1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2009, Microsoft Corporation.
4 *
5 * Authors:
6 * Haiyang Zhang <haiyangz@microsoft.com>
7 * Hank Janssen <hjanssen@microsoft.com>
8 */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/init.h>
12 #include <linux/atomic.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/device.h>
16 #include <linux/io.h>
17 #include <linux/delay.h>
18 #include <linux/netdevice.h>
19 #include <linux/inetdevice.h>
20 #include <linux/etherdevice.h>
21 #include <linux/pci.h>
22 #include <linux/skbuff.h>
23 #include <linux/if_vlan.h>
24 #include <linux/in.h>
25 #include <linux/slab.h>
26 #include <linux/rtnetlink.h>
27 #include <linux/netpoll.h>
28 #include <linux/bpf.h>
29
30 #include <net/arp.h>
31 #include <net/route.h>
32 #include <net/sock.h>
33 #include <net/pkt_sched.h>
34 #include <net/checksum.h>
35 #include <net/ip6_checksum.h>
36
37 #include "hyperv_net.h"
38
39 #define RING_SIZE_MIN 64
40 #define RETRY_US_LO 5000
41 #define RETRY_US_HI 10000
42 #define RETRY_MAX 2000 /* >10 sec */
43
44 #define LINKCHANGE_INT (2 * HZ)
45 #define VF_TAKEOVER_INT (HZ / 10)
46
47 static unsigned int ring_size __ro_after_init = 128;
48 module_param(ring_size, uint, 0444);
49 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
50 unsigned int netvsc_ring_bytes __ro_after_init;
51
52 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
53 NETIF_MSG_LINK | NETIF_MSG_IFUP |
54 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
55 NETIF_MSG_TX_ERR;
56
57 static int debug = -1;
58 module_param(debug, int, 0444);
59 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
60
61 static LIST_HEAD(netvsc_dev_list);
62
netvsc_change_rx_flags(struct net_device * net,int change)63 static void netvsc_change_rx_flags(struct net_device *net, int change)
64 {
65 struct net_device_context *ndev_ctx = netdev_priv(net);
66 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
67 int inc;
68
69 if (!vf_netdev)
70 return;
71
72 if (change & IFF_PROMISC) {
73 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
74 dev_set_promiscuity(vf_netdev, inc);
75 }
76
77 if (change & IFF_ALLMULTI) {
78 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
79 dev_set_allmulti(vf_netdev, inc);
80 }
81 }
82
netvsc_set_rx_mode(struct net_device * net)83 static void netvsc_set_rx_mode(struct net_device *net)
84 {
85 struct net_device_context *ndev_ctx = netdev_priv(net);
86 struct net_device *vf_netdev;
87 struct netvsc_device *nvdev;
88
89 rcu_read_lock();
90 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
91 if (vf_netdev) {
92 dev_uc_sync(vf_netdev, net);
93 dev_mc_sync(vf_netdev, net);
94 }
95
96 nvdev = rcu_dereference(ndev_ctx->nvdev);
97 if (nvdev)
98 rndis_filter_update(nvdev);
99 rcu_read_unlock();
100 }
101
netvsc_tx_enable(struct netvsc_device * nvscdev,struct net_device * ndev)102 static void netvsc_tx_enable(struct netvsc_device *nvscdev,
103 struct net_device *ndev)
104 {
105 nvscdev->tx_disable = false;
106 virt_wmb(); /* ensure queue wake up mechanism is on */
107
108 netif_tx_wake_all_queues(ndev);
109 }
110
netvsc_open(struct net_device * net)111 static int netvsc_open(struct net_device *net)
112 {
113 struct net_device_context *ndev_ctx = netdev_priv(net);
114 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
115 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
116 struct rndis_device *rdev;
117 int ret = 0;
118
119 netif_carrier_off(net);
120
121 /* Open up the device */
122 ret = rndis_filter_open(nvdev);
123 if (ret != 0) {
124 netdev_err(net, "unable to open device (ret %d).\n", ret);
125 return ret;
126 }
127
128 rdev = nvdev->extension;
129 if (!rdev->link_state) {
130 netif_carrier_on(net);
131 netvsc_tx_enable(nvdev, net);
132 }
133
134 if (vf_netdev) {
135 /* Setting synthetic device up transparently sets
136 * slave as up. If open fails, then slave will be
137 * still be offline (and not used).
138 */
139 ret = dev_open(vf_netdev, NULL);
140 if (ret)
141 netdev_warn(net,
142 "unable to open slave: %s: %d\n",
143 vf_netdev->name, ret);
144 }
145 return 0;
146 }
147
netvsc_wait_until_empty(struct netvsc_device * nvdev)148 static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
149 {
150 unsigned int retry = 0;
151 int i;
152
153 /* Ensure pending bytes in ring are read */
154 for (;;) {
155 u32 aread = 0;
156
157 for (i = 0; i < nvdev->num_chn; i++) {
158 struct vmbus_channel *chn
159 = nvdev->chan_table[i].channel;
160
161 if (!chn)
162 continue;
163
164 /* make sure receive not running now */
165 napi_synchronize(&nvdev->chan_table[i].napi);
166
167 aread = hv_get_bytes_to_read(&chn->inbound);
168 if (aread)
169 break;
170
171 aread = hv_get_bytes_to_read(&chn->outbound);
172 if (aread)
173 break;
174 }
175
176 if (aread == 0)
177 return 0;
178
179 if (++retry > RETRY_MAX)
180 return -ETIMEDOUT;
181
182 usleep_range(RETRY_US_LO, RETRY_US_HI);
183 }
184 }
185
netvsc_tx_disable(struct netvsc_device * nvscdev,struct net_device * ndev)186 static void netvsc_tx_disable(struct netvsc_device *nvscdev,
187 struct net_device *ndev)
188 {
189 if (nvscdev) {
190 nvscdev->tx_disable = true;
191 virt_wmb(); /* ensure txq will not wake up after stop */
192 }
193
194 netif_tx_disable(ndev);
195 }
196
netvsc_close(struct net_device * net)197 static int netvsc_close(struct net_device *net)
198 {
199 struct net_device_context *net_device_ctx = netdev_priv(net);
200 struct net_device *vf_netdev
201 = rtnl_dereference(net_device_ctx->vf_netdev);
202 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
203 int ret;
204
205 netvsc_tx_disable(nvdev, net);
206
207 /* No need to close rndis filter if it is removed already */
208 if (!nvdev)
209 return 0;
210
211 ret = rndis_filter_close(nvdev);
212 if (ret != 0) {
213 netdev_err(net, "unable to close device (ret %d).\n", ret);
214 return ret;
215 }
216
217 ret = netvsc_wait_until_empty(nvdev);
218 if (ret)
219 netdev_err(net, "Ring buffer not empty after closing rndis\n");
220
221 if (vf_netdev)
222 dev_close(vf_netdev);
223
224 return ret;
225 }
226
init_ppi_data(struct rndis_message * msg,u32 ppi_size,u32 pkt_type)227 static inline void *init_ppi_data(struct rndis_message *msg,
228 u32 ppi_size, u32 pkt_type)
229 {
230 struct rndis_packet *rndis_pkt = &msg->msg.pkt;
231 struct rndis_per_packet_info *ppi;
232
233 rndis_pkt->data_offset += ppi_size;
234 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
235 + rndis_pkt->per_pkt_info_len;
236
237 ppi->size = ppi_size;
238 ppi->type = pkt_type;
239 ppi->internal = 0;
240 ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
241
242 rndis_pkt->per_pkt_info_len += ppi_size;
243
244 return ppi + 1;
245 }
246
247 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented
248 * packets. We can use ethtool to change UDP hash level when necessary.
249 */
netvsc_get_hash(struct sk_buff * skb,const struct net_device_context * ndc)250 static inline u32 netvsc_get_hash(
251 struct sk_buff *skb,
252 const struct net_device_context *ndc)
253 {
254 struct flow_keys flow;
255 u32 hash, pkt_proto = 0;
256 static u32 hashrnd __read_mostly;
257
258 net_get_random_once(&hashrnd, sizeof(hashrnd));
259
260 if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
261 return 0;
262
263 switch (flow.basic.ip_proto) {
264 case IPPROTO_TCP:
265 if (flow.basic.n_proto == htons(ETH_P_IP))
266 pkt_proto = HV_TCP4_L4HASH;
267 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
268 pkt_proto = HV_TCP6_L4HASH;
269
270 break;
271
272 case IPPROTO_UDP:
273 if (flow.basic.n_proto == htons(ETH_P_IP))
274 pkt_proto = HV_UDP4_L4HASH;
275 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
276 pkt_proto = HV_UDP6_L4HASH;
277
278 break;
279 }
280
281 if (pkt_proto & ndc->l4_hash) {
282 return skb_get_hash(skb);
283 } else {
284 if (flow.basic.n_proto == htons(ETH_P_IP))
285 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
286 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
287 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
288 else
289 return 0;
290
291 __skb_set_sw_hash(skb, hash, false);
292 }
293
294 return hash;
295 }
296
netvsc_get_tx_queue(struct net_device * ndev,struct sk_buff * skb,int old_idx)297 static inline int netvsc_get_tx_queue(struct net_device *ndev,
298 struct sk_buff *skb, int old_idx)
299 {
300 const struct net_device_context *ndc = netdev_priv(ndev);
301 struct sock *sk = skb->sk;
302 int q_idx;
303
304 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
305 (VRSS_SEND_TAB_SIZE - 1)];
306
307 /* If queue index changed record the new value */
308 if (q_idx != old_idx &&
309 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
310 sk_tx_queue_set(sk, q_idx);
311
312 return q_idx;
313 }
314
315 /*
316 * Select queue for transmit.
317 *
318 * If a valid queue has already been assigned, then use that.
319 * Otherwise compute tx queue based on hash and the send table.
320 *
321 * This is basically similar to default (netdev_pick_tx) with the added step
322 * of using the host send_table when no other queue has been assigned.
323 *
324 * TODO support XPS - but get_xps_queue not exported
325 */
netvsc_pick_tx(struct net_device * ndev,struct sk_buff * skb)326 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
327 {
328 int q_idx = sk_tx_queue_get(skb->sk);
329
330 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
331 /* If forwarding a packet, we use the recorded queue when
332 * available for better cache locality.
333 */
334 if (skb_rx_queue_recorded(skb))
335 q_idx = skb_get_rx_queue(skb);
336 else
337 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
338 }
339
340 return q_idx;
341 }
342
netvsc_select_queue(struct net_device * ndev,struct sk_buff * skb,struct net_device * sb_dev)343 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
344 struct net_device *sb_dev)
345 {
346 struct net_device_context *ndc = netdev_priv(ndev);
347 struct net_device *vf_netdev;
348 u16 txq;
349
350 rcu_read_lock();
351 vf_netdev = rcu_dereference(ndc->vf_netdev);
352 if (vf_netdev) {
353 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
354
355 if (vf_ops->ndo_select_queue)
356 txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
357 else
358 txq = netdev_pick_tx(vf_netdev, skb, NULL);
359
360 /* Record the queue selected by VF so that it can be
361 * used for common case where VF has more queues than
362 * the synthetic device.
