_delete(ct, 0, 0);
2002 }
2003 EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
2004 
2005 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
2006 
2007 #include <linux/netfilter/nfnetlink.h>
2008 #include <linux/netfilter/nfnetlink_conntrack.h>
2009 #include <linux/mutex.h>
2010 
2011 /* Generic function for tcp/udp/sctp/dccp and alike. */
nf_ct_port_tuple_to_nlattr(struct sk_buff * skb,const struct nf_conntrack_tuple * tuple)2012 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
2013 			       const struct nf_conntrack_tuple *tuple)
2014 {
2015 	if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
2016 	    nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
2017 		goto nla_put_failure;
2018 	return 0;
2019 
2020 nla_put_failure:
2021 	return -1;
2022 }
2023 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
2024 
2025 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
2026 	[CTA_PROTO_SRC_PORT]  = { .type = NLA_U16 },
2027 	[CTA_PROTO_DST_PORT]  = { .type = NLA_U16 },
2028 };
2029 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
2030 
nf_ct_port_nlattr_to_tuple(struct nlattr * tb[],struct nf_conntrack_tuple * t,u_int32_t flags)2031 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
2032 			       struct nf_conntrack_tuple *t,
2033 			       u_int32_t flags)
2034 {
2035 	if (flags & CTA_FILTER_FLAG(CTA_PROTO_SRC_PORT)) {
2036 		if (!tb[CTA_PROTO_SRC_PORT])
2037 			return -EINVAL;
2038 
2039 		t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
2040 	}
2041 
2042 	if (flags & CTA_FILTER_FLAG(CTA_PROTO_DST_PORT)) {
2043 		if (!tb[CTA_PROTO_DST_PORT])
2044 			return -EINVAL;
2045 
2046 		t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
2047 	}
2048 
2049 	return 0;
2050 }
2051 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
2052 
nf_ct_port_nlattr_tuple_size(void)2053 unsigned int nf_ct_port_nlattr_tuple_size(void)
2054 {
2055 	static unsigned int size __read_mostly;
2056 
2057 	if (!size)
2058 		size = nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
2059 
2060 	return size;
2061 }
2062 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
2063 #endif
2064 
2065 /* Used by ipt_REJECT and ip6t_REJECT. */
nf_conntrack_attach(struct sk_buff * nskb,const struct sk_buff * skb)2066 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
2067 {
2068 	struct nf_conn *ct;
2069 	enum ip_conntrack_info ctinfo;
2070 
2071 	/* This ICMP is in reverse direction to the packet which caused it */
2072 	ct = nf_ct_get(skb, &ctinfo);
2073 	if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
2074 		ctinfo = IP_CT_RELATED_REPLY;
2075 	else
2076 		ctinfo = IP_CT_RELATED;
2077 
2078 	/* Attach to new skbuff, and increment count */
2079 	nf_ct_set(nskb, ct, ctinfo);
2080 	nf_conntrack_get(skb_nfct(nskb));
2081 }
2082 
__nf_conntrack_update(struct net * net,struct sk_buff * skb,struct nf_conn * ct,enum ip_conntrack_info ctinfo)2083 static int __nf_conntrack_update(struct net *net, struct sk_buff *skb,
2084 				 struct nf_conn *ct,
2085 				 enum ip_conntrack_info ctinfo)
2086 {
2087 	struct nf_conntrack_tuple_hash *h;
2088 	struct nf_conntrack_tuple tuple;
2089 	struct nf_nat_hook *nat_hook;
2090 	unsigned int status;
2091 	int dataoff;
2092 	u16 l3num;
2093 	u8 l4num;
2094 
2095 	l3num = nf_ct_l3num(ct);
2096 
2097 	dataoff = get_l4proto(skb, skb_network_offset(skb), l3num, &l4num);
2098 	if (dataoff <= 0)
2099 		return -1;
2100 
2101 	if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
2102 			     l4num, net, &tuple))
2103 		return -1;
2104 
2105 	if (ct->status & IPS_SRC_NAT) {
2106 		memcpy(tuple.src.u3.all,
2107 		       ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u3.all,
2108 		       sizeof(tuple.src.u3.all));
2109 		tuple.src.u.all =
2110 			ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.all;
2111 	}
2112 
2113 	if (ct->status & IPS_DST_NAT) {
2114 		memcpy(tuple.dst.u3.all,
2115 		       ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u3.all,
2116 		       sizeof(tuple.dst.u3.all));
2117 		tuple.dst.u.all =
2118 			ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u.all;
2119 	}
2120 
2121 	h = nf_conntrack_find_get(net, nf_ct_zone(ct), &tuple);
2122 	if (!h)
2123 		return 0;
2124 
2125 	/* Store status bits of the conntrack that is clashing to re-do NAT
2126 	 * mangling according to what it has been done already to this packet.
