1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2009, Microsoft Corporation.
4 *
5 * Authors:
6 * Haiyang Zhang <haiyangz@microsoft.com>
7 * Hank Janssen <hjanssen@microsoft.com>
8 */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/init.h>
12 #include <linux/atomic.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/device.h>
16 #include <linux/io.h>
17 #include <linux/delay.h>
18 #include <linux/netdevice.h>
19 #include <linux/inetdevice.h>
20 #include <linux/etherdevice.h>
21 #include <linux/pci.h>
22 #include <linux/skbuff.h>
23 #include <linux/if_vlan.h>
24 #include <linux/in.h>
25 #include <linux/slab.h>
26 #include <linux/rtnetlink.h>
27 #include <linux/netpoll.h>
28
29 #include <net/arp.h>
30 #include <net/route.h>
31 #include <net/sock.h>
32 #include <net/pkt_sched.h>
33 #include <net/checksum.h>
34 #include <net/ip6_checksum.h>
35
36 #include "hyperv_net.h"
37
38 #define RING_SIZE_MIN 64
39 #define RETRY_US_LO 5000
40 #define RETRY_US_HI 10000
41 #define RETRY_MAX 2000 /* >10 sec */
42
43 #define LINKCHANGE_INT (2 * HZ)
44 #define VF_TAKEOVER_INT (HZ / 10)
45
46 static unsigned int ring_size __ro_after_init = 128;
47 module_param(ring_size, uint, 0444);
48 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
49 unsigned int netvsc_ring_bytes __ro_after_init;
50
51 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
52 NETIF_MSG_LINK | NETIF_MSG_IFUP |
53 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
54 NETIF_MSG_TX_ERR;
55
56 static int debug = -1;
57 module_param(debug, int, 0444);
58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
59
60 static LIST_HEAD(netvsc_dev_list);
61
netvsc_change_rx_flags(struct net_device * net,int change)62 static void netvsc_change_rx_flags(struct net_device *net, int change)
63 {
64 struct net_device_context *ndev_ctx = netdev_priv(net);
65 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
66 int inc;
67
68 if (!vf_netdev)
69 return;
70
71 if (change & IFF_PROMISC) {
72 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
73 dev_set_promiscuity(vf_netdev, inc);
74 }
75
76 if (change & IFF_ALLMULTI) {
77 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
78 dev_set_allmulti(vf_netdev, inc);
79 }
80 }
81
netvsc_set_rx_mode(struct net_device * net)82 static void netvsc_set_rx_mode(struct net_device *net)
83 {
84 struct net_device_context *ndev_ctx = netdev_priv(net);
85 struct net_device *vf_netdev;
86 struct netvsc_device *nvdev;
87
88 rcu_read_lock();
89 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
90 if (vf_netdev) {
91 dev_uc_sync(vf_netdev, net);
92 dev_mc_sync(vf_netdev, net);
93 }
94
95 nvdev = rcu_dereference(ndev_ctx->nvdev);
96 if (nvdev)
97 rndis_filter_update(nvdev);
98 rcu_read_unlock();
99 }
100
netvsc_tx_enable(struct netvsc_device * nvscdev,struct net_device * ndev)101 static void netvsc_tx_enable(struct netvsc_device *nvscdev,
102 struct net_device *ndev)
103 {
104 nvscdev->tx_disable = false;
105 virt_wmb(); /* ensure queue wake up mechanism is on */
106
107 netif_tx_wake_all_queues(ndev);
108 }
109
netvsc_open(struct net_device * net)110 static int netvsc_open(struct net_device *net)
111 {
112 struct net_device_context *ndev_ctx = netdev_priv(net);
113 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
114 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
115 struct rndis_device *rdev;
116 int ret = 0;
117
118 netif_carrier_off(net);
119
120 /* Open up the device */
121 ret = rndis_filter_open(nvdev);
122 if (ret != 0) {
123 netdev_err(net, "unable to open device (ret %d).\n", ret);
124 return ret;
125 }
126
127 rdev = nvdev->extension;
128 if (!rdev->link_state) {
129 netif_carrier_on(net);
130 netvsc_tx_enable(nvdev, net);
131 }
132
133 if (vf_netdev) {
134 /* Setting synthetic device up transparently sets
135 * slave as up. If open fails, then slave will be
136 * still be offline (and not used).
137 */
138 ret = dev_open(vf_netdev, NULL);
139 if (ret)
140 netdev_warn(net,
141 "unable to open slave: %s: %d\n",
142 vf_netdev->name, ret);
143 }
144 return 0;
145 }
146
netvsc_wait_until_empty(struct netvsc_device * nvdev)147 static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
148 {
149 unsigned int retry = 0;
150 int i;
151
152 /* Ensure pending bytes in ring are read */
153 for (;;) {
154 u32 aread = 0;
155
156 for (i = 0; i < nvdev->num_chn; i++) {
157 struct vmbus_channel *chn
158 = nvdev->chan_table[i].channel;
159
160 if (!chn)
161 continue;
162
163 /* make sure receive not running now */
164 napi_synchronize(&nvdev->chan_table[i].napi);
165
166 aread = hv_get_bytes_to_read(&chn->inbound);
167 if (aread)
168 break;
169
170 aread = hv_get_bytes_to_read(&chn->outbound);
171 if (aread)
172 break;
173 }
174
175 if (aread == 0)
176 return 0;
177
178 if (++retry > RETRY_MAX)
179 return -ETIMEDOUT;
180
181 usleep_range(RETRY_US_LO, RETRY_US_HI);
182 }
183 }
184
netvsc_tx_disable(struct netvsc_device * nvscdev,struct net_device * ndev)185 static void netvsc_tx_disable(struct netvsc_device *nvscdev,
186 struct net_device *ndev)
187 {
188 if (nvscdev) {
189 nvscdev->tx_disable = true;
190 virt_wmb(); /* ensure txq will not wake up after stop */
191 }
192
193 netif_tx_disable(ndev);
194 }
195
netvsc_close(struct net_device * net)196 static int netvsc_close(struct net_device *net)
197 {
198 struct net_device_context *net_device_ctx = netdev_priv(net);
199 struct net_device *vf_netdev
200 = rtnl_dereference(net_device_ctx->vf_netdev);
201 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
202 int ret;
203
204 netvsc_tx_disable(nvdev, net);
205
206 /* No need to close rndis filter if it is removed already */
207 if (!nvdev)
208 return 0;
209
210 ret = rndis_filter_close(nvdev);
211 if (ret != 0) {
212 netdev_err(net, "unable to close device (ret %d).\n", ret);
213 return ret;
214 }
215
216 ret = netvsc_wait_until_empty(nvdev);
217 if (ret)
218 netdev_err(net, "Ring buffer not empty after closing rndis\n");
219
220 if (vf_netdev)
221 dev_close(vf_netdev);
222
223 return ret;
224 }
225
init_ppi_data(struct rndis_message * msg,u32 ppi_size,u32 pkt_type)226 static inline void *init_ppi_data(struct rndis_message *msg,
227 u32 ppi_size, u32 pkt_type)
228 {
229 struct rndis_packet *rndis_pkt = &msg->msg.pkt;
230 struct rndis_per_packet_info *ppi;
231
232 rndis_pkt->data_offset += ppi_size;
233 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
234 + rndis_pkt->per_pkt_info_len;
235
236 ppi->size = ppi_size;
237 ppi->type = pkt_type;
238 ppi->internal = 0;
239 ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
240
241 rndis_pkt->per_pkt_info_len += ppi_size;
242
243 return ppi + 1;
244 }
245
246 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented
247 * packets. We can use ethtool to change UDP hash level when necessary.
248 */
netvsc_get_hash(struct sk_buff * skb,const struct net_device_context * ndc)249 static inline u32 netvsc_get_hash(
250 struct sk_buff *skb,
251 const struct net_device_context *ndc)
252 {
253 struct flow_keys flow;
254 u32 hash, pkt_proto = 0;
255 static u32 hashrnd __read_mostly;
256
257 net_get_random_once(&hashrnd, sizeof(hashrnd));
258
259 if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
260 return 0;
261
262 switch (flow.basic.ip_proto) {
263 case IPPROTO_TCP:
264 if (flow.basic.n_proto == htons(ETH_P_IP))
265 pkt_proto = HV_TCP4_L4HASH;
266 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
267 pkt_proto = HV_TCP6_L4HASH;
268
269 break;
270
271 case IPPROTO_UDP:
272 if (flow.basic.n_proto == htons(ETH_P_IP))
273 pkt_proto = HV_UDP4_L4HASH;
274 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
275 pkt_proto = HV_UDP6_L4HASH;
276
277 break;
278 }
279
280 if (pkt_proto & ndc->l4_hash) {
281 return skb_get_hash(skb);
282 } else {
283 if (flow.basic.n_proto == htons(ETH_P_IP))
284 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
285 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
286 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
287 else
288 hash = 0;
289
290 skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
291 }
292
293 return hash;
294 }
295
netvsc_get_tx_queue(struct net_device * ndev,struct sk_buff * skb,int old_idx)296 static inline int netvsc_get_tx_queue(struct net_device *ndev,
297 struct sk_buff *skb, int old_idx)
298 {
299 const struct net_device_context *ndc = netdev_priv(ndev);
300 struct sock *sk = skb->sk;
301 int q_idx;
302
303 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
304 (VRSS_SEND_TAB_SIZE - 1)];
305
306 /* If queue index changed record the new value */
307 if (q_idx != old_idx &&
308 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
309 sk_tx_queue_set(sk, q_idx);
310
311 return q_idx;
312 }
313
314 /*
315 * Select queue for transmit.
316 *
317 * If a valid queue has already been assigned, then use that.
318 * Otherwise compute tx queue based on hash and the send table.
319 *
320 * This is basically similar to default (netdev_pick_tx) with the added step
321 * of using the host send_table when no other queue has been assigned.
322 *
323 * TODO support XPS - but get_xps_queue not exported
324 */
netvsc_pick_tx(struct net_device * ndev,struct sk_buff * skb)325 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
326 {
327 int q_idx = sk_tx_queue_get(skb->sk);
328
329 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
330 /* If forwarding a packet, we use the recorded queue when
331 * available for better cache locality.