363 */
364 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
365 } else {
366 txq = netvsc_pick_tx(ndev, skb);
367 }
368 rcu_read_unlock();
369
370 while (txq >= ndev->real_num_tx_queues)
371 txq -= ndev->real_num_tx_queues;
372
373 return txq;
374 }
375
fill_pg_buf(unsigned long hvpfn,u32 offset,u32 len,struct hv_page_buffer * pb)376 static u32 fill_pg_buf(unsigned long hvpfn, u32 offset, u32 len,
377 struct hv_page_buffer *pb)
378 {
379 int j = 0;
380
381 hvpfn += offset >> HV_HYP_PAGE_SHIFT;
382 offset = offset & ~HV_HYP_PAGE_MASK;
383
384 while (len > 0) {
385 unsigned long bytes;
386
387 bytes = HV_HYP_PAGE_SIZE - offset;
388 if (bytes > len)
389 bytes = len;
390 pb[j].pfn = hvpfn;
391 pb[j].offset = offset;
392 pb[j].len = bytes;
393
394 offset += bytes;
395 len -= bytes;
396
397 if (offset == HV_HYP_PAGE_SIZE && len) {
398 hvpfn++;
399 offset = 0;
400 j++;
401 }
402 }
403
404 return j + 1;
405 }
406
init_page_array(void * hdr,u32 len,struct sk_buff * skb,struct hv_netvsc_packet * packet,struct hv_page_buffer * pb)407 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
408 struct hv_netvsc_packet *packet,
409 struct hv_page_buffer *pb)
410 {
411 u32 slots_used = 0;
412 char *data = skb->data;
413 int frags = skb_shinfo(skb)->nr_frags;
414 int i;
415
416 /* The packet is laid out thus:
417 * 1. hdr: RNDIS header and PPI
418 * 2. skb linear data
419 * 3. skb fragment data
420 */
421 slots_used += fill_pg_buf(virt_to_hvpfn(hdr),
422 offset_in_hvpage(hdr),
423 len,
424 &pb[slots_used]);
425
426 packet->rmsg_size = len;
427 packet->rmsg_pgcnt = slots_used;
428
429 slots_used += fill_pg_buf(virt_to_hvpfn(data),
430 offset_in_hvpage(data),
431 skb_headlen(skb),
432 &pb[slots_used]);
433
434 for (i = 0; i < frags; i++) {
435 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
436
437 slots_used += fill_pg_buf(page_to_hvpfn(skb_frag_page(frag)),
438 skb_frag_off(frag),
439 skb_frag_size(frag),
440 &pb[slots_used]);
441 }
442 return slots_used;
443 }
444
count_skb_frag_slots(struct sk_buff * skb)445 static int count_skb_frag_slots(struct sk_buff *skb)
446 {
447 int i, frags = skb_shinfo(skb)->nr_frags;
448 int pages = 0;
449
450 for (i = 0; i < frags; i++) {
451 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
452 unsigned long size = skb_frag_size(frag);
453 unsigned long offset = skb_frag_off(frag);
454
455 /* Skip unused frames from start of page */
456 offset &= ~HV_HYP_PAGE_MASK;
457 pages += HVPFN_UP(offset + size);
458 }
459 return pages;
460 }
461
netvsc_get_slots(struct sk_buff * skb)462 static int netvsc_get_slots(struct sk_buff *skb)
463 {
464 char *data = skb->data;
465 unsigned int offset = offset_in_hvpage(data);
466 unsigned int len = skb_headlen(skb);
467 int slots;
468 int frag_slots;
469
470 slots = DIV_ROUND_UP(offset + len, HV_HYP_PAGE_SIZE);
471 frag_slots = count_skb_frag_slots(skb);
472 return slots + frag_slots;
473 }
474
net_checksum_info(struct sk_buff * skb)475 static u32 net_checksum_info(struct sk_buff *skb)
476 {
477 if (skb->protocol == htons(ETH_P_IP)) {
478 struct iphdr *ip = ip_hdr(skb);
479
480 if (ip->protocol == IPPROTO_TCP)
481 return TRANSPORT_INFO_IPV4_TCP;
482 else if (ip->protocol == IPPROTO_UDP)
483 return TRANSPORT_INFO_IPV4_UDP;
484 } else {
485 struct ipv6hdr *ip6 = ipv6_hdr(skb);
486
487 if (ip6->nexthdr == IPPROTO_TCP)
488 return TRANSPORT_INFO_IPV6_TCP;
489 else if (ip6->nexthdr == IPPROTO_UDP)
490 return TRANSPORT_INFO_IPV6_UDP;
491 }
492
493 return TRANSPORT_INFO_NOT_IP;
494 }
495
496 /* Send skb on the slave VF device. */
netvsc_vf_xmit(struct net_device * net,struct net_device * vf_netdev,struct sk_buff * skb)497 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
498 struct sk_buff *skb)
499 {
500 struct net_device_context *ndev_ctx = netdev_priv(net);
501 unsigned int len = skb->len;
502 int rc;
503
504 skb->dev = vf_netdev;
505 skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping);
506
507 rc = dev_queue_xmit(skb);
508 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
509 struct netvsc_vf_pcpu_stats *pcpu_stats
510 = this_cpu_ptr(ndev_ctx->vf_stats);
511
512 u64_stats_update_begin(&pcpu_stats->syncp);
513 pcpu_stats->tx_packets++;
514 pcpu_stats->tx_bytes += len;
515 u64_stats_update_end(&pcpu_stats->syncp);
516 } else {
517 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
518 }
519
520 return rc;
521 }
522
netvsc_xmit(struct sk_buff * skb,struct net_device * net,bool xdp_tx)523 static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx)
524 {
525 struct net_device_context *net_device_ctx = netdev_priv(net);
526 struct hv_netvsc_packet *packet = NULL;
527 int ret;
528 unsigned int num_data_pgs;
529 struct rndis_message *rndis_msg;
530 struct net_device *vf_netdev;
531 u32 rndis_msg_size;
532 u32 hash;
533 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
534
535 /* If VF is present and up then redirect packets to it.
536 * Skip the VF if it is marked down or has no carrier.
537 * If netpoll is in uses, then VF can not be used either.
538 */
539 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
540 if (vf_netdev && netif_running(vf_netdev) &&
541 netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net))
542 return netvsc_vf_xmit(net, vf_netdev, skb);
543
544 /* We will atmost need two pages to describe the rndis
545 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
546 * of pages in a single packet. If skb is scattered around
547 * more pages we try linearizing it.
548 */
549
550 num_data_pgs = netvsc_get_slots(skb) + 2;
551
552 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
553 ++net_device_ctx->eth_stats.tx_scattered;
554
555 if (skb_linearize(skb))
556 goto no_memory;
557
558 num_data_pgs = netvsc_get_slots(skb) + 2;
559 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
560 ++net_device_ctx->eth_stats.tx_too_big;
561 goto drop;
562 }
563 }
564
565 /*
566 * Place the rndis header in the skb head room and
567 * the skb->cb will be used for hv_netvsc_packet
568 * structure.
569 */
570 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
571 if (ret)
572 goto no_memory;
573
574 /* Use the skb control buffer for building up the packet */
575 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
576 sizeof_field(struct sk_buff, cb));
577 packet = (struct hv_netvsc_packet *)skb->cb;
578
579 packet->q_idx = skb_get_queue_mapping(skb);
580
581 packet->total_data_buflen = skb->len;
582 packet->total_bytes = skb->len;
583 packet->total_packets = 1;
584
585 rndis_msg = (struct rndis_message *)skb->head;
586
587 /* Add the rndis header */
588 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
589 rndis_msg->msg_len = packet->total_data_buflen;
590
591 rndis_msg->msg.pkt = (struct rndis_packet) {
592 .data_offset = sizeof(struct rndis_packet),
593 .data_len = packet->total_data_buflen,
594 .per_pkt_info_offset = sizeof(struct rndis_packet),
595 };
596
597 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
598
599 hash = skb_get_hash_raw(skb);
600 if (hash != 0 && net->real_num_tx_queues > 1) {
601 u32 *hash_info;
602
603 rndis_msg_size += NDIS_HASH_PPI_SIZE;
604 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
605 NBL_HASH_VALUE);
606 *hash_info = hash;
607 }
608
609 /* When using AF_PACKET we need to drop VLAN header from
610 * the frame and update the SKB to allow the HOST OS
611 * to transmit the 802.1Q packet
612 */
613 if (skb->protocol == htons(ETH_P_8021Q)) {
614 u16 vlan_tci;
615
616 skb_reset_mac_header(skb);
617 if (eth_type_vlan(eth_hdr(skb)->h_proto)) {
618 if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) {
619 ++net_device_ctx->eth_stats.vlan_error;
620 goto drop;
621 }
622
623 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
624 /* Update the NDIS header pkt lengths */
625 packet->total_data_buflen -= VLAN_HLEN;
626 packet->total_bytes -= VLAN_HLEN;
627 rndis_msg->msg_len = packet->total_data_buflen;
628 rndis_msg->msg.pkt.data_len = packet->total_data_buflen;
629 }
630 }
631
632 if (skb_vlan_tag_present(skb)) {
633 struct ndis_pkt_8021q_info *vlan;
634
635 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
636 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
637 IEEE_8021Q_INFO);
638
639 vlan->value = 0;
640 vlan->vlanid = skb_vlan_tag_get_id(skb);
641 vlan->cfi = skb_vlan_tag_get_cfi(skb);
642 vlan->pri = skb_vlan_tag_get_prio(skb);
643 }
644
645 if (skb_is_gso(skb)) {
646 struct ndis_tcp_lso_info *lso_info;
647
648 rndis_msg_size += NDIS_LSO_PPI_SIZE;
649 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
650 TCP_LARGESEND_PKTINFO);
651
652 lso_info->value = 0;
653 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
654 if (skb->protocol == htons(ETH_P_IP)) {
655 lso_info->lso_v2_transmit.ip_version =
656 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
657 ip_hdr(skb)->tot_len = 0;
658 ip_hdr(skb)->check = 0;
659 tcp_hdr(skb)->check =
660 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
661 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
662 } else {
663 lso_info->lso_v2_transmit.ip_version =
664 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
665 tcp_v6_gso_csum_prep(skb);
666 }
667 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
668 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
669 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
670 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
