1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Connection state tracking for netfilter. This is separated from,
3 but required by, the NAT layer; it can also be used by an iptables
4 extension. */
5
6 /* (C) 1999-2001 Paul `Rusty' Russell
7 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
8 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
9 * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
10 */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/types.h>
15 #include <linux/netfilter.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/skbuff.h>
19 #include <linux/proc_fs.h>
20 #include <linux/vmalloc.h>
21 #include <linux/stddef.h>
22 #include <linux/slab.h>
23 #include <linux/random.h>
24 #include <linux/jhash.h>
25 #include <linux/siphash.h>
26 #include <linux/err.h>
27 #include <linux/percpu.h>
28 #include <linux/moduleparam.h>
29 #include <linux/notifier.h>
30 #include <linux/kernel.h>
31 #include <linux/netdevice.h>
32 #include <linux/socket.h>
33 #include <linux/mm.h>
34 #include <linux/nsproxy.h>
35 #include <linux/rculist_nulls.h>
36
37 #include <net/netfilter/nf_conntrack.h>
38 #include <net/netfilter/nf_conntrack_l4proto.h>
39 #include <net/netfilter/nf_conntrack_expect.h>
40 #include <net/netfilter/nf_conntrack_helper.h>
41 #include <net/netfilter/nf_conntrack_seqadj.h>
42 #include <net/netfilter/nf_conntrack_core.h>
43 #include <net/netfilter/nf_conntrack_extend.h>
44 #include <net/netfilter/nf_conntrack_acct.h>
45 #include <net/netfilter/nf_conntrack_ecache.h>
46 #include <net/netfilter/nf_conntrack_zones.h>
47 #include <net/netfilter/nf_conntrack_timestamp.h>
48 #include <net/netfilter/nf_conntrack_timeout.h>
49 #include <net/netfilter/nf_conntrack_labels.h>
50 #include <net/netfilter/nf_conntrack_synproxy.h>
51 #include <net/netfilter/nf_nat.h>
52 #include <net/netfilter/nf_nat_helper.h>
53 #include <net/netns/hash.h>
54 #include <net/ip.h>
55
56 #include "nf_internals.h"
57
58 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
59 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
60
61 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
62 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
63
64 struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
65 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
66
67 struct conntrack_gc_work {
68 struct delayed_work dwork;
69 u32 last_bucket;
70 bool exiting;
71 bool early_drop;
72 long next_gc_run;
73 };
74
75 static __read_mostly struct kmem_cache *nf_conntrack_cachep;
76 static DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
77 static __read_mostly bool nf_conntrack_locks_all;
78
79 /* every gc cycle scans at most 1/GC_MAX_BUCKETS_DIV part of table */
80 #define GC_MAX_BUCKETS_DIV 128u
81 /* upper bound of full table scan */
82 #define GC_MAX_SCAN_JIFFIES (16u * HZ)
83 /* desired ratio of entries found to be expired */
84 #define GC_EVICT_RATIO 50u
85
86 static struct conntrack_gc_work conntrack_gc_work;
87
nf_conntrack_lock(spinlock_t * lock)88 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
89 {
90 /* 1) Acquire the lock */
91 spin_lock(lock);
92
93 /* 2) read nf_conntrack_locks_all, with ACQUIRE semantics
94 * It pairs with the smp_store_release() in nf_conntrack_all_unlock()
95 */
96 if (likely(smp_load_acquire(&nf_conntrack_locks_all) == false))
97 return;
98
99 /* fast path failed, unlock */
100 spin_unlock(lock);
101
102 /* Slow path 1) get global lock */
103 spin_lock(&nf_conntrack_locks_all_lock);
104
105 /* Slow path 2) get the lock we want */
106 spin_lock(lock);
107
108 /* Slow path 3) release the global lock */
109 spin_unlock(&nf_conntrack_locks_all_lock);
110 }
111 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
112
nf_conntrack_double_unlock(unsigned int h1,unsigned int h2)113 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
114 {
115 h1 %= CONNTRACK_LOCKS;
116 h2 %= CONNTRACK_LOCKS;
117 spin_unlock(&nf_conntrack_locks[h1]);
118 if (h1 != h2)
119 spin_unlock(&nf_conntrack_locks[h2]);
120 }
121
122 /* return true if we need to recompute hashes (in case hash table was resized) */
nf_conntrack_double_lock(struct net * net,unsigned int h1,unsigned int h2,unsigned int sequence)123 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
124 unsigned int h2, unsigned int sequence)
125 {
126 h1 %= CONNTRACK_LOCKS;
127 h2 %= CONNTRACK_LOCKS;
128 if (h1 <= h2) {
129 nf_conntrack_lock(&nf_conntrack_locks[h1]);
130 if (h1 != h2)
131 spin_lock_nested(&nf_conntrack_locks[h2],
132 SINGLE_DEPTH_NESTING);
133 } else {
134 nf_conntrack_lock(&nf_conntrack_locks[h2]);
135 spin_lock_nested(&nf_conntrack_locks[h1],
136 SINGLE_DEPTH_NESTING);
137 }
138 if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
139 nf_conntrack_double_unlock(h1, h2);
140 return true;
141 }
142 return false;
143 }
144
nf_conntrack_all_lock(void)145 static void nf_conntrack_all_lock(void)
146 __acquires(&nf_conntrack_locks_all_lock)
147 {
148 int i;
149
150 spin_lock(&nf_conntrack_locks_all_lock);
151
152 nf_conntrack_locks_all = true;
153
154 for (i = 0; i < CONNTRACK_LOCKS; i++) {
155 spin_lock(&nf_conntrack_locks[i]);
156
157 /* This spin_unlock provides the "release" to ensure that
158 * nf_conntrack_locks_all==true is visible to everyone that
159 * acquired spin_lock(&nf_conntrack_locks[]).
160 */
161 spin_unlock(&nf_conntrack_locks[i]);
162 }
163 }
164
nf_conntrack_all_unlock(void)165 static void nf_conntrack_all_unlock(void)
166 __releases(&nf_conntrack_locks_all_lock)
167 {
168 /* All prior stores must be complete before we clear
169 * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
170 * might observe the false value but not the entire
171 * critical section.
172 * It pairs with the smp_load_acquire() in nf_conntrack_lock()
173 */
174 smp_store_release(&nf_conntrack_locks_all, false);
175 spin_unlock(&nf_conntrack_locks_all_lock);
176 }
177
178 unsigned int nf_conntrack_htable_size __read_mostly;
179 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
180
181 unsigned int nf_conntrack_max __read_mostly;
182 EXPORT_SYMBOL_GPL(nf_conntrack_max);
183 seqcount_spinlock_t nf_conntrack_generation __read_mostly;
184 static unsigned int nf_conntrack_hash_rnd __read_mostly;
185
hash_conntrack_raw(const struct nf_conntrack_tuple * tuple,const struct net * net)186 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
187 const struct net *net)
188 {
189 unsigned int n;
190 u32 seed;
191
192 get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
193
194 /* The direction must be ignored, so we hash everything up to the
195 * destination ports (which is a multiple of 4) and treat the last
196 * three bytes manually.
197 */
198 seed = nf_conntrack_hash_rnd ^ net_hash_mix(net);
199 n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
200 return jhash2((u32 *)tuple, n, seed ^
201 (((__force __u16)tuple->dst.u.all << 16) |
202 tuple->dst.protonum));
203 }
204
scale_hash(u32 hash)205 static u32 scale_hash(u32 hash)
206 {
207 return reciprocal_scale(hash, nf_conntrack_htable_size);
208 }
209
__hash_conntrack(const struct net * net,const struct nf_conntrack_tuple * tuple,unsigned int size)210 static u32 __hash_conntrack(const struct net *net,
211 const struct nf_conntrack_tuple *tuple,
212 unsigned int size)
213 {
214 return reciprocal_scale(hash_conntrack_raw(tuple, net), size);
215 }
216
hash_conntrack(const struct net * net,const struct nf_conntrack_tuple * tuple)217 static u32 hash_conntrack(const struct net *net,
218 const struct nf_conntrack_tuple *tuple)
219 {
220 return scale_hash(hash_conntrack_raw(tuple, net));
221 }
222
nf_ct_get_tuple_ports(const struct sk_buff * skb,unsigned int dataoff,struct nf_conntrack_tuple * tuple)223 static bool nf_ct_get_tuple_ports(const struct sk_buff *skb,
224 unsigned int dataoff,
225 struct nf_conntrack_tuple *tuple)
226 { struct {
227 __be16 sport;
228 __be16 dport;
229 } _inet_hdr, *inet_hdr;
230
231 /* Actually only need first 4 bytes to get ports. */
232 inet_hdr = skb_header_pointer(skb, dataoff, sizeof(_inet_hdr), &_inet_hdr);
233 if (!inet_hdr)
234 return false;
235
236 tuple->src.u.udp.port = inet_hdr->sport;
237 tuple->dst.u.udp.port = inet_hdr->dport;
238 return true;
239 }
240
241 static bool
nf_ct_get_tuple(const struct sk_buff * skb,unsigned int nhoff,unsigned int dataoff,u_int16_t l3num,u_int8_t protonum,struct net * net,struct nf_conntrack_tuple * tuple)242 nf_ct_get_tuple(const struct sk_buff *skb,
243 unsigned int nhoff,
244 unsigned int dataoff,
245 u_int16_t l3num,
246 u_int8_t protonum,
247 struct net *net,
248 struct nf_conntrack_tuple *tuple)
249 {
250 unsigned int size;
251 const __be32 *ap;
252 __be32 _addrs[8];
253
254 memset(tuple, 0, sizeof(*tuple));
255
256 tuple->src.l3num = l3num;
257 switch (l3num) {
258 case NFPROTO_IPV4:
259 nhoff += offsetof(struct iphdr, saddr);
260 size = 2 * sizeof(__be32);
261 break;
262 case NFPROTO_IPV6:
263 nhoff += offsetof(struct ipv6hdr, saddr);
264 size = sizeof(_addrs);
265 break;
266 default:
267 return true;
268 }
269
270 ap = skb_header_pointer(skb, nhoff, size, _addrs);
271 if (!ap)
272 return false;
273
274 switch (l3num) {
275 case NFPROTO_IPV4:
276 tuple->src.u3.ip = ap[0];
277 tuple->dst.u3.ip = ap[1];
278 break;
279 case NFPROTO_IPV6:
280 memcpy(tuple->src.u3.ip6, ap, sizeof(tuple->src.u3.ip6));
281 memcpy(tuple->dst.u3.ip6, ap + 4, sizeof(tuple->dst.u3.ip6));
282 break;
283 }
284
285 tuple->dst.protonum = protonum;
286 tuple->dst.dir = IP_CT_DIR_ORIGINAL;
287
288 switch (protonum) {
289 #if IS_ENABLED(CONFIG_IPV6)
290 case IPPROTO_ICMPV6:
291 return icmpv6_pkt_to_tuple(skb, dataoff, net, tuple);
292 #endif
293 case IPPROTO_ICMP:
294 return icmp_pkt_to_tuple(skb, dataoff, net, tuple);
295 #ifdef CONFIG_NF_CT_PROTO_GRE
296 case IPPROTO_GRE:
297 return gre_pkt_to_tuple(skb, dataoff, net, tuple);
298 #endif
299 case IPPROTO_TCP:
300 case IPPROTO_UDP: /* fallthrough */
301 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
302 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
303 case IPPROTO_UDPLITE:
304 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
305 #endif
306 #ifdef CONFIG_NF_CT_PROTO_SCTP
307 case IPPROTO_SCTP:
308 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
309 #endif
310 #ifdef CONFIG_NF_CT_PROTO_DCCP
311 case IPPROTO_DCCP:
312 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
313 #endif
314 default:
315 break;
316 }
317
318 return true;
319 }
320
ipv4_get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u_int8_t * protonum)321 static int ipv4_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
322 u_int8_t *protonum)
323 {
324 int dataoff = -1;
325 const struct iphdr *iph;
326 struct iphdr _iph;
327
328 iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
329 if (!iph)
330 return -1;
331
332 /* Conntrack defragments packets, we might still see fragments
333 * inside ICMP packets though.