332 */
333 if (skb_rx_queue_recorded(skb))
334 q_idx = skb_get_rx_queue(skb);
335 else
336 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
337 }
338
339 return q_idx;
340 }
341
netvsc_select_queue(struct net_device * ndev,struct sk_buff * skb,struct net_device * sb_dev)342 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
343 struct net_device *sb_dev)
344 {
345 struct net_device_context *ndc = netdev_priv(ndev);
346 struct net_device *vf_netdev;
347 u16 txq;
348
349 rcu_read_lock();
350 vf_netdev = rcu_dereference(ndc->vf_netdev);
351 if (vf_netdev) {
352 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
353
354 if (vf_ops->ndo_select_queue)
355 txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
356 else
357 txq = netdev_pick_tx(vf_netdev, skb, NULL);
358
359 /* Record the queue selected by VF so that it can be
360 * used for common case where VF has more queues than
361 * the synthetic device.
362 */
363 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
364 } else {
365 txq = netvsc_pick_tx(ndev, skb);
366 }
367 rcu_read_unlock();
368
369 while (unlikely(txq >= ndev->real_num_tx_queues))
370 txq -= ndev->real_num_tx_queues;
371
372 return txq;
373 }
374
fill_pg_buf(struct page * page,u32 offset,u32 len,struct hv_page_buffer * pb)375 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
376 struct hv_page_buffer *pb)
377 {
378 int j = 0;
379
380 /* Deal with compound pages by ignoring unused part
381 * of the page.
382 */
383 page += (offset >> PAGE_SHIFT);
384 offset &= ~PAGE_MASK;
385
386 while (len > 0) {
387 unsigned long bytes;
388
389 bytes = PAGE_SIZE - offset;
390 if (bytes > len)
391 bytes = len;
392 pb[j].pfn = page_to_pfn(page);
393 pb[j].offset = offset;
394 pb[j].len = bytes;
395
396 offset += bytes;
397 len -= bytes;
398
399 if (offset == PAGE_SIZE && len) {
400 page++;
401 offset = 0;
402 j++;
403 }
404 }
405
406 return j + 1;
407 }
408
init_page_array(void * hdr,u32 len,struct sk_buff * skb,struct hv_netvsc_packet * packet,struct hv_page_buffer * pb)409 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
410 struct hv_netvsc_packet *packet,
411 struct hv_page_buffer *pb)
412 {
413 u32 slots_used = 0;
414 char *data = skb->data;
415 int frags = skb_shinfo(skb)->nr_frags;
416 int i;
417
418 /* The packet is laid out thus:
419 * 1. hdr: RNDIS header and PPI
420 * 2. skb linear data
421 * 3. skb fragment data
422 */
423 slots_used += fill_pg_buf(virt_to_page(hdr),
424 offset_in_page(hdr),
425 len, &pb[slots_used]);
426
427 packet->rmsg_size = len;
428 packet->rmsg_pgcnt = slots_used;
429
430 slots_used += fill_pg_buf(virt_to_page(data),
431 offset_in_page(data),
432 skb_headlen(skb), &pb[slots_used]);
433
434 for (i = 0; i < frags; i++) {
435 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
436
437 slots_used += fill_pg_buf(skb_frag_page(frag),
438 skb_frag_off(frag),
439 skb_frag_size(frag), &pb[slots_used]);
440 }
441 return slots_used;
442 }
443
count_skb_frag_slots(struct sk_buff * skb)444 static int count_skb_frag_slots(struct sk_buff *skb)
445 {
446 int i, frags = skb_shinfo(skb)->nr_frags;
447 int pages = 0;
448
449 for (i = 0; i < frags; i++) {
450 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
451 unsigned long size = skb_frag_size(frag);
452 unsigned long offset = skb_frag_off(frag);
453
454 /* Skip unused frames from start of page */
455 offset &= ~PAGE_MASK;
456 pages += PFN_UP(offset + size);
457 }
458 return pages;
459 }
460
netvsc_get_slots(struct sk_buff * skb)461 static int netvsc_get_slots(struct sk_buff *skb)
462 {
463 char *data = skb->data;
464 unsigned int offset = offset_in_page(data);
465 unsigned int len = skb_headlen(skb);
466 int slots;
467 int frag_slots;
468
469 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
470 frag_slots = count_skb_frag_slots(skb);
471 return slots + frag_slots;
472 }
473
net_checksum_info(struct sk_buff * skb)474 static u32 net_checksum_info(struct sk_buff *skb)
475 {
476 if (skb->protocol == htons(ETH_P_IP)) {
477 struct iphdr *ip = ip_hdr(skb);
478
479 if (ip->protocol == IPPROTO_TCP)
480 return TRANSPORT_INFO_IPV4_TCP;
481 else if (ip->protocol == IPPROTO_UDP)
482 return TRANSPORT_INFO_IPV4_UDP;
483 } else {
484 struct ipv6hdr *ip6 = ipv6_hdr(skb);
485
486 if (ip6->nexthdr == IPPROTO_TCP)
487 return TRANSPORT_INFO_IPV6_TCP;
488 else if (ip6->nexthdr == IPPROTO_UDP)
489 return TRANSPORT_INFO_IPV6_UDP;
490 }
491
492 return TRANSPORT_INFO_NOT_IP;
493 }
494
495 /* Send skb on the slave VF device. */
netvsc_vf_xmit(struct net_device * net,struct net_device * vf_netdev,struct sk_buff * skb)496 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
497 struct sk_buff *skb)
498 {
499 struct net_device_context *ndev_ctx = netdev_priv(net);
500 unsigned int len = skb->len;
501 int rc;
502
503 skb->dev = vf_netdev;
504 skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
505
506 rc = dev_queue_xmit(skb);
507 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
508 struct netvsc_vf_pcpu_stats *pcpu_stats
509 = this_cpu_ptr(ndev_ctx->vf_stats);
510
511 u64_stats_update_begin(&pcpu_stats->syncp);
512 pcpu_stats->tx_packets++;
513 pcpu_stats->tx_bytes += len;
514 u64_stats_update_end(&pcpu_stats->syncp);
515 } else {
516 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
517 }
518
519 return rc;
520 }
521
netvsc_start_xmit(struct sk_buff * skb,struct net_device * net)522 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
523 {
524 struct net_device_context *net_device_ctx = netdev_priv(net);
525 struct hv_netvsc_packet *packet = NULL;
526 int ret;
527 unsigned int num_data_pgs;
528 struct rndis_message *rndis_msg;
529 struct net_device *vf_netdev;
530 u32 rndis_msg_size;
531 u32 hash;
532 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
533
534 /* if VF is present and up then redirect packets
535 * already called with rcu_read_lock_bh
536 */
537 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
538 if (vf_netdev && netif_running(vf_netdev) &&
539 !netpoll_tx_running(net))
540 return netvsc_vf_xmit(net, vf_netdev, skb);
541
542 /* We will atmost need two pages to describe the rndis
543 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
544 * of pages in a single packet. If skb is scattered around
545 * more pages we try linearizing it.
546 */
547
548 num_data_pgs = netvsc_get_slots(skb) + 2;
549
550 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
551 ++net_device_ctx->eth_stats.tx_scattered;
552
553 if (skb_linearize(skb))
554 goto no_memory;
555
556 num_data_pgs = netvsc_get_slots(skb) + 2;
557 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
558 ++net_device_ctx->eth_stats.tx_too_big;
559 goto drop;
560 }
561 }
562
563 /*
564 * Place the rndis header in the skb head room and
565 * the skb->cb will be used for hv_netvsc_packet
566 * structure.