671 struct ndis_tcp_ip_checksum_info *csum_info;
672
673 rndis_msg_size += NDIS_CSUM_PPI_SIZE;
674 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
675 TCPIP_CHKSUM_PKTINFO);
676
677 csum_info->value = 0;
678 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
679
680 if (skb->protocol == htons(ETH_P_IP)) {
681 csum_info->transmit.is_ipv4 = 1;
682
683 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
684 csum_info->transmit.tcp_checksum = 1;
685 else
686 csum_info->transmit.udp_checksum = 1;
687 } else {
688 csum_info->transmit.is_ipv6 = 1;
689
690 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
691 csum_info->transmit.tcp_checksum = 1;
692 else
693 csum_info->transmit.udp_checksum = 1;
694 }
695 } else {
696 /* Can't do offload of this type of checksum */
697 if (skb_checksum_help(skb))
698 goto drop;
699 }
700 }
701
702 /* Start filling in the page buffers with the rndis hdr */
703 rndis_msg->msg_len += rndis_msg_size;
704 packet->total_data_buflen = rndis_msg->msg_len;
705 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
706 skb, packet, pb);
707
708 /* timestamp packet in software */
709 skb_tx_timestamp(skb);
710
711 ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx);
712 if (likely(ret == 0))
713 return NETDEV_TX_OK;
714
715 if (ret == -EAGAIN) {
716 ++net_device_ctx->eth_stats.tx_busy;
717 return NETDEV_TX_BUSY;
718 }
719
720 if (ret == -ENOSPC)
721 ++net_device_ctx->eth_stats.tx_no_space;
722
723 drop:
724 dev_kfree_skb_any(skb);
725 net->stats.tx_dropped++;
726
727 return NETDEV_TX_OK;
728
729 no_memory:
730 ++net_device_ctx->eth_stats.tx_no_memory;
731 goto drop;
732 }
733
netvsc_start_xmit(struct sk_buff * skb,struct net_device * ndev)734 static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb,
735 struct net_device *ndev)
736 {
737 return netvsc_xmit(skb, ndev, false);
738 }
739
740 /*
741 * netvsc_linkstatus_callback - Link up/down notification
742 */
netvsc_linkstatus_callback(struct net_device * net,struct rndis_message * resp)743 void netvsc_linkstatus_callback(struct net_device *net,
744 struct rndis_message *resp)
745 {
746 struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
747 struct net_device_context *ndev_ctx = netdev_priv(net);
748 struct netvsc_reconfig *event;
749 unsigned long flags;
750
751 /* Ensure the packet is big enough to access its fields */
752 if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) {
753 netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n",
754 resp->msg_len);
755 return;
756 }
757
758 /* Update the physical link speed when changing to another vSwitch */
759 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
760 u32 speed;
761
762 speed = *(u32 *)((void *)indicate
763 + indicate->status_buf_offset) / 10000;
764 ndev_ctx->speed = speed;
765 return;
766 }
767
768 /* Handle these link change statuses below */
769 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
770 indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
771 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
772 return;
773
774 if (net->reg_state != NETREG_REGISTERED)
775 return;
776
777 event = kzalloc(sizeof(*event), GFP_ATOMIC);
778 if (!event)
779 return;
780 event->event = indicate->status;
781
782 spin_lock_irqsave(&ndev_ctx->lock, flags);
783 list_add_tail(&event->list, &ndev_ctx->reconfig_events);
784 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
785
786 schedule_delayed_work(&ndev_ctx->dwork, 0);
787 }
788
netvsc_xdp_xmit(struct sk_buff * skb,struct net_device * ndev)789 static void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev)
790 {
791 int rc;
792
793 skb->queue_mapping = skb_get_rx_queue(skb);
794 __skb_push(skb, ETH_HLEN);
795
796 rc = netvsc_xmit(skb, ndev, true);
797
798 if (dev_xmit_complete(rc))
799 return;
800
801 dev_kfree_skb_any(skb);
802 ndev->stats.tx_dropped++;
803 }
804
netvsc_comp_ipcsum(struct sk_buff * skb)805 static void netvsc_comp_ipcsum(struct sk_buff *skb)
806 {
807 struct iphdr *iph = (struct iphdr *)skb->data;
808
809 iph->check = 0;
810 iph->check = ip_fast_csum(iph, iph->ihl);
811 }
812
netvsc_alloc_recv_skb(struct net_device * net,struct netvsc_channel * nvchan,struct xdp_buff * xdp)813 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
814 struct netvsc_channel *nvchan,
815 struct xdp_buff *xdp)
816 {
817 struct napi_struct *napi = &nvchan->napi;
818 const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan;
819 const struct ndis_tcp_ip_checksum_info *csum_info =
820 nvchan->rsc.csum_info;
821 const u32 *hash_info = nvchan->rsc.hash_info;
822 struct sk_buff *skb;
823 void *xbuf = xdp->data_hard_start;
824 int i;
825
826 if (xbuf) {
827 unsigned int hdroom = xdp->data - xdp->data_hard_start;
828 unsigned int xlen = xdp->data_end - xdp->data;
829 unsigned int frag_size = xdp->frame_sz;
830
831 skb = build_skb(xbuf, frag_size);
832
833 if (!skb) {
834 __free_page(virt_to_page(xbuf));
835 return NULL;
836 }
837
838 skb_reserve(skb, hdroom);
839 skb_put(skb, xlen);
840 skb->dev = napi->dev;
841 } else {
842 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
843
844 if (!skb)
845 return NULL;
846
847 /* Copy to skb. This copy is needed here since the memory
848 * pointed by hv_netvsc_packet cannot be deallocated.
849 */
850 for (i = 0; i < nvchan->rsc.cnt; i++)
851 skb_put_data(skb, nvchan->rsc.data[i],
852 nvchan->rsc.len[i]);
853 }
854
855 skb->protocol = eth_type_trans(skb, net);
856
857 /* skb is already created with CHECKSUM_NONE */
858 skb_checksum_none_assert(skb);
859
860 /* Incoming packets may have IP header checksum verified by the host.
861 * They may not have IP header checksum computed after coalescing.
862 * We compute it here if the flags are set, because on Linux, the IP
863 * checksum is always checked.
864 */
865 if (csum_info && csum_info->receive.ip_checksum_value_invalid &&
866 csum_info->receive.ip_checksum_succeeded &&
867 skb->protocol == htons(ETH_P_IP))
868 netvsc_comp_ipcsum(skb);
869
870 /* Do L4 checksum offload if enabled and present. */
871 if (csum_info && (net->features & NETIF_F_RXCSUM)) {
872 if (csum_info->receive.tcp_checksum_succeeded ||
873 csum_info->receive.udp_checksum_succeeded)
874 skb->ip_summed = CHECKSUM_UNNECESSARY;
875 }
876
877 if (hash_info && (net->features & NETIF_F_RXHASH))
878 skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4);
879
880 if (vlan) {
881 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
882 (vlan->cfi ? VLAN_CFI_MASK : 0);
883
884 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
885 vlan_tci);
886 }
887
888 return skb;
889 }
890
891 /*
892 * netvsc_recv_callback - Callback when we receive a packet from the
893 * "wire" on the specified device.
894 */
netvsc_recv_callback(struct net_device * net,struct netvsc_device * net_device,struct netvsc_channel * nvchan)895 int netvsc_recv_callback(struct net_device *net,
896 struct netvsc_device *net_device,
897 struct netvsc_channel *nvchan)
898 {
899 struct net_device_context *net_device_ctx = netdev_priv(net);
900 struct vmbus_channel *channel = nvchan->channel;
901 u16 q_idx = channel->offermsg.offer.sub_channel_index;
902 struct sk_buff *skb;
903 struct netvsc_stats *rx_stats = &nvchan->rx_stats;
904 struct xdp_buff xdp;
905 u32 act;
906
907 if (net->reg_state != NETREG_REGISTERED)
908 return NVSP_STAT_FAIL;
909
910 act = netvsc_run_xdp(net, nvchan, &xdp);
911
912 if (act != XDP_PASS && act != XDP_TX) {
913 u64_stats_update_begin(&rx_stats->syncp);
914 rx_stats->xdp_drop++;
915 u64_stats_update_end(&rx_stats->syncp);
916
917 return NVSP_STAT_SUCCESS; /* consumed by XDP */
918 }
919
920 /* Allocate a skb - TODO direct I/O to pages? */
921 skb = netvsc_alloc_recv_skb(net, nvchan, &xdp);
922
923 if (unlikely(!skb)) {
924 ++net_device_ctx->eth_stats.rx_no_memory;
925 return NVSP_STAT_FAIL;
926 }
927
928 skb_record_rx_queue(skb, q_idx);
929
930 /*
931 * Even if injecting the packet, record the statistics
932 * on the synthetic device because modifying the VF device
933 * statistics will not work correctly.
934 */
935 u64_stats_update_begin(&rx_stats->syncp);
936 rx_stats->packets++;
937 rx_stats->bytes += nvchan->rsc.pktlen;
938
939 if (skb->pkt_type == PACKET_BROADCAST)
940 ++rx_stats->broadcast;
941 else if (skb->pkt_type == PACKET_MULTICAST)
942 ++rx_stats->multicast;
943 u64_stats_update_end(&rx_stats->syncp);
944
945 if (act == XDP_TX) {
946 netvsc_xdp_xmit(skb, net);
947 return NVSP_STAT_SUCCESS;
948 }
949
950 napi_gro_receive(&nvchan->napi, skb);
951 return NVSP_STAT_SUCCESS;
952 }
953
netvsc_get_drvinfo(struct net_device * net,struct ethtool_drvinfo * info)954 static void netvsc_get_drvinfo(struct net_device *net,
955 struct ethtool_drvinfo *info)
956 {
957 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
958 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
959 }
960
netvsc_get_channels(struct net_device * net,struct ethtool_channels * channel)961 static void netvsc_get_channels(struct net_device *net,
962 struct ethtool_channels *channel)
963 {
964 struct net_device_context *net_device_ctx = netdev_priv(net);
965 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
966
967 if (nvdev) {
968 channel->max_combined = nvdev->max_chn;
969 channel->combined_count = nvdev->num_chn;
970 }
971 }
972
973 /* Alloc struct netvsc_device_info, and initialize it from either existing
974 * struct netvsc_device, or from default values.