2127 	 */
2128 	status = ct->status;
2129 
2130 	nf_ct_put(ct);
2131 	ct = nf_ct_tuplehash_to_ctrack(h);
2132 	nf_ct_set(skb, ct, ctinfo);
2133 
2134 	nat_hook = rcu_dereference(nf_nat_hook);
2135 	if (!nat_hook)
2136 		return 0;
2137 
2138 	if (status & IPS_SRC_NAT &&
2139 	    nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_SRC,
2140 				IP_CT_DIR_ORIGINAL) == NF_DROP)
2141 		return -1;
2142 
2143 	if (status & IPS_DST_NAT &&
2144 	    nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_DST,
2145 				IP_CT_DIR_ORIGINAL) == NF_DROP)
2146 		return -1;
2147 
2148 	return 0;
2149 }
2150 
2151 /* This packet is coming from userspace via nf_queue, complete the packet
2152  * processing after the helper invocation in nf_confirm().
2153  */
nf_confirm_cthelper(struct sk_buff * skb,struct nf_conn * ct,enum ip_conntrack_info ctinfo)2154 static int nf_confirm_cthelper(struct sk_buff *skb, struct nf_conn *ct,
2155 			       enum ip_conntrack_info ctinfo)
2156 {
2157 	const struct nf_conntrack_helper *helper;
2158 	const struct nf_conn_help *help;
2159 	int protoff;
2160 
2161 	help = nfct_help(ct);
2162 	if (!help)
2163 		return 0;
2164 
2165 	helper = rcu_dereference(help->helper);
2166 	if (!(helper->flags & NF_CT_HELPER_F_USERSPACE))
2167 		return 0;
2168 
2169 	switch (nf_ct_l3num(ct)) {
2170 	case NFPROTO_IPV4:
2171 		protoff = skb_network_offset(skb) + ip_hdrlen(skb);
2172 		break;
2173 #if IS_ENABLED(CONFIG_IPV6)
2174 	case NFPROTO_IPV6: {
2175 		__be16 frag_off;
2176 		u8 pnum;
2177 
2178 		pnum = ipv6_hdr(skb)->nexthdr;
2179 		protoff = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &pnum,
2180 					   &frag_off);
2181 		if (protoff < 0 || (frag_off & htons(~0x7)) != 0)
2182 			return 0;
2183 		break;
2184 	}
2185 #endif
2186 	default:
2187 		return 0;
2188 	}
2189 
2190 	if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
2191 	    !nf_is_loopback_packet(skb)) {
2192 		if (!nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) {
2193 			NF_CT_STAT_INC_ATOMIC(nf_ct_net(ct), drop);
2194 			return -1;
2195 		}
2196 	}
2197 
2198 	/* We've seen it coming out the other side: confirm it */
2199 	return nf_conntrack_confirm(skb) == NF_DROP ? - 1 : 0;
2200 }
2201 
nf_conntrack_update(struct net * net,struct sk_buff * skb)2202 static int nf_conntrack_update(struct net *net, struct sk_buff *skb)
2203 {
2204 	enum ip_conntrack_info ctinfo;
2205 	struct nf_conn *ct;
2206 	int err;
2207 
2208 	ct = nf_ct_get(skb, &ctinfo);
2209 	if (!ct)
2210 		return 0;
2211 
2212 	if (!nf_ct_is_confirmed(ct)) {
2213 		err = __nf_conntrack_update(net, skb, ct, ctinfo);
2214 		if (err < 0)
