1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Connection state tracking for netfilter.  This is separated from,
3    but required by, the NAT layer; it can also be used by an iptables
4    extension. */
5 
6 /* (C) 1999-2001 Paul `Rusty' Russell
7  * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
8  * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
9  * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
10  */
11 
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 
14 #include <linux/types.h>
15 #include <linux/netfilter.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/skbuff.h>
19 #include <linux/proc_fs.h>
20 #include <linux/vmalloc.h>
21 #include <linux/stddef.h>
22 #include <linux/slab.h>
23 #include <linux/random.h>
24 #include <linux/jhash.h>
25 #include <linux/siphash.h>
26 #include <linux/err.h>
27 #include <linux/percpu.h>
28 #include <linux/moduleparam.h>
29 #include <linux/notifier.h>
30 #include <linux/kernel.h>
31 #include <linux/netdevice.h>
32 #include <linux/socket.h>
33 #include <linux/mm.h>
34 #include <linux/nsproxy.h>
35 #include <linux/rculist_nulls.h>
36 
37 #include <net/netfilter/nf_conntrack.h>
38 #include <net/netfilter/nf_conntrack_l4proto.h>
39 #include <net/netfilter/nf_conntrack_expect.h>
40 #include <net/netfilter/nf_conntrack_helper.h>
41 #include <net/netfilter/nf_conntrack_seqadj.h>
42 #include <net/netfilter/nf_conntrack_core.h>
43 #include <net/netfilter/nf_conntrack_extend.h>
44 #include <net/netfilter/nf_conntrack_acct.h>
45 #include <net/netfilter/nf_conntrack_ecache.h>
46 #include <net/netfilter/nf_conntrack_zones.h>
47 #include <net/netfilter/nf_conntrack_timestamp.h>
48 #include <net/netfilter/nf_conntrack_timeout.h>
49 #include <net/netfilter/nf_conntrack_labels.h>
50 #include <net/netfilter/nf_conntrack_synproxy.h>
51 #include <net/netfilter/nf_nat.h>
52 #include <net/netfilter/nf_nat_helper.h>
53 #include <net/netns/hash.h>
54 #include <net/ip.h>
55 
56 #include "nf_internals.h"
57 
58 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
59 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
60 
61 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
62 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
63 
64 struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
65 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
66 
67 struct conntrack_gc_work {
68 	struct delayed_work	dwork;
69 	u32			last_bucket;
70 	bool			exiting;
71 	bool			early_drop;
72 	long			next_gc_run;
73 };
74 
75 static __read_mostly struct kmem_cache *nf_conntrack_cachep;
76 static DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
77 static __read_mostly bool nf_conntrack_locks_all;
78 
79 /* every gc cycle scans at most 1/GC_MAX_BUCKETS_DIV part of table */
80 #define GC_MAX_BUCKETS_DIV	128u
81 /* upper bound of full table scan */
82 #define GC_MAX_SCAN_JIFFIES	(16u * HZ)
83 /* desired ratio of entries found to be expired */
84 #define GC_EVICT_RATIO	50u
85 
86 static struct conntrack_gc_work conntrack_gc_work;
87 
nf_conntrack_lock(spinlock_t * lock)88 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
89 {
90 	/* 1) Acquire the lock */
91 	spin_lock(lock);
92 
93 	/* 2) read nf_conntrack_locks_all, with ACQUIRE semantics
94 	 * It pairs with the smp_store_release() in nf_conntrack_all_unlock()
95 	 */
96 	if (likely(smp_load_acquire(&nf_conntrack_locks_all) == false))
97 		return;
98 
99 	/* fast path failed, unlock */
100 	spin_unlock(lock);
101 
102 	/* Slow path 1) get global lock */
103 	spin_lock(&nf_conntrack_locks_all_lock);
104 
105 	/* Slow path 2) get the lock we want */
106 	spin_lock(lock);
107 
108 	/* Slow path 3) release the global lock */
109 	spin_unlock(&nf_conntrack_locks_all_lock);
110 }
111 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
112 
nf_conntrack_double_unlock(unsigned int h1,unsigned int h2)113 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
114 {
115 	h1 %= CONNTRACK_LOCKS;
116 	h2 %= CONNTRACK_LOCKS;
117 	spin_unlock(&nf_conntrack_locks[h1]);
118 	if (h1 != h2)
119 		spin_unlock(&nf_conntrack_locks[h2]);
120 }
121 
122 /* return true if we need to recompute hashes (in case hash table was resized) */
nf_conntrack_double_lock(struct net * net,unsigned int h1,unsigned int h2,unsigned int sequence)123 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
124 				     unsigned int h2, unsigned int sequence)
125 {
126 	h1 %= CONNTRACK_LOCKS;
127 	h2 %= CONNTRACK_LOCKS;
128 	if (h1 <= h2) {
129 		nf_conntrack_lock(&nf_conntrack_locks[h1]);
130 		if (h1 != h2)
131 			spin_lock_nested(&nf_conntrack_locks[h2],
132 					 SINGLE_DEPTH_NESTING);
133 	} else {
134 		nf_conntrack_lock(&nf_conntrack_locks[h2]);
135 		spin_lock_nested(&nf_conntrack_locks[h1],
136 				 SINGLE_DEPTH_NESTING);
137 	}
138 	if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
139 		nf_conntrack_double_unlock(h1, h2);
140 		return true;
141 	}
142 	return false;
143 }
144 
nf_conntrack_all_lock(void)145 static void nf_conntrack_all_lock(void)
146 	__acquires(&nf_conntrack_locks_all_lock)
147 {
148 	int i;
149 
150 	spin_lock(&nf_conntrack_locks_all_lock);
151 
152 	nf_conntrack_locks_all = true;
153 
154 	for (i = 0; i < CONNTRACK_LOCKS; i++) {
155 		spin_lock(&nf_conntrack_locks[i]);
156 
157 		/* This spin_unlock provides the "release" to ensure that
158 		 * nf_conntrack_locks_all==true is visible to everyone that
159 		 * acquired spin_lock(&nf_conntrack_locks[]).
160 		 */
161 		spin_unlock(&nf_conntrack_locks[i]);
162 	}
163 }
164 
nf_conntrack_all_unlock(void)165 static void nf_conntrack_all_unlock(void)
166 	__releases(&nf_conntrack_locks_all_lock)
167 {
168 	/* All prior stores must be complete before we clear
169 	 * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
170 	 * might observe the false value but not the entire
171 	 * critical section.
172 	 * It pairs with the smp_load_acquire() in nf_conntrack_lock()
173 	 */
174 	smp_store_release(&nf_conntrack_locks_all, false);
175 	spin_unlock(&nf_conntrack_locks_all_lock);
176 }
177 
178 unsigned int nf_conntrack_htable_size __read_mostly;
179 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
180 
181 unsigned int nf_conntrack_max __read_mostly;
182 EXPORT_SYMBOL_GPL(nf_conntrack_max);
183 seqcount_spinlock_t nf_conntrack_generation __read_mostly;
184 static unsigned int nf_conntrack_hash_rnd __read_mostly;
185 
hash_conntrack_raw(const struct nf_conntrack_tuple * tuple,const struct net * net)186 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
187 			      const struct net *net)
188 {
189 	unsigned int n;
190 	u32 seed;
191 
192 	get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
193 
194 	/* The direction must be ignored, so we hash everything up to the
195 	 * destination ports (which is a multiple of 4) and treat the last
196 	 * three bytes manually.
197 	 */
198 	seed = nf_conntrack_hash_rnd ^ net_hash_mix(net);
199 	n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
200 	return jhash2((u32 *)tuple, n, seed ^
201 		      (((__force __u16)tuple->dst.u.all << 16) |
202 		      tuple->dst.protonum));
203 }
204 
scale_hash(u32 hash)205 static u32 scale_hash(u32 hash)
206 {
207 	return reciprocal_scale(hash, nf_conntrack_htable_size);
208 }
209 
__hash_conntrack(const struct net * net,const struct nf_conntrack_tuple * tuple,unsigned int size)210 static u32 __hash_conntrack(const struct net *net,
211 			    const struct nf_conntrack_tuple *tuple,
212 			    unsigned int size)
213 {
214 	return reciprocal_scale(hash_conntrack_raw(tuple, net), size);
215 }
216 
hash_conntrack(const struct net * net,const struct nf_conntrack_tuple * tuple)217 static u32 hash_conntrack(const struct net *net,
218 			  const struct nf_conntrack_tuple *tuple)
219 {
220 	return scale_hash(hash_conntrack_raw(tuple, net));
221 }
222 
nf_ct_get_tuple_ports(const struct sk_buff * skb,unsigned int dataoff,struct nf_conntrack_tuple * tuple)223 static bool nf_ct_get_tuple_ports(const struct sk_buff *skb,
224 				  unsigned int dataoff,
225 				  struct nf_conntrack_tuple *tuple)
226 {	struct {
227 		__be16 sport;
228 		__be16 dport;
229 	} _inet_hdr, *inet_hdr;
230 
231 	/* Actually only need first 4 bytes to get ports. */
232 	inet_hdr = skb_header_pointer(skb, dataoff, sizeof(_inet_hdr), &_inet_hdr);
233 	if (!inet_hdr)
234 		return false;
235 
236 	tuple->src.u.udp.port = inet_hdr->sport;
237 	tuple->dst.u.udp.port = inet_hdr->dport;
238 	return true;
239 }
240 
241 static bool
nf_ct_get_tuple(const struct sk_buff * skb,unsigned int nhoff,unsigned int dataoff,u_int16_t l3num,u_int8_t protonum,struct net * net,struct nf_conntrack_tuple * tuple)242 nf_ct_get_tuple(const struct sk_buff *skb,
243 		unsigned int nhoff,
244 		unsigned int dataoff,
245 		u_int16_t l3num,
246 		u_int8_t protonum,
247 		struct net *net,
248 		struct nf_conntrack_tuple *tuple)
249 {
250 	unsigned int size;
251 	const __be32 *ap;
252 	__be32 _addrs[8];
253 
254 	memset(tuple, 0, sizeof(*tuple));
255 
256 	tuple->src.l3num = l3num;
257 	switch (l3num) {
258 	case NFPROTO_IPV4:
259 		nhoff += offsetof(struct iphdr, saddr);
260 		size = 2 * sizeof(__be32);
261 		break;
262 	case NFPROTO_IPV6:
263 		nhoff += offsetof(struct ipv6hdr, saddr);
264 		size = sizeof(_addrs);
265 		break;
266 	default:
267 		return true;
268 	}
269 
270 	ap = skb_header_pointer(skb, nhoff, size, _addrs);
271 	if (!ap)
272 		return false;
273 
274 	switch (l3num) {
275 	case NFPROTO_IPV4:
276 		tuple->src.u3.ip = ap[0];
277 		tuple->dst.u3.ip = ap[1];
278 		break;
279 	case NFPROTO_IPV6:
280 		memcpy(tuple->src.u3.ip6, ap, sizeof(tuple->src.u3.ip6));
281 		memcpy(tuple->dst.u3.ip6, ap + 4, sizeof(tuple->dst.u3.ip6));
282 		break;
283 	}
284 
285 	tuple->dst.protonum = protonum;
286 	tuple->dst.dir = IP_CT_DIR_ORIGINAL;
287 
288 	switch (protonum) {
289 #if IS_ENABLED(CONFIG_IPV6)
290 	case IPPROTO_ICMPV6:
291 		return icmpv6_pkt_to_tuple(skb, dataoff, net, tuple);
292 #endif
293 	case IPPROTO_ICMP:
294 		return icmp_pkt_to_tuple(skb, dataoff, net, tuple);
295 #ifdef CONFIG_NF_CT_PROTO_GRE
296 	case IPPROTO_GRE:
297 		return gre_pkt_to_tuple(skb, dataoff, net, tuple);
298 #endif
299 	case IPPROTO_TCP:
300 	case IPPROTO_UDP: /* fallthrough */
301 		return nf_ct_get_tuple_ports(skb, dataoff, tuple);
302 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
303 	case IPPROTO_UDPLITE:
304 		return nf_ct_get_tuple_ports(skb, dataoff, tuple);
305 #endif
306 #ifdef CONFIG_NF_CT_PROTO_SCTP
307 	case IPPROTO_SCTP:
308 		return nf_ct_get_tuple_ports(skb, dataoff, tuple);
309 #endif
310 #ifdef CONFIG_NF_CT_PROTO_DCCP
311 	case IPPROTO_DCCP:
312 		return nf_ct_get_tuple_ports(skb, dataoff, tuple);
313 #endif
314 	default:
315 		break;
316 	}
317 
318 	return true;
319 }
320 
ipv4_get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u_int8_t * protonum)321 static int ipv4_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
322 			    u_int8_t *protonum)
323 {
324 	int dataoff = -1;
325 	const struct iphdr *iph;
326 	struct iphdr _iph;
327 
328 	iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
329 	if (!iph)
330 		return -1;
331 
332 	/* Conntrack defragments packets, we might still see fragments
333 	 * inside ICMP packets though.
