1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/workqueue.h>
39 #include <linux/dynamic_queue_limits.h>
40
41 #include <linux/ethtool.h>
42 #include <net/net_namespace.h>
43 #ifdef CONFIG_DCB
44 #include <net/dcbnl.h>
45 #endif
46 #include <net/netprio_cgroup.h>
47 #include <net/xdp.h>
48
49 #include <linux/netdev_features.h>
50 #include <linux/neighbour.h>
51 #include <uapi/linux/netdevice.h>
52 #include <uapi/linux/if_bonding.h>
53 #include <uapi/linux/pkt_cls.h>
54 #include <linux/hashtable.h>
55
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 struct dsa_port;
60
61 struct sfp_bus;
62 /* 802.11 specific */
63 struct wireless_dev;
64 /* 802.15.4 specific */
65 struct wpan_dev;
66 struct mpls_dev;
67 /* UDP Tunnel offloads */
68 struct udp_tunnel_info;
69 struct bpf_prog;
70 struct xdp_buff;
71
72 void netdev_set_default_ethtool_ops(struct net_device *dev,
73 const struct ethtool_ops *ops);
74
75 /* Backlog congestion levels */
76 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
77 #define NET_RX_DROP 1 /* packet dropped */
78
79 /*
80 * Transmit return codes: transmit return codes originate from three different
81 * namespaces:
82 *
83 * - qdisc return codes
84 * - driver transmit return codes
85 * - errno values
86 *
87 * Drivers are allowed to return any one of those in their hard_start_xmit()
88 * function. Real network devices commonly used with qdiscs should only return
89 * the driver transmit return codes though - when qdiscs are used, the actual
90 * transmission happens asynchronously, so the value is not propagated to
91 * higher layers. Virtual network devices transmit synchronously; in this case
92 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
93 * others are propagated to higher layers.
94 */
95
96 /* qdisc ->enqueue() return codes. */
97 #define NET_XMIT_SUCCESS 0x00
98 #define NET_XMIT_DROP 0x01 /* skb dropped */
99 #define NET_XMIT_CN 0x02 /* congestion notification */
100 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
101
102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
103 * indicates that the device will soon be dropping packets, or already drops
104 * some packets of the same priority; prompting us to send less aggressively. */
105 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
106 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
107
108 /* Driver transmit return codes */
109 #define NETDEV_TX_MASK 0xf0
110
111 enum netdev_tx {
112 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
113 NETDEV_TX_OK = 0x00, /* driver took care of packet */
114 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
115 };
116 typedef enum netdev_tx netdev_tx_t;
117
118 /*
119 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121 */
dev_xmit_complete(int rc)122 static inline bool dev_xmit_complete(int rc)
123 {
124 /*
125 * Positive cases with an skb consumed by a driver:
126 * - successful transmission (rc == NETDEV_TX_OK)
127 * - error while transmitting (rc < 0)
128 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 */
130 if (likely(rc < NET_XMIT_MASK))
131 return true;
132
133 return false;
134 }
135
136 /*
137 * Compute the worst-case header length according to the protocols
138 * used.
139 */
140
141 #if defined(CONFIG_HYPERV_NET)
142 # define LL_MAX_HEADER 128
143 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
144 # if defined(CONFIG_MAC80211_MESH)
145 # define LL_MAX_HEADER 128
146 # else
147 # define LL_MAX_HEADER 96
148 # endif
149 #else
150 # define LL_MAX_HEADER 32
151 #endif
152
153 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
154 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
155 #define MAX_HEADER LL_MAX_HEADER
156 #else
157 #define MAX_HEADER (LL_MAX_HEADER + 48)
158 #endif
159
160 /*
161 * Old network device statistics. Fields are native words
162 * (unsigned long) so they can be read and written atomically.
163 */
164
165 struct net_device_stats {
166 unsigned long rx_packets;
167 unsigned long tx_packets;
168 unsigned long rx_bytes;
169 unsigned long tx_bytes;
170 unsigned long rx_errors;
171 unsigned long tx_errors;
172 unsigned long rx_dropped;
173 unsigned long tx_dropped;
174 unsigned long multicast;
175 unsigned long collisions;
176 unsigned long rx_length_errors;
177 unsigned long rx_over_errors;
178 unsigned long rx_crc_errors;
179 unsigned long rx_frame_errors;
180 unsigned long rx_fifo_errors;
181 unsigned long rx_missed_errors;
182 unsigned long tx_aborted_errors;
183 unsigned long tx_carrier_errors;
184 unsigned long tx_fifo_errors;
185 unsigned long tx_heartbeat_errors;
186 unsigned long tx_window_errors;
187 unsigned long rx_compressed;
188 unsigned long tx_compressed;
189 };
190
191
192 #include <linux/cache.h>
193 #include <linux/skbuff.h>
194
195 #ifdef CONFIG_RPS
196 #include <linux/static_key.h>
197 extern struct static_key rps_needed;
198 extern struct static_key rfs_needed;
199 #endif
200
201 struct neighbour;
202 struct neigh_parms;
203 struct sk_buff;
204
205 struct netdev_hw_addr {
206 struct list_head list;
207 unsigned char addr[MAX_ADDR_LEN];
208 unsigned char type;
209 #define NETDEV_HW_ADDR_T_LAN 1
210 #define NETDEV_HW_ADDR_T_SAN 2
211 #define NETDEV_HW_ADDR_T_SLAVE 3
212 #define NETDEV_HW_ADDR_T_UNICAST 4
213 #define NETDEV_HW_ADDR_T_MULTICAST 5
214 bool global_use;
215 int sync_cnt;
216 int refcount;
217 int synced;
218 struct rcu_head rcu_head;
219 };
220
221 struct netdev_hw_addr_list {
222 struct list_head list;
223 int count;
224 };
225
226 #define netdev_hw_addr_list_count(l) ((l)->count)
227 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
228 #define netdev_hw_addr_list_for_each(ha, l) \
229 list_for_each_entry(ha, &(l)->list, list)
230
231 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
232 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
233 #define netdev_for_each_uc_addr(ha, dev) \
234 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
235
236 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
237 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
238 #define netdev_for_each_mc_addr(ha, dev) \
239 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
240
241 struct hh_cache {
242 unsigned int hh_len;
243 seqlock_t hh_lock;
244
245 /* cached hardware header; allow for machine alignment needs. */
246 #define HH_DATA_MOD 16
247 #define HH_DATA_OFF(__len) \
248 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
249 #define HH_DATA_ALIGN(__len) \
250 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
251 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
252 };
253
254 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
255 * Alternative is:
256 * dev->hard_header_len ? (dev->hard_header_len +
257 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
258 *
259 * We could use other alignment values, but we must maintain the
260 * relationship HH alignment <= LL alignment.
261 */
262 #define LL_RESERVED_SPACE(dev) \
263 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
265 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
266
267 struct header_ops {
268 int (*create) (struct sk_buff *skb, struct net_device *dev,
269 unsigned short type, const void *daddr,
270 const void *saddr, unsigned int len);
271 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
272 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
273 void (*cache_update)(struct hh_cache *hh,
274 const struct net_device *dev,
275 const unsigned char *haddr);
276 bool (*validate)(const char *ll_header, unsigned int len);
277 };
278
279 /* These flag bits are private to the generic network queueing
280 * layer; they may not be explicitly referenced by any other
281 * code.
282 */
283
284 enum netdev_state_t {
285 __LINK_STATE_START,
286 __LINK_STATE_PRESENT,
287 __LINK_STATE_NOCARRIER,
288 __LINK_STATE_LINKWATCH_PENDING,
289 __LINK_STATE_DORMANT,
290 };
291
292
293 /*
294 * This structure holds boot-time configured netdevice settings. They
295 * are then used in the device probing.
296 */
297 struct netdev_boot_setup {
298 char name[IFNAMSIZ];
299 struct ifmap map;
300 };
301 #define NETDEV_BOOT_SETUP_MAX 8
302
303 int __init netdev_boot_setup(char *str);
304
305 struct gro_list {
306 struct list_head list;
307 int count;
308 };
309
310 /*
311 * size of gro hash buckets, must less than bit number of
312 * napi_struct::gro_bitmask
313 */
314 #define GRO_HASH_BUCKETS 8
315
316 /*
317 * Structure for NAPI scheduling similar to tasklet but with weighting
318 */
319 struct napi_struct {
320 /* The poll_list must only be managed by the entity which
321 * changes the state of the NAPI_STATE_SCHED bit. This means
322 * whoever atomically sets that bit can add this napi_struct
323 * to the per-CPU poll_list, and whoever clears that bit
324 * can remove from the list right before clearing the bit.
325 */
326 struct list_head poll_list;
327
328 unsigned long state;
329 int weight;
330 unsigned long gro_bitmask;
331 int (*poll)(struct napi_struct *, int);
332 #ifdef CONFIG_NETPOLL
333 int poll_owner;
334 #endif
335 struct net_device *dev;
336 struct gro_list gro_hash[GRO_HASH_BUCKETS];
337 struct sk_buff *skb;
338 struct hrtimer timer;
339 struct list_head dev_list;
340 struct hlist_node napi_hash_node;
341 unsigned int napi_id;
342 };
343
344 enum {
345 NAPI_STATE_SCHED, /* Poll is scheduled */
346 NAPI_STATE_MISSED, /* reschedule a napi */
347 NAPI_STATE_DISABLE, /* Disable pending */
348 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
349 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */
350 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
351 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
352 };
353
354 enum {
355 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED),
356 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED),
357 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE),
358 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC),
359 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED),
360 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
361 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
362 };
363
364 enum gro_result {
365 GRO_MERGED,
366 GRO_MERGED_FREE,
367 GRO_HELD,
368 GRO_NORMAL,
369 GRO_DROP,
370 GRO_CONSUMED,
371 };
372 typedef enum gro_result gro_result_t;
373
374 /*
375 * enum rx_handler_result - Possible return values for rx_handlers.
376 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
377 * further.
378 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
379 * case skb->dev was changed by rx_handler.
380 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
381 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
382 *
383 * rx_handlers are functions called from inside __netif_receive_skb(), to do
384 * special processing of the skb, prior to delivery to protocol handlers.
385 *
386 * Currently, a net_device can only have a single rx_handler registered. Trying
387 * to register a second rx_handler will return -EBUSY.
388 *
389 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
390 * To unregister a rx_handler on a net_device, use
391 * netdev_rx_handler_unregister().
392 *
393 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
394 * do with the skb.
395 *
396 * If the rx_handler consumed the skb in some way, it should return
397 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
398 * the skb to be delivered in some other way.
399 *
400 * If the rx_handler changed skb->dev, to divert the skb to another
401 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
402 * new device will be called if it exists.
403 *
404 * If the rx_handler decides the skb should be ignored, it should return
405 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
406 * are registered on exact device (ptype->dev == skb->dev).
407 *
408 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
409 * delivered, it should return RX_HANDLER_PASS.
410 *
411 * A device without a registered rx_handler will behave as if rx_handler
412 * returned RX_HANDLER_PASS.
413 */
414
415 enum rx_handler_result {
416 RX_HANDLER_CONSUMED,
417 RX_HANDLER_ANOTHER,
418 RX_HANDLER_EXACT,
419 RX_HANDLER_PASS,
420 };
421 typedef enum rx_handler_result rx_handler_result_t;
422 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
423
424 void __napi_schedule(struct napi_struct *n);
425 void __napi_schedule_irqoff(struct napi_struct *n);
426
napi_disable_pending(struct napi_struct * n)427 static inline bool napi_disable_pending(struct napi_struct *n)
428 {
429 return test_bit(NAPI_STATE_DISABLE, &n->state);
430 }
431
432 bool napi_schedule_prep(struct napi_struct *n);
433
434 /**
435 * napi_schedule - schedule NAPI poll
436 * @n: NAPI context
437 *
438 * Schedule NAPI poll routine to be called if it is not already
439 * running.
440 */
napi_schedule(struct napi_struct * n)441 static inline void napi_schedule(struct napi_struct *n)
442 {
443 if (napi_schedule_prep(n))
444 __napi_schedule(n);
445 }
446
447 /**
448 * napi_schedule_irqoff - schedule NAPI poll
449 * @n: NAPI context
450 *
451 * Variant of napi_schedule(), assuming hard irqs are masked.
452 */
napi_schedule_irqoff(struct napi_struct * n)453 static inline void napi_schedule_irqoff(struct napi_struct *n)
454 {
455 if (napi_schedule_prep(n))
456 __napi_schedule_irqoff(n);
457 }
458
459 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
napi_reschedule(struct napi_struct * napi)460 static inline bool napi_reschedule(struct napi_struct *napi)
461 {
462 if (napi_schedule_prep(napi)) {
463 __napi_schedule(napi);
464 return true;
465 }
466 return false;
467 }
468
469 bool napi_complete_done(struct napi_struct *n, int work_done);
470 /**
471 * napi_complete - NAPI processing complete
472 * @n: NAPI context
473 *
474 * Mark NAPI processing as complete.
475 * Consider using napi_complete_done() instead.
476 * Return false if device should avoid rearming interrupts.
477 */
napi_complete(struct napi_struct * n)478 static inline bool napi_complete(struct napi_struct *n)
479 {
480 return napi_complete_done(n, 0);
481 }
482
483 /**
484 * napi_hash_del - remove a NAPI from global table
485 * @napi: NAPI context
486 *
487 * Warning: caller must observe RCU grace period
488 * before freeing memory containing @napi, if
489 * this function returns true.
490 * Note: core networking stack automatically calls it
491 * from netif_napi_del().
492 * Drivers might want to call this helper to combine all
493 * the needed RCU grace periods into a single one.
494 */
495 bool napi_hash_del(struct napi_struct *napi);
496
497 /**
498 * napi_disable - prevent NAPI from scheduling
499 * @n: NAPI context
500 *
501 * Stop NAPI from being scheduled on this context.
502 * Waits till any outstanding processing completes.
503 */
504 void napi_disable(struct napi_struct *n);
505
506 /**
507 * napi_enable - enable NAPI scheduling
508 * @n: NAPI context
509 *
510 * Resume NAPI from being scheduled on this context.
511 * Must be paired with napi_disable.
512 */
napi_enable(struct napi_struct * n)513 static inline void napi_enable(struct napi_struct *n)
514 {
515 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
516 smp_mb__before_atomic();
517 clear_bit(NAPI_STATE_SCHED, &n->state);
518 clear_bit(NAPI_STATE_NPSVC, &n->state);
519 }
520
521 /**
522 * napi_synchronize - wait until NAPI is not running
523 * @n: NAPI context
524 *
525 * Wait until NAPI is done being scheduled on this context.
526 * Waits till any outstanding processing completes but
527 * does not disable future activations.
528 */
napi_synchronize(const struct napi_struct * n)529 static inline void napi_synchronize(const struct napi_struct *n)
530 {
531 if (IS_ENABLED(CONFIG_SMP))
532 while (test_bit(NAPI_STATE_SCHED, &n->state))
533 msleep(1);
534 else
535 barrier();
536 }
537
538 enum netdev_queue_state_t {
539 __QUEUE_STATE_DRV_XOFF,
540 __QUEUE_STATE_STACK_XOFF,
541 __QUEUE_STATE_FROZEN,
542 };
543
544 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
545 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
546 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
547
548 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
549 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
550 QUEUE_STATE_FROZEN)
551 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
552 QUEUE_STATE_FROZEN)
553
554 /*
555 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
556 * netif_tx_* functions below are used to manipulate this flag. The
557 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
558 * queue independently. The netif_xmit_*stopped functions below are called
559 * to check if the queue has been stopped by the driver or stack (either
560 * of the XOFF bits are set in the state). Drivers should not need to call
561 * netif_xmit*stopped functions, they should only be using netif_tx_*.
562 */
563
564 struct netdev_queue {
565 /*
566 * read-mostly part
567 */
568 struct net_device *dev;
569 struct Qdisc __rcu *qdisc;
570 struct Qdisc *qdisc_sleeping;
571 #ifdef CONFIG_SYSFS
572 struct kobject kobj;
573 #endif
574 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
575 int numa_node;
576 #endif
577 unsigned long tx_maxrate;
578 /*
579 * Number of TX timeouts for this queue
580 * (/sys/class/net/DEV/Q/trans_timeout)
581 */
582 unsigned long trans_timeout;
583
584 /* Subordinate device that the queue has been assigned to */
585 struct net_device *sb_dev;
586 /*
587 * write-mostly part
588 */
589 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
590 int xmit_lock_owner;
591 /*
592 * Time (in jiffies) of last Tx
593 */
594 unsigned long trans_start;
595
596 unsigned long state;
597
598 #ifdef CONFIG_BQL
599 struct dql dql;
600 #endif
601 } ____cacheline_aligned_in_smp;
602
603 extern int sysctl_fb_tunnels_only_for_init_net;
604
net_has_fallback_tunnels(const struct net * net)605 static inline bool net_has_fallback_tunnels(const struct net *net)
606 {
607 return net == &init_net ||
608 !IS_ENABLED(CONFIG_SYSCTL) ||
609 !sysctl_fb_tunnels_only_for_init_net;
610 }
611
netdev_queue_numa_node_read(const struct netdev_queue * q)612 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
613 {
614 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
615 return q->numa_node;
616 #else
617 return NUMA_NO_NODE;
618 #endif
619 }
620
netdev_queue_numa_node_write(struct netdev_queue * q,int node)621 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
622 {
623 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
624 q->numa_node = node;
625 #endif
626 }
627
628 #ifdef CONFIG_RPS
629 /*
630 * This structure holds an RPS map which can be of variable length. The
631 * map is an array of CPUs.
632 */
633 struct rps_map {
634 unsigned int len;
635 struct rcu_head rcu;
636 u16 cpus[0];
637 };
638 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
639
640 /*
641 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
642 * tail pointer for that CPU's input queue at the time of last enqueue, and
643 * a hardware filter index.
644 */
645 struct rps_dev_flow {
646 u16 cpu;
647 u16 filter;
648 unsigned int last_qtail;
649 };
650 #define RPS_NO_FILTER 0xffff
651
652 /*
653 * The rps_dev_flow_table structure contains a table of flow mappings.
654 */
655 struct rps_dev_flow_table {
656 unsigned int mask;
657 struct rcu_head rcu;
658 struct rps_dev_flow flows[0];
659 };
660 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
661 ((_num) * sizeof(struct rps_dev_flow)))
662
663 /*
664 * The rps_sock_flow_table contains mappings of flows to the last CPU
665 * on which they were processed by the application (set in recvmsg).
666 * Each entry is a 32bit value. Upper part is the high-order bits
667 * of flow hash, lower part is CPU number.
668 * rps_cpu_mask is used to partition the space, depending on number of
669 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
670 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
671 * meaning we use 32-6=26 bits for the hash.