334 */
335 if (iph->frag_off & htons(IP_OFFSET))
336 return -1;
337
338 dataoff = nhoff + (iph->ihl << 2);
339 *protonum = iph->protocol;
340
341 /* Check bogus IP headers */
342 if (dataoff > skb->len) {
343 pr_debug("bogus IPv4 packet: nhoff %u, ihl %u, skblen %u\n",
344 nhoff, iph->ihl << 2, skb->len);
345 return -1;
346 }
347 return dataoff;
348 }
349
350 #if IS_ENABLED(CONFIG_IPV6)
ipv6_get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u8 * protonum)351 static int ipv6_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
352 u8 *protonum)
353 {
354 int protoff = -1;
355 unsigned int extoff = nhoff + sizeof(struct ipv6hdr);
356 __be16 frag_off;
357 u8 nexthdr;
358
359 if (skb_copy_bits(skb, nhoff + offsetof(struct ipv6hdr, nexthdr),
360 &nexthdr, sizeof(nexthdr)) != 0) {
361 pr_debug("can't get nexthdr\n");
362 return -1;
363 }
364 protoff = ipv6_skip_exthdr(skb, extoff, &nexthdr, &frag_off);
365 /*
366 * (protoff == skb->len) means the packet has not data, just
367 * IPv6 and possibly extensions headers, but it is tracked anyway
368 */
369 if (protoff < 0 || (frag_off & htons(~0x7)) != 0) {
370 pr_debug("can't find proto in pkt\n");
371 return -1;
372 }
373
374 *protonum = nexthdr;
375 return protoff;
376 }
377 #endif
378
get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u8 pf,u8 * l4num)379 static int get_l4proto(const struct sk_buff *skb,
380 unsigned int nhoff, u8 pf, u8 *l4num)
381 {
382 switch (pf) {
383 case NFPROTO_IPV4:
384 return ipv4_get_l4proto(skb, nhoff, l4num);
385 #if IS_ENABLED(CONFIG_IPV6)
386 case NFPROTO_IPV6:
387 return ipv6_get_l4proto(skb, nhoff, l4num);
388 #endif
389 default:
390 *l4num = 0;
391 break;
392 }
393 return -1;
394 }
395
nf_ct_get_tuplepr(const struct sk_buff * skb,unsigned int nhoff,u_int16_t l3num,struct net * net,struct nf_conntrack_tuple * tuple)396 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
397 u_int16_t l3num,
398 struct net *net, struct nf_conntrack_tuple *tuple)
399 {
400 u8 protonum;
401 int protoff;
402
403 protoff = get_l4proto(skb, nhoff, l3num, &protonum);
404 if (protoff <= 0)
405 return false;
406
407 return nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple);
408 }
409 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
410
411 bool
nf_ct_invert_tuple(struct nf_conntrack_tuple * inverse,const struct nf_conntrack_tuple * orig)412 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
413 const struct nf_conntrack_tuple *orig)
414 {
415 memset(inverse, 0, sizeof(*inverse));
416
417 inverse->src.l3num = orig->src.l3num;
418
419 switch (orig->src.l3num) {
420 case NFPROTO_IPV4:
421 inverse->src.u3.ip = orig->dst.u3.ip;
422 inverse->dst.u3.ip = orig->src.u3.ip;
423 break;
424 case NFPROTO_IPV6:
425 inverse->src.u3.in6 = orig->dst.u3.in6;
426 inverse->dst.u3.in6 = orig->src.u3.in6;
427 break;
428 default:
429 break;
430 }
431
432 inverse->dst.dir = !orig->dst.dir;
433
434 inverse->dst.protonum = orig->dst.protonum;
435
436 switch (orig->dst.protonum) {
437 case IPPROTO_ICMP:
438 return nf_conntrack_invert_icmp_tuple(inverse, orig);
439 #if IS_ENABLED(CONFIG_IPV6)
440 case IPPROTO_ICMPV6:
441 return nf_conntrack_invert_icmpv6_tuple(inverse, orig);
442 #endif
443 }
444
445 inverse->src.u.all = orig->dst.u.all;
446 inverse->dst.u.all = orig->src.u.all;
447 return true;
448 }
449 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
450
451 /* Generate a almost-unique pseudo-id for a given conntrack.
452 *
453 * intentionally doesn't re-use any of the seeds used for hash
454 * table location, we assume id gets exposed to userspace.
455 *
456 * Following nf_conn items do not change throughout lifetime
457 * of the nf_conn:
458 *
459 * 1. nf_conn address
460 * 2. nf_conn->master address (normally NULL)
461 * 3. the associated net namespace
462 * 4. the original direction tuple
463 */
nf_ct_get_id(const struct nf_conn * ct)464 u32 nf_ct_get_id(const struct nf_conn *ct)
465 {
466 static __read_mostly siphash_key_t ct_id_seed;
467 unsigned long a, b, c, d;
468
469 net_get_random_once(&ct_id_seed, sizeof(ct_id_seed));
470
471 a = (unsigned long)ct;
472 b = (unsigned long)ct->master;
473 c = (unsigned long)nf_ct_net(ct);
474 d = (unsigned long)siphash(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
475 sizeof(ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple),
476 &ct_id_seed);
477 #ifdef CONFIG_64BIT
478 return siphash_4u64((u64)a, (u64)b, (u64)c, (u64)d, &ct_id_seed);
479 #else
480 return siphash_4u32((u32)a, (u32)b, (u32)c, (u32)d, &ct_id_seed);
481 #endif
482 }
483 EXPORT_SYMBOL_GPL(nf_ct_get_id);
484
485 static void
clean_from_lists(struct nf_conn * ct)486 clean_from_lists(struct nf_conn *ct)
487 {
488 pr_debug("clean_from_lists(%p)\n", ct);
489 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
490 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
491
492 /* Destroy all pending expectations */
493 nf_ct_remove_expectations(ct);
494 }
495
496 /* must be called with local_bh_disable */
nf_ct_add_to_dying_list(struct nf_conn * ct)497 static void nf_ct_add_to_dying_list(struct nf_conn *ct)
498 {
499 struct ct_pcpu *pcpu;
500
501 /* add this conntrack to the (per cpu) dying list */
502 ct->cpu = smp_processor_id();
503 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
504
505 spin_lock(&pcpu->lock);
506 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
507 &pcpu->dying);
508 spin_unlock(&pcpu->lock);
509 }
510
511 /* must be called with local_bh_disable */
nf_ct_add_to_unconfirmed_list(struct nf_conn * ct)512 static void nf_ct_add_to_unconfirmed_list(struct nf_conn *ct)
513 {
514 struct ct_pcpu *pcpu;
515
516 /* add this conntrack to the (per cpu) unconfirmed list */
517 ct->cpu = smp_processor_id();
518 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
519
520 spin_lock(&pcpu->lock);
521 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
522 &pcpu->unconfirmed);
523 spin_unlock(&pcpu->lock);
524 }
525
526 /* must be called with local_bh_disable */
nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn * ct)527 static void nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn *ct)
528 {
529 struct ct_pcpu *pcpu;
530
531 /* We overload first tuple to link into unconfirmed or dying list.*/
532 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
533
534 spin_lock(&pcpu->lock);
535 BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
536 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
537 spin_unlock(&pcpu->lock);
538 }
539
540 #define NFCT_ALIGN(len) (((len) + NFCT_INFOMASK) & ~NFCT_INFOMASK)
541
542 /* Released via destroy_conntrack() */
nf_ct_tmpl_alloc(struct net * net,const struct nf_conntrack_zone * zone,gfp_t flags)543 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
544 const struct nf_conntrack_zone *zone,
545 gfp_t flags)
546 {
547 struct nf_conn *tmpl, *p;
548
549 if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK) {
550 tmpl = kzalloc(sizeof(*tmpl) + NFCT_INFOMASK, flags);
551 if (!tmpl)
552 return NULL;
553
554 p = tmpl;
555 tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
556 if (tmpl != p) {
557 tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
558 tmpl->proto.tmpl_padto = (char *)tmpl - (char *)p;
559 }
560 } else {
561 tmpl = kzalloc(sizeof(*tmpl), flags);
562 if (!tmpl)
563 return NULL;
564 }
565
566 tmpl->status = IPS_TEMPLATE;
567 write_pnet(&tmpl->ct_net, net);
568 nf_ct_zone_add(tmpl, zone);
569 atomic_set(&tmpl->ct_general.use, 0);
570
571 return tmpl;
572 }
573 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
574
nf_ct_tmpl_free(struct nf_conn * tmpl)575 void nf_ct_tmpl_free(struct nf_conn *tmpl)
576 {
577 nf_ct_ext_destroy(tmpl);
578
579 if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK)
580 kfree((char *)tmpl - tmpl->proto.tmpl_padto);
581 else
582 kfree(tmpl);
583 }
584 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
585
destroy_gre_conntrack(struct nf_conn * ct)586 static void destroy_gre_conntrack(struct nf_conn *ct)
587 {
588 #ifdef CONFIG_NF_CT_PROTO_GRE
589 struct nf_conn *master = ct->master;
590
591 if (master)
592 nf_ct_gre_keymap_destroy(master);
593 #endif
594 }
595
596 static void
destroy_conntrack(struct nf_conntrack * nfct)597 destroy_conntrack(struct nf_conntrack *nfct)
598 {
599 struct nf_conn *ct = (struct nf_conn *)nfct;
600
601 pr_debug("destroy_conntrack(%p)\n", ct);
602 WARN_ON(atomic_read(&nfct->use) != 0);
603
604 if (unlikely(nf_ct_is_template(ct))) {
605 nf_ct_tmpl_free(ct);
606 return;
607 }
608
609 if (unlikely(nf_ct_protonum(ct) == IPPROTO_GRE))
610 destroy_gre_conntrack(ct);
611
612 local_bh_disable();
613 /* Expectations will have been removed in clean_from_lists,
614 * except TFTP can create an expectation on the first packet,
615 * before connection is in the list, so we need to clean here,
616 * too.
617 */
618 nf_ct_remove_expectations(ct);
619
620 nf_ct_del_from_dying_or_unconfirmed_list(ct);
621
622 local_bh_enable();
623
624 if (ct->master)
625 nf_ct_put(ct->master);
626
627 pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
628 nf_conntrack_free(ct);
629 }
630
nf_ct_delete_from_lists(struct nf_conn * ct)631 static void nf_ct_delete_from_lists(struct nf_conn *ct)
632 {
633 struct net *net = nf_ct_net(ct);
634 unsigned int hash, reply_hash;
635 unsigned int sequence;
636
637 nf_ct_helper_destroy(ct);
638
639 local_bh_disable();
640 do {
641 sequence = read_seqcount_begin(&nf_conntrack_generation);
642 hash = hash_conntrack(net,
643 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
644 reply_hash = hash_conntrack(net,
645 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
646 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
647
648 clean_from_lists(ct);
649 nf_conntrack_double_unlock(hash, reply_hash);
650
651 nf_ct_add_to_dying_list(ct);
652
653 local_bh_enable();
654 }
655
nf_ct_delete(struct nf_conn * ct,u32 portid,int report)656 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
657 {
658 struct nf_conn_tstamp *tstamp;
659
660 if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
661 return false;
662
663 tstamp = nf_conn_tstamp_find(ct);
664 if (tstamp && tstamp->stop == 0)
665 tstamp->stop = ktime_get_real_ns();
666
667 if (nf_conntrack_event_report(IPCT_DESTROY, ct,
668 portid, report) < 0) {
669 /* destroy event was not delivered. nf_ct_put will
670 * be done by event cache worker on redelivery.
