1 /*
2 * Copyright (c) 2009, Microsoft Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * Authors:
17 * Haiyang Zhang <haiyangz@microsoft.com>
18 * Hank Janssen <hjanssen@microsoft.com>
19 */
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/init.h>
23 #include <linux/atomic.h>
24 #include <linux/module.h>
25 #include <linux/highmem.h>
26 #include <linux/device.h>
27 #include <linux/io.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/inetdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/pci.h>
33 #include <linux/skbuff.h>
34 #include <linux/if_vlan.h>
35 #include <linux/in.h>
36 #include <linux/slab.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/netpoll.h>
39
40 #include <net/arp.h>
41 #include <net/route.h>
42 #include <net/sock.h>
43 #include <net/pkt_sched.h>
44 #include <net/checksum.h>
45 #include <net/ip6_checksum.h>
46
47 #include "hyperv_net.h"
48
49 #define RING_SIZE_MIN 64
50 #define RETRY_US_LO 5000
51 #define RETRY_US_HI 10000
52 #define RETRY_MAX 2000 /* >10 sec */
53
54 #define LINKCHANGE_INT (2 * HZ)
55 #define VF_TAKEOVER_INT (HZ / 10)
56
57 static unsigned int ring_size __ro_after_init = 128;
58 module_param(ring_size, uint, 0444);
59 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
60 unsigned int netvsc_ring_bytes __ro_after_init;
61
62 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
63 NETIF_MSG_LINK | NETIF_MSG_IFUP |
64 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
65 NETIF_MSG_TX_ERR;
66
67 static int debug = -1;
68 module_param(debug, int, 0444);
69 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
70
71 static LIST_HEAD(netvsc_dev_list);
72
netvsc_change_rx_flags(struct net_device * net,int change)73 static void netvsc_change_rx_flags(struct net_device *net, int change)
74 {
75 struct net_device_context *ndev_ctx = netdev_priv(net);
76 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
77 int inc;
78
79 if (!vf_netdev)
80 return;
81
82 if (change & IFF_PROMISC) {
83 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
84 dev_set_promiscuity(vf_netdev, inc);
85 }
86
87 if (change & IFF_ALLMULTI) {
88 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
89 dev_set_allmulti(vf_netdev, inc);
90 }
91 }
92
netvsc_set_rx_mode(struct net_device * net)93 static void netvsc_set_rx_mode(struct net_device *net)
94 {
95 struct net_device_context *ndev_ctx = netdev_priv(net);
96 struct net_device *vf_netdev;
97 struct netvsc_device *nvdev;
98
99 rcu_read_lock();
100 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
101 if (vf_netdev) {
102 dev_uc_sync(vf_netdev, net);
103 dev_mc_sync(vf_netdev, net);
104 }
105
106 nvdev = rcu_dereference(ndev_ctx->nvdev);
107 if (nvdev)
108 rndis_filter_update(nvdev);
109 rcu_read_unlock();
110 }
111
netvsc_open(struct net_device * net)112 static int netvsc_open(struct net_device *net)
113 {
114 struct net_device_context *ndev_ctx = netdev_priv(net);
115 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
116 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
117 struct rndis_device *rdev;
118 int ret = 0;
119
120 netif_carrier_off(net);
121
122 /* Open up the device */
123 ret = rndis_filter_open(nvdev);
124 if (ret != 0) {
125 netdev_err(net, "unable to open device (ret %d).\n", ret);
126 return ret;
127 }
128
129 rdev = nvdev->extension;
130 if (!rdev->link_state) {
131 netif_carrier_on(net);
132 netif_tx_wake_all_queues(net);
133 }
134
135 if (vf_netdev) {
136 /* Setting synthetic device up transparently sets
137 * slave as up. If open fails, then slave will be
138 * still be offline (and not used).
139 */
140 ret = dev_open(vf_netdev);
141 if (ret)
142 netdev_warn(net,
143 "unable to open slave: %s: %d\n",
144 vf_netdev->name, ret);
145 }
146 return 0;
147 }
148
netvsc_wait_until_empty(struct netvsc_device * nvdev)149 static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
150 {
151 unsigned int retry = 0;
152 int i;
153
154 /* Ensure pending bytes in ring are read */
155 for (;;) {
156 u32 aread = 0;
157
158 for (i = 0; i < nvdev->num_chn; i++) {
159 struct vmbus_channel *chn
160 = nvdev->chan_table[i].channel;
161
162 if (!chn)
163 continue;
164
165 /* make sure receive not running now */
166 napi_synchronize(&nvdev->chan_table[i].napi);
167
168 aread = hv_get_bytes_to_read(&chn->inbound);
169 if (aread)
170 break;
171
172 aread = hv_get_bytes_to_read(&chn->outbound);
173 if (aread)
174 break;
175 }
176
177 if (aread == 0)
178 return 0;
179
180 if (++retry > RETRY_MAX)
181 return -ETIMEDOUT;
182
183 usleep_range(RETRY_US_LO, RETRY_US_HI);
184 }
185 }
186
netvsc_close(struct net_device * net)187 static int netvsc_close(struct net_device *net)
188 {
189 struct net_device_context *net_device_ctx = netdev_priv(net);
190 struct net_device *vf_netdev
191 = rtnl_dereference(net_device_ctx->vf_netdev);
192 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
193 int ret;
194
195 netif_tx_disable(net);
196
197 /* No need to close rndis filter if it is removed already */
198 if (!nvdev)
199 return 0;
200
201 ret = rndis_filter_close(nvdev);
202 if (ret != 0) {
203 netdev_err(net, "unable to close device (ret %d).\n", ret);
204 return ret;
205 }
206
207 ret = netvsc_wait_until_empty(nvdev);
208 if (ret)
209 netdev_err(net, "Ring buffer not empty after closing rndis\n");
210
211 if (vf_netdev)
212 dev_close(vf_netdev);
213
214 return ret;
215 }
216
init_ppi_data(struct rndis_message * msg,u32 ppi_size,u32 pkt_type)217 static inline void *init_ppi_data(struct rndis_message *msg,
218 u32 ppi_size, u32 pkt_type)
219 {
220 struct rndis_packet *rndis_pkt = &msg->msg.pkt;
221 struct rndis_per_packet_info *ppi;
222
223 rndis_pkt->data_offset += ppi_size;
224 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
225 + rndis_pkt->per_pkt_info_len;
226
227 ppi->size = ppi_size;
228 ppi->type = pkt_type;
229 ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
230
231 rndis_pkt->per_pkt_info_len += ppi_size;
232
233 return ppi + 1;
234 }
235
236 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented
237 * packets. We can use ethtool to change UDP hash level when necessary.
238 */
netvsc_get_hash(struct sk_buff * skb,const struct net_device_context * ndc)239 static inline u32 netvsc_get_hash(
240 struct sk_buff *skb,
241 const struct net_device_context *ndc)
242 {
243 struct flow_keys flow;
244 u32 hash, pkt_proto = 0;
245 static u32 hashrnd __read_mostly;
246
247 net_get_random_once(&hashrnd, sizeof(hashrnd));
248
249 if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
250 return 0;
251
252 switch (flow.basic.ip_proto) {
253 case IPPROTO_TCP:
254 if (flow.basic.n_proto == htons(ETH_P_IP))
255 pkt_proto = HV_TCP4_L4HASH;
256 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
257 pkt_proto = HV_TCP6_L4HASH;
258
259 break;
260
261 case IPPROTO_UDP:
262 if (flow.basic.n_proto == htons(ETH_P_IP))
263 pkt_proto = HV_UDP4_L4HASH;
264 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
265 pkt_proto = HV_UDP6_L4HASH;
266
267 break;
268 }
269
270 if (pkt_proto & ndc->l4_hash) {
271 return skb_get_hash(skb);
272 } else {
273 if (flow.basic.n_proto == htons(ETH_P_IP))
274 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
275 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
276 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
277 else
278 hash = 0;
279
280 skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
281 }
282
283 return hash;
284 }
285
netvsc_get_tx_queue(struct net_device * ndev,struct sk_buff * skb,int old_idx)286 static inline int netvsc_get_tx_queue(struct net_device *ndev,
287 struct sk_buff *skb, int old_idx)
288 {
289 const struct net_device_context *ndc = netdev_priv(ndev);
290 struct sock *sk = skb->sk;
291 int q_idx;
292
293 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
294 (VRSS_SEND_TAB_SIZE - 1)];
295
296 /* If queue index changed record the new value */
297 if (q_idx != old_idx &&
298 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
299 sk_tx_queue_set(sk, q_idx);
300
301 return q_idx;
302 }
303
304 /*
305 * Select queue for transmit.
306 *
307 * If a valid queue has already been assigned, then use that.
308 * Otherwise compute tx queue based on hash and the send table.
309 *
310 * This is basically similar to default (__netdev_pick_tx) with the added step
311 * of using the host send_table when no other queue has been assigned.
312 *
313 * TODO support XPS - but get_xps_queue not exported
314 */
netvsc_pick_tx(struct net_device * ndev,struct sk_buff * skb)315 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
316 {
317 int q_idx = sk_tx_queue_get(skb->sk);
318
319 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
320 /* If forwarding a packet, we use the recorded queue when
321 * available for better cache locality.
322 */
323 if (skb_rx_queue_recorded(skb))
324 q_idx = skb_get_rx_queue(skb);
325 else
326 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
327 }
328
329 return q_idx;
330 }
331
netvsc_select_queue(struct net_device * ndev,struct sk_buff * skb,struct net_device * sb_dev,select_queue_fallback_t fallback)332 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
333 struct net_device *sb_dev,
334 select_queue_fallback_t fallback)
335 {
336 struct net_device_context *ndc = netdev_priv(ndev);
337 struct net_device *vf_netdev;
338 u16 txq;
339
340 rcu_read_lock();
341 vf_netdev = rcu_dereference(ndc->vf_netdev);
342 if (vf_netdev) {
343 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
344
345 if (vf_ops->ndo_select_queue)
346 txq = vf_ops->ndo_select_queue(vf_netdev, skb,
347 sb_dev, fallback);
348 else
349 txq = fallback(vf_netdev, skb, NULL);
350
351 /* Record the queue selected by VF so that it can be
352 * used for common case where VF has more queues than
353 * the synthetic device.