672 */
673 struct rps_sock_flow_table {
674 u32 mask;
675
676 u32 ents[0] ____cacheline_aligned_in_smp;
677 };
678 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
679
680 #define RPS_NO_CPU 0xffff
681
682 extern u32 rps_cpu_mask;
683 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
684
rps_record_sock_flow(struct rps_sock_flow_table * table,u32 hash)685 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
686 u32 hash)
687 {
688 if (table && hash) {
689 unsigned int index = hash & table->mask;
690 u32 val = hash & ~rps_cpu_mask;
691
692 /* We only give a hint, preemption can change CPU under us */
693 val |= raw_smp_processor_id();
694
695 if (table->ents[index] != val)
696 table->ents[index] = val;
697 }
698 }
699
700 #ifdef CONFIG_RFS_ACCEL
701 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
702 u16 filter_id);
703 #endif
704 #endif /* CONFIG_RPS */
705
706 /* This structure contains an instance of an RX queue. */
707 struct netdev_rx_queue {
708 #ifdef CONFIG_RPS
709 struct rps_map __rcu *rps_map;
710 struct rps_dev_flow_table __rcu *rps_flow_table;
711 #endif
712 struct kobject kobj;
713 struct net_device *dev;
714 struct xdp_rxq_info xdp_rxq;
715 } ____cacheline_aligned_in_smp;
716
717 /*
718 * RX queue sysfs structures and functions.
719 */
720 struct rx_queue_attribute {
721 struct attribute attr;
722 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
723 ssize_t (*store)(struct netdev_rx_queue *queue,
724 const char *buf, size_t len);
725 };
726
727 #ifdef CONFIG_XPS
728 /*
729 * This structure holds an XPS map which can be of variable length. The
730 * map is an array of queues.
731 */
732 struct xps_map {
733 unsigned int len;
734 unsigned int alloc_len;
735 struct rcu_head rcu;
736 u16 queues[0];
737 };
738 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
739 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
740 - sizeof(struct xps_map)) / sizeof(u16))
741
742 /*
743 * This structure holds all XPS maps for device. Maps are indexed by CPU.
744 */
745 struct xps_dev_maps {
746 struct rcu_head rcu;
747 struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */
748 };
749
750 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \
751 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
752
753 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
754 (_rxqs * (_tcs) * sizeof(struct xps_map *)))
755
756 #endif /* CONFIG_XPS */
757
758 #define TC_MAX_QUEUE 16
759 #define TC_BITMASK 15
760 /* HW offloaded queuing disciplines txq count and offset maps */
761 struct netdev_tc_txq {
762 u16 count;
763 u16 offset;
764 };
765
766 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
767 /*
768 * This structure is to hold information about the device
769 * configured to run FCoE protocol stack.
770 */
771 struct netdev_fcoe_hbainfo {
772 char manufacturer[64];
773 char serial_number[64];
774 char hardware_version[64];
775 char driver_version[64];
776 char optionrom_version[64];
777 char firmware_version[64];
778 char model[256];
779 char model_description[256];
780 };
781 #endif
782
783 #define MAX_PHYS_ITEM_ID_LEN 32
784
785 /* This structure holds a unique identifier to identify some
786 * physical item (port for example) used by a netdevice.
787 */
788 struct netdev_phys_item_id {
789 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
790 unsigned char id_len;
791 };
792
netdev_phys_item_id_same(struct netdev_phys_item_id * a,struct netdev_phys_item_id * b)793 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
794 struct netdev_phys_item_id *b)
795 {
796 return a->id_len == b->id_len &&
797 memcmp(a->id, b->id, a->id_len) == 0;
798 }
799
800 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
801 struct sk_buff *skb,
802 struct net_device *sb_dev);
803
804 enum tc_setup_type {
805 TC_SETUP_QDISC_MQPRIO,
806 TC_SETUP_CLSU32,
807 TC_SETUP_CLSFLOWER,
808 TC_SETUP_CLSMATCHALL,
809 TC_SETUP_CLSBPF,
810 TC_SETUP_BLOCK,
811 TC_SETUP_QDISC_CBS,
812 TC_SETUP_QDISC_RED,
813 TC_SETUP_QDISC_PRIO,
814 TC_SETUP_QDISC_MQ,
815 TC_SETUP_QDISC_ETF,
816 };
817
818 /* These structures hold the attributes of bpf state that are being passed
819 * to the netdevice through the bpf op.
820 */
821 enum bpf_netdev_command {
822 /* Set or clear a bpf program used in the earliest stages of packet
823 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
824 * is responsible for calling bpf_prog_put on any old progs that are
825 * stored. In case of error, the callee need not release the new prog
826 * reference, but on success it takes ownership and must bpf_prog_put
827 * when it is no longer used.
828 */
829 XDP_SETUP_PROG,
830 XDP_SETUP_PROG_HW,
831 XDP_QUERY_PROG,
832 XDP_QUERY_PROG_HW,
833 /* BPF program for offload callbacks, invoked at program load time. */
834 BPF_OFFLOAD_VERIFIER_PREP,
835 BPF_OFFLOAD_TRANSLATE,
836 BPF_OFFLOAD_DESTROY,
837 BPF_OFFLOAD_MAP_ALLOC,
838 BPF_OFFLOAD_MAP_FREE,
839 XDP_QUERY_XSK_UMEM,
840 XDP_SETUP_XSK_UMEM,
841 };
842
843 struct bpf_prog_offload_ops;
844 struct netlink_ext_ack;
845 struct xdp_umem;
846
847 struct netdev_bpf {
848 enum bpf_netdev_command command;
849 union {
850 /* XDP_SETUP_PROG */
851 struct {
852 u32 flags;
853 struct bpf_prog *prog;
854 struct netlink_ext_ack *extack;
855 };
856 /* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */
857 struct {
858 u32 prog_id;
859 /* flags with which program was installed */
860 u32 prog_flags;
861 };
862 /* BPF_OFFLOAD_VERIFIER_PREP */
863 struct {
864 struct bpf_prog *prog;
865 const struct bpf_prog_offload_ops *ops; /* callee set */
866 } verifier;
867 /* BPF_OFFLOAD_TRANSLATE, BPF_OFFLOAD_DESTROY */
868 struct {
869 struct bpf_prog *prog;
870 } offload;
871 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
872 struct {
873 struct bpf_offloaded_map *offmap;
874 };
875 /* XDP_QUERY_XSK_UMEM, XDP_SETUP_XSK_UMEM */
876 struct {
877 struct xdp_umem *umem; /* out for query*/
878 u16 queue_id; /* in for query */
879 } xsk;
880 };
881 };
882
883 #ifdef CONFIG_XFRM_OFFLOAD
884 struct xfrmdev_ops {
885 int (*xdo_dev_state_add) (struct xfrm_state *x);
886 void (*xdo_dev_state_delete) (struct xfrm_state *x);
887 void (*xdo_dev_state_free) (struct xfrm_state *x);
888 bool (*xdo_dev_offload_ok) (struct sk_buff *skb,
889 struct xfrm_state *x);
890 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x);
891 };
892 #endif
893
894 #if IS_ENABLED(CONFIG_TLS_DEVICE)
895 enum tls_offload_ctx_dir {
896 TLS_OFFLOAD_CTX_DIR_RX,
897 TLS_OFFLOAD_CTX_DIR_TX,
898 };
899
900 struct tls_crypto_info;
901 struct tls_context;
902
903 struct tlsdev_ops {
904 int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
905 enum tls_offload_ctx_dir direction,
906 struct tls_crypto_info *crypto_info,
907 u32 start_offload_tcp_sn);
908 void (*tls_dev_del)(struct net_device *netdev,
909 struct tls_context *ctx,
910 enum tls_offload_ctx_dir direction);
911 void (*tls_dev_resync_rx)(struct net_device *netdev,
912 struct sock *sk, u32 seq, u64 rcd_sn);
913 };
914 #endif
915
916 struct dev_ifalias {
917 struct rcu_head rcuhead;
918 char ifalias[];
919 };
920
921 /*
922 * This structure defines the management hooks for network devices.
923 * The following hooks can be defined; unless noted otherwise, they are
924 * optional and can be filled with a null pointer.
925 *
926 * int (*ndo_init)(struct net_device *dev);
927 * This function is called once when a network device is registered.
928 * The network device can use this for any late stage initialization
929 * or semantic validation. It can fail with an error code which will
930 * be propagated back to register_netdev.
931 *
932 * void (*ndo_uninit)(struct net_device *dev);
933 * This function is called when device is unregistered or when registration
934 * fails. It is not called if init fails.
935 *
936 * int (*ndo_open)(struct net_device *dev);
937 * This function is called when a network device transitions to the up
938 * state.
939 *
940 * int (*ndo_stop)(struct net_device *dev);
941 * This function is called when a network device transitions to the down
942 * state.
943 *
944 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
945 * struct net_device *dev);
946 * Called when a packet needs to be transmitted.
947 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
948 * the queue before that can happen; it's for obsolete devices and weird
949 * corner cases, but the stack really does a non-trivial amount
950 * of useless work if you return NETDEV_TX_BUSY.
951 * Required; cannot be NULL.
952 *
953 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
954 * struct net_device *dev
955 * netdev_features_t features);
956 * Called by core transmit path to determine if device is capable of
957 * performing offload operations on a given packet. This is to give
958 * the device an opportunity to implement any restrictions that cannot
959 * be otherwise expressed by feature flags. The check is called with
960 * the set of features that the stack has calculated and it returns
961 * those the driver believes to be appropriate.
962 *
963 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
964 * struct net_device *sb_dev,
965 * select_queue_fallback_t fallback);
966 * Called to decide which queue to use when device supports multiple
967 * transmit queues.
968 *
969 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
970 * This function is called to allow device receiver to make
971 * changes to configuration when multicast or promiscuous is enabled.
972 *
973 * void (*ndo_set_rx_mode)(struct net_device *dev);
974 * This function is called device changes address list filtering.
975 * If driver handles unicast address filtering, it should set
976 * IFF_UNICAST_FLT in its priv_flags.
977 *
978 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
979 * This function is called when the Media Access Control address
980 * needs to be changed. If this interface is not defined, the
981 * MAC address can not be changed.
982 *
983 * int (*ndo_validate_addr)(struct net_device *dev);
984 * Test if Media Access Control address is valid for the device.
985 *
986 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
987 * Called when a user requests an ioctl which can't be handled by
988 * the generic interface code. If not defined ioctls return
989 * not supported error code.
990 *
991 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
992 * Used to set network devices bus interface parameters. This interface
993 * is retained for legacy reasons; new devices should use the bus
994 * interface (PCI) for low level management.
995 *
996 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
997 * Called when a user wants to change the Maximum Transfer Unit
998 * of a device.
999 *
1000 * void (*ndo_tx_timeout)(struct net_device *dev);
1001 * Callback used when the transmitter has not made any progress
1002 * for dev->watchdog ticks.
1003 *
1004 * void (*ndo_get_stats64)(struct net_device *dev,
1005 * struct rtnl_link_stats64 *storage);
1006 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1007 * Called when a user wants to get the network device usage
1008 * statistics. Drivers must do one of the following:
1009 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
1010 * rtnl_link_stats64 structure passed by the caller.
1011 * 2. Define @ndo_get_stats to update a net_device_stats structure
1012 * (which should normally be dev->stats) and return a pointer to
1013 * it. The structure may be changed asynchronously only if each
1014 * field is written atomically.
1015 * 3. Update dev->stats asynchronously and atomically, and define
1016 * neither operation.
1017 *
1018 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1019 * Return true if this device supports offload stats of this attr_id.
1020 *
1021 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1022 * void *attr_data)
1023 * Get statistics for offload operations by attr_id. Write it into the
1024 * attr_data pointer.
1025 *
1026 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1027 * If device supports VLAN filtering this function is called when a
1028 * VLAN id is registered.
1029 *
1030 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1031 * If device supports VLAN filtering this function is called when a
1032 * VLAN id is unregistered.
1033 *
1034 * void (*ndo_poll_controller)(struct net_device *dev);
1035 *
1036 * SR-IOV management functions.
1037 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1038 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1039 * u8 qos, __be16 proto);
1040 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1041 * int max_tx_rate);
1042 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1043 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1044 * int (*ndo_get_vf_config)(struct net_device *dev,
1045 * int vf, struct ifla_vf_info *ivf);
1046 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1047 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1048 * struct nlattr *port[]);
1049 *
1050 * Enable or disable the VF ability to query its RSS Redirection Table and
1051 * Hash Key. This is needed since on some devices VF share this information
1052 * with PF and querying it may introduce a theoretical security risk.
1053 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1054 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1055 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1056 * void *type_data);
1057 * Called to setup any 'tc' scheduler, classifier or action on @dev.
1058 * This is always called from the stack with the rtnl lock held and netif
1059 * tx queues stopped. This allows the netdevice to perform queue
1060 * management safely.
1061 *
1062 * Fiber Channel over Ethernet (FCoE) offload functions.
1063 * int (*ndo_fcoe_enable)(struct net_device *dev);
1064 * Called when the FCoE protocol stack wants to start using LLD for FCoE
1065 * so the underlying device can perform whatever needed configuration or
1066 * initialization to support acceleration of FCoE traffic.
1067 *
1068 * int (*ndo_fcoe_disable)(struct net_device *dev);
1069 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
1070 * so the underlying device can perform whatever needed clean-ups to
1071 * stop supporting acceleration of FCoE traffic.
1072 *
1073 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1074 * struct scatterlist *sgl, unsigned int sgc);
1075 * Called when the FCoE Initiator wants to initialize an I/O that
1076 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1077 * perform necessary setup and returns 1 to indicate the device is set up
1078 * successfully to perform DDP on this I/O, otherwise this returns 0.
1079 *
1080 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
1081 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
1082 * indicated by the FC exchange id 'xid', so the underlying device can
1083 * clean up and reuse resources for later DDP requests.
1084 *
1085 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1086 * struct scatterlist *sgl, unsigned int sgc);
1087 * Called when the FCoE Target wants to initialize an I/O that
1088 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1089 * perform necessary setup and returns 1 to indicate the device is set up
1090 * successfully to perform DDP on this I/O, otherwise this returns 0.
1091 *
1092 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1093 * struct netdev_fcoe_hbainfo *hbainfo);
1094 * Called when the FCoE Protocol stack wants information on the underlying
1095 * device. This information is utilized by the FCoE protocol stack to
1096 * register attributes with Fiber Channel management service as per the
1097 * FC-GS Fabric Device Management Information(FDMI) specification.
1098 *
1099 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1100 * Called when the underlying device wants to override default World Wide
1101 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1102 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1103 * protocol stack to use.
1104 *
1105 * RFS acceleration.
1106 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1107 * u16 rxq_index, u32 flow_id);
1108 * Set hardware filter for RFS. rxq_index is the target queue index;
1109 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1110 * Return the filter ID on success, or a negative error code.
1111 *
1112 * Slave management functions (for bridge, bonding, etc).
1113 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1114 * Called to make another netdev an underling.
1115 *
1116 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1117 * Called to release previously enslaved netdev.
1118 *
1119 * Feature/offload setting functions.
1120 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1121 * netdev_features_t features);
1122 * Adjusts the requested feature flags according to device-specific
1123 * constraints, and returns the resulting flags. Must not modify
1124 * the device state.
1125 *
1126 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1127 * Called to update device configuration to new features. Passed
1128 * feature set might be less than what was returned by ndo_fix_features()).
1129 * Must return >0 or -errno if it changed dev->features itself.
1130 *
1131 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1132 * struct net_device *dev,
1133 * const unsigned char *addr, u16 vid, u16 flags)
1134 * Adds an FDB entry to dev for addr.
1135 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1136 * struct net_device *dev,
1137 * const unsigned char *addr, u16 vid)
1138 * Deletes the FDB entry from dev coresponding to addr.
1139 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1140 * struct net_device *dev, struct net_device *filter_dev,
1141 * int *idx)
1142 * Used to add FDB entries to dump requests. Implementers should add
1143 * entries to skb and update idx with the number of entries.
1144 *
1145 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1146 * u16 flags)
1147 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1148 * struct net_device *dev, u32 filter_mask,
1149 * int nlflags)
1150 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1151 * u16 flags);
1152 *
1153 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1154 * Called to change device carrier. Soft-devices (like dummy, team, etc)
1155 * which do not represent real hardware may define this to allow their
1156 * userspace components to manage their virtual carrier state. Devices
1157 * that determine carrier state from physical hardware properties (eg
1158 * network cables) or protocol-dependent mechanisms (eg
1159 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1160 *
1161 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1162 * struct netdev_phys_item_id *ppid);
1163 * Called to get ID of physical port of this device. If driver does
1164 * not implement this, it is assumed that the hw is not able to have
1165 * multiple net devices on single physical port.
1166 *
1167 * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1168 * struct udp_tunnel_info *ti);
1169 * Called by UDP tunnel to notify a driver about the UDP port and socket
1170 * address family that a UDP tunnel is listnening to. It is called only
1171 * when a new port starts listening. The operation is protected by the
1172 * RTNL.
1173 *
1174 * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1175 * struct udp_tunnel_info *ti);
1176 * Called by UDP tunnel to notify the driver about a UDP port and socket
1177 * address family that the UDP tunnel is not listening to anymore. The
1178 * operation is protected by the RTNL.
1179 *
1180 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1181 * struct net_device *dev)
1182 * Called by upper layer devices to accelerate switching or other
1183 * station functionality into hardware. 'pdev is the lowerdev
1184 * to use for the offload and 'dev' is the net device that will
1185 * back the offload. Returns a pointer to the private structure
1186 * the upper layer will maintain.
1187 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1188 * Called by upper layer device to delete the station created
1189 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1190 * the station and priv is the structure returned by the add
1191 * operation.
1192 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1193 * int queue_index, u32 maxrate);
1194 * Called when a user wants to set a max-rate limitation of specific
1195 * TX queue.
1196 * int (*ndo_get_iflink)(const struct net_device *dev);
1197 * Called to get the iflink value of this device.
1198 * void (*ndo_change_proto_down)(struct net_device *dev,
1199 * bool proto_down);
1200 * This function is used to pass protocol port error state information
1201 * to the switch driver. The switch driver can react to the proto_down
1202 * by doing a phys down on the associated switch port.
1203 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1204 * This function is used to get egress tunnel information for given skb.
1205 * This is useful for retrieving outer tunnel header parameters while
1206 * sampling packet.
1207 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1208 * This function is used to specify the headroom that the skb must
1209 * consider when allocation skb during packet reception. Setting
1210 * appropriate rx headroom value allows avoiding skb head copy on
1211 * forward. Setting a negative value resets the rx headroom to the
1212 * default value.
1213 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1214 * This function is used to set or query state related to XDP on the
1215 * netdevice and manage BPF offload. See definition of
1216 * enum bpf_netdev_command for details.