567 */
568 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
569 if (ret)
570 goto no_memory;
571
572 /* Use the skb control buffer for building up the packet */
573 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
574 FIELD_SIZEOF(struct sk_buff, cb));
575 packet = (struct hv_netvsc_packet *)skb->cb;
576
577 packet->q_idx = skb_get_queue_mapping(skb);
578
579 packet->total_data_buflen = skb->len;
580 packet->total_bytes = skb->len;
581 packet->total_packets = 1;
582
583 rndis_msg = (struct rndis_message *)skb->head;
584
585 /* Add the rndis header */
586 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
587 rndis_msg->msg_len = packet->total_data_buflen;
588
589 rndis_msg->msg.pkt = (struct rndis_packet) {
590 .data_offset = sizeof(struct rndis_packet),
591 .data_len = packet->total_data_buflen,
592 .per_pkt_info_offset = sizeof(struct rndis_packet),
593 };
594
595 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
596
597 hash = skb_get_hash_raw(skb);
598 if (hash != 0 && net->real_num_tx_queues > 1) {
599 u32 *hash_info;
600
601 rndis_msg_size += NDIS_HASH_PPI_SIZE;
602 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
603 NBL_HASH_VALUE);
604 *hash_info = hash;
605 }
606
607 if (skb_vlan_tag_present(skb)) {
608 struct ndis_pkt_8021q_info *vlan;
609
610 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
611 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
612 IEEE_8021Q_INFO);
613
614 vlan->value = 0;
615 vlan->vlanid = skb_vlan_tag_get_id(skb);
616 vlan->cfi = skb_vlan_tag_get_cfi(skb);
617 vlan->pri = skb_vlan_tag_get_prio(skb);
618 }
619
620 if (skb_is_gso(skb)) {
621 struct ndis_tcp_lso_info *lso_info;
622
623 rndis_msg_size += NDIS_LSO_PPI_SIZE;
624 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
625 TCP_LARGESEND_PKTINFO);
626
627 lso_info->value = 0;
628 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
629 if (skb->protocol == htons(ETH_P_IP)) {
630 lso_info->lso_v2_transmit.ip_version =
631 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
632 ip_hdr(skb)->tot_len = 0;
633 ip_hdr(skb)->check = 0;
634 tcp_hdr(skb)->check =
635 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
636 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
637 } else {
638 lso_info->lso_v2_transmit.ip_version =
639 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
640 ipv6_hdr(skb)->payload_len = 0;
641 tcp_hdr(skb)->check =
642 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
643 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
644 }
645 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
646 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
647 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
648 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
649 struct ndis_tcp_ip_checksum_info *csum_info;
650
651 rndis_msg_size += NDIS_CSUM_PPI_SIZE;
652 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
653 TCPIP_CHKSUM_PKTINFO);
654
655 csum_info->value = 0;
656 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
657
658 if (skb->protocol == htons(ETH_P_IP)) {
659 csum_info->transmit.is_ipv4 = 1;
660
661 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
662 csum_info->transmit.tcp_checksum = 1;
663 else
664 csum_info->transmit.udp_checksum = 1;
665 } else {
666 csum_info->transmit.is_ipv6 = 1;
667
668 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
669 csum_info->transmit.tcp_checksum = 1;
670 else
671 csum_info->transmit.udp_checksum = 1;
672 }
673 } else {
674 /* Can't do offload of this type of checksum */
675 if (skb_checksum_help(skb))
676 goto drop;
677 }
678 }
679
680 /* Start filling in the page buffers with the rndis hdr */
681 rndis_msg->msg_len += rndis_msg_size;
682 packet->total_data_buflen = rndis_msg->msg_len;
683 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
684 skb, packet, pb);
685
686 /* timestamp packet in software */
687 skb_tx_timestamp(skb);
688
689 ret = netvsc_send(net, packet, rndis_msg, pb, skb);
690 if (likely(ret == 0))
691 return NETDEV_TX_OK;
692
693 if (ret == -EAGAIN) {
694 ++net_device_ctx->eth_stats.tx_busy;
695 return NETDEV_TX_BUSY;
696 }
697
698 if (ret == -ENOSPC)
699 ++net_device_ctx->eth_stats.tx_no_space;
700
701 drop:
702 dev_kfree_skb_any(skb);
703 net->stats.tx_dropped++;
704
705 return NETDEV_TX_OK;
706
707 no_memory:
708 ++net_device_ctx->eth_stats.tx_no_memory;
709 goto drop;
710 }
711
712 /*
713 * netvsc_linkstatus_callback - Link up/down notification
714 */
netvsc_linkstatus_callback(struct net_device * net,struct rndis_message * resp)715 void netvsc_linkstatus_callback(struct net_device *net,
716 struct rndis_message *resp)
717 {
718 struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
719 struct net_device_context *ndev_ctx = netdev_priv(net);
720 struct netvsc_reconfig *event;
721 unsigned long flags;
722
723 /* Update the physical link speed when changing to another vSwitch */
724 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
725 u32 speed;
726
727 speed = *(u32 *)((void *)indicate
728 + indicate->status_buf_offset) / 10000;
729 ndev_ctx->speed = speed;
730 return;
731 }
732
733 /* Handle these link change statuses below */
734 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
735 indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
736 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
737 return;
738
739 if (net->reg_state != NETREG_REGISTERED)
740 return;
741
742 event = kzalloc(sizeof(*event), GFP_ATOMIC);
743 if (!event)
744 return;
745 event->event = indicate->status;
746
747 spin_lock_irqsave(&ndev_ctx->lock, flags);
748 list_add_tail(&event->list, &ndev_ctx->reconfig_events);
749 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
750
751 schedule_delayed_work(&ndev_ctx->dwork, 0);
752 }
753
netvsc_comp_ipcsum(struct sk_buff * skb)754 static void netvsc_comp_ipcsum(struct sk_buff *skb)
755 {
756 struct iphdr *iph = (struct iphdr *)skb->data;
757
758 iph->check = 0;
759 iph->check = ip_fast_csum(iph, iph->ihl);
760 }
761
netvsc_alloc_recv_skb(struct net_device * net,struct netvsc_channel * nvchan)762 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
763 struct netvsc_channel *nvchan)
764 {
765 struct napi_struct *napi = &nvchan->napi;
766 const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan;
767 const struct ndis_tcp_ip_checksum_info *csum_info =
768 nvchan->rsc.csum_info;
769 struct sk_buff *skb;
770 int i;
771
772 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
773 if (!skb)
774 return skb;
775
776 /*
777 * Copy to skb. This copy is needed here since the memory pointed by
778 * hv_netvsc_packet cannot be deallocated
779 */
780 for (i = 0; i < nvchan->rsc.cnt; i++)
781 skb_put_data(skb, nvchan->rsc.data[i], nvchan->rsc.len[i]);
782
783 skb->protocol = eth_type_trans(skb, net);
784
785 /* skb is already created with CHECKSUM_NONE */
786 skb_checksum_none_assert(skb);
787
788 /* Incoming packets may have IP header checksum verified by the host.
789 * They may not have IP header checksum computed after coalescing.
790 * We compute it here if the flags are set, because on Linux, the IP
791 * checksum is always checked.
792 */
793 if (csum_info && csum_info->receive.ip_checksum_value_invalid &&
794 csum_info->receive.ip_checksum_succeeded &&
795 skb->protocol == htons(ETH_P_IP))
796 netvsc_comp_ipcsum(skb);
797
798 /* Do L4 checksum offload if enabled and present.
799 */
800 if (csum_info && (net->features & NETIF_F_RXCSUM)) {
801 if (csum_info->receive.tcp_checksum_succeeded ||
802 csum_info->receive.udp_checksum_succeeded)
803 skb->ip_summed = CHECKSUM_UNNECESSARY;
804 }
805
806 if (vlan) {
807 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
808 (vlan->cfi ? VLAN_CFI_MASK : 0);
809
810 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
811 vlan_tci);
812 }
813
814 return skb;
815 }
816
817 /*
818 * netvsc_recv_callback - Callback when we receive a packet from the
819 * "wire" on the specified device.
820 */
netvsc_recv_callback(struct net_device * net,struct netvsc_device * net_device,struct netvsc_channel * nvchan)821 int netvsc_recv_callback(struct net_device *net,
822 struct netvsc_device *net_device,
823 struct netvsc_channel *nvchan)
824 {
825 struct net_device_context *net_device_ctx = netdev_priv(net);
826 struct vmbus_channel *channel = nvchan->channel;
827 u16 q_idx = channel->offermsg.offer.sub_channel_index;
828 struct sk_buff *skb;
829 struct netvsc_stats *rx_stats;
830
831 if (net->reg_state != NETREG_REGISTERED)
832 return NVSP_STAT_FAIL;
833
834 /* Allocate a skb - TODO direct I/O to pages? */
835 skb = netvsc_alloc_recv_skb(net, nvchan);
836
837 if (unlikely(!skb)) {
838 ++net_device_ctx->eth_stats.rx_no_memory;
839 return NVSP_STAT_FAIL;
840 }
841
842 skb_record_rx_queue(skb, q_idx);
843
844 /*
845 * Even if injecting the packet, record the statistics
846 * on the synthetic device because modifying the VF device
847 * statistics will not work correctly.
848 */
849 rx_stats = &nvchan->rx_stats;
850 u64_stats_update_begin(&rx_stats->syncp);
851 rx_stats->packets++;
852 rx_stats->bytes += nvchan->rsc.pktlen;
853
854 if (skb->pkt_type == PACKET_BROADCAST)
855 ++rx_stats->broadcast;
856 else if (skb->pkt_type == PACKET_MULTICAST)
857 ++rx_stats->multicast;
858 u64_stats_update_end(&rx_stats->syncp);
859
860 napi_gro_receive(&nvchan->napi, skb);
861 return NVSP_STAT_SUCCESS;
862 }
863
netvsc_get_drvinfo(struct net_device * net,struct ethtool_drvinfo * info)864 static void netvsc_get_drvinfo(struct net_device *net,
865 struct ethtool_drvinfo *info)
866 {
867 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
868 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
869 }
870
netvsc_get_channels(struct net_device * net,struct ethtool_channels * channel)871 static void netvsc_get_channels(struct net_device *net,
872 struct ethtool_channels *channel)
873 {
874 struct net_device_context *net_device_ctx = netdev_priv(net);
875 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
876
877 if (nvdev) {
878 channel->max_combined = nvdev->max_chn;
879 channel->combined_count = nvdev->num_chn;
880 }
881 }
882
883 /* Alloc struct netvsc_device_info, and initialize it from either existing
884 * struct netvsc_device, or from default values.