975 */
976 static
netvsc_devinfo_get(struct netvsc_device * nvdev)977 struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev)
978 {
979 struct netvsc_device_info *dev_info;
980 struct bpf_prog *prog;
981
982 dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
983
984 if (!dev_info)
985 return NULL;
986
987 if (nvdev) {
988 ASSERT_RTNL();
989
990 dev_info->num_chn = nvdev->num_chn;
991 dev_info->send_sections = nvdev->send_section_cnt;
992 dev_info->send_section_size = nvdev->send_section_size;
993 dev_info->recv_sections = nvdev->recv_section_cnt;
994 dev_info->recv_section_size = nvdev->recv_section_size;
995
996 memcpy(dev_info->rss_key, nvdev->extension->rss_key,
997 NETVSC_HASH_KEYLEN);
998
999 prog = netvsc_xdp_get(nvdev);
1000 if (prog) {
1001 bpf_prog_inc(prog);
1002 dev_info->bprog = prog;
1003 }
1004 } else {
1005 dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
1006 dev_info->send_sections = NETVSC_DEFAULT_TX;
1007 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
1008 dev_info->recv_sections = NETVSC_DEFAULT_RX;
1009 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
1010 }
1011
1012 return dev_info;
1013 }
1014
1015 /* Free struct netvsc_device_info */
netvsc_devinfo_put(struct netvsc_device_info * dev_info)1016 static void netvsc_devinfo_put(struct netvsc_device_info *dev_info)
1017 {
1018 if (dev_info->bprog) {
1019 ASSERT_RTNL();
1020 bpf_prog_put(dev_info->bprog);
1021 }
1022
1023 kfree(dev_info);
1024 }
1025
netvsc_detach(struct net_device * ndev,struct netvsc_device * nvdev)1026 static int netvsc_detach(struct net_device *ndev,
1027 struct netvsc_device *nvdev)
1028 {
1029 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1030 struct hv_device *hdev = ndev_ctx->device_ctx;
1031 int ret;
1032
1033 /* Don't try continuing to try and setup sub channels */
1034 if (cancel_work_sync(&nvdev->subchan_work))
1035 nvdev->num_chn = 1;
1036
1037 netvsc_xdp_set(ndev, NULL, NULL, nvdev);
1038
1039 /* If device was up (receiving) then shutdown */
1040 if (netif_running(ndev)) {
1041 netvsc_tx_disable(nvdev, ndev);
1042
1043 ret = rndis_filter_close(nvdev);
1044 if (ret) {
1045 netdev_err(ndev,
1046 "unable to close device (ret %d).\n", ret);
1047 return ret;
1048 }
1049
1050 ret = netvsc_wait_until_empty(nvdev);
1051 if (ret) {
1052 netdev_err(ndev,
1053 "Ring buffer not empty after closing rndis\n");
1054 return ret;
1055 }
1056 }
1057
1058 netif_device_detach(ndev);
1059
1060 rndis_filter_device_remove(hdev, nvdev);
1061
1062 return 0;
1063 }
1064
netvsc_attach(struct net_device * ndev,struct netvsc_device_info * dev_info)1065 static int netvsc_attach(struct net_device *ndev,
1066 struct netvsc_device_info *dev_info)
1067 {
1068 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1069 struct hv_device *hdev = ndev_ctx->device_ctx;
1070 struct netvsc_device *nvdev;
1071 struct rndis_device *rdev;
1072 struct bpf_prog *prog;
1073 int ret = 0;
1074
1075 nvdev = rndis_filter_device_add(hdev, dev_info);
1076 if (IS_ERR(nvdev))
1077 return PTR_ERR(nvdev);
1078
1079 if (nvdev->num_chn > 1) {
1080 ret = rndis_set_subchannel(ndev, nvdev, dev_info);
1081
1082 /* if unavailable, just proceed with one queue */
1083 if (ret) {
1084 nvdev->max_chn = 1;
1085 nvdev->num_chn = 1;
1086 }
1087 }
1088
1089 prog = dev_info->bprog;
1090 if (prog) {
1091 bpf_prog_inc(prog);
1092 ret = netvsc_xdp_set(ndev, prog, NULL, nvdev);
1093 if (ret) {
1094 bpf_prog_put(prog);
1095 goto err1;
1096 }
1097 }
1098
1099 /* In any case device is now ready */
1100 nvdev->tx_disable = false;
1101 netif_device_attach(ndev);
1102
1103 /* Note: enable and attach happen when sub-channels setup */
1104 netif_carrier_off(ndev);
1105
1106 if (netif_running(ndev)) {
1107 ret = rndis_filter_open(nvdev);
1108 if (ret)
1109 goto err2;
1110
1111 rdev = nvdev->extension;
1112 if (!rdev->link_state)
1113 netif_carrier_on(ndev);
1114 }
1115
1116 return 0;
1117
1118 err2:
1119 netif_device_detach(ndev);
1120
1121 err1:
1122 rndis_filter_device_remove(hdev, nvdev);
1123
1124 return ret;
1125 }
1126
netvsc_set_channels(struct net_device * net,struct ethtool_channels * channels)1127 static int netvsc_set_channels(struct net_device *net,
1128 struct ethtool_channels *channels)
1129 {
1130 struct net_device_context *net_device_ctx = netdev_priv(net);
1131 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1132 unsigned int orig, count = channels->combined_count;
1133 struct netvsc_device_info *device_info;
1134 int ret;
1135
1136 /* We do not support separate count for rx, tx, or other */
1137 if (count == 0 ||
1138 channels->rx_count || channels->tx_count || channels->other_count)
1139 return -EINVAL;
1140
1141 if (!nvdev || nvdev->destroy)
1142 return -ENODEV;
1143
1144 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1145 return -EINVAL;
1146
1147 if (count > nvdev->max_chn)
1148 return -EINVAL;
1149
1150 orig = nvdev->num_chn;
1151
1152 device_info = netvsc_devinfo_get(nvdev);
1153
1154 if (!device_info)
1155 return -ENOMEM;
1156
1157 device_info->num_chn = count;
1158
1159 ret = netvsc_detach(net, nvdev);
1160 if (ret)
1161 goto out;
1162
1163 ret = netvsc_attach(net, device_info);
1164 if (ret) {
1165 device_info->num_chn = orig;
1166 if (netvsc_attach(net, device_info))
1167 netdev_err(net, "restoring channel setting failed\n");
1168 }
1169
1170 out:
1171 netvsc_devinfo_put(device_info);
1172 return ret;
1173 }
1174
netvsc_init_settings(struct net_device * dev)1175 static void netvsc_init_settings(struct net_device *dev)
1176 {
1177 struct net_device_context *ndc = netdev_priv(dev);
1178
1179 ndc->l4_hash = HV_DEFAULT_L4HASH;
1180
1181 ndc->speed = SPEED_UNKNOWN;
1182 ndc->duplex = DUPLEX_FULL;
1183
1184 dev->features = NETIF_F_LRO;
1185 }
1186
netvsc_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1187 static int netvsc_get_link_ksettings(struct net_device *dev,
1188 struct ethtool_link_ksettings *cmd)
1189 {
1190 struct net_device_context *ndc = netdev_priv(dev);
1191 struct net_device *vf_netdev;
1192
1193 vf_netdev = rtnl_dereference(ndc->vf_netdev);
1194
1195 if (vf_netdev)
1196 return __ethtool_get_link_ksettings(vf_netdev, cmd);
1197
1198 cmd->base.speed = ndc->speed;
1199 cmd->base.duplex = ndc->duplex;
1200 cmd->base.port = PORT_OTHER;
1201
1202 return 0;
1203 }
1204
netvsc_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1205 static int netvsc_set_link_ksettings(struct net_device *dev,
1206 const struct ethtool_link_ksettings *cmd)
1207 {
1208 struct net_device_context *ndc = netdev_priv(dev);
1209 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1210
1211 if (vf_netdev) {
1212 if (!vf_netdev->ethtool_ops->set_link_ksettings)
1213 return -EOPNOTSUPP;
1214
1215 return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev,
1216 cmd);
1217 }
1218
1219 return ethtool_virtdev_set_link_ksettings(dev, cmd,
1220 &ndc->speed, &ndc->duplex);
1221 }
1222
netvsc_change_mtu(struct net_device * ndev,int mtu)1223 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1224 {
1225 struct net_device_context *ndevctx = netdev_priv(ndev);
1226 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1227 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1228 int orig_mtu = ndev->mtu;
1229 struct netvsc_device_info *device_info;
1230 int ret = 0;
1231
1232 if (!nvdev || nvdev->destroy)
1233 return -ENODEV;
1234
1235 device_info = netvsc_devinfo_get(nvdev);
1236
1237 if (!device_info)
1238 return -ENOMEM;
1239
1240 /* Change MTU of underlying VF netdev first. */
1241 if (vf_netdev) {
1242 ret = dev_set_mtu(vf_netdev, mtu);
1243 if (ret)
1244 goto out;
1245 }
1246
1247 ret = netvsc_detach(ndev, nvdev);
1248 if (ret)
1249 goto rollback_vf;
1250
1251 ndev->mtu = mtu;
1252
1253 ret = netvsc_attach(ndev, device_info);
1254 if (!ret)
1255 goto out;
1256
1257 /* Attempt rollback to original MTU */
1258 ndev->mtu = orig_mtu;
1259
1260 if (netvsc_attach(ndev, device_info))
1261 netdev_err(ndev, "restoring mtu failed\n");
1262 rollback_vf:
1263 if (vf_netdev)
1264 dev_set_mtu(vf_netdev, orig_mtu);
1265
1266 out:
1267 netvsc_devinfo_put(device_info);
1268 return ret;
1269 }
1270
netvsc_get_vf_stats(struct net_device * net,struct netvsc_vf_pcpu_stats * tot)1271 static void netvsc_get_vf_stats(struct net_device *net,
1272 struct netvsc_vf_pcpu_stats *tot)
1273 {
1274 struct net_device_context *ndev_ctx = netdev_priv(net);
1275 int i;
1276
1277 memset(tot, 0, sizeof(*tot));
1278
1279 for_each_possible_cpu(i) {
1280 const struct netvsc_vf_pcpu_stats *stats
1281 = per_cpu_ptr(ndev_ctx->vf_stats, i);
1282 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1283 unsigned int start;
1284
1285 do {
1286 start = u64_stats_fetch_begin_irq(&stats->syncp);
1287 rx_packets = stats->rx_packets;
1288 tx_packets = stats->tx_packets;
1289 rx_bytes = stats->rx_bytes;
1290 tx_bytes = stats->tx_bytes;
1291 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1292
1293 tot->rx_packets += rx_packets;
1294 tot->tx_packets += tx_packets;
1295 tot->rx_bytes += rx_bytes;
1296 tot->tx_bytes += tx_bytes;
1297 tot->tx_dropped += stats->tx_dropped;
1298 }
1299 }
1300
netvsc_get_pcpu_stats(struct net_device * net,struct netvsc_ethtool_pcpu_stats * pcpu_tot)1301 static void netvsc_get_pcpu_stats(struct net_device *net,
1302 struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1303 {
1304 struct net_device_context *ndev_ctx = netdev_priv(net);
1305 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1306 int i;
1307
1308 /* fetch percpu stats of vf */
1309 for_each_possible_cpu(i) {
1310 const struct netvsc_vf_pcpu_stats *stats =
1311 per_cpu_ptr(ndev_ctx->vf_stats, i);
1312 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1313 unsigned int start;
1314
1315 do {
1316 start = u64_stats_fetch_begin_irq(&stats->syncp);
1317 this_tot->vf_rx_packets = stats->rx_packets;
1318 this_tot->vf_tx_packets = stats->tx_packets;
1319 this_tot->vf_rx_bytes = stats->rx_bytes;
1320 this_tot->vf_tx_bytes = stats->tx_bytes;
1321 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1322 this_tot->rx_packets = this_tot->vf_rx_packets;
1323 this_tot->tx_packets = this_tot->vf_tx_packets;
1324 this_tot->rx_bytes = this_tot->vf_rx_bytes;
1325 this_tot->tx_bytes = this_tot->vf_tx_bytes;
1326 }
1327
1328 /* fetch percpu stats of netvsc */
1329 for (i = 0; i < nvdev->num_chn; i++) {
1330 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1331 const struct netvsc_stats *stats;
1332 struct netvsc_ethtool_pcpu_stats *this_tot =
1333 &pcpu_tot[nvchan->channel->target_cpu];
1334 u64 packets, bytes;
1335 unsigned int start;
1336
1337 stats = &nvchan->tx_stats;
1338 do {
1339 start = u64_stats_fetch_begin_irq(&stats->syncp);
1340 packets = stats->packets;
1341 bytes = stats->bytes;
1342 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1343
1344 this_tot->tx_bytes += bytes;
1345 this_tot->tx_packets += packets;
1346
1347 stats = &nvchan->rx_stats;
1348 do {
1349 start = u64_stats_fetch_begin_irq(&stats->syncp);
1350 packets = stats->packets;
1351 bytes = stats->bytes;
1352 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1353
1354 this_tot->rx_bytes += bytes;
1355 this_tot->rx_packets += packets;
1356 }
1357 }
1358
netvsc_get_stats64(struct net_device * net,struct rtnl_link_stats64 * t)1359 static void netvsc_get_stats64(struct net_device *net,
1360 struct rtnl_link_stats64 *t)
1361 {
1362 struct net_device_context *ndev_ctx = netdev_priv(net);
1363 struct netvsc_device *nvdev;
1364 struct netvsc_vf_pcpu_stats vf_tot;
1365 int i;
1366
1367 rcu_read_lock();
1368
1369 nvdev = rcu_dereference(ndev_ctx->nvdev);
1370 if (!nvdev)
1371 goto out;
1372
1373 netdev_stats_to_stats64(t, &net->stats);
1374
1375 netvsc_get_vf_stats(net, &vf_tot);
1376 t->rx_packets += vf_tot.rx_packets;
1377 t->tx_packets += vf_tot.tx_packets;
1378 t->rx_bytes += vf_tot.rx_bytes;
1379 t->tx_bytes += vf_tot.tx_bytes;
1380 t->tx_dropped += vf_tot.tx_dropped;
1381
1382 for (i = 0; i < nvdev->num_chn; i++) {
1383 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1384 const struct netvsc_stats *stats;
1385 u64 packets, bytes, multicast;
1386 unsigned int start;
1387
1388 stats = &nvchan->tx_stats;
1389 do {
1390 start = u64_stats_fetch_begin_irq(&stats->syncp);
1391 packets = stats->packets;
1392 bytes = stats->bytes;
1393 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1394
1395 t->tx_bytes += bytes;
1396 t->tx_packets += packets;
1397
1398 stats = &nvchan->rx_stats;