1217 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1218 * u32 flags);
1219 * This function is used to submit @n XDP packets for transmit on a
1220 * netdevice. Returns number of frames successfully transmitted, frames
1221 * that got dropped are freed/returned via xdp_return_frame().
1222 * Returns negative number, means general error invoking ndo, meaning
1223 * no frames were xmit'ed and core-caller will free all frames.
1224 */
1225 struct net_device_ops {
1226 int (*ndo_init)(struct net_device *dev);
1227 void (*ndo_uninit)(struct net_device *dev);
1228 int (*ndo_open)(struct net_device *dev);
1229 int (*ndo_stop)(struct net_device *dev);
1230 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1231 struct net_device *dev);
1232 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1233 struct net_device *dev,
1234 netdev_features_t features);
1235 u16 (*ndo_select_queue)(struct net_device *dev,
1236 struct sk_buff *skb,
1237 struct net_device *sb_dev,
1238 select_queue_fallback_t fallback);
1239 void (*ndo_change_rx_flags)(struct net_device *dev,
1240 int flags);
1241 void (*ndo_set_rx_mode)(struct net_device *dev);
1242 int (*ndo_set_mac_address)(struct net_device *dev,
1243 void *addr);
1244 int (*ndo_validate_addr)(struct net_device *dev);
1245 int (*ndo_do_ioctl)(struct net_device *dev,
1246 struct ifreq *ifr, int cmd);
1247 int (*ndo_set_config)(struct net_device *dev,
1248 struct ifmap *map);
1249 int (*ndo_change_mtu)(struct net_device *dev,
1250 int new_mtu);
1251 int (*ndo_neigh_setup)(struct net_device *dev,
1252 struct neigh_parms *);
1253 void (*ndo_tx_timeout) (struct net_device *dev);
1254
1255 void (*ndo_get_stats64)(struct net_device *dev,
1256 struct rtnl_link_stats64 *storage);
1257 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1258 int (*ndo_get_offload_stats)(int attr_id,
1259 const struct net_device *dev,
1260 void *attr_data);
1261 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1262
1263 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1264 __be16 proto, u16 vid);
1265 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1266 __be16 proto, u16 vid);
1267 #ifdef CONFIG_NET_POLL_CONTROLLER
1268 void (*ndo_poll_controller)(struct net_device *dev);
1269 int (*ndo_netpoll_setup)(struct net_device *dev,
1270 struct netpoll_info *info);
1271 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1272 #endif
1273 int (*ndo_set_vf_mac)(struct net_device *dev,
1274 int queue, u8 *mac);
1275 int (*ndo_set_vf_vlan)(struct net_device *dev,
1276 int queue, u16 vlan,
1277 u8 qos, __be16 proto);
1278 int (*ndo_set_vf_rate)(struct net_device *dev,
1279 int vf, int min_tx_rate,
1280 int max_tx_rate);
1281 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1282 int vf, bool setting);
1283 int (*ndo_set_vf_trust)(struct net_device *dev,
1284 int vf, bool setting);
1285 int (*ndo_get_vf_config)(struct net_device *dev,
1286 int vf,
1287 struct ifla_vf_info *ivf);
1288 int (*ndo_set_vf_link_state)(struct net_device *dev,
1289 int vf, int link_state);
1290 int (*ndo_get_vf_stats)(struct net_device *dev,
1291 int vf,
1292 struct ifla_vf_stats
1293 *vf_stats);
1294 int (*ndo_set_vf_port)(struct net_device *dev,
1295 int vf,
1296 struct nlattr *port[]);
1297 int (*ndo_get_vf_port)(struct net_device *dev,
1298 int vf, struct sk_buff *skb);
1299 int (*ndo_set_vf_guid)(struct net_device *dev,
1300 int vf, u64 guid,
1301 int guid_type);
1302 int (*ndo_set_vf_rss_query_en)(
1303 struct net_device *dev,
1304 int vf, bool setting);
1305 int (*ndo_setup_tc)(struct net_device *dev,
1306 enum tc_setup_type type,
1307 void *type_data);
1308 #if IS_ENABLED(CONFIG_FCOE)
1309 int (*ndo_fcoe_enable)(struct net_device *dev);
1310 int (*ndo_fcoe_disable)(struct net_device *dev);
1311 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1312 u16 xid,
1313 struct scatterlist *sgl,
1314 unsigned int sgc);
1315 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1316 u16 xid);
1317 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1318 u16 xid,
1319 struct scatterlist *sgl,
1320 unsigned int sgc);
1321 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1322 struct netdev_fcoe_hbainfo *hbainfo);
1323 #endif
1324
1325 #if IS_ENABLED(CONFIG_LIBFCOE)
1326 #define NETDEV_FCOE_WWNN 0
1327 #define NETDEV_FCOE_WWPN 1
1328 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1329 u64 *wwn, int type);
1330 #endif
1331
1332 #ifdef CONFIG_RFS_ACCEL
1333 int (*ndo_rx_flow_steer)(struct net_device *dev,
1334 const struct sk_buff *skb,
1335 u16 rxq_index,
1336 u32 flow_id);
1337 #endif
1338 int (*ndo_add_slave)(struct net_device *dev,
1339 struct net_device *slave_dev,
1340 struct netlink_ext_ack *extack);
1341 int (*ndo_del_slave)(struct net_device *dev,
1342 struct net_device *slave_dev);
1343 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1344 netdev_features_t features);
1345 int (*ndo_set_features)(struct net_device *dev,
1346 netdev_features_t features);
1347 int (*ndo_neigh_construct)(struct net_device *dev,
1348 struct neighbour *n);
1349 void (*ndo_neigh_destroy)(struct net_device *dev,
1350 struct neighbour *n);
1351
1352 int (*ndo_fdb_add)(struct ndmsg *ndm,
1353 struct nlattr *tb[],
1354 struct net_device *dev,
1355 const unsigned char *addr,
1356 u16 vid,
1357 u16 flags);
1358 int (*ndo_fdb_del)(struct ndmsg *ndm,
1359 struct nlattr *tb[],
1360 struct net_device *dev,
1361 const unsigned char *addr,
1362 u16 vid);
1363 int (*ndo_fdb_dump)(struct sk_buff *skb,
1364 struct netlink_callback *cb,
1365 struct net_device *dev,
1366 struct net_device *filter_dev,
1367 int *idx);
1368
1369 int (*ndo_bridge_setlink)(struct net_device *dev,
1370 struct nlmsghdr *nlh,
1371 u16 flags);
1372 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1373 u32 pid, u32 seq,
1374 struct net_device *dev,
1375 u32 filter_mask,
1376 int nlflags);
1377 int (*ndo_bridge_dellink)(struct net_device *dev,
1378 struct nlmsghdr *nlh,
1379 u16 flags);
1380 int (*ndo_change_carrier)(struct net_device *dev,
1381 bool new_carrier);
1382 int (*ndo_get_phys_port_id)(struct net_device *dev,
1383 struct netdev_phys_item_id *ppid);
1384 int (*ndo_get_phys_port_name)(struct net_device *dev,
1385 char *name, size_t len);
1386 void (*ndo_udp_tunnel_add)(struct net_device *dev,
1387 struct udp_tunnel_info *ti);
1388 void (*ndo_udp_tunnel_del)(struct net_device *dev,
1389 struct udp_tunnel_info *ti);
1390 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1391 struct net_device *dev);
1392 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1393 void *priv);
1394
1395 int (*ndo_get_lock_subclass)(struct net_device *dev);
1396 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1397 int queue_index,
1398 u32 maxrate);
1399 int (*ndo_get_iflink)(const struct net_device *dev);
1400 int (*ndo_change_proto_down)(struct net_device *dev,
1401 bool proto_down);
1402 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1403 struct sk_buff *skb);
1404 void (*ndo_set_rx_headroom)(struct net_device *dev,
1405 int needed_headroom);
1406 int (*ndo_bpf)(struct net_device *dev,
1407 struct netdev_bpf *bpf);
1408 int (*ndo_xdp_xmit)(struct net_device *dev, int n,
1409 struct xdp_frame **xdp,
1410 u32 flags);
1411 int (*ndo_xsk_async_xmit)(struct net_device *dev,
1412 u32 queue_id);
1413 };
1414
1415 /**
1416 * enum net_device_priv_flags - &struct net_device priv_flags
1417 *
1418 * These are the &struct net_device, they are only set internally
1419 * by drivers and used in the kernel. These flags are invisible to
1420 * userspace; this means that the order of these flags can change
1421 * during any kernel release.
1422 *
1423 * You should have a pretty good reason to be extending these flags.
1424 *
1425 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1426 * @IFF_EBRIDGE: Ethernet bridging device
1427 * @IFF_BONDING: bonding master or slave
1428 * @IFF_ISATAP: ISATAP interface (RFC4214)
1429 * @IFF_WAN_HDLC: WAN HDLC device
1430 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1431 * release skb->dst
1432 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1433 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1434 * @IFF_MACVLAN_PORT: device used as macvlan port
1435 * @IFF_BRIDGE_PORT: device used as bridge port
1436 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1437 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1438 * @IFF_UNICAST_FLT: Supports unicast filtering
1439 * @IFF_TEAM_PORT: device used as team port
1440 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1441 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1442 * change when it's running
1443 * @IFF_MACVLAN: Macvlan device
1444 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1445 * underlying stacked devices
1446 * @IFF_L3MDEV_MASTER: device is an L3 master device
1447 * @IFF_NO_QUEUE: device can run without qdisc attached
1448 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1449 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1450 * @IFF_TEAM: device is a team device
1451 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1452 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1453 * entity (i.e. the master device for bridged veth)
1454 * @IFF_MACSEC: device is a MACsec device
1455 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1456 * @IFF_FAILOVER: device is a failover master device
1457 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1458 */
1459 enum netdev_priv_flags {
1460 IFF_802_1Q_VLAN = 1<<0,
1461 IFF_EBRIDGE = 1<<1,
1462 IFF_BONDING = 1<<2,
1463 IFF_ISATAP = 1<<3,
1464 IFF_WAN_HDLC = 1<<4,
1465 IFF_XMIT_DST_RELEASE = 1<<5,
1466 IFF_DONT_BRIDGE = 1<<6,
1467 IFF_DISABLE_NETPOLL = 1<<7,
1468 IFF_MACVLAN_PORT = 1<<8,
1469 IFF_BRIDGE_PORT = 1<<9,
1470 IFF_OVS_DATAPATH = 1<<10,
1471 IFF_TX_SKB_SHARING = 1<<11,
1472 IFF_UNICAST_FLT = 1<<12,
1473 IFF_TEAM_PORT = 1<<13,
1474 IFF_SUPP_NOFCS = 1<<14,
1475 IFF_LIVE_ADDR_CHANGE = 1<<15,
1476 IFF_MACVLAN = 1<<16,
1477 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1478 IFF_L3MDEV_MASTER = 1<<18,
1479 IFF_NO_QUEUE = 1<<19,
1480 IFF_OPENVSWITCH = 1<<20,
1481 IFF_L3MDEV_SLAVE = 1<<21,
1482 IFF_TEAM = 1<<22,
1483 IFF_RXFH_CONFIGURED = 1<<23,
1484 IFF_PHONY_HEADROOM = 1<<24,
1485 IFF_MACSEC = 1<<25,
1486 IFF_NO_RX_HANDLER = 1<<26,
1487 IFF_FAILOVER = 1<<27,
1488 IFF_FAILOVER_SLAVE = 1<<28,
1489 };
1490
1491 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1492 #define IFF_EBRIDGE IFF_EBRIDGE
1493 #define IFF_BONDING IFF_BONDING
1494 #define IFF_ISATAP IFF_ISATAP
1495 #define IFF_WAN_HDLC IFF_WAN_HDLC
1496 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1497 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1498 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1499 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1500 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1501 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1502 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1503 #define IFF_UNICAST_FLT IFF_UNICAST_FLT
1504 #define IFF_TEAM_PORT IFF_TEAM_PORT
1505 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1506 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1507 #define IFF_MACVLAN IFF_MACVLAN
1508 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1509 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1510 #define IFF_NO_QUEUE IFF_NO_QUEUE
1511 #define IFF_OPENVSWITCH IFF_OPENVSWITCH
1512 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1513 #define IFF_TEAM IFF_TEAM
1514 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED
1515 #define IFF_MACSEC IFF_MACSEC
1516 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER
1517 #define IFF_FAILOVER IFF_FAILOVER
1518 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE
1519
1520 /**
1521 * struct net_device - The DEVICE structure.
1522 *
1523 * Actually, this whole structure is a big mistake. It mixes I/O
1524 * data with strictly "high-level" data, and it has to know about
1525 * almost every data structure used in the INET module.
1526 *
1527 * @name: This is the first field of the "visible" part of this structure
1528 * (i.e. as seen by users in the "Space.c" file). It is the name
1529 * of the interface.
1530 *
1531 * @name_hlist: Device name hash chain, please keep it close to name[]
1532 * @ifalias: SNMP alias
1533 * @mem_end: Shared memory end
1534 * @mem_start: Shared memory start
1535 * @base_addr: Device I/O address
1536 * @irq: Device IRQ number
1537 *
1538 * @state: Generic network queuing layer state, see netdev_state_t
1539 * @dev_list: The global list of network devices
1540 * @napi_list: List entry used for polling NAPI devices
1541 * @unreg_list: List entry when we are unregistering the
1542 * device; see the function unregister_netdev
1543 * @close_list: List entry used when we are closing the device
1544 * @ptype_all: Device-specific packet handlers for all protocols
1545 * @ptype_specific: Device-specific, protocol-specific packet handlers
1546 *
1547 * @adj_list: Directly linked devices, like slaves for bonding
1548 * @features: Currently active device features
1549 * @hw_features: User-changeable features
1550 *
1551 * @wanted_features: User-requested features
1552 * @vlan_features: Mask of features inheritable by VLAN devices
1553 *
1554 * @hw_enc_features: Mask of features inherited by encapsulating devices
1555 * This field indicates what encapsulation
1556 * offloads the hardware is capable of doing,
1557 * and drivers will need to set them appropriately.
1558 *
1559 * @mpls_features: Mask of features inheritable by MPLS
1560 *
1561 * @ifindex: interface index
1562 * @group: The group the device belongs to
1563 *
1564 * @stats: Statistics struct, which was left as a legacy, use
1565 * rtnl_link_stats64 instead
1566 *
1567 * @rx_dropped: Dropped packets by core network,
1568 * do not use this in drivers
1569 * @tx_dropped: Dropped packets by core network,
1570 * do not use this in drivers
1571 * @rx_nohandler: nohandler dropped packets by core network on
1572 * inactive devices, do not use this in drivers
1573 * @carrier_up_count: Number of times the carrier has been up
1574 * @carrier_down_count: Number of times the carrier has been down
1575 *
1576 * @wireless_handlers: List of functions to handle Wireless Extensions,
1577 * instead of ioctl,
1578 * see <net/iw_handler.h> for details.
1579 * @wireless_data: Instance data managed by the core of wireless extensions
1580 *
1581 * @netdev_ops: Includes several pointers to callbacks,
1582 * if one wants to override the ndo_*() functions
1583 * @ethtool_ops: Management operations
1584 * @ndisc_ops: Includes callbacks for different IPv6 neighbour
1585 * discovery handling. Necessary for e.g. 6LoWPAN.
1586 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1587 * of Layer 2 headers.
1588 *
1589 * @flags: Interface flags (a la BSD)
1590 * @priv_flags: Like 'flags' but invisible to userspace,
1591 * see if.h for the definitions
1592 * @gflags: Global flags ( kept as legacy )
1593 * @padded: How much padding added by alloc_netdev()
1594 * @operstate: RFC2863 operstate
1595 * @link_mode: Mapping policy to operstate
1596 * @if_port: Selectable AUI, TP, ...
1597 * @dma: DMA channel
1598 * @mtu: Interface MTU value
1599 * @min_mtu: Interface Minimum MTU value
1600 * @max_mtu: Interface Maximum MTU value
1601 * @type: Interface hardware type
1602 * @hard_header_len: Maximum hardware header length.
1603 * @min_header_len: Minimum hardware header length
1604 *
1605 * @needed_headroom: Extra headroom the hardware may need, but not in all
1606 * cases can this be guaranteed
1607 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1608 * cases can this be guaranteed. Some cases also use
1609 * LL_MAX_HEADER instead to allocate the skb
1610 *
1611 * interface address info:
1612 *
1613 * @perm_addr: Permanent hw address
1614 * @addr_assign_type: Hw address assignment type
1615 * @addr_len: Hardware address length
1616 * @neigh_priv_len: Used in neigh_alloc()
1617 * @dev_id: Used to differentiate devices that share
1618 * the same link layer address
1619 * @dev_port: Used to differentiate devices that share
1620 * the same function
1621 * @addr_list_lock: XXX: need comments on this one
1622 * @uc_promisc: Counter that indicates promiscuous mode
1623 * has been enabled due to the need to listen to
1624 * additional unicast addresses in a device that
1625 * does not implement ndo_set_rx_mode()
1626 * @uc: unicast mac addresses
1627 * @mc: multicast mac addresses
1628 * @dev_addrs: list of device hw addresses
1629 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1630 * @promiscuity: Number of times the NIC is told to work in
1631 * promiscuous mode; if it becomes 0 the NIC will
1632 * exit promiscuous mode
1633 * @allmulti: Counter, enables or disables allmulticast mode
1634 *
1635 * @vlan_info: VLAN info
1636 * @dsa_ptr: dsa specific data
1637 * @tipc_ptr: TIPC specific data
1638 * @atalk_ptr: AppleTalk link
1639 * @ip_ptr: IPv4 specific data
1640 * @dn_ptr: DECnet specific data
1641 * @ip6_ptr: IPv6 specific data
1642 * @ax25_ptr: AX.25 specific data
1643 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1644 *
1645 * @dev_addr: Hw address (before bcast,
1646 * because most packets are unicast)
1647 *
1648 * @_rx: Array of RX queues
1649 * @num_rx_queues: Number of RX queues
1650 * allocated at register_netdev() time
1651 * @real_num_rx_queues: Number of RX queues currently active in device
1652 *
1653 * @rx_handler: handler for received packets
1654 * @rx_handler_data: XXX: need comments on this one
1655 * @miniq_ingress: ingress/clsact qdisc specific data for
1656 * ingress processing
1657 * @ingress_queue: XXX: need comments on this one
1658 * @broadcast: hw bcast address
1659 *
1660 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1661 * indexed by RX queue number. Assigned by driver.