885 */
netvsc_devinfo_get(struct netvsc_device * nvdev)886 static struct netvsc_device_info *netvsc_devinfo_get
887 (struct netvsc_device *nvdev)
888 {
889 struct netvsc_device_info *dev_info;
890
891 dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
892
893 if (!dev_info)
894 return NULL;
895
896 if (nvdev) {
897 dev_info->num_chn = nvdev->num_chn;
898 dev_info->send_sections = nvdev->send_section_cnt;
899 dev_info->send_section_size = nvdev->send_section_size;
900 dev_info->recv_sections = nvdev->recv_section_cnt;
901 dev_info->recv_section_size = nvdev->recv_section_size;
902
903 memcpy(dev_info->rss_key, nvdev->extension->rss_key,
904 NETVSC_HASH_KEYLEN);
905 } else {
906 dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
907 dev_info->send_sections = NETVSC_DEFAULT_TX;
908 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
909 dev_info->recv_sections = NETVSC_DEFAULT_RX;
910 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
911 }
912
913 return dev_info;
914 }
915
netvsc_detach(struct net_device * ndev,struct netvsc_device * nvdev)916 static int netvsc_detach(struct net_device *ndev,
917 struct netvsc_device *nvdev)
918 {
919 struct net_device_context *ndev_ctx = netdev_priv(ndev);
920 struct hv_device *hdev = ndev_ctx->device_ctx;
921 int ret;
922
923 /* Don't try continuing to try and setup sub channels */
924 if (cancel_work_sync(&nvdev->subchan_work))
925 nvdev->num_chn = 1;
926
927 /* If device was up (receiving) then shutdown */
928 if (netif_running(ndev)) {
929 netvsc_tx_disable(nvdev, ndev);
930
931 ret = rndis_filter_close(nvdev);
932 if (ret) {
933 netdev_err(ndev,
934 "unable to close device (ret %d).\n", ret);
935 return ret;
936 }
937
938 ret = netvsc_wait_until_empty(nvdev);
939 if (ret) {
940 netdev_err(ndev,
941 "Ring buffer not empty after closing rndis\n");
942 return ret;
943 }
944 }
945
946 netif_device_detach(ndev);
947
948 rndis_filter_device_remove(hdev, nvdev);
949
950 return 0;
951 }
952
netvsc_attach(struct net_device * ndev,struct netvsc_device_info * dev_info)953 static int netvsc_attach(struct net_device *ndev,
954 struct netvsc_device_info *dev_info)
955 {
956 struct net_device_context *ndev_ctx = netdev_priv(ndev);
957 struct hv_device *hdev = ndev_ctx->device_ctx;
958 struct netvsc_device *nvdev;
959 struct rndis_device *rdev;
960 int ret;
961
962 nvdev = rndis_filter_device_add(hdev, dev_info);
963 if (IS_ERR(nvdev))
964 return PTR_ERR(nvdev);
965
966 if (nvdev->num_chn > 1) {
967 ret = rndis_set_subchannel(ndev, nvdev, dev_info);
968
969 /* if unavailable, just proceed with one queue */
970 if (ret) {
971 nvdev->max_chn = 1;
972 nvdev->num_chn = 1;
973 }
974 }
975
976 /* In any case device is now ready */
977 netif_device_attach(ndev);
978
979 /* Note: enable and attach happen when sub-channels setup */
980 netif_carrier_off(ndev);
981
982 if (netif_running(ndev)) {
983 ret = rndis_filter_open(nvdev);
984 if (ret)
985 goto err;
986
987 rdev = nvdev->extension;
988 if (!rdev->link_state)
989 netif_carrier_on(ndev);
990 }
991
992 return 0;
993
994 err:
995 netif_device_detach(ndev);
996
997 rndis_filter_device_remove(hdev, nvdev);
998
999 return ret;
1000 }
1001
netvsc_set_channels(struct net_device * net,struct ethtool_channels * channels)1002 static int netvsc_set_channels(struct net_device *net,
1003 struct ethtool_channels *channels)
1004 {
1005 struct net_device_context *net_device_ctx = netdev_priv(net);
1006 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1007 unsigned int orig, count = channels->combined_count;
1008 struct netvsc_device_info *device_info;
1009 int ret;
1010
1011 /* We do not support separate count for rx, tx, or other */
1012 if (count == 0 ||
1013 channels->rx_count || channels->tx_count || channels->other_count)
1014 return -EINVAL;
1015
1016 if (!nvdev || nvdev->destroy)
1017 return -ENODEV;
1018
1019 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1020 return -EINVAL;
1021
1022 if (count > nvdev->max_chn)
1023 return -EINVAL;
1024
1025 orig = nvdev->num_chn;
1026
1027 device_info = netvsc_devinfo_get(nvdev);
1028
1029 if (!device_info)
1030 return -ENOMEM;
1031
1032 device_info->num_chn = count;
1033
1034 ret = netvsc_detach(net, nvdev);
1035 if (ret)
1036 goto out;
1037
1038 ret = netvsc_attach(net, device_info);
1039 if (ret) {
1040 device_info->num_chn = orig;
1041 if (netvsc_attach(net, device_info))
1042 netdev_err(net, "restoring channel setting failed\n");
1043 }
1044
1045 out:
1046 kfree(device_info);
1047 return ret;
1048 }
1049
1050 static bool
netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings * cmd)1051 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
1052 {
1053 struct ethtool_link_ksettings diff1 = *cmd;
1054 struct ethtool_link_ksettings diff2 = {};
1055
1056 diff1.base.speed = 0;
1057 diff1.base.duplex = 0;
1058 /* advertising and cmd are usually set */
1059 ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
1060 diff1.base.cmd = 0;
1061 /* We set port to PORT_OTHER */
1062 diff2.base.port = PORT_OTHER;
1063
1064 return !memcmp(&diff1, &diff2, sizeof(diff1));
1065 }
1066
netvsc_init_settings(struct net_device * dev)1067 static void netvsc_init_settings(struct net_device *dev)
1068 {
1069 struct net_device_context *ndc = netdev_priv(dev);
1070
1071 ndc->l4_hash = HV_DEFAULT_L4HASH;
1072
1073 ndc->speed = SPEED_UNKNOWN;
1074 ndc->duplex = DUPLEX_FULL;
1075
1076 dev->features = NETIF_F_LRO;
1077 }
1078
netvsc_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1079 static int netvsc_get_link_ksettings(struct net_device *dev,
1080 struct ethtool_link_ksettings *cmd)
1081 {
1082 struct net_device_context *ndc = netdev_priv(dev);
1083
1084 cmd->base.speed = ndc->speed;
1085 cmd->base.duplex = ndc->duplex;
1086 cmd->base.port = PORT_OTHER;
1087
1088 return 0;
1089 }
1090
netvsc_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1091 static int netvsc_set_link_ksettings(struct net_device *dev,
1092 const struct ethtool_link_ksettings *cmd)
1093 {
1094 struct net_device_context *ndc = netdev_priv(dev);
1095 u32 speed;
1096
1097 speed = cmd->base.speed;
1098 if (!ethtool_validate_speed(speed) ||
1099 !ethtool_validate_duplex(cmd->base.duplex) ||
1100 !netvsc_validate_ethtool_ss_cmd(cmd))
1101 return -EINVAL;
1102
1103 ndc->speed = speed;
1104 ndc->duplex = cmd->base.duplex;
1105
1106 return 0;
1107 }
1108
netvsc_change_mtu(struct net_device * ndev,int mtu)1109 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1110 {
1111 struct net_device_context *ndevctx = netdev_priv(ndev);
1112 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1113 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1114 int orig_mtu = ndev->mtu;
1115 struct netvsc_device_info *device_info;
1116 int ret = 0;
1117
1118 if (!nvdev || nvdev->destroy)
1119 return -ENODEV;
1120
1121 device_info = netvsc_devinfo_get(nvdev);
1122
1123 if (!device_info)
1124 return -ENOMEM;
1125
1126 /* Change MTU of underlying VF netdev first. */
1127 if (vf_netdev) {
1128 ret = dev_set_mtu(vf_netdev, mtu);
1129 if (ret)
1130 goto out;
1131 }
1132
1133 ret = netvsc_detach(ndev, nvdev);
1134 if (ret)
1135 goto rollback_vf;
1136
1137 ndev->mtu = mtu;
1138
1139 ret = netvsc_attach(ndev, device_info);
1140 if (!ret)
1141 goto out;
1142
1143 /* Attempt rollback to original MTU */
1144 ndev->mtu = orig_mtu;
1145
1146 if (netvsc_attach(ndev, device_info))
1147 netdev_err(ndev, "restoring mtu failed\n");
1148 rollback_vf:
1149 if (vf_netdev)
1150 dev_set_mtu(vf_netdev, orig_mtu);
1151
1152 out:
1153 kfree(device_info);
1154 return ret;
1155 }
1156
netvsc_get_vf_stats(struct net_device * net,struct netvsc_vf_pcpu_stats * tot)1157 static void netvsc_get_vf_stats(struct net_device *net,
1158 struct netvsc_vf_pcpu_stats *tot)
1159 {
1160 struct net_device_context *ndev_ctx = netdev_priv(net);
1161 int i;
1162
1163 memset(tot, 0, sizeof(*tot));
1164
1165 for_each_possible_cpu(i) {
1166 const struct netvsc_vf_pcpu_stats *stats
1167 = per_cpu_ptr(ndev_ctx->vf_stats, i);
1168 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1169 unsigned int start;
1170
1171 do {
1172 start = u64_stats_fetch_begin_irq(&stats->syncp);
1173 rx_packets = stats->rx_packets;
1174 tx_packets = stats->tx_packets;
1175 rx_bytes = stats->rx_bytes;
1176 tx_bytes = stats->tx_bytes;
1177 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1178
1179 tot->rx_packets += rx_packets;
1180 tot->tx_packets += tx_packets;
1181 tot->rx_bytes += rx_bytes;
1182 tot->tx_bytes += tx_bytes;
1183 tot->tx_dropped += stats->tx_dropped;
1184 }
1185 }
1186
netvsc_get_pcpu_stats(struct net_device * net,struct netvsc_ethtool_pcpu_stats * pcpu_tot)1187 static void netvsc_get_pcpu_stats(struct net_device *net,
1188 struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1189 {
1190 struct net_device_context *ndev_ctx = netdev_priv(net);
1191 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1192 int i;
1193
1194 /* fetch percpu stats of vf */
1195 for_each_possible_cpu(i) {
1196 const struct netvsc_vf_pcpu_stats *stats =
1197 per_cpu_ptr(ndev_ctx->vf_stats, i);
1198 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1199 unsigned int start;
1200
1201 do {
1202 start = u64_stats_fetch_begin_irq(&stats->syncp);
1203 this_tot->vf_rx_packets = stats->rx_packets;
1204 this_tot->vf_tx_packets = stats->tx_packets;
1205 this_tot->vf_rx_bytes = stats->rx_bytes;
1206 this_tot->vf_tx_bytes = stats->tx_bytes;
1207 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1208 this_tot->rx_packets = this_tot->vf_rx_packets;
1209 this_tot->tx_packets = this_tot->vf_tx_packets;
1210 this_tot->rx_bytes = this_tot->vf_rx_bytes;
1211 this_tot->tx_bytes = this_tot->vf_tx_bytes;
1212 }
1213
1214 /* fetch percpu stats of netvsc */
1215 for (i = 0; i < nvdev->num_chn; i++) {
1216 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1217 const struct netvsc_stats *stats;
1218 struct netvsc_ethtool_pcpu_stats *this_tot =
1219 &pcpu_tot[nvchan->channel->target_cpu];
1220 u64 packets, bytes;
1221 unsigned int start;
1222
1223 stats = &nvchan->tx_stats;
1224 do {
1225 start = u64_stats_fetch_begin_irq(&stats->syncp);
1226 packets = stats->packets;
1227 bytes = stats->bytes;
1228 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1229
1230 this_tot->tx_bytes += bytes;
1231 this_tot->tx_packets += packets;
1232
1233 stats = &nvchan->rx_stats;
1234 do {
1235 start = u64_stats_fetch_begin_irq(&stats->syncp);
1236 packets = stats->packets;
1237 bytes = stats->bytes;
1238 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1239
1240 this_tot->rx_bytes += bytes;
1241 this_tot->rx_packets += packets;
1242 }
1243 }
1244
netvsc_get_stats64(struct net_device * net,struct rtnl_link_stats64 * t)1245 static void netvsc_get_stats64(struct net_device *net,
1246 struct rtnl_link_stats64 *t)
1247 {
1248 struct net_device_context *ndev_ctx = netdev_priv(net);
1249 struct netvsc_device *nvdev;
1250 struct netvsc_vf_pcpu_stats vf_tot;
1251 int i;
1252
1253 rcu_read_lock();
1254
1255 nvdev = rcu_dereference(ndev_ctx->nvdev);
1256 if (!nvdev)
1257 goto out;
1258
1259 netdev_stats_to_stats64(t, &net->stats);
1260
1261 netvsc_get_vf_stats(net, &vf_tot);
1262 t->rx_packets += vf_tot.rx_packets;
1263 t->tx_packets += vf_tot.tx_packets;
1264 t->rx_bytes += vf_tot.rx_bytes;
1265 t->tx_bytes += vf_tot.tx_bytes;
1266 t->tx_dropped += vf_tot.tx_dropped;
1267
1268 for (i = 0; i < nvdev->num_chn; i++) {
1269 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1270 const struct netvsc_stats *stats;
1271 u64 packets, bytes, multicast;
1272 unsigned int start;
1273
1274 stats = &nvchan->tx_stats;
1275 do {
1276 start = u64_stats_fetch_begin_irq(&stats->syncp);
1277 packets = stats->packets;
1278 bytes = stats->bytes;
1279 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1280
1281 t->tx_bytes += bytes;
1282 t->tx_packets += packets;
1283
1284 stats = &nvchan->rx_stats;
1285 do {
1286 start = u64_stats_fetch_begin_irq(&stats->syncp);
1287 packets = stats->packets;
1288 bytes = stats->bytes;
1289 multicast = stats->multicast + stats->broadcast;