2215 			return err;
2216 
2217 		ct = nf_ct_get(skb, &ctinfo);
2218 	}
2219 
2220 	return nf_confirm_cthelper(skb, ct, ctinfo);
2221 }
2222 
nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple * dst_tuple,const struct sk_buff * skb)2223 static bool nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple *dst_tuple,
2224 				       const struct sk_buff *skb)
2225 {
2226 	const struct nf_conntrack_tuple *src_tuple;
2227 	const struct nf_conntrack_tuple_hash *hash;
2228 	struct nf_conntrack_tuple srctuple;
2229 	enum ip_conntrack_info ctinfo;
2230 	struct nf_conn *ct;
2231 
2232 	ct = nf_ct_get(skb, &ctinfo);
2233 	if (ct) {
2234 		src_tuple = nf_ct_tuple(ct, CTINFO2DIR(ctinfo));
2235 		memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2236 		return true;
2237 	}
2238 
2239 	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb),
2240 			       NFPROTO_IPV4, dev_net(skb->dev),
2241 			       &srctuple))
2242 		return false;
2243 
2244 	hash = nf_conntrack_find_get(dev_net(skb->dev),
2245 				     &nf_ct_zone_dflt,
2246 				     &srctuple);
2247 	if (!hash)
2248 		return false;
2249 
2250 	ct = nf_ct_tuplehash_to_ctrack(hash);
2251 	src_tuple = nf_ct_tuple(ct, !hash->tuple.dst.dir);
2252 	memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2253 	nf_ct_put(ct);
2254 
2255 	return true;
2256 }
2257 
2258 /* Bring out ya dead! */
2259 static struct nf_conn *
get_next_corpse(int (* iter)(struct nf_conn * i,void * data),void * data,unsigned int * bucket)2260 get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
2261 		void *data, unsigned int *bucket)
2262 {
2263 	struct nf_conntrack_tuple_hash *h;
2264 	struct nf_conn *ct;
2265 	struct hlist_nulls_node *n;
2266 	spinlock_t *lockp;
2267 
2268 	for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
2269 		struct hlist_nulls_head *hslot = &nf_conntrack_hash[*bucket];
2270 
2271 		if (hlist_nulls_empty(hslot))
2272 			continue;
2273 
2274 		lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
2275 		local_bh_disable();
2276 		nf_conntrack_lock(lockp);
2277 		hlist_nulls_for_each_entry(h, n, hslot, hnnode) {
2278 			if (NF_CT_DIRECTION(h) != IP_CT_DIR_REPLY)
2279 				continue;
2280 			/* All nf_conn objects are added to hash table twice, one
2281 			 * for original direction tuple, once for the reply tuple.
2282 			 *
2283 			 * Exception: In the IPS_NAT_CLASH case, only the reply
2284 			 * tuple is added (the original tuple already existed for
2285 			 * a different object).
2286 			 *
2287 			 * We only need to call the iterator once for each
2288 			 * conntrack, so we just use the 'reply' direction
2289 			 * tuple while iterating.