1399 do {
1400 start = u64_stats_fetch_begin_irq(&stats->syncp);
1401 packets = stats->packets;
1402 bytes = stats->bytes;
1403 multicast = stats->multicast + stats->broadcast;
1404 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1405
1406 t->rx_bytes += bytes;
1407 t->rx_packets += packets;
1408 t->multicast += multicast;
1409 }
1410 out:
1411 rcu_read_unlock();
1412 }
1413
netvsc_set_mac_addr(struct net_device * ndev,void * p)1414 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1415 {
1416 struct net_device_context *ndc = netdev_priv(ndev);
1417 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1418 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1419 struct sockaddr *addr = p;
1420 int err;
1421
1422 err = eth_prepare_mac_addr_change(ndev, p);
1423 if (err)
1424 return err;
1425
1426 if (!nvdev)
1427 return -ENODEV;
1428
1429 if (vf_netdev) {
1430 err = dev_set_mac_address(vf_netdev, addr, NULL);
1431 if (err)
1432 return err;
1433 }
1434
1435 err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1436 if (!err) {
1437 eth_commit_mac_addr_change(ndev, p);
1438 } else if (vf_netdev) {
1439 /* rollback change on VF */
1440 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1441 dev_set_mac_address(vf_netdev, addr, NULL);
1442 }
1443
1444 return err;
1445 }
1446
1447 static const struct {
1448 char name[ETH_GSTRING_LEN];
1449 u16 offset;
1450 } netvsc_stats[] = {
1451 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1452 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1453 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1454 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1455 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) },
1456 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1457 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1458 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1459 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1460 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1461 { "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) },
1462 }, pcpu_stats[] = {
1463 { "cpu%u_rx_packets",
1464 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1465 { "cpu%u_rx_bytes",
1466 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1467 { "cpu%u_tx_packets",
1468 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1469 { "cpu%u_tx_bytes",
1470 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1471 { "cpu%u_vf_rx_packets",
1472 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1473 { "cpu%u_vf_rx_bytes",
1474 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1475 { "cpu%u_vf_tx_packets",
1476 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1477 { "cpu%u_vf_tx_bytes",
1478 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1479 }, vf_stats[] = {
1480 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1481 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1482 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1483 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1484 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1485 };
1486
1487 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1488 #define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats)
1489
1490 /* statistics per queue (rx/tx packets/bytes) */
1491 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1492
1493 /* 5 statistics per queue (rx/tx packets/bytes, rx xdp_drop) */
1494 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 5)
1495
netvsc_get_sset_count(struct net_device * dev,int string_set)1496 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1497 {
1498 struct net_device_context *ndc = netdev_priv(dev);
1499 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1500
1501 if (!nvdev)
1502 return -ENODEV;
1503
1504 switch (string_set) {
1505 case ETH_SS_STATS:
1506 return NETVSC_GLOBAL_STATS_LEN
1507 + NETVSC_VF_STATS_LEN
1508 + NETVSC_QUEUE_STATS_LEN(nvdev)
1509 + NETVSC_PCPU_STATS_LEN;
1510 default:
1511 return -EINVAL;
1512 }
1513 }
1514
netvsc_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)1515 static void netvsc_get_ethtool_stats(struct net_device *dev,
1516 struct ethtool_stats *stats, u64 *data)
1517 {
1518 struct net_device_context *ndc = netdev_priv(dev);
1519 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1520 const void *nds = &ndc->eth_stats;
1521 const struct netvsc_stats *qstats;
1522 struct netvsc_vf_pcpu_stats sum;
1523 struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1524 unsigned int start;
1525 u64 packets, bytes;
1526 u64 xdp_drop;
1527 int i, j, cpu;
1528
1529 if (!nvdev)
1530 return;
1531
1532 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1533 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1534
1535 netvsc_get_vf_stats(dev, &sum);
1536 for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1537 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1538
1539 for (j = 0; j < nvdev->num_chn; j++) {
1540 qstats = &nvdev->chan_table[j].tx_stats;
1541
1542 do {
1543 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1544 packets = qstats->packets;
1545 bytes = qstats->bytes;
1546 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1547 data[i++] = packets;
1548 data[i++] = bytes;
1549
1550 qstats = &nvdev->chan_table[j].rx_stats;
1551 do {
1552 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1553 packets = qstats->packets;
1554 bytes = qstats->bytes;
1555 xdp_drop = qstats->xdp_drop;
1556 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1557 data[i++] = packets;
1558 data[i++] = bytes;
1559 data[i++] = xdp_drop;
1560 }
1561
1562 pcpu_sum = kvmalloc_array(num_possible_cpus(),
1563 sizeof(struct netvsc_ethtool_pcpu_stats),
1564 GFP_KERNEL);
1565 netvsc_get_pcpu_stats(dev, pcpu_sum);
1566 for_each_present_cpu(cpu) {
1567 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1568
1569 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1570 data[i++] = *(u64 *)((void *)this_sum
1571 + pcpu_stats[j].offset);
1572 }
1573 kvfree(pcpu_sum);
1574 }
1575
netvsc_get_strings(struct net_device * dev,u32 stringset,u8 * data)1576 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1577 {
1578 struct net_device_context *ndc = netdev_priv(dev);
1579 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1580 u8 *p = data;
1581 int i, cpu;
1582
1583 if (!nvdev)
1584 return;
1585
1586 switch (stringset) {
1587 case ETH_SS_STATS:
1588 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1589 memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1590 p += ETH_GSTRING_LEN;
1591 }
1592
1593 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1594 memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1595 p += ETH_GSTRING_LEN;
1596 }
1597
1598 for (i = 0; i < nvdev->num_chn; i++) {
1599 sprintf(p, "tx_queue_%u_packets", i);
1600 p += ETH_GSTRING_LEN;
1601 sprintf(p, "tx_queue_%u_bytes", i);
1602 p += ETH_GSTRING_LEN;
1603 sprintf(p, "rx_queue_%u_packets", i);
1604 p += ETH_GSTRING_LEN;
1605 sprintf(p, "rx_queue_%u_bytes", i);
1606 p += ETH_GSTRING_LEN;
1607 sprintf(p, "rx_queue_%u_xdp_drop", i);
1608 p += ETH_GSTRING_LEN;
1609 }
1610
1611 for_each_present_cpu(cpu) {
1612 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) {
1613 sprintf(p, pcpu_stats[i].name, cpu);
1614 p += ETH_GSTRING_LEN;
1615 }
1616 }
1617
1618 break;
1619 }
1620 }
1621
1622 static int
netvsc_get_rss_hash_opts(struct net_device_context * ndc,struct ethtool_rxnfc * info)1623 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1624 struct ethtool_rxnfc *info)
1625 {
1626 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1627
1628 info->data = RXH_IP_SRC | RXH_IP_DST;
1629
1630 switch (info->flow_type) {
1631 case TCP_V4_FLOW:
1632 if (ndc->l4_hash & HV_TCP4_L4HASH)
1633 info->data |= l4_flag;
1634
1635 break;
1636
1637 case TCP_V6_FLOW:
1638 if (ndc->l4_hash & HV_TCP6_L4HASH)
1639 info->data |= l4_flag;
1640
1641 break;
1642
1643 case UDP_V4_FLOW:
1644 if (ndc->l4_hash & HV_UDP4_L4HASH)
1645 info->data |= l4_flag;
1646
1647 break;
1648
1649 case UDP_V6_FLOW:
1650 if (ndc->l4_hash & HV_UDP6_L4HASH)
1651 info->data |= l4_flag;
1652
1653 break;
1654
1655 case IPV4_FLOW:
1656 case IPV6_FLOW:
1657 break;
1658 default:
1659 info->data = 0;
1660 break;
1661 }
1662
1663 return 0;
1664 }
1665
1666 static int
netvsc_get_rxnfc(struct net_device * dev,struct ethtool_rxnfc * info,u32 * rules)1667 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1668 u32 *rules)
1669 {
1670 struct net_device_context *ndc = netdev_priv(dev);
1671 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1672
1673 if (!nvdev)
1674 return -ENODEV;
1675
1676 switch (info->cmd) {
1677 case ETHTOOL_GRXRINGS:
1678 info->data = nvdev->num_chn;
1679 return 0;
1680
1681 case ETHTOOL_GRXFH:
1682 return netvsc_get_rss_hash_opts(ndc, info);
1683 }
1684 return -EOPNOTSUPP;
1685 }
1686
netvsc_set_rss_hash_opts(struct net_device_context * ndc,struct ethtool_rxnfc * info)1687 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1688 struct ethtool_rxnfc *info)
1689 {
1690 if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1691 RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1692 switch (info->flow_type) {
1693 case TCP_V4_FLOW:
1694 ndc->l4_hash |= HV_TCP4_L4HASH;
1695 break;
1696
1697 case TCP_V6_FLOW:
1698 ndc->l4_hash |= HV_TCP6_L4HASH;
1699 break;
1700
1701 case UDP_V4_FLOW:
1702 ndc->l4_hash |= HV_UDP4_L4HASH;
1703 break;
1704
1705 case UDP_V6_FLOW:
1706 ndc->l4_hash |= HV_UDP6_L4HASH;
1707 break;
1708
1709 default:
1710 return -EOPNOTSUPP;
1711 }
1712
1713 return 0;
1714 }
1715
1716 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1717 switch (info->flow_type) {
1718 case TCP_V4_FLOW:
1719 ndc->l4_hash &= ~HV_TCP4_L4HASH;
1720 break;
1721
1722 case TCP_V6_FLOW:
1723 ndc->l4_hash &= ~HV_TCP6_L4HASH;
1724 break;
1725
1726 case UDP_V4_FLOW:
1727 ndc->l4_hash &= ~HV_UDP4_L4HASH;
1728 break;
1729
1730 case UDP_V6_FLOW:
1731 ndc->l4_hash &= ~HV_UDP6_L4HASH;
1732 break;
1733
1734 default:
1735 return -EOPNOTSUPP;
1736 }
1737
1738 return 0;
1739 }
1740
1741 return -EOPNOTSUPP;
1742 }
1743
1744 static int
netvsc_set_rxnfc(struct net_device * ndev,struct ethtool_rxnfc * info)1745 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1746 {
1747 struct net_device_context *ndc = netdev_priv(ndev);
1748
1749 if (info->cmd == ETHTOOL_SRXFH)
1750 return netvsc_set_rss_hash_opts(ndc, info);
1751
1752 return -EOPNOTSUPP;
1753 }
1754
netvsc_get_rxfh_key_size(struct net_device * dev)1755 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1756 {
1757 return NETVSC_HASH_KEYLEN;
1758 }
1759
netvsc_rss_indir_size(struct net_device * dev)1760 static u32 netvsc_rss_indir_size(struct net_device *dev)
1761 {
1762 return ITAB_NUM;
1763 }
1764
netvsc_get_rxfh(struct net_device * dev,u32 * indir,u8 * key,u8 * hfunc)1765 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1766 u8 *hfunc)
1767 {
1768 struct net_device_context *ndc = netdev_priv(dev);
1769 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1770 struct rndis_device *rndis_dev;
1771 int i;
1772
1773 if (!ndev)
1774 return -ENODEV;
1775
1776 if (hfunc)
1777 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */
1778
1779 rndis_dev = ndev->extension;
1780 if (indir) {
1781 for (i = 0; i < ITAB_NUM; i++)
1782 indir[i] = ndc->rx_table[i];
1783 }
1784
1785 if (key)
1786 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1787
1788 return 0;
1789 }
1790
netvsc_set_rxfh(struct net_device * dev,const u32 * indir,const u8 * key,const u8 hfunc)1791 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1792 const u8 *key, const u8 hfunc)
1793 {
1794 struct net_device_context *ndc = netdev_priv(dev);
1795 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1796 struct rndis_device *rndis_dev;
1797 int i;
1798
1799 if (!ndev)
1800 return -ENODEV;
1801
1802 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1803 return -EOPNOTSUPP;
1804
1805 rndis_dev = ndev->extension;
1806 if (indir) {
1807 for (i = 0; i < ITAB_NUM; i++)
1808 if (indir[i] >= ndev->num_chn)
1809 return -EINVAL;
1810
1811 for (i = 0; i < ITAB_NUM; i++)
1812 ndc->rx_table[i] = indir[i];
1813 }
1814
1815 if (!key) {
1816 if (!indir)
1817 return 0;
1818
1819 key = rndis_dev->rss_key;
1820 }
1821
1822 return rndis_filter_set_rss_param(rndis_dev, key);
1823 }
1824
1825 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1826 * It does have pre-allocated receive area which is divided into sections.