1290 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1291
1292 t->rx_bytes += bytes;
1293 t->rx_packets += packets;
1294 t->multicast += multicast;
1295 }
1296 out:
1297 rcu_read_unlock();
1298 }
1299
netvsc_set_mac_addr(struct net_device * ndev,void * p)1300 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1301 {
1302 struct net_device_context *ndc = netdev_priv(ndev);
1303 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1304 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1305 struct sockaddr *addr = p;
1306 int err;
1307
1308 err = eth_prepare_mac_addr_change(ndev, p);
1309 if (err)
1310 return err;
1311
1312 if (!nvdev)
1313 return -ENODEV;
1314
1315 if (vf_netdev) {
1316 err = dev_set_mac_address(vf_netdev, addr, NULL);
1317 if (err)
1318 return err;
1319 }
1320
1321 err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1322 if (!err) {
1323 eth_commit_mac_addr_change(ndev, p);
1324 } else if (vf_netdev) {
1325 /* rollback change on VF */
1326 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1327 dev_set_mac_address(vf_netdev, addr, NULL);
1328 }
1329
1330 return err;
1331 }
1332
1333 static const struct {
1334 char name[ETH_GSTRING_LEN];
1335 u16 offset;
1336 } netvsc_stats[] = {
1337 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1338 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1339 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1340 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1341 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) },
1342 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1343 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1344 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1345 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1346 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1347 }, pcpu_stats[] = {
1348 { "cpu%u_rx_packets",
1349 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1350 { "cpu%u_rx_bytes",
1351 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1352 { "cpu%u_tx_packets",
1353 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1354 { "cpu%u_tx_bytes",
1355 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1356 { "cpu%u_vf_rx_packets",
1357 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1358 { "cpu%u_vf_rx_bytes",
1359 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1360 { "cpu%u_vf_tx_packets",
1361 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1362 { "cpu%u_vf_tx_bytes",
1363 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1364 }, vf_stats[] = {
1365 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1366 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1367 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1368 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1369 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1370 };
1371
1372 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1373 #define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats)
1374
1375 /* statistics per queue (rx/tx packets/bytes) */
1376 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1377
1378 /* 4 statistics per queue (rx/tx packets/bytes) */
1379 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
1380
netvsc_get_sset_count(struct net_device * dev,int string_set)1381 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1382 {
1383 struct net_device_context *ndc = netdev_priv(dev);
1384 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1385
1386 if (!nvdev)
1387 return -ENODEV;
1388
1389 switch (string_set) {
1390 case ETH_SS_STATS:
1391 return NETVSC_GLOBAL_STATS_LEN
1392 + NETVSC_VF_STATS_LEN
1393 + NETVSC_QUEUE_STATS_LEN(nvdev)
1394 + NETVSC_PCPU_STATS_LEN;
1395 default:
1396 return -EINVAL;
1397 }
1398 }
1399
netvsc_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)1400 static void netvsc_get_ethtool_stats(struct net_device *dev,
1401 struct ethtool_stats *stats, u64 *data)
1402 {
1403 struct net_device_context *ndc = netdev_priv(dev);
1404 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1405 const void *nds = &ndc->eth_stats;
1406 const struct netvsc_stats *qstats;
1407 struct netvsc_vf_pcpu_stats sum;
1408 struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1409 unsigned int start;
1410 u64 packets, bytes;
1411 int i, j, cpu;
1412
1413 if (!nvdev)
1414 return;
1415
1416 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1417 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1418
1419 netvsc_get_vf_stats(dev, &sum);
1420 for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1421 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1422
1423 for (j = 0; j < nvdev->num_chn; j++) {
1424 qstats = &nvdev->chan_table[j].tx_stats;
1425
1426 do {
1427 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1428 packets = qstats->packets;
1429 bytes = qstats->bytes;
1430 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1431 data[i++] = packets;
1432 data[i++] = bytes;
1433
1434 qstats = &nvdev->chan_table[j].rx_stats;
1435 do {
1436 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1437 packets = qstats->packets;
1438 bytes = qstats->bytes;
1439 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1440 data[i++] = packets;
1441 data[i++] = bytes;
1442 }
1443
1444 pcpu_sum = kvmalloc_array(num_possible_cpus(),
1445 sizeof(struct netvsc_ethtool_pcpu_stats),
1446 GFP_KERNEL);
1447 netvsc_get_pcpu_stats(dev, pcpu_sum);
1448 for_each_present_cpu(cpu) {
1449 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1450
1451 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1452 data[i++] = *(u64 *)((void *)this_sum
1453 + pcpu_stats[j].offset);
1454 }
1455 kvfree(pcpu_sum);
1456 }
1457
netvsc_get_strings(struct net_device * dev,u32 stringset,u8 * data)1458 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1459 {
1460 struct net_device_context *ndc = netdev_priv(dev);
1461 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1462 u8 *p = data;
1463 int i, cpu;
1464
1465 if (!nvdev)
1466 return;
1467
1468 switch (stringset) {
1469 case ETH_SS_STATS:
1470 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1471 memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1472 p += ETH_GSTRING_LEN;
1473 }
1474
1475 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1476 memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1477 p += ETH_GSTRING_LEN;
1478 }
1479
1480 for (i = 0; i < nvdev->num_chn; i++) {
1481 sprintf(p, "tx_queue_%u_packets", i);
1482 p += ETH_GSTRING_LEN;
1483 sprintf(p, "tx_queue_%u_bytes", i);
1484 p += ETH_GSTRING_LEN;
1485 sprintf(p, "rx_queue_%u_packets", i);
1486 p += ETH_GSTRING_LEN;
1487 sprintf(p, "rx_queue_%u_bytes", i);
1488 p += ETH_GSTRING_LEN;
1489 }
1490
1491 for_each_present_cpu(cpu) {
1492 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) {
1493 sprintf(p, pcpu_stats[i].name, cpu);
1494 p += ETH_GSTRING_LEN;
1495 }
1496 }
1497
1498 break;
1499 }
1500 }
1501
1502 static int
netvsc_get_rss_hash_opts(struct net_device_context * ndc,struct ethtool_rxnfc * info)1503 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1504 struct ethtool_rxnfc *info)
1505 {
1506 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1507
1508 info->data = RXH_IP_SRC | RXH_IP_DST;
1509
1510 switch (info->flow_type) {
1511 case TCP_V4_FLOW:
1512 if (ndc->l4_hash & HV_TCP4_L4HASH)
1513 info->data |= l4_flag;
1514
1515 break;
1516
1517 case TCP_V6_FLOW:
1518 if (ndc->l4_hash & HV_TCP6_L4HASH)
1519 info->data |= l4_flag;
1520
1521 break;
1522
1523 case UDP_V4_FLOW:
1524 if (ndc->l4_hash & HV_UDP4_L4HASH)
1525 info->data |= l4_flag;
1526
1527 break;
1528
1529 case UDP_V6_FLOW:
1530 if (ndc->l4_hash & HV_UDP6_L4HASH)
1531 info->data |= l4_flag;
1532
1533 break;
1534
1535 case IPV4_FLOW:
1536 case IPV6_FLOW:
1537 break;
1538 default:
1539 info->data = 0;
1540 break;
1541 }
1542
1543 return 0;
1544 }
1545
1546 static int
netvsc_get_rxnfc(struct net_device * dev,struct ethtool_rxnfc * info,u32 * rules)1547 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1548 u32 *rules)
1549 {
1550 struct net_device_context *ndc = netdev_priv(dev);
1551 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1552
1553 if (!nvdev)
1554 return -ENODEV;
1555
1556 switch (info->cmd) {
1557 case ETHTOOL_GRXRINGS:
1558 info->data = nvdev->num_chn;
1559 return 0;
1560
1561 case ETHTOOL_GRXFH:
1562 return netvsc_get_rss_hash_opts(ndc, info);
1563 }
1564 return -EOPNOTSUPP;
1565 }
1566
netvsc_set_rss_hash_opts(struct net_device_context * ndc,struct ethtool_rxnfc * info)1567 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1568 struct ethtool_rxnfc *info)
1569 {
1570 if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1571 RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1572 switch (info->flow_type) {
1573 case TCP_V4_FLOW:
1574 ndc->l4_hash |= HV_TCP4_L4HASH;
1575 break;
1576
1577 case TCP_V6_FLOW:
1578 ndc->l4_hash |= HV_TCP6_L4HASH;
1579 break;
1580
1581 case UDP_V4_FLOW:
1582 ndc->l4_hash |= HV_UDP4_L4HASH;
1583 break;
1584
1585 case UDP_V6_FLOW:
1586 ndc->l4_hash |= HV_UDP6_L4HASH;
1587 break;
1588
1589 default:
1590 return -EOPNOTSUPP;
1591 }
1592
1593 return 0;
1594 }
1595
1596 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1597 switch (info->flow_type) {
1598 case TCP_V4_FLOW:
1599 ndc->l4_hash &= ~HV_TCP4_L4HASH;
1600 break;
1601
1602 case TCP_V6_FLOW:
1603 ndc->l4_hash &= ~HV_TCP6_L4HASH;
1604 break;
1605
1606 case UDP_V4_FLOW:
1607 ndc->l4_hash &= ~HV_UDP4_L4HASH;
1608 break;
1609
1610 case UDP_V6_FLOW:
1611 ndc->l4_hash &= ~HV_UDP6_L4HASH;
1612 break;
1613
1614 default:
1615 return -EOPNOTSUPP;
1616 }
1617
1618 return 0;
1619 }
1620
1621 return -EOPNOTSUPP;
1622 }
1623
1624 static int
netvsc_set_rxnfc(struct net_device * ndev,struct ethtool_rxnfc * info)1625 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1626 {
1627 struct net_device_context *ndc = netdev_priv(ndev);
1628
1629 if (info->cmd == ETHTOOL_SRXFH)
1630 return netvsc_set_rss_hash_opts(ndc, info);
1631
1632 return -EOPNOTSUPP;
1633 }
1634
netvsc_get_rxfh_key_size(struct net_device * dev)1635 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1636 {
1637 return NETVSC_HASH_KEYLEN;
1638 }
1639
netvsc_rss_indir_size(struct net_device * dev)1640 static u32 netvsc_rss_indir_size(struct net_device *dev)
1641 {
1642 return ITAB_NUM;
1643 }
1644
netvsc_get_rxfh(struct net_device * dev,u32 * indir,u8 * key,u8 * hfunc)1645 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1646 u8 *hfunc)
1647 {
1648 struct net_device_context *ndc = netdev_priv(dev);
1649 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1650 struct rndis_device *rndis_dev;
1651 int i;
1652
1653 if (!ndev)
1654 return -ENODEV;
1655
1656 if (hfunc)
1657 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */
1658
1659 rndis_dev = ndev->extension;
1660 if (indir) {
1661 for (i = 0; i < ITAB_NUM; i++)
1662 indir[i] = rndis_dev->rx_table[i];
1663 }
1664
1665 if (key)
1666 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1667
1668 return 0;
1669 }
1670
netvsc_set_rxfh(struct net_device * dev,const u32 * indir,const u8 * key,const u8 hfunc)1671 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1672 const u8 *key, const u8 hfunc)
1673 {
1674 struct net_device_context *ndc = netdev_priv(dev);
1675 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1676 struct rndis_device *rndis_dev;
1677 int i;
1678
1679 if (!ndev)
1680 return -ENODEV;
1681
1682 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1683 return -EOPNOTSUPP;
1684
1685 rndis_dev = ndev->extension;
1686 if (indir) {
1687 for (i = 0; i < ITAB_NUM; i++)
1688 if (indir[i] >= ndev->num_chn)
1689 return -EINVAL;
1690
1691 for (i = 0; i < ITAB_NUM; i++)
1692 rndis_dev->rx_table[i] = indir[i];
1693 }
1694
1695 if (!key) {
1696 if (!indir)
1697 return 0;
1698
1699 key = rndis_dev->rss_key;
1700 }
1701
1702 return rndis_filter_set_rss_param(rndis_dev, key);
1703 }
1704
1705 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1706 * It does have pre-allocated receive area which is divided into sections.