354 */
355 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
356 } else {
357 txq = netvsc_pick_tx(ndev, skb);
358 }
359 rcu_read_unlock();
360
361 while (unlikely(txq >= ndev->real_num_tx_queues))
362 txq -= ndev->real_num_tx_queues;
363
364 return txq;
365 }
366
fill_pg_buf(struct page * page,u32 offset,u32 len,struct hv_page_buffer * pb)367 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
368 struct hv_page_buffer *pb)
369 {
370 int j = 0;
371
372 /* Deal with compund pages by ignoring unused part
373 * of the page.
374 */
375 page += (offset >> PAGE_SHIFT);
376 offset &= ~PAGE_MASK;
377
378 while (len > 0) {
379 unsigned long bytes;
380
381 bytes = PAGE_SIZE - offset;
382 if (bytes > len)
383 bytes = len;
384 pb[j].pfn = page_to_pfn(page);
385 pb[j].offset = offset;
386 pb[j].len = bytes;
387
388 offset += bytes;
389 len -= bytes;
390
391 if (offset == PAGE_SIZE && len) {
392 page++;
393 offset = 0;
394 j++;
395 }
396 }
397
398 return j + 1;
399 }
400
init_page_array(void * hdr,u32 len,struct sk_buff * skb,struct hv_netvsc_packet * packet,struct hv_page_buffer * pb)401 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
402 struct hv_netvsc_packet *packet,
403 struct hv_page_buffer *pb)
404 {
405 u32 slots_used = 0;
406 char *data = skb->data;
407 int frags = skb_shinfo(skb)->nr_frags;
408 int i;
409
410 /* The packet is laid out thus:
411 * 1. hdr: RNDIS header and PPI
412 * 2. skb linear data
413 * 3. skb fragment data
414 */
415 slots_used += fill_pg_buf(virt_to_page(hdr),
416 offset_in_page(hdr),
417 len, &pb[slots_used]);
418
419 packet->rmsg_size = len;
420 packet->rmsg_pgcnt = slots_used;
421
422 slots_used += fill_pg_buf(virt_to_page(data),
423 offset_in_page(data),
424 skb_headlen(skb), &pb[slots_used]);
425
426 for (i = 0; i < frags; i++) {
427 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
428
429 slots_used += fill_pg_buf(skb_frag_page(frag),
430 frag->page_offset,
431 skb_frag_size(frag), &pb[slots_used]);
432 }
433 return slots_used;
434 }
435
count_skb_frag_slots(struct sk_buff * skb)436 static int count_skb_frag_slots(struct sk_buff *skb)
437 {
438 int i, frags = skb_shinfo(skb)->nr_frags;
439 int pages = 0;
440
441 for (i = 0; i < frags; i++) {
442 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
443 unsigned long size = skb_frag_size(frag);
444 unsigned long offset = frag->page_offset;
445
446 /* Skip unused frames from start of page */
447 offset &= ~PAGE_MASK;
448 pages += PFN_UP(offset + size);
449 }
450 return pages;
451 }
452
netvsc_get_slots(struct sk_buff * skb)453 static int netvsc_get_slots(struct sk_buff *skb)
454 {
455 char *data = skb->data;
456 unsigned int offset = offset_in_page(data);
457 unsigned int len = skb_headlen(skb);
458 int slots;
459 int frag_slots;
460
461 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
462 frag_slots = count_skb_frag_slots(skb);
463 return slots + frag_slots;
464 }
465
net_checksum_info(struct sk_buff * skb)466 static u32 net_checksum_info(struct sk_buff *skb)
467 {
468 if (skb->protocol == htons(ETH_P_IP)) {
469 struct iphdr *ip = ip_hdr(skb);
470
471 if (ip->protocol == IPPROTO_TCP)
472 return TRANSPORT_INFO_IPV4_TCP;
473 else if (ip->protocol == IPPROTO_UDP)
474 return TRANSPORT_INFO_IPV4_UDP;
475 } else {
476 struct ipv6hdr *ip6 = ipv6_hdr(skb);
477
478 if (ip6->nexthdr == IPPROTO_TCP)
479 return TRANSPORT_INFO_IPV6_TCP;
480 else if (ip6->nexthdr == IPPROTO_UDP)
481 return TRANSPORT_INFO_IPV6_UDP;
482 }
483
484 return TRANSPORT_INFO_NOT_IP;
485 }
486
487 /* Send skb on the slave VF device. */
netvsc_vf_xmit(struct net_device * net,struct net_device * vf_netdev,struct sk_buff * skb)488 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
489 struct sk_buff *skb)
490 {
491 struct net_device_context *ndev_ctx = netdev_priv(net);
492 unsigned int len = skb->len;
493 int rc;
494
495 skb->dev = vf_netdev;
496 skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
497
498 rc = dev_queue_xmit(skb);
499 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
500 struct netvsc_vf_pcpu_stats *pcpu_stats
501 = this_cpu_ptr(ndev_ctx->vf_stats);
502
503 u64_stats_update_begin(&pcpu_stats->syncp);
504 pcpu_stats->tx_packets++;
505 pcpu_stats->tx_bytes += len;
506 u64_stats_update_end(&pcpu_stats->syncp);
507 } else {
508 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
509 }
510
511 return rc;
512 }
513
netvsc_start_xmit(struct sk_buff * skb,struct net_device * net)514 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
515 {
516 struct net_device_context *net_device_ctx = netdev_priv(net);
517 struct hv_netvsc_packet *packet = NULL;
518 int ret;
519 unsigned int num_data_pgs;
520 struct rndis_message *rndis_msg;
521 struct net_device *vf_netdev;
522 u32 rndis_msg_size;
523 u32 hash;
524 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
525
526 /* if VF is present and up then redirect packets
527 * already called with rcu_read_lock_bh
528 */
529 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
530 if (vf_netdev && netif_running(vf_netdev) &&
531 !netpoll_tx_running(net))
532 return netvsc_vf_xmit(net, vf_netdev, skb);
533
534 /* We will atmost need two pages to describe the rndis
535 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
536 * of pages in a single packet. If skb is scattered around
537 * more pages we try linearizing it.
538 */
539
540 num_data_pgs = netvsc_get_slots(skb) + 2;
541
542 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
543 ++net_device_ctx->eth_stats.tx_scattered;
544
545 if (skb_linearize(skb))
546 goto no_memory;
547
548 num_data_pgs = netvsc_get_slots(skb) + 2;
549 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
550 ++net_device_ctx->eth_stats.tx_too_big;
551 goto drop;
552 }
553 }
554
555 /*
556 * Place the rndis header in the skb head room and
557 * the skb->cb will be used for hv_netvsc_packet
558 * structure.
559 */
560 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
561 if (ret)
562 goto no_memory;
563
564 /* Use the skb control buffer for building up the packet */
565 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
566 FIELD_SIZEOF(struct sk_buff, cb));
567 packet = (struct hv_netvsc_packet *)skb->cb;
568
569 packet->q_idx = skb_get_queue_mapping(skb);
570
571 packet->total_data_buflen = skb->len;
572 packet->total_bytes = skb->len;
573 packet->total_packets = 1;
574
575 rndis_msg = (struct rndis_message *)skb->head;
576
577 /* Add the rndis header */
578 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
579 rndis_msg->msg_len = packet->total_data_buflen;
580
581 rndis_msg->msg.pkt = (struct rndis_packet) {
582 .data_offset = sizeof(struct rndis_packet),
583 .data_len = packet->total_data_buflen,
584 .per_pkt_info_offset = sizeof(struct rndis_packet),
585 };
586
587 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
588
589 hash = skb_get_hash_raw(skb);
590 if (hash != 0 && net->real_num_tx_queues > 1) {
591 u32 *hash_info;
592
593 rndis_msg_size += NDIS_HASH_PPI_SIZE;
594 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
595 NBL_HASH_VALUE);
596 *hash_info = hash;
597 }
598
599 if (skb_vlan_tag_present(skb)) {
600 struct ndis_pkt_8021q_info *vlan;
601
602 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
603 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
604 IEEE_8021Q_INFO);
605
606 vlan->value = 0;
607 vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK;
608 vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >>
609 VLAN_PRIO_SHIFT;
610 }
611
612 if (skb_is_gso(skb)) {
613 struct ndis_tcp_lso_info *lso_info;
614
615 rndis_msg_size += NDIS_LSO_PPI_SIZE;
616 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
617 TCP_LARGESEND_PKTINFO);
618
619 lso_info->value = 0;
620 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
621 if (skb->protocol == htons(ETH_P_IP)) {
622 lso_info->lso_v2_transmit.ip_version =
623 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
624 ip_hdr(skb)->tot_len = 0;
625 ip_hdr(skb)->check = 0;
626 tcp_hdr(skb)->check =
627 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
628 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
629 } else {
630 lso_info->lso_v2_transmit.ip_version =
631 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
632 ipv6_hdr(skb)->payload_len = 0;
633 tcp_hdr(skb)->check =
634 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
635 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
636 }
637 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
638 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
639 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
640 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
641 struct ndis_tcp_ip_checksum_info *csum_info;
642
643 rndis_msg_size += NDIS_CSUM_PPI_SIZE;
644 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
645 TCPIP_CHKSUM_PKTINFO);
646
647 csum_info->value = 0;
648 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
649
650 if (skb->protocol == htons(ETH_P_IP)) {
651 csum_info->transmit.is_ipv4 = 1;
652
653 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
654 csum_info->transmit.tcp_checksum = 1;
655 else
656 csum_info->transmit.udp_checksum = 1;
657 } else {
658 csum_info->transmit.is_ipv6 = 1;
659
660 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
661 csum_info->transmit.tcp_checksum = 1;
662 else
663 csum_info->transmit.udp_checksum = 1;
664 }
665 } else {
666 /* Can't do offload of this type of checksum */
667 if (skb_checksum_help(skb))
668 goto drop;
669 }
670 }
671
672 /* Start filling in the page buffers with the rndis hdr */
673 rndis_msg->msg_len += rndis_msg_size;
674 packet->total_data_buflen = rndis_msg->msg_len;
675 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
676 skb, packet, pb);
677
678 /* timestamp packet in software */
679 skb_tx_timestamp(skb);
680