671 */
672 nf_ct_delete_from_lists(ct);
673 nf_conntrack_ecache_delayed_work(nf_ct_net(ct));
674 return false;
675 }
676
677 nf_conntrack_ecache_work(nf_ct_net(ct));
678 nf_ct_delete_from_lists(ct);
679 nf_ct_put(ct);
680 return true;
681 }
682 EXPORT_SYMBOL_GPL(nf_ct_delete);
683
684 static inline bool
nf_ct_key_equal(struct nf_conntrack_tuple_hash * h,const struct nf_conntrack_tuple * tuple,const struct nf_conntrack_zone * zone,const struct net * net)685 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
686 const struct nf_conntrack_tuple *tuple,
687 const struct nf_conntrack_zone *zone,
688 const struct net *net)
689 {
690 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
691
692 /* A conntrack can be recreated with the equal tuple,
693 * so we need to check that the conntrack is confirmed
694 */
695 return nf_ct_tuple_equal(tuple, &h->tuple) &&
696 nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
697 nf_ct_is_confirmed(ct) &&
698 net_eq(net, nf_ct_net(ct));
699 }
700
701 static inline bool
nf_ct_match(const struct nf_conn * ct1,const struct nf_conn * ct2)702 nf_ct_match(const struct nf_conn *ct1, const struct nf_conn *ct2)
703 {
704 return nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
705 &ct2->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
706 nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_REPLY].tuple,
707 &ct2->tuplehash[IP_CT_DIR_REPLY].tuple) &&
708 nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_ORIGINAL) &&
709 nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_REPLY) &&
710 net_eq(nf_ct_net(ct1), nf_ct_net(ct2));
711 }
712
713 /* caller must hold rcu readlock and none of the nf_conntrack_locks */
nf_ct_gc_expired(struct nf_conn * ct)714 static void nf_ct_gc_expired(struct nf_conn *ct)
715 {
716 if (!atomic_inc_not_zero(&ct->ct_general.use))
717 return;
718
719 if (nf_ct_should_gc(ct))
720 nf_ct_kill(ct);
721
722 nf_ct_put(ct);
723 }
724
725 /*
726 * Warning :
727 * - Caller must take a reference on returned object
728 * and recheck nf_ct_tuple_equal(tuple, &h->tuple)
729 */
730 static struct nf_conntrack_tuple_hash *
____nf_conntrack_find(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple,u32 hash)731 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
732 const struct nf_conntrack_tuple *tuple, u32 hash)
733 {
734 struct nf_conntrack_tuple_hash *h;
735 struct hlist_nulls_head *ct_hash;
736 struct hlist_nulls_node *n;
737 unsigned int bucket, hsize;
738
739 begin:
740 nf_conntrack_get_ht(&ct_hash, &hsize);
741 bucket = reciprocal_scale(hash, hsize);
742
743 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
744 struct nf_conn *ct;
745
746 ct = nf_ct_tuplehash_to_ctrack(h);
747 if (nf_ct_is_expired(ct)) {
748 nf_ct_gc_expired(ct);
749 continue;
750 }
751
752 if (nf_ct_key_equal(h, tuple, zone, net))
753 return h;
754 }
755 /*
756 * if the nulls value we got at the end of this lookup is
757 * not the expected one, we must restart lookup.
758 * We probably met an item that was moved to another chain.
759 */
760 if (get_nulls_value(n) != bucket) {
761 NF_CT_STAT_INC_ATOMIC(net, search_restart);
762 goto begin;
763 }
764
765 return NULL;
766 }
767
768 /* Find a connection corresponding to a tuple. */
769 static struct nf_conntrack_tuple_hash *
__nf_conntrack_find_get(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple,u32 hash)770 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
771 const struct nf_conntrack_tuple *tuple, u32 hash)
772 {
773 struct nf_conntrack_tuple_hash *h;
774 struct nf_conn *ct;
775
776 rcu_read_lock();
777
778 h = ____nf_conntrack_find(net, zone, tuple, hash);
779 if (h) {
780 /* We have a candidate that matches the tuple we're interested
781 * in, try to obtain a reference and re-check tuple
782 */
783 ct = nf_ct_tuplehash_to_ctrack(h);
784 if (likely(atomic_inc_not_zero(&ct->ct_general.use))) {
785 if (likely(nf_ct_key_equal(h, tuple, zone, net)))
786 goto found;
787
788 /* TYPESAFE_BY_RCU recycled the candidate */
789 nf_ct_put(ct);
790 }
791
792 h = NULL;
793 }
794 found:
795 rcu_read_unlock();
796
797 return h;
798 }
799
800 struct nf_conntrack_tuple_hash *
nf_conntrack_find_get(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple)801 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
802 const struct nf_conntrack_tuple *tuple)
803 {
804 return __nf_conntrack_find_get(net, zone, tuple,
805 hash_conntrack_raw(tuple, net));
806 }
807 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
808
__nf_conntrack_hash_insert(struct nf_conn * ct,unsigned int hash,unsigned int reply_hash)809 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
810 unsigned int hash,
811 unsigned int reply_hash)
812 {
813 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
814 &nf_conntrack_hash[hash]);
815 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
816 &nf_conntrack_hash[reply_hash]);
817 }
818
819 int
nf_conntrack_hash_check_insert(struct nf_conn * ct)820 nf_conntrack_hash_check_insert(struct nf_conn *ct)
821 {
822 const struct nf_conntrack_zone *zone;
823 struct net *net = nf_ct_net(ct);
824 unsigned int hash, reply_hash;
825 struct nf_conntrack_tuple_hash *h;
826 struct hlist_nulls_node *n;
827 unsigned int sequence;
828
829 zone = nf_ct_zone(ct);
830
831 local_bh_disable();
832 do {
833 sequence = read_seqcount_begin(&nf_conntrack_generation);
834 hash = hash_conntrack(net,
835 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
836 reply_hash = hash_conntrack(net,
837 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
838 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
839
840 /* See if there's one in the list already, including reverse */
841 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
842 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
843 zone, net))
844 goto out;
845
846 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
847 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
848 zone, net))
849 goto out;
850
851 smp_wmb();
852 /* The caller holds a reference to this object */
853 atomic_set(&ct->ct_general.use, 2);
854 __nf_conntrack_hash_insert(ct, hash, reply_hash);
855 nf_conntrack_double_unlock(hash, reply_hash);
856 NF_CT_STAT_INC(net, insert);
857 local_bh_enable();
858 return 0;
859
860 out:
861 nf_conntrack_double_unlock(hash, reply_hash);
862 local_bh_enable();
863 return -EEXIST;
864 }
865 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
866
nf_ct_acct_add(struct nf_conn * ct,u32 dir,unsigned int packets,unsigned int bytes)867 void nf_ct_acct_add(struct nf_conn *ct, u32 dir, unsigned int packets,
868 unsigned int bytes)
869 {
870 struct nf_conn_acct *acct;
871
872 acct = nf_conn_acct_find(ct);
873 if (acct) {
874 struct nf_conn_counter *counter = acct->counter;
875
876 atomic64_add(packets, &counter[dir].packets);
877 atomic64_add(bytes, &counter[dir].bytes);
878 }
879 }
880 EXPORT_SYMBOL_GPL(nf_ct_acct_add);
881
nf_ct_acct_merge(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct nf_conn * loser_ct)882 static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
883 const struct nf_conn *loser_ct)
884 {
885 struct nf_conn_acct *acct;
886
887 acct = nf_conn_acct_find(loser_ct);
888 if (acct) {
889 struct nf_conn_counter *counter = acct->counter;
890 unsigned int bytes;
891
892 /* u32 should be fine since we must have seen one packet. */
893 bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
894 nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), bytes);
895 }
896 }
897
__nf_conntrack_insert_prepare(struct nf_conn * ct)898 static void __nf_conntrack_insert_prepare(struct nf_conn *ct)
899 {
900 struct nf_conn_tstamp *tstamp;
901
902 atomic_inc(&ct->ct_general.use);
903 ct->status |= IPS_CONFIRMED;
904
905 /* set conntrack timestamp, if enabled. */
906 tstamp = nf_conn_tstamp_find(ct);
907 if (tstamp)
908 tstamp->start = ktime_get_real_ns();
909 }
910
911 /* caller must hold locks to prevent concurrent changes */
__nf_ct_resolve_clash(struct sk_buff * skb,struct nf_conntrack_tuple_hash * h)912 static int __nf_ct_resolve_clash(struct sk_buff *skb,
913 struct nf_conntrack_tuple_hash *h)
914 {
915 /* This is the conntrack entry already in hashes that won race. */
916 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
917 enum ip_conntrack_info ctinfo;
918 struct nf_conn *loser_ct;
919
920 loser_ct = nf_ct_get(skb, &ctinfo);
921
922 if (nf_ct_is_dying(ct))
923 return NF_DROP;
924
925 if (((ct->status & IPS_NAT_DONE_MASK) == 0) ||
926 nf_ct_match(ct, loser_ct)) {
927 struct net *net = nf_ct_net(ct);
928
929 nf_conntrack_get(&ct->ct_general);
930
931 nf_ct_acct_merge(ct, ctinfo, loser_ct);
932 nf_ct_add_to_dying_list(loser_ct);
933 nf_conntrack_put(&loser_ct->ct_general);
934 nf_ct_set(skb, ct, ctinfo);
935
936 NF_CT_STAT_INC(net, clash_resolve);
937 return NF_ACCEPT;
938 }
939
940 return NF_DROP;
941 }
942
943 /**
944 * nf_ct_resolve_clash_harder - attempt to insert clashing conntrack entry
945 *
946 * @skb: skb that causes the collision
947 * @repl_idx: hash slot for reply direction
948 *
949 * Called when origin or reply direction had a clash.
950 * The skb can be handled without packet drop provided the reply direction
951 * is unique or there the existing entry has the identical tuple in both
952 * directions.
953 *
954 * Caller must hold conntrack table locks to prevent concurrent updates.
955 *
956 * Returns NF_DROP if the clash could not be handled.
957 */
nf_ct_resolve_clash_harder(struct sk_buff * skb,u32 repl_idx)958 static int nf_ct_resolve_clash_harder(struct sk_buff *skb, u32 repl_idx)
959 {
960 struct nf_conn *loser_ct = (struct nf_conn *)skb_nfct(skb);
961 const struct nf_conntrack_zone *zone;
962 struct nf_conntrack_tuple_hash *h;
963 struct hlist_nulls_node *n;
964 struct net *net;
965
966 zone = nf_ct_zone(loser_ct);
967 net = nf_ct_net(loser_ct);
968
969 /* Reply direction must never result in a clash, unless both origin
970 * and reply tuples are identical.
971 */
972 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[repl_idx], hnnode) {
973 if (nf_ct_key_equal(h,
974 &loser_ct->tuplehash[IP_CT_DIR_REPLY].tuple,
975 zone, net))
976 return __nf_ct_resolve_clash(skb, h);
977 }
978
979 /* We want the clashing entry to go away real soon: 1 second timeout. */
980 loser_ct->timeout = nfct_time_stamp + HZ;
981
982 /* IPS_NAT_CLASH removes the entry automatically on the first
983 * reply. Also prevents UDP tracker from moving the entry to
984 * ASSURED state, i.e. the entry can always be evicted under
985 * pressure.
986 */
987 loser_ct->status |= IPS_FIXED_TIMEOUT | IPS_NAT_CLASH;
988
989 __nf_conntrack_insert_prepare(loser_ct);
990
991 /* fake add for ORIGINAL dir: we want lookups to only find the entry
992 * already in the table. This also hides the clashing entry from
993 * ctnetlink iteration, i.e. conntrack -L won't show them.
994 */
995 hlist_nulls_add_fake(&loser_ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
996
997 hlist_nulls_add_head_rcu(&loser_ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
998 &nf_conntrack_hash[repl_idx]);
999
1000 NF_CT_STAT_INC(net, clash_resolve);
1001 return NF_ACCEPT;
1002 }
1003
1004 /**
1005 * nf_ct_resolve_clash - attempt to handle clash without packet drop
1006 *
1007 * @skb: skb that causes the clash
1008 * @h: tuplehash of the clashing entry already in table
1009 * @reply_hash: hash slot for reply direction
1010 *
1011 * A conntrack entry can be inserted to the connection tracking table
1012 * if there is no existing entry with an identical tuple.
1013 *
1014 * If there is one, @skb (and the assocated, unconfirmed conntrack) has
1015 * to be dropped. In case @skb is retransmitted, next conntrack lookup
1016 * will find the already-existing entry.
1017 *
1018 * The major problem with such packet drop is the extra delay added by
1019 * the packet loss -- it will take some time for a retransmit to occur
1020 * (or the sender to time out when waiting for a reply).
1021 *
1022 * This function attempts to handle the situation without packet drop.
1023 *
1024 * If @skb has no NAT transformation or if the colliding entries are
1025 * exactly the same, only the to-be-confirmed conntrack entry is discarded
1026 * and @skb is associated with the conntrack entry already in the table.
1027 *
1028 * Failing that, the new, unconfirmed conntrack is still added to the table
1029 * provided that the collision only occurs in the ORIGINAL direction.
1030 * The new entry will be added only in the non-clashing REPLY direction,
1031 * so packets in the ORIGINAL direction will continue to match the existing
1032 * entry. The new entry will also have a fixed timeout so it expires --
1033 * due to the collision, it will only see reply traffic.
1034 *
1035 * Returns NF_DROP if the clash could not be resolved.