1827 */
__netvsc_get_ringparam(struct netvsc_device * nvdev,struct ethtool_ringparam * ring)1828 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1829 struct ethtool_ringparam *ring)
1830 {
1831 u32 max_buf_size;
1832
1833 ring->rx_pending = nvdev->recv_section_cnt;
1834 ring->tx_pending = nvdev->send_section_cnt;
1835
1836 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1837 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1838 else
1839 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1840
1841 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1842 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1843 / nvdev->send_section_size;
1844 }
1845
netvsc_get_ringparam(struct net_device * ndev,struct ethtool_ringparam * ring)1846 static void netvsc_get_ringparam(struct net_device *ndev,
1847 struct ethtool_ringparam *ring)
1848 {
1849 struct net_device_context *ndevctx = netdev_priv(ndev);
1850 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1851
1852 if (!nvdev)
1853 return;
1854
1855 __netvsc_get_ringparam(nvdev, ring);
1856 }
1857
netvsc_set_ringparam(struct net_device * ndev,struct ethtool_ringparam * ring)1858 static int netvsc_set_ringparam(struct net_device *ndev,
1859 struct ethtool_ringparam *ring)
1860 {
1861 struct net_device_context *ndevctx = netdev_priv(ndev);
1862 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1863 struct netvsc_device_info *device_info;
1864 struct ethtool_ringparam orig;
1865 u32 new_tx, new_rx;
1866 int ret = 0;
1867
1868 if (!nvdev || nvdev->destroy)
1869 return -ENODEV;
1870
1871 memset(&orig, 0, sizeof(orig));
1872 __netvsc_get_ringparam(nvdev, &orig);
1873
1874 new_tx = clamp_t(u32, ring->tx_pending,
1875 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1876 new_rx = clamp_t(u32, ring->rx_pending,
1877 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1878
1879 if (new_tx == orig.tx_pending &&
1880 new_rx == orig.rx_pending)
1881 return 0; /* no change */
1882
1883 device_info = netvsc_devinfo_get(nvdev);
1884
1885 if (!device_info)
1886 return -ENOMEM;
1887
1888 device_info->send_sections = new_tx;
1889 device_info->recv_sections = new_rx;
1890
1891 ret = netvsc_detach(ndev, nvdev);
1892 if (ret)
1893 goto out;
1894
1895 ret = netvsc_attach(ndev, device_info);
1896 if (ret) {
1897 device_info->send_sections = orig.tx_pending;
1898 device_info->recv_sections = orig.rx_pending;
1899
1900 if (netvsc_attach(ndev, device_info))
1901 netdev_err(ndev, "restoring ringparam failed");
1902 }
1903
1904 out:
1905 netvsc_devinfo_put(device_info);
1906 return ret;
1907 }
1908
netvsc_fix_features(struct net_device * ndev,netdev_features_t features)1909 static netdev_features_t netvsc_fix_features(struct net_device *ndev,
1910 netdev_features_t features)
1911 {
1912 struct net_device_context *ndevctx = netdev_priv(ndev);
1913 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1914
1915 if (!nvdev || nvdev->destroy)
1916 return features;
1917
1918 if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) {
1919 features ^= NETIF_F_LRO;
1920 netdev_info(ndev, "Skip LRO - unsupported with XDP\n");
1921 }
1922
1923 return features;
1924 }
1925
netvsc_set_features(struct net_device * ndev,netdev_features_t features)1926 static int netvsc_set_features(struct net_device *ndev,
1927 netdev_features_t features)
1928 {
1929 netdev_features_t change = features ^ ndev->features;
1930 struct net_device_context *ndevctx = netdev_priv(ndev);
1931 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1932 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1933 struct ndis_offload_params offloads;
1934 int ret = 0;
1935
1936 if (!nvdev || nvdev->destroy)
1937 return -ENODEV;
1938
1939 if (!(change & NETIF_F_LRO))
1940 goto syncvf;
1941
1942 memset(&offloads, 0, sizeof(struct ndis_offload_params));
1943
1944 if (features & NETIF_F_LRO) {
1945 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1946 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1947 } else {
1948 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1949 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1950 }
1951
1952 ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1953
1954 if (ret) {
1955 features ^= NETIF_F_LRO;
1956 ndev->features = features;
1957 }
1958
1959 syncvf:
1960 if (!vf_netdev)
1961 return ret;
1962
1963 vf_netdev->wanted_features = features;
1964 netdev_update_features(vf_netdev);
1965
1966 return ret;
1967 }
1968
netvsc_get_regs_len(struct net_device * netdev)1969 static int netvsc_get_regs_len(struct net_device *netdev)
1970 {
1971 return VRSS_SEND_TAB_SIZE * sizeof(u32);
1972 }
1973
netvsc_get_regs(struct net_device * netdev,struct ethtool_regs * regs,void * p)1974 static void netvsc_get_regs(struct net_device *netdev,
1975 struct ethtool_regs *regs, void *p)
1976 {
1977 struct net_device_context *ndc = netdev_priv(netdev);
1978 u32 *regs_buff = p;
1979
1980 /* increase the version, if buffer format is changed. */
1981 regs->version = 1;
1982
1983 memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32));
1984 }
1985
netvsc_get_msglevel(struct net_device * ndev)1986 static u32 netvsc_get_msglevel(struct net_device *ndev)
1987 {
1988 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1989
1990 return ndev_ctx->msg_enable;
1991 }
1992
netvsc_set_msglevel(struct net_device * ndev,u32 val)1993 static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1994 {
1995 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1996
1997 ndev_ctx->msg_enable = val;
1998 }
1999
2000 static const struct ethtool_ops ethtool_ops = {
2001 .get_drvinfo = netvsc_get_drvinfo,
2002 .get_regs_len = netvsc_get_regs_len,
2003 .get_regs = netvsc_get_regs,
2004 .get_msglevel = netvsc_get_msglevel,
2005 .set_msglevel = netvsc_set_msglevel,
2006 .get_link = ethtool_op_get_link,
2007 .get_ethtool_stats = netvsc_get_ethtool_stats,
2008 .get_sset_count = netvsc_get_sset_count,
2009 .get_strings = netvsc_get_strings,
2010 .get_channels = netvsc_get_channels,
2011 .set_channels = netvsc_set_channels,
2012 .get_ts_info = ethtool_op_get_ts_info,
2013 .get_rxnfc = netvsc_get_rxnfc,
2014 .set_rxnfc = netvsc_set_rxnfc,
2015 .get_rxfh_key_size = netvsc_get_rxfh_key_size,
2016 .get_rxfh_indir_size = netvsc_rss_indir_size,
2017 .get_rxfh = netvsc_get_rxfh,
2018 .set_rxfh = netvsc_set_rxfh,
2019 .get_link_ksettings = netvsc_get_link_ksettings,
2020 .set_link_ksettings = netvsc_set_link_ksettings,
2021 .get_ringparam = netvsc_get_ringparam,
2022 .set_ringparam = netvsc_set_ringparam,
2023 };
2024
2025 static const struct net_device_ops device_ops = {
2026 .ndo_open = netvsc_open,
2027 .ndo_stop = netvsc_close,
2028 .ndo_start_xmit = netvsc_start_xmit,
2029 .ndo_change_rx_flags = netvsc_change_rx_flags,
2030 .ndo_set_rx_mode = netvsc_set_rx_mode,
2031 .ndo_fix_features = netvsc_fix_features,
2032 .ndo_set_features = netvsc_set_features,
2033 .ndo_change_mtu = netvsc_change_mtu,
2034 .ndo_validate_addr = eth_validate_addr,
2035 .ndo_set_mac_address = netvsc_set_mac_addr,
2036 .ndo_select_queue = netvsc_select_queue,
2037 .ndo_get_stats64 = netvsc_get_stats64,
2038 .ndo_bpf = netvsc_bpf,
2039 };
2040
2041 /*
2042 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
2043 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
2044 * present send GARP packet to network peers with netif_notify_peers().
2045 */
netvsc_link_change(struct work_struct * w)2046 static void netvsc_link_change(struct work_struct *w)
2047 {
2048 struct net_device_context *ndev_ctx =
2049 container_of(w, struct net_device_context, dwork.work);
2050 struct hv_device *device_obj = ndev_ctx->device_ctx;
2051 struct net_device *net = hv_get_drvdata(device_obj);
2052 struct netvsc_device *net_device;
2053 struct rndis_device *rdev;
2054 struct netvsc_reconfig *event = NULL;
2055 bool notify = false, reschedule = false;
2056 unsigned long flags, next_reconfig, delay;
2057
2058 /* if changes are happening, comeback later */
2059 if (!rtnl_trylock()) {
2060 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2061 return;
2062 }
2063
2064 net_device = rtnl_dereference(ndev_ctx->nvdev);
2065 if (!net_device)
2066 goto out_unlock;
2067
2068 rdev = net_device->extension;
2069
2070 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
2071 if (time_is_after_jiffies(next_reconfig)) {
2072 /* link_watch only sends one notification with current state
2073 * per second, avoid doing reconfig more frequently. Handle
2074 * wrap around.