334 	 */
335 	if (iph->frag_off & htons(IP_OFFSET))
336 		return -1;
337 
338 	dataoff = nhoff + (iph->ihl << 2);
339 	*protonum = iph->protocol;
340 
341 	/* Check bogus IP headers */
342 	if (dataoff > skb->len) {
343 		pr_debug("bogus IPv4 packet: nhoff %u, ihl %u, skblen %u\n",
344 			 nhoff, iph->ihl << 2, skb->len);
345 		return -1;
346 	}
347 	return dataoff;
348 }
349 
350 #if IS_ENABLED(CONFIG_IPV6)
ipv6_get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u8 * protonum)351 static int ipv6_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
352 			    u8 *protonum)
353 {
354 	int protoff = -1;
355 	unsigned int extoff = nhoff + sizeof(struct ipv6hdr);
356 	__be16 frag_off;
357 	u8 nexthdr;
358 
359 	if (skb_copy_bits(skb, nhoff + offsetof(struct ipv6hdr, nexthdr),
360 			  &nexthdr, sizeof(nexthdr)) != 0) {
361 		pr_debug("can't get nexthdr\n");
362 		return -1;
363 	}
364 	protoff = ipv6_skip_exthdr(skb, extoff, &nexthdr, &frag_off);
365 	/*
366 	 * (protoff == skb->len) means the packet has not data, just
367 	 * IPv6 and possibly extensions headers, but it is tracked anyway
368 	 */
369 	if (protoff < 0 || (frag_off & htons(~0x7)) != 0) {
370 		pr_debug("can't find proto in pkt\n");
371 		return -1;
372 	}
373 
374 	*protonum = nexthdr;
375 	return protoff;
376 }
377 #endif
378 
get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u8 pf,u8 * l4num)379 static int get_l4proto(const struct sk_buff *skb,
380 		       unsigned int nhoff, u8 pf, u8 *l4num)
381 {
382 	switch (pf) {
383 	case NFPROTO_IPV4:
384 		return ipv4_get_l4proto(skb, nhoff, l4num);
385 #if IS_ENABLED(CONFIG_IPV6)
386 	case NFPROTO_IPV6:
387 		return ipv6_get_l4proto(skb, nhoff, l4num);
388 #endif
389 	default:
390 		*l4num = 0;
391 		break;
392 	}
393 	return -1;
394 }
395 
nf_ct_get_tuplepr(const struct sk_buff * skb,unsigned int nhoff,u_int16_t l3num,struct net * net,struct nf_conntrack_tuple * tuple)396 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
397 		       u_int16_t l3num,
398 		       struct net *net, struct nf_conntrack_tuple *tuple)
399 {
400 	u8 protonum;
401 	int protoff;
402 
403 	protoff = get_l4proto(skb, nhoff, l3num, &protonum);
404 	if (protoff <= 0)
405 		return false;
406 
407 	return nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple);
408 }
409 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
410 
411 bool
nf_ct_invert_tuple(struct nf_conntrack_tuple * inverse,const struct nf_conntrack_tuple * orig)412 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
413 		   const struct nf_conntrack_tuple *orig)
414 {
415 	memset(inverse, 0, sizeof(*inverse));
416 
417 	inverse->src.l3num = orig->src.l3num;
418 
419 	switch (orig->src.l3num) {
420 	case NFPROTO_IPV4:
421 		inverse->src.u3.ip = orig->dst.u3.ip;
422 		inverse->dst.u3.ip = orig->src.u3.ip;
423 		break;
424 	case NFPROTO_IPV6:
425 		inverse->src.u3.in6 = orig->dst.u3.in6;
426 		inverse->dst.u3.in6 = orig->src.u3.in6;
427 		break;
428 	default:
429 		break;
430 	}
431 
432 	inverse->dst.dir = !orig->dst.dir;
433 
434 	inverse->dst.protonum = orig->dst.protonum;
435 
436 	switch (orig->dst.protonum) {
437 	case IPPROTO_ICMP:
438 		return nf_conntrack_invert_icmp_tuple(inverse, orig);
439 #if IS_ENABLED(CONFIG_IPV6)
440 	case IPPROTO_ICMPV6:
441 		return nf_conntrack_invert_icmpv6_tuple(inverse, orig);
442 #endif
443 	}
444 
445 	inverse->src.u.all = orig->dst.u.all;
446 	inverse->dst.u.all = orig->src.u.all;
447 	return true;
448 }
449 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
450 
451 /* Generate a almost-unique pseudo-id for a given conntrack.
452  *
453  * intentionally doesn't re-use any of the seeds used for hash
454  * table location, we assume id gets exposed to userspace.
455  *
456  * Following nf_conn items do not change throughout lifetime
457  * of the nf_conn:
458  *
459  * 1. nf_conn address
460  * 2. nf_conn->master address (normally NULL)
461  * 3. the associated net namespace
462  * 4. the original direction tuple
463  */
nf_ct_get_id(const struct nf_conn * ct)464 u32 nf_ct_get_id(const struct nf_conn *ct)
465 {
466 	static __read_mostly siphash_key_t ct_id_seed;
467 	unsigned long a, b, c, d;
468 
469 	net_get_random_once(&ct_id_seed, sizeof(ct_id_seed));
470 
471 	a = (unsigned long)ct;
472 	b = (unsigned long)ct->master;
473 	c = (unsigned long)nf_ct_net(ct);
474 	d = (unsigned long)siphash(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
475 				   sizeof(ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple),
476 				   &ct_id_seed);
477 #ifdef CONFIG_64BIT
478 	return siphash_4u64((u64)a, (u64)b, (u64)c, (u64)d, &ct_id_seed);
479 #else
480 	return siphash_4u32((u32)a, (u32)b, (u32)c, (u32)d, &ct_id_seed);
481 #endif
482 }
483 EXPORT_SYMBOL_GPL(nf_ct_get_id);
484 
485 static void
clean_from_lists(struct nf_conn * ct)486 clean_from_lists(struct nf_conn *ct)
487 {
488 	pr_debug("clean_from_lists(%p)\n", ct);
489 	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
490 	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
491 
492 	/* Destroy all pending expectations */
493 	nf_ct_remove_expectations(ct);
494 }
495 
496 /* must be called with local_bh_disable */
nf_ct_add_to_dying_list(struct nf_conn * ct)497 static void nf_ct_add_to_dying_list(struct nf_conn *ct)
498 {
499 	struct ct_pcpu *pcpu;
500 
501 	/* add this conntrack to the (per cpu) dying list */
502 	ct->cpu = smp_processor_id();
503 	pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
504 
505 	spin_lock(&pcpu->lock);
506 	hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
507 			     &pcpu->dying);
508 	spin_unlock(&pcpu->lock);
509 }
510 
511 /* must be called with local_bh_disable */
nf_ct_add_to_unconfirmed_list(struct nf_conn * ct)512 static void nf_ct_add_to_unconfirmed_list(struct nf_conn *ct)
513 {
514 	struct ct_pcpu *pcpu;
515 
516 	/* add this conntrack to the (per cpu) unconfirmed list */
517 	ct->cpu = smp_processor_id();
518 	pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
519 
520 	spin_lock(&pcpu->lock);
521 	hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
522 			     &pcpu->unconfirmed);
523 	spin_unlock(&pcpu->lock);
524 }
525 
526 /* must be called with local_bh_disable */
nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn * ct)527 static void nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn *ct)
528 {
529 	struct ct_pcpu *pcpu;
530 
531 	/* We overload first tuple to link into unconfirmed or dying list.*/
532 	pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
533 
534 	spin_lock(&pcpu->lock);
535 	BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
536 	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
537 	spin_unlock(&pcpu->lock);
538 }
539 
540 #define NFCT_ALIGN(len)	(((len) + NFCT_INFOMASK) & ~NFCT_INFOMASK)
541 
542 /* Released via destroy_conntrack() */
nf_ct_tmpl_alloc(struct net * net,const struct nf_conntrack_zone * zone,gfp_t flags)543 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
544 				 const struct nf_conntrack_zone *zone,
545 				 gfp_t flags)
546 {
547 	struct nf_conn *tmpl, *p;
548 
549 	if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK) {
550 		tmpl = kzalloc(sizeof(*tmpl) + NFCT_INFOMASK, flags);
551 		if (!tmpl)
552 			return NULL;
553 
554 		p = tmpl;
555 		tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
556 		if (tmpl != p) {
557 			tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
558 			tmpl->proto.tmpl_padto = (char *)tmpl - (char *)p;
559 		}
560 	} else {
561 		tmpl = kzalloc(sizeof(*tmpl), flags);
562 		if (!tmpl)
563 			return NULL;
564 	}
565 
566 	tmpl->status = IPS_TEMPLATE;
567 	write_pnet(&tmpl->ct_net, net);
568 	nf_ct_zone_add(tmpl, zone);
569 	atomic_set(&tmpl->ct_general.use, 0);
570 
571 	return tmpl;
572 }
573 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
574 
nf_ct_tmpl_free(struct nf_conn * tmpl)575 void nf_ct_tmpl_free(struct nf_conn *tmpl)
576 {
577 	nf_ct_ext_destroy(tmpl);
578 
579 	if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK)
580 		kfree((char *)tmpl - tmpl->proto.tmpl_padto);
581 	else
582 		kfree(tmpl);
583 }
584 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
585 
destroy_gre_conntrack(struct nf_conn * ct)586 static void destroy_gre_conntrack(struct nf_conn *ct)
587 {
588 #ifdef CONFIG_NF_CT_PROTO_GRE
589 	struct nf_conn *master = ct->master;
590 
591 	if (master)
592 		nf_ct_gre_keymap_destroy(master);
593 #endif
594 }
595 
596 static void
destroy_conntrack(struct nf_conntrack * nfct)597 destroy_conntrack(struct nf_conntrack *nfct)
598 {
599 	struct nf_conn *ct = (struct nf_conn *)nfct;
600 
601 	pr_debug("destroy_conntrack(%p)\n", ct);
602 	WARN_ON(atomic_read(&nfct->use) != 0);
603 
604 	if (unlikely(nf_ct_is_template(ct))) {
605 		nf_ct_tmpl_free(ct);
606 		return;
607 	}
608 
609 	if (unlikely(nf_ct_protonum(ct) == IPPROTO_GRE))
610 		destroy_gre_conntrack(ct);
611 
612 	local_bh_disable();
613 	/* Expectations will have been removed in clean_from_lists,
614 	 * except TFTP can create an expectation on the first packet,
615 	 * before connection is in the list, so we need to clean here,
616 	 * too.
617 	 */
618 	nf_ct_remove_expectations(ct);
619 
620 	nf_ct_del_from_dying_or_unconfirmed_list(ct);
621 
622 	local_bh_enable();
623 
624 	if (ct->master)
625 		nf_ct_put(ct->master);
626 
627 	pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
628 	nf_conntrack_free(ct);
629 }
630 
nf_ct_delete_from_lists(struct nf_conn * ct)631 static void nf_ct_delete_from_lists(struct nf_conn *ct)
632 {
633 	struct net *net = nf_ct_net(ct);
634 	unsigned int hash, reply_hash;
635 	unsigned int sequence;
636 
637 	nf_ct_helper_destroy(ct);
638 
639 	local_bh_disable();
640 	do {
641 		sequence = read_seqcount_begin(&nf_conntrack_generation);
642 		hash = hash_conntrack(net,
643 				      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
644 		reply_hash = hash_conntrack(net,
645 					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
646 	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
647 
648 	clean_from_lists(ct);
649 	nf_conntrack_double_unlock(hash, reply_hash);
650 
651 	nf_ct_add_to_dying_list(ct);
652 
653 	local_bh_enable();
654 }
655 
nf_ct_delete(struct nf_conn * ct,u32 portid,int report)656 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
657 {
658 	struct nf_conn_tstamp *tstamp;
659 
660 	if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
661 		return false;
662 
663 	tstamp = nf_conn_tstamp_find(ct);
664 	if (tstamp && tstamp->stop == 0)
665 		tstamp->stop = ktime_get_real_ns();
666 
667 	if (nf_conntrack_event_report(IPCT_DESTROY, ct,
668 				    portid, report) < 0) {
669 		/* destroy event was not delivered. nf_ct_put will
670 		 * be done by event cache worker on redelivery.