1036 */
1037 static __cold noinline int
nf_ct_resolve_clash(struct sk_buff * skb,struct nf_conntrack_tuple_hash * h,u32 reply_hash)1038 nf_ct_resolve_clash(struct sk_buff *skb, struct nf_conntrack_tuple_hash *h,
1039 u32 reply_hash)
1040 {
1041 /* This is the conntrack entry already in hashes that won race. */
1042 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
1043 const struct nf_conntrack_l4proto *l4proto;
1044 enum ip_conntrack_info ctinfo;
1045 struct nf_conn *loser_ct;
1046 struct net *net;
1047 int ret;
1048
1049 loser_ct = nf_ct_get(skb, &ctinfo);
1050 net = nf_ct_net(loser_ct);
1051
1052 l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1053 if (!l4proto->allow_clash)
1054 goto drop;
1055
1056 ret = __nf_ct_resolve_clash(skb, h);
1057 if (ret == NF_ACCEPT)
1058 return ret;
1059
1060 ret = nf_ct_resolve_clash_harder(skb, reply_hash);
1061 if (ret == NF_ACCEPT)
1062 return ret;
1063
1064 drop:
1065 nf_ct_add_to_dying_list(loser_ct);
1066 NF_CT_STAT_INC(net, drop);
1067 NF_CT_STAT_INC(net, insert_failed);
1068 return NF_DROP;
1069 }
1070
1071 /* Confirm a connection given skb; places it in hash table */
1072 int
__nf_conntrack_confirm(struct sk_buff * skb)1073 __nf_conntrack_confirm(struct sk_buff *skb)
1074 {
1075 const struct nf_conntrack_zone *zone;
1076 unsigned int hash, reply_hash;
1077 struct nf_conntrack_tuple_hash *h;
1078 struct nf_conn *ct;
1079 struct nf_conn_help *help;
1080 struct hlist_nulls_node *n;
1081 enum ip_conntrack_info ctinfo;
1082 struct net *net;
1083 unsigned int sequence;
1084 int ret = NF_DROP;
1085
1086 ct = nf_ct_get(skb, &ctinfo);
1087 net = nf_ct_net(ct);
1088
1089 /* ipt_REJECT uses nf_conntrack_attach to attach related
1090 ICMP/TCP RST packets in other direction. Actual packet
1091 which created connection will be IP_CT_NEW or for an
1092 expected connection, IP_CT_RELATED. */
1093 if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
1094 return NF_ACCEPT;
1095
1096 zone = nf_ct_zone(ct);
1097 local_bh_disable();
1098
1099 do {
1100 sequence = read_seqcount_begin(&nf_conntrack_generation);
1101 /* reuse the hash saved before */
1102 hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
1103 hash = scale_hash(hash);
1104 reply_hash = hash_conntrack(net,
1105 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
1106
1107 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
1108
1109 /* We're not in hash table, and we refuse to set up related
1110 * connections for unconfirmed conns. But packet copies and
1111 * REJECT will give spurious warnings here.
1112 */
1113
1114 /* Another skb with the same unconfirmed conntrack may
1115 * win the race. This may happen for bridge(br_flood)
1116 * or broadcast/multicast packets do skb_clone with
1117 * unconfirmed conntrack.
1118 */
1119 if (unlikely(nf_ct_is_confirmed(ct))) {
1120 WARN_ON_ONCE(1);
1121 nf_conntrack_double_unlock(hash, reply_hash);
1122 local_bh_enable();
1123 return NF_DROP;
1124 }
1125
1126 pr_debug("Confirming conntrack %p\n", ct);
1127 /* We have to check the DYING flag after unlink to prevent
1128 * a race against nf_ct_get_next_corpse() possibly called from
1129 * user context, else we insert an already 'dead' hash, blocking
1130 * further use of that particular connection -JM.
1131 */
1132 nf_ct_del_from_dying_or_unconfirmed_list(ct);
1133
1134 if (unlikely(nf_ct_is_dying(ct))) {
1135 nf_ct_add_to_dying_list(ct);
1136 NF_CT_STAT_INC(net, insert_failed);
1137 goto dying;
1138 }
1139
1140 /* See if there's one in the list already, including reverse:
1141 NAT could have grabbed it without realizing, since we're
1142 not in the hash. If there is, we lost race. */
1143 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
1144 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1145 zone, net))
1146 goto out;
1147
1148 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
1149 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1150 zone, net))
1151 goto out;
1152
1153 /* Timer relative to confirmation time, not original
1154 setting time, otherwise we'd get timer wrap in
1155 weird delay cases. */
1156 ct->timeout += nfct_time_stamp;
1157
1158 __nf_conntrack_insert_prepare(ct);
1159
1160 /* Since the lookup is lockless, hash insertion must be done after
1161 * starting the timer and setting the CONFIRMED bit. The RCU barriers
1162 * guarantee that no other CPU can find the conntrack before the above
1163 * stores are visible.
1164 */
1165 __nf_conntrack_hash_insert(ct, hash, reply_hash);
1166 nf_conntrack_double_unlock(hash, reply_hash);
1167 local_bh_enable();
1168
1169 help = nfct_help(ct);
1170 if (help && help->helper)
1171 nf_conntrack_event_cache(IPCT_HELPER, ct);
1172
1173 nf_conntrack_event_cache(master_ct(ct) ?
1174 IPCT_RELATED : IPCT_NEW, ct);
1175 return NF_ACCEPT;
1176
1177 out:
1178 ret = nf_ct_resolve_clash(skb, h, reply_hash);
1179 dying:
1180 nf_conntrack_double_unlock(hash, reply_hash);
1181 local_bh_enable();
1182 return ret;
1183 }
1184 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
1185
1186 /* Returns true if a connection correspondings to the tuple (required
1187 for NAT). */
1188 int
nf_conntrack_tuple_taken(const struct nf_conntrack_tuple * tuple,const struct nf_conn * ignored_conntrack)1189 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
1190 const struct nf_conn *ignored_conntrack)
1191 {
1192 struct net *net = nf_ct_net(ignored_conntrack);
1193 const struct nf_conntrack_zone *zone;
1194 struct nf_conntrack_tuple_hash *h;
1195 struct hlist_nulls_head *ct_hash;
1196 unsigned int hash, hsize;
1197 struct hlist_nulls_node *n;
1198 struct nf_conn *ct;
1199
1200 zone = nf_ct_zone(ignored_conntrack);
1201
1202 rcu_read_lock();
1203 begin:
1204 nf_conntrack_get_ht(&ct_hash, &hsize);
1205 hash = __hash_conntrack(net, tuple, hsize);
1206
1207 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
1208 ct = nf_ct_tuplehash_to_ctrack(h);
1209
1210 if (ct == ignored_conntrack)
1211 continue;
1212
1213 if (nf_ct_is_expired(ct)) {
1214 nf_ct_gc_expired(ct);
1215 continue;
1216 }
1217
1218 if (nf_ct_key_equal(h, tuple, zone, net)) {
1219 /* Tuple is taken already, so caller will need to find
1220 * a new source port to use.
1221 *
1222 * Only exception:
1223 * If the *original tuples* are identical, then both
1224 * conntracks refer to the same flow.
1225 * This is a rare situation, it can occur e.g. when
1226 * more than one UDP packet is sent from same socket
1227 * in different threads.
1228 *
1229 * Let nf_ct_resolve_clash() deal with this later.
1230 */
1231 if (nf_ct_tuple_equal(&ignored_conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1232 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple))
1233 continue;
1234
1235 NF_CT_STAT_INC_ATOMIC(net, found);
1236 rcu_read_unlock();
1237 return 1;
1238 }
1239 }
1240
1241 if (get_nulls_value(n) != hash) {
1242 NF_CT_STAT_INC_ATOMIC(net, search_restart);
1243 goto begin;
1244 }
1245
1246 rcu_read_unlock();
1247
1248 return 0;
1249 }
1250 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
1251
1252 #define NF_CT_EVICTION_RANGE 8
1253
1254 /* There's a small race here where we may free a just-assured
1255 connection. Too bad: we're in trouble anyway. */
early_drop_list(struct net * net,struct hlist_nulls_head * head)1256 static unsigned int early_drop_list(struct net *net,
1257 struct hlist_nulls_head *head)
1258 {
1259 struct nf_conntrack_tuple_hash *h;
1260 struct hlist_nulls_node *n;
1261 unsigned int drops = 0;
1262 struct nf_conn *tmp;
1263
1264 hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
1265 tmp = nf_ct_tuplehash_to_ctrack(h);
1266
1267 if (test_bit(IPS_OFFLOAD_BIT, &tmp->status))
1268 continue;
1269
1270 if (nf_ct_is_expired(tmp)) {
1271 nf_ct_gc_expired(tmp);
1272 continue;
1273 }
1274
1275 if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
1276 !net_eq(nf_ct_net(tmp), net) ||
1277 nf_ct_is_dying(tmp))
1278 continue;
1279
1280 if (!atomic_inc_not_zero(&tmp->ct_general.use))
1281 continue;
1282
1283 /* kill only if still in same netns -- might have moved due to
1284 * SLAB_TYPESAFE_BY_RCU rules.
1285 *
1286 * We steal the timer reference. If that fails timer has
1287 * already fired or someone else deleted it. Just drop ref
1288 * and move to next entry.
1289 */
1290 if (net_eq(nf_ct_net(tmp), net) &&
1291 nf_ct_is_confirmed(tmp) &&
1292 nf_ct_delete(tmp, 0, 0))
1293 drops++;
1294
1295 nf_ct_put(tmp);
1296 }
1297
1298 return drops;
1299 }
1300
early_drop(struct net * net,unsigned int hash)1301 static noinline int early_drop(struct net *net, unsigned int hash)
1302 {
1303 unsigned int i, bucket;
1304
1305 for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
1306 struct hlist_nulls_head *ct_hash;
1307 unsigned int hsize, drops;
1308
1309 rcu_read_lock();
1310 nf_conntrack_get_ht(&ct_hash, &hsize);
1311 if (!i)
1312 bucket = reciprocal_scale(hash, hsize);
1313 else
1314 bucket = (bucket + 1) % hsize;
1315
1316 drops = early_drop_list(net, &ct_hash[bucket]);
1317 rcu_read_unlock();
1318
1319 if (drops) {
1320 NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
1321 return true;
1322 }
1323 }
1324
1325 return false;
1326 }
1327
gc_worker_skip_ct(const struct nf_conn * ct)1328 static bool gc_worker_skip_ct(const struct nf_conn *ct)
1329 {
1330 return !nf_ct_is_confirmed(ct) || nf_ct_is_dying(ct);
1331 }
1332
gc_worker_can_early_drop(const struct nf_conn * ct)1333 static bool gc_worker_can_early_drop(const struct nf_conn *ct)
1334 {
1335 const struct nf_conntrack_l4proto *l4proto;
1336
1337 if (!test_bit(IPS_ASSURED_BIT, &ct->status))
1338 return true;
1339
1340 l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1341 if (l4proto->can_early_drop && l4proto->can_early_drop(ct))
1342 return true;
1343
1344 return false;
1345 }
1346
gc_worker(struct work_struct * work)1347 static void gc_worker(struct work_struct *work)
1348 {
1349 unsigned int min_interval = max(HZ / GC_MAX_BUCKETS_DIV, 1u);
1350 unsigned int i, goal, buckets = 0, expired_count = 0;
1351 unsigned int nf_conntrack_max95 = 0;
1352 struct conntrack_gc_work *gc_work;
1353 unsigned int ratio, scanned = 0;
1354 unsigned long next_run;
1355
1356 gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
1357
1358 goal = nf_conntrack_htable_size / GC_MAX_BUCKETS_DIV;
1359 i = gc_work->last_bucket;
1360 if (gc_work->early_drop)
1361 nf_conntrack_max95 = nf_conntrack_max / 100u * 95u;
1362
1363 do {
1364 struct nf_conntrack_tuple_hash *h;
1365 struct hlist_nulls_head *ct_hash;
1366 struct hlist_nulls_node *n;
1367 unsigned int hashsz;
1368 struct nf_conn *tmp;
1369
1370 i++;
1371 rcu_read_lock();
1372
1373 nf_conntrack_get_ht(&ct_hash, &hashsz);
1374 if (i >= hashsz)
1375 i = 0;
1376
1377 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
1378 struct net *net;
1379
1380 tmp = nf_ct_tuplehash_to_ctrack(h);
1381
1382 scanned++;
1383 if (test_bit(IPS_OFFLOAD_BIT, &tmp->status)) {
1384 nf_ct_offload_timeout(tmp);
1385 continue;
1386 }
1387
1388 if (nf_ct_is_expired(tmp)) {
1389 nf_ct_gc_expired(tmp);
1390 expired_count++;
1391 continue;
1392 }
1393
1394 if (nf_conntrack_max95 == 0 || gc_worker_skip_ct(tmp))
1395 continue;
1396
1397 net = nf_ct_net(tmp);
1398 if (atomic_read(&net->ct.count) < nf_conntrack_max95)
1399 continue;
1400
1401 /* need to take reference to avoid possible races */
1402 if (!atomic_inc_not_zero(&tmp->ct_general.use))
1403 continue;
1404
1405 if (gc_worker_skip_ct(tmp)) {
1406 nf_ct_put(tmp);
1407 continue;
1408 }
1409
1410 if (gc_worker_can_early_drop(tmp))
1411 nf_ct_kill(tmp);
1412
1413 nf_ct_put(tmp);
1414 }
1415
1416 /* could check get_nulls_value() here and restart if ct
1417 * was moved to another chain. But given gc is best-effort
1418 * we will just continue with next hash slot.