681 ret = netvsc_send(net, packet, rndis_msg, pb, skb);
682 if (likely(ret == 0))
683 return NETDEV_TX_OK;
684
685 if (ret == -EAGAIN) {
686 ++net_device_ctx->eth_stats.tx_busy;
687 return NETDEV_TX_BUSY;
688 }
689
690 if (ret == -ENOSPC)
691 ++net_device_ctx->eth_stats.tx_no_space;
692
693 drop:
694 dev_kfree_skb_any(skb);
695 net->stats.tx_dropped++;
696
697 return NETDEV_TX_OK;
698
699 no_memory:
700 ++net_device_ctx->eth_stats.tx_no_memory;
701 goto drop;
702 }
703
704 /*
705 * netvsc_linkstatus_callback - Link up/down notification
706 */
netvsc_linkstatus_callback(struct net_device * net,struct rndis_message * resp)707 void netvsc_linkstatus_callback(struct net_device *net,
708 struct rndis_message *resp)
709 {
710 struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
711 struct net_device_context *ndev_ctx = netdev_priv(net);
712 struct netvsc_reconfig *event;
713 unsigned long flags;
714
715 /* Update the physical link speed when changing to another vSwitch */
716 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
717 u32 speed;
718
719 speed = *(u32 *)((void *)indicate
720 + indicate->status_buf_offset) / 10000;
721 ndev_ctx->speed = speed;
722 return;
723 }
724
725 /* Handle these link change statuses below */
726 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
727 indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
728 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
729 return;
730
731 if (net->reg_state != NETREG_REGISTERED)
732 return;
733
734 event = kzalloc(sizeof(*event), GFP_ATOMIC);
735 if (!event)
736 return;
737 event->event = indicate->status;
738
739 spin_lock_irqsave(&ndev_ctx->lock, flags);
740 list_add_tail(&event->list, &ndev_ctx->reconfig_events);
741 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
742
743 schedule_delayed_work(&ndev_ctx->dwork, 0);
744 }
745
netvsc_alloc_recv_skb(struct net_device * net,struct napi_struct * napi,const struct ndis_tcp_ip_checksum_info * csum_info,const struct ndis_pkt_8021q_info * vlan,void * data,u32 buflen)746 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
747 struct napi_struct *napi,
748 const struct ndis_tcp_ip_checksum_info *csum_info,
749 const struct ndis_pkt_8021q_info *vlan,
750 void *data, u32 buflen)
751 {
752 struct sk_buff *skb;
753
754 skb = napi_alloc_skb(napi, buflen);
755 if (!skb)
756 return skb;
757
758 /*
759 * Copy to skb. This copy is needed here since the memory pointed by
760 * hv_netvsc_packet cannot be deallocated
761 */
762 skb_put_data(skb, data, buflen);
763
764 skb->protocol = eth_type_trans(skb, net);
765
766 /* skb is already created with CHECKSUM_NONE */
767 skb_checksum_none_assert(skb);
768
769 /*
770 * In Linux, the IP checksum is always checked.
771 * Do L4 checksum offload if enabled and present.
772 */
773 if (csum_info && (net->features & NETIF_F_RXCSUM)) {
774 if (csum_info->receive.tcp_checksum_succeeded ||
775 csum_info->receive.udp_checksum_succeeded)
776 skb->ip_summed = CHECKSUM_UNNECESSARY;
777 }
778
779 if (vlan) {
780 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT);
781
782 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
783 vlan_tci);
784 }
785
786 return skb;
787 }
788
789 /*
790 * netvsc_recv_callback - Callback when we receive a packet from the
791 * "wire" on the specified device.
792 */
netvsc_recv_callback(struct net_device * net,struct netvsc_device * net_device,struct vmbus_channel * channel,void * data,u32 len,const struct ndis_tcp_ip_checksum_info * csum_info,const struct ndis_pkt_8021q_info * vlan)793 int netvsc_recv_callback(struct net_device *net,
794 struct netvsc_device *net_device,
795 struct vmbus_channel *channel,
796 void *data, u32 len,
797 const struct ndis_tcp_ip_checksum_info *csum_info,
798 const struct ndis_pkt_8021q_info *vlan)
799 {
800 struct net_device_context *net_device_ctx = netdev_priv(net);
801 u16 q_idx = channel->offermsg.offer.sub_channel_index;
802 struct netvsc_channel *nvchan = &net_device->chan_table[q_idx];
803 struct sk_buff *skb;
804 struct netvsc_stats *rx_stats;
805
806 if (net->reg_state != NETREG_REGISTERED)
807 return NVSP_STAT_FAIL;
808
809 /* Allocate a skb - TODO direct I/O to pages? */
810 skb = netvsc_alloc_recv_skb(net, &nvchan->napi,
811 csum_info, vlan, data, len);
812 if (unlikely(!skb)) {
813 ++net_device_ctx->eth_stats.rx_no_memory;
814 rcu_read_unlock();
815 return NVSP_STAT_FAIL;
816 }
817
818 skb_record_rx_queue(skb, q_idx);
819
820 /*
821 * Even if injecting the packet, record the statistics
822 * on the synthetic device because modifying the VF device
823 * statistics will not work correctly.
824 */
825 rx_stats = &nvchan->rx_stats;
826 u64_stats_update_begin(&rx_stats->syncp);
827 rx_stats->packets++;
828 rx_stats->bytes += len;
829
830 if (skb->pkt_type == PACKET_BROADCAST)
831 ++rx_stats->broadcast;
832 else if (skb->pkt_type == PACKET_MULTICAST)
833 ++rx_stats->multicast;
834 u64_stats_update_end(&rx_stats->syncp);
835
836 napi_gro_receive(&nvchan->napi, skb);
837 return NVSP_STAT_SUCCESS;
838 }
839
netvsc_get_drvinfo(struct net_device * net,struct ethtool_drvinfo * info)840 static void netvsc_get_drvinfo(struct net_device *net,
841 struct ethtool_drvinfo *info)
842 {
843 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
844 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
845 }
846
netvsc_get_channels(struct net_device * net,struct ethtool_channels * channel)847 static void netvsc_get_channels(struct net_device *net,
848 struct ethtool_channels *channel)
849 {
850 struct net_device_context *net_device_ctx = netdev_priv(net);
851 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
852
853 if (nvdev) {
854 channel->max_combined = nvdev->max_chn;
855 channel->combined_count = nvdev->num_chn;
856 }
857 }
858
netvsc_detach(struct net_device * ndev,struct netvsc_device * nvdev)859 static int netvsc_detach(struct net_device *ndev,
860 struct netvsc_device *nvdev)
861 {
862 struct net_device_context *ndev_ctx = netdev_priv(ndev);
863 struct hv_device *hdev = ndev_ctx->device_ctx;
864 int ret;
865
866 /* Don't try continuing to try and setup sub channels */
867 if (cancel_work_sync(&nvdev->subchan_work))
868 nvdev->num_chn = 1;
869
870 /* If device was up (receiving) then shutdown */
871 if (netif_running(ndev)) {
872 netif_tx_disable(ndev);
873
874 ret = rndis_filter_close(nvdev);
875 if (ret) {
876 netdev_err(ndev,
877 "unable to close device (ret %d).\n", ret);
878 return ret;
879 }
880
881 ret = netvsc_wait_until_empty(nvdev);
882 if (ret) {
883 netdev_err(ndev,
884 "Ring buffer not empty after closing rndis\n");
885 return ret;
886 }
887 }
888
889 netif_device_detach(ndev);
890
891 rndis_filter_device_remove(hdev, nvdev);
892
893 return 0;
894 }
895
netvsc_attach(struct net_device * ndev,struct netvsc_device_info * dev_info)896 static int netvsc_attach(struct net_device *ndev,
897 struct netvsc_device_info *dev_info)
898 {
899 struct net_device_context *ndev_ctx = netdev_priv(ndev);
900 struct hv_device *hdev = ndev_ctx->device_ctx;
901 struct netvsc_device *nvdev;
902 struct rndis_device *rdev;
903 int ret;
904
905 nvdev = rndis_filter_device_add(hdev, dev_info);
906 if (IS_ERR(nvdev))
907 return PTR_ERR(nvdev);
908
909 if (nvdev->num_chn > 1) {
910 ret = rndis_set_subchannel(ndev, nvdev);
911
912 /* if unavailable, just proceed with one queue */
913 if (ret) {
914 nvdev->max_chn = 1;
915 nvdev->num_chn = 1;
916 }
917 }
918
919 /* In any case device is now ready */
920 netif_device_attach(ndev);
921
922 /* Note: enable and attach happen when sub-channels setup */
923 netif_carrier_off(ndev);
924
925 if (netif_running(ndev)) {
926 ret = rndis_filter_open(nvdev);
927 if (ret)
928 return ret;
929
930 rdev = nvdev->extension;
931 if (!rdev->link_state)
932 netif_carrier_on(ndev);
933 }
934
935 return 0;
936 }
937
netvsc_set_channels(struct net_device * net,struct ethtool_channels * channels)938 static int netvsc_set_channels(struct net_device *net,
939 struct ethtool_channels *channels)
940 {
941 struct net_device_context *net_device_ctx = netdev_priv(net);
942 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
943 unsigned int orig, count = channels->combined_count;
944 struct netvsc_device_info device_info;
945 int ret;
946
947 /* We do not support separate count for rx, tx, or other */
948 if (count == 0 ||
949 channels->rx_count || channels->tx_count || channels->other_count)
950 return -EINVAL;
951
952 if (!nvdev || nvdev->destroy)
953 return -ENODEV;
954
955 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
956 return -EINVAL;
957
958 if (count > nvdev->max_chn)
959 return -EINVAL;
960
961 orig = nvdev->num_chn;
962
963 memset(&device_info, 0, sizeof(device_info));
964 device_info.num_chn = count;
965 device_info.send_sections = nvdev->send_section_cnt;
966 device_info.send_section_size = nvdev->send_section_size;
967 device_info.recv_sections = nvdev->recv_section_cnt;
968 device_info.recv_section_size = nvdev->recv_section_size;
969
970 ret = netvsc_detach(net, nvdev);
971 if (ret)
972 return ret;
973
974 ret = netvsc_attach(net, &device_info);
975 if (ret) {
976 device_info.num_chn = orig;
977 if (netvsc_attach(net, &device_info))
978 netdev_err(net, "restoring channel setting failed\n");
979 }
980
981 return ret;
982 }
983
984 static bool
netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings * cmd)985 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
986 {
987 struct ethtool_link_ksettings diff1 = *cmd;
988 struct ethtool_link_ksettings diff2 = {};
989
990 diff1.base.speed = 0;
991 diff1.base.duplex = 0;
992 /* advertising and cmd are usually set */
993 ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
994 diff1.base.cmd = 0;
995 /* We set port to PORT_OTHER */
996 diff2.base.port = PORT_OTHER;
997
998 return !memcmp(&diff1, &diff2, sizeof(diff1));
999 }