1662 * This must only be set if the ndo_rx_flow_steer
1663 * operation is defined
1664 * @index_hlist: Device index hash chain
1665 *
1666 * @_tx: Array of TX queues
1667 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1668 * @real_num_tx_queues: Number of TX queues currently active in device
1669 * @qdisc: Root qdisc from userspace point of view
1670 * @tx_queue_len: Max frames per queue allowed
1671 * @tx_global_lock: XXX: need comments on this one
1672 *
1673 * @xps_maps: XXX: need comments on this one
1674 * @miniq_egress: clsact qdisc specific data for
1675 * egress processing
1676 * @watchdog_timeo: Represents the timeout that is used by
1677 * the watchdog (see dev_watchdog())
1678 * @watchdog_timer: List of timers
1679 *
1680 * @pcpu_refcnt: Number of references to this device
1681 * @todo_list: Delayed register/unregister
1682 * @link_watch_list: XXX: need comments on this one
1683 *
1684 * @reg_state: Register/unregister state machine
1685 * @dismantle: Device is going to be freed
1686 * @rtnl_link_state: This enum represents the phases of creating
1687 * a new link
1688 *
1689 * @needs_free_netdev: Should unregister perform free_netdev?
1690 * @priv_destructor: Called from unregister
1691 * @npinfo: XXX: need comments on this one
1692 * @nd_net: Network namespace this network device is inside
1693 *
1694 * @ml_priv: Mid-layer private
1695 * @lstats: Loopback statistics
1696 * @tstats: Tunnel statistics
1697 * @dstats: Dummy statistics
1698 * @vstats: Virtual ethernet statistics
1699 *
1700 * @garp_port: GARP
1701 * @mrp_port: MRP
1702 *
1703 * @dev: Class/net/name entry
1704 * @sysfs_groups: Space for optional device, statistics and wireless
1705 * sysfs groups
1706 *
1707 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1708 * @rtnl_link_ops: Rtnl_link_ops
1709 *
1710 * @gso_max_size: Maximum size of generic segmentation offload
1711 * @gso_max_segs: Maximum number of segments that can be passed to the
1712 * NIC for GSO
1713 *
1714 * @dcbnl_ops: Data Center Bridging netlink ops
1715 * @num_tc: Number of traffic classes in the net device
1716 * @tc_to_txq: XXX: need comments on this one
1717 * @prio_tc_map: XXX: need comments on this one
1718 *
1719 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1720 *
1721 * @priomap: XXX: need comments on this one
1722 * @phydev: Physical device may attach itself
1723 * for hardware timestamping
1724 * @sfp_bus: attached &struct sfp_bus structure.
1725 *
1726 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1727 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1728 *
1729 * @proto_down: protocol port state information can be sent to the
1730 * switch driver and used to set the phys state of the
1731 * switch port.
1732 *
1733 * @wol_enabled: Wake-on-LAN is enabled
1734 *
1735 * FIXME: cleanup struct net_device such that network protocol info
1736 * moves out.
1737 */
1738
1739 struct net_device {
1740 char name[IFNAMSIZ];
1741 struct hlist_node name_hlist;
1742 struct dev_ifalias __rcu *ifalias;
1743 /*
1744 * I/O specific fields
1745 * FIXME: Merge these and struct ifmap into one
1746 */
1747 unsigned long mem_end;
1748 unsigned long mem_start;
1749 unsigned long base_addr;
1750 int irq;
1751
1752 /*
1753 * Some hardware also needs these fields (state,dev_list,
1754 * napi_list,unreg_list,close_list) but they are not
1755 * part of the usual set specified in Space.c.
1756 */
1757
1758 unsigned long state;
1759
1760 struct list_head dev_list;
1761 struct list_head napi_list;
1762 struct list_head unreg_list;
1763 struct list_head close_list;
1764 struct list_head ptype_all;
1765 struct list_head ptype_specific;
1766
1767 struct {
1768 struct list_head upper;
1769 struct list_head lower;
1770 } adj_list;
1771
1772 netdev_features_t features;
1773 netdev_features_t hw_features;
1774 netdev_features_t wanted_features;
1775 netdev_features_t vlan_features;
1776 netdev_features_t hw_enc_features;
1777 netdev_features_t mpls_features;
1778 netdev_features_t gso_partial_features;
1779
1780 int ifindex;
1781 int group;
1782
1783 struct net_device_stats stats;
1784
1785 atomic_long_t rx_dropped;
1786 atomic_long_t tx_dropped;
1787 atomic_long_t rx_nohandler;
1788
1789 /* Stats to monitor link on/off, flapping */
1790 atomic_t carrier_up_count;
1791 atomic_t carrier_down_count;
1792
1793 #ifdef CONFIG_WIRELESS_EXT
1794 const struct iw_handler_def *wireless_handlers;
1795 struct iw_public_data *wireless_data;
1796 #endif
1797 const struct net_device_ops *netdev_ops;
1798 const struct ethtool_ops *ethtool_ops;
1799 #ifdef CONFIG_NET_SWITCHDEV
1800 const struct switchdev_ops *switchdev_ops;
1801 #endif
1802 #ifdef CONFIG_NET_L3_MASTER_DEV
1803 const struct l3mdev_ops *l3mdev_ops;
1804 #endif
1805 #if IS_ENABLED(CONFIG_IPV6)
1806 const struct ndisc_ops *ndisc_ops;
1807 #endif
1808
1809 #ifdef CONFIG_XFRM_OFFLOAD
1810 const struct xfrmdev_ops *xfrmdev_ops;
1811 #endif
1812
1813 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1814 const struct tlsdev_ops *tlsdev_ops;
1815 #endif
1816
1817 const struct header_ops *header_ops;
1818
1819 unsigned int flags;
1820 unsigned int priv_flags;
1821
1822 unsigned short gflags;
1823 unsigned short padded;
1824
1825 unsigned char operstate;
1826 unsigned char link_mode;
1827
1828 unsigned char if_port;
1829 unsigned char dma;
1830
1831 unsigned int mtu;
1832 unsigned int min_mtu;
1833 unsigned int max_mtu;
1834 unsigned short type;
1835 unsigned short hard_header_len;
1836 unsigned char min_header_len;
1837
1838 unsigned short needed_headroom;
1839 unsigned short needed_tailroom;
1840
1841 /* Interface address info. */
1842 unsigned char perm_addr[MAX_ADDR_LEN];
1843 unsigned char addr_assign_type;
1844 unsigned char addr_len;
1845 unsigned short neigh_priv_len;
1846 unsigned short dev_id;
1847 unsigned short dev_port;
1848 spinlock_t addr_list_lock;
1849 unsigned char name_assign_type;
1850 bool uc_promisc;
1851 struct netdev_hw_addr_list uc;
1852 struct netdev_hw_addr_list mc;
1853 struct netdev_hw_addr_list dev_addrs;
1854
1855 #ifdef CONFIG_SYSFS
1856 struct kset *queues_kset;
1857 #endif
1858 unsigned int promiscuity;
1859 unsigned int allmulti;
1860
1861
1862 /* Protocol-specific pointers */
1863
1864 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1865 struct vlan_info __rcu *vlan_info;
1866 #endif
1867 #if IS_ENABLED(CONFIG_NET_DSA)
1868 struct dsa_port *dsa_ptr;
1869 #endif
1870 #if IS_ENABLED(CONFIG_TIPC)
1871 struct tipc_bearer __rcu *tipc_ptr;
1872 #endif
1873 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1874 void *atalk_ptr;
1875 #endif
1876 struct in_device __rcu *ip_ptr;
1877 #if IS_ENABLED(CONFIG_DECNET)
1878 struct dn_dev __rcu *dn_ptr;
1879 #endif
1880 struct inet6_dev __rcu *ip6_ptr;
1881 #if IS_ENABLED(CONFIG_AX25)
1882 void *ax25_ptr;
1883 #endif
1884 struct wireless_dev *ieee80211_ptr;
1885 struct wpan_dev *ieee802154_ptr;
1886 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1887 struct mpls_dev __rcu *mpls_ptr;
1888 #endif
1889
1890 /*
1891 * Cache lines mostly used on receive path (including eth_type_trans())
1892 */
1893 /* Interface address info used in eth_type_trans() */
1894 unsigned char *dev_addr;
1895
1896 struct netdev_rx_queue *_rx;
1897 unsigned int num_rx_queues;
1898 unsigned int real_num_rx_queues;
1899
1900 struct bpf_prog __rcu *xdp_prog;
1901 unsigned long gro_flush_timeout;
1902 rx_handler_func_t __rcu *rx_handler;
1903 void __rcu *rx_handler_data;
1904
1905 #ifdef CONFIG_NET_CLS_ACT
1906 struct mini_Qdisc __rcu *miniq_ingress;
1907 #endif
1908 struct netdev_queue __rcu *ingress_queue;
1909 #ifdef CONFIG_NETFILTER_INGRESS
1910 struct nf_hook_entries __rcu *nf_hooks_ingress;
1911 #endif
1912
1913 unsigned char broadcast[MAX_ADDR_LEN];
1914 #ifdef CONFIG_RFS_ACCEL
1915 struct cpu_rmap *rx_cpu_rmap;
1916 #endif
1917 struct hlist_node index_hlist;
1918
1919 /*
1920 * Cache lines mostly used on transmit path
1921 */
1922 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1923 unsigned int num_tx_queues;
1924 unsigned int real_num_tx_queues;
1925 struct Qdisc *qdisc;
1926 #ifdef CONFIG_NET_SCHED
1927 DECLARE_HASHTABLE (qdisc_hash, 4);
1928 #endif
1929 unsigned int tx_queue_len;
1930 spinlock_t tx_global_lock;
1931 int watchdog_timeo;
1932
1933 #ifdef CONFIG_XPS
1934 struct xps_dev_maps __rcu *xps_cpus_map;
1935 struct xps_dev_maps __rcu *xps_rxqs_map;
1936 #endif
1937 #ifdef CONFIG_NET_CLS_ACT
1938 struct mini_Qdisc __rcu *miniq_egress;
1939 #endif
1940
1941 /* These may be needed for future network-power-down code. */
1942 struct timer_list watchdog_timer;
1943
1944 int __percpu *pcpu_refcnt;
1945 struct list_head todo_list;
1946
1947 struct list_head link_watch_list;
1948
1949 enum { NETREG_UNINITIALIZED=0,
1950 NETREG_REGISTERED, /* completed register_netdevice */
1951 NETREG_UNREGISTERING, /* called unregister_netdevice */
1952 NETREG_UNREGISTERED, /* completed unregister todo */
1953 NETREG_RELEASED, /* called free_netdev */
1954 NETREG_DUMMY, /* dummy device for NAPI poll */
1955 } reg_state:8;
1956
1957 bool dismantle;
1958
1959 enum {
1960 RTNL_LINK_INITIALIZED,
1961 RTNL_LINK_INITIALIZING,
1962 } rtnl_link_state:16;
1963
1964 bool needs_free_netdev;
1965 void (*priv_destructor)(struct net_device *dev);
1966
1967 #ifdef CONFIG_NETPOLL
1968 struct netpoll_info __rcu *npinfo;
1969 #endif
1970
1971 possible_net_t nd_net;
1972
1973 /* mid-layer private */
1974 union {
1975 void *ml_priv;
1976 struct pcpu_lstats __percpu *lstats;
1977 struct pcpu_sw_netstats __percpu *tstats;
1978 struct pcpu_dstats __percpu *dstats;
1979 struct pcpu_vstats __percpu *vstats;
1980 };
1981
1982 #if IS_ENABLED(CONFIG_GARP)
1983 struct garp_port __rcu *garp_port;
1984 #endif
1985 #if IS_ENABLED(CONFIG_MRP)
1986 struct mrp_port __rcu *mrp_port;
1987 #endif
1988
1989 struct device dev;
1990 const struct attribute_group *sysfs_groups[4];
1991 const struct attribute_group *sysfs_rx_queue_group;
1992
1993 const struct rtnl_link_ops *rtnl_link_ops;
1994
1995 /* for setting kernel sock attribute on TCP connection setup */
1996 #define GSO_MAX_SIZE 65536
1997 unsigned int gso_max_size;
1998 #define GSO_MAX_SEGS 65535
1999 u16 gso_max_segs;
2000
2001 #ifdef CONFIG_DCB
2002 const struct dcbnl_rtnl_ops *dcbnl_ops;
2003 #endif
2004 s16 num_tc;
2005 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
2006 u8 prio_tc_map[TC_BITMASK + 1];
2007
2008 #if IS_ENABLED(CONFIG_FCOE)
2009 unsigned int fcoe_ddp_xid;
2010 #endif
2011 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2012 struct netprio_map __rcu *priomap;
2013 #endif
2014 struct phy_device *phydev;
2015 struct sfp_bus *sfp_bus;
2016 struct lock_class_key *qdisc_tx_busylock;
2017 struct lock_class_key *qdisc_running_key;
2018 bool proto_down;
2019 unsigned wol_enabled:1;
2020 };
2021 #define to_net_dev(d) container_of(d, struct net_device, dev)
2022
netif_elide_gro(const struct net_device * dev)2023 static inline bool netif_elide_gro(const struct net_device *dev)
2024 {
2025 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2026 return true;
2027 return false;
2028 }
2029
2030 #define NETDEV_ALIGN 32
2031
2032 static inline
netdev_get_prio_tc_map(const struct net_device * dev,u32 prio)2033 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2034 {
2035 return dev->prio_tc_map[prio & TC_BITMASK];
2036 }
2037
2038 static inline
netdev_set_prio_tc_map(struct net_device * dev,u8 prio,u8 tc)2039 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2040 {
2041 if (tc >= dev->num_tc)
2042 return -EINVAL;
2043
2044 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2045 return 0;
2046 }
2047
2048 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2049 void netdev_reset_tc(struct net_device *dev);
2050 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2051 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2052
2053 static inline
netdev_get_num_tc(struct net_device * dev)2054 int netdev_get_num_tc(struct net_device *dev)
2055 {
2056 return dev->num_tc;
2057 }
2058
2059 void netdev_unbind_sb_channel(struct net_device *dev,
2060 struct net_device *sb_dev);
2061 int netdev_bind_sb_channel_queue(struct net_device *dev,
2062 struct net_device *sb_dev,
2063 u8 tc, u16 count, u16 offset);
2064 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
netdev_get_sb_channel(struct net_device * dev)2065 static inline int netdev_get_sb_channel(struct net_device *dev)
2066 {
2067 return max_t(int, -dev->num_tc, 0);
2068 }
2069
2070 static inline
netdev_get_tx_queue(const struct net_device * dev,unsigned int index)2071 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2072 unsigned int index)
2073 {
2074 return &dev->_tx[index];
2075 }
2076
skb_get_tx_queue(const struct net_device * dev,const struct sk_buff * skb)2077 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2078 const struct sk_buff *skb)
2079 {
2080 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2081 }
2082
netdev_for_each_tx_queue(struct net_device * dev,void (* f)(struct net_device *,struct netdev_queue *,void *),void * arg)2083 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2084 void (*f)(struct net_device *,
2085 struct netdev_queue *,
2086 void *),
2087 void *arg)
2088 {
2089 unsigned int i;
2090
2091 for (i = 0; i < dev->num_tx_queues; i++)
2092 f(dev, &dev->_tx[i], arg);
2093 }
2094
2095 #define netdev_lockdep_set_classes(dev) \
2096 { \
2097 static struct lock_class_key qdisc_tx_busylock_key; \
2098 static struct lock_class_key qdisc_running_key; \
2099 static struct lock_class_key qdisc_xmit_lock_key; \
2100 static struct lock_class_key dev_addr_list_lock_key; \
2101 unsigned int i; \
2102 \
2103 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \
2104 (dev)->qdisc_running_key = &qdisc_running_key; \
2105 lockdep_set_class(&(dev)->addr_list_lock, \
2106 &dev_addr_list_lock_key); \
2107 for (i = 0; i < (dev)->num_tx_queues; i++) \
2108 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \
2109 &qdisc_xmit_lock_key); \
2110 }
2111
2112 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2113 struct sk_buff *skb,
2114 struct net_device *sb_dev);
2115
2116 /* returns the headroom that the master device needs to take in account
2117 * when forwarding to this dev
2118 */
netdev_get_fwd_headroom(struct net_device * dev)2119 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2120 {
2121 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2122 }
2123
netdev_set_rx_headroom(struct net_device * dev,int new_hr)2124 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2125 {
2126 if (dev->netdev_ops->ndo_set_rx_headroom)
2127 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2128 }
2129
2130 /* set the device rx headroom to the dev's default */
netdev_reset_rx_headroom(struct net_device * dev)2131 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2132 {
2133 netdev_set_rx_headroom(dev, -1);
2134 }
2135
2136 /*
2137 * Net namespace inlines
2138 */
2139 static inline
dev_net(const struct net_device * dev)2140 struct net *dev_net(const struct net_device *dev)
2141 {
2142 return read_pnet(&dev->nd_net);
2143 }
2144
2145 static inline
dev_net_set(struct net_device * dev,struct net * net)2146 void dev_net_set(struct net_device *dev, struct net *net)
2147 {
2148 write_pnet(&dev->nd_net, net);
2149 }
2150
2151 /**
2152 * netdev_priv - access network device private data
2153 * @dev: network device
2154 *
2155 * Get network device private data
2156 */
netdev_priv(const struct net_device * dev)2157 static inline void *netdev_priv(const struct net_device *dev)
2158 {
2159 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2160 }
2161
2162 /* Set the sysfs physical device reference for the network logical device
2163 * if set prior to registration will cause a symlink during initialization.
2164 */
2165 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
2166
2167 /* Set the sysfs device type for the network logical device to allow
2168 * fine-grained identification of different network device types. For
2169 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2170 */
2171 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
2172
2173 /* Default NAPI poll() weight
2174 * Device drivers are strongly advised to not use bigger value
2175 */
2176 #define NAPI_POLL_WEIGHT 64
2177
2178 /**
2179 * netif_napi_add - initialize a NAPI context
2180 * @dev: network device
2181 * @napi: NAPI context
2182 * @poll: polling function
2183 * @weight: default weight
2184 *
2185 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2186 * *any* of the other NAPI-related functions.
2187 */
2188 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2189 int (*poll)(struct napi_struct *, int), int weight);
2190
2191 /**
2192 * netif_tx_napi_add - initialize a NAPI context
2193 * @dev: network device
2194 * @napi: NAPI context
2195 * @poll: polling function
2196 * @weight: default weight
2197 *
2198 * This variant of netif_napi_add() should be used from drivers using NAPI
2199 * to exclusively poll a TX queue.