2075 */
2076 delay = next_reconfig - jiffies;
2077 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
2078 schedule_delayed_work(&ndev_ctx->dwork, delay);
2079 goto out_unlock;
2080 }
2081 ndev_ctx->last_reconfig = jiffies;
2082
2083 spin_lock_irqsave(&ndev_ctx->lock, flags);
2084 if (!list_empty(&ndev_ctx->reconfig_events)) {
2085 event = list_first_entry(&ndev_ctx->reconfig_events,
2086 struct netvsc_reconfig, list);
2087 list_del(&event->list);
2088 reschedule = !list_empty(&ndev_ctx->reconfig_events);
2089 }
2090 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2091
2092 if (!event)
2093 goto out_unlock;
2094
2095 switch (event->event) {
2096 /* Only the following events are possible due to the check in
2097 * netvsc_linkstatus_callback()
2098 */
2099 case RNDIS_STATUS_MEDIA_CONNECT:
2100 if (rdev->link_state) {
2101 rdev->link_state = false;
2102 netif_carrier_on(net);
2103 netvsc_tx_enable(net_device, net);
2104 } else {
2105 notify = true;
2106 }
2107 kfree(event);
2108 break;
2109 case RNDIS_STATUS_MEDIA_DISCONNECT:
2110 if (!rdev->link_state) {
2111 rdev->link_state = true;
2112 netif_carrier_off(net);
2113 netvsc_tx_disable(net_device, net);
2114 }
2115 kfree(event);
2116 break;
2117 case RNDIS_STATUS_NETWORK_CHANGE:
2118 /* Only makes sense if carrier is present */
2119 if (!rdev->link_state) {
2120 rdev->link_state = true;
2121 netif_carrier_off(net);
2122 netvsc_tx_disable(net_device, net);
2123 event->event = RNDIS_STATUS_MEDIA_CONNECT;
2124 spin_lock_irqsave(&ndev_ctx->lock, flags);
2125 list_add(&event->list, &ndev_ctx->reconfig_events);
2126 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2127 reschedule = true;
2128 }
2129 break;
2130 }
2131
2132 rtnl_unlock();
2133
2134 if (notify)
2135 netdev_notify_peers(net);
2136
2137 /* link_watch only sends one notification with current state per
2138 * second, handle next reconfig event in 2 seconds.
2139 */
2140 if (reschedule)
2141 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2142
2143 return;
2144
2145 out_unlock:
2146 rtnl_unlock();
2147 }
2148
get_netvsc_byref(struct net_device * vf_netdev)2149 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
2150 {
2151 struct net_device_context *net_device_ctx;
2152 struct net_device *dev;
2153
2154 dev = netdev_master_upper_dev_get(vf_netdev);
2155 if (!dev || dev->netdev_ops != &device_ops)
2156 return NULL; /* not a netvsc device */
2157
2158 net_device_ctx = netdev_priv(dev);
2159 if (!rtnl_dereference(net_device_ctx->nvdev))
2160 return NULL; /* device is removed */
2161
2162 return dev;
2163 }
2164
2165 /* Called when VF is injecting data into network stack.
2166 * Change the associated network device from VF to netvsc.
2167 * note: already called with rcu_read_lock
2168 */
netvsc_vf_handle_frame(struct sk_buff ** pskb)2169 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2170 {
2171 struct sk_buff *skb = *pskb;
2172 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2173 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2174 struct netvsc_vf_pcpu_stats *pcpu_stats
2175 = this_cpu_ptr(ndev_ctx->vf_stats);
2176
2177 skb = skb_share_check(skb, GFP_ATOMIC);
2178 if (unlikely(!skb))
2179 return RX_HANDLER_CONSUMED;
2180
2181 *pskb = skb;
2182
2183 skb->dev = ndev;
2184
2185 u64_stats_update_begin(&pcpu_stats->syncp);
2186 pcpu_stats->rx_packets++;
2187 pcpu_stats->rx_bytes += skb->len;
2188 u64_stats_update_end(&pcpu_stats->syncp);
2189
2190 return RX_HANDLER_ANOTHER;
2191 }
2192
netvsc_vf_join(struct net_device * vf_netdev,struct net_device * ndev)2193 static int netvsc_vf_join(struct net_device *vf_netdev,
2194 struct net_device *ndev)
2195 {
2196 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2197 int ret;
2198
2199 ret = netdev_rx_handler_register(vf_netdev,
2200 netvsc_vf_handle_frame, ndev);
2201 if (ret != 0) {
2202 netdev_err(vf_netdev,
2203 "can not register netvsc VF receive handler (err = %d)\n",
2204 ret);
2205 goto rx_handler_failed;
2206 }
2207
2208 ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2209 NULL, NULL, NULL);
2210 if (ret != 0) {
2211 netdev_err(vf_netdev,
2212 "can not set master device %s (err = %d)\n",
2213 ndev->name, ret);
2214 goto upper_link_failed;
2215 }
2216
2217 /* set slave flag before open to prevent IPv6 addrconf */
2218 vf_netdev->flags |= IFF_SLAVE;
2219
2220 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2221
2222 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2223
2224 netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2225 return 0;
2226
2227 upper_link_failed:
2228 netdev_rx_handler_unregister(vf_netdev);
2229 rx_handler_failed:
2230 return ret;
2231 }
2232
__netvsc_vf_setup(struct net_device * ndev,struct net_device * vf_netdev)2233 static void __netvsc_vf_setup(struct net_device *ndev,
2234 struct net_device *vf_netdev)
2235 {
2236 int ret;
2237
2238 /* Align MTU of VF with master */
2239 ret = dev_set_mtu(vf_netdev, ndev->mtu);
2240 if (ret)
2241 netdev_warn(vf_netdev,
2242 "unable to change mtu to %u\n", ndev->mtu);
2243
2244 /* set multicast etc flags on VF */
2245 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2246
2247 /* sync address list from ndev to VF */
2248 netif_addr_lock_bh(ndev);
2249 dev_uc_sync(vf_netdev, ndev);
2250 dev_mc_sync(vf_netdev, ndev);
2251 netif_addr_unlock_bh(ndev);
2252
2253 if (netif_running(ndev)) {
2254 ret = dev_open(vf_netdev, NULL);
2255 if (ret)
2256 netdev_warn(vf_netdev,
2257 "unable to open: %d\n", ret);
2258 }
2259 }
2260
2261 /* Setup VF as slave of the synthetic device.
2262 * Runs in workqueue to avoid recursion in netlink callbacks.
2263 */
netvsc_vf_setup(struct work_struct * w)2264 static void netvsc_vf_setup(struct work_struct *w)
2265 {
2266 struct net_device_context *ndev_ctx
2267 = container_of(w, struct net_device_context, vf_takeover.work);
2268 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2269 struct net_device *vf_netdev;
2270
2271 if (!rtnl_trylock()) {
2272 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2273 return;
2274 }
2275
2276 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2277 if (vf_netdev)
2278 __netvsc_vf_setup(ndev, vf_netdev);
2279
2280 rtnl_unlock();
2281 }
2282
2283 /* Find netvsc by VF serial number.
2284 * The PCI hyperv controller records the serial number as the slot kobj name.
2285 */
get_netvsc_byslot(const struct net_device * vf_netdev)2286 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2287 {
2288 struct device *parent = vf_netdev->dev.parent;
2289 struct net_device_context *ndev_ctx;
2290 struct pci_dev *pdev;
2291 u32 serial;
2292
2293 if (!parent || !dev_is_pci(parent))
2294 return NULL; /* not a PCI device */
2295
2296 pdev = to_pci_dev(parent);
2297 if (!pdev->slot) {
2298 netdev_notice(vf_netdev, "no PCI slot information\n");
2299 return NULL;
2300 }
2301
2302 if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2303 netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2304 pci_slot_name(pdev->slot));
2305 return NULL;
2306 }
2307
2308 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2309 if (!ndev_ctx->vf_alloc)
2310 continue;
2311
2312 if (ndev_ctx->vf_serial == serial)
2313 return hv_get_drvdata(ndev_ctx->device_ctx);
2314 }
2315
2316 netdev_notice(vf_netdev,
2317 "no netdev found for vf serial:%u\n", serial);
2318 return NULL;
2319 }
2320
netvsc_register_vf(struct net_device * vf_netdev)2321 static int netvsc_register_vf(struct net_device *vf_netdev)
2322 {
2323 struct net_device_context *net_device_ctx;
2324 struct netvsc_device *netvsc_dev;
2325 struct bpf_prog *prog;
2326 struct net_device *ndev;
2327 int ret;
2328
2329 if (vf_netdev->addr_len != ETH_ALEN)
2330 return NOTIFY_DONE;
2331
2332 ndev = get_netvsc_byslot(vf_netdev);
2333 if (!ndev)
2334 return NOTIFY_DONE;
2335
2336 net_device_ctx = netdev_priv(ndev);
2337 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2338 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2339 return NOTIFY_DONE;
2340
2341 /* if synthetic interface is a different namespace,
2342 * then move the VF to that namespace; join will be
2343 * done again in that context.
2344 */
2345 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2346 ret = dev_change_net_namespace(vf_netdev,
2347 dev_net(ndev), "eth%d");
2348 if (ret)
2349 netdev_err(vf_netdev,
2350 "could not move to same namespace as %s: %d\n",
2351 ndev->name, ret);
2352 else
2353 netdev_info(vf_netdev,
2354 "VF moved to namespace with: %s\n",
2355 ndev->name);
2356 return NOTIFY_DONE;
2357 }
2358
2359 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2360
2361 if (netvsc_vf_join(vf_netdev, ndev) != 0)
2362 return NOTIFY_DONE;
2363
2364 dev_hold(vf_netdev);
2365 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2366
2367 vf_netdev->wanted_features = ndev->features;
2368 netdev_update_features(vf_netdev);
2369
2370 prog = netvsc_xdp_get(netvsc_dev);
2371 netvsc_vf_setxdp(vf_netdev, prog);
2372
2373 return NOTIFY_OK;
2374 }
2375
2376 /* Change the data path when VF UP/DOWN/CHANGE are detected.
2377 *
2378 * Typically a UP or DOWN event is followed by a CHANGE event, so
2379 * net_device_ctx->data_path_is_vf is used to cache the current data path
2380 * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate
2381 * message.
2382 *
2383 * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network
2384 * interface, there is only the CHANGE event and no UP or DOWN event.