671 		 */
672 		nf_ct_delete_from_lists(ct);
673 		nf_conntrack_ecache_delayed_work(nf_ct_net(ct));
674 		return false;
675 	}
676 
677 	nf_conntrack_ecache_work(nf_ct_net(ct));
678 	nf_ct_delete_from_lists(ct);
679 	nf_ct_put(ct);
680 	return true;
681 }
682 EXPORT_SYMBOL_GPL(nf_ct_delete);
683 
684 static inline bool
nf_ct_key_equal(struct nf_conntrack_tuple_hash * h,const struct nf_conntrack_tuple * tuple,const struct nf_conntrack_zone * zone,const struct net * net)685 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
686 		const struct nf_conntrack_tuple *tuple,
687 		const struct nf_conntrack_zone *zone,
688 		const struct net *net)
689 {
690 	struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
691 
692 	/* A conntrack can be recreated with the equal tuple,
693 	 * so we need to check that the conntrack is confirmed
694 	 */
695 	return nf_ct_tuple_equal(tuple, &h->tuple) &&
696 	       nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
697 	       nf_ct_is_confirmed(ct) &&
698 	       net_eq(net, nf_ct_net(ct));
699 }
700 
701 static inline bool
nf_ct_match(const struct nf_conn * ct1,const struct nf_conn * ct2)702 nf_ct_match(const struct nf_conn *ct1, const struct nf_conn *ct2)
703 {
704 	return nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
705 				 &ct2->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
706 	       nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_REPLY].tuple,
707 				 &ct2->tuplehash[IP_CT_DIR_REPLY].tuple) &&
708 	       nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_ORIGINAL) &&
709 	       nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_REPLY) &&
710 	       net_eq(nf_ct_net(ct1), nf_ct_net(ct2));
711 }
712 
713 /* caller must hold rcu readlock and none of the nf_conntrack_locks */
nf_ct_gc_expired(struct nf_conn * ct)714 static void nf_ct_gc_expired(struct nf_conn *ct)
715 {
716 	if (!atomic_inc_not_zero(&ct->ct_general.use))
717 		return;
718 
719 	if (nf_ct_should_gc(ct))
720 		nf_ct_kill(ct);
721 
722 	nf_ct_put(ct);
723 }
724 
725 /*
726  * Warning :
727  * - Caller must take a reference on returned object
728  *   and recheck nf_ct_tuple_equal(tuple, &h->tuple)
729  */
730 static struct nf_conntrack_tuple_hash *
____nf_conntrack_find(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple,u32 hash)731 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
732 		      const struct nf_conntrack_tuple *tuple, u32 hash)
733 {
734 	struct nf_conntrack_tuple_hash *h;
735 	struct hlist_nulls_head *ct_hash;
736 	struct hlist_nulls_node *n;
737 	unsigned int bucket, hsize;
738 
739 begin:
740 	nf_conntrack_get_ht(&ct_hash, &hsize);
741 	bucket = reciprocal_scale(hash, hsize);
742 
743 	hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
744 		struct nf_conn *ct;
745 
746 		ct = nf_ct_tuplehash_to_ctrack(h);
747 		if (nf_ct_is_expired(ct)) {
748 			nf_ct_gc_expired(ct);
749 			continue;
750 		}
751 
752 		if (nf_ct_key_equal(h, tuple, zone, net))
753 			return h;
754 	}
755 	/*
756 	 * if the nulls value we got at the end of this lookup is
757 	 * not the expected one, we must restart lookup.
758 	 * We probably met an item that was moved to another chain.
759 	 */
760 	if (get_nulls_value(n) != bucket) {
761 		NF_CT_STAT_INC_ATOMIC(net, search_restart);
762 		goto begin;
763 	}
764 
765 	return NULL;
766 }
767 
768 /* Find a connection corresponding to a tuple. */
769 static struct nf_conntrack_tuple_hash *
__nf_conntrack_find_get(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple,u32 hash)770 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
771 			const struct nf_conntrack_tuple *tuple, u32 hash)
772 {
773 	struct nf_conntrack_tuple_hash *h;
774 	struct nf_conn *ct;
775 
776 	rcu_read_lock();
777 
778 	h = ____nf_conntrack_find(net, zone, tuple, hash);
779 	if (h) {
780 		/* We have a candidate that matches the tuple we're interested
781 		 * in, try to obtain a reference and re-check tuple
782 		 */
783 		ct = nf_ct_tuplehash_to_ctrack(h);
784 		if (likely(atomic_inc_not_zero(&ct->ct_general.use))) {
785 			if (likely(nf_ct_key_equal(h, tuple, zone, net)))
786 				goto found;
787 
788 			/* TYPESAFE_BY_RCU recycled the candidate */
789 			nf_ct_put(ct);
790 		}
791 
792 		h = NULL;
793 	}
794 found:
795 	rcu_read_unlock();
796 
797 	return h;
798 }
799 
800 struct nf_conntrack_tuple_hash *
nf_conntrack_find_get(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple)801 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
802 		      const struct nf_conntrack_tuple *tuple)
803 {
804 	return __nf_conntrack_find_get(net, zone, tuple,
805 				       hash_conntrack_raw(tuple, net));
806 }
807 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
808 
__nf_conntrack_hash_insert(struct nf_conn * ct,unsigned int hash,unsigned int reply_hash)809 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
810 				       unsigned int hash,
811 				       unsigned int reply_hash)
812 {
813 	hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
814 			   &nf_conntrack_hash[hash]);
815 	hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
816 			   &nf_conntrack_hash[reply_hash]);
817 }
818 
819 int
nf_conntrack_hash_check_insert(struct nf_conn * ct)820 nf_conntrack_hash_check_insert(struct nf_conn *ct)
821 {
822 	const struct nf_conntrack_zone *zone;
823 	struct net *net = nf_ct_net(ct);
824 	unsigned int hash, reply_hash;
825 	struct nf_conntrack_tuple_hash *h;
826 	struct hlist_nulls_node *n;
827 	unsigned int sequence;
828 
829 	zone = nf_ct_zone(ct);
830 
831 	local_bh_disable();
832 	do {
833 		sequence = read_seqcount_begin(&nf_conntrack_generation);
834 		hash = hash_conntrack(net,
835 				      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
836 		reply_hash = hash_conntrack(net,
837 					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
838 	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
839 
840 	/* See if there's one in the list already, including reverse */
841 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
842 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
843 				    zone, net))
844 			goto out;
845 
846 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
847 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
848 				    zone, net))
849 			goto out;
850 
851 	smp_wmb();
852 	/* The caller holds a reference to this object */
853 	atomic_set(&ct->ct_general.use, 2);
854 	__nf_conntrack_hash_insert(ct, hash, reply_hash);
855 	nf_conntrack_double_unlock(hash, reply_hash);
856 	NF_CT_STAT_INC(net, insert);
857 	local_bh_enable();
858 	return 0;
859 
860 out:
861 	nf_conntrack_double_unlock(hash, reply_hash);
862 	local_bh_enable();
863 	return -EEXIST;
864 }
865 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
866 
nf_ct_acct_add(struct nf_conn * ct,u32 dir,unsigned int packets,unsigned int bytes)867 void nf_ct_acct_add(struct nf_conn *ct, u32 dir, unsigned int packets,
868 		    unsigned int bytes)
869 {
870 	struct nf_conn_acct *acct;
871 
872 	acct = nf_conn_acct_find(ct);
873 	if (acct) {
874 		struct nf_conn_counter *counter = acct->counter;
875 
876 		atomic64_add(packets, &counter[dir].packets);
877 		atomic64_add(bytes, &counter[dir].bytes);
878 	}
879 }
880 EXPORT_SYMBOL_GPL(nf_ct_acct_add);
881 
nf_ct_acct_merge(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct nf_conn * loser_ct)882 static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
883 			     const struct nf_conn *loser_ct)
884 {
885 	struct nf_conn_acct *acct;
886 
887 	acct = nf_conn_acct_find(loser_ct);
888 	if (acct) {
889 		struct nf_conn_counter *counter = acct->counter;
890 		unsigned int bytes;
891 
892 		/* u32 should be fine since we must have seen one packet. */
893 		bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
894 		nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), bytes);
895 	}
896 }
897 
__nf_conntrack_insert_prepare(struct nf_conn * ct)898 static void __nf_conntrack_insert_prepare(struct nf_conn *ct)
899 {
900 	struct nf_conn_tstamp *tstamp;
901 
902 	atomic_inc(&ct->ct_general.use);
903 	ct->status |= IPS_CONFIRMED;
904 
905 	/* set conntrack timestamp, if enabled. */
906 	tstamp = nf_conn_tstamp_find(ct);
907 	if (tstamp)
908 		tstamp->start = ktime_get_real_ns();
909 }
910 
911 /* caller must hold locks to prevent concurrent changes */
__nf_ct_resolve_clash(struct sk_buff * skb,struct nf_conntrack_tuple_hash * h)912 static int __nf_ct_resolve_clash(struct sk_buff *skb,
913 				 struct nf_conntrack_tuple_hash *h)
914 {
915 	/* This is the conntrack entry already in hashes that won race. */
916 	struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
917 	enum ip_conntrack_info ctinfo;
918 	struct nf_conn *loser_ct;
919 
920 	loser_ct = nf_ct_get(skb, &ctinfo);
921 
922 	if (nf_ct_is_dying(ct))
923 		return NF_DROP;
924 
925 	if (((ct->status & IPS_NAT_DONE_MASK) == 0) ||
926 	    nf_ct_match(ct, loser_ct)) {
927 		struct net *net = nf_ct_net(ct);
928 
929 		nf_conntrack_get(&ct->ct_general);
930 
931 		nf_ct_acct_merge(ct, ctinfo, loser_ct);
932 		nf_ct_add_to_dying_list(loser_ct);
933 		nf_conntrack_put(&loser_ct->ct_general);
934 		nf_ct_set(skb, ct, ctinfo);
935 
936 		NF_CT_STAT_INC(net, clash_resolve);
937 		return NF_ACCEPT;
938 	}
939 
940 	return NF_DROP;
941 }
942 
943 /**
944  * nf_ct_resolve_clash_harder - attempt to insert clashing conntrack entry
945  *
946  * @skb: skb that causes the collision
947  * @repl_idx: hash slot for reply direction
948  *
949  * Called when origin or reply direction had a clash.
950  * The skb can be handled without packet drop provided the reply direction
951  * is unique or there the existing entry has the identical tuple in both
952  * directions.
953  *
954  * Caller must hold conntrack table locks to prevent concurrent updates.
955  *
956  * Returns NF_DROP if the clash could not be handled.
957  */
nf_ct_resolve_clash_harder(struct sk_buff * skb,u32 repl_idx)958 static int nf_ct_resolve_clash_harder(struct sk_buff *skb, u32 repl_idx)
959 {
960 	struct nf_conn *loser_ct = (struct nf_conn *)skb_nfct(skb);
961 	const struct nf_conntrack_zone *zone;
962 	struct nf_conntrack_tuple_hash *h;
963 	struct hlist_nulls_node *n;
964 	struct net *net;
965 
966 	zone = nf_ct_zone(loser_ct);
967 	net = nf_ct_net(loser_ct);
968 
969 	/* Reply direction must never result in a clash, unless both origin
970 	 * and reply tuples are identical.
971 	 */
972 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[repl_idx], hnnode) {
973 		if (nf_ct_key_equal(h,
974 				    &loser_ct->tuplehash[IP_CT_DIR_REPLY].tuple,
975 				    zone, net))
976 			return __nf_ct_resolve_clash(skb, h);
977 	}
978 
979 	/* We want the clashing entry to go away real soon: 1 second timeout. */
980 	loser_ct->timeout = nfct_time_stamp + HZ;
981 
982 	/* IPS_NAT_CLASH removes the entry automatically on the first
983 	 * reply.  Also prevents UDP tracker from moving the entry to
984 	 * ASSURED state, i.e. the entry can always be evicted under
985 	 * pressure.
986 	 */
987 	loser_ct->status |= IPS_FIXED_TIMEOUT | IPS_NAT_CLASH;
988 
989 	__nf_conntrack_insert_prepare(loser_ct);
990 
991 	/* fake add for ORIGINAL dir: we want lookups to only find the entry
992 	 * already in the table.  This also hides the clashing entry from
993 	 * ctnetlink iteration, i.e. conntrack -L won't show them.
994 	 */
995 	hlist_nulls_add_fake(&loser_ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
996 
997 	hlist_nulls_add_head_rcu(&loser_ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
998 				 &nf_conntrack_hash[repl_idx]);
999 
1000 	NF_CT_STAT_INC(net, clash_resolve);
1001 	return NF_ACCEPT;
1002 }
1003 
1004 /**
1005  * nf_ct_resolve_clash - attempt to handle clash without packet drop
1006  *
1007  * @skb: skb that causes the clash
1008  * @h: tuplehash of the clashing entry already in table
1009  * @reply_hash: hash slot for reply direction
1010  *
1011  * A conntrack entry can be inserted to the connection tracking table
1012  * if there is no existing entry with an identical tuple.
1013  *
1014  * If there is one, @skb (and the assocated, unconfirmed conntrack) has
1015  * to be dropped.  In case @skb is retransmitted, next conntrack lookup
1016  * will find the already-existing entry.
1017  *
1018  * The major problem with such packet drop is the extra delay added by
1019  * the packet loss -- it will take some time for a retransmit to occur
1020  * (or the sender to time out when waiting for a reply).
1021  *
1022  * This function attempts to handle the situation without packet drop.
1023  *
1024  * If @skb has no NAT transformation or if the colliding entries are
1025  * exactly the same, only the to-be-confirmed conntrack entry is discarded
1026  * and @skb is associated with the conntrack entry already in the table.
1027  *
1028  * Failing that, the new, unconfirmed conntrack is still added to the table
1029  * provided that the collision only occurs in the ORIGINAL direction.
1030  * The new entry will be added only in the non-clashing REPLY direction,
1031  * so packets in the ORIGINAL direction will continue to match the existing
1032  * entry.  The new entry will also have a fixed timeout so it expires --
1033  * due to the collision, it will only see reply traffic.
1034  *
1035  * Returns NF_DROP if the clash could not be resolved.