1707 */
__netvsc_get_ringparam(struct netvsc_device * nvdev,struct ethtool_ringparam * ring)1708 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1709 struct ethtool_ringparam *ring)
1710 {
1711 u32 max_buf_size;
1712
1713 ring->rx_pending = nvdev->recv_section_cnt;
1714 ring->tx_pending = nvdev->send_section_cnt;
1715
1716 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1717 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1718 else
1719 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1720
1721 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1722 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1723 / nvdev->send_section_size;
1724 }
1725
netvsc_get_ringparam(struct net_device * ndev,struct ethtool_ringparam * ring)1726 static void netvsc_get_ringparam(struct net_device *ndev,
1727 struct ethtool_ringparam *ring)
1728 {
1729 struct net_device_context *ndevctx = netdev_priv(ndev);
1730 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1731
1732 if (!nvdev)
1733 return;
1734
1735 __netvsc_get_ringparam(nvdev, ring);
1736 }
1737
netvsc_set_ringparam(struct net_device * ndev,struct ethtool_ringparam * ring)1738 static int netvsc_set_ringparam(struct net_device *ndev,
1739 struct ethtool_ringparam *ring)
1740 {
1741 struct net_device_context *ndevctx = netdev_priv(ndev);
1742 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1743 struct netvsc_device_info *device_info;
1744 struct ethtool_ringparam orig;
1745 u32 new_tx, new_rx;
1746 int ret = 0;
1747
1748 if (!nvdev || nvdev->destroy)
1749 return -ENODEV;
1750
1751 memset(&orig, 0, sizeof(orig));
1752 __netvsc_get_ringparam(nvdev, &orig);
1753
1754 new_tx = clamp_t(u32, ring->tx_pending,
1755 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1756 new_rx = clamp_t(u32, ring->rx_pending,
1757 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1758
1759 if (new_tx == orig.tx_pending &&
1760 new_rx == orig.rx_pending)
1761 return 0; /* no change */
1762
1763 device_info = netvsc_devinfo_get(nvdev);
1764
1765 if (!device_info)
1766 return -ENOMEM;
1767
1768 device_info->send_sections = new_tx;
1769 device_info->recv_sections = new_rx;
1770
1771 ret = netvsc_detach(ndev, nvdev);
1772 if (ret)
1773 goto out;
1774
1775 ret = netvsc_attach(ndev, device_info);
1776 if (ret) {
1777 device_info->send_sections = orig.tx_pending;
1778 device_info->recv_sections = orig.rx_pending;
1779
1780 if (netvsc_attach(ndev, device_info))
1781 netdev_err(ndev, "restoring ringparam failed");
1782 }
1783
1784 out:
1785 kfree(device_info);
1786 return ret;
1787 }
1788
netvsc_set_features(struct net_device * ndev,netdev_features_t features)1789 static int netvsc_set_features(struct net_device *ndev,
1790 netdev_features_t features)
1791 {
1792 netdev_features_t change = features ^ ndev->features;
1793 struct net_device_context *ndevctx = netdev_priv(ndev);
1794 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1795 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1796 struct ndis_offload_params offloads;
1797 int ret = 0;
1798
1799 if (!nvdev || nvdev->destroy)
1800 return -ENODEV;
1801
1802 if (!(change & NETIF_F_LRO))
1803 goto syncvf;
1804
1805 memset(&offloads, 0, sizeof(struct ndis_offload_params));
1806
1807 if (features & NETIF_F_LRO) {
1808 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1809 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1810 } else {
1811 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1812 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1813 }
1814
1815 ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1816
1817 if (ret) {
1818 features ^= NETIF_F_LRO;
1819 ndev->features = features;
1820 }
1821
1822 syncvf:
1823 if (!vf_netdev)
1824 return ret;
1825
1826 vf_netdev->wanted_features = features;
1827 netdev_update_features(vf_netdev);
1828
1829 return ret;
1830 }
1831
netvsc_get_msglevel(struct net_device * ndev)1832 static u32 netvsc_get_msglevel(struct net_device *ndev)
1833 {
1834 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1835
1836 return ndev_ctx->msg_enable;
1837 }
1838
netvsc_set_msglevel(struct net_device * ndev,u32 val)1839 static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1840 {
1841 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1842
1843 ndev_ctx->msg_enable = val;
1844 }
1845
1846 static const struct ethtool_ops ethtool_ops = {
1847 .get_drvinfo = netvsc_get_drvinfo,
1848 .get_msglevel = netvsc_get_msglevel,
1849 .set_msglevel = netvsc_set_msglevel,
1850 .get_link = ethtool_op_get_link,
1851 .get_ethtool_stats = netvsc_get_ethtool_stats,
1852 .get_sset_count = netvsc_get_sset_count,
1853 .get_strings = netvsc_get_strings,
1854 .get_channels = netvsc_get_channels,
1855 .set_channels = netvsc_set_channels,
1856 .get_ts_info = ethtool_op_get_ts_info,
1857 .get_rxnfc = netvsc_get_rxnfc,
1858 .set_rxnfc = netvsc_set_rxnfc,
1859 .get_rxfh_key_size = netvsc_get_rxfh_key_size,
1860 .get_rxfh_indir_size = netvsc_rss_indir_size,
1861 .get_rxfh = netvsc_get_rxfh,
1862 .set_rxfh = netvsc_set_rxfh,
1863 .get_link_ksettings = netvsc_get_link_ksettings,
1864 .set_link_ksettings = netvsc_set_link_ksettings,
1865 .get_ringparam = netvsc_get_ringparam,
1866 .set_ringparam = netvsc_set_ringparam,
1867 };
1868
1869 static const struct net_device_ops device_ops = {
1870 .ndo_open = netvsc_open,
1871 .ndo_stop = netvsc_close,
1872 .ndo_start_xmit = netvsc_start_xmit,
1873 .ndo_change_rx_flags = netvsc_change_rx_flags,
1874 .ndo_set_rx_mode = netvsc_set_rx_mode,
1875 .ndo_set_features = netvsc_set_features,
1876 .ndo_change_mtu = netvsc_change_mtu,
1877 .ndo_validate_addr = eth_validate_addr,
1878 .ndo_set_mac_address = netvsc_set_mac_addr,
1879 .ndo_select_queue = netvsc_select_queue,
1880 .ndo_get_stats64 = netvsc_get_stats64,
1881 };
1882
1883 /*
1884 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1885 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1886 * present send GARP packet to network peers with netif_notify_peers().
1887 */
netvsc_link_change(struct work_struct * w)1888 static void netvsc_link_change(struct work_struct *w)
1889 {
1890 struct net_device_context *ndev_ctx =
1891 container_of(w, struct net_device_context, dwork.work);
1892 struct hv_device *device_obj = ndev_ctx->device_ctx;
1893 struct net_device *net = hv_get_drvdata(device_obj);
1894 struct netvsc_device *net_device;
1895 struct rndis_device *rdev;
1896 struct netvsc_reconfig *event = NULL;
1897 bool notify = false, reschedule = false;
1898 unsigned long flags, next_reconfig, delay;
1899
1900 /* if changes are happening, comeback later */
1901 if (!rtnl_trylock()) {
1902 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1903 return;
1904 }
1905
1906 net_device = rtnl_dereference(ndev_ctx->nvdev);
1907 if (!net_device)
1908 goto out_unlock;
1909
1910 rdev = net_device->extension;
1911
1912 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1913 if (time_is_after_jiffies(next_reconfig)) {
1914 /* link_watch only sends one notification with current state
1915 * per second, avoid doing reconfig more frequently. Handle
1916 * wrap around.