2200 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2201 */
netif_tx_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)2202 static inline void netif_tx_napi_add(struct net_device *dev,
2203 struct napi_struct *napi,
2204 int (*poll)(struct napi_struct *, int),
2205 int weight)
2206 {
2207 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2208 netif_napi_add(dev, napi, poll, weight);
2209 }
2210
2211 /**
2212 * netif_napi_del - remove a NAPI context
2213 * @napi: NAPI context
2214 *
2215 * netif_napi_del() removes a NAPI context from the network device NAPI list
2216 */
2217 void netif_napi_del(struct napi_struct *napi);
2218
2219 struct napi_gro_cb {
2220 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2221 void *frag0;
2222
2223 /* Length of frag0. */
2224 unsigned int frag0_len;
2225
2226 /* This indicates where we are processing relative to skb->data. */
2227 int data_offset;
2228
2229 /* This is non-zero if the packet cannot be merged with the new skb. */
2230 u16 flush;
2231
2232 /* Save the IP ID here and check when we get to the transport layer */
2233 u16 flush_id;
2234
2235 /* Number of segments aggregated. */
2236 u16 count;
2237
2238 /* Start offset for remote checksum offload */
2239 u16 gro_remcsum_start;
2240
2241 /* jiffies when first packet was created/queued */
2242 unsigned long age;
2243
2244 /* Used in ipv6_gro_receive() and foo-over-udp */
2245 u16 proto;
2246
2247 /* This is non-zero if the packet may be of the same flow. */
2248 u8 same_flow:1;
2249
2250 /* Used in tunnel GRO receive */
2251 u8 encap_mark:1;
2252
2253 /* GRO checksum is valid */
2254 u8 csum_valid:1;
2255
2256 /* Number of checksums via CHECKSUM_UNNECESSARY */
2257 u8 csum_cnt:3;
2258
2259 /* Free the skb? */
2260 u8 free:2;
2261 #define NAPI_GRO_FREE 1
2262 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2263
2264 /* Used in foo-over-udp, set in udp[46]_gro_receive */
2265 u8 is_ipv6:1;
2266
2267 /* Used in GRE, set in fou/gue_gro_receive */
2268 u8 is_fou:1;
2269
2270 /* Used to determine if flush_id can be ignored */
2271 u8 is_atomic:1;
2272
2273 /* Number of gro_receive callbacks this packet already went through */
2274 u8 recursion_counter:4;
2275
2276 /* 1 bit hole */
2277
2278 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2279 __wsum csum;
2280
2281 /* used in skb_gro_receive() slow path */
2282 struct sk_buff *last;
2283 };
2284
2285 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2286
2287 #define GRO_RECURSION_LIMIT 15
gro_recursion_inc_test(struct sk_buff * skb)2288 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2289 {
2290 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2291 }
2292
2293 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2294 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2295 struct list_head *head,
2296 struct sk_buff *skb)
2297 {
2298 if (unlikely(gro_recursion_inc_test(skb))) {
2299 NAPI_GRO_CB(skb)->flush |= 1;
2300 return NULL;
2301 }
2302
2303 return cb(head, skb);
2304 }
2305
2306 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2307 struct sk_buff *);
2308 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2309 struct sock *sk,
2310 struct list_head *head,
2311 struct sk_buff *skb)
2312 {
2313 if (unlikely(gro_recursion_inc_test(skb))) {
2314 NAPI_GRO_CB(skb)->flush |= 1;
2315 return NULL;
2316 }
2317
2318 return cb(sk, head, skb);
2319 }
2320
2321 struct packet_type {
2322 __be16 type; /* This is really htons(ether_type). */
2323 struct net_device *dev; /* NULL is wildcarded here */
2324 int (*func) (struct sk_buff *,
2325 struct net_device *,
2326 struct packet_type *,
2327 struct net_device *);
2328 void (*list_func) (struct list_head *,
2329 struct packet_type *,
2330 struct net_device *);
2331 bool (*id_match)(struct packet_type *ptype,
2332 struct sock *sk);
2333 void *af_packet_priv;
2334 struct list_head list;
2335 };
2336
2337 struct offload_callbacks {
2338 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2339 netdev_features_t features);
2340 struct sk_buff *(*gro_receive)(struct list_head *head,
2341 struct sk_buff *skb);
2342 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2343 };
2344
2345 struct packet_offload {
2346 __be16 type; /* This is really htons(ether_type). */
2347 u16 priority;
2348 struct offload_callbacks callbacks;
2349 struct list_head list;
2350 };
2351
2352 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2353 struct pcpu_sw_netstats {
2354 u64 rx_packets;
2355 u64 rx_bytes;
2356 u64 tx_packets;
2357 u64 tx_bytes;
2358 struct u64_stats_sync syncp;
2359 };
2360
2361 #define __netdev_alloc_pcpu_stats(type, gfp) \
2362 ({ \
2363 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2364 if (pcpu_stats) { \
2365 int __cpu; \
2366 for_each_possible_cpu(__cpu) { \
2367 typeof(type) *stat; \
2368 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2369 u64_stats_init(&stat->syncp); \
2370 } \
2371 } \
2372 pcpu_stats; \
2373 })
2374
2375 #define netdev_alloc_pcpu_stats(type) \
2376 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2377
2378 enum netdev_lag_tx_type {
2379 NETDEV_LAG_TX_TYPE_UNKNOWN,
2380 NETDEV_LAG_TX_TYPE_RANDOM,
2381 NETDEV_LAG_TX_TYPE_BROADCAST,
2382 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2383 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2384 NETDEV_LAG_TX_TYPE_HASH,
2385 };
2386
2387 enum netdev_lag_hash {
2388 NETDEV_LAG_HASH_NONE,
2389 NETDEV_LAG_HASH_L2,
2390 NETDEV_LAG_HASH_L34,
2391 NETDEV_LAG_HASH_L23,
2392 NETDEV_LAG_HASH_E23,
2393 NETDEV_LAG_HASH_E34,
2394 NETDEV_LAG_HASH_UNKNOWN,
2395 };
2396
2397 struct netdev_lag_upper_info {
2398 enum netdev_lag_tx_type tx_type;
2399 enum netdev_lag_hash hash_type;
2400 };
2401
2402 struct netdev_lag_lower_state_info {
2403 u8 link_up : 1,
2404 tx_enabled : 1;
2405 };
2406
2407 #include <linux/notifier.h>
2408
2409 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2410 * and the rtnetlink notification exclusion list in rtnetlink_event() when
2411 * adding new types.
2412 */
2413 enum netdev_cmd {
2414 NETDEV_UP = 1, /* For now you can't veto a device up/down */
2415 NETDEV_DOWN,
2416 NETDEV_REBOOT, /* Tell a protocol stack a network interface
2417 detected a hardware crash and restarted
2418 - we can use this eg to kick tcp sessions
2419 once done */
2420 NETDEV_CHANGE, /* Notify device state change */
2421 NETDEV_REGISTER,
2422 NETDEV_UNREGISTER,
2423 NETDEV_CHANGEMTU, /* notify after mtu change happened */
2424 NETDEV_CHANGEADDR,
2425 NETDEV_GOING_DOWN,
2426 NETDEV_CHANGENAME,
2427 NETDEV_FEAT_CHANGE,
2428 NETDEV_BONDING_FAILOVER,
2429 NETDEV_PRE_UP,
2430 NETDEV_PRE_TYPE_CHANGE,
2431 NETDEV_POST_TYPE_CHANGE,
2432 NETDEV_POST_INIT,
2433 NETDEV_RELEASE,
2434 NETDEV_NOTIFY_PEERS,
2435 NETDEV_JOIN,
2436 NETDEV_CHANGEUPPER,
2437 NETDEV_RESEND_IGMP,
2438 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */
2439 NETDEV_CHANGEINFODATA,
2440 NETDEV_BONDING_INFO,
2441 NETDEV_PRECHANGEUPPER,
2442 NETDEV_CHANGELOWERSTATE,
2443 NETDEV_UDP_TUNNEL_PUSH_INFO,
2444 NETDEV_UDP_TUNNEL_DROP_INFO,
2445 NETDEV_CHANGE_TX_QUEUE_LEN,
2446 NETDEV_CVLAN_FILTER_PUSH_INFO,
2447 NETDEV_CVLAN_FILTER_DROP_INFO,
2448 NETDEV_SVLAN_FILTER_PUSH_INFO,
2449 NETDEV_SVLAN_FILTER_DROP_INFO,
2450 };
2451 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2452
2453 int register_netdevice_notifier(struct notifier_block *nb);
2454 int unregister_netdevice_notifier(struct notifier_block *nb);
2455
2456 struct netdev_notifier_info {
2457 struct net_device *dev;
2458 struct netlink_ext_ack *extack;
2459 };
2460
2461 struct netdev_notifier_info_ext {
2462 struct netdev_notifier_info info; /* must be first */
2463 union {
2464 u32 mtu;
2465 } ext;
2466 };
2467
2468 struct netdev_notifier_change_info {
2469 struct netdev_notifier_info info; /* must be first */
2470 unsigned int flags_changed;
2471 };
2472
2473 struct netdev_notifier_changeupper_info {
2474 struct netdev_notifier_info info; /* must be first */
2475 struct net_device *upper_dev; /* new upper dev */
2476 bool master; /* is upper dev master */
2477 bool linking; /* is the notification for link or unlink */
2478 void *upper_info; /* upper dev info */
2479 };
2480
2481 struct netdev_notifier_changelowerstate_info {
2482 struct netdev_notifier_info info; /* must be first */
2483 void *lower_state_info; /* is lower dev state */
2484 };
2485
netdev_notifier_info_init(struct netdev_notifier_info * info,struct net_device * dev)2486 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2487 struct net_device *dev)
2488 {
2489 info->dev = dev;
2490 info->extack = NULL;
2491 }
2492
2493 static inline struct net_device *
netdev_notifier_info_to_dev(const struct netdev_notifier_info * info)2494 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2495 {
2496 return info->dev;
2497 }
2498
2499 static inline struct netlink_ext_ack *
netdev_notifier_info_to_extack(const struct netdev_notifier_info * info)2500 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2501 {
2502 return info->extack;
2503 }
2504
2505 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2506
2507
2508 extern rwlock_t dev_base_lock; /* Device list lock */
2509
2510 #define for_each_netdev(net, d) \
2511 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2512 #define for_each_netdev_reverse(net, d) \
2513 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2514 #define for_each_netdev_rcu(net, d) \
2515 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2516 #define for_each_netdev_safe(net, d, n) \
2517 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2518 #define for_each_netdev_continue(net, d) \
2519 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2520 #define for_each_netdev_continue_rcu(net, d) \
2521 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2522 #define for_each_netdev_in_bond_rcu(bond, slave) \
2523 for_each_netdev_rcu(&init_net, slave) \
2524 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2525 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2526
next_net_device(struct net_device * dev)2527 static inline struct net_device *next_net_device(struct net_device *dev)
2528 {
2529 struct list_head *lh;
2530 struct net *net;
2531
2532 net = dev_net(dev);
2533 lh = dev->dev_list.next;
2534 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2535 }
2536
next_net_device_rcu(struct net_device * dev)2537 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2538 {
2539 struct list_head *lh;
2540 struct net *net;
2541
2542 net = dev_net(dev);
2543 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2544 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2545 }
2546
first_net_device(struct net * net)2547 static inline struct net_device *first_net_device(struct net *net)
2548 {
2549 return list_empty(&net->dev_base_head) ? NULL :
2550 net_device_entry(net->dev_base_head.next);
2551 }
2552
first_net_device_rcu(struct net * net)2553 static inline struct net_device *first_net_device_rcu(struct net *net)
2554 {
2555 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2556
2557 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2558 }
2559
2560 int netdev_boot_setup_check(struct net_device *dev);
2561 unsigned long netdev_boot_base(const char *prefix, int unit);
2562 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2563 const char *hwaddr);
2564 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2565 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2566 void dev_add_pack(struct packet_type *pt);
2567 void dev_remove_pack(struct packet_type *pt);
2568 void __dev_remove_pack(struct packet_type *pt);
2569 void dev_add_offload(struct packet_offload *po);
2570 void dev_remove_offload(struct packet_offload *po);
2571
2572 int dev_get_iflink(const struct net_device *dev);
2573 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2574 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2575 unsigned short mask);
2576 struct net_device *dev_get_by_name(struct net *net, const char *name);
2577 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2578 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2579 int dev_alloc_name(struct net_device *dev, const char *name);
2580 int dev_open(struct net_device *dev);
2581 void dev_close(struct net_device *dev);
2582 void dev_close_many(struct list_head *head, bool unlink);
2583 void dev_disable_lro(struct net_device *dev);
2584 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2585 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2586 struct net_device *sb_dev,
2587 select_queue_fallback_t fallback);
2588 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2589 struct net_device *sb_dev,
2590 select_queue_fallback_t fallback);
2591 int dev_queue_xmit(struct sk_buff *skb);
2592 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2593 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2594 int register_netdevice(struct net_device *dev);
2595 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2596 void unregister_netdevice_many(struct list_head *head);
unregister_netdevice(struct net_device * dev)2597 static inline void unregister_netdevice(struct net_device *dev)
2598 {
2599 unregister_netdevice_queue(dev, NULL);
2600 }
2601
2602 int netdev_refcnt_read(const struct net_device *dev);
2603 void free_netdev(struct net_device *dev);
2604 void netdev_freemem(struct net_device *dev);
2605 void synchronize_net(void);
2606 int init_dummy_netdev(struct net_device *dev);
2607
2608 DECLARE_PER_CPU(int, xmit_recursion);
2609 #define XMIT_RECURSION_LIMIT 10
2610
dev_recursion_level(void)2611 static inline int dev_recursion_level(void)
2612 {
2613 return this_cpu_read(xmit_recursion);
2614 }
2615
2616 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2617 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2618 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2619 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2620 int netdev_get_name(struct net *net, char *name, int ifindex);
2621 int dev_restart(struct net_device *dev);
2622 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2623
skb_gro_offset(const struct sk_buff * skb)2624 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2625 {
2626 return NAPI_GRO_CB(skb)->data_offset;
2627 }
2628
skb_gro_len(const struct sk_buff * skb)2629 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2630 {
2631 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2632 }
2633
skb_gro_pull(struct sk_buff * skb,unsigned int len)2634 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2635 {
2636 NAPI_GRO_CB(skb)->data_offset += len;
2637 }
2638
skb_gro_header_fast(struct sk_buff * skb,unsigned int offset)2639 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2640 unsigned int offset)
2641 {
2642 return NAPI_GRO_CB(skb)->frag0 + offset;
2643 }
2644
skb_gro_header_hard(struct sk_buff * skb,unsigned int hlen)2645 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2646 {
2647 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2648 }
2649
skb_gro_frag0_invalidate(struct sk_buff * skb)2650 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2651 {
2652 NAPI_GRO_CB(skb)->frag0 = NULL;
2653 NAPI_GRO_CB(skb)->frag0_len = 0;
2654 }
2655
skb_gro_header_slow(struct sk_buff * skb,unsigned int hlen,unsigned int offset)2656 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2657 unsigned int offset)
2658 {
2659 if (!pskb_may_pull(skb, hlen))
2660 return NULL;
2661
2662 skb_gro_frag0_invalidate(skb);
2663 return skb->data + offset;
2664 }
2665
skb_gro_network_header(struct sk_buff * skb)2666 static inline void *skb_gro_network_header(struct sk_buff *skb)
2667 {
2668 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2669 skb_network_offset(skb);
2670 }
2671
skb_gro_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)2672 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2673 const void *start, unsigned int len)
2674 {
2675 if (NAPI_GRO_CB(skb)->csum_valid)
2676 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2677 csum_partial(start, len, 0));
2678 }
2679
2680 /* GRO checksum functions. These are logical equivalents of the normal
2681 * checksum functions (in skbuff.h) except that they operate on the GRO
2682 * offsets and fields in sk_buff.
2683 */
2684
2685 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2686
skb_at_gro_remcsum_start(struct sk_buff * skb)2687 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2688 {
2689 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2690 }
2691
__skb_gro_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)2692 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2693 bool zero_okay,
2694 __sum16 check)
2695 {
2696 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2697 skb_checksum_start_offset(skb) <
2698 skb_gro_offset(skb)) &&
2699 !skb_at_gro_remcsum_start(skb) &&
2700 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2701 (!zero_okay || check));
2702 }
2703
__skb_gro_checksum_validate_complete(struct sk_buff * skb,__wsum psum)2704 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2705 __wsum psum)
2706 {
2707 if (NAPI_GRO_CB(skb)->csum_valid &&
2708 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2709 return 0;
2710
2711 NAPI_GRO_CB(skb)->csum = psum;
2712
2713 return __skb_gro_checksum_complete(skb);
2714 }
2715
skb_gro_incr_csum_unnecessary(struct sk_buff * skb)2716 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2717 {
2718 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2719 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2720 NAPI_GRO_CB(skb)->csum_cnt--;
2721 } else {
2722 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2723 * verified a new top level checksum or an encapsulated one
2724 * during GRO. This saves work if we fallback to normal path.