1419 */
1420 rcu_read_unlock();
1421 cond_resched();
1422 } while (++buckets < goal);
1423
1424 if (gc_work->exiting)
1425 return;
1426
1427 /*
1428 * Eviction will normally happen from the packet path, and not
1429 * from this gc worker.
1430 *
1431 * This worker is only here to reap expired entries when system went
1432 * idle after a busy period.
1433 *
1434 * The heuristics below are supposed to balance conflicting goals:
1435 *
1436 * 1. Minimize time until we notice a stale entry
1437 * 2. Maximize scan intervals to not waste cycles
1438 *
1439 * Normally, expire ratio will be close to 0.
1440 *
1441 * As soon as a sizeable fraction of the entries have expired
1442 * increase scan frequency.
1443 */
1444 ratio = scanned ? expired_count * 100 / scanned : 0;
1445 if (ratio > GC_EVICT_RATIO) {
1446 gc_work->next_gc_run = min_interval;
1447 } else {
1448 unsigned int max = GC_MAX_SCAN_JIFFIES / GC_MAX_BUCKETS_DIV;
1449
1450 BUILD_BUG_ON((GC_MAX_SCAN_JIFFIES / GC_MAX_BUCKETS_DIV) == 0);
1451
1452 gc_work->next_gc_run += min_interval;
1453 if (gc_work->next_gc_run > max)
1454 gc_work->next_gc_run = max;
1455 }
1456
1457 next_run = gc_work->next_gc_run;
1458 gc_work->last_bucket = i;
1459 gc_work->early_drop = false;
1460 queue_delayed_work(system_power_efficient_wq, &gc_work->dwork, next_run);
1461 }
1462
conntrack_gc_work_init(struct conntrack_gc_work * gc_work)1463 static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1464 {
1465 INIT_DEFERRABLE_WORK(&gc_work->dwork, gc_worker);
1466 gc_work->next_gc_run = HZ;
1467 gc_work->exiting = false;
1468 }
1469
1470 static struct nf_conn *
__nf_conntrack_alloc(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * orig,const struct nf_conntrack_tuple * repl,gfp_t gfp,u32 hash)1471 __nf_conntrack_alloc(struct net *net,
1472 const struct nf_conntrack_zone *zone,
1473 const struct nf_conntrack_tuple *orig,
1474 const struct nf_conntrack_tuple *repl,
1475 gfp_t gfp, u32 hash)
1476 {
1477 struct nf_conn *ct;
1478
1479 /* We don't want any race condition at early drop stage */
1480 atomic_inc(&net->ct.count);
1481
1482 if (nf_conntrack_max &&
1483 unlikely(atomic_read(&net->ct.count) > nf_conntrack_max)) {
1484 if (!early_drop(net, hash)) {
1485 if (!conntrack_gc_work.early_drop)
1486 conntrack_gc_work.early_drop = true;
1487 atomic_dec(&net->ct.count);
1488 net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1489 return ERR_PTR(-ENOMEM);
1490 }
1491 }
1492
1493 /*
1494 * Do not use kmem_cache_zalloc(), as this cache uses
1495 * SLAB_TYPESAFE_BY_RCU.
1496 */
1497 ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1498 if (ct == NULL)
1499 goto out;
1500
1501 spin_lock_init(&ct->lock);
1502 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1503 ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1504 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1505 /* save hash for reusing when confirming */
1506 *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1507 ct->status = 0;
1508 ct->timeout = 0;
1509 write_pnet(&ct->ct_net, net);
1510 memset(&ct->__nfct_init_offset, 0,
1511 offsetof(struct nf_conn, proto) -
1512 offsetof(struct nf_conn, __nfct_init_offset));
1513
1514 nf_ct_zone_add(ct, zone);
1515
1516 /* Because we use RCU lookups, we set ct_general.use to zero before
1517 * this is inserted in any list.
1518 */
1519 atomic_set(&ct->ct_general.use, 0);
1520 return ct;
1521 out:
1522 atomic_dec(&net->ct.count);
1523 return ERR_PTR(-ENOMEM);
1524 }
1525
nf_conntrack_alloc(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * orig,const struct nf_conntrack_tuple * repl,gfp_t gfp)1526 struct nf_conn *nf_conntrack_alloc(struct net *net,
1527 const struct nf_conntrack_zone *zone,
1528 const struct nf_conntrack_tuple *orig,
1529 const struct nf_conntrack_tuple *repl,
1530 gfp_t gfp)
1531 {
1532 return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1533 }
1534 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1535
nf_conntrack_free(struct nf_conn * ct)1536 void nf_conntrack_free(struct nf_conn *ct)
1537 {
1538 struct net *net = nf_ct_net(ct);
1539
1540 /* A freed object has refcnt == 0, that's
1541 * the golden rule for SLAB_TYPESAFE_BY_RCU
1542 */
1543 WARN_ON(atomic_read(&ct->ct_general.use) != 0);
1544
1545 nf_ct_ext_destroy(ct);
1546 kmem_cache_free(nf_conntrack_cachep, ct);
1547 smp_mb__before_atomic();
1548 atomic_dec(&net->ct.count);
1549 }
1550 EXPORT_SYMBOL_GPL(nf_conntrack_free);
1551
1552
1553 /* Allocate a new conntrack: we return -ENOMEM if classification
1554 failed due to stress. Otherwise it really is unclassifiable. */
1555 static noinline struct nf_conntrack_tuple_hash *
init_conntrack(struct net * net,struct nf_conn * tmpl,const struct nf_conntrack_tuple * tuple,struct sk_buff * skb,unsigned int dataoff,u32 hash)1556 init_conntrack(struct net *net, struct nf_conn *tmpl,
1557 const struct nf_conntrack_tuple *tuple,
1558 struct sk_buff *skb,
1559 unsigned int dataoff, u32 hash)
1560 {
1561 struct nf_conn *ct;
1562 struct nf_conn_help *help;
1563 struct nf_conntrack_tuple repl_tuple;
1564 struct nf_conntrack_ecache *ecache;
1565 struct nf_conntrack_expect *exp = NULL;
1566 const struct nf_conntrack_zone *zone;
1567 struct nf_conn_timeout *timeout_ext;
1568 struct nf_conntrack_zone tmp;
1569
1570 if (!nf_ct_invert_tuple(&repl_tuple, tuple)) {
1571 pr_debug("Can't invert tuple.\n");
1572 return NULL;
1573 }
1574
1575 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1576 ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1577 hash);
1578 if (IS_ERR(ct))
1579 return (struct nf_conntrack_tuple_hash *)ct;
1580
1581 if (!nf_ct_add_synproxy(ct, tmpl)) {
1582 nf_conntrack_free(ct);
1583 return ERR_PTR(-ENOMEM);
1584 }
1585
1586 timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1587
1588 if (timeout_ext)
1589 nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1590 GFP_ATOMIC);
1591
1592 nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1593 nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1594 nf_ct_labels_ext_add(ct);
1595
1596 ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1597 nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1598 ecache ? ecache->expmask : 0,
1599 GFP_ATOMIC);
1600
1601 local_bh_disable();
1602 if (net->ct.expect_count) {
1603 spin_lock(&nf_conntrack_expect_lock);
1604 exp = nf_ct_find_expectation(net, zone, tuple);
1605 if (exp) {
1606 pr_debug("expectation arrives ct=%p exp=%p\n",
1607 ct, exp);
1608 /* Welcome, Mr. Bond. We've been expecting you... */
1609 __set_bit(IPS_EXPECTED_BIT, &ct->status);
1610 /* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1611 ct->master = exp->master;
1612 if (exp->helper) {
1613 help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
1614 if (help)
1615 rcu_assign_pointer(help->helper, exp->helper);
1616 }
1617
1618 #ifdef CONFIG_NF_CONNTRACK_MARK
1619 ct->mark = exp->master->mark;
1620 #endif
1621 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1622 ct->secmark = exp->master->secmark;
1623 #endif
1624 NF_CT_STAT_INC(net, expect_new);
1625 }
1626 spin_unlock(&nf_conntrack_expect_lock);
1627 }
1628 if (!exp)
1629 __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1630
1631 /* Now it is inserted into the unconfirmed list, bump refcount */
1632 nf_conntrack_get(&ct->ct_general);
1633 nf_ct_add_to_unconfirmed_list(ct);
1634
1635 local_bh_enable();
1636
1637 if (exp) {
1638 if (exp->expectfn)
1639 exp->expectfn(ct, exp);
1640 nf_ct_expect_put(exp);
1641 }
1642
1643 return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1644 }
1645
1646 /* On success, returns 0, sets skb->_nfct | ctinfo */
1647 static int
resolve_normal_ct(struct nf_conn * tmpl,struct sk_buff * skb,unsigned int dataoff,u_int8_t protonum,const struct nf_hook_state * state)1648 resolve_normal_ct(struct nf_conn *tmpl,
1649 struct sk_buff *skb,
1650 unsigned int dataoff,
1651 u_int8_t protonum,
1652 const struct nf_hook_state *state)
1653 {
1654 const struct nf_conntrack_zone *zone;
1655 struct nf_conntrack_tuple tuple;
1656 struct nf_conntrack_tuple_hash *h;
1657 enum ip_conntrack_info ctinfo;
1658 struct nf_conntrack_zone tmp;
1659 struct nf_conn *ct;
1660 u32 hash;
1661
1662 if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1663 dataoff, state->pf, protonum, state->net,
1664 &tuple)) {
1665 pr_debug("Can't get tuple\n");
1666 return 0;
1667 }
1668
1669 /* look for tuple match */
1670 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1671 hash = hash_conntrack_raw(&tuple, state->net);
1672 h = __nf_conntrack_find_get(state->net, zone, &tuple, hash);
1673 if (!h) {
1674 h = init_conntrack(state->net, tmpl, &tuple,
1675 skb, dataoff, hash);
1676 if (!h)
1677 return 0;
1678 if (IS_ERR(h))
1679 return PTR_ERR(h);
1680 }
1681 ct = nf_ct_tuplehash_to_ctrack(h);
1682
1683 /* It exists; we have (non-exclusive) reference. */
1684 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1685 ctinfo = IP_CT_ESTABLISHED_REPLY;
1686 } else {
1687 /* Once we've had two way comms, always ESTABLISHED. */
1688 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1689 pr_debug("normal packet for %p\n", ct);
1690 ctinfo = IP_CT_ESTABLISHED;
1691 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1692 pr_debug("related packet for %p\n", ct);
1693 ctinfo = IP_CT_RELATED;
1694 } else {
1695 pr_debug("new packet for %p\n", ct);
1696 ctinfo = IP_CT_NEW;
1697 }
1698 }
1699 nf_ct_set(skb, ct, ctinfo);
1700 return 0;
1701 }
1702
1703 /*
1704 * icmp packets need special treatment to handle error messages that are
1705 * related to a connection.
1706 *
1707 * Callers need to check if skb has a conntrack assigned when this
1708 * helper returns; in such case skb belongs to an already known connection.