1917 */
1918 delay = next_reconfig - jiffies;
1919 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1920 schedule_delayed_work(&ndev_ctx->dwork, delay);
1921 goto out_unlock;
1922 }
1923 ndev_ctx->last_reconfig = jiffies;
1924
1925 spin_lock_irqsave(&ndev_ctx->lock, flags);
1926 if (!list_empty(&ndev_ctx->reconfig_events)) {
1927 event = list_first_entry(&ndev_ctx->reconfig_events,
1928 struct netvsc_reconfig, list);
1929 list_del(&event->list);
1930 reschedule = !list_empty(&ndev_ctx->reconfig_events);
1931 }
1932 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1933
1934 if (!event)
1935 goto out_unlock;
1936
1937 switch (event->event) {
1938 /* Only the following events are possible due to the check in
1939 * netvsc_linkstatus_callback()
1940 */
1941 case RNDIS_STATUS_MEDIA_CONNECT:
1942 if (rdev->link_state) {
1943 rdev->link_state = false;
1944 netif_carrier_on(net);
1945 netvsc_tx_enable(net_device, net);
1946 } else {
1947 notify = true;
1948 }
1949 kfree(event);
1950 break;
1951 case RNDIS_STATUS_MEDIA_DISCONNECT:
1952 if (!rdev->link_state) {
1953 rdev->link_state = true;
1954 netif_carrier_off(net);
1955 netvsc_tx_disable(net_device, net);
1956 }
1957 kfree(event);
1958 break;
1959 case RNDIS_STATUS_NETWORK_CHANGE:
1960 /* Only makes sense if carrier is present */
1961 if (!rdev->link_state) {
1962 rdev->link_state = true;
1963 netif_carrier_off(net);
1964 netvsc_tx_disable(net_device, net);
1965 event->event = RNDIS_STATUS_MEDIA_CONNECT;
1966 spin_lock_irqsave(&ndev_ctx->lock, flags);
1967 list_add(&event->list, &ndev_ctx->reconfig_events);
1968 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1969 reschedule = true;
1970 }
1971 break;
1972 }
1973
1974 rtnl_unlock();
1975
1976 if (notify)
1977 netdev_notify_peers(net);
1978
1979 /* link_watch only sends one notification with current state per
1980 * second, handle next reconfig event in 2 seconds.
1981 */
1982 if (reschedule)
1983 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1984
1985 return;
1986
1987 out_unlock:
1988 rtnl_unlock();
1989 }
1990
get_netvsc_byref(struct net_device * vf_netdev)1991 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1992 {
1993 struct net_device_context *net_device_ctx;
1994 struct net_device *dev;
1995
1996 dev = netdev_master_upper_dev_get(vf_netdev);
1997 if (!dev || dev->netdev_ops != &device_ops)
1998 return NULL; /* not a netvsc device */
1999
2000 net_device_ctx = netdev_priv(dev);
2001 if (!rtnl_dereference(net_device_ctx->nvdev))
2002 return NULL; /* device is removed */
2003
2004 return dev;
2005 }
2006
2007 /* Called when VF is injecting data into network stack.
2008 * Change the associated network device from VF to netvsc.
2009 * note: already called with rcu_read_lock
2010 */
netvsc_vf_handle_frame(struct sk_buff ** pskb)2011 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2012 {
2013 struct sk_buff *skb = *pskb;
2014 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2015 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2016 struct netvsc_vf_pcpu_stats *pcpu_stats
2017 = this_cpu_ptr(ndev_ctx->vf_stats);
2018
2019 skb = skb_share_check(skb, GFP_ATOMIC);
2020 if (unlikely(!skb))
2021 return RX_HANDLER_CONSUMED;
2022
2023 *pskb = skb;
2024
2025 skb->dev = ndev;
2026
2027 u64_stats_update_begin(&pcpu_stats->syncp);
2028 pcpu_stats->rx_packets++;
2029 pcpu_stats->rx_bytes += skb->len;
2030 u64_stats_update_end(&pcpu_stats->syncp);
2031
2032 return RX_HANDLER_ANOTHER;
2033 }
2034
netvsc_vf_join(struct net_device * vf_netdev,struct net_device * ndev)2035 static int netvsc_vf_join(struct net_device *vf_netdev,
2036 struct net_device *ndev)
2037 {
2038 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2039 int ret;
2040
2041 ret = netdev_rx_handler_register(vf_netdev,
2042 netvsc_vf_handle_frame, ndev);
2043 if (ret != 0) {
2044 netdev_err(vf_netdev,
2045 "can not register netvsc VF receive handler (err = %d)\n",
2046 ret);
2047 goto rx_handler_failed;
2048 }
2049
2050 ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2051 NULL, NULL, NULL);
2052 if (ret != 0) {
2053 netdev_err(vf_netdev,
2054 "can not set master device %s (err = %d)\n",
2055 ndev->name, ret);
2056 goto upper_link_failed;
2057 }
2058
2059 /* set slave flag before open to prevent IPv6 addrconf */
2060 vf_netdev->flags |= IFF_SLAVE;
2061
2062 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2063
2064 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2065
2066 netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2067 return 0;
2068
2069 upper_link_failed:
2070 netdev_rx_handler_unregister(vf_netdev);
2071 rx_handler_failed:
2072 return ret;
2073 }
2074
__netvsc_vf_setup(struct net_device * ndev,struct net_device * vf_netdev)2075 static void __netvsc_vf_setup(struct net_device *ndev,
2076 struct net_device *vf_netdev)
2077 {
2078 int ret;
2079
2080 /* Align MTU of VF with master */
2081 ret = dev_set_mtu(vf_netdev, ndev->mtu);
2082 if (ret)
2083 netdev_warn(vf_netdev,
2084 "unable to change mtu to %u\n", ndev->mtu);
2085
2086 /* set multicast etc flags on VF */
2087 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2088
2089 /* sync address list from ndev to VF */
2090 netif_addr_lock_bh(ndev);
2091 dev_uc_sync(vf_netdev, ndev);
2092 dev_mc_sync(vf_netdev, ndev);
2093 netif_addr_unlock_bh(ndev);
2094
2095 if (netif_running(ndev)) {
2096 ret = dev_open(vf_netdev, NULL);
2097 if (ret)
2098 netdev_warn(vf_netdev,
2099 "unable to open: %d\n", ret);
2100 }
2101 }
2102
2103 /* Setup VF as slave of the synthetic device.
2104 * Runs in workqueue to avoid recursion in netlink callbacks.
2105 */
netvsc_vf_setup(struct work_struct * w)2106 static void netvsc_vf_setup(struct work_struct *w)
2107 {
2108 struct net_device_context *ndev_ctx
2109 = container_of(w, struct net_device_context, vf_takeover.work);
2110 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2111 struct net_device *vf_netdev;
2112
2113 if (!rtnl_trylock()) {
2114 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2115 return;
2116 }
2117
2118 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2119 if (vf_netdev)
2120 __netvsc_vf_setup(ndev, vf_netdev);
2121
2122 rtnl_unlock();
2123 }
2124
2125 /* Find netvsc by VF serial number.
2126 * The PCI hyperv controller records the serial number as the slot kobj name.
2127 */
get_netvsc_byslot(const struct net_device * vf_netdev)2128 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2129 {
2130 struct device *parent = vf_netdev->dev.parent;
2131 struct net_device_context *ndev_ctx;
2132 struct pci_dev *pdev;
2133 u32 serial;
2134
2135 if (!parent || !dev_is_pci(parent))
2136 return NULL; /* not a PCI device */
2137
2138 pdev = to_pci_dev(parent);
2139 if (!pdev->slot) {
2140 netdev_notice(vf_netdev, "no PCI slot information\n");
2141 return NULL;
2142 }
2143
2144 if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2145 netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2146 pci_slot_name(pdev->slot));
2147 return NULL;
2148 }
2149
2150 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2151 if (!ndev_ctx->vf_alloc)
2152 continue;
2153
2154 if (ndev_ctx->vf_serial == serial)
2155 return hv_get_drvdata(ndev_ctx->device_ctx);
2156 }
2157
2158 netdev_notice(vf_netdev,
2159 "no netdev found for vf serial:%u\n", serial);
2160 return NULL;
2161 }
2162
netvsc_register_vf(struct net_device * vf_netdev)2163 static int netvsc_register_vf(struct net_device *vf_netdev)
2164 {
2165 struct net_device_context *net_device_ctx;
2166 struct netvsc_device *netvsc_dev;
2167 struct net_device *ndev;
2168 int ret;
2169
2170 if (vf_netdev->addr_len != ETH_ALEN)
2171 return NOTIFY_DONE;
2172
2173 ndev = get_netvsc_byslot(vf_netdev);
2174 if (!ndev)
2175 return NOTIFY_DONE;
2176
2177 net_device_ctx = netdev_priv(ndev);
2178 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2179 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2180 return NOTIFY_DONE;
2181
2182 /* if synthetic interface is a different namespace,
2183 * then move the VF to that namespace; join will be
2184 * done again in that context.