1000
netvsc_init_settings(struct net_device * dev)1001 static void netvsc_init_settings(struct net_device *dev)
1002 {
1003 struct net_device_context *ndc = netdev_priv(dev);
1004
1005 ndc->l4_hash = HV_DEFAULT_L4HASH;
1006
1007 ndc->speed = SPEED_UNKNOWN;
1008 ndc->duplex = DUPLEX_FULL;
1009 }
1010
netvsc_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1011 static int netvsc_get_link_ksettings(struct net_device *dev,
1012 struct ethtool_link_ksettings *cmd)
1013 {
1014 struct net_device_context *ndc = netdev_priv(dev);
1015
1016 cmd->base.speed = ndc->speed;
1017 cmd->base.duplex = ndc->duplex;
1018 cmd->base.port = PORT_OTHER;
1019
1020 return 0;
1021 }
1022
netvsc_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1023 static int netvsc_set_link_ksettings(struct net_device *dev,
1024 const struct ethtool_link_ksettings *cmd)
1025 {
1026 struct net_device_context *ndc = netdev_priv(dev);
1027 u32 speed;
1028
1029 speed = cmd->base.speed;
1030 if (!ethtool_validate_speed(speed) ||
1031 !ethtool_validate_duplex(cmd->base.duplex) ||
1032 !netvsc_validate_ethtool_ss_cmd(cmd))
1033 return -EINVAL;
1034
1035 ndc->speed = speed;
1036 ndc->duplex = cmd->base.duplex;
1037
1038 return 0;
1039 }
1040
netvsc_change_mtu(struct net_device * ndev,int mtu)1041 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1042 {
1043 struct net_device_context *ndevctx = netdev_priv(ndev);
1044 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1045 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1046 int orig_mtu = ndev->mtu;
1047 struct netvsc_device_info device_info;
1048 int ret = 0;
1049
1050 if (!nvdev || nvdev->destroy)
1051 return -ENODEV;
1052
1053 /* Change MTU of underlying VF netdev first. */
1054 if (vf_netdev) {
1055 ret = dev_set_mtu(vf_netdev, mtu);
1056 if (ret)
1057 return ret;
1058 }
1059
1060 memset(&device_info, 0, sizeof(device_info));
1061 device_info.num_chn = nvdev->num_chn;
1062 device_info.send_sections = nvdev->send_section_cnt;
1063 device_info.send_section_size = nvdev->send_section_size;
1064 device_info.recv_sections = nvdev->recv_section_cnt;
1065 device_info.recv_section_size = nvdev->recv_section_size;
1066
1067 ret = netvsc_detach(ndev, nvdev);
1068 if (ret)
1069 goto rollback_vf;
1070
1071 ndev->mtu = mtu;
1072
1073 ret = netvsc_attach(ndev, &device_info);
1074 if (ret)
1075 goto rollback;
1076
1077 return 0;
1078
1079 rollback:
1080 /* Attempt rollback to original MTU */
1081 ndev->mtu = orig_mtu;
1082
1083 if (netvsc_attach(ndev, &device_info))
1084 netdev_err(ndev, "restoring mtu failed\n");
1085 rollback_vf:
1086 if (vf_netdev)
1087 dev_set_mtu(vf_netdev, orig_mtu);
1088
1089 return ret;
1090 }
1091
netvsc_get_vf_stats(struct net_device * net,struct netvsc_vf_pcpu_stats * tot)1092 static void netvsc_get_vf_stats(struct net_device *net,
1093 struct netvsc_vf_pcpu_stats *tot)
1094 {
1095 struct net_device_context *ndev_ctx = netdev_priv(net);
1096 int i;
1097
1098 memset(tot, 0, sizeof(*tot));
1099
1100 for_each_possible_cpu(i) {
1101 const struct netvsc_vf_pcpu_stats *stats
1102 = per_cpu_ptr(ndev_ctx->vf_stats, i);
1103 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1104 unsigned int start;
1105
1106 do {
1107 start = u64_stats_fetch_begin_irq(&stats->syncp);
1108 rx_packets = stats->rx_packets;
1109 tx_packets = stats->tx_packets;
1110 rx_bytes = stats->rx_bytes;
1111 tx_bytes = stats->tx_bytes;
1112 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1113
1114 tot->rx_packets += rx_packets;
1115 tot->tx_packets += tx_packets;
1116 tot->rx_bytes += rx_bytes;
1117 tot->tx_bytes += tx_bytes;
1118 tot->tx_dropped += stats->tx_dropped;
1119 }
1120 }
1121
netvsc_get_pcpu_stats(struct net_device * net,struct netvsc_ethtool_pcpu_stats * pcpu_tot)1122 static void netvsc_get_pcpu_stats(struct net_device *net,
1123 struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1124 {
1125 struct net_device_context *ndev_ctx = netdev_priv(net);
1126 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1127 int i;
1128
1129 /* fetch percpu stats of vf */
1130 for_each_possible_cpu(i) {
1131 const struct netvsc_vf_pcpu_stats *stats =
1132 per_cpu_ptr(ndev_ctx->vf_stats, i);
1133 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1134 unsigned int start;
1135
1136 do {
1137 start = u64_stats_fetch_begin_irq(&stats->syncp);
1138 this_tot->vf_rx_packets = stats->rx_packets;
1139 this_tot->vf_tx_packets = stats->tx_packets;
1140 this_tot->vf_rx_bytes = stats->rx_bytes;
1141 this_tot->vf_tx_bytes = stats->tx_bytes;
1142 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1143 this_tot->rx_packets = this_tot->vf_rx_packets;
1144 this_tot->tx_packets = this_tot->vf_tx_packets;
1145 this_tot->rx_bytes = this_tot->vf_rx_bytes;
1146 this_tot->tx_bytes = this_tot->vf_tx_bytes;
1147 }
1148
1149 /* fetch percpu stats of netvsc */
1150 for (i = 0; i < nvdev->num_chn; i++) {
1151 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1152 const struct netvsc_stats *stats;
1153 struct netvsc_ethtool_pcpu_stats *this_tot =
1154 &pcpu_tot[nvchan->channel->target_cpu];
1155 u64 packets, bytes;
1156 unsigned int start;
1157
1158 stats = &nvchan->tx_stats;
1159 do {
1160 start = u64_stats_fetch_begin_irq(&stats->syncp);
1161 packets = stats->packets;
1162 bytes = stats->bytes;
1163 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1164
1165 this_tot->tx_bytes += bytes;
1166 this_tot->tx_packets += packets;
1167
1168 stats = &nvchan->rx_stats;
1169 do {
1170 start = u64_stats_fetch_begin_irq(&stats->syncp);
1171 packets = stats->packets;
1172 bytes = stats->bytes;
1173 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1174
1175 this_tot->rx_bytes += bytes;
1176 this_tot->rx_packets += packets;
1177 }
1178 }
1179
netvsc_get_stats64(struct net_device * net,struct rtnl_link_stats64 * t)1180 static void netvsc_get_stats64(struct net_device *net,
1181 struct rtnl_link_stats64 *t)
1182 {
1183 struct net_device_context *ndev_ctx = netdev_priv(net);
1184 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1185 struct netvsc_vf_pcpu_stats vf_tot;
1186 int i;
1187
1188 if (!nvdev)
1189 return;
1190
1191 netdev_stats_to_stats64(t, &net->stats);
1192
1193 netvsc_get_vf_stats(net, &vf_tot);
1194 t->rx_packets += vf_tot.rx_packets;
1195 t->tx_packets += vf_tot.tx_packets;
1196 t->rx_bytes += vf_tot.rx_bytes;
1197 t->tx_bytes += vf_tot.tx_bytes;
1198 t->tx_dropped += vf_tot.tx_dropped;
1199
1200 for (i = 0; i < nvdev->num_chn; i++) {
1201 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1202 const struct netvsc_stats *stats;
1203 u64 packets, bytes, multicast;
1204 unsigned int start;
1205
1206 stats = &nvchan->tx_stats;
1207 do {
1208 start = u64_stats_fetch_begin_irq(&stats->syncp);
1209 packets = stats->packets;
1210 bytes = stats->bytes;
1211 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1212
1213 t->tx_bytes += bytes;
1214 t->tx_packets += packets;
1215
1216 stats = &nvchan->rx_stats;
1217 do {
1218 start = u64_stats_fetch_begin_irq(&stats->syncp);
1219 packets = stats->packets;
1220 bytes = stats->bytes;
1221 multicast = stats->multicast + stats->broadcast;
1222 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1223
1224 t->rx_bytes += bytes;
1225 t->rx_packets += packets;
1226 t->multicast += multicast;
1227 }
1228 }
1229
netvsc_set_mac_addr(struct net_device * ndev,void * p)1230 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1231 {
1232 struct net_device_context *ndc = netdev_priv(ndev);
1233 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1234 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1235 struct sockaddr *addr = p;
1236 int err;
1237
1238 err = eth_prepare_mac_addr_change(ndev, p);
1239 if (err)
1240 return err;
1241
1242 if (!nvdev)
1243 return -ENODEV;
1244
1245 if (vf_netdev) {
1246 err = dev_set_mac_address(vf_netdev, addr);
1247 if (err)
1248 return err;
1249 }
1250
1251 err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1252 if (!err) {
1253 eth_commit_mac_addr_change(ndev, p);
1254 } else if (vf_netdev) {
1255 /* rollback change on VF */
1256 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1257 dev_set_mac_address(vf_netdev, addr);
1258 }
1259
1260 return err;
1261 }
1262
1263 static const struct {
1264 char name[ETH_GSTRING_LEN];
1265 u16 offset;
1266 } netvsc_stats[] = {
1267 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1268 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1269 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1270 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1271 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) },
1272 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1273 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1274 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1275 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1276 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1277 }, pcpu_stats[] = {
1278 { "cpu%u_rx_packets",
1279 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1280 { "cpu%u_rx_bytes",
1281 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1282 { "cpu%u_tx_packets",
1283 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1284 { "cpu%u_tx_bytes",
1285 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1286 { "cpu%u_vf_rx_packets",
1287 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1288 { "cpu%u_vf_rx_bytes",
1289 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1290 { "cpu%u_vf_tx_packets",
1291 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1292 { "cpu%u_vf_tx_bytes",
1293 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1294 }, vf_stats[] = {
1295 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1296 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1297 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1298 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1299 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1300 };