2725 */
2726 __skb_incr_checksum_unnecessary(skb);
2727 }
2728 }
2729
2730 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2731 compute_pseudo) \
2732 ({ \
2733 __sum16 __ret = 0; \
2734 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2735 __ret = __skb_gro_checksum_validate_complete(skb, \
2736 compute_pseudo(skb, proto)); \
2737 if (!__ret) \
2738 skb_gro_incr_csum_unnecessary(skb); \
2739 __ret; \
2740 })
2741
2742 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2743 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2744
2745 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2746 compute_pseudo) \
2747 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2748
2749 #define skb_gro_checksum_simple_validate(skb) \
2750 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2751
__skb_gro_checksum_convert_check(struct sk_buff * skb)2752 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2753 {
2754 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2755 !NAPI_GRO_CB(skb)->csum_valid);
2756 }
2757
__skb_gro_checksum_convert(struct sk_buff * skb,__sum16 check,__wsum pseudo)2758 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2759 __sum16 check, __wsum pseudo)
2760 {
2761 NAPI_GRO_CB(skb)->csum = ~pseudo;
2762 NAPI_GRO_CB(skb)->csum_valid = 1;
2763 }
2764
2765 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2766 do { \
2767 if (__skb_gro_checksum_convert_check(skb)) \
2768 __skb_gro_checksum_convert(skb, check, \
2769 compute_pseudo(skb, proto)); \
2770 } while (0)
2771
2772 struct gro_remcsum {
2773 int offset;
2774 __wsum delta;
2775 };
2776
skb_gro_remcsum_init(struct gro_remcsum * grc)2777 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2778 {
2779 grc->offset = 0;
2780 grc->delta = 0;
2781 }
2782
skb_gro_remcsum_process(struct sk_buff * skb,void * ptr,unsigned int off,size_t hdrlen,int start,int offset,struct gro_remcsum * grc,bool nopartial)2783 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2784 unsigned int off, size_t hdrlen,
2785 int start, int offset,
2786 struct gro_remcsum *grc,
2787 bool nopartial)
2788 {
2789 __wsum delta;
2790 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2791
2792 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2793
2794 if (!nopartial) {
2795 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2796 return ptr;
2797 }
2798
2799 ptr = skb_gro_header_fast(skb, off);
2800 if (skb_gro_header_hard(skb, off + plen)) {
2801 ptr = skb_gro_header_slow(skb, off + plen, off);
2802 if (!ptr)
2803 return NULL;
2804 }
2805
2806 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2807 start, offset);
2808
2809 /* Adjust skb->csum since we changed the packet */
2810 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2811
2812 grc->offset = off + hdrlen + offset;
2813 grc->delta = delta;
2814
2815 return ptr;
2816 }
2817
skb_gro_remcsum_cleanup(struct sk_buff * skb,struct gro_remcsum * grc)2818 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2819 struct gro_remcsum *grc)
2820 {
2821 void *ptr;
2822 size_t plen = grc->offset + sizeof(u16);
2823
2824 if (!grc->delta)
2825 return;
2826
2827 ptr = skb_gro_header_fast(skb, grc->offset);
2828 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2829 ptr = skb_gro_header_slow(skb, plen, grc->offset);
2830 if (!ptr)
2831 return;
2832 }
2833
2834 remcsum_unadjust((__sum16 *)ptr, grc->delta);
2835 }
2836
2837 #ifdef CONFIG_XFRM_OFFLOAD
skb_gro_flush_final(struct sk_buff * skb,struct sk_buff * pp,int flush)2838 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2839 {
2840 if (PTR_ERR(pp) != -EINPROGRESS)
2841 NAPI_GRO_CB(skb)->flush |= flush;
2842 }
skb_gro_flush_final_remcsum(struct sk_buff * skb,struct sk_buff * pp,int flush,struct gro_remcsum * grc)2843 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2844 struct sk_buff *pp,
2845 int flush,
2846 struct gro_remcsum *grc)
2847 {
2848 if (PTR_ERR(pp) != -EINPROGRESS) {
2849 NAPI_GRO_CB(skb)->flush |= flush;
2850 skb_gro_remcsum_cleanup(skb, grc);
2851 skb->remcsum_offload = 0;
2852 }
2853 }
2854 #else
skb_gro_flush_final(struct sk_buff * skb,struct sk_buff * pp,int flush)2855 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2856 {
2857 NAPI_GRO_CB(skb)->flush |= flush;
2858 }
skb_gro_flush_final_remcsum(struct sk_buff * skb,struct sk_buff * pp,int flush,struct gro_remcsum * grc)2859 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2860 struct sk_buff *pp,
2861 int flush,
2862 struct gro_remcsum *grc)
2863 {
2864 NAPI_GRO_CB(skb)->flush |= flush;
2865 skb_gro_remcsum_cleanup(skb, grc);
2866 skb->remcsum_offload = 0;
2867 }
2868 #endif
2869
dev_hard_header(struct sk_buff * skb,struct net_device * dev,unsigned short type,const void * daddr,const void * saddr,unsigned int len)2870 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2871 unsigned short type,
2872 const void *daddr, const void *saddr,
2873 unsigned int len)
2874 {
2875 if (!dev->header_ops || !dev->header_ops->create)
2876 return 0;
2877
2878 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2879 }
2880
dev_parse_header(const struct sk_buff * skb,unsigned char * haddr)2881 static inline int dev_parse_header(const struct sk_buff *skb,
2882 unsigned char *haddr)
2883 {
2884 const struct net_device *dev = skb->dev;
2885
2886 if (!dev->header_ops || !dev->header_ops->parse)
2887 return 0;
2888 return dev->header_ops->parse(skb, haddr);
2889 }
2890
2891 /* ll_header must have at least hard_header_len allocated */
dev_validate_header(const struct net_device * dev,char * ll_header,int len)2892 static inline bool dev_validate_header(const struct net_device *dev,
2893 char *ll_header, int len)
2894 {
2895 if (likely(len >= dev->hard_header_len))
2896 return true;
2897 if (len < dev->min_header_len)
2898 return false;
2899
2900 if (capable(CAP_SYS_RAWIO)) {
2901 memset(ll_header + len, 0, dev->hard_header_len - len);
2902 return true;
2903 }
2904
2905 if (dev->header_ops && dev->header_ops->validate)
2906 return dev->header_ops->validate(ll_header, len);
2907
2908 return false;
2909 }
2910
2911 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
2912 int len, int size);
2913 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
unregister_gifconf(unsigned int family)2914 static inline int unregister_gifconf(unsigned int family)
2915 {
2916 return register_gifconf(family, NULL);
2917 }
2918
2919 #ifdef CONFIG_NET_FLOW_LIMIT
2920 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
2921 struct sd_flow_limit {
2922 u64 count;
2923 unsigned int num_buckets;
2924 unsigned int history_head;
2925 u16 history[FLOW_LIMIT_HISTORY];
2926 u8 buckets[];
2927 };
2928
2929 extern int netdev_flow_limit_table_len;
2930 #endif /* CONFIG_NET_FLOW_LIMIT */
2931
2932 /*
2933 * Incoming packets are placed on per-CPU queues
2934 */
2935 struct softnet_data {
2936 struct list_head poll_list;
2937 struct sk_buff_head process_queue;
2938
2939 /* stats */
2940 unsigned int processed;
2941 unsigned int time_squeeze;
2942 unsigned int received_rps;
2943 #ifdef CONFIG_RPS
2944 struct softnet_data *rps_ipi_list;
2945 #endif
2946 #ifdef CONFIG_NET_FLOW_LIMIT
2947 struct sd_flow_limit __rcu *flow_limit;
2948 #endif
2949 struct Qdisc *output_queue;
2950 struct Qdisc **output_queue_tailp;
2951 struct sk_buff *completion_queue;
2952 #ifdef CONFIG_XFRM_OFFLOAD
2953 struct sk_buff_head xfrm_backlog;
2954 #endif
2955 #ifdef CONFIG_RPS
2956 /* input_queue_head should be written by cpu owning this struct,
2957 * and only read by other cpus. Worth using a cache line.
2958 */
2959 unsigned int input_queue_head ____cacheline_aligned_in_smp;
2960
2961 /* Elements below can be accessed between CPUs for RPS/RFS */
2962 call_single_data_t csd ____cacheline_aligned_in_smp;
2963 struct softnet_data *rps_ipi_next;
2964 unsigned int cpu;
2965 unsigned int input_queue_tail;
2966 #endif
2967 unsigned int dropped;
2968 struct sk_buff_head input_pkt_queue;
2969 struct napi_struct backlog;
2970
2971 };
2972
input_queue_head_incr(struct softnet_data * sd)2973 static inline void input_queue_head_incr(struct softnet_data *sd)
2974 {
2975 #ifdef CONFIG_RPS
2976 sd->input_queue_head++;
2977 #endif
2978 }
2979
input_queue_tail_incr_save(struct softnet_data * sd,unsigned int * qtail)2980 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2981 unsigned int *qtail)
2982 {
2983 #ifdef CONFIG_RPS
2984 *qtail = ++sd->input_queue_tail;
2985 #endif
2986 }
2987
2988 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2989
2990 void __netif_schedule(struct Qdisc *q);
2991 void netif_schedule_queue(struct netdev_queue *txq);
2992
netif_tx_schedule_all(struct net_device * dev)2993 static inline void netif_tx_schedule_all(struct net_device *dev)
2994 {
2995 unsigned int i;
2996
2997 for (i = 0; i < dev->num_tx_queues; i++)
2998 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2999 }
3000
netif_tx_start_queue(struct netdev_queue * dev_queue)3001 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3002 {
3003 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3004 }
3005
3006 /**
3007 * netif_start_queue - allow transmit
3008 * @dev: network device
3009 *
3010 * Allow upper layers to call the device hard_start_xmit routine.
3011 */
netif_start_queue(struct net_device * dev)3012 static inline void netif_start_queue(struct net_device *dev)
3013 {
3014 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3015 }
3016
netif_tx_start_all_queues(struct net_device * dev)3017 static inline void netif_tx_start_all_queues(struct net_device *dev)
3018 {
3019 unsigned int i;
3020
3021 for (i = 0; i < dev->num_tx_queues; i++) {
3022 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3023 netif_tx_start_queue(txq);
3024 }
3025 }
3026
3027 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3028
3029 /**
3030 * netif_wake_queue - restart transmit
3031 * @dev: network device
3032 *
3033 * Allow upper layers to call the device hard_start_xmit routine.
3034 * Used for flow control when transmit resources are available.
3035 */
netif_wake_queue(struct net_device * dev)3036 static inline void netif_wake_queue(struct net_device *dev)
3037 {
3038 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3039 }
3040
netif_tx_wake_all_queues(struct net_device * dev)3041 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3042 {
3043 unsigned int i;
3044
3045 for (i = 0; i < dev->num_tx_queues; i++) {
3046 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3047 netif_tx_wake_queue(txq);
3048 }
3049 }
3050
netif_tx_stop_queue(struct netdev_queue * dev_queue)3051 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3052 {
3053 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3054 }
3055
3056 /**
3057 * netif_stop_queue - stop transmitted packets
3058 * @dev: network device
3059 *
3060 * Stop upper layers calling the device hard_start_xmit routine.
3061 * Used for flow control when transmit resources are unavailable.
3062 */
netif_stop_queue(struct net_device * dev)3063 static inline void netif_stop_queue(struct net_device *dev)
3064 {
3065 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3066 }
3067
3068 void netif_tx_stop_all_queues(struct net_device *dev);
3069
netif_tx_queue_stopped(const struct netdev_queue * dev_queue)3070 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3071 {
3072 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3073 }
3074
3075 /**
3076 * netif_queue_stopped - test if transmit queue is flowblocked
3077 * @dev: network device
3078 *
3079 * Test if transmit queue on device is currently unable to send.
3080 */
netif_queue_stopped(const struct net_device * dev)3081 static inline bool netif_queue_stopped(const struct net_device *dev)
3082 {
3083 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3084 }
3085
netif_xmit_stopped(const struct netdev_queue * dev_queue)3086 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3087 {
3088 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3089 }
3090
3091 static inline bool
netif_xmit_frozen_or_stopped(const struct netdev_queue * dev_queue)3092 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3093 {
3094 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3095 }
3096
3097 static inline bool
netif_xmit_frozen_or_drv_stopped(const struct netdev_queue * dev_queue)3098 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3099 {
3100 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3101 }
3102
3103 /**
3104 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3105 * @dev_queue: pointer to transmit queue
3106 *
3107 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3108 * to give appropriate hint to the CPU.
3109 */
netdev_txq_bql_enqueue_prefetchw(struct netdev_queue * dev_queue)3110 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3111 {
3112 #ifdef CONFIG_BQL
3113 prefetchw(&dev_queue->dql.num_queued);
3114 #endif
3115 }
3116
3117 /**
3118 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3119 * @dev_queue: pointer to transmit queue
3120 *
3121 * BQL enabled drivers might use this helper in their TX completion path,
3122 * to give appropriate hint to the CPU.
3123 */
netdev_txq_bql_complete_prefetchw(struct netdev_queue * dev_queue)3124 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3125 {
3126 #ifdef CONFIG_BQL
3127 prefetchw(&dev_queue->dql.limit);
3128 #endif
3129 }
3130
netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes)3131 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3132 unsigned int bytes)
3133 {
3134 #ifdef CONFIG_BQL
3135 dql_queued(&dev_queue->dql, bytes);
3136
3137 if (likely(dql_avail(&dev_queue->dql) >= 0))
3138 return;
3139
3140 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3141
3142 /*
3143 * The XOFF flag must be set before checking the dql_avail below,
3144 * because in netdev_tx_completed_queue we update the dql_completed
3145 * before checking the XOFF flag.
3146 */
3147 smp_mb();
3148
3149 /* check again in case another CPU has just made room avail */
3150 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3151 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3152 #endif
3153 }
3154
3155 /**
3156 * netdev_sent_queue - report the number of bytes queued to hardware
3157 * @dev: network device
3158 * @bytes: number of bytes queued to the hardware device queue
3159 *
3160 * Report the number of bytes queued for sending/completion to the network
3161 * device hardware queue. @bytes should be a good approximation and should
3162 * exactly match netdev_completed_queue() @bytes
3163 */
netdev_sent_queue(struct net_device * dev,unsigned int bytes)3164 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3165 {
3166 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3167 }
3168
netdev_tx_completed_queue(struct netdev_queue * dev_queue,unsigned int pkts,unsigned int bytes)3169 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3170 unsigned int pkts, unsigned int bytes)
3171 {
3172 #ifdef CONFIG_BQL
3173 if (unlikely(!bytes))
3174 return;
3175
3176 dql_completed(&dev_queue->dql, bytes);
3177
3178 /*
3179 * Without the memory barrier there is a small possiblity that
3180 * netdev_tx_sent_queue will miss the update and cause the queue to
3181 * be stopped forever
3182 */
3183 smp_mb();
3184
3185 if (dql_avail(&dev_queue->dql) < 0)
3186 return;
3187
3188 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3189 netif_schedule_queue(dev_queue);
3190 #endif
3191 }
3192
3193 /**
3194 * netdev_completed_queue - report bytes and packets completed by device
3195 * @dev: network device
3196 * @pkts: actual number of packets sent over the medium
3197 * @bytes: actual number of bytes sent over the medium
3198 *
3199 * Report the number of bytes and packets transmitted by the network device
3200 * hardware queue over the physical medium, @bytes must exactly match the
3201 * @bytes amount passed to netdev_sent_queue()
3202 */
netdev_completed_queue(struct net_device * dev,unsigned int pkts,unsigned int bytes)3203 static inline void netdev_completed_queue(struct net_device *dev,
3204 unsigned int pkts, unsigned int bytes)
3205 {
3206 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3207 }
3208
netdev_tx_reset_queue(struct netdev_queue * q)3209 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3210 {
3211 #ifdef CONFIG_BQL
3212 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3213 dql_reset(&q->dql);
3214 #endif
3215 }
3216
3217 /**
3218 * netdev_reset_queue - reset the packets and bytes count of a network device
3219 * @dev_queue: network device
3220 *
3221 * Reset the bytes and packet count of a network device and clear the
3222 * software flow control OFF bit for this network device
3223 */
netdev_reset_queue(struct net_device * dev_queue)3224 static inline void netdev_reset_queue(struct net_device *dev_queue)
3225 {
3226 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3227 }
3228
3229 /**
3230 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
3231 * @dev: network device
3232 * @queue_index: given tx queue index
3233 *
3234 * Returns 0 if given tx queue index >= number of device tx queues,
3235 * otherwise returns the originally passed tx queue index.
3236 */
netdev_cap_txqueue(struct net_device * dev,u16 queue_index)3237 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3238 {
3239 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3240 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3241 dev->name, queue_index,
3242 dev->real_num_tx_queues);
3243 return 0;
3244 }
3245
3246 return queue_index;
3247 }
3248
3249 /**
3250 * netif_running - test if up
3251 * @dev: network device
3252 *
3253 * Test if the device has been brought up.
3254 */
netif_running(const struct net_device * dev)3255 static inline bool netif_running(const struct net_device *dev)
3256 {
3257 return test_bit(__LINK_STATE_START, &dev->state);
3258 }
3259
3260 /*
3261 * Routines to manage the subqueues on a device. We only need start,
3262 * stop, and a check if it's stopped. All other device management is
3263 * done at the overall netdevice level.
3264 * Also test the device if we're multiqueue.
3265 */
3266
3267 /**
3268 * netif_start_subqueue - allow sending packets on subqueue
3269 * @dev: network device
3270 * @queue_index: sub queue index
3271 *
3272 * Start individual transmit queue of a device with multiple transmit queues.
3273 */
netif_start_subqueue(struct net_device * dev,u16 queue_index)3274 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3275 {
3276 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3277
3278 netif_tx_start_queue(txq);
3279 }
3280
3281 /**
3282 * netif_stop_subqueue - stop sending packets on subqueue
3283 * @dev: network device
3284 * @queue_index: sub queue index
3285 *
3286 * Stop individual transmit queue of a device with multiple transmit queues.
3287 */
netif_stop_subqueue(struct net_device * dev,u16 queue_index)3288 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3289 {
3290 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3291 netif_tx_stop_queue(txq);
3292 }
3293
3294 /**
3295 * netif_subqueue_stopped - test status of subqueue
3296 * @dev: network device
3297 * @queue_index: sub queue index
3298 *
3299 * Check individual transmit queue of a device with multiple transmit queues.
3300 */
__netif_subqueue_stopped(const struct net_device * dev,u16 queue_index)3301 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3302 u16 queue_index)
3303 {
3304 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3305
3306 return netif_tx_queue_stopped(txq);
3307 }
3308
netif_subqueue_stopped(const struct net_device * dev,struct sk_buff * skb)3309 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3310 struct sk_buff *skb)
3311 {
3312 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3313 }
3314
3315 /**
3316 * netif_wake_subqueue - allow sending packets on subqueue
3317 * @dev: network device
3318 * @queue_index: sub queue index
3319 *
3320 * Resume individual transmit queue of a device with multiple transmit queues.
3321 */
netif_wake_subqueue(struct net_device * dev,u16 queue_index)3322 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3323 {
3324 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3325
3326 netif_tx_wake_queue(txq);
3327 }
3328
3329 #ifdef CONFIG_XPS
3330 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3331 u16 index);
3332 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3333 u16 index, bool is_rxqs_map);
3334
3335 /**
3336 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3337 * @j: CPU/Rx queue index
3338 * @mask: bitmask of all cpus/rx queues
3339 * @nr_bits: number of bits in the bitmask
3340 *
3341 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3342 */
netif_attr_test_mask(unsigned long j,const unsigned long * mask,unsigned int nr_bits)3343 static inline bool netif_attr_test_mask(unsigned long j,
3344 const unsigned long *mask,
3345 unsigned int nr_bits)
3346 {
3347 cpu_max_bits_warn(j, nr_bits);
3348 return test_bit(j, mask);
3349 }
3350
3351 /**
3352 * netif_attr_test_online - Test for online CPU/Rx queue
3353 * @j: CPU/Rx queue index
3354 * @online_mask: bitmask for CPUs/Rx queues that are online
3355 * @nr_bits: number of bits in the bitmask
3356 *
3357 * Returns true if a CPU/Rx queue is online.
3358 */
netif_attr_test_online(unsigned long j,const unsigned long * online_mask,unsigned int nr_bits)3359 static inline bool netif_attr_test_online(unsigned long j,
3360 const unsigned long *online_mask,
3361 unsigned int nr_bits)
3362 {
3363 cpu_max_bits_warn(j, nr_bits);
3364
3365 if (online_mask)
3366 return test_bit(j, online_mask);
3367
3368 return (j < nr_bits);
3369 }
3370
3371 /**
3372 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3373 * @n: CPU/Rx queue index
3374 * @srcp: the cpumask/Rx queue mask pointer
3375 * @nr_bits: number of bits in the bitmask
3376 *
3377 * Returns >= nr_bits if no further CPUs/Rx queues set.