2185 */
2186 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2187 ret = dev_change_net_namespace(vf_netdev,
2188 dev_net(ndev), "eth%d");
2189 if (ret)
2190 netdev_err(vf_netdev,
2191 "could not move to same namespace as %s: %d\n",
2192 ndev->name, ret);
2193 else
2194 netdev_info(vf_netdev,
2195 "VF moved to namespace with: %s\n",
2196 ndev->name);
2197 return NOTIFY_DONE;
2198 }
2199
2200 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2201
2202 if (netvsc_vf_join(vf_netdev, ndev) != 0)
2203 return NOTIFY_DONE;
2204
2205 dev_hold(vf_netdev);
2206 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2207
2208 vf_netdev->wanted_features = ndev->features;
2209 netdev_update_features(vf_netdev);
2210
2211 return NOTIFY_OK;
2212 }
2213
2214 /* VF up/down change detected, schedule to change data path */
netvsc_vf_changed(struct net_device * vf_netdev)2215 static int netvsc_vf_changed(struct net_device *vf_netdev)
2216 {
2217 struct net_device_context *net_device_ctx;
2218 struct netvsc_device *netvsc_dev;
2219 struct net_device *ndev;
2220 bool vf_is_up = netif_running(vf_netdev);
2221
2222 ndev = get_netvsc_byref(vf_netdev);
2223 if (!ndev)
2224 return NOTIFY_DONE;
2225
2226 net_device_ctx = netdev_priv(ndev);
2227 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2228 if (!netvsc_dev)
2229 return NOTIFY_DONE;
2230
2231 netvsc_switch_datapath(ndev, vf_is_up);
2232 netdev_info(ndev, "Data path switched %s VF: %s\n",
2233 vf_is_up ? "to" : "from", vf_netdev->name);
2234
2235 return NOTIFY_OK;
2236 }
2237
netvsc_unregister_vf(struct net_device * vf_netdev)2238 static int netvsc_unregister_vf(struct net_device *vf_netdev)
2239 {
2240 struct net_device *ndev;
2241 struct net_device_context *net_device_ctx;
2242
2243 ndev = get_netvsc_byref(vf_netdev);
2244 if (!ndev)
2245 return NOTIFY_DONE;
2246
2247 net_device_ctx = netdev_priv(ndev);
2248 cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2249
2250 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2251
2252 netdev_rx_handler_unregister(vf_netdev);
2253 netdev_upper_dev_unlink(vf_netdev, ndev);
2254 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2255 dev_put(vf_netdev);
2256
2257 return NOTIFY_OK;
2258 }
2259
netvsc_probe(struct hv_device * dev,const struct hv_vmbus_device_id * dev_id)2260 static int netvsc_probe(struct hv_device *dev,
2261 const struct hv_vmbus_device_id *dev_id)
2262 {
2263 struct net_device *net = NULL;
2264 struct net_device_context *net_device_ctx;
2265 struct netvsc_device_info *device_info = NULL;
2266 struct netvsc_device *nvdev;
2267 int ret = -ENOMEM;
2268
2269 net = alloc_etherdev_mq(sizeof(struct net_device_context),
2270 VRSS_CHANNEL_MAX);
2271 if (!net)
2272 goto no_net;
2273
2274 netif_carrier_off(net);
2275
2276 netvsc_init_settings(net);
2277
2278 net_device_ctx = netdev_priv(net);
2279 net_device_ctx->device_ctx = dev;
2280 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2281 if (netif_msg_probe(net_device_ctx))
2282 netdev_dbg(net, "netvsc msg_enable: %d\n",
2283 net_device_ctx->msg_enable);
2284
2285 hv_set_drvdata(dev, net);
2286
2287 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2288
2289 spin_lock_init(&net_device_ctx->lock);
2290 INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2291 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2292
2293 net_device_ctx->vf_stats
2294 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2295 if (!net_device_ctx->vf_stats)
2296 goto no_stats;
2297
2298 net->netdev_ops = &device_ops;
2299 net->ethtool_ops = ðtool_ops;
2300 SET_NETDEV_DEV(net, &dev->device);
2301
2302 /* We always need headroom for rndis header */
2303 net->needed_headroom = RNDIS_AND_PPI_SIZE;
2304
2305 /* Initialize the number of queues to be 1, we may change it if more
2306 * channels are offered later.
2307 */
2308 netif_set_real_num_tx_queues(net, 1);
2309 netif_set_real_num_rx_queues(net, 1);
2310
2311 /* Notify the netvsc driver of the new device */
2312 device_info = netvsc_devinfo_get(NULL);
2313
2314 if (!device_info) {
2315 ret = -ENOMEM;
2316 goto devinfo_failed;
2317 }
2318
2319 nvdev = rndis_filter_device_add(dev, device_info);
2320 if (IS_ERR(nvdev)) {
2321 ret = PTR_ERR(nvdev);
2322 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2323 goto rndis_failed;
2324 }
2325
2326 memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN);
2327
2328 /* We must get rtnl lock before scheduling nvdev->subchan_work,
2329 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2330 * all subchannels to show up, but that may not happen because
2331 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2332 * -> ... -> device_add() -> ... -> __device_attach() can't get
2333 * the device lock, so all the subchannels can't be processed --
2334 * finally netvsc_subchan_work() hangs forever.
2335 */
2336 rtnl_lock();
2337
2338 if (nvdev->num_chn > 1)
2339 schedule_work(&nvdev->subchan_work);
2340
2341 /* hw_features computed in rndis_netdev_set_hwcaps() */
2342 net->features = net->hw_features |
2343 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2344 NETIF_F_HW_VLAN_CTAG_RX;
2345 net->vlan_features = net->features;
2346
2347 /* MTU range: 68 - 1500 or 65521 */
2348 net->min_mtu = NETVSC_MTU_MIN;
2349 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2350 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2351 else
2352 net->max_mtu = ETH_DATA_LEN;
2353
2354 ret = register_netdevice(net);
2355 if (ret != 0) {
2356 pr_err("Unable to register netdev.\n");
2357 goto register_failed;
2358 }
2359
2360 list_add(&net_device_ctx->list, &netvsc_dev_list);
2361 rtnl_unlock();
2362
2363 kfree(device_info);
2364 return 0;
2365
2366 register_failed:
2367 rtnl_unlock();
2368 rndis_filter_device_remove(dev, nvdev);
2369 rndis_failed:
2370 kfree(device_info);
2371 devinfo_failed:
2372 free_percpu(net_device_ctx->vf_stats);
2373 no_stats:
2374 hv_set_drvdata(dev, NULL);
2375 free_netdev(net);
2376 no_net:
2377 return ret;
2378 }
2379
netvsc_remove(struct hv_device * dev)2380 static int netvsc_remove(struct hv_device *dev)
2381 {
2382 struct net_device_context *ndev_ctx;
2383 struct net_device *vf_netdev, *net;
2384 struct netvsc_device *nvdev;
2385
2386 net = hv_get_drvdata(dev);
2387 if (net == NULL) {
2388 dev_err(&dev->device, "No net device to remove\n");
2389 return 0;
2390 }
2391
2392 ndev_ctx = netdev_priv(net);
2393
2394 cancel_delayed_work_sync(&ndev_ctx->dwork);
2395
2396 rtnl_lock();
2397 nvdev = rtnl_dereference(ndev_ctx->nvdev);
2398 if (nvdev)
2399 cancel_work_sync(&nvdev->subchan_work);
2400
2401 /*
2402 * Call to the vsc driver to let it know that the device is being
2403 * removed. Also blocks mtu and channel changes.
2404 */
2405 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2406 if (vf_netdev)
2407 netvsc_unregister_vf(vf_netdev);
2408
2409 if (nvdev)
2410 rndis_filter_device_remove(dev, nvdev);
2411
2412 unregister_netdevice(net);
2413 list_del(&ndev_ctx->list);
2414
2415 rtnl_unlock();
2416
2417 hv_set_drvdata(dev, NULL);
2418
2419 free_percpu(ndev_ctx->vf_stats);
2420 free_netdev(net);
2421 return 0;
2422 }
2423
2424 static const struct hv_vmbus_device_id id_table[] = {
2425 /* Network guid */
2426 { HV_NIC_GUID, },
2427 { },
2428 };
2429
2430 MODULE_DEVICE_TABLE(vmbus, id_table);
2431
2432 /* The one and only one */
2433 static struct hv_driver netvsc_drv = {
2434 .name = KBUILD_MODNAME,
2435 .id_table = id_table,
2436 .probe = netvsc_probe,
2437 .remove = netvsc_remove,
2438 .driver = {
2439 .probe_type = PROBE_FORCE_SYNCHRONOUS,
2440 },
2441 };
2442
2443 /*
2444 * On Hyper-V, every VF interface is matched with a corresponding
2445 * synthetic interface. The synthetic interface is presented first
2446 * to the guest. When the corresponding VF instance is registered,
2447 * we will take care of switching the data path.
2448 */
netvsc_netdev_event(struct notifier_block * this,unsigned long event,void * ptr)2449 static int netvsc_netdev_event(struct notifier_block *this,
2450 unsigned long event, void *ptr)
2451 {
2452 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2453
2454 /* Skip our own events */
2455 if (event_dev->netdev_ops == &device_ops)
2456 return NOTIFY_DONE;
2457
2458 /* Avoid non-Ethernet type devices */
2459 if (event_dev->type != ARPHRD_ETHER)
2460 return NOTIFY_DONE;
2461
2462 /* Avoid Vlan dev with same MAC registering as VF */
2463 if (is_vlan_dev(event_dev))
2464 return NOTIFY_DONE;
2465
2466 /* Avoid Bonding master dev with same MAC registering as VF */
2467 if ((event_dev->priv_flags & IFF_BONDING) &&
2468 (event_dev->flags & IFF_MASTER))
2469 return NOTIFY_DONE;
2470
2471 switch (event) {
2472 case NETDEV_REGISTER:
2473 return netvsc_register_vf(event_dev);
2474 case NETDEV_UNREGISTER:
2475 return netvsc_unregister_vf(event_dev);
2476 case NETDEV_UP:
2477 case NETDEV_DOWN:
2478 return netvsc_vf_changed(event_dev);
2479 default:
2480 return NOTIFY_DONE;
2481 }
2482 }
2483
2484 static struct notifier_block netvsc_netdev_notifier = {
2485 .notifier_call = netvsc_netdev_event,
2486 };
2487
netvsc_drv_exit(void)2488 static void __exit netvsc_drv_exit(void)
2489 {
2490 unregister_netdevice_notifier(&netvsc_netdev_notifier);
2491 vmbus_driver_unregister(&netvsc_drv);
2492 }
2493
netvsc_drv_init(void)2494 static int __init netvsc_drv_init(void)
2495 {
2496 int ret;
2497
2498 if (ring_size < RING_SIZE_MIN) {
2499 ring_size = RING_SIZE_MIN;
2500 pr_info("Increased ring_size to %u (min allowed)\n",
2501 ring_size);
2502 }
2503 netvsc_ring_bytes = ring_size * PAGE_SIZE;
2504
2505 ret = vmbus_driver_register(&netvsc_drv);
2506 if (ret)
2507 return ret;
2508
2509 register_netdevice_notifier(&netvsc_netdev_notifier);
2510 return 0;
2511 }
2512
2513 MODULE_LICENSE("GPL");
2514 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2515
2516 module_init(netvsc_drv_init);
2517 module_exit(netvsc_drv_exit);
2518