1301
1302 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1303 #define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats)
1304
1305 /* statistics per queue (rx/tx packets/bytes) */
1306 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1307
1308 /* 4 statistics per queue (rx/tx packets/bytes) */
1309 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
1310
netvsc_get_sset_count(struct net_device * dev,int string_set)1311 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1312 {
1313 struct net_device_context *ndc = netdev_priv(dev);
1314 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1315
1316 if (!nvdev)
1317 return -ENODEV;
1318
1319 switch (string_set) {
1320 case ETH_SS_STATS:
1321 return NETVSC_GLOBAL_STATS_LEN
1322 + NETVSC_VF_STATS_LEN
1323 + NETVSC_QUEUE_STATS_LEN(nvdev)
1324 + NETVSC_PCPU_STATS_LEN;
1325 default:
1326 return -EINVAL;
1327 }
1328 }
1329
netvsc_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)1330 static void netvsc_get_ethtool_stats(struct net_device *dev,
1331 struct ethtool_stats *stats, u64 *data)
1332 {
1333 struct net_device_context *ndc = netdev_priv(dev);
1334 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1335 const void *nds = &ndc->eth_stats;
1336 const struct netvsc_stats *qstats;
1337 struct netvsc_vf_pcpu_stats sum;
1338 struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1339 unsigned int start;
1340 u64 packets, bytes;
1341 int i, j, cpu;
1342
1343 if (!nvdev)
1344 return;
1345
1346 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1347 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1348
1349 netvsc_get_vf_stats(dev, &sum);
1350 for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1351 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1352
1353 for (j = 0; j < nvdev->num_chn; j++) {
1354 qstats = &nvdev->chan_table[j].tx_stats;
1355
1356 do {
1357 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1358 packets = qstats->packets;
1359 bytes = qstats->bytes;
1360 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1361 data[i++] = packets;
1362 data[i++] = bytes;
1363
1364 qstats = &nvdev->chan_table[j].rx_stats;
1365 do {
1366 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1367 packets = qstats->packets;
1368 bytes = qstats->bytes;
1369 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1370 data[i++] = packets;
1371 data[i++] = bytes;
1372 }
1373
1374 pcpu_sum = kvmalloc_array(num_possible_cpus(),
1375 sizeof(struct netvsc_ethtool_pcpu_stats),
1376 GFP_KERNEL);
1377 netvsc_get_pcpu_stats(dev, pcpu_sum);
1378 for_each_present_cpu(cpu) {
1379 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1380
1381 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1382 data[i++] = *(u64 *)((void *)this_sum
1383 + pcpu_stats[j].offset);
1384 }
1385 kvfree(pcpu_sum);
1386 }
1387
netvsc_get_strings(struct net_device * dev,u32 stringset,u8 * data)1388 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1389 {
1390 struct net_device_context *ndc = netdev_priv(dev);
1391 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1392 u8 *p = data;
1393 int i, cpu;
1394
1395 if (!nvdev)
1396 return;
1397
1398 switch (stringset) {
1399 case ETH_SS_STATS:
1400 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1401 memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1402 p += ETH_GSTRING_LEN;
1403 }
1404
1405 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1406 memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1407 p += ETH_GSTRING_LEN;
1408 }
1409
1410 for (i = 0; i < nvdev->num_chn; i++) {
1411 sprintf(p, "tx_queue_%u_packets", i);
1412 p += ETH_GSTRING_LEN;
1413 sprintf(p, "tx_queue_%u_bytes", i);
1414 p += ETH_GSTRING_LEN;
1415 sprintf(p, "rx_queue_%u_packets", i);
1416 p += ETH_GSTRING_LEN;
1417 sprintf(p, "rx_queue_%u_bytes", i);
1418 p += ETH_GSTRING_LEN;
1419 }
1420
1421 for_each_present_cpu(cpu) {
1422 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) {
1423 sprintf(p, pcpu_stats[i].name, cpu);
1424 p += ETH_GSTRING_LEN;
1425 }
1426 }
1427
1428 break;
1429 }
1430 }
1431
1432 static int
netvsc_get_rss_hash_opts(struct net_device_context * ndc,struct ethtool_rxnfc * info)1433 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1434 struct ethtool_rxnfc *info)
1435 {
1436 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1437
1438 info->data = RXH_IP_SRC | RXH_IP_DST;
1439
1440 switch (info->flow_type) {
1441 case TCP_V4_FLOW:
1442 if (ndc->l4_hash & HV_TCP4_L4HASH)
1443 info->data |= l4_flag;
1444
1445 break;
1446
1447 case TCP_V6_FLOW:
1448 if (ndc->l4_hash & HV_TCP6_L4HASH)
1449 info->data |= l4_flag;
1450
1451 break;
1452
1453 case UDP_V4_FLOW:
1454 if (ndc->l4_hash & HV_UDP4_L4HASH)
1455 info->data |= l4_flag;
1456
1457 break;
1458
1459 case UDP_V6_FLOW:
1460 if (ndc->l4_hash & HV_UDP6_L4HASH)
1461 info->data |= l4_flag;
1462
1463 break;
1464
1465 case IPV4_FLOW:
1466 case IPV6_FLOW:
1467 break;
1468 default:
1469 info->data = 0;
1470 break;
1471 }
1472
1473 return 0;
1474 }
1475
1476 static int
netvsc_get_rxnfc(struct net_device * dev,struct ethtool_rxnfc * info,u32 * rules)1477 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1478 u32 *rules)
1479 {
1480 struct net_device_context *ndc = netdev_priv(dev);
1481 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1482
1483 if (!nvdev)
1484 return -ENODEV;
1485
1486 switch (info->cmd) {
1487 case ETHTOOL_GRXRINGS:
1488 info->data = nvdev->num_chn;
1489 return 0;
1490
1491 case ETHTOOL_GRXFH:
1492 return netvsc_get_rss_hash_opts(ndc, info);
1493 }
1494 return -EOPNOTSUPP;
1495 }
1496
netvsc_set_rss_hash_opts(struct net_device_context * ndc,struct ethtool_rxnfc * info)1497 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1498 struct ethtool_rxnfc *info)
1499 {
1500 if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1501 RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1502 switch (info->flow_type) {
1503 case TCP_V4_FLOW:
1504 ndc->l4_hash |= HV_TCP4_L4HASH;
1505 break;
1506
1507 case TCP_V6_FLOW:
1508 ndc->l4_hash |= HV_TCP6_L4HASH;
1509 break;
1510
1511 case UDP_V4_FLOW:
1512 ndc->l4_hash |= HV_UDP4_L4HASH;
1513 break;
1514
1515 case UDP_V6_FLOW:
1516 ndc->l4_hash |= HV_UDP6_L4HASH;
1517 break;
1518
1519 default:
1520 return -EOPNOTSUPP;
1521 }
1522
1523 return 0;
1524 }
1525
1526 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1527 switch (info->flow_type) {
1528 case TCP_V4_FLOW:
1529 ndc->l4_hash &= ~HV_TCP4_L4HASH;
1530 break;
1531
1532 case TCP_V6_FLOW:
1533 ndc->l4_hash &= ~HV_TCP6_L4HASH;
1534 break;
1535
1536 case UDP_V4_FLOW:
1537 ndc->l4_hash &= ~HV_UDP4_L4HASH;
1538 break;
1539
1540 case UDP_V6_FLOW:
1541 ndc->l4_hash &= ~HV_UDP6_L4HASH;
1542 break;
1543
1544 default:
1545 return -EOPNOTSUPP;
1546 }
1547
1548 return 0;
1549 }
1550
1551 return -EOPNOTSUPP;
1552 }
1553
1554 static int
netvsc_set_rxnfc(struct net_device * ndev,struct ethtool_rxnfc * info)1555 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1556 {
1557 struct net_device_context *ndc = netdev_priv(ndev);
1558
1559 if (info->cmd == ETHTOOL_SRXFH)
1560 return netvsc_set_rss_hash_opts(ndc, info);
1561
1562 return -EOPNOTSUPP;
1563 }
1564
1565 #ifdef CONFIG_NET_POLL_CONTROLLER
netvsc_poll_controller(struct net_device * dev)1566 static void netvsc_poll_controller(struct net_device *dev)
1567 {
1568 struct net_device_context *ndc = netdev_priv(dev);
1569 struct netvsc_device *ndev;
1570 int i;
1571
1572 rcu_read_lock();
1573 ndev = rcu_dereference(ndc->nvdev);
1574 if (ndev) {
1575 for (i = 0; i < ndev->num_chn; i++) {
1576 struct netvsc_channel *nvchan = &ndev->chan_table[i];
1577
1578 napi_schedule(&nvchan->napi);
1579 }
1580 }
1581 rcu_read_unlock();
1582 }
1583 #endif
1584
netvsc_get_rxfh_key_size(struct net_device * dev)1585 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1586 {
1587 return NETVSC_HASH_KEYLEN;
1588 }
1589
netvsc_rss_indir_size(struct net_device * dev)1590 static u32 netvsc_rss_indir_size(struct net_device *dev)
1591 {
1592 return ITAB_NUM;
1593 }
1594
netvsc_get_rxfh(struct net_device * dev,u32 * indir,u8 * key,u8 * hfunc)1595 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1596 u8 *hfunc)
1597 {
1598 struct net_device_context *ndc = netdev_priv(dev);
1599 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1600 struct rndis_device *rndis_dev;
1601 int i;
1602
1603 if (!ndev)
1604 return -ENODEV;
1605
1606 if (hfunc)
1607 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */
1608
1609 rndis_dev = ndev->extension;
1610 if (indir) {
1611 for (i = 0; i < ITAB_NUM; i++)
1612 indir[i] = rndis_dev->rx_table[i];
1613 }
1614
1615 if (key)
1616 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1617
1618 return 0;
1619 }
1620
netvsc_set_rxfh(struct net_device * dev,const u32 * indir,const u8 * key,const u8 hfunc)1621 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1622 const u8 *key, const u8 hfunc)
1623 {
1624 struct net_device_context *ndc = netdev_priv(dev);
1625 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1626 struct rndis_device *rndis_dev;
1627 int i;
1628
1629 if (!ndev)
1630 return -ENODEV;
1631
1632 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1633 return -EOPNOTSUPP;
1634
1635 rndis_dev = ndev->extension;
1636 if (indir) {
1637 for (i = 0; i < ITAB_NUM; i++)
1638 if (indir[i] >= ndev->num_chn)
1639 return -EINVAL;
1640
1641 for (i = 0; i < ITAB_NUM; i++)
1642 rndis_dev->rx_table[i] = indir[i];
1643 }
1644
1645 if (!key) {
1646 if (!indir)
1647 return 0;
1648
1649 key = rndis_dev->rss_key;
1650 }
1651
1652 return rndis_filter_set_rss_param(rndis_dev, key);
1653 }
1654
1655 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1656 * It does have pre-allocated receive area which is divided into sections.