2290 			 */
2291 			ct = nf_ct_tuplehash_to_ctrack(h);
2292 			if (iter(ct, data))
2293 				goto found;
2294 		}
2295 		spin_unlock(lockp);
2296 		local_bh_enable();
2297 		cond_resched();
2298 	}
2299 
2300 	return NULL;
2301 found:
2302 	atomic_inc(&ct->ct_general.use);
2303 	spin_unlock(lockp);
2304 	local_bh_enable();
2305 	return ct;
2306 }
2307 
nf_ct_iterate_cleanup(int (* iter)(struct nf_conn * i,void * data),void * data,u32 portid,int report)2308 static void nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data),
2309 				  void *data, u32 portid, int report)
2310 {
2311 	unsigned int bucket = 0;
2312 	struct nf_conn *ct;
2313 
2314 	might_sleep();
2315 
2316 	mutex_lock(&nf_conntrack_mutex);
2317 	while ((ct = get_next_corpse(iter, data, &bucket)) != NULL) {
2318 		/* Time to push up daises... */
2319 
2320 		nf_ct_delete(ct, portid, report);
2321 		nf_ct_put(ct);
2322 		cond_resched();
2323 	}
2324 	mutex_unlock(&nf_conntrack_mutex);
2325 }
2326 
2327 struct iter_data {
2328 	int (*iter)(struct nf_conn *i, void *data);
2329 	void *data;
2330 	struct net *net;
2331 };
2332 
iter_net_only(struct nf_conn * i,void * data)2333 static int iter_net_only(struct nf_conn *i, void *data)
2334 {
2335 	struct iter_data *d = data;
2336 
2337 	if (!net_eq(d->net, nf_ct_net(i)))
2338 		return 0;
2339 
2340 	return d->iter(i, d->data);
2341 }
2342 
2343 static void
__nf_ct_unconfirmed_destroy(struct net * net)2344 __nf_ct_unconfirmed_destroy(struct net *net)
2345 {
2346 	int cpu;
2347 
2348 	for_each_possible_cpu(cpu) {
2349 		struct nf_conntrack_tuple_hash *h;
2350 		struct hlist_nulls_node *n;
2351 		struct ct_pcpu *pcpu;
2352 
2353 		pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2354 
2355 		spin_lock_bh(&pcpu->lock);
2356 		hlist_nulls_for_each_entry(h, n, &pcpu->unconfirmed, hnnode) {
2357 			struct nf_conn *ct;
2358 
2359 			ct = nf_ct_tuplehash_to_ctrack(h);
2360 
2361 			/* we cannot call iter() on unconfirmed list, the
2362 			 * owning cpu can reallocate ct->ext at any time.
2363 			 */
2364 			set_bit(IPS_DYING_BIT, &ct->status);
2365 		}
2366 		spin_unlock_bh(&pcpu->lock);
2367 		cond_resched();
2368 	}
2369 }
2370 
nf_ct_unconfirmed_destroy(struct net * net)2371 void nf_ct_unconfirmed_destroy(struct net *net)
2372 {
2373 	struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2374 
2375 	might_sleep();
2376 
2377 	if (atomic_read(&cnet->count) > 0) {
2378 		__nf_ct_unconfirmed_destroy(net);
2379 		nf_queue_nf_hook_drop(net);
2380 		synchronize_net();
2381 	}
2382 }
2383 EXPORT_SYMBOL_GPL(nf_ct_unconfirmed_destroy);
2384 
nf_ct_iterate_cleanup_net(struct net * net,int (* iter)(struct nf_conn * i,void * data),void * data,u32 portid,int report)2385 void nf_ct_iterate_cleanup_net(struct net *net,
2386 			       int (*iter)(struct nf_conn *i, void *data),
2387 			       void *data, u32 portid, int report)
2388 {
2389 	struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2390 	struct iter_data d;
2391 
2392 	might_sleep();
2393 
2394 	if (atomic_read(&cnet->count) == 0)
2395 		return;
2396 
2397 	d.iter = iter;
2398 	d.data = data;
2399 	d.net = net;
2400 
2401 	nf_ct_iterate_cleanup(iter_net_only, &d, portid, report);
2402 }
2403 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup_net);
2404 
2405 /**
2406  * nf_ct_iterate_destroy - destroy unconfirmed conntracks and iterate table
2407  * @iter: callback to invoke for each conntrack
2408  * @data: data to pass to @iter
2409  *
2410  * Like nf_ct_iterate_cleanup, but first marks conntracks on the
2411  * unconfirmed list as dying (so they will not be inserted into
2412  * main table).
2413  *
2414  * Can only be called in module exit path.
2415  */
2416 void
nf_ct_iterate_destroy(int (* iter)(struct nf_conn * i,void * data),void * data)2417 nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data)
2418 {
2419 	struct net *net;
2420 
2421 	down_read(&net_rwsem);
2422 	for_each_net(net) {
2423 		struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2424 
2425 		if (atomic_read(&cnet->count) == 0)
2426 			continue;
2427 		__nf_ct_unconfirmed_destroy(net);
2428 		nf_queue_nf_hook_drop(net);
2429 	}
2430 	up_read(&net_rwsem);
2431 
2432 	/* Need to wait for netns cleanup worker to finish, if its
2433 	 * running -- it might have deleted a net namespace from
2434 	 * the global list, so our __nf_ct_unconfirmed_destroy() might
2435 	 * not have affected all namespaces.