1036  */
1037 static __cold noinline int
nf_ct_resolve_clash(struct sk_buff * skb,struct nf_conntrack_tuple_hash * h,u32 reply_hash)1038 nf_ct_resolve_clash(struct sk_buff *skb, struct nf_conntrack_tuple_hash *h,
1039 		    u32 reply_hash)
1040 {
1041 	/* This is the conntrack entry already in hashes that won race. */
1042 	struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
1043 	const struct nf_conntrack_l4proto *l4proto;
1044 	enum ip_conntrack_info ctinfo;
1045 	struct nf_conn *loser_ct;
1046 	struct net *net;
1047 	int ret;
1048 
1049 	loser_ct = nf_ct_get(skb, &ctinfo);
1050 	net = nf_ct_net(loser_ct);
1051 
1052 	l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1053 	if (!l4proto->allow_clash)
1054 		goto drop;
1055 
1056 	ret = __nf_ct_resolve_clash(skb, h);
1057 	if (ret == NF_ACCEPT)
1058 		return ret;
1059 
1060 	ret = nf_ct_resolve_clash_harder(skb, reply_hash);
1061 	if (ret == NF_ACCEPT)
1062 		return ret;
1063 
1064 drop:
1065 	nf_ct_add_to_dying_list(loser_ct);
1066 	NF_CT_STAT_INC(net, drop);
1067 	NF_CT_STAT_INC(net, insert_failed);
1068 	return NF_DROP;
1069 }
1070 
1071 /* Confirm a connection given skb; places it in hash table */
1072 int
__nf_conntrack_confirm(struct sk_buff * skb)1073 __nf_conntrack_confirm(struct sk_buff *skb)
1074 {
1075 	const struct nf_conntrack_zone *zone;
1076 	unsigned int hash, reply_hash;
1077 	struct nf_conntrack_tuple_hash *h;
1078 	struct nf_conn *ct;
1079 	struct nf_conn_help *help;
1080 	struct hlist_nulls_node *n;
1081 	enum ip_conntrack_info ctinfo;
1082 	struct net *net;
1083 	unsigned int sequence;
1084 	int ret = NF_DROP;
1085 
1086 	ct = nf_ct_get(skb, &ctinfo);
1087 	net = nf_ct_net(ct);
1088 
1089 	/* ipt_REJECT uses nf_conntrack_attach to attach related
1090 	   ICMP/TCP RST packets in other direction.  Actual packet
1091 	   which created connection will be IP_CT_NEW or for an
1092 	   expected connection, IP_CT_RELATED. */
1093 	if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
1094 		return NF_ACCEPT;
1095 
1096 	zone = nf_ct_zone(ct);
1097 	local_bh_disable();
1098 
1099 	do {
1100 		sequence = read_seqcount_begin(&nf_conntrack_generation);
1101 		/* reuse the hash saved before */
1102 		hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
1103 		hash = scale_hash(hash);
1104 		reply_hash = hash_conntrack(net,
1105 					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
1106 
1107 	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
1108 
1109 	/* We're not in hash table, and we refuse to set up related
1110 	 * connections for unconfirmed conns.  But packet copies and
1111 	 * REJECT will give spurious warnings here.
1112 	 */
1113 
1114 	/* Another skb with the same unconfirmed conntrack may
1115 	 * win the race. This may happen for bridge(br_flood)
1116 	 * or broadcast/multicast packets do skb_clone with
1117 	 * unconfirmed conntrack.
1118 	 */
1119 	if (unlikely(nf_ct_is_confirmed(ct))) {
1120 		WARN_ON_ONCE(1);
1121 		nf_conntrack_double_unlock(hash, reply_hash);
1122 		local_bh_enable();
1123 		return NF_DROP;
1124 	}
1125 
1126 	pr_debug("Confirming conntrack %p\n", ct);
1127 	/* We have to check the DYING flag after unlink to prevent
1128 	 * a race against nf_ct_get_next_corpse() possibly called from
1129 	 * user context, else we insert an already 'dead' hash, blocking
1130 	 * further use of that particular connection -JM.
1131 	 */
1132 	nf_ct_del_from_dying_or_unconfirmed_list(ct);
1133 
1134 	if (unlikely(nf_ct_is_dying(ct))) {
1135 		nf_ct_add_to_dying_list(ct);
1136 		NF_CT_STAT_INC(net, insert_failed);
1137 		goto dying;
1138 	}
1139 
1140 	/* See if there's one in the list already, including reverse:
1141 	   NAT could have grabbed it without realizing, since we're
1142 	   not in the hash.  If there is, we lost race. */
1143 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
1144 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1145 				    zone, net))
1146 			goto out;
1147 
1148 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
1149 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1150 				    zone, net))
1151 			goto out;
1152 
1153 	/* Timer relative to confirmation time, not original
1154 	   setting time, otherwise we'd get timer wrap in
1155 	   weird delay cases. */
1156 	ct->timeout += nfct_time_stamp;
1157 
1158 	__nf_conntrack_insert_prepare(ct);
1159 
1160 	/* Since the lookup is lockless, hash insertion must be done after
1161 	 * starting the timer and setting the CONFIRMED bit. The RCU barriers
1162 	 * guarantee that no other CPU can find the conntrack before the above
1163 	 * stores are visible.
1164 	 */
1165 	__nf_conntrack_hash_insert(ct, hash, reply_hash);
1166 	nf_conntrack_double_unlock(hash, reply_hash);
1167 	local_bh_enable();
1168 
1169 	help = nfct_help(ct);
1170 	if (help && help->helper)
1171 		nf_conntrack_event_cache(IPCT_HELPER, ct);
1172 
1173 	nf_conntrack_event_cache(master_ct(ct) ?
1174 				 IPCT_RELATED : IPCT_NEW, ct);
1175 	return NF_ACCEPT;
1176 
1177 out:
1178 	ret = nf_ct_resolve_clash(skb, h, reply_hash);
1179 dying:
1180 	nf_conntrack_double_unlock(hash, reply_hash);
1181 	local_bh_enable();
1182 	return ret;
1183 }
1184 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
1185 
1186 /* Returns true if a connection correspondings to the tuple (required
1187    for NAT). */
1188 int
nf_conntrack_tuple_taken(const struct nf_conntrack_tuple * tuple,const struct nf_conn * ignored_conntrack)1189 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
1190 			 const struct nf_conn *ignored_conntrack)
1191 {
1192 	struct net *net = nf_ct_net(ignored_conntrack);
1193 	const struct nf_conntrack_zone *zone;
1194 	struct nf_conntrack_tuple_hash *h;
1195 	struct hlist_nulls_head *ct_hash;
1196 	unsigned int hash, hsize;
1197 	struct hlist_nulls_node *n;
1198 	struct nf_conn *ct;
1199 
1200 	zone = nf_ct_zone(ignored_conntrack);
1201 
1202 	rcu_read_lock();
1203  begin:
1204 	nf_conntrack_get_ht(&ct_hash, &hsize);
1205 	hash = __hash_conntrack(net, tuple, hsize);
1206 
1207 	hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
1208 		ct = nf_ct_tuplehash_to_ctrack(h);
1209 
1210 		if (ct == ignored_conntrack)
1211 			continue;
1212 
1213 		if (nf_ct_is_expired(ct)) {
1214 			nf_ct_gc_expired(ct);
1215 			continue;
1216 		}
1217 
1218 		if (nf_ct_key_equal(h, tuple, zone, net)) {
1219 			/* Tuple is taken already, so caller will need to find
1220 			 * a new source port to use.
1221 			 *
1222 			 * Only exception:
1223 			 * If the *original tuples* are identical, then both
1224 			 * conntracks refer to the same flow.
1225 			 * This is a rare situation, it can occur e.g. when
1226 			 * more than one UDP packet is sent from same socket
1227 			 * in different threads.
1228 			 *
1229 			 * Let nf_ct_resolve_clash() deal with this later.
1230 			 */
1231 			if (nf_ct_tuple_equal(&ignored_conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1232 					      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple))
1233 				continue;
1234 
1235 			NF_CT_STAT_INC_ATOMIC(net, found);
1236 			rcu_read_unlock();
1237 			return 1;
1238 		}
1239 	}
1240 
1241 	if (get_nulls_value(n) != hash) {
1242 		NF_CT_STAT_INC_ATOMIC(net, search_restart);
1243 		goto begin;
1244 	}
1245 
1246 	rcu_read_unlock();
1247 
1248 	return 0;
1249 }
1250 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
1251 
1252 #define NF_CT_EVICTION_RANGE	8
1253 
1254 /* There's a small race here where we may free a just-assured
1255    connection.  Too bad: we're in trouble anyway. */
early_drop_list(struct net * net,struct hlist_nulls_head * head)1256 static unsigned int early_drop_list(struct net *net,
1257 				    struct hlist_nulls_head *head)
1258 {
1259 	struct nf_conntrack_tuple_hash *h;
1260 	struct hlist_nulls_node *n;
1261 	unsigned int drops = 0;
1262 	struct nf_conn *tmp;
1263 
1264 	hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
1265 		tmp = nf_ct_tuplehash_to_ctrack(h);
1266 
1267 		if (test_bit(IPS_OFFLOAD_BIT, &tmp->status))
1268 			continue;
1269 
1270 		if (nf_ct_is_expired(tmp)) {
1271 			nf_ct_gc_expired(tmp);
1272 			continue;
1273 		}
1274 
1275 		if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
1276 		    !net_eq(nf_ct_net(tmp), net) ||
1277 		    nf_ct_is_dying(tmp))
1278 			continue;
1279 
1280 		if (!atomic_inc_not_zero(&tmp->ct_general.use))
1281 			continue;
1282 
1283 		/* kill only if still in same netns -- might have moved due to
1284 		 * SLAB_TYPESAFE_BY_RCU rules.
1285 		 *
1286 		 * We steal the timer reference.  If that fails timer has
1287 		 * already fired or someone else deleted it. Just drop ref
1288 		 * and move to next entry.
1289 		 */
1290 		if (net_eq(nf_ct_net(tmp), net) &&
1291 		    nf_ct_is_confirmed(tmp) &&
1292 		    nf_ct_delete(tmp, 0, 0))
1293 			drops++;
1294 
1295 		nf_ct_put(tmp);
1296 	}
1297 
1298 	return drops;
1299 }
1300 
early_drop(struct net * net,unsigned int hash)1301 static noinline int early_drop(struct net *net, unsigned int hash)
1302 {
1303 	unsigned int i, bucket;
1304 
1305 	for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
1306 		struct hlist_nulls_head *ct_hash;
1307 		unsigned int hsize, drops;
1308 
1309 		rcu_read_lock();
1310 		nf_conntrack_get_ht(&ct_hash, &hsize);
1311 		if (!i)
1312 			bucket = reciprocal_scale(hash, hsize);
1313 		else
1314 			bucket = (bucket + 1) % hsize;
1315 
1316 		drops = early_drop_list(net, &ct_hash[bucket]);
1317 		rcu_read_unlock();
1318 
1319 		if (drops) {
1320 			NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
1321 			return true;
1322 		}
1323 	}
1324 
1325 	return false;
1326 }
1327 
gc_worker_skip_ct(const struct nf_conn * ct)1328 static bool gc_worker_skip_ct(const struct nf_conn *ct)
1329 {
1330 	return !nf_ct_is_confirmed(ct) || nf_ct_is_dying(ct);
1331 }
1332 
gc_worker_can_early_drop(const struct nf_conn * ct)1333 static bool gc_worker_can_early_drop(const struct nf_conn *ct)
1334 {
1335 	const struct nf_conntrack_l4proto *l4proto;
1336 
1337 	if (!test_bit(IPS_ASSURED_BIT, &ct->status))
1338 		return true;
1339 
1340 	l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1341 	if (l4proto->can_early_drop && l4proto->can_early_drop(ct))
1342 		return true;
1343 
1344 	return false;
1345 }
1346 
gc_worker(struct work_struct * work)1347 static void gc_worker(struct work_struct *work)
1348 {
1349 	unsigned int min_interval = max(HZ / GC_MAX_BUCKETS_DIV, 1u);
1350 	unsigned int i, goal, buckets = 0, expired_count = 0;
1351 	unsigned int nf_conntrack_max95 = 0;
1352 	struct conntrack_gc_work *gc_work;
1353 	unsigned int ratio, scanned = 0;
1354 	unsigned long next_run;
1355 
1356 	gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
1357 
1358 	goal = nf_conntrack_htable_size / GC_MAX_BUCKETS_DIV;
1359 	i = gc_work->last_bucket;
1360 	if (gc_work->early_drop)
1361 		nf_conntrack_max95 = nf_conntrack_max / 100u * 95u;
1362 
1363 	do {
1364 		struct nf_conntrack_tuple_hash *h;
1365 		struct hlist_nulls_head *ct_hash;
1366 		struct hlist_nulls_node *n;
1367 		unsigned int hashsz;
1368 		struct nf_conn *tmp;
1369 
1370 		i++;
1371 		rcu_read_lock();
1372 
1373 		nf_conntrack_get_ht(&ct_hash, &hashsz);
1374 		if (i >= hashsz)
1375 			i = 0;
1376 
1377 		hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
1378 			struct net *net;
1379 
1380 			tmp = nf_ct_tuplehash_to_ctrack(h);
1381 
1382 			scanned++;
1383 			if (test_bit(IPS_OFFLOAD_BIT, &tmp->status)) {
1384 				nf_ct_offload_timeout(tmp);
1385 				continue;
1386 			}
1387 
1388 			if (nf_ct_is_expired(tmp)) {
1389 				nf_ct_gc_expired(tmp);
1390 				expired_count++;
1391 				continue;
1392 			}
1393 
1394 			if (nf_conntrack_max95 == 0 || gc_worker_skip_ct(tmp))
1395 				continue;
1396 
1397 			net = nf_ct_net(tmp);
1398 			if (atomic_read(&net->ct.count) < nf_conntrack_max95)
1399 				continue;
1400 
1401 			/* need to take reference to avoid possible races */
1402 			if (!atomic_inc_not_zero(&tmp->ct_general.use))
1403 				continue;
1404 
1405 			if (gc_worker_skip_ct(tmp)) {
1406 				nf_ct_put(tmp);
1407 				continue;
1408 			}
1409 
1410 			if (gc_worker_can_early_drop(tmp))
1411 				nf_ct_kill(tmp);
1412 
1413 			nf_ct_put(tmp);
1414 		}
1415 
1416 		/* could check get_nulls_value() here and restart if ct
1417 		 * was moved to another chain.  But given gc is best-effort
1418 		 * we will just continue with next hash slot.