1657 */
__netvsc_get_ringparam(struct netvsc_device * nvdev,struct ethtool_ringparam * ring)1658 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1659 struct ethtool_ringparam *ring)
1660 {
1661 u32 max_buf_size;
1662
1663 ring->rx_pending = nvdev->recv_section_cnt;
1664 ring->tx_pending = nvdev->send_section_cnt;
1665
1666 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1667 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1668 else
1669 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1670
1671 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1672 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1673 / nvdev->send_section_size;
1674 }
1675
netvsc_get_ringparam(struct net_device * ndev,struct ethtool_ringparam * ring)1676 static void netvsc_get_ringparam(struct net_device *ndev,
1677 struct ethtool_ringparam *ring)
1678 {
1679 struct net_device_context *ndevctx = netdev_priv(ndev);
1680 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1681
1682 if (!nvdev)
1683 return;
1684
1685 __netvsc_get_ringparam(nvdev, ring);
1686 }
1687
netvsc_set_ringparam(struct net_device * ndev,struct ethtool_ringparam * ring)1688 static int netvsc_set_ringparam(struct net_device *ndev,
1689 struct ethtool_ringparam *ring)
1690 {
1691 struct net_device_context *ndevctx = netdev_priv(ndev);
1692 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1693 struct netvsc_device_info device_info;
1694 struct ethtool_ringparam orig;
1695 u32 new_tx, new_rx;
1696 int ret = 0;
1697
1698 if (!nvdev || nvdev->destroy)
1699 return -ENODEV;
1700
1701 memset(&orig, 0, sizeof(orig));
1702 __netvsc_get_ringparam(nvdev, &orig);
1703
1704 new_tx = clamp_t(u32, ring->tx_pending,
1705 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1706 new_rx = clamp_t(u32, ring->rx_pending,
1707 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1708
1709 if (new_tx == orig.tx_pending &&
1710 new_rx == orig.rx_pending)
1711 return 0; /* no change */
1712
1713 memset(&device_info, 0, sizeof(device_info));
1714 device_info.num_chn = nvdev->num_chn;
1715 device_info.send_sections = new_tx;
1716 device_info.send_section_size = nvdev->send_section_size;
1717 device_info.recv_sections = new_rx;
1718 device_info.recv_section_size = nvdev->recv_section_size;
1719
1720 ret = netvsc_detach(ndev, nvdev);
1721 if (ret)
1722 return ret;
1723
1724 ret = netvsc_attach(ndev, &device_info);
1725 if (ret) {
1726 device_info.send_sections = orig.tx_pending;
1727 device_info.recv_sections = orig.rx_pending;
1728
1729 if (netvsc_attach(ndev, &device_info))
1730 netdev_err(ndev, "restoring ringparam failed");
1731 }
1732
1733 return ret;
1734 }
1735
netvsc_get_msglevel(struct net_device * ndev)1736 static u32 netvsc_get_msglevel(struct net_device *ndev)
1737 {
1738 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1739
1740 return ndev_ctx->msg_enable;
1741 }
1742
netvsc_set_msglevel(struct net_device * ndev,u32 val)1743 static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1744 {
1745 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1746
1747 ndev_ctx->msg_enable = val;
1748 }
1749
1750 static const struct ethtool_ops ethtool_ops = {
1751 .get_drvinfo = netvsc_get_drvinfo,
1752 .get_msglevel = netvsc_get_msglevel,
1753 .set_msglevel = netvsc_set_msglevel,
1754 .get_link = ethtool_op_get_link,
1755 .get_ethtool_stats = netvsc_get_ethtool_stats,
1756 .get_sset_count = netvsc_get_sset_count,
1757 .get_strings = netvsc_get_strings,
1758 .get_channels = netvsc_get_channels,
1759 .set_channels = netvsc_set_channels,
1760 .get_ts_info = ethtool_op_get_ts_info,
1761 .get_rxnfc = netvsc_get_rxnfc,
1762 .set_rxnfc = netvsc_set_rxnfc,
1763 .get_rxfh_key_size = netvsc_get_rxfh_key_size,
1764 .get_rxfh_indir_size = netvsc_rss_indir_size,
1765 .get_rxfh = netvsc_get_rxfh,
1766 .set_rxfh = netvsc_set_rxfh,
1767 .get_link_ksettings = netvsc_get_link_ksettings,
1768 .set_link_ksettings = netvsc_set_link_ksettings,
1769 .get_ringparam = netvsc_get_ringparam,
1770 .set_ringparam = netvsc_set_ringparam,
1771 };
1772
1773 static const struct net_device_ops device_ops = {
1774 .ndo_open = netvsc_open,
1775 .ndo_stop = netvsc_close,
1776 .ndo_start_xmit = netvsc_start_xmit,
1777 .ndo_change_rx_flags = netvsc_change_rx_flags,
1778 .ndo_set_rx_mode = netvsc_set_rx_mode,
1779 .ndo_change_mtu = netvsc_change_mtu,
1780 .ndo_validate_addr = eth_validate_addr,
1781 .ndo_set_mac_address = netvsc_set_mac_addr,
1782 .ndo_select_queue = netvsc_select_queue,
1783 .ndo_get_stats64 = netvsc_get_stats64,
1784 #ifdef CONFIG_NET_POLL_CONTROLLER
1785 .ndo_poll_controller = netvsc_poll_controller,
1786 #endif
1787 };
1788
1789 /*
1790 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1791 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1792 * present send GARP packet to network peers with netif_notify_peers().
1793 */
netvsc_link_change(struct work_struct * w)1794 static void netvsc_link_change(struct work_struct *w)
1795 {
1796 struct net_device_context *ndev_ctx =
1797 container_of(w, struct net_device_context, dwork.work);
1798 struct hv_device *device_obj = ndev_ctx->device_ctx;
1799 struct net_device *net = hv_get_drvdata(device_obj);
1800 struct netvsc_device *net_device;
1801 struct rndis_device *rdev;
1802 struct netvsc_reconfig *event = NULL;
1803 bool notify = false, reschedule = false;
1804 unsigned long flags, next_reconfig, delay;
1805
1806 /* if changes are happening, comeback later */
1807 if (!rtnl_trylock()) {
1808 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1809 return;
1810 }
1811
1812 net_device = rtnl_dereference(ndev_ctx->nvdev);
1813 if (!net_device)
1814 goto out_unlock;
1815
1816 rdev = net_device->extension;
1817
1818 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1819 if (time_is_after_jiffies(next_reconfig)) {
1820 /* link_watch only sends one notification with current state
1821 * per second, avoid doing reconfig more frequently. Handle
1822 * wrap around.