2436 	 */
2437 	net_ns_barrier();
2438 
2439 	/* a conntrack could have been unlinked from unconfirmed list
2440 	 * before we grabbed pcpu lock in __nf_ct_unconfirmed_destroy().
2441 	 * This makes sure its inserted into conntrack table.
2442 	 */
2443 	synchronize_net();
2444 
2445 	nf_ct_iterate_cleanup(iter, data, 0, 0);
2446 }
2447 EXPORT_SYMBOL_GPL(nf_ct_iterate_destroy);
2448 
kill_all(struct nf_conn * i,void * data)2449 static int kill_all(struct nf_conn *i, void *data)
2450 {
2451 	return net_eq(nf_ct_net(i), data);
2452 }
2453 
nf_conntrack_cleanup_start(void)2454 void nf_conntrack_cleanup_start(void)
2455 {
2456 	conntrack_gc_work.exiting = true;
2457 	RCU_INIT_POINTER(ip_ct_attach, NULL);
2458 }
2459 
nf_conntrack_cleanup_end(void)2460 void nf_conntrack_cleanup_end(void)
2461 {
2462 	RCU_INIT_POINTER(nf_ct_hook, NULL);
2463 	cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2464 	kvfree(nf_conntrack_hash);
2465 
2466 	nf_conntrack_proto_fini();
2467 	nf_conntrack_seqadj_fini();
2468 	nf_conntrack_labels_fini();
2469 	nf_conntrack_helper_fini();
2470 	nf_conntrack_timeout_fini();
2471 	nf_conntrack_ecache_fini();
2472 	nf_conntrack_tstamp_fini();
2473 	nf_conntrack_acct_fini();
2474 	nf_conntrack_expect_fini();
2475 
2476 	kmem_cache_destroy(nf_conntrack_cachep);
2477 }
2478 
2479 /*
2480  * Mishearing the voices in his head, our hero wonders how he's
2481  * supposed to kill the mall.
2482  */
nf_conntrack_cleanup_net(struct net * net)2483 void nf_conntrack_cleanup_net(struct net *net)
2484 {
2485 	LIST_HEAD(single);
2486 
2487 	list_add(&net->exit_list, &single);
2488 	nf_conntrack_cleanup_net_list(&single);
2489 }
2490 
nf_conntrack_cleanup_net_list(struct list_head * net_exit_list)2491 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
2492 {
2493 	int busy;
2494 	struct net *net;
2495 
2496 	/*
2497 	 * This makes sure all current packets have passed through
2498 	 *  netfilter framework.  Roll on, two-stage module
2499 	 *  delete...