1709 */
1710 static unsigned int __cold
nf_conntrack_handle_icmp(struct nf_conn * tmpl,struct sk_buff * skb,unsigned int dataoff,u8 protonum,const struct nf_hook_state * state)1711 nf_conntrack_handle_icmp(struct nf_conn *tmpl,
1712 struct sk_buff *skb,
1713 unsigned int dataoff,
1714 u8 protonum,
1715 const struct nf_hook_state *state)
1716 {
1717 int ret;
1718
1719 if (state->pf == NFPROTO_IPV4 && protonum == IPPROTO_ICMP)
1720 ret = nf_conntrack_icmpv4_error(tmpl, skb, dataoff, state);
1721 #if IS_ENABLED(CONFIG_IPV6)
1722 else if (state->pf == NFPROTO_IPV6 && protonum == IPPROTO_ICMPV6)
1723 ret = nf_conntrack_icmpv6_error(tmpl, skb, dataoff, state);
1724 #endif
1725 else
1726 return NF_ACCEPT;
1727
1728 if (ret <= 0)
1729 NF_CT_STAT_INC_ATOMIC(state->net, error);
1730
1731 return ret;
1732 }
1733
generic_packet(struct nf_conn * ct,struct sk_buff * skb,enum ip_conntrack_info ctinfo)1734 static int generic_packet(struct nf_conn *ct, struct sk_buff *skb,
1735 enum ip_conntrack_info ctinfo)
1736 {
1737 const unsigned int *timeout = nf_ct_timeout_lookup(ct);
1738
1739 if (!timeout)
1740 timeout = &nf_generic_pernet(nf_ct_net(ct))->timeout;
1741
1742 nf_ct_refresh_acct(ct, ctinfo, skb, *timeout);
1743 return NF_ACCEPT;
1744 }
1745
1746 /* Returns verdict for packet, or -1 for invalid. */
nf_conntrack_handle_packet(struct nf_conn * ct,struct sk_buff * skb,unsigned int dataoff,enum ip_conntrack_info ctinfo,const struct nf_hook_state * state)1747 static int nf_conntrack_handle_packet(struct nf_conn *ct,
1748 struct sk_buff *skb,
1749 unsigned int dataoff,
1750 enum ip_conntrack_info ctinfo,
1751 const struct nf_hook_state *state)
1752 {
1753 switch (nf_ct_protonum(ct)) {
1754 case IPPROTO_TCP:
1755 return nf_conntrack_tcp_packet(ct, skb, dataoff,
1756 ctinfo, state);
1757 case IPPROTO_UDP:
1758 return nf_conntrack_udp_packet(ct, skb, dataoff,
1759 ctinfo, state);
1760 case IPPROTO_ICMP:
1761 return nf_conntrack_icmp_packet(ct, skb, ctinfo, state);
1762 #if IS_ENABLED(CONFIG_IPV6)
1763 case IPPROTO_ICMPV6:
1764 return nf_conntrack_icmpv6_packet(ct, skb, ctinfo, state);
1765 #endif
1766 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
1767 case IPPROTO_UDPLITE:
1768 return nf_conntrack_udplite_packet(ct, skb, dataoff,
1769 ctinfo, state);
1770 #endif
1771 #ifdef CONFIG_NF_CT_PROTO_SCTP
1772 case IPPROTO_SCTP:
1773 return nf_conntrack_sctp_packet(ct, skb, dataoff,
1774 ctinfo, state);
1775 #endif
1776 #ifdef CONFIG_NF_CT_PROTO_DCCP
1777 case IPPROTO_DCCP:
1778 return nf_conntrack_dccp_packet(ct, skb, dataoff,
1779 ctinfo, state);
1780 #endif
1781 #ifdef CONFIG_NF_CT_PROTO_GRE
1782 case IPPROTO_GRE:
1783 return nf_conntrack_gre_packet(ct, skb, dataoff,
1784 ctinfo, state);
1785 #endif
1786 }
1787
1788 return generic_packet(ct, skb, ctinfo);
1789 }
1790
1791 unsigned int
nf_conntrack_in(struct sk_buff * skb,const struct nf_hook_state * state)1792 nf_conntrack_in(struct sk_buff *skb, const struct nf_hook_state *state)
1793 {
1794 enum ip_conntrack_info ctinfo;
1795 struct nf_conn *ct, *tmpl;
1796 u_int8_t protonum;
1797 int dataoff, ret;
1798
1799 tmpl = nf_ct_get(skb, &ctinfo);
1800 if (tmpl || ctinfo == IP_CT_UNTRACKED) {
1801 /* Previously seen (loopback or untracked)? Ignore. */
1802 if ((tmpl && !nf_ct_is_template(tmpl)) ||
1803 ctinfo == IP_CT_UNTRACKED)
1804 return NF_ACCEPT;
1805 skb->_nfct = 0;
1806 }
1807
1808 /* rcu_read_lock()ed by nf_hook_thresh */
1809 dataoff = get_l4proto(skb, skb_network_offset(skb), state->pf, &protonum);
1810 if (dataoff <= 0) {
1811 pr_debug("not prepared to track yet or error occurred\n");
1812 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1813 ret = NF_ACCEPT;
1814 goto out;
1815 }
1816
1817 if (protonum == IPPROTO_ICMP || protonum == IPPROTO_ICMPV6) {
1818 ret = nf_conntrack_handle_icmp(tmpl, skb, dataoff,
1819 protonum, state);
1820 if (ret <= 0) {
1821 ret = -ret;
1822 goto out;
1823 }
1824 /* ICMP[v6] protocol trackers may assign one conntrack. */
1825 if (skb->_nfct)
1826 goto out;
1827 }
1828 repeat:
1829 ret = resolve_normal_ct(tmpl, skb, dataoff,
1830 protonum, state);
1831 if (ret < 0) {
1832 /* Too stressed to deal. */
1833 NF_CT_STAT_INC_ATOMIC(state->net, drop);
1834 ret = NF_DROP;
1835 goto out;
1836 }
1837
1838 ct = nf_ct_get(skb, &ctinfo);
1839 if (!ct) {
1840 /* Not valid part of a connection */
1841 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1842 ret = NF_ACCEPT;
1843 goto out;
1844 }
1845
1846 ret = nf_conntrack_handle_packet(ct, skb, dataoff, ctinfo, state);
1847 if (ret <= 0) {
1848 /* Invalid: inverse of the return code tells
1849 * the netfilter core what to do */
1850 pr_debug("nf_conntrack_in: Can't track with proto module\n");
1851 nf_conntrack_put(&ct->ct_general);
1852 skb->_nfct = 0;
1853 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1854 if (ret == -NF_DROP)
1855 NF_CT_STAT_INC_ATOMIC(state->net, drop);
1856 /* Special case: TCP tracker reports an attempt to reopen a
1857 * closed/aborted connection. We have to go back and create a
1858 * fresh conntrack.
1859 */
1860 if (ret == -NF_REPEAT)
1861 goto repeat;
1862 ret = -ret;
1863 goto out;
1864 }
1865
1866 if (ctinfo == IP_CT_ESTABLISHED_REPLY &&
1867 !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1868 nf_conntrack_event_cache(IPCT_REPLY, ct);
1869 out:
1870 if (tmpl)
1871 nf_ct_put(tmpl);
1872
1873 return ret;
1874 }
1875 EXPORT_SYMBOL_GPL(nf_conntrack_in);
1876
1877 /* Alter reply tuple (maybe alter helper). This is for NAT, and is
1878 implicitly racy: see __nf_conntrack_confirm */
nf_conntrack_alter_reply(struct nf_conn * ct,const struct nf_conntrack_tuple * newreply)1879 void nf_conntrack_alter_reply(struct nf_conn *ct,
1880 const struct nf_conntrack_tuple *newreply)
1881 {
1882 struct nf_conn_help *help = nfct_help(ct);
1883
1884 /* Should be unconfirmed, so not in hash table yet */
1885 WARN_ON(nf_ct_is_confirmed(ct));
1886
1887 pr_debug("Altering reply tuple of %p to ", ct);
1888 nf_ct_dump_tuple(newreply);
1889
1890 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1891 if (ct->master || (help && !hlist_empty(&help->expectations)))
1892 return;
1893
1894 rcu_read_lock();
1895 __nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1896 rcu_read_unlock();
1897 }
1898 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1899
1900 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
__nf_ct_refresh_acct(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct sk_buff * skb,u32 extra_jiffies,bool do_acct)1901 void __nf_ct_refresh_acct(struct nf_conn *ct,
1902 enum ip_conntrack_info ctinfo,
1903 const struct sk_buff *skb,
1904 u32 extra_jiffies,
1905 bool do_acct)
1906 {
1907 /* Only update if this is not a fixed timeout */
1908 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1909 goto acct;
1910
1911 /* If not in hash table, timer will not be active yet */
1912 if (nf_ct_is_confirmed(ct))
1913 extra_jiffies += nfct_time_stamp;
1914
1915 if (READ_ONCE(ct->timeout) != extra_jiffies)
1916 WRITE_ONCE(ct->timeout, extra_jiffies);
1917 acct:
1918 if (do_acct)
1919 nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
1920 }
1921 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1922
nf_ct_kill_acct(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct sk_buff * skb)1923 bool nf_ct_kill_acct(struct nf_conn *ct,
1924 enum ip_conntrack_info ctinfo,
1925 const struct sk_buff *skb)
1926 {
1927 nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
1928
1929 return nf_ct_delete(ct, 0, 0);
1930 }
1931 EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
1932
1933 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1934
1935 #include <linux/netfilter/nfnetlink.h>
1936 #include <linux/netfilter/nfnetlink_conntrack.h>
1937 #include <linux/mutex.h>
1938
1939 /* Generic function for tcp/udp/sctp/dccp and alike. */
nf_ct_port_tuple_to_nlattr(struct sk_buff * skb,const struct nf_conntrack_tuple * tuple)1940 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
1941 const struct nf_conntrack_tuple *tuple)
1942 {
1943 if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
1944 nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
1945 goto nla_put_failure;
1946 return 0;
1947
1948 nla_put_failure:
1949 return -1;
1950 }
1951 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
1952
1953 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
1954 [CTA_PROTO_SRC_PORT] = { .type = NLA_U16 },
1955 [CTA_PROTO_DST_PORT] = { .type = NLA_U16 },
1956 };
1957 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
1958
nf_ct_port_nlattr_to_tuple(struct nlattr * tb[],struct nf_conntrack_tuple * t,u_int32_t flags)1959 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
1960 struct nf_conntrack_tuple *t,
1961 u_int32_t flags)
1962 {
1963 if (flags & CTA_FILTER_FLAG(CTA_PROTO_SRC_PORT)) {
1964 if (!tb[CTA_PROTO_SRC_PORT])
1965 return -EINVAL;
1966
1967 t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
1968 }
1969
1970 if (flags & CTA_FILTER_FLAG(CTA_PROTO_DST_PORT)) {
1971 if (!tb[CTA_PROTO_DST_PORT])
1972 return -EINVAL;
1973
1974 t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
1975 }
1976
1977 return 0;
1978 }
1979 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
1980
nf_ct_port_nlattr_tuple_size(void)1981 unsigned int nf_ct_port_nlattr_tuple_size(void)
1982 {
1983 static unsigned int size __read_mostly;
1984
1985 if (!size)
1986 size = nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
1987
1988 return size;
1989 }
1990 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
1991 #endif
1992
1993 /* Used by ipt_REJECT and ip6t_REJECT. */
nf_conntrack_attach(struct sk_buff * nskb,const struct sk_buff * skb)1994 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
1995 {
1996 struct nf_conn *ct;
1997 enum ip_conntrack_info ctinfo;
1998
1999 /* This ICMP is in reverse direction to the packet which caused it */
2000 ct = nf_ct_get(skb, &ctinfo);
2001 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
2002 ctinfo = IP_CT_RELATED_REPLY;
2003 else
2004 ctinfo = IP_CT_RELATED;
2005
2006 /* Attach to new skbuff, and increment count */
2007 nf_ct_set(nskb, ct, ctinfo);
2008 nf_conntrack_get(skb_nfct(nskb));
2009 }
2010
__nf_conntrack_update(struct net * net,struct sk_buff * skb,struct nf_conn * ct,enum ip_conntrack_info ctinfo)2011 static int __nf_conntrack_update(struct net *net, struct sk_buff *skb,
2012 struct nf_conn *ct,
2013 enum ip_conntrack_info ctinfo)
2014 {
2015 struct nf_conntrack_tuple_hash *h;
2016 struct nf_conntrack_tuple tuple;
2017 struct nf_nat_hook *nat_hook;
2018 unsigned int status;
2019 int dataoff;
2020 u16 l3num;
2021 u8 l4num;
2022
2023 l3num = nf_ct_l3num(ct);
2024
2025 dataoff = get_l4proto(skb, skb_network_offset(skb), l3num, &l4num);
2026 if (dataoff <= 0)
2027 return -1;
2028
2029 if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
2030 l4num, net, &tuple))
2031 return -1;
2032
2033 if (ct->status & IPS_SRC_NAT) {
2034 memcpy(tuple.src.u3.all,
2035 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u3.all,
2036 sizeof(tuple.src.u3.all));
2037 tuple.src.u.all =
2038 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.all;
2039 }
2040
2041 if (ct->status & IPS_DST_NAT) {
2042 memcpy(tuple.dst.u3.all,
2043 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u3.all,
2044 sizeof(tuple.dst.u3.all));
2045 tuple.dst.u.all =
2046 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u.all;
2047 }
2048
2049 h = nf_conntrack_find_get(net, nf_ct_zone(ct), &tuple);
2050 if (!h)
2051 return 0;
2052
2053 /* Store status bits of the conntrack that is clashing to re-do NAT
2054 * mangling according to what it has been done already to this packet.