2385 */
netvsc_vf_changed(struct net_device * vf_netdev)2386 static int netvsc_vf_changed(struct net_device *vf_netdev)
2387 {
2388 struct net_device_context *net_device_ctx;
2389 struct netvsc_device *netvsc_dev;
2390 struct net_device *ndev;
2391 bool vf_is_up = netif_running(vf_netdev);
2392
2393 ndev = get_netvsc_byref(vf_netdev);
2394 if (!ndev)
2395 return NOTIFY_DONE;
2396
2397 net_device_ctx = netdev_priv(ndev);
2398 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2399 if (!netvsc_dev)
2400 return NOTIFY_DONE;
2401
2402 if (net_device_ctx->data_path_is_vf == vf_is_up)
2403 return NOTIFY_OK;
2404 net_device_ctx->data_path_is_vf = vf_is_up;
2405
2406 netvsc_switch_datapath(ndev, vf_is_up);
2407 netdev_info(ndev, "Data path switched %s VF: %s\n",
2408 vf_is_up ? "to" : "from", vf_netdev->name);
2409
2410 return NOTIFY_OK;
2411 }
2412
netvsc_unregister_vf(struct net_device * vf_netdev)2413 static int netvsc_unregister_vf(struct net_device *vf_netdev)
2414 {
2415 struct net_device *ndev;
2416 struct net_device_context *net_device_ctx;
2417
2418 ndev = get_netvsc_byref(vf_netdev);
2419 if (!ndev)
2420 return NOTIFY_DONE;
2421
2422 net_device_ctx = netdev_priv(ndev);
2423 cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2424
2425 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2426
2427 netvsc_vf_setxdp(vf_netdev, NULL);
2428
2429 netdev_rx_handler_unregister(vf_netdev);
2430 netdev_upper_dev_unlink(vf_netdev, ndev);
2431 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2432 dev_put(vf_netdev);
2433
2434 return NOTIFY_OK;
2435 }
2436
netvsc_probe(struct hv_device * dev,const struct hv_vmbus_device_id * dev_id)2437 static int netvsc_probe(struct hv_device *dev,
2438 const struct hv_vmbus_device_id *dev_id)
2439 {
2440 struct net_device *net = NULL;
2441 struct net_device_context *net_device_ctx;
2442 struct netvsc_device_info *device_info = NULL;
2443 struct netvsc_device *nvdev;
2444 int ret = -ENOMEM;
2445
2446 net = alloc_etherdev_mq(sizeof(struct net_device_context),
2447 VRSS_CHANNEL_MAX);
2448 if (!net)
2449 goto no_net;
2450
2451 netif_carrier_off(net);
2452
2453 netvsc_init_settings(net);
2454
2455 net_device_ctx = netdev_priv(net);
2456 net_device_ctx->device_ctx = dev;
2457 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2458 if (netif_msg_probe(net_device_ctx))
2459 netdev_dbg(net, "netvsc msg_enable: %d\n",
2460 net_device_ctx->msg_enable);
2461
2462 hv_set_drvdata(dev, net);
2463
2464 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2465
2466 spin_lock_init(&net_device_ctx->lock);
2467 INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2468 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2469
2470 net_device_ctx->vf_stats
2471 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2472 if (!net_device_ctx->vf_stats)
2473 goto no_stats;
2474
2475 net->netdev_ops = &device_ops;
2476 net->ethtool_ops = ðtool_ops;
2477 SET_NETDEV_DEV(net, &dev->device);
2478
2479 /* We always need headroom for rndis header */
2480 net->needed_headroom = RNDIS_AND_PPI_SIZE;
2481
2482 /* Initialize the number of queues to be 1, we may change it if more
2483 * channels are offered later.
2484 */
2485 netif_set_real_num_tx_queues(net, 1);
2486 netif_set_real_num_rx_queues(net, 1);
2487
2488 /* Notify the netvsc driver of the new device */
2489 device_info = netvsc_devinfo_get(NULL);
2490
2491 if (!device_info) {
2492 ret = -ENOMEM;
2493 goto devinfo_failed;
2494 }
2495
2496 nvdev = rndis_filter_device_add(dev, device_info);
2497 if (IS_ERR(nvdev)) {
2498 ret = PTR_ERR(nvdev);
2499 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2500 goto rndis_failed;
2501 }
2502
2503 memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN);
2504
2505 /* We must get rtnl lock before scheduling nvdev->subchan_work,
2506 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2507 * all subchannels to show up, but that may not happen because
2508 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2509 * -> ... -> device_add() -> ... -> __device_attach() can't get
2510 * the device lock, so all the subchannels can't be processed --
2511 * finally netvsc_subchan_work() hangs forever.
2512 */
2513 rtnl_lock();
2514
2515 if (nvdev->num_chn > 1)
2516 schedule_work(&nvdev->subchan_work);
2517
2518 /* hw_features computed in rndis_netdev_set_hwcaps() */
2519 net->features = net->hw_features |
2520 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2521 NETIF_F_HW_VLAN_CTAG_RX;
2522 net->vlan_features = net->features;
2523
2524 netdev_lockdep_set_classes(net);
2525
2526 /* MTU range: 68 - 1500 or 65521 */
2527 net->min_mtu = NETVSC_MTU_MIN;
2528 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2529 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2530 else
2531 net->max_mtu = ETH_DATA_LEN;
2532
2533 nvdev->tx_disable = false;
2534
2535 ret = register_netdevice(net);
2536 if (ret != 0) {
2537 pr_err("Unable to register netdev.\n");
2538 goto register_failed;
2539 }
2540
2541 list_add(&net_device_ctx->list, &netvsc_dev_list);
2542 rtnl_unlock();
2543
2544 netvsc_devinfo_put(device_info);
2545 return 0;
2546
2547 register_failed:
2548 rtnl_unlock();
2549 rndis_filter_device_remove(dev, nvdev);
2550 rndis_failed:
2551 netvsc_devinfo_put(device_info);
2552 devinfo_failed:
2553 free_percpu(net_device_ctx->vf_stats);
2554 no_stats:
2555 hv_set_drvdata(dev, NULL);
2556 free_netdev(net);
2557 no_net:
2558 return ret;
2559 }
2560
netvsc_remove(struct hv_device * dev)2561 static int netvsc_remove(struct hv_device *dev)
2562 {
2563 struct net_device_context *ndev_ctx;
2564 struct net_device *vf_netdev, *net;
2565 struct netvsc_device *nvdev;
2566
2567 net = hv_get_drvdata(dev);
2568 if (net == NULL) {
2569 dev_err(&dev->device, "No net device to remove\n");
2570 return 0;
2571 }
2572
2573 ndev_ctx = netdev_priv(net);
2574
2575 cancel_delayed_work_sync(&ndev_ctx->dwork);
2576
2577 rtnl_lock();
2578 nvdev = rtnl_dereference(ndev_ctx->nvdev);
2579 if (nvdev) {
2580 cancel_work_sync(&nvdev->subchan_work);
2581 netvsc_xdp_set(net, NULL, NULL, nvdev);
2582 }
2583
2584 /*
2585 * Call to the vsc driver to let it know that the device is being
2586 * removed. Also blocks mtu and channel changes.
2587 */
2588 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2589 if (vf_netdev)
2590 netvsc_unregister_vf(vf_netdev);
2591
2592 if (nvdev)
2593 rndis_filter_device_remove(dev, nvdev);
2594
2595 unregister_netdevice(net);
2596 list_del(&ndev_ctx->list);
2597
2598 rtnl_unlock();
2599
2600 hv_set_drvdata(dev, NULL);
2601
2602 free_percpu(ndev_ctx->vf_stats);
2603 free_netdev(net);
2604 return 0;
2605 }
2606
netvsc_suspend(struct hv_device * dev)2607 static int netvsc_suspend(struct hv_device *dev)
2608 {
2609 struct net_device_context *ndev_ctx;
2610 struct netvsc_device *nvdev;
2611 struct net_device *net;
2612 int ret;
2613
2614 net = hv_get_drvdata(dev);
2615
2616 ndev_ctx = netdev_priv(net);
2617 cancel_delayed_work_sync(&ndev_ctx->dwork);
2618
2619 rtnl_lock();
2620
2621 nvdev = rtnl_dereference(ndev_ctx->nvdev);
2622 if (nvdev == NULL) {
2623 ret = -ENODEV;
2624 goto out;
2625 }
2626
2627 /* Save the current config info */
2628 ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev);
2629
2630 ret = netvsc_detach(net, nvdev);
2631 out:
2632 rtnl_unlock();
2633
2634 return ret;
2635 }
2636
netvsc_resume(struct hv_device * dev)2637 static int netvsc_resume(struct hv_device *dev)
2638 {
2639 struct net_device *net = hv_get_drvdata(dev);
2640 struct net_device_context *net_device_ctx;
2641 struct netvsc_device_info *device_info;
2642 int ret;
2643
2644 rtnl_lock();
2645
2646 net_device_ctx = netdev_priv(net);
2647
2648 /* Reset the data path to the netvsc NIC before re-opening the vmbus
2649 * channel. Later netvsc_netdev_event() will switch the data path to
2650 * the VF upon the UP or CHANGE event.
2651 */
2652 net_device_ctx->data_path_is_vf = false;
2653 device_info = net_device_ctx->saved_netvsc_dev_info;
2654
2655 ret = netvsc_attach(net, device_info);
2656
2657 netvsc_devinfo_put(device_info);
2658 net_device_ctx->saved_netvsc_dev_info = NULL;
2659
2660 rtnl_unlock();
2661
2662 return ret;
2663 }
2664 static const struct hv_vmbus_device_id id_table[] = {
2665 /* Network guid */
2666 { HV_NIC_GUID, },
2667 { },
2668 };
2669
2670 MODULE_DEVICE_TABLE(vmbus, id_table);
2671
2672 /* The one and only one */
2673 static struct hv_driver netvsc_drv = {
2674 .name = KBUILD_MODNAME,
2675 .id_table = id_table,
2676 .probe = netvsc_probe,
2677 .remove = netvsc_remove,
2678 .suspend = netvsc_suspend,
2679 .resume = netvsc_resume,
2680 .driver = {
2681 .probe_type = PROBE_FORCE_SYNCHRONOUS,
2682 },
2683 };
2684
2685 /*
2686 * On Hyper-V, every VF interface is matched with a corresponding
2687 * synthetic interface. The synthetic interface is presented first
2688 * to the guest. When the corresponding VF instance is registered,
2689 * we will take care of switching the data path.
2690 */
netvsc_netdev_event(struct notifier_block * this,unsigned long event,void * ptr)2691 static int netvsc_netdev_event(struct notifier_block *this,
2692 unsigned long event, void *ptr)
2693 {
2694 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2695
2696 /* Skip our own events */
2697 if (event_dev->netdev_ops == &device_ops)
2698 return NOTIFY_DONE;
2699
2700 /* Avoid non-Ethernet type devices */
2701 if (event_dev->type != ARPHRD_ETHER)
2702 return NOTIFY_DONE;
2703
2704 /* Avoid Vlan dev with same MAC registering as VF */
2705 if (is_vlan_dev(event_dev))
2706 return NOTIFY_DONE;
2707
2708 /* Avoid Bonding master dev with same MAC registering as VF */
2709 if ((event_dev->priv_flags & IFF_BONDING) &&
2710 (event_dev->flags & IFF_MASTER))
2711 return NOTIFY_DONE;
2712
2713 switch (event) {
2714 case NETDEV_REGISTER:
2715 return netvsc_register_vf(event_dev);
2716 case NETDEV_UNREGISTER:
2717 return netvsc_unregister_vf(event_dev);
2718 case NETDEV_UP:
2719 case NETDEV_DOWN:
2720 case NETDEV_CHANGE:
2721 return netvsc_vf_changed(event_dev);
2722 default:
2723 return NOTIFY_DONE;
2724 }
2725 }
2726
2727 static struct notifier_block netvsc_netdev_notifier = {
2728 .notifier_call = netvsc_netdev_event,
2729 };
2730
netvsc_drv_exit(void)2731 static void __exit netvsc_drv_exit(void)
2732 {
2733 unregister_netdevice_notifier(&netvsc_netdev_notifier);
2734 vmbus_driver_unregister(&netvsc_drv);
2735 }
2736
netvsc_drv_init(void)2737 static int __init netvsc_drv_init(void)
2738 {
2739 int ret;
2740
2741 if (ring_size < RING_SIZE_MIN) {
2742 ring_size = RING_SIZE_MIN;
2743 pr_info("Increased ring_size to %u (min allowed)\n",
2744 ring_size);
2745 }
2746 netvsc_ring_bytes = ring_size * PAGE_SIZE;
2747
2748 ret = vmbus_driver_register(&netvsc_drv);
2749 if (ret)
2750 return ret;
2751
2752 register_netdevice_notifier(&netvsc_netdev_notifier);
2753 return 0;
2754 }
2755
2756 MODULE_LICENSE("GPL");
2757 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2758
2759 module_init(netvsc_drv_init);
2760 module_exit(netvsc_drv_exit);
2761