1823 */
1824 delay = next_reconfig - jiffies;
1825 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1826 schedule_delayed_work(&ndev_ctx->dwork, delay);
1827 goto out_unlock;
1828 }
1829 ndev_ctx->last_reconfig = jiffies;
1830
1831 spin_lock_irqsave(&ndev_ctx->lock, flags);
1832 if (!list_empty(&ndev_ctx->reconfig_events)) {
1833 event = list_first_entry(&ndev_ctx->reconfig_events,
1834 struct netvsc_reconfig, list);
1835 list_del(&event->list);
1836 reschedule = !list_empty(&ndev_ctx->reconfig_events);
1837 }
1838 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1839
1840 if (!event)
1841 goto out_unlock;
1842
1843 switch (event->event) {
1844 /* Only the following events are possible due to the check in
1845 * netvsc_linkstatus_callback()
1846 */
1847 case RNDIS_STATUS_MEDIA_CONNECT:
1848 if (rdev->link_state) {
1849 rdev->link_state = false;
1850 netif_carrier_on(net);
1851 netif_tx_wake_all_queues(net);
1852 } else {
1853 notify = true;
1854 }
1855 kfree(event);
1856 break;
1857 case RNDIS_STATUS_MEDIA_DISCONNECT:
1858 if (!rdev->link_state) {
1859 rdev->link_state = true;
1860 netif_carrier_off(net);
1861 netif_tx_stop_all_queues(net);
1862 }
1863 kfree(event);
1864 break;
1865 case RNDIS_STATUS_NETWORK_CHANGE:
1866 /* Only makes sense if carrier is present */
1867 if (!rdev->link_state) {
1868 rdev->link_state = true;
1869 netif_carrier_off(net);
1870 netif_tx_stop_all_queues(net);
1871 event->event = RNDIS_STATUS_MEDIA_CONNECT;
1872 spin_lock_irqsave(&ndev_ctx->lock, flags);
1873 list_add(&event->list, &ndev_ctx->reconfig_events);
1874 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1875 reschedule = true;
1876 }
1877 break;
1878 }
1879
1880 rtnl_unlock();
1881
1882 if (notify)
1883 netdev_notify_peers(net);
1884
1885 /* link_watch only sends one notification with current state per
1886 * second, handle next reconfig event in 2 seconds.
1887 */
1888 if (reschedule)
1889 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1890
1891 return;
1892
1893 out_unlock:
1894 rtnl_unlock();
1895 }
1896
get_netvsc_byref(struct net_device * vf_netdev)1897 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1898 {
1899 struct net_device_context *net_device_ctx;
1900 struct net_device *dev;
1901
1902 dev = netdev_master_upper_dev_get(vf_netdev);
1903 if (!dev || dev->netdev_ops != &device_ops)
1904 return NULL; /* not a netvsc device */
1905
1906 net_device_ctx = netdev_priv(dev);
1907 if (!rtnl_dereference(net_device_ctx->nvdev))
1908 return NULL; /* device is removed */
1909
1910 return dev;
1911 }
1912
1913 /* Called when VF is injecting data into network stack.
1914 * Change the associated network device from VF to netvsc.
1915 * note: already called with rcu_read_lock
1916 */
netvsc_vf_handle_frame(struct sk_buff ** pskb)1917 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
1918 {
1919 struct sk_buff *skb = *pskb;
1920 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
1921 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1922 struct netvsc_vf_pcpu_stats *pcpu_stats
1923 = this_cpu_ptr(ndev_ctx->vf_stats);
1924
1925 skb->dev = ndev;
1926
1927 u64_stats_update_begin(&pcpu_stats->syncp);
1928 pcpu_stats->rx_packets++;
1929 pcpu_stats->rx_bytes += skb->len;
1930 u64_stats_update_end(&pcpu_stats->syncp);
1931
1932 return RX_HANDLER_ANOTHER;
1933 }
1934
netvsc_vf_join(struct net_device * vf_netdev,struct net_device * ndev)1935 static int netvsc_vf_join(struct net_device *vf_netdev,
1936 struct net_device *ndev)
1937 {
1938 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1939 int ret;
1940
1941 ret = netdev_rx_handler_register(vf_netdev,
1942 netvsc_vf_handle_frame, ndev);
1943 if (ret != 0) {
1944 netdev_err(vf_netdev,
1945 "can not register netvsc VF receive handler (err = %d)\n",
1946 ret);
1947 goto rx_handler_failed;
1948 }
1949
1950 ret = netdev_master_upper_dev_link(vf_netdev, ndev,
1951 NULL, NULL, NULL);
1952 if (ret != 0) {
1953 netdev_err(vf_netdev,
1954 "can not set master device %s (err = %d)\n",
1955 ndev->name, ret);
1956 goto upper_link_failed;
1957 }
1958
1959 /* set slave flag before open to prevent IPv6 addrconf */
1960 vf_netdev->flags |= IFF_SLAVE;
1961
1962 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
1963
1964 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
1965
1966 netdev_info(vf_netdev, "joined to %s\n", ndev->name);
1967 return 0;
1968
1969 upper_link_failed:
1970 netdev_rx_handler_unregister(vf_netdev);
1971 rx_handler_failed:
1972 return ret;
1973 }
1974
__netvsc_vf_setup(struct net_device * ndev,struct net_device * vf_netdev)1975 static void __netvsc_vf_setup(struct net_device *ndev,
1976 struct net_device *vf_netdev)
1977 {
1978 int ret;
1979
1980 /* Align MTU of VF with master */
1981 ret = dev_set_mtu(vf_netdev, ndev->mtu);
1982 if (ret)
1983 netdev_warn(vf_netdev,
1984 "unable to change mtu to %u\n", ndev->mtu);
1985
1986 /* set multicast etc flags on VF */
1987 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE);
1988
1989 /* sync address list from ndev to VF */
1990 netif_addr_lock_bh(ndev);
1991 dev_uc_sync(vf_netdev, ndev);
1992 dev_mc_sync(vf_netdev, ndev);
1993 netif_addr_unlock_bh(ndev);
1994
1995 if (netif_running(ndev)) {
1996 ret = dev_open(vf_netdev);
1997 if (ret)
1998 netdev_warn(vf_netdev,
1999 "unable to open: %d\n", ret);
2000 }
2001 }
2002
2003 /* Setup VF as slave of the synthetic device.
2004 * Runs in workqueue to avoid recursion in netlink callbacks.
2005 */
netvsc_vf_setup(struct work_struct * w)2006 static void netvsc_vf_setup(struct work_struct *w)
2007 {
2008 struct net_device_context *ndev_ctx
2009 = container_of(w, struct net_device_context, vf_takeover.work);
2010 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2011 struct net_device *vf_netdev;
2012
2013 if (!rtnl_trylock()) {
2014 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2015 return;
2016 }
2017
2018 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2019 if (vf_netdev)
2020 __netvsc_vf_setup(ndev, vf_netdev);
2021
2022 rtnl_unlock();
2023 }
2024
2025 /* Find netvsc by VMBus serial number.
2026 * The PCI hyperv controller records the serial number as the slot.
2027 */
get_netvsc_byslot(const struct net_device * vf_netdev)2028 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2029 {
2030 struct device *parent = vf_netdev->dev.parent;
2031 struct net_device_context *ndev_ctx;
2032 struct pci_dev *pdev;
2033
2034 if (!parent || !dev_is_pci(parent))
2035 return NULL; /* not a PCI device */
2036
2037 pdev = to_pci_dev(parent);
2038 if (!pdev->slot) {
2039 netdev_notice(vf_netdev, "no PCI slot information\n");
2040 return NULL;
2041 }
2042
2043 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2044 if (!ndev_ctx->vf_alloc)
2045 continue;
2046
2047 if (ndev_ctx->vf_serial == pdev->slot->number)
2048 return hv_get_drvdata(ndev_ctx->device_ctx);
2049 }
2050
2051 netdev_notice(vf_netdev,
2052 "no netdev found for slot %u\n", pdev->slot->number);
2053 return NULL;
2054 }
2055
netvsc_register_vf(struct net_device * vf_netdev)2056 static int netvsc_register_vf(struct net_device *vf_netdev)
2057 {
2058 struct net_device_context *net_device_ctx;
2059 struct netvsc_device *netvsc_dev;
2060 struct net_device *ndev;
2061 int ret;
2062
2063 if (vf_netdev->addr_len != ETH_ALEN)
2064 return NOTIFY_DONE;
2065
2066 ndev = get_netvsc_byslot(vf_netdev);
2067 if (!ndev)
2068 return NOTIFY_DONE;
2069
2070 net_device_ctx = netdev_priv(ndev);
2071 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2072 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2073 return NOTIFY_DONE;
2074
2075 /* if syntihetic interface is a different namespace,
2076 * then move the VF to that namespace; join will be
2077 * done again in that context.