1419 		 */
1420 		rcu_read_unlock();
1421 		cond_resched();
1422 	} while (++buckets < goal);
1423 
1424 	if (gc_work->exiting)
1425 		return;
1426 
1427 	/*
1428 	 * Eviction will normally happen from the packet path, and not
1429 	 * from this gc worker.
1430 	 *
1431 	 * This worker is only here to reap expired entries when system went
1432 	 * idle after a busy period.
1433 	 *
1434 	 * The heuristics below are supposed to balance conflicting goals:
1435 	 *
1436 	 * 1. Minimize time until we notice a stale entry
1437 	 * 2. Maximize scan intervals to not waste cycles
1438 	 *
1439 	 * Normally, expire ratio will be close to 0.
1440 	 *
1441 	 * As soon as a sizeable fraction of the entries have expired
1442 	 * increase scan frequency.
1443 	 */
1444 	ratio = scanned ? expired_count * 100 / scanned : 0;
1445 	if (ratio > GC_EVICT_RATIO) {
1446 		gc_work->next_gc_run = min_interval;
1447 	} else {
1448 		unsigned int max = GC_MAX_SCAN_JIFFIES / GC_MAX_BUCKETS_DIV;
1449 
1450 		BUILD_BUG_ON((GC_MAX_SCAN_JIFFIES / GC_MAX_BUCKETS_DIV) == 0);
1451 
1452 		gc_work->next_gc_run += min_interval;
1453 		if (gc_work->next_gc_run > max)
1454 			gc_work->next_gc_run = max;
1455 	}
1456 
1457 	next_run = gc_work->next_gc_run;
1458 	gc_work->last_bucket = i;
1459 	gc_work->early_drop = false;
1460 	queue_delayed_work(system_power_efficient_wq, &gc_work->dwork, next_run);
1461 }
1462 
conntrack_gc_work_init(struct conntrack_gc_work * gc_work)1463 static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1464 {
1465 	INIT_DEFERRABLE_WORK(&gc_work->dwork, gc_worker);
1466 	gc_work->next_gc_run = HZ;
1467 	gc_work->exiting = false;
1468 }
1469 
1470 static struct nf_conn *
__nf_conntrack_alloc(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * orig,const struct nf_conntrack_tuple * repl,gfp_t gfp,u32 hash)1471 __nf_conntrack_alloc(struct net *net,
1472 		     const struct nf_conntrack_zone *zone,
1473 		     const struct nf_conntrack_tuple *orig,
1474 		     const struct nf_conntrack_tuple *repl,
1475 		     gfp_t gfp, u32 hash)
1476 {
1477 	struct nf_conn *ct;
1478 
1479 	/* We don't want any race condition at early drop stage */
1480 	atomic_inc(&net->ct.count);
1481 
1482 	if (nf_conntrack_max &&
1483 	    unlikely(atomic_read(&net->ct.count) > nf_conntrack_max)) {
1484 		if (!early_drop(net, hash)) {
1485 			if (!conntrack_gc_work.early_drop)
1486 				conntrack_gc_work.early_drop = true;
1487 			atomic_dec(&net->ct.count);
1488 			net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1489 			return ERR_PTR(-ENOMEM);
1490 		}
1491 	}
1492 
1493 	/*
1494 	 * Do not use kmem_cache_zalloc(), as this cache uses
1495 	 * SLAB_TYPESAFE_BY_RCU.
1496 	 */
1497 	ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1498 	if (ct == NULL)
1499 		goto out;
1500 
1501 	spin_lock_init(&ct->lock);
1502 	ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1503 	ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1504 	ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1505 	/* save hash for reusing when confirming */
1506 	*(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1507 	ct->status = 0;
1508 	ct->timeout = 0;
1509 	write_pnet(&ct->ct_net, net);
1510 	memset(&ct->__nfct_init_offset, 0,
1511 	       offsetof(struct nf_conn, proto) -
1512 	       offsetof(struct nf_conn, __nfct_init_offset));
1513 
1514 	nf_ct_zone_add(ct, zone);
1515 
1516 	/* Because we use RCU lookups, we set ct_general.use to zero before
1517 	 * this is inserted in any list.
1518 	 */
1519 	atomic_set(&ct->ct_general.use, 0);
1520 	return ct;
1521 out:
1522 	atomic_dec(&net->ct.count);
1523 	return ERR_PTR(-ENOMEM);
1524 }
1525 
nf_conntrack_alloc(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * orig,const struct nf_conntrack_tuple * repl,gfp_t gfp)1526 struct nf_conn *nf_conntrack_alloc(struct net *net,
1527 				   const struct nf_conntrack_zone *zone,
1528 				   const struct nf_conntrack_tuple *orig,
1529 				   const struct nf_conntrack_tuple *repl,
1530 				   gfp_t gfp)
1531 {
1532 	return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1533 }
1534 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1535 
nf_conntrack_free(struct nf_conn * ct)1536 void nf_conntrack_free(struct nf_conn *ct)
1537 {
1538 	struct net *net = nf_ct_net(ct);
1539 
1540 	/* A freed object has refcnt == 0, that's
1541 	 * the golden rule for SLAB_TYPESAFE_BY_RCU
1542 	 */
1543 	WARN_ON(atomic_read(&ct->ct_general.use) != 0);
1544 
1545 	nf_ct_ext_destroy(ct);
1546 	kmem_cache_free(nf_conntrack_cachep, ct);
1547 	smp_mb__before_atomic();
1548 	atomic_dec(&net->ct.count);
1549 }
1550 EXPORT_SYMBOL_GPL(nf_conntrack_free);
1551 
1552 
1553 /* Allocate a new conntrack: we return -ENOMEM if classification
1554    failed due to stress.  Otherwise it really is unclassifiable. */
1555 static noinline struct nf_conntrack_tuple_hash *
init_conntrack(struct net * net,struct nf_conn * tmpl,const struct nf_conntrack_tuple * tuple,struct sk_buff * skb,unsigned int dataoff,u32 hash)1556 init_conntrack(struct net *net, struct nf_conn *tmpl,
1557 	       const struct nf_conntrack_tuple *tuple,
1558 	       struct sk_buff *skb,
1559 	       unsigned int dataoff, u32 hash)
1560 {
1561 	struct nf_conn *ct;
1562 	struct nf_conn_help *help;
1563 	struct nf_conntrack_tuple repl_tuple;
1564 	struct nf_conntrack_ecache *ecache;
1565 	struct nf_conntrack_expect *exp = NULL;
1566 	const struct nf_conntrack_zone *zone;
1567 	struct nf_conn_timeout *timeout_ext;
1568 	struct nf_conntrack_zone tmp;
1569 
1570 	if (!nf_ct_invert_tuple(&repl_tuple, tuple)) {
1571 		pr_debug("Can't invert tuple.\n");
1572 		return NULL;
1573 	}
1574 
1575 	zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1576 	ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1577 				  hash);
1578 	if (IS_ERR(ct))
1579 		return (struct nf_conntrack_tuple_hash *)ct;
1580 
1581 	if (!nf_ct_add_synproxy(ct, tmpl)) {
1582 		nf_conntrack_free(ct);
1583 		return ERR_PTR(-ENOMEM);
1584 	}
1585 
1586 	timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1587 
1588 	if (timeout_ext)
1589 		nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1590 				      GFP_ATOMIC);
1591 
1592 	nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1593 	nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1594 	nf_ct_labels_ext_add(ct);
1595 
1596 	ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1597 	nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1598 				 ecache ? ecache->expmask : 0,
1599 			     GFP_ATOMIC);
1600 
1601 	local_bh_disable();
1602 	if (net->ct.expect_count) {
1603 		spin_lock(&nf_conntrack_expect_lock);
1604 		exp = nf_ct_find_expectation(net, zone, tuple);
1605 		if (exp) {
1606 			pr_debug("expectation arrives ct=%p exp=%p\n",
1607 				 ct, exp);
1608 			/* Welcome, Mr. Bond.  We've been expecting you... */
1609 			__set_bit(IPS_EXPECTED_BIT, &ct->status);
1610 			/* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1611 			ct->master = exp->master;
1612 			if (exp->helper) {
1613 				help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
1614 				if (help)
1615 					rcu_assign_pointer(help->helper, exp->helper);
1616 			}
1617 
1618 #ifdef CONFIG_NF_CONNTRACK_MARK
1619 			ct->mark = exp->master->mark;
1620 #endif
1621 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1622 			ct->secmark = exp->master->secmark;
1623 #endif
1624 			NF_CT_STAT_INC(net, expect_new);
1625 		}
1626 		spin_unlock(&nf_conntrack_expect_lock);
1627 	}
1628 	if (!exp)
1629 		__nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1630 
1631 	/* Now it is inserted into the unconfirmed list, bump refcount */
1632 	nf_conntrack_get(&ct->ct_general);
1633 	nf_ct_add_to_unconfirmed_list(ct);
1634 
1635 	local_bh_enable();
1636 
1637 	if (exp) {
1638 		if (exp->expectfn)
1639 			exp->expectfn(ct, exp);
1640 		nf_ct_expect_put(exp);
1641 	}
1642 
1643 	return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1644 }
1645 
1646 /* On success, returns 0, sets skb->_nfct | ctinfo */
1647 static int
resolve_normal_ct(struct nf_conn * tmpl,struct sk_buff * skb,unsigned int dataoff,u_int8_t protonum,const struct nf_hook_state * state)1648 resolve_normal_ct(struct nf_conn *tmpl,
1649 		  struct sk_buff *skb,
1650 		  unsigned int dataoff,
1651 		  u_int8_t protonum,
1652 		  const struct nf_hook_state *state)
1653 {
1654 	const struct nf_conntrack_zone *zone;
1655 	struct nf_conntrack_tuple tuple;
1656 	struct nf_conntrack_tuple_hash *h;
1657 	enum ip_conntrack_info ctinfo;
1658 	struct nf_conntrack_zone tmp;
1659 	struct nf_conn *ct;
1660 	u32 hash;
1661 
1662 	if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1663 			     dataoff, state->pf, protonum, state->net,
1664 			     &tuple)) {
1665 		pr_debug("Can't get tuple\n");
1666 		return 0;
1667 	}
1668 
1669 	/* look for tuple match */
1670 	zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1671 	hash = hash_conntrack_raw(&tuple, state->net);
1672 	h = __nf_conntrack_find_get(state->net, zone, &tuple, hash);
1673 	if (!h) {
1674 		h = init_conntrack(state->net, tmpl, &tuple,
1675 				   skb, dataoff, hash);
1676 		if (!h)
1677 			return 0;
1678 		if (IS_ERR(h))
1679 			return PTR_ERR(h);
1680 	}
1681 	ct = nf_ct_tuplehash_to_ctrack(h);
1682 
1683 	/* It exists; we have (non-exclusive) reference. */
1684 	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1685 		ctinfo = IP_CT_ESTABLISHED_REPLY;
1686 	} else {
1687 		/* Once we've had two way comms, always ESTABLISHED. */
1688 		if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1689 			pr_debug("normal packet for %p\n", ct);
1690 			ctinfo = IP_CT_ESTABLISHED;
1691 		} else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1692 			pr_debug("related packet for %p\n", ct);
1693 			ctinfo = IP_CT_RELATED;
1694 		} else {
1695 			pr_debug("new packet for %p\n", ct);
1696 			ctinfo = IP_CT_NEW;
1697 		}
1698 	}
1699 	nf_ct_set(skb, ct, ctinfo);
1700 	return 0;
1701 }
1702 
1703 /*
1704  * icmp packets need special treatment to handle error messages that are
1705  * related to a connection.
1706  *
1707  * Callers need to check if skb has a conntrack assigned when this
1708  * helper returns; in such case skb belongs to an already known connection.