2500 	 */
2501 	synchronize_net();
2502 i_see_dead_people:
2503 	busy = 0;
2504 	list_for_each_entry(net, net_exit_list, exit_list) {
2505 		struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2506 
2507 		nf_ct_iterate_cleanup(kill_all, net, 0, 0);
2508 		if (atomic_read(&cnet->count) != 0)
2509 			busy = 1;
2510 	}
2511 	if (busy) {
2512 		schedule();
2513 		goto i_see_dead_people;
2514 	}
2515 
2516 	list_for_each_entry(net, net_exit_list, exit_list) {
2517 		nf_conntrack_ecache_pernet_fini(net);
2518 		nf_conntrack_expect_pernet_fini(net);
2519 		free_percpu(net->ct.stat);
2520 		free_percpu(net->ct.pcpu_lists);
2521 	}
2522 }
2523 
nf_ct_alloc_hashtable(unsigned int * sizep,int nulls)2524 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
2525 {
2526 	struct hlist_nulls_head *hash;
2527 	unsigned int nr_slots, i;
2528 
2529 	if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
2530 		return NULL;
2531 
2532 	BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
2533 	nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
2534 
2535 	hash = kvcalloc(nr_slots, sizeof(struct hlist_nulls_head), GFP_KERNEL);
2536 
2537 	if (hash && nulls)
2538 		for (i = 0; i < nr_slots; i++)
2539 			INIT_HLIST_NULLS_HEAD(&hash[i], i);
2540 
2541 	return hash;
2542 }
2543 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
2544 
nf_conntrack_hash_resize(unsigned int hashsize)2545 int nf_conntrack_hash_resize(unsigned int hashsize)
2546 {
2547 	int i, bucket;
2548 	unsigned int old_size;
2549 	struct hlist_nulls_head *hash, *old_hash;
2550 	struct nf_conntrack_tuple_hash *h;
2551 	struct nf_conn *ct;
2552 
2553 	if (!hashsize)
2554 		return -EINVAL;
2555 
2556 	hash = nf_ct_alloc_hashtable(&hashsize, 1);
2557 	if (!hash)
2558 		return -ENOMEM;
2559 
2560 	mutex_lock(&nf_conntrack_mutex);
2561 	old_size = nf_conntrack_htable_size;
2562 	if (old_size == hashsize) {
2563 		mutex_unlock(&nf_conntrack_mutex);
2564 		kvfree(hash);
2565 		return 0;
2566 	}
2567 
2568 	local_bh_disable();
2569 	nf_conntrack_all_lock();
2570 	write_seqcount_begin(&nf_conntrack_generation);
2571 
2572 	/* Lookups in the old hash might happen in parallel, which means we
2573 	 * might get false negatives during connection lookup. New connections
2574 	 * created because of a false negative won't make it into the hash
2575 	 * though since that required taking the locks.
2576 	 */
2577 
2578 	for (i = 0; i < nf_conntrack_htable_size; i++) {
2579 		while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
2580 			unsigned int zone_id;
2581 
2582 			h = hlist_nulls_entry(nf_conntrack_hash[i].first,
2583 					      struct nf_conntrack_tuple_hash, hnnode);
2584 			ct = nf_ct_tuplehash_to_ctrack(h);
2585 			hlist_nulls_del_rcu(&h->hnnode);
2586 
2587 			zone_id = nf_ct_zone_id(nf_ct_zone(ct), NF_CT_DIRECTION(h));
2588 			bucket = __hash_conntrack(nf_ct_net(ct),
2589 						  &h->tuple, zone_id, hashsize);
2590 			hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
2591 		}
2592 	}
2593 	old_size = nf_conntrack_htable_size;
2594 	old_hash = nf_conntrack_hash;
2595 
2596 	nf_conntrack_hash = hash;
2597 	nf_conntrack_htable_size = hashsize;
2598 
2599 	write_seqcount_end(&nf_conntrack_generation);
2600 	nf_conntrack_all_unlock();
2601 	local_bh_enable();
2602 
2603 	mutex_unlock(&nf_conntrack_mutex);
2604 
2605 	synchronize_net();
2606 	kvfree(old_hash);
2607 	return 0;
2608 }
2609 