3378 */
netif_attrmask_next(int n,const unsigned long * srcp,unsigned int nr_bits)3379 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3380 unsigned int nr_bits)
3381 {
3382 /* -1 is a legal arg here. */
3383 if (n != -1)
3384 cpu_max_bits_warn(n, nr_bits);
3385
3386 if (srcp)
3387 return find_next_bit(srcp, nr_bits, n + 1);
3388
3389 return n + 1;
3390 }
3391
3392 /**
3393 * netif_attrmask_next_and - get the next CPU/Rx queue in *src1p & *src2p
3394 * @n: CPU/Rx queue index
3395 * @src1p: the first CPUs/Rx queues mask pointer
3396 * @src2p: the second CPUs/Rx queues mask pointer
3397 * @nr_bits: number of bits in the bitmask
3398 *
3399 * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3400 */
netif_attrmask_next_and(int n,const unsigned long * src1p,const unsigned long * src2p,unsigned int nr_bits)3401 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3402 const unsigned long *src2p,
3403 unsigned int nr_bits)
3404 {
3405 /* -1 is a legal arg here. */
3406 if (n != -1)
3407 cpu_max_bits_warn(n, nr_bits);
3408
3409 if (src1p && src2p)
3410 return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3411 else if (src1p)
3412 return find_next_bit(src1p, nr_bits, n + 1);
3413 else if (src2p)
3414 return find_next_bit(src2p, nr_bits, n + 1);
3415
3416 return n + 1;
3417 }
3418 #else
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)3419 static inline int netif_set_xps_queue(struct net_device *dev,
3420 const struct cpumask *mask,
3421 u16 index)
3422 {
3423 return 0;
3424 }
3425
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,bool is_rxqs_map)3426 static inline int __netif_set_xps_queue(struct net_device *dev,
3427 const unsigned long *mask,
3428 u16 index, bool is_rxqs_map)
3429 {
3430 return 0;
3431 }
3432 #endif
3433
3434 /**
3435 * netif_is_multiqueue - test if device has multiple transmit queues
3436 * @dev: network device
3437 *
3438 * Check if device has multiple transmit queues
3439 */
netif_is_multiqueue(const struct net_device * dev)3440 static inline bool netif_is_multiqueue(const struct net_device *dev)
3441 {
3442 return dev->num_tx_queues > 1;
3443 }
3444
3445 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3446
3447 #ifdef CONFIG_SYSFS
3448 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3449 #else
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxqs)3450 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3451 unsigned int rxqs)
3452 {
3453 dev->real_num_rx_queues = rxqs;
3454 return 0;
3455 }
3456 #endif
3457
3458 static inline struct netdev_rx_queue *
__netif_get_rx_queue(struct net_device * dev,unsigned int rxq)3459 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3460 {
3461 return dev->_rx + rxq;
3462 }
3463
3464 #ifdef CONFIG_SYSFS
get_netdev_rx_queue_index(struct netdev_rx_queue * queue)3465 static inline unsigned int get_netdev_rx_queue_index(
3466 struct netdev_rx_queue *queue)
3467 {
3468 struct net_device *dev = queue->dev;
3469 int index = queue - dev->_rx;
3470
3471 BUG_ON(index >= dev->num_rx_queues);
3472 return index;
3473 }
3474 #endif
3475
3476 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
3477 int netif_get_num_default_rss_queues(void);
3478
3479 enum skb_free_reason {
3480 SKB_REASON_CONSUMED,
3481 SKB_REASON_DROPPED,
3482 };
3483
3484 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3485 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3486
3487 /*
3488 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3489 * interrupt context or with hardware interrupts being disabled.
3490 * (in_irq() || irqs_disabled())
3491 *
3492 * We provide four helpers that can be used in following contexts :
3493 *
3494 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3495 * replacing kfree_skb(skb)
3496 *
3497 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3498 * Typically used in place of consume_skb(skb) in TX completion path
3499 *
3500 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3501 * replacing kfree_skb(skb)
3502 *
3503 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3504 * and consumed a packet. Used in place of consume_skb(skb)
3505 */
dev_kfree_skb_irq(struct sk_buff * skb)3506 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3507 {
3508 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3509 }
3510
dev_consume_skb_irq(struct sk_buff * skb)3511 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3512 {
3513 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3514 }
3515
dev_kfree_skb_any(struct sk_buff * skb)3516 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3517 {
3518 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3519 }
3520
dev_consume_skb_any(struct sk_buff * skb)3521 static inline void dev_consume_skb_any(struct sk_buff *skb)
3522 {
3523 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3524 }
3525
3526 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3527 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3528 int netif_rx(struct sk_buff *skb);
3529 int netif_rx_ni(struct sk_buff *skb);
3530 int netif_receive_skb(struct sk_buff *skb);
3531 int netif_receive_skb_core(struct sk_buff *skb);
3532 void netif_receive_skb_list(struct list_head *head);
3533 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3534 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3535 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3536 gro_result_t napi_gro_frags(struct napi_struct *napi);
3537 struct packet_offload *gro_find_receive_by_type(__be16 type);
3538 struct packet_offload *gro_find_complete_by_type(__be16 type);
3539
napi_free_frags(struct napi_struct * napi)3540 static inline void napi_free_frags(struct napi_struct *napi)
3541 {
3542 kfree_skb(napi->skb);
3543 napi->skb = NULL;
3544 }
3545
3546 bool netdev_is_rx_handler_busy(struct net_device *dev);
3547 int netdev_rx_handler_register(struct net_device *dev,
3548 rx_handler_func_t *rx_handler,
3549 void *rx_handler_data);
3550 void netdev_rx_handler_unregister(struct net_device *dev);
3551
3552 bool dev_valid_name(const char *name);
3553 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3554 bool *need_copyout);
3555 int dev_ifconf(struct net *net, struct ifconf *, int);
3556 int dev_ethtool(struct net *net, struct ifreq *);
3557 unsigned int dev_get_flags(const struct net_device *);
3558 int __dev_change_flags(struct net_device *, unsigned int flags);
3559 int dev_change_flags(struct net_device *, unsigned int);
3560 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3561 unsigned int gchanges);
3562 int dev_change_name(struct net_device *, const char *);
3563 int dev_set_alias(struct net_device *, const char *, size_t);
3564 int dev_get_alias(const struct net_device *, char *, size_t);
3565 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3566 int __dev_set_mtu(struct net_device *, int);
3567 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3568 struct netlink_ext_ack *extack);
3569 int dev_set_mtu(struct net_device *, int);
3570 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3571 void dev_set_group(struct net_device *, int);
3572 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3573 int dev_change_carrier(struct net_device *, bool new_carrier);
3574 int dev_get_phys_port_id(struct net_device *dev,
3575 struct netdev_phys_item_id *ppid);
3576 int dev_get_phys_port_name(struct net_device *dev,
3577 char *name, size_t len);
3578 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3579 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3580 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3581 struct netdev_queue *txq, int *ret);
3582
3583 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3584 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3585 int fd, u32 flags);
3586 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3587 enum bpf_netdev_command cmd);
3588 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3589
3590 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3591 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3592 bool is_skb_forwardable(const struct net_device *dev,
3593 const struct sk_buff *skb);
3594
____dev_forward_skb(struct net_device * dev,struct sk_buff * skb)3595 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3596 struct sk_buff *skb)
3597 {
3598 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3599 unlikely(!is_skb_forwardable(dev, skb))) {
3600 atomic_long_inc(&dev->rx_dropped);
3601 kfree_skb(skb);
3602 return NET_RX_DROP;
3603 }
3604
3605 skb_scrub_packet(skb, true);
3606 skb->priority = 0;
3607 return 0;
3608 }
3609
3610 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3611
3612 extern int netdev_budget;
3613 extern unsigned int netdev_budget_usecs;
3614
3615 /* Called by rtnetlink.c:rtnl_unlock() */
3616 void netdev_run_todo(void);
3617
3618 /**
3619 * dev_put - release reference to device
3620 * @dev: network device
3621 *
3622 * Release reference to device to allow it to be freed.
3623 */
dev_put(struct net_device * dev)3624 static inline void dev_put(struct net_device *dev)
3625 {
3626 this_cpu_dec(*dev->pcpu_refcnt);
3627 }
3628
3629 /**
3630 * dev_hold - get reference to device
3631 * @dev: network device
3632 *
3633 * Hold reference to device to keep it from being freed.
3634 */
dev_hold(struct net_device * dev)3635 static inline void dev_hold(struct net_device *dev)
3636 {
3637 this_cpu_inc(*dev->pcpu_refcnt);
3638 }
3639
3640 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3641 * and _off may be called from IRQ context, but it is caller
3642 * who is responsible for serialization of these calls.
3643 *
3644 * The name carrier is inappropriate, these functions should really be
3645 * called netif_lowerlayer_*() because they represent the state of any
3646 * kind of lower layer not just hardware media.
3647 */
3648
3649 void linkwatch_init_dev(struct net_device *dev);
3650 void linkwatch_fire_event(struct net_device *dev);
3651 void linkwatch_forget_dev(struct net_device *dev);
3652
3653 /**
3654 * netif_carrier_ok - test if carrier present
3655 * @dev: network device
3656 *
3657 * Check if carrier is present on device
3658 */
netif_carrier_ok(const struct net_device * dev)3659 static inline bool netif_carrier_ok(const struct net_device *dev)
3660 {
3661 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3662 }
3663
3664 unsigned long dev_trans_start(struct net_device *dev);
3665
3666 void __netdev_watchdog_up(struct net_device *dev);
3667
3668 void netif_carrier_on(struct net_device *dev);
3669
3670 void netif_carrier_off(struct net_device *dev);
3671
3672 /**
3673 * netif_dormant_on - mark device as dormant.
3674 * @dev: network device
3675 *
3676 * Mark device as dormant (as per RFC2863).
3677 *
3678 * The dormant state indicates that the relevant interface is not
3679 * actually in a condition to pass packets (i.e., it is not 'up') but is
3680 * in a "pending" state, waiting for some external event. For "on-
3681 * demand" interfaces, this new state identifies the situation where the
3682 * interface is waiting for events to place it in the up state.
3683 */
netif_dormant_on(struct net_device * dev)3684 static inline void netif_dormant_on(struct net_device *dev)
3685 {
3686 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3687 linkwatch_fire_event(dev);
3688 }
3689
3690 /**
3691 * netif_dormant_off - set device as not dormant.
3692 * @dev: network device
3693 *
3694 * Device is not in dormant state.
3695 */
netif_dormant_off(struct net_device * dev)3696 static inline void netif_dormant_off(struct net_device *dev)
3697 {
3698 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3699 linkwatch_fire_event(dev);
3700 }
3701
3702 /**
3703 * netif_dormant - test if device is dormant
3704 * @dev: network device
3705 *
3706 * Check if device is dormant.
3707 */
netif_dormant(const struct net_device * dev)3708 static inline bool netif_dormant(const struct net_device *dev)
3709 {
3710 return test_bit(__LINK_STATE_DORMANT, &dev->state);
3711 }
3712
3713
3714 /**
3715 * netif_oper_up - test if device is operational
3716 * @dev: network device
3717 *
3718 * Check if carrier is operational
3719 */
netif_oper_up(const struct net_device * dev)3720 static inline bool netif_oper_up(const struct net_device *dev)
3721 {
3722 return (dev->operstate == IF_OPER_UP ||
3723 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3724 }
3725
3726 /**
3727 * netif_device_present - is device available or removed
3728 * @dev: network device
3729 *
3730 * Check if device has not been removed from system.
3731 */
netif_device_present(struct net_device * dev)3732 static inline bool netif_device_present(struct net_device *dev)
3733 {
3734 return test_bit(__LINK_STATE_PRESENT, &dev->state);
3735 }
3736
3737 void netif_device_detach(struct net_device *dev);
3738
3739 void netif_device_attach(struct net_device *dev);
3740
3741 /*
3742 * Network interface message level settings
3743 */
3744
3745 enum {
3746 NETIF_MSG_DRV = 0x0001,
3747 NETIF_MSG_PROBE = 0x0002,
3748 NETIF_MSG_LINK = 0x0004,
3749 NETIF_MSG_TIMER = 0x0008,
3750 NETIF_MSG_IFDOWN = 0x0010,
3751 NETIF_MSG_IFUP = 0x0020,
3752 NETIF_MSG_RX_ERR = 0x0040,
3753 NETIF_MSG_TX_ERR = 0x0080,
3754 NETIF_MSG_TX_QUEUED = 0x0100,
3755 NETIF_MSG_INTR = 0x0200,
3756 NETIF_MSG_TX_DONE = 0x0400,
3757 NETIF_MSG_RX_STATUS = 0x0800,
3758 NETIF_MSG_PKTDATA = 0x1000,
3759 NETIF_MSG_HW = 0x2000,
3760 NETIF_MSG_WOL = 0x4000,
3761 };
3762
3763 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
3764 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
3765 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
3766 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
3767 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
3768 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
3769 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
3770 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
3771 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3772 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
3773 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
3774 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3775 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
3776 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
3777 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
3778
netif_msg_init(int debug_value,int default_msg_enable_bits)3779 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3780 {
3781 /* use default */
3782 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3783 return default_msg_enable_bits;
3784 if (debug_value == 0) /* no output */
3785 return 0;
3786 /* set low N bits */
3787 return (1 << debug_value) - 1;
3788 }
3789
__netif_tx_lock(struct netdev_queue * txq,int cpu)3790 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3791 {
3792 spin_lock(&txq->_xmit_lock);
3793 txq->xmit_lock_owner = cpu;
3794 }
3795
__netif_tx_acquire(struct netdev_queue * txq)3796 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3797 {
3798 __acquire(&txq->_xmit_lock);
3799 return true;
3800 }
3801
__netif_tx_release(struct netdev_queue * txq)3802 static inline void __netif_tx_release(struct netdev_queue *txq)
3803 {
3804 __release(&txq->_xmit_lock);
3805 }
3806
__netif_tx_lock_bh(struct netdev_queue * txq)3807 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3808 {
3809 spin_lock_bh(&txq->_xmit_lock);
3810 txq->xmit_lock_owner = smp_processor_id();
3811 }
3812
__netif_tx_trylock(struct netdev_queue * txq)3813 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3814 {
3815 bool ok = spin_trylock(&txq->_xmit_lock);
3816 if (likely(ok))
3817 txq->xmit_lock_owner = smp_processor_id();
3818 return ok;
3819 }
3820
__netif_tx_unlock(struct netdev_queue * txq)3821 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3822 {
3823 txq->xmit_lock_owner = -1;
3824 spin_unlock(&txq->_xmit_lock);
3825 }
3826
__netif_tx_unlock_bh(struct netdev_queue * txq)3827 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3828 {
3829 txq->xmit_lock_owner = -1;
3830 spin_unlock_bh(&txq->_xmit_lock);
3831 }
3832
txq_trans_update(struct netdev_queue * txq)3833 static inline void txq_trans_update(struct netdev_queue *txq)
3834 {
3835 if (txq->xmit_lock_owner != -1)
3836 txq->trans_start = jiffies;
3837 }
3838
3839 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
netif_trans_update(struct net_device * dev)3840 static inline void netif_trans_update(struct net_device *dev)
3841 {
3842 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3843
3844 if (txq->trans_start != jiffies)
3845 txq->trans_start = jiffies;
3846 }
3847
3848 /**
3849 * netif_tx_lock - grab network device transmit lock
3850 * @dev: network device
3851 *
3852 * Get network device transmit lock
3853 */
netif_tx_lock(struct net_device * dev)3854 static inline void netif_tx_lock(struct net_device *dev)
3855 {
3856 unsigned int i;
3857 int cpu;
3858
3859 spin_lock(&dev->tx_global_lock);
3860 cpu = smp_processor_id();
3861 for (i = 0; i < dev->num_tx_queues; i++) {
3862 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3863
3864 /* We are the only thread of execution doing a
3865 * freeze, but we have to grab the _xmit_lock in
3866 * order to synchronize with threads which are in
3867 * the ->hard_start_xmit() handler and already
3868 * checked the frozen bit.
3869 */
3870 __netif_tx_lock(txq, cpu);
3871 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3872 __netif_tx_unlock(txq);
3873 }
3874 }
3875
netif_tx_lock_bh(struct net_device * dev)3876 static inline void netif_tx_lock_bh(struct net_device *dev)
3877 {
3878 local_bh_disable();
3879 netif_tx_lock(dev);
3880 }
3881
netif_tx_unlock(struct net_device * dev)3882 static inline void netif_tx_unlock(struct net_device *dev)
3883 {
3884 unsigned int i;
3885
3886 for (i = 0; i < dev->num_tx_queues; i++) {
3887 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3888
3889 /* No need to grab the _xmit_lock here. If the
3890 * queue is not stopped for another reason, we
3891 * force a schedule.
3892 */
3893 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3894 netif_schedule_queue(txq);
3895 }
3896 spin_unlock(&dev->tx_global_lock);
3897 }
3898
netif_tx_unlock_bh(struct net_device * dev)3899 static inline void netif_tx_unlock_bh(struct net_device *dev)
3900 {
3901 netif_tx_unlock(dev);
3902 local_bh_enable();
3903 }
3904
3905 #define HARD_TX_LOCK(dev, txq, cpu) { \
3906 if ((dev->features & NETIF_F_LLTX) == 0) { \
3907 __netif_tx_lock(txq, cpu); \
3908 } else { \
3909 __netif_tx_acquire(txq); \
3910 } \
3911 }
3912
3913 #define HARD_TX_TRYLOCK(dev, txq) \
3914 (((dev->features & NETIF_F_LLTX) == 0) ? \
3915 __netif_tx_trylock(txq) : \
3916 __netif_tx_acquire(txq))
3917
3918 #define HARD_TX_UNLOCK(dev, txq) { \
3919 if ((dev->features & NETIF_F_LLTX) == 0) { \
3920 __netif_tx_unlock(txq); \
3921 } else { \
3922 __netif_tx_release(txq); \
3923 } \
3924 }
3925
netif_tx_disable(struct net_device * dev)3926 static inline void netif_tx_disable(struct net_device *dev)
3927 {
3928 unsigned int i;
3929 int cpu;
3930
3931 local_bh_disable();
3932 cpu = smp_processor_id();
3933 for (i = 0; i < dev->num_tx_queues; i++) {
3934 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3935
3936 __netif_tx_lock(txq, cpu);
3937 netif_tx_stop_queue(txq);
3938 __netif_tx_unlock(txq);
3939 }
3940 local_bh_enable();
3941 }
3942
netif_addr_lock(struct net_device * dev)3943 static inline void netif_addr_lock(struct net_device *dev)
3944 {
3945 spin_lock(&dev->addr_list_lock);
3946 }
3947
netif_addr_lock_nested(struct net_device * dev)3948 static inline void netif_addr_lock_nested(struct net_device *dev)
3949 {
3950 int subclass = SINGLE_DEPTH_NESTING;
3951
3952 if (dev->netdev_ops->ndo_get_lock_subclass)
3953 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3954
3955 spin_lock_nested(&dev->addr_list_lock, subclass);
3956 }
3957
netif_addr_lock_bh(struct net_device * dev)3958 static inline void netif_addr_lock_bh(struct net_device *dev)
3959 {
3960 spin_lock_bh(&dev->addr_list_lock);
3961 }
3962
netif_addr_unlock(struct net_device * dev)3963 static inline void netif_addr_unlock(struct net_device *dev)
3964 {
3965 spin_unlock(&dev->addr_list_lock);
3966 }
3967
netif_addr_unlock_bh(struct net_device * dev)3968 static inline void netif_addr_unlock_bh(struct net_device *dev)
3969 {
3970 spin_unlock_bh(&dev->addr_list_lock);
3971 }
3972
3973 /*
3974 * dev_addrs walker. Should be used only for read access. Call with
3975 * rcu_read_lock held.