1709  */
1710 static unsigned int __cold
nf_conntrack_handle_icmp(struct nf_conn * tmpl,struct sk_buff * skb,unsigned int dataoff,u8 protonum,const struct nf_hook_state * state)1711 nf_conntrack_handle_icmp(struct nf_conn *tmpl,
1712 			 struct sk_buff *skb,
1713 			 unsigned int dataoff,
1714 			 u8 protonum,
1715 			 const struct nf_hook_state *state)
1716 {
1717 	int ret;
1718 
1719 	if (state->pf == NFPROTO_IPV4 && protonum == IPPROTO_ICMP)
1720 		ret = nf_conntrack_icmpv4_error(tmpl, skb, dataoff, state);
1721 #if IS_ENABLED(CONFIG_IPV6)
1722 	else if (state->pf == NFPROTO_IPV6 && protonum == IPPROTO_ICMPV6)
1723 		ret = nf_conntrack_icmpv6_error(tmpl, skb, dataoff, state);
1724 #endif
1725 	else
1726 		return NF_ACCEPT;
1727 
1728 	if (ret <= 0)
1729 		NF_CT_STAT_INC_ATOMIC(state->net, error);
1730 
1731 	return ret;
1732 }
1733 
generic_packet(struct nf_conn * ct,struct sk_buff * skb,enum ip_conntrack_info ctinfo)1734 static int generic_packet(struct nf_conn *ct, struct sk_buff *skb,
1735 			  enum ip_conntrack_info ctinfo)
1736 {
1737 	const unsigned int *timeout = nf_ct_timeout_lookup(ct);
1738 
1739 	if (!timeout)
1740 		timeout = &nf_generic_pernet(nf_ct_net(ct))->timeout;
1741 
1742 	nf_ct_refresh_acct(ct, ctinfo, skb, *timeout);
1743 	return NF_ACCEPT;
1744 }
1745 
1746 /* Returns verdict for packet, or -1 for invalid. */
nf_conntrack_handle_packet(struct nf_conn * ct,struct sk_buff * skb,unsigned int dataoff,enum ip_conntrack_info ctinfo,const struct nf_hook_state * state)1747 static int nf_conntrack_handle_packet(struct nf_conn *ct,
1748 				      struct sk_buff *skb,
1749 				      unsigned int dataoff,
1750 				      enum ip_conntrack_info ctinfo,
1751 				      const struct nf_hook_state *state)
1752 {
1753 	switch (nf_ct_protonum(ct)) {
1754 	case IPPROTO_TCP:
1755 		return nf_conntrack_tcp_packet(ct, skb, dataoff,
1756 					       ctinfo, state);
1757 	case IPPROTO_UDP:
1758 		return nf_conntrack_udp_packet(ct, skb, dataoff,
1759 					       ctinfo, state);
1760 	case IPPROTO_ICMP:
1761 		return nf_conntrack_icmp_packet(ct, skb, ctinfo, state);
1762 #if IS_ENABLED(CONFIG_IPV6)
1763 	case IPPROTO_ICMPV6:
1764 		return nf_conntrack_icmpv6_packet(ct, skb, ctinfo, state);
1765 #endif
1766 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
1767 	case IPPROTO_UDPLITE:
1768 		return nf_conntrack_udplite_packet(ct, skb, dataoff,
1769 						   ctinfo, state);
1770 #endif
1771 #ifdef CONFIG_NF_CT_PROTO_SCTP
1772 	case IPPROTO_SCTP:
1773 		return nf_conntrack_sctp_packet(ct, skb, dataoff,
1774 						ctinfo, state);
1775 #endif
1776 #ifdef CONFIG_NF_CT_PROTO_DCCP
1777 	case IPPROTO_DCCP:
1778 		return nf_conntrack_dccp_packet(ct, skb, dataoff,
1779 						ctinfo, state);
1780 #endif
1781 #ifdef CONFIG_NF_CT_PROTO_GRE
1782 	case IPPROTO_GRE:
1783 		return nf_conntrack_gre_packet(ct, skb, dataoff,
1784 					       ctinfo, state);
1785 #endif
1786 	}
1787 
1788 	return generic_packet(ct, skb, ctinfo);
1789 }
1790 
1791 unsigned int
nf_conntrack_in(struct sk_buff * skb,const struct nf_hook_state * state)1792 nf_conntrack_in(struct sk_buff *skb, const struct nf_hook_state *state)
1793 {
1794 	enum ip_conntrack_info ctinfo;
1795 	struct nf_conn *ct, *tmpl;
1796 	u_int8_t protonum;
1797 	int dataoff, ret;
1798 
1799 	tmpl = nf_ct_get(skb, &ctinfo);
1800 	if (tmpl || ctinfo == IP_CT_UNTRACKED) {
1801 		/* Previously seen (loopback or untracked)?  Ignore. */
1802 		if ((tmpl && !nf_ct_is_template(tmpl)) ||
1803 		     ctinfo == IP_CT_UNTRACKED)
1804 			return NF_ACCEPT;
1805 		skb->_nfct = 0;
1806 	}
1807 
1808 	/* rcu_read_lock()ed by nf_hook_thresh */
1809 	dataoff = get_l4proto(skb, skb_network_offset(skb), state->pf, &protonum);
1810 	if (dataoff <= 0) {
1811 		pr_debug("not prepared to track yet or error occurred\n");
1812 		NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1813 		ret = NF_ACCEPT;
1814 		goto out;
1815 	}
1816 
1817 	if (protonum == IPPROTO_ICMP || protonum == IPPROTO_ICMPV6) {
1818 		ret = nf_conntrack_handle_icmp(tmpl, skb, dataoff,
1819 					       protonum, state);
1820 		if (ret <= 0) {
1821 			ret = -ret;
1822 			goto out;
1823 		}
1824 		/* ICMP[v6] protocol trackers may assign one conntrack. */
1825 		if (skb->_nfct)
1826 			goto out;
1827 	}
1828 repeat:
1829 	ret = resolve_normal_ct(tmpl, skb, dataoff,
1830 				protonum, state);
1831 	if (ret < 0) {
1832 		/* Too stressed to deal. */
1833 		NF_CT_STAT_INC_ATOMIC(state->net, drop);
1834 		ret = NF_DROP;
1835 		goto out;
1836 	}
1837 
1838 	ct = nf_ct_get(skb, &ctinfo);
1839 	if (!ct) {
1840 		/* Not valid part of a connection */
1841 		NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1842 		ret = NF_ACCEPT;
1843 		goto out;
1844 	}
1845 
1846 	ret = nf_conntrack_handle_packet(ct, skb, dataoff, ctinfo, state);
1847 	if (ret <= 0) {
1848 		/* Invalid: inverse of the return code tells
1849 		 * the netfilter core what to do */
1850 		pr_debug("nf_conntrack_in: Can't track with proto module\n");
1851 		nf_conntrack_put(&ct->ct_general);
1852 		skb->_nfct = 0;
1853 		NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1854 		if (ret == -NF_DROP)
1855 			NF_CT_STAT_INC_ATOMIC(state->net, drop);
1856 		/* Special case: TCP tracker reports an attempt to reopen a
1857 		 * closed/aborted connection. We have to go back and create a
1858 		 * fresh conntrack.
1859 		 */
1860 		if (ret == -NF_REPEAT)
1861 			goto repeat;
1862 		ret = -ret;
1863 		goto out;
1864 	}
1865 
1866 	if (ctinfo == IP_CT_ESTABLISHED_REPLY &&
1867 	    !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1868 		nf_conntrack_event_cache(IPCT_REPLY, ct);
1869 out:
1870 	if (tmpl)
1871 		nf_ct_put(tmpl);
1872 
1873 	return ret;
1874 }
1875 EXPORT_SYMBOL_GPL(nf_conntrack_in);
1876 
1877 /* Alter reply tuple (maybe alter helper).  This is for NAT, and is
1878    implicitly racy: see __nf_conntrack_confirm */
nf_conntrack_alter_reply(struct nf_conn * ct,const struct nf_conntrack_tuple * newreply)1879 void nf_conntrack_alter_reply(struct nf_conn *ct,
1880 			      const struct nf_conntrack_tuple *newreply)
1881 {
1882 	struct nf_conn_help *help = nfct_help(ct);
1883 
1884 	/* Should be unconfirmed, so not in hash table yet */
1885 	WARN_ON(nf_ct_is_confirmed(ct));
1886 
1887 	pr_debug("Altering reply tuple of %p to ", ct);
1888 	nf_ct_dump_tuple(newreply);
1889 
1890 	ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1891 	if (ct->master || (help && !hlist_empty(&help->expectations)))
1892 		return;
1893 
1894 	rcu_read_lock();
1895 	__nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1896 	rcu_read_unlock();
1897 }
1898 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1899 
1900 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
__nf_ct_refresh_acct(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct sk_buff * skb,u32 extra_jiffies,bool do_acct)1901 void __nf_ct_refresh_acct(struct nf_conn *ct,
1902 			  enum ip_conntrack_info ctinfo,
1903 			  const struct sk_buff *skb,
1904 			  u32 extra_jiffies,
1905 			  bool do_acct)
1906 {
1907 	/* Only update if this is not a fixed timeout */
1908 	if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1909 		goto acct;
1910 
1911 	/* If not in hash table, timer will not be active yet */
1912 	if (nf_ct_is_confirmed(ct))
1913 		extra_jiffies += nfct_time_stamp;
1914 
1915 	if (READ_ONCE(ct->timeout) != extra_jiffies)
1916 		WRITE_ONCE(ct->timeout, extra_jiffies);
1917 acct:
1918 	if (do_acct)
1919 		nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
1920 }
1921 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1922 
nf_ct_kill_acct(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct sk_buff * skb)1923 bool nf_ct_kill_acct(struct nf_conn *ct,
1924 		     enum ip_conntrack_info ctinfo,
1925 		     const struct sk_buff *skb)
1926 {
1927 	nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
1928 
1929 	return nf_ct_delete(ct, 0, 0);
1930 }
1931 EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
1932 
1933 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1934 
1935 #include <linux/netfilter/nfnetlink.h>
1936 #include <linux/netfilter/nfnetlink_conntrack.h>
1937 #include <linux/mutex.h>
1938 
1939 /* Generic function for tcp/udp/sctp/dccp and alike. */
nf_ct_port_tuple_to_nlattr(struct sk_buff * skb,const struct nf_conntrack_tuple * tuple)1940 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
1941 			       const struct nf_conntrack_tuple *tuple)
1942 {
1943 	if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
1944 	    nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
1945 		goto nla_put_failure;
1946 	return 0;
1947 
1948 nla_put_failure:
1949 	return -1;
1950 }
1951 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
1952 
1953 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
1954 	[CTA_PROTO_SRC_PORT]  = { .type = NLA_U16 },
1955 	[CTA_PROTO_DST_PORT]  = { .type = NLA_U16 },
1956 };
1957 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
1958 
nf_ct_port_nlattr_to_tuple(struct nlattr * tb[],struct nf_conntrack_tuple * t,u_int32_t flags)1959 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
1960 			       struct nf_conntrack_tuple *t,
1961 			       u_int32_t flags)
1962 {
1963 	if (flags & CTA_FILTER_FLAG(CTA_PROTO_SRC_PORT)) {
1964 		if (!tb[CTA_PROTO_SRC_PORT])
1965 			return -EINVAL;
1966 
1967 		t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
1968 	}
1969 
1970 	if (flags & CTA_FILTER_FLAG(CTA_PROTO_DST_PORT)) {
1971 		if (!tb[CTA_PROTO_DST_PORT])
1972 			return -EINVAL;
1973 
1974 		t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
1975 	}
1976 
1977 	return 0;
1978 }
1979 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
1980 
nf_ct_port_nlattr_tuple_size(void)1981 unsigned int nf_ct_port_nlattr_tuple_size(void)
1982 {
1983 	static unsigned int size __read_mostly;
1984 
1985 	if (!size)
1986 		size = nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
1987 
1988 	return size;
1989 }
1990 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
1991 #endif
1992 
1993 /* Used by ipt_REJECT and ip6t_REJECT. */
nf_conntrack_attach(struct sk_buff * nskb,const struct sk_buff * skb)1994 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
1995 {
1996 	struct nf_conn *ct;
1997 	enum ip_conntrack_info ctinfo;
1998 
1999 	/* This ICMP is in reverse direction to the packet which caused it */
2000 	ct = nf_ct_get(skb, &ctinfo);
2001 	if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
2002 		ctinfo = IP_CT_RELATED_REPLY;
2003 	else
2004 		ctinfo = IP_CT_RELATED;
2005 
2006 	/* Attach to new skbuff, and increment count */
2007 	nf_ct_set(nskb, ct, ctinfo);
2008 	nf_conntrack_get(skb_nfct(nskb));
2009 }
2010 
__nf_conntrack_update(struct net * net,struct sk_buff * skb,struct nf_conn * ct,enum ip_conntrack_info ctinfo)2011 static int __nf_conntrack_update(struct net *net, struct sk_buff *skb,
2012 				 struct nf_conn *ct,
2013 				 enum ip_conntrack_info ctinfo)
2014 {
2015 	struct nf_conntrack_tuple_hash *h;
2016 	struct nf_conntrack_tuple tuple;
2017 	struct nf_nat_hook *nat_hook;
2018 	unsigned int status;
2019 	int dataoff;
2020 	u16 l3num;
2021 	u8 l4num;
2022 
2023 	l3num = nf_ct_l3num(ct);
2024 
2025 	dataoff = get_l4proto(skb, skb_network_offset(skb), l3num, &l4num);
2026 	if (dataoff <= 0)
2027 		return -1;
2028 
2029 	if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
2030 			     l4num, net, &tuple))
2031 		return -1;
2032 
2033 	if (ct->status & IPS_SRC_NAT) {
2034 		memcpy(tuple.src.u3.all,
2035 		       ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u3.all,
2036 		       sizeof(tuple.src.u3.all));
2037 		tuple.src.u.all =
2038 			ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.all;
2039 	}
2040 
2041 	if (ct->status & IPS_DST_NAT) {
2042 		memcpy(tuple.dst.u3.all,
2043 		       ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u3.all,
2044 		       sizeof(tuple.dst.u3.all));
2045 		tuple.dst.u.all =
2046 			ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u.all;
2047 	}
2048 
2049 	h = nf_conntrack_find_get(net, nf_ct_zone(ct), &tuple);
2050 	if (!h)
2051 		return 0;
2052 
2053 	/* Store status bits of the conntrack that is clashing to re-do NAT
2054 	 * mangling according to what it has been done already to this packet.