nf_conntrack_set_hashsize(const char * val,const struct kernel_param * kp)2610 int nf_conntrack_set_hashsize(const char *val, const struct kernel_param *kp)
2611 {
2612 	unsigned int hashsize;
2613 	int rc;
2614 
2615 	if (current->nsproxy->net_ns != &init_net)
2616 		return -EOPNOTSUPP;
2617 
2618 	/* On boot, we can set this without any fancy locking. */
2619 	if (!nf_conntrack_hash)
2620 		return param_set_uint(val, kp);
2621 
2622 	rc = kstrtouint(val, 0, &hashsize);
2623 	if (rc)
2624 		return rc;
2625 
2626 	return nf_conntrack_hash_resize(hashsize);
2627 }
2628 
total_extension_size(void)2629 static __always_inline unsigned int total_extension_size(void)
2630 {
2631 	/* remember to add new extensions below */
2632 	BUILD_BUG_ON(NF_CT_EXT_NUM > 9);
2633 
2634 	return sizeof(struct nf_ct_ext) +
2635 	       sizeof(struct nf_conn_help)
2636 #if IS_ENABLED(CONFIG_NF_NAT)
2637 		+ sizeof(struct nf_conn_nat)
2638 #endif
2639 		+ sizeof(struct nf_conn_seqadj)
2640 		+ sizeof(struct nf_conn_acct)
2641 #ifdef CONFIG_NF_CONNTRACK_EVENTS
2642 		+ sizeof(struct nf_conntrack_ecache)
2643 #endif
2644 #ifdef CONFIG_NF_CONNTRACK_TIMESTAMP
2645 		+ sizeof(struct nf_conn_tstamp)
2646 #endif
2647 #ifdef CONFIG_NF_CONNTRACK_TIMEOUT
2648 		+ sizeof(struct nf_conn_timeout)
2649 #endif
2650 #ifdef CONFIG_NF_CONNTRACK_LABELS
2651 		+ sizeof(struct nf_conn_labels)
2652 #endif
2653 #if IS_ENABLED(CONFIG_NETFILTER_SYNPROXY)
2654 		+ sizeof(struct nf_conn_synproxy)
2655 #endif
2656 	;
2657 };
2658 
nf_conntrack_init_start(void)2659 int nf_conntrack_init_start(void)
2660 {
2661 	unsigned long nr_pages = totalram_pages();
2662 	int max_factor = 8;
2663 	int ret = -ENOMEM;
2664 	int i;
2665 
2666 	/* struct nf_ct_ext uses u8 to store offsets/size */
2667 	BUILD_BUG_ON(total_extension_size() > 255u);
2668 
2669 	seqcount_spinlock_init(&nf_conntrack_generation,
2670 			       &nf_conntrack_locks_all_lock);
2671 
2672 	for (i = 0; i < CONNTRACK_LOCKS; i++)
2673 		spin_lock_init(&nf_conntrack_locks[i]);
2674 
2675 	if (!nf_conntrack_htable_size) {
2676 		nf_conntrack_htable_size
2677 			= (((nr_pages << PAGE_SHIFT) / 16384)
2678 			   / sizeof(struct hlist_head));
2679 		if (BITS_PER_LONG >= 64 &&
2680 		    nr_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
2681 			nf_conntrack_htable_size = 262144;
2682 		else if (nr_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
2683 			nf_conntrack_htable_size = 65536;
2684 
2685 		if (nf_conntrack_htable_size < 1024)
2686 			nf_conntrack_htable_size = 1024;
2687 		/* Use a max. factor of one by default to keep the average
2688 		 * hash chain length at 2 entries.  Each entry has to be added
2689 		 * twice (once for original direction, once for reply).
2690 		 * When a table size is given we use the old value of 8 to
2691 		 * avoid implicit reduction of the max entries setting.
2692 		 */
2693 		max_factor = 1;
2694 	}
2695 
2696 	nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
2697 	if (!nf_conntrack_hash)
2698 		return -ENOMEM;
2699 
2700 	nf_conntrack_max = max_factor * nf_conntrack_htable_size;
2701 
2702 	nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
2703 						sizeof(struct nf_conn),
2704 						NFCT_INFOMASK + 1,
2705 						SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
2706 	if (!nf_conntrack_cachep)
2707 		goto err_cachep;
2708 
2709 	ret = nf_conntrack_expect_init();
2710 	if (ret < 0)
2711 		goto err_expect;