2078 */
2079 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2080 ret = dev_change_net_namespace(vf_netdev,
2081 dev_net(ndev), "eth%d");
2082 if (ret)
2083 netdev_err(vf_netdev,
2084 "could not move to same namespace as %s: %d\n",
2085 ndev->name, ret);
2086 else
2087 netdev_info(vf_netdev,
2088 "VF moved to namespace with: %s\n",
2089 ndev->name);
2090 return NOTIFY_DONE;
2091 }
2092
2093 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2094
2095 if (netvsc_vf_join(vf_netdev, ndev) != 0)
2096 return NOTIFY_DONE;
2097
2098 dev_hold(vf_netdev);
2099 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2100 return NOTIFY_OK;
2101 }
2102
2103 /* VF up/down change detected, schedule to change data path */
netvsc_vf_changed(struct net_device * vf_netdev)2104 static int netvsc_vf_changed(struct net_device *vf_netdev)
2105 {
2106 struct net_device_context *net_device_ctx;
2107 struct netvsc_device *netvsc_dev;
2108 struct net_device *ndev;
2109 bool vf_is_up = netif_running(vf_netdev);
2110
2111 ndev = get_netvsc_byref(vf_netdev);
2112 if (!ndev)
2113 return NOTIFY_DONE;
2114
2115 net_device_ctx = netdev_priv(ndev);
2116 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2117 if (!netvsc_dev)
2118 return NOTIFY_DONE;
2119
2120 netvsc_switch_datapath(ndev, vf_is_up);
2121 netdev_info(ndev, "Data path switched %s VF: %s\n",
2122 vf_is_up ? "to" : "from", vf_netdev->name);
2123
2124 return NOTIFY_OK;
2125 }
2126
netvsc_unregister_vf(struct net_device * vf_netdev)2127 static int netvsc_unregister_vf(struct net_device *vf_netdev)
2128 {
2129 struct net_device *ndev;
2130 struct net_device_context *net_device_ctx;
2131
2132 ndev = get_netvsc_byref(vf_netdev);
2133 if (!ndev)
2134 return NOTIFY_DONE;
2135
2136 net_device_ctx = netdev_priv(ndev);
2137 cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2138
2139 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2140
2141 netdev_rx_handler_unregister(vf_netdev);
2142 netdev_upper_dev_unlink(vf_netdev, ndev);
2143 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2144 dev_put(vf_netdev);
2145
2146 return NOTIFY_OK;
2147 }
2148
netvsc_probe(struct hv_device * dev,const struct hv_vmbus_device_id * dev_id)2149 static int netvsc_probe(struct hv_device *dev,
2150 const struct hv_vmbus_device_id *dev_id)
2151 {
2152 struct net_device *net = NULL;
2153 struct net_device_context *net_device_ctx;
2154 struct netvsc_device_info device_info;
2155 struct netvsc_device *nvdev;
2156 int ret = -ENOMEM;
2157
2158 net = alloc_etherdev_mq(sizeof(struct net_device_context),
2159 VRSS_CHANNEL_MAX);
2160 if (!net)
2161 goto no_net;
2162
2163 netif_carrier_off(net);
2164
2165 netvsc_init_settings(net);
2166
2167 net_device_ctx = netdev_priv(net);
2168 net_device_ctx->device_ctx = dev;
2169 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2170 if (netif_msg_probe(net_device_ctx))
2171 netdev_dbg(net, "netvsc msg_enable: %d\n",
2172 net_device_ctx->msg_enable);
2173
2174 hv_set_drvdata(dev, net);
2175
2176 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2177
2178 spin_lock_init(&net_device_ctx->lock);
2179 INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2180 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2181
2182 net_device_ctx->vf_stats
2183 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2184 if (!net_device_ctx->vf_stats)
2185 goto no_stats;
2186
2187 net->netdev_ops = &device_ops;
2188 net->ethtool_ops = ðtool_ops;
2189 SET_NETDEV_DEV(net, &dev->device);
2190
2191 /* We always need headroom for rndis header */
2192 net->needed_headroom = RNDIS_AND_PPI_SIZE;
2193
2194 /* Initialize the number of queues to be 1, we may change it if more
2195 * channels are offered later.
2196 */
2197 netif_set_real_num_tx_queues(net, 1);
2198 netif_set_real_num_rx_queues(net, 1);
2199
2200 /* Notify the netvsc driver of the new device */
2201 memset(&device_info, 0, sizeof(device_info));
2202 device_info.num_chn = VRSS_CHANNEL_DEFAULT;
2203 device_info.send_sections = NETVSC_DEFAULT_TX;
2204 device_info.send_section_size = NETVSC_SEND_SECTION_SIZE;
2205 device_info.recv_sections = NETVSC_DEFAULT_RX;
2206 device_info.recv_section_size = NETVSC_RECV_SECTION_SIZE;
2207
2208 nvdev = rndis_filter_device_add(dev, &device_info);
2209 if (IS_ERR(nvdev)) {
2210 ret = PTR_ERR(nvdev);
2211 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2212 goto rndis_failed;
2213 }
2214
2215 memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);
2216
2217 /* We must get rtnl lock before scheduling nvdev->subchan_work,
2218 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2219 * all subchannels to show up, but that may not happen because
2220 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2221 * -> ... -> device_add() -> ... -> __device_attach() can't get
2222 * the device lock, so all the subchannels can't be processed --
2223 * finally netvsc_subchan_work() hangs for ever.
2224 */
2225 rtnl_lock();
2226
2227 if (nvdev->num_chn > 1)
2228 schedule_work(&nvdev->subchan_work);
2229
2230 /* hw_features computed in rndis_netdev_set_hwcaps() */
2231 net->features = net->hw_features |
2232 NETIF_F_HIGHDMA | NETIF_F_SG |
2233 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2234 net->vlan_features = net->features;
2235
2236 netdev_lockdep_set_classes(net);
2237
2238 /* MTU range: 68 - 1500 or 65521 */
2239 net->min_mtu = NETVSC_MTU_MIN;
2240 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2241 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2242 else
2243 net->max_mtu = ETH_DATA_LEN;
2244
2245 ret = register_netdevice(net);
2246 if (ret != 0) {
2247 pr_err("Unable to register netdev.\n");
2248 goto register_failed;
2249 }
2250
2251 list_add(&net_device_ctx->list, &netvsc_dev_list);
2252 rtnl_unlock();
2253 return 0;
2254
2255 register_failed:
2256 rtnl_unlock();
2257 rndis_filter_device_remove(dev, nvdev);
2258 rndis_failed:
2259 free_percpu(net_device_ctx->vf_stats);
2260 no_stats:
2261 hv_set_drvdata(dev, NULL);
2262 free_netdev(net);
2263 no_net:
2264 return ret;
2265 }
2266
netvsc_remove(struct hv_device * dev)2267 static int netvsc_remove(struct hv_device *dev)
2268 {
2269 struct net_device_context *ndev_ctx;
2270 struct net_device *vf_netdev, *net;
2271 struct netvsc_device *nvdev;
2272
2273 net = hv_get_drvdata(dev);
2274 if (net == NULL) {
2275 dev_err(&dev->device, "No net device to remove\n");
2276 return 0;
2277 }
2278
2279 ndev_ctx = netdev_priv(net);
2280
2281 cancel_delayed_work_sync(&ndev_ctx->dwork);
2282
2283 rtnl_lock();
2284 nvdev = rtnl_dereference(ndev_ctx->nvdev);
2285 if (nvdev)
2286 cancel_work_sync(&nvdev->subchan_work);
2287
2288 /*
2289 * Call to the vsc driver to let it know that the device is being
2290 * removed. Also blocks mtu and channel changes.
2291 */
2292 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2293 if (vf_netdev)
2294 netvsc_unregister_vf(vf_netdev);
2295
2296 if (nvdev)
2297 rndis_filter_device_remove(dev, nvdev);
2298
2299 unregister_netdevice(net);
2300 list_del(&ndev_ctx->list);
2301
2302 rtnl_unlock();
2303
2304 hv_set_drvdata(dev, NULL);
2305
2306 free_percpu(ndev_ctx->vf_stats);
2307 free_netdev(net);
2308 return 0;
2309 }
2310
2311 static const struct hv_vmbus_device_id id_table[] = {
2312 /* Network guid */
2313 { HV_NIC_GUID, },
2314 { },
2315 };
2316
2317 MODULE_DEVICE_TABLE(vmbus, id_table);
2318
2319 /* The one and only one */
2320 static struct hv_driver netvsc_drv = {
2321 .name = KBUILD_MODNAME,
2322 .id_table = id_table,
2323 .probe = netvsc_probe,
2324 .remove = netvsc_remove,
2325 .driver = {
2326 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2327 },
2328 };
2329
2330 /*
2331 * On Hyper-V, every VF interface is matched with a corresponding
2332 * synthetic interface. The synthetic interface is presented first
2333 * to the guest. When the corresponding VF instance is registered,
2334 * we will take care of switching the data path.
2335 */
netvsc_netdev_event(struct notifier_block * this,unsigned long event,void * ptr)2336 static int netvsc_netdev_event(struct notifier_block *this,
2337 unsigned long event, void *ptr)
2338 {
2339 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2340
2341 /* Skip our own events */
2342 if (event_dev->netdev_ops == &device_ops)
2343 return NOTIFY_DONE;
2344
2345 /* Avoid non-Ethernet type devices */
2346 if (event_dev->type != ARPHRD_ETHER)
2347 return NOTIFY_DONE;
2348
2349 /* Avoid Vlan dev with same MAC registering as VF */
2350 if (is_vlan_dev(event_dev))
2351 return NOTIFY_DONE;
2352
2353 /* Avoid Bonding master dev with same MAC registering as VF */
2354 if ((event_dev->priv_flags & IFF_BONDING) &&
2355 (event_dev->flags & IFF_MASTER))
2356 return NOTIFY_DONE;
2357
2358 switch (event) {
2359 case NETDEV_REGISTER:
2360 return netvsc_register_vf(event_dev);
2361 case NETDEV_UNREGISTER:
2362 return netvsc_unregister_vf(event_dev);
2363 case NETDEV_UP:
2364 case NETDEV_DOWN:
2365 return netvsc_vf_changed(event_dev);
2366 default:
2367 return NOTIFY_DONE;
2368 }
2369 }
2370
2371 static struct notifier_block netvsc_netdev_notifier = {
2372 .notifier_call = netvsc_netdev_event,
2373 };
2374
netvsc_drv_exit(void)2375 static void __exit netvsc_drv_exit(void)
2376 {
2377 unregister_netdevice_notifier(&netvsc_netdev_notifier);
2378 vmbus_driver_unregister(&netvsc_drv);
2379 }
2380
netvsc_drv_init(void)2381 static int __init netvsc_drv_init(void)
2382 {
2383 int ret;
2384
2385 if (ring_size < RING_SIZE_MIN) {
2386 ring_size = RING_SIZE_MIN;
2387 pr_info("Increased ring_size to %u (min allowed)\n",
2388 ring_size);
2389 }
2390 netvsc_ring_bytes = ring_size * PAGE_SIZE;
2391
2392 ret = vmbus_driver_register(&netvsc_drv);
2393 if (ret)
2394 return ret;
2395
2396 register_netdevice_notifier(&netvsc_netdev_notifier);
2397 return 0;
2398 }
2399
2400 MODULE_LICENSE("GPL");
2401 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2402
2403 module_init(netvsc_drv_init);
2404 module_exit(netvsc_drv_exit);
2405