2055 	 */
2056 	status = ct->status;
2057 
2058 	nf_ct_put(ct);
2059 	ct = nf_ct_tuplehash_to_ctrack(h);
2060 	nf_ct_set(skb, ct, ctinfo);
2061 
2062 	nat_hook = rcu_dereference(nf_nat_hook);
2063 	if (!nat_hook)
2064 		return 0;
2065 
2066 	if (status & IPS_SRC_NAT &&
2067 	    nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_SRC,
2068 				IP_CT_DIR_ORIGINAL) == NF_DROP)
2069 		return -1;
2070 
2071 	if (status & IPS_DST_NAT &&
2072 	    nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_DST,
2073 				IP_CT_DIR_ORIGINAL) == NF_DROP)
2074 		return -1;
2075 
2076 	return 0;
2077 }
2078 
2079 /* This packet is coming from userspace via nf_queue, complete the packet
2080  * processing after the helper invocation in nf_confirm().
2081  */
nf_confirm_cthelper(struct sk_buff * skb,struct nf_conn * ct,enum ip_conntrack_info ctinfo)2082 static int nf_confirm_cthelper(struct sk_buff *skb, struct nf_conn *ct,
2083 			       enum ip_conntrack_info ctinfo)
2084 {
2085 	const struct nf_conntrack_helper *helper;
2086 	const struct nf_conn_help *help;
2087 	int protoff;
2088 
2089 	help = nfct_help(ct);
2090 	if (!help)
2091 		return 0;
2092 
2093 	helper = rcu_dereference(help->helper);
2094 	if (!(helper->flags & NF_CT_HELPER_F_USERSPACE))
2095 		return 0;
2096 
2097 	switch (nf_ct_l3num(ct)) {
2098 	case NFPROTO_IPV4:
2099 		protoff = skb_network_offset(skb) + ip_hdrlen(skb);
2100 		break;
2101 #if IS_ENABLED(CONFIG_IPV6)
2102 	case NFPROTO_IPV6: {
2103 		__be16 frag_off;
2104 		u8 pnum;
2105 
2106 		pnum = ipv6_hdr(skb)->nexthdr;
2107 		protoff = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &pnum,
2108 					   &frag_off);
2109 		if (protoff < 0 || (frag_off & htons(~0x7)) != 0)
2110 			return 0;
2111 		break;
2112 	}
2113 #endif
2114 	default:
2115 		return 0;
2116 	}
2117 
2118 	if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
2119 	    !nf_is_loopback_packet(skb)) {
2120 		if (!nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) {
2121 			NF_CT_STAT_INC_ATOMIC(nf_ct_net(ct), drop);
2122 			return -1;
2123 		}
2124 	}
2125 
2126 	/* We've seen it coming out the other side: confirm it */
2127 	return nf_conntrack_confirm(skb) == NF_DROP ? - 1 : 0;
2128 }
2129 
nf_conntrack_update(struct net * net,struct sk_buff * skb)2130 static int nf_conntrack_update(struct net *net, struct sk_buff *skb)
2131 {
2132 	enum ip_conntrack_info ctinfo;
2133 	struct nf_conn *ct;
2134 	int err;
2135 
2136 	ct = nf_ct_get(skb, &ctinfo);
2137 	if (!ct)
2138 		return 0;
2139 
2140 	if (!nf_ct_is_confirmed(ct)) {
2141 		err = __nf_conntrack_update(net, skb, ct, ctinfo);
2142 		if (err < 0)
2143 			return err;
2144 
2145 		ct = nf_ct_get(skb, &ctinfo);
2146 	}
2147 
2148 	return nf_confirm_cthelper(skb, ct, ctinfo);
2149 }
2150 
nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple * dst_tuple,const struct sk_buff * skb)2151 static bool nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple *dst_tuple,
2152 				       const struct sk_buff *skb)
2153 {
2154 	const struct nf_conntrack_tuple *src_tuple;
2155 	const struct nf_conntrack_tuple_hash *hash;
2156 	struct nf_conntrack_tuple srctuple;
2157 	enum ip_conntrack_info ctinfo;
2158 	struct nf_conn *ct;
2159 
2160 	ct = nf_ct_get(skb, &ctinfo);
2161 	if (ct) {
2162 		src_tuple = nf_ct_tuple(ct, CTINFO2DIR(ctinfo));
2163 		memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2164 		return true;
2165 	}
2166 
2167 	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb),
2168 			       NFPROTO_IPV4, dev_net(skb->dev),
2169 			       &srctuple))
2170 		return false;
2171 
2172 	hash = nf_conntrack_find_get(dev_net(skb->dev),
2173 				     &nf_ct_zone_dflt,
2174 				     &srctuple);
2175 	if (!hash)
2176 		return false;
2177 
2178 	ct = nf_ct_tuplehash_to_ctrack(hash);
2179 	src_tuple = nf_ct_tuple(ct, !hash->tuple.dst.dir);
2180 	memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2181 	nf_ct_put(ct);
2182 
2183 	return true;
2184 }
2185 
2186 /* Bring out ya dead! */
2187 static struct nf_conn *
get_next_corpse(int (* iter)(struct nf_conn * i,void * data),void * data,unsigned int * bucket)2188 get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
2189 		void *data, unsigned int *bucket)
2190 {
2191 	struct nf_conntrack_tuple_hash *h;
2192 	struct nf_conn *ct;
2193 	struct hlist_nulls_node *n;
2194 	spinlock_t *lockp;
2195 
2196 	for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
2197 		lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
2198 		local_bh_disable();
2199 		nf_conntrack_lock(lockp);
2200 		if (*bucket < nf_conntrack_htable_size) {
2201 			hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[*bucket], hnnode) {
2202 				if (NF_CT_DIRECTION(h) != IP_CT_DIR_REPLY)
2203 					continue;
2204 				/* All nf_conn objects are added to hash table twice, one
2205 				 * for original direction tuple, once for the reply tuple.
2206 				 *
2207 				 * Exception: In the IPS_NAT_CLASH case, only the reply
2208 				 * tuple is added (the original tuple already existed for
2209 				 * a different object).
2210 				 *
2211 				 * We only need to call the iterator once for each
2212 				 * conntrack, so we just use the 'reply' direction
2213 				 * tuple while iterating.
2214 				 */
2215 				ct = nf_ct_tuplehash_to_ctrack(h);
2216 				if (iter(ct, data))
2217 					goto found;
2218 			}
2219 		}
2220 		spin_unlock(lockp);
2221 		local_bh_enable();
2222 		cond_resched();
2223 	}
2224 
2225 	return NULL;
2226 found:
2227 	atomic_inc(&ct->ct_general.use);
2228 	spin_unlock(lockp);
2229 	local_bh_enable();
2230 	return ct;
2231 }
2232 
nf_ct_iterate_cleanup(int (* iter)(struct nf_conn * i,void * data),void * data,u32 portid,int report)2233 static void nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data),
2234 				  void *data, u32 portid, int report)
2235 {
2236 	unsigned int bucket = 0, sequence;
2237 	struct nf_conn *ct;
2238 
2239 	might_sleep();
2240 
2241 	for (;;) {
2242 		sequence = read_seqcount_begin(&nf_conntrack_generation);
2243 
2244 		while ((ct = get_next_corpse(iter, data, &bucket)) != NULL) {
2245 			/* Time to push up daises... */
2246 
2247 			nf_ct_delete(ct, portid, report);
2248 			nf_ct_put(ct);
2249 			cond_resched();
2250 		}
2251 
2252 		if (!read_seqcount_retry(&nf_conntrack_generation, sequence))
2253 			break;
2254 		bucket = 0;
2255 	}
2256 }
2257 
2258 struct iter_data {
2259 	int (*iter)(struct nf_conn *i, void *data);
2260 	void *data;
2261 	struct net *net;
2262 };
2263 
iter_net_only(struct nf_conn * i,void * data)2264 static int iter_net_only(struct nf_conn *i, void *data)
2265 {
2266 	struct iter_data *d = data;
2267 
2268 	if (!net_eq(d->net, nf_ct_net(i)))
2269 		return 0;
2270 
2271 	return d->iter(i, d->data);
2272 }
2273 
2274 static void
__nf_ct_unconfirmed_destroy(struct net * net)2275 __nf_ct_unconfirmed_destroy(struct net *net)
2276 {
2277 	int cpu;
2278 
2279 	for_each_possible_cpu(cpu) {
2280 		struct nf_conntrack_tuple_hash *h;
2281 		struct hlist_nulls_node *n;
2282 		struct ct_pcpu *pcpu;
2283 
2284 		pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2285 
2286 		spin_lock_bh(&pcpu->lock);
2287 		hlist_nulls_for_each_entry(h, n, &pcpu->unconfirmed, hnnode) {
2288 			struct nf_conn *ct;
2289 
2290 			ct = nf_ct_tuplehash_to_ctrack(h);
2291 
2292 			/* we cannot call iter() on unconfirmed list, the
2293 			 * owning cpu can reallocate ct->ext at any time.
2294 			 */
2295 			set_bit(IPS_DYING_BIT, &ct->status);
2296 		}
2297 		spin_unlock_bh(&pcpu->lock);
2298 		cond_resched();
2299 	}
2300 }
2301 
nf_ct_unconfirmed_destroy(struct net * net)2302 void nf_ct_unconfirmed_destroy(struct net *net)
2303 {
2304 	might_sleep();
2305 
2306 	if (atomic_read(&net->ct.count) > 0) {
2307 		__nf_ct_unconfirmed_destroy(net);
2308 		nf_queue_nf_hook_drop(net);
2309 		synchronize_net();
2310 	}
2311 }
2312 EXPORT_SYMBOL_GPL(nf_ct_unconfirmed_destroy);
2313 
nf_ct_iterate_cleanup_net(struct net * net,int (* iter)(struct nf_conn * i,void * data),void * data,u32 portid,int report)2314 void nf_ct_iterate_cleanup_net(struct net *net,
2315 			       int (*iter)(struct nf_conn *i, void *data),
2316 			       void *data, u32 portid, int report)
2317 {
2318 	struct iter_data d;
2319 
2320 	might_sleep();
2321 
2322 	if (atomic_read(&net->ct.count) == 0)
2323 		return;
2324 
2325 	d.iter = iter;
2326 	d.data = data;
2327 	d.net = net;
2328 
2329 	nf_ct_iterate_cleanup(iter_net_only, &d, portid, report);
2330 }
2331 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup_net);
2332 
2333 /**
2334  * nf_ct_iterate_destroy - destroy unconfirmed conntracks and iterate table
2335  * @iter: callback to invoke for each conntrack
2336  * @data: data to pass to @iter
2337  *
2338  * Like nf_ct_iterate_cleanup, but first marks conntracks on the
2339  * unconfirmed list as dying (so they will not be inserted into
2340  * main table).
2341  *
2342  * Can only be called in module exit path.
2343  */
2344 void
nf_ct_iterate_destroy(int (* iter)(struct nf_conn * i,void * data),void * data)2345 nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data)
2346 {
2347 	struct net *net;
2348 
2349 	down_read(&net_rwsem);
2350 	for_each_net(net) {
2351 		if (atomic_read(&net->ct.count) == 0)
2352 			continue;
2353 		__nf_ct_unconfirmed_destroy(net);
2354 		nf_queue_nf_hook_drop(net);
2355 	}
2356 	up_read(&net_rwsem);
2357 
2358 	/* Need to wait for netns cleanup worker to finish, if its
2359 	 * running -- it might have deleted a net namespace from
2360 	 * the global list, so our __nf_ct_unconfirmed_destroy() might
2361 	 * not have affected all namespaces.
2362 	 */
2363 	net_ns_barrier();
2364 
2365 	/* a conntrack could have been unlinked from unconfirmed list
2366 	 * before we grabbed pcpu lock in __nf_ct_unconfirmed_destroy().
2367 	 * This makes sure its inserted into conntrack table.
2368 	 */
2369 	synchronize_net();
2370 
2371 	nf_ct_iterate_cleanup(iter, data, 0, 0);
2372 }
2373 EXPORT_SYMBOL_GPL(nf_ct_iterate_destroy);
2374 
kill_all(struct nf_conn * i,void * data)2375 static int kill_all(struct nf_conn *i, void *data)
2376 {
2377 	return net_eq(nf_ct_net(i), data);
2378 }
2379 
nf_conntrack_cleanup_start(void)2380 void nf_conntrack_cleanup_start(void)
2381 {
2382 	conntrack_gc_work.exiting = true;
2383 	RCU_INIT_POINTER(ip_ct_attach, NULL);
2384 }
2385 
nf_conntrack_cleanup_end(void)2386 void nf_conntrack_cleanup_end(void)
2387 {
2388 	RCU_INIT_POINTER(nf_ct_hook, NULL);
2389 	cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2390 	kvfree(nf_conntrack_hash);
2391 
2392 	nf_conntrack_proto_fini();
2393 	nf_conntrack_seqadj_fini();
2394 	nf_conntrack_labels_fini();
2395 	nf_conntrack_helper_fini();
2396 	nf_conntrack_timeout_fini();
2397 	nf_conntrack_ecache_fini();
2398 	nf_conntrack_tstamp_fini();
2399 	nf_conntrack_acct_fini();
2400 	nf_conntrack_expect_fini();
2401 
2402 	kmem_cache_destroy(nf_conntrack_cachep);
2403 }
2404 
2405 /*
2406  * Mishearing the voices in his head, our hero wonders how he's
2407  * supposed to kill the mall.