2712 
2713 	ret = nf_conntrack_acct_init();
2714 	if (ret < 0)
2715 		goto err_acct;
2716 
2717 	ret = nf_conntrack_tstamp_init();
2718 	if (ret < 0)
2719 		goto err_tstamp;
2720 
2721 	ret = nf_conntrack_ecache_init();
2722 	if (ret < 0)
2723 		goto err_ecache;
2724 
2725 	ret = nf_conntrack_timeout_init();
2726 	if (ret < 0)
2727 		goto err_timeout;
2728 
2729 	ret = nf_conntrack_helper_init();
2730 	if (ret < 0)
2731 		goto err_helper;
2732 
2733 	ret = nf_conntrack_labels_init();
2734 	if (ret < 0)
2735 		goto err_labels;
2736 
2737 	ret = nf_conntrack_seqadj_init();
2738 	if (ret < 0)
2739 		goto err_seqadj;
2740 
2741 	ret = nf_conntrack_proto_init();
2742 	if (ret < 0)
2743 		goto err_proto;
2744 
2745 	conntrack_gc_work_init(&conntrack_gc_work);
2746 	queue_delayed_work(system_power_efficient_wq, &conntrack_gc_work.dwork, HZ);
2747 
2748 	return 0;
2749 
2750 err_proto:
2751 	nf_conntrack_seqadj_fini();
2752 err_seqadj:
2753 	nf_conntrack_labels_fini();
2754 err_labels:
2755 	nf_conntrack_helper_fini();
2756 err_helper:
2757 	nf_conntrack_timeout_fini();
2758 err_timeout:
2759 	nf_conntrack_ecache_fini();
2760 err_ecache:
2761 	nf_conntrack_tstamp_fini();
2762 err_tstamp:
2763 	nf_conntrack_acct_fini();
2764 err_acct:
2765 	nf_conntrack_expect_fini();
2766 err_expect:
2767 	kmem_cache_destroy(nf_conntrack_cachep);
2768 err_cachep:
2769 	kvfree(nf_conntrack_hash);
2770 	return ret;
2771 }
2772 
2773 static struct nf_ct_hook nf_conntrack_hook = {
2774 	.update		= nf_conntrack_update,
2775 	.destroy	= destroy_conntrack,
2776 	.get_tuple_skb  = nf_conntrack_get_tuple_skb,
2777 };
2778 
nf_conntrack_init_end(void)2779 void nf_conntrack_init_end(void)
2780 {
2781 	/* For use by REJECT target */
2782 	RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
2783 	RCU_INIT_POINTER(nf_ct_hook, &nf_conntrack_hook);
2784 }
2785 
2786 /*
2787  * We need to use special "null" values, not used in hash table
2788  */
2789 #define UNCONFIRMED_NULLS_VAL	((1<<30)+0)
2790 #define DYING_NULLS_VAL		((1<<30)+1)
2791 
nf_conntrack_init_net(struct net * net)2792 int nf_conntrack_init_net(struct net *net)
2793 {
2794 	struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2795 	int ret = -ENOMEM;
2796 	int cpu;
2797 
2798 	BUILD_BUG_ON(IP_CT_UNTRACKED == IP_CT_NUMBER);
2799 	BUILD_BUG_ON_NOT_POWER_OF_2(CONNTRACK_LOCKS);
2800 	atomic_set(&cnet->count, 0);
2801 
2802 	net->ct.pcpu_lists = alloc_percpu(struct ct_pcpu);
2803 	if (!net->ct.pcpu_lists)
2804 		goto err_stat;
2805 
2806 	for_each_possible_cpu(cpu) {
2807 		struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2808 
2809 		spin_lock_init(&pcpu->lock);
2810 		INIT_HLIST_NULLS_HEAD(&pcpu->unconfirmed, UNCONFIRMED_NULLS_VAL);
2811 		INIT_HLIST_NULLS_HEAD(&pcpu->dying, DYING_NULLS_VAL);
2812 	}
2813 
2814 	net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
2815 	if (!net->ct.stat)
2816 		goto err_pcpu_lists;
2817 
2818 	ret = nf_conntrack_expect_pernet_init(net);
2819 	if (ret < 0)
2820 		goto err_expect;
2821 
2822 	nf_conntrack_acct_pernet_init(net);
2823 	nf_conntrack_tstamp_pernet_init(net);
2824 	nf_conntrack_ecache_pernet_init(net);
2825 	nf_conntrack_helper_pernet_init(net);
2826 	nf_conntrack_proto_pernet_init(net);
2827 
2828 	return 0;
2829 
2830 err_expect:
2831 	free_percpu(net->ct.stat);
2832 err_pcpu_lists:
2833 	free_percpu(net->ct.pcpu_lists);
2834 err_stat:
2835 	return ret;
2836 }
2837