2055 */
2056 status = ct->status;
2057
2058 nf_ct_put(ct);
2059 ct = nf_ct_tuplehash_to_ctrack(h);
2060 nf_ct_set(skb, ct, ctinfo);
2061
2062 nat_hook = rcu_dereference(nf_nat_hook);
2063 if (!nat_hook)
2064 return 0;
2065
2066 if (status & IPS_SRC_NAT &&
2067 nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_SRC,
2068 IP_CT_DIR_ORIGINAL) == NF_DROP)
2069 return -1;
2070
2071 if (status & IPS_DST_NAT &&
2072 nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_DST,
2073 IP_CT_DIR_ORIGINAL) == NF_DROP)
2074 return -1;
2075
2076 return 0;
2077 }
2078
2079 /* This packet is coming from userspace via nf_queue, complete the packet
2080 * processing after the helper invocation in nf_confirm().
2081 */
nf_confirm_cthelper(struct sk_buff * skb,struct nf_conn * ct,enum ip_conntrack_info ctinfo)2082 static int nf_confirm_cthelper(struct sk_buff *skb, struct nf_conn *ct,
2083 enum ip_conntrack_info ctinfo)
2084 {
2085 const struct nf_conntrack_helper *helper;
2086 const struct nf_conn_help *help;
2087 int protoff;
2088
2089 help = nfct_help(ct);
2090 if (!help)
2091 return 0;
2092
2093 helper = rcu_dereference(help->helper);
2094 if (!(helper->flags & NF_CT_HELPER_F_USERSPACE))
2095 return 0;
2096
2097 switch (nf_ct_l3num(ct)) {
2098 case NFPROTO_IPV4:
2099 protoff = skb_network_offset(skb) + ip_hdrlen(skb);
2100 break;
2101 #if IS_ENABLED(CONFIG_IPV6)
2102 case NFPROTO_IPV6: {
2103 __be16 frag_off;
2104 u8 pnum;
2105
2106 pnum = ipv6_hdr(skb)->nexthdr;
2107 protoff = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &pnum,
2108 &frag_off);
2109 if (protoff < 0 || (frag_off & htons(~0x7)) != 0)
2110 return 0;
2111 break;
2112 }
2113 #endif
2114 default:
2115 return 0;
2116 }
2117
2118 if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
2119 !nf_is_loopback_packet(skb)) {
2120 if (!nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) {
2121 NF_CT_STAT_INC_ATOMIC(nf_ct_net(ct), drop);
2122 return -1;
2123 }
2124 }
2125
2126 /* We've seen it coming out the other side: confirm it */
2127 return nf_conntrack_confirm(skb) == NF_DROP ? - 1 : 0;
2128 }
2129
nf_conntrack_update(struct net * net,struct sk_buff * skb)2130 static int nf_conntrack_update(struct net *net, struct sk_buff *skb)
2131 {
2132 enum ip_conntrack_info ctinfo;
2133 struct nf_conn *ct;
2134 int err;
2135
2136 ct = nf_ct_get(skb, &ctinfo);
2137 if (!ct)
2138 return 0;
2139
2140 if (!nf_ct_is_confirmed(ct)) {
2141 err = __nf_conntrack_update(net, skb, ct, ctinfo);
2142 if (err < 0)
2143 return err;
2144
2145 ct = nf_ct_get(skb, &ctinfo);
2146 }
2147
2148 return nf_confirm_cthelper(skb, ct, ctinfo);
2149 }
2150
nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple * dst_tuple,const struct sk_buff * skb)2151 static bool nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple *dst_tuple,
2152 const struct sk_buff *skb)
2153 {
2154 const struct nf_conntrack_tuple *src_tuple;
2155 const struct nf_conntrack_tuple_hash *hash;
2156 struct nf_conntrack_tuple srctuple;
2157 enum ip_conntrack_info ctinfo;
2158 struct nf_conn *ct;
2159
2160 ct = nf_ct_get(skb, &ctinfo);
2161 if (ct) {
2162 src_tuple = nf_ct_tuple(ct, CTINFO2DIR(ctinfo));
2163 memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2164 return true;
2165 }
2166
2167 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb),
2168 NFPROTO_IPV4, dev_net(skb->dev),
2169 &srctuple))
2170 return false;
2171
2172 hash = nf_conntrack_find_get(dev_net(skb->dev),
2173 &nf_ct_zone_dflt,
2174 &srctuple);
2175 if (!hash)
2176 return false;
2177
2178 ct = nf_ct_tuplehash_to_ctrack(hash);
2179 src_tuple = nf_ct_tuple(ct, !hash->tuple.dst.dir);
2180 memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2181 nf_ct_put(ct);
2182
2183 return true;
2184 }
2185
2186 /* Bring out ya dead! */
2187 static struct nf_conn *
get_next_corpse(int (* iter)(struct nf_conn * i,void * data),void * data,unsigned int * bucket)2188 get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
2189 void *data, unsigned int *bucket)
2190 {
2191 struct nf_conntrack_tuple_hash *h;
2192 struct nf_conn *ct;
2193 struct hlist_nulls_node *n;
2194 spinlock_t *lockp;
2195
2196 for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
2197 lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
2198 local_bh_disable();
2199 nf_conntrack_lock(lockp);
2200 if (*bucket < nf_conntrack_htable_size) {
2201 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[*bucket], hnnode) {
2202 if (NF_CT_DIRECTION(h) != IP_CT_DIR_REPLY)
2203 continue;
2204 /* All nf_conn objects are added to hash table twice, one
2205 * for original direction tuple, once for the reply tuple.
2206 *
2207 * Exception: In the IPS_NAT_CLASH case, only the reply
2208 * tuple is added (the original tuple already existed for
2209 * a different object).
2210 *
2211 * We only need to call the iterator once for each
2212 * conntrack, so we just use the 'reply' direction
2213 * tuple while iterating.
2214 */
2215 ct = nf_ct_tuplehash_to_ctrack(h);
2216 if (iter(ct, data))
2217 goto found;
2218 }
2219 }
2220 spin_unlock(lockp);
2221 local_bh_enable();
2222 cond_resched();
2223 }
2224
2225 return NULL;
2226 found:
2227 atomic_inc(&ct->ct_general.use);
2228 spin_unlock(lockp);
2229 local_bh_enable();
2230 return ct;
2231 }
2232
nf_ct_iterate_cleanup(int (* iter)(struct nf_conn * i,void * data),void * data,u32 portid,int report)2233 static void nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data),
2234 void *data, u32 portid, int report)
2235 {
2236 unsigned int bucket = 0, sequence;
2237 struct nf_conn *ct;
2238
2239 might_sleep();
2240
2241 for (;;) {
2242 sequence = read_seqcount_begin(&nf_conntrack_generation);
2243
2244 while ((ct = get_next_corpse(iter, data, &bucket)) != NULL) {
2245 /* Time to push up daises... */
2246
2247 nf_ct_delete(ct, portid, report);
2248 nf_ct_put(ct);
2249 cond_resched();
2250 }
2251
2252 if (!read_seqcount_retry(&nf_conntrack_generation, sequence))
2253 break;
2254 bucket = 0;
2255 }
2256 }
2257
2258 struct iter_data {
2259 int (*iter)(struct nf_conn *i, void *data);
2260 void *data;
2261 struct net *net;
2262 };
2263
iter_net_only(struct nf_conn * i,void * data)2264 static int iter_net_only(struct nf_conn *i, void *data)
2265 {
2266 struct iter_data *d = data;
2267
2268 if (!net_eq(d->net, nf_ct_net(i)))
2269 return 0;
2270
2271 return d->iter(i, d->data);
2272 }
2273
2274 static void
__nf_ct_unconfirmed_destroy(struct net * net)2275 __nf_ct_unconfirmed_destroy(struct net *net)
2276 {
2277 int cpu;
2278
2279 for_each_possible_cpu(cpu) {
2280 struct nf_conntrack_tuple_hash *h;
2281 struct hlist_nulls_node *n;
2282 struct ct_pcpu *pcpu;
2283
2284 pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2285
2286 spin_lock_bh(&pcpu->lock);
2287 hlist_nulls_for_each_entry(h, n, &pcpu->unconfirmed, hnnode) {
2288 struct nf_conn *ct;
2289
2290 ct = nf_ct_tuplehash_to_ctrack(h);
2291
2292 /* we cannot call iter() on unconfirmed list, the
2293 * owning cpu can reallocate ct->ext at any time.
2294 */
2295 set_bit(IPS_DYING_BIT, &ct->status);
2296 }
2297 spin_unlock_bh(&pcpu->lock);
2298 cond_resched();
2299 }
2300 }
2301
nf_ct_unconfirmed_destroy(struct net * net)2302 void nf_ct_unconfirmed_destroy(struct net *net)
2303 {
2304 might_sleep();
2305
2306 if (atomic_read(&net->ct.count) > 0) {
2307 __nf_ct_unconfirmed_destroy(net);
2308 nf_queue_nf_hook_drop(net);
2309 synchronize_net();
2310 }
2311 }
2312 EXPORT_SYMBOL_GPL(nf_ct_unconfirmed_destroy);
2313
nf_ct_iterate_cleanup_net(struct net * net,int (* iter)(struct nf_conn * i,void * data),void * data,u32 portid,int report)2314 void nf_ct_iterate_cleanup_net(struct net *net,
2315 int (*iter)(struct nf_conn *i, void *data),
2316 void *data, u32 portid, int report)
2317 {
2318 struct iter_data d;
2319
2320 might_sleep();
2321
2322 if (atomic_read(&net->ct.count) == 0)
2323 return;
2324
2325 d.iter = iter;
2326 d.data = data;
2327 d.net = net;
2328
2329 nf_ct_iterate_cleanup(iter_net_only, &d, portid, report);
2330 }
2331 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup_net);
2332
2333 /**
2334 * nf_ct_iterate_destroy - destroy unconfirmed conntracks and iterate table
2335 * @iter: callback to invoke for each conntrack
2336 * @data: data to pass to @iter
2337 *
2338 * Like nf_ct_iterate_cleanup, but first marks conntracks on the
2339 * unconfirmed list as dying (so they will not be inserted into
2340 * main table).
2341 *
2342 * Can only be called in module exit path.
2343 */
2344 void
nf_ct_iterate_destroy(int (* iter)(struct nf_conn * i,void * data),void * data)2345 nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data)
2346 {
2347 struct net *net;
2348
2349 down_read(&net_rwsem);
2350 for_each_net(net) {
2351 if (atomic_read(&net->ct.count) == 0)
2352 continue;
2353 __nf_ct_unconfirmed_destroy(net);
2354 nf_queue_nf_hook_drop(net);
2355 }
2356 up_read(&net_rwsem);
2357
2358 /* Need to wait for netns cleanup worker to finish, if its
2359 * running -- it might have deleted a net namespace from
2360 * the global list, so our __nf_ct_unconfirmed_destroy() might
2361 * not have affected all namespaces.
2362 */
2363 net_ns_barrier();
2364
2365 /* a conntrack could have been unlinked from unconfirmed list
2366 * before we grabbed pcpu lock in __nf_ct_unconfirmed_destroy().
2367 * This makes sure its inserted into conntrack table.
2368 */
2369 synchronize_net();
2370
2371 nf_ct_iterate_cleanup(iter, data, 0, 0);
2372 }
2373 EXPORT_SYMBOL_GPL(nf_ct_iterate_destroy);
2374
kill_all(struct nf_conn * i,void * data)2375 static int kill_all(struct nf_conn *i, void *data)
2376 {
2377 return net_eq(nf_ct_net(i), data);
2378 }
2379
nf_conntrack_cleanup_start(void)2380 void nf_conntrack_cleanup_start(void)
2381 {
2382 conntrack_gc_work.exiting = true;
2383 RCU_INIT_POINTER(ip_ct_attach, NULL);
2384 }
2385
nf_conntrack_cleanup_end(void)2386 void nf_conntrack_cleanup_end(void)
2387 {
2388 RCU_INIT_POINTER(nf_ct_hook, NULL);
2389 cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2390 kvfree(nf_conntrack_hash);
2391
2392 nf_conntrack_proto_fini();
2393 nf_conntrack_seqadj_fini();
2394 nf_conntrack_labels_fini();
2395 nf_conntrack_helper_fini();
2396 nf_conntrack_timeout_fini();
2397 nf_conntrack_ecache_fini();
2398 nf_conntrack_tstamp_fini();
2399 nf_conntrack_acct_fini();
2400 nf_conntrack_expect_fini();
2401
2402 kmem_cache_destroy(nf_conntrack_cachep);
2403 }
2404
2405 /*
2406 * Mishearing the voices in his head, our hero wonders how he's
2407 * supposed to kill the mall.