2408  */
nf_conntrack_cleanup_net(struct net * net)2409 void nf_conntrack_cleanup_net(struct net *net)
2410 {
2411 	LIST_HEAD(single);
2412 
2413 	list_add(&net->exit_list, &single);
2414 	nf_conntrack_cleanup_net_list(&single);
2415 }
2416 
nf_conntrack_cleanup_net_list(struct list_head * net_exit_list)2417 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
2418 {
2419 	int busy;
2420 	struct net *net;
2421 
2422 	/*
2423 	 * This makes sure all current packets have passed through
2424 	 *  netfilter framework.  Roll on, two-stage module
2425 	 *  delete...
2426 	 */
2427 	synchronize_net();
2428 i_see_dead_people:
2429 	busy = 0;
2430 	list_for_each_entry(net, net_exit_list, exit_list) {
2431 		nf_ct_iterate_cleanup(kill_all, net, 0, 0);
2432 		if (atomic_read(&net->ct.count) != 0)
2433 			busy = 1;
2434 	}
2435 	if (busy) {
2436 		schedule();
2437 		goto i_see_dead_people;
2438 	}
2439 
2440 	list_for_each_entry(net, net_exit_list, exit_list) {
2441 		nf_conntrack_proto_pernet_fini(net);
2442 		nf_conntrack_ecache_pernet_fini(net);
2443 		nf_conntrack_expect_pernet_fini(net);
2444 		free_percpu(net->ct.stat);
2445 		free_percpu(net->ct.pcpu_lists);
2446 	}
2447 }
2448 
nf_ct_alloc_hashtable(unsigned int * sizep,int nulls)2449 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
2450 {
2451 	struct hlist_nulls_head *hash;
2452 	unsigned int nr_slots, i;
2453 
2454 	if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
2455 		return NULL;
2456 
2457 	BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
2458 	nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
2459 
2460 	hash = kvcalloc(nr_slots, sizeof(struct hlist_nulls_head), GFP_KERNEL);
2461 
2462 	if (hash && nulls)
2463 		for (i = 0; i < nr_slots; i++)
2464 			INIT_HLIST_NULLS_HEAD(&hash[i], i);
2465 
2466 	return hash;
2467 }
2468 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
2469 
nf_conntrack_hash_resize(unsigned int hashsize)2470 int nf_conntrack_hash_resize(unsigned int hashsize)
2471 {
2472 	int i, bucket;
2473 	unsigned int old_size;
2474 	struct hlist_nulls_head *hash, *old_hash;
2475 	struct nf_conntrack_tuple_hash *h;
2476 	struct nf_conn *ct;
2477 
2478 	if (!hashsize)
2479 		return -EINVAL;
2480 
2481 	hash = nf_ct_alloc_hashtable(&hashsize, 1);
2482 	if (!hash)
2483 		return -ENOMEM;
2484 
2485 	old_size = nf_conntrack_htable_size;
2486 	if (old_size == hashsize) {
2487 		kvfree(hash);
2488 		return 0;
2489 	}
2490 
2491 	local_bh_disable();
2492 	nf_conntrack_all_lock();
2493 	write_seqcount_begin(&nf_conntrack_generation);
2494 
2495 	/* Lookups in the old hash might happen in parallel, which means we
2496 	 * might get false negatives during connection lookup. New connections
2497 	 * created because of a false negative won't make it into the hash
2498 	 * though since that required taking the locks.
2499 	 */
2500 
2501 	for (i = 0; i < nf_conntrack_htable_size; i++) {
2502 		while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
2503 			h = hlist_nulls_entry(nf_conntrack_hash[i].first,
2504 					      struct nf_conntrack_tuple_hash, hnnode);
2505 			ct = nf_ct_tuplehash_to_ctrack(h);
2506 			hlist_nulls_del_rcu(&h->hnnode);
2507 			bucket = __hash_conntrack(nf_ct_net(ct),
2508 						  &h->tuple, hashsize);
2509 			hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
2510 		}
2511 	}
2512 	old_size = nf_conntrack_htable_size;
2513 	old_hash = nf_conntrack_hash;
2514 
2515 	nf_conntrack_hash = hash;
2516 	nf_conntrack_htable_size = hashsize;
2517 
2518 	write_seqcount_end(&nf_conntrack_generation);
2519 	nf_conntrack_all_unlock();
2520 	local_bh_enable();
2521 
2522 	synchronize_net();
2523 	kvfree(old_hash);
2524 	return 0;
2525 }
2526 
nf_conntrack_set_hashsize(const char * val,const struct kernel_param * kp)2527 int nf_conntrack_set_hashsize(const char *val, const struct kernel_param *kp)
2528 {
2529 	unsigned int hashsize;
2530 	int rc;
2531 
2532 	if (current->nsproxy->net_ns != &init_net)
2533 		return -EOPNOTSUPP;
2534 
2535 	/* On boot, we can set this without any fancy locking. */
2536 	if (!nf_conntrack_hash)
2537 		return param_set_uint(val, kp);
2538 
2539 	rc = kstrtouint(val, 0, &hashsize);
2540 	if (rc)
2541 		return rc;
2542 
2543 	return nf_conntrack_hash_resize(hashsize);
2544 }
2545 
total_extension_size(void)2546 static __always_inline unsigned int total_extension_size(void)
2547 {
2548 	/* remember to add new extensions below */
2549 	BUILD_BUG_ON(NF_CT_EXT_NUM > 9);
2550 
2551 	return sizeof(struct nf_ct_ext) +
2552 	       sizeof(struct nf_conn_help)
2553 #if IS_ENABLED(CONFIG_NF_NAT)
2554 		+ sizeof(struct nf_conn_nat)
2555 #endif
2556 		+ sizeof(struct nf_conn_seqadj)
2557 		+ sizeof(struct nf_conn_acct)
2558 #ifdef CONFIG_NF_CONNTRACK_EVENTS
2559 		+ sizeof(struct nf_conntrack_ecache)
2560 #endif
2561 #ifdef CONFIG_NF_CONNTRACK_TIMESTAMP
2562 		+ sizeof(struct nf_conn_tstamp)
2563 #endif
2564 #ifdef CONFIG_NF_CONNTRACK_TIMEOUT
2565 		+ sizeof(struct nf_conn_timeout)
2566 #endif
2567 #ifdef CONFIG_NF_CONNTRACK_LABELS
2568 		+ sizeof(struct nf_conn_labels)
2569 #endif
2570 #if IS_ENABLED(CONFIG_NETFILTER_SYNPROXY)
2571 		+ sizeof(struct nf_conn_synproxy)
2572 #endif
2573 	;
2574 };
2575 
nf_conntrack_init_start(void)2576 int nf_conntrack_init_start(void)
2577 {
2578 	unsigned long nr_pages = totalram_pages();
2579 	int max_factor = 8;
2580 	int ret = -ENOMEM;
2581 	int i;
2582 
2583 	/* struct nf_ct_ext uses u8 to store offsets/size */
2584 	BUILD_BUG_ON(total_extension_size() > 255u);
2585 
2586 	seqcount_spinlock_init(&nf_conntrack_generation,
2587 			       &nf_conntrack_locks_all_lock);
2588 
2589 	for (i = 0; i < CONNTRACK_LOCKS; i++)
2590 		spin_lock_init(&nf_conntrack_locks[i]);
2591 
2592 	if (!nf_conntrack_htable_size) {
2593 		/* Idea from tcp.c: use 1/16384 of memory.
2594 		 * On i386: 32MB machine has 512 buckets.
2595 		 * >= 1GB machines have 16384 buckets.
2596 		 * >= 4GB machines have 65536 buckets.
2597 		 */
2598 		nf_conntrack_htable_size
2599 			= (((nr_pages << PAGE_SHIFT) / 16384)
2600 			   / sizeof(struct hlist_head));
2601 		if (nr_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
2602 			nf_conntrack_htable_size = 65536;
2603 		else if (nr_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
2604 			nf_conntrack_htable_size = 16384;
2605 		if (nf_conntrack_htable_size < 32)
2606 			nf_conntrack_htable_size = 32;
2607 
2608 		/* Use a max. factor of four by default to get the same max as
2609 		 * with the old struct list_heads. When a table size is given
2610 		 * we use the old value of 8 to avoid reducing the max.
2611 		 * entries. */
2612 		max_factor = 4;
2613 	}
2614 
2615 	nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
2616 	if (!nf_conntrack_hash)
2617 		return -ENOMEM;
2618 
2619 	nf_conntrack_max = max_factor * nf_conntrack_htable_size;
2620 
2621 	nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
2622 						sizeof(struct nf_conn),
2623 						NFCT_INFOMASK + 1,
2624 						SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
2625 	if (!nf_conntrack_cachep)
2626 		goto err_cachep;
2627 
2628 	ret = nf_conntrack_expect_init();
2629 	if (ret < 0)
2630 		goto err_expect;
2631 
2632 	ret = nf_conntrack_acct_init();
2633 	if (ret < 0)
2634 		goto err_acct;
2635 
2636 	ret = nf_conntrack_tstamp_init();
2637 	if (ret < 0)
2638 		goto err_tstamp;
2639 
2640 	ret = nf_conntrack_ecache_init();
2641 	if (ret < 0)
2642 		goto err_ecache;
2643 
2644 	ret = nf_conntrack_timeout_init();
2645 	if (ret < 0)
2646 		goto err_timeout;
2647 
2648 	ret = nf_conntrack_helper_init();
2649 	if (ret < 0)
2650 		goto err_helper;
2651 
2652 	ret = nf_conntrack_labels_init();
2653 	if (ret < 0)
2654 		goto err_labels;
2655 
2656 	ret = nf_conntrack_seqadj_init();
2657 	if (ret < 0)
2658 		goto err_seqadj;
2659 
2660 	ret = nf_conntrack_proto_init();
2661 	if (ret < 0)
2662 		goto err_proto;
2663 
2664 	conntrack_gc_work_init(&conntrack_gc_work);
2665 	queue_delayed_work(system_power_efficient_wq, &conntrack_gc_work.dwork, HZ);
2666 
2667 	return 0;
2668 
2669 err_proto:
2670 	nf_conntrack_seqadj_fini();
2671 err_seqadj:
2672 	nf_conntrack_labels_fini();
2673 err_labels:
2674 	nf_conntrack_helper_fini();
2675 err_helper:
2676 	nf_conntrack_timeout_fini();
2677 err_timeout:
2678 	nf_conntrack_ecache_fini();
2679 err_ecache:
2680 	nf_conntrack_tstamp_fini();
2681 err_tstamp:
2682 	nf_conntrack_acct_fini();
2683 err_acct:
2684 	nf_conntrack_expect_fini();
2685 err_expect:
2686 	kmem_cache_destroy(nf_conntrack_cachep);
2687 err_cachep:
2688 	kvfree(nf_conntrack_hash);
2689 	return ret;
2690 }
2691 
2692 static struct nf_ct_hook nf_conntrack_hook = {
2693 	.update		= nf_conntrack_update,
2694 	.destroy	= destroy_conntrack,
2695 	.get_tuple_skb  = nf_conntrack_get_tuple_skb,
2696 };
2697 
nf_conntrack_init_end(void)2698 void nf_conntrack_init_end(void)
2699 {
2700 	/* For use by REJECT target */
2701 	RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
2702 	RCU_INIT_POINTER(nf_ct_hook, &nf_conntrack_hook);
2703 }
2704 
2705 /*
2706  * We need to use special "null" values, not used in hash table
2707  */
2708 #define UNCONFIRMED_NULLS_VAL	((1<<30)+0)
2709 #define DYING_NULLS_VAL		((1<<30)+1)
2710 
nf_conntrack_init_net(struct net * net)2711 int nf_conntrack_init_net(struct net *net)
2712 {
2713 	int ret = -ENOMEM;
2714 	int cpu;
2715 
2716 	BUILD_BUG_ON(IP_CT_UNTRACKED == IP_CT_NUMBER);
2717 	BUILD_BUG_ON_NOT_POWER_OF_2(CONNTRACK_LOCKS);
2718 	atomic_set(&net->ct.count, 0);
2719 
2720 	net->ct.pcpu_lists = alloc_percpu(struct ct_pcpu);
2721 	if (!net->ct.pcpu_lists)
2722 		goto err_stat;
2723 
2724 	for_each_possible_cpu(cpu) {
2725 		struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2726 
2727 		spin_lock_init(&pcpu->lock);
2728 		INIT_HLIST_NULLS_HEAD(&pcpu->unconfirmed, UNCONFIRMED_NULLS_VAL);
2729 		INIT_HLIST_NULLS_HEAD(&pcpu->dying, DYING_NULLS_VAL);
2730 	}
2731 
2732 	net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
2733 	if (!net->ct.stat)
2734 		goto err_pcpu_lists;
2735 
2736 	ret = nf_conntrack_expect_pernet_init(net);
2737 	if (ret < 0)
2738 		goto err_expect;
2739 
2740 	nf_conntrack_acct_pernet_init(net);
2741 	nf_conntrack_tstamp_pernet_init(net);
2742 	nf_conntrack_ecache_pernet_init(net);
2743 	nf_conntrack_helper_pernet_init(net);
2744 	nf_conntrack_proto_pernet_init(net);
2745 
2746 	return 0;
2747 
2748 err_expect:
2749 	free_percpu(net->ct.stat);
2750 err_pcpu_lists:
2751 	free_percpu(net->ct.pcpu_lists);
2752 err_stat:
2753 	return ret;
2754 }
2755