2408 */
nf_conntrack_cleanup_net(struct net * net)2409 void nf_conntrack_cleanup_net(struct net *net)
2410 {
2411 LIST_HEAD(single);
2412
2413 list_add(&net->exit_list, &single);
2414 nf_conntrack_cleanup_net_list(&single);
2415 }
2416
nf_conntrack_cleanup_net_list(struct list_head * net_exit_list)2417 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
2418 {
2419 int busy;
2420 struct net *net;
2421
2422 /*
2423 * This makes sure all current packets have passed through
2424 * netfilter framework. Roll on, two-stage module
2425 * delete...
2426 */
2427 synchronize_net();
2428 i_see_dead_people:
2429 busy = 0;
2430 list_for_each_entry(net, net_exit_list, exit_list) {
2431 nf_ct_iterate_cleanup(kill_all, net, 0, 0);
2432 if (atomic_read(&net->ct.count) != 0)
2433 busy = 1;
2434 }
2435 if (busy) {
2436 schedule();
2437 goto i_see_dead_people;
2438 }
2439
2440 list_for_each_entry(net, net_exit_list, exit_list) {
2441 nf_conntrack_proto_pernet_fini(net);
2442 nf_conntrack_ecache_pernet_fini(net);
2443 nf_conntrack_expect_pernet_fini(net);
2444 free_percpu(net->ct.stat);
2445 free_percpu(net->ct.pcpu_lists);
2446 }
2447 }
2448
nf_ct_alloc_hashtable(unsigned int * sizep,int nulls)2449 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
2450 {
2451 struct hlist_nulls_head *hash;
2452 unsigned int nr_slots, i;
2453
2454 if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
2455 return NULL;
2456
2457 BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
2458 nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
2459
2460 hash = kvcalloc(nr_slots, sizeof(struct hlist_nulls_head), GFP_KERNEL);
2461
2462 if (hash && nulls)
2463 for (i = 0; i < nr_slots; i++)
2464 INIT_HLIST_NULLS_HEAD(&hash[i], i);
2465
2466 return hash;
2467 }
2468 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
2469
nf_conntrack_hash_resize(unsigned int hashsize)2470 int nf_conntrack_hash_resize(unsigned int hashsize)
2471 {
2472 int i, bucket;
2473 unsigned int old_size;
2474 struct hlist_nulls_head *hash, *old_hash;
2475 struct nf_conntrack_tuple_hash *h;
2476 struct nf_conn *ct;
2477
2478 if (!hashsize)
2479 return -EINVAL;
2480
2481 hash = nf_ct_alloc_hashtable(&hashsize, 1);
2482 if (!hash)
2483 return -ENOMEM;
2484
2485 old_size = nf_conntrack_htable_size;
2486 if (old_size == hashsize) {
2487 kvfree(hash);
2488 return 0;
2489 }
2490
2491 local_bh_disable();
2492 nf_conntrack_all_lock();
2493 write_seqcount_begin(&nf_conntrack_generation);
2494
2495 /* Lookups in the old hash might happen in parallel, which means we
2496 * might get false negatives during connection lookup. New connections
2497 * created because of a false negative won't make it into the hash
2498 * though since that required taking the locks.
2499 */
2500
2501 for (i = 0; i < nf_conntrack_htable_size; i++) {
2502 while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
2503 h = hlist_nulls_entry(nf_conntrack_hash[i].first,
2504 struct nf_conntrack_tuple_hash, hnnode);
2505 ct = nf_ct_tuplehash_to_ctrack(h);
2506 hlist_nulls_del_rcu(&h->hnnode);
2507 bucket = __hash_conntrack(nf_ct_net(ct),
2508 &h->tuple, hashsize);
2509 hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
2510 }
2511 }
2512 old_size = nf_conntrack_htable_size;
2513 old_hash = nf_conntrack_hash;
2514
2515 nf_conntrack_hash = hash;
2516 nf_conntrack_htable_size = hashsize;
2517
2518 write_seqcount_end(&nf_conntrack_generation);
2519 nf_conntrack_all_unlock();
2520 local_bh_enable();
2521
2522 synchronize_net();
2523 kvfree(old_hash);
2524 return 0;
2525 }
2526
nf_conntrack_set_hashsize(const char * val,const struct kernel_param * kp)2527 int nf_conntrack_set_hashsize(const char *val, const struct kernel_param *kp)
2528 {
2529 unsigned int hashsize;
2530 int rc;
2531
2532 if (current->nsproxy->net_ns != &init_net)
2533 return -EOPNOTSUPP;
2534
2535 /* On boot, we can set this without any fancy locking. */
2536 if (!nf_conntrack_hash)
2537 return param_set_uint(val, kp);
2538
2539 rc = kstrtouint(val, 0, &hashsize);
2540 if (rc)
2541 return rc;
2542
2543 return nf_conntrack_hash_resize(hashsize);
2544 }
2545
total_extension_size(void)2546 static __always_inline unsigned int total_extension_size(void)
2547 {
2548 /* remember to add new extensions below */
2549 BUILD_BUG_ON(NF_CT_EXT_NUM > 9);
2550
2551 return sizeof(struct nf_ct_ext) +
2552 sizeof(struct nf_conn_help)
2553 #if IS_ENABLED(CONFIG_NF_NAT)
2554 + sizeof(struct nf_conn_nat)
2555 #endif
2556 + sizeof(struct nf_conn_seqadj)
2557 + sizeof(struct nf_conn_acct)
2558 #ifdef CONFIG_NF_CONNTRACK_EVENTS
2559 + sizeof(struct nf_conntrack_ecache)
2560 #endif
2561 #ifdef CONFIG_NF_CONNTRACK_TIMESTAMP
2562 + sizeof(struct nf_conn_tstamp)
2563 #endif
2564 #ifdef CONFIG_NF_CONNTRACK_TIMEOUT
2565 + sizeof(struct nf_conn_timeout)
2566 #endif
2567 #ifdef CONFIG_NF_CONNTRACK_LABELS
2568 + sizeof(struct nf_conn_labels)
2569 #endif
2570 #if IS_ENABLED(CONFIG_NETFILTER_SYNPROXY)
2571 + sizeof(struct nf_conn_synproxy)
2572 #endif
2573 ;
2574 };
2575
nf_conntrack_init_start(void)2576 int nf_conntrack_init_start(void)
2577 {
2578 unsigned long nr_pages = totalram_pages();
2579 int max_factor = 8;
2580 int ret = -ENOMEM;
2581 int i;
2582
2583 /* struct nf_ct_ext uses u8 to store offsets/size */
2584 BUILD_BUG_ON(total_extension_size() > 255u);
2585
2586 seqcount_spinlock_init(&nf_conntrack_generation,
2587 &nf_conntrack_locks_all_lock);
2588
2589 for (i = 0; i < CONNTRACK_LOCKS; i++)
2590 spin_lock_init(&nf_conntrack_locks[i]);
2591
2592 if (!nf_conntrack_htable_size) {
2593 /* Idea from tcp.c: use 1/16384 of memory.
2594 * On i386: 32MB machine has 512 buckets.
2595 * >= 1GB machines have 16384 buckets.
2596 * >= 4GB machines have 65536 buckets.
2597 */
2598 nf_conntrack_htable_size
2599 = (((nr_pages << PAGE_SHIFT) / 16384)
2600 / sizeof(struct hlist_head));
2601 if (nr_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
2602 nf_conntrack_htable_size = 65536;
2603 else if (nr_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
2604 nf_conntrack_htable_size = 16384;
2605 if (nf_conntrack_htable_size < 32)
2606 nf_conntrack_htable_size = 32;
2607
2608 /* Use a max. factor of four by default to get the same max as
2609 * with the old struct list_heads. When a table size is given
2610 * we use the old value of 8 to avoid reducing the max.
2611 * entries. */
2612 max_factor = 4;
2613 }
2614
2615 nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
2616 if (!nf_conntrack_hash)
2617 return -ENOMEM;
2618
2619 nf_conntrack_max = max_factor * nf_conntrack_htable_size;
2620
2621 nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
2622 sizeof(struct nf_conn),
2623 NFCT_INFOMASK + 1,
2624 SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
2625 if (!nf_conntrack_cachep)
2626 goto err_cachep;
2627
2628 ret = nf_conntrack_expect_init();
2629 if (ret < 0)
2630 goto err_expect;
2631
2632 ret = nf_conntrack_acct_init();
2633 if (ret < 0)
2634 goto err_acct;
2635
2636 ret = nf_conntrack_tstamp_init();
2637 if (ret < 0)
2638 goto err_tstamp;
2639
2640 ret = nf_conntrack_ecache_init();
2641 if (ret < 0)
2642 goto err_ecache;
2643
2644 ret = nf_conntrack_timeout_init();
2645 if (ret < 0)
2646 goto err_timeout;
2647
2648 ret = nf_conntrack_helper_init();
2649 if (ret < 0)
2650 goto err_helper;
2651
2652 ret = nf_conntrack_labels_init();
2653 if (ret < 0)
2654 goto err_labels;
2655
2656 ret = nf_conntrack_seqadj_init();
2657 if (ret < 0)
2658 goto err_seqadj;
2659
2660 ret = nf_conntrack_proto_init();
2661 if (ret < 0)
2662 goto err_proto;
2663
2664 conntrack_gc_work_init(&conntrack_gc_work);
2665 queue_delayed_work(system_power_efficient_wq, &conntrack_gc_work.dwork, HZ);
2666
2667 return 0;
2668
2669 err_proto:
2670 nf_conntrack_seqadj_fini();
2671 err_seqadj:
2672 nf_conntrack_labels_fini();
2673 err_labels:
2674 nf_conntrack_helper_fini();
2675 err_helper:
2676 nf_conntrack_timeout_fini();
2677 err_timeout:
2678 nf_conntrack_ecache_fini();
2679 err_ecache:
2680 nf_conntrack_tstamp_fini();
2681 err_tstamp:
2682 nf_conntrack_acct_fini();
2683 err_acct:
2684 nf_conntrack_expect_fini();
2685 err_expect:
2686 kmem_cache_destroy(nf_conntrack_cachep);
2687 err_cachep:
2688 kvfree(nf_conntrack_hash);
2689 return ret;
2690 }
2691
2692 static struct nf_ct_hook nf_conntrack_hook = {
2693 .update = nf_conntrack_update,
2694 .destroy = destroy_conntrack,
2695 .get_tuple_skb = nf_conntrack_get_tuple_skb,
2696 };
2697
nf_conntrack_init_end(void)2698 void nf_conntrack_init_end(void)
2699 {
2700 /* For use by REJECT target */
2701 RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
2702 RCU_INIT_POINTER(nf_ct_hook, &nf_conntrack_hook);
2703 }
2704
2705 /*
2706 * We need to use special "null" values, not used in hash table
2707 */
2708 #define UNCONFIRMED_NULLS_VAL ((1<<30)+0)
2709 #define DYING_NULLS_VAL ((1<<30)+1)
2710
nf_conntrack_init_net(struct net * net)2711 int nf_conntrack_init_net(struct net *net)
2712 {
2713 int ret = -ENOMEM;
2714 int cpu;
2715
2716 BUILD_BUG_ON(IP_CT_UNTRACKED == IP_CT_NUMBER);
2717 BUILD_BUG_ON_NOT_POWER_OF_2(CONNTRACK_LOCKS);
2718 atomic_set(&net->ct.count, 0);
2719
2720 net->ct.pcpu_lists = alloc_percpu(struct ct_pcpu);
2721 if (!net->ct.pcpu_lists)
2722 goto err_stat;
2723
2724 for_each_possible_cpu(cpu) {
2725 struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2726
2727 spin_lock_init(&pcpu->lock);
2728 INIT_HLIST_NULLS_HEAD(&pcpu->unconfirmed, UNCONFIRMED_NULLS_VAL);
2729 INIT_HLIST_NULLS_HEAD(&pcpu->dying, DYING_NULLS_VAL);
2730 }
2731
2732 net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
2733 if (!net->ct.stat)
2734 goto err_pcpu_lists;
2735
2736 ret = nf_conntrack_expect_pernet_init(net);
2737 if (ret < 0)
2738 goto err_expect;
2739
2740 nf_conntrack_acct_pernet_init(net);
2741 nf_conntrack_tstamp_pernet_init(net);
2742 nf_conntrack_ecache_pernet_init(net);
2743 nf_conntrack_helper_pernet_init(net);
2744 nf_conntrack_proto_pernet_init(net);
2745
2746 return 0;
2747
2748 err_expect:
2749 free_percpu(net->ct.stat);
2750 err_pcpu_lists:
2751 free_percpu(net->ct.pcpu_lists);
2752 err_stat:
2753 return ret;
2754 }
2755