3976 */
3977 #define for_each_dev_addr(dev, ha) \
3978 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3979
3980 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3981
3982 void ether_setup(struct net_device *dev);
3983
3984 /* Support for loadable net-drivers */
3985 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3986 unsigned char name_assign_type,
3987 void (*setup)(struct net_device *),
3988 unsigned int txqs, unsigned int rxqs);
3989 int dev_get_valid_name(struct net *net, struct net_device *dev,
3990 const char *name);
3991
3992 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3993 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3994
3995 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3996 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3997 count)
3998
3999 int register_netdev(struct net_device *dev);
4000 void unregister_netdev(struct net_device *dev);
4001
4002 /* General hardware address lists handling functions */
4003 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4004 struct netdev_hw_addr_list *from_list, int addr_len);
4005 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4006 struct netdev_hw_addr_list *from_list, int addr_len);
4007 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4008 struct net_device *dev,
4009 int (*sync)(struct net_device *, const unsigned char *),
4010 int (*unsync)(struct net_device *,
4011 const unsigned char *));
4012 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4013 struct net_device *dev,
4014 int (*unsync)(struct net_device *,
4015 const unsigned char *));
4016 void __hw_addr_init(struct netdev_hw_addr_list *list);
4017
4018 /* Functions used for device addresses handling */
4019 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4020 unsigned char addr_type);
4021 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4022 unsigned char addr_type);
4023 void dev_addr_flush(struct net_device *dev);
4024 int dev_addr_init(struct net_device *dev);
4025
4026 /* Functions used for unicast addresses handling */
4027 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4028 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4029 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4030 int dev_uc_sync(struct net_device *to, struct net_device *from);
4031 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4032 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4033 void dev_uc_flush(struct net_device *dev);
4034 void dev_uc_init(struct net_device *dev);
4035
4036 /**
4037 * __dev_uc_sync - Synchonize device's unicast list
4038 * @dev: device to sync
4039 * @sync: function to call if address should be added
4040 * @unsync: function to call if address should be removed
4041 *
4042 * Add newly added addresses to the interface, and release
4043 * addresses that have been deleted.
4044 */
__dev_uc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4045 static inline int __dev_uc_sync(struct net_device *dev,
4046 int (*sync)(struct net_device *,
4047 const unsigned char *),
4048 int (*unsync)(struct net_device *,
4049 const unsigned char *))
4050 {
4051 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4052 }
4053
4054 /**
4055 * __dev_uc_unsync - Remove synchronized addresses from device
4056 * @dev: device to sync
4057 * @unsync: function to call if address should be removed
4058 *
4059 * Remove all addresses that were added to the device by dev_uc_sync().
4060 */
__dev_uc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4061 static inline void __dev_uc_unsync(struct net_device *dev,
4062 int (*unsync)(struct net_device *,
4063 const unsigned char *))
4064 {
4065 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
4066 }
4067
4068 /* Functions used for multicast addresses handling */
4069 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4070 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4071 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4072 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4073 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4074 int dev_mc_sync(struct net_device *to, struct net_device *from);
4075 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4076 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4077 void dev_mc_flush(struct net_device *dev);
4078 void dev_mc_init(struct net_device *dev);
4079
4080 /**
4081 * __dev_mc_sync - Synchonize device's multicast list
4082 * @dev: device to sync
4083 * @sync: function to call if address should be added
4084 * @unsync: function to call if address should be removed
4085 *
4086 * Add newly added addresses to the interface, and release
4087 * addresses that have been deleted.
4088 */
__dev_mc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4089 static inline int __dev_mc_sync(struct net_device *dev,
4090 int (*sync)(struct net_device *,
4091 const unsigned char *),
4092 int (*unsync)(struct net_device *,
4093 const unsigned char *))
4094 {
4095 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4096 }
4097
4098 /**
4099 * __dev_mc_unsync - Remove synchronized addresses from device
4100 * @dev: device to sync
4101 * @unsync: function to call if address should be removed
4102 *
4103 * Remove all addresses that were added to the device by dev_mc_sync().
4104 */
__dev_mc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4105 static inline void __dev_mc_unsync(struct net_device *dev,
4106 int (*unsync)(struct net_device *,
4107 const unsigned char *))
4108 {
4109 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
4110 }
4111
4112 /* Functions used for secondary unicast and multicast support */
4113 void dev_set_rx_mode(struct net_device *dev);
4114 void __dev_set_rx_mode(struct net_device *dev);
4115 int dev_set_promiscuity(struct net_device *dev, int inc);
4116 int dev_set_allmulti(struct net_device *dev, int inc);
4117 void netdev_state_change(struct net_device *dev);
4118 void netdev_notify_peers(struct net_device *dev);
4119 void netdev_features_change(struct net_device *dev);
4120 /* Load a device via the kmod */
4121 void dev_load(struct net *net, const char *name);
4122 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4123 struct rtnl_link_stats64 *storage);
4124 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4125 const struct net_device_stats *netdev_stats);
4126
4127 extern int netdev_max_backlog;
4128 extern int netdev_tstamp_prequeue;
4129 extern int weight_p;
4130 extern int dev_weight_rx_bias;
4131 extern int dev_weight_tx_bias;
4132 extern int dev_rx_weight;
4133 extern int dev_tx_weight;
4134
4135 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4136 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4137 struct list_head **iter);
4138 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4139 struct list_head **iter);
4140
4141 /* iterate through upper list, must be called under RCU read lock */
4142 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4143 for (iter = &(dev)->adj_list.upper, \
4144 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4145 updev; \
4146 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4147
4148 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4149 int (*fn)(struct net_device *upper_dev,
4150 void *data),
4151 void *data);
4152
4153 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4154 struct net_device *upper_dev);
4155
4156 bool netdev_has_any_upper_dev(struct net_device *dev);
4157
4158 void *netdev_lower_get_next_private(struct net_device *dev,
4159 struct list_head **iter);
4160 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4161 struct list_head **iter);
4162
4163 #define netdev_for_each_lower_private(dev, priv, iter) \
4164 for (iter = (dev)->adj_list.lower.next, \
4165 priv = netdev_lower_get_next_private(dev, &(iter)); \
4166 priv; \
4167 priv = netdev_lower_get_next_private(dev, &(iter)))
4168
4169 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4170 for (iter = &(dev)->adj_list.lower, \
4171 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4172 priv; \
4173 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4174
4175 void *netdev_lower_get_next(struct net_device *dev,
4176 struct list_head **iter);
4177
4178 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4179 for (iter = (dev)->adj_list.lower.next, \
4180 ldev = netdev_lower_get_next(dev, &(iter)); \
4181 ldev; \
4182 ldev = netdev_lower_get_next(dev, &(iter)))
4183
4184 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
4185 struct list_head **iter);
4186 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
4187 struct list_head **iter);
4188
4189 int netdev_walk_all_lower_dev(struct net_device *dev,
4190 int (*fn)(struct net_device *lower_dev,
4191 void *data),
4192 void *data);
4193 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4194 int (*fn)(struct net_device *lower_dev,
4195 void *data),
4196 void *data);
4197
4198 void *netdev_adjacent_get_private(struct list_head *adj_list);
4199 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4200 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4201 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4202 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4203 struct netlink_ext_ack *extack);
4204 int netdev_master_upper_dev_link(struct net_device *dev,
4205 struct net_device *upper_dev,
4206 void *upper_priv, void *upper_info,
4207 struct netlink_ext_ack *extack);
4208 void netdev_upper_dev_unlink(struct net_device *dev,
4209 struct net_device *upper_dev);
4210 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4211 void *netdev_lower_dev_get_private(struct net_device *dev,
4212 struct net_device *lower_dev);
4213 void netdev_lower_state_changed(struct net_device *lower_dev,
4214 void *lower_state_info);
4215
4216 /* RSS keys are 40 or 52 bytes long */
4217 #define NETDEV_RSS_KEY_LEN 52
4218 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4219 void netdev_rss_key_fill(void *buffer, size_t len);
4220
4221 int dev_get_nest_level(struct net_device *dev);
4222 int skb_checksum_help(struct sk_buff *skb);
4223 int skb_crc32c_csum_help(struct sk_buff *skb);
4224 int skb_csum_hwoffload_help(struct sk_buff *skb,
4225 const netdev_features_t features);
4226
4227 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4228 netdev_features_t features, bool tx_path);
4229 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4230 netdev_features_t features);
4231
4232 struct netdev_bonding_info {
4233 ifslave slave;
4234 ifbond master;
4235 };
4236
4237 struct netdev_notifier_bonding_info {
4238 struct netdev_notifier_info info; /* must be first */
4239 struct netdev_bonding_info bonding_info;
4240 };
4241
4242 void netdev_bonding_info_change(struct net_device *dev,
4243 struct netdev_bonding_info *bonding_info);
4244
4245 static inline
skb_gso_segment(struct sk_buff * skb,netdev_features_t features)4246 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4247 {
4248 return __skb_gso_segment(skb, features, true);
4249 }
4250 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4251
can_checksum_protocol(netdev_features_t features,__be16 protocol)4252 static inline bool can_checksum_protocol(netdev_features_t features,
4253 __be16 protocol)
4254 {
4255 if (protocol == htons(ETH_P_FCOE))
4256 return !!(features & NETIF_F_FCOE_CRC);
4257
4258 /* Assume this is an IP checksum (not SCTP CRC) */
4259
4260 if (features & NETIF_F_HW_CSUM) {
4261 /* Can checksum everything */
4262 return true;
4263 }
4264
4265 switch (protocol) {
4266 case htons(ETH_P_IP):
4267 return !!(features & NETIF_F_IP_CSUM);
4268 case htons(ETH_P_IPV6):
4269 return !!(features & NETIF_F_IPV6_CSUM);
4270 default:
4271 return false;
4272 }
4273 }
4274
4275 #ifdef CONFIG_BUG
4276 void netdev_rx_csum_fault(struct net_device *dev);
4277 #else
netdev_rx_csum_fault(struct net_device * dev)4278 static inline void netdev_rx_csum_fault(struct net_device *dev)
4279 {
4280 }
4281 #endif
4282 /* rx skb timestamps */
4283 void net_enable_timestamp(void);
4284 void net_disable_timestamp(void);
4285
4286 #ifdef CONFIG_PROC_FS
4287 int __init dev_proc_init(void);
4288 #else
4289 #define dev_proc_init() 0
4290 #endif
4291
__netdev_start_xmit(const struct net_device_ops * ops,struct sk_buff * skb,struct net_device * dev,bool more)4292 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4293 struct sk_buff *skb, struct net_device *dev,
4294 bool more)
4295 {
4296 skb->xmit_more = more ? 1 : 0;
4297 return ops->ndo_start_xmit(skb, dev);
4298 }
4299
netdev_start_xmit(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)4300 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4301 struct netdev_queue *txq, bool more)
4302 {
4303 const struct net_device_ops *ops = dev->netdev_ops;
4304 int rc;
4305
4306 rc = __netdev_start_xmit(ops, skb, dev, more);
4307 if (rc == NETDEV_TX_OK)
4308 txq_trans_update(txq);
4309
4310 return rc;
4311 }
4312
4313 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4314 const void *ns);
4315 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4316 const void *ns);
4317
netdev_class_create_file(const struct class_attribute * class_attr)4318 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4319 {
4320 return netdev_class_create_file_ns(class_attr, NULL);
4321 }
4322
netdev_class_remove_file(const struct class_attribute * class_attr)4323 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4324 {
4325 netdev_class_remove_file_ns(class_attr, NULL);
4326 }
4327
4328 extern const struct kobj_ns_type_operations net_ns_type_operations;
4329
4330 const char *netdev_drivername(const struct net_device *dev);
4331
4332 void linkwatch_run_queue(void);
4333
netdev_intersect_features(netdev_features_t f1,netdev_features_t f2)4334 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4335 netdev_features_t f2)
4336 {
4337 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4338 if (f1 & NETIF_F_HW_CSUM)
4339 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4340 else
4341 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4342 }
4343
4344 return f1 & f2;
4345 }
4346
netdev_get_wanted_features(struct net_device * dev)4347 static inline netdev_features_t netdev_get_wanted_features(
4348 struct net_device *dev)
4349 {
4350 return (dev->features & ~dev->hw_features) | dev->wanted_features;
4351 }
4352 netdev_features_t netdev_increment_features(netdev_features_t all,
4353 netdev_features_t one, netdev_features_t mask);
4354
4355 /* Allow TSO being used on stacked device :
4356 * Performing the GSO segmentation before last device
4357 * is a performance improvement.
4358 */
netdev_add_tso_features(netdev_features_t features,netdev_features_t mask)4359 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4360 netdev_features_t mask)
4361 {
4362 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4363 }
4364
4365 int __netdev_update_features(struct net_device *dev);
4366 void netdev_update_features(struct net_device *dev);
4367 void netdev_change_features(struct net_device *dev);
4368
4369 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4370 struct net_device *dev);
4371
4372 netdev_features_t passthru_features_check(struct sk_buff *skb,
4373 struct net_device *dev,
4374 netdev_features_t features);
4375 netdev_features_t netif_skb_features(struct sk_buff *skb);
4376
net_gso_ok(netdev_features_t features,int gso_type)4377 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4378 {
4379 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4380
4381 /* check flags correspondence */
4382 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4383 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4384 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4385 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4386 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4387 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4388 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4389 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4390 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4391 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4392 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4393 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4394 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4395 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4396 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4397 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4398 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4399 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4400
4401 return (features & feature) == feature;
4402 }
4403
skb_gso_ok(struct sk_buff * skb,netdev_features_t features)4404 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4405 {
4406 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4407 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4408 }
4409
netif_needs_gso(struct sk_buff * skb,netdev_features_t features)4410 static inline bool netif_needs_gso(struct sk_buff *skb,
4411 netdev_features_t features)
4412 {
4413 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4414 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4415 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4416 }
4417
netif_set_gso_max_size(struct net_device * dev,unsigned int size)4418 static inline void netif_set_gso_max_size(struct net_device *dev,
4419 unsigned int size)
4420 {
4421 dev->gso_max_size = size;
4422 }
4423
skb_gso_error_unwind(struct sk_buff * skb,__be16 protocol,int pulled_hlen,u16 mac_offset,int mac_len)4424 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4425 int pulled_hlen, u16 mac_offset,
4426 int mac_len)
4427 {
4428 skb->protocol = protocol;
4429 skb->encapsulation = 1;
4430 skb_push(skb, pulled_hlen);
4431 skb_reset_transport_header(skb);
4432 skb->mac_header = mac_offset;
4433 skb->network_header = skb->mac_header + mac_len;
4434 skb->mac_len = mac_len;
4435 }
4436
netif_is_macsec(const struct net_device * dev)4437 static inline bool netif_is_macsec(const struct net_device *dev)
4438 {
4439 return dev->priv_flags & IFF_MACSEC;
4440 }
4441
netif_is_macvlan(const struct net_device * dev)4442 static inline bool netif_is_macvlan(const struct net_device *dev)
4443 {
4444 return dev->priv_flags & IFF_MACVLAN;
4445 }
4446
netif_is_macvlan_port(const struct net_device * dev)4447 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4448 {
4449 return dev->priv_flags & IFF_MACVLAN_PORT;
4450 }
4451
netif_is_bond_master(const struct net_device * dev)4452 static inline bool netif_is_bond_master(const struct net_device *dev)
4453 {
4454 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4455 }
4456
netif_is_bond_slave(const struct net_device * dev)4457 static inline bool netif_is_bond_slave(const struct net_device *dev)
4458 {
4459 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4460 }
4461
netif_supports_nofcs(struct net_device * dev)4462 static inline bool netif_supports_nofcs(struct net_device *dev)
4463 {
4464 return dev->priv_flags & IFF_SUPP_NOFCS;
4465 }
4466
netif_is_l3_master(const struct net_device * dev)4467 static inline bool netif_is_l3_master(const struct net_device *dev)
4468 {
4469 return dev->priv_flags & IFF_L3MDEV_MASTER;
4470 }
4471
netif_is_l3_slave(const struct net_device * dev)4472 static inline bool netif_is_l3_slave(const struct net_device *dev)
4473 {
4474 return dev->priv_flags & IFF_L3MDEV_SLAVE;
4475 }
4476
netif_is_bridge_master(const struct net_device * dev)4477 static inline bool netif_is_bridge_master(const struct net_device *dev)
4478 {
4479 return dev->priv_flags & IFF_EBRIDGE;
4480 }
4481
netif_is_bridge_port(const struct net_device * dev)4482 static inline bool netif_is_bridge_port(const struct net_device *dev)
4483 {
4484 return dev->priv_flags & IFF_BRIDGE_PORT;
4485 }
4486
netif_is_ovs_master(const struct net_device * dev)4487 static inline bool netif_is_ovs_master(const struct net_device *dev)
4488 {
4489 return dev->priv_flags & IFF_OPENVSWITCH;
4490 }
4491
netif_is_ovs_port(const struct net_device * dev)4492 static inline bool netif_is_ovs_port(const struct net_device *dev)
4493 {
4494 return dev->priv_flags & IFF_OVS_DATAPATH;
4495 }
4496
netif_is_team_master(const struct net_device * dev)4497 static inline bool netif_is_team_master(const struct net_device *dev)
4498 {
4499 return dev->priv_flags & IFF_TEAM;
4500 }
4501
netif_is_team_port(const struct net_device * dev)4502 static inline bool netif_is_team_port(const struct net_device *dev)
4503 {
4504 return dev->priv_flags & IFF_TEAM_PORT;
4505 }
4506
netif_is_lag_master(const struct net_device * dev)4507 static inline bool netif_is_lag_master(const struct net_device *dev)
4508 {
4509 return netif_is_bond_master(dev) || netif_is_team_master(dev);
4510 }
4511
netif_is_lag_port(const struct net_device * dev)4512 static inline bool netif_is_lag_port(const struct net_device *dev)
4513 {
4514 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4515 }
4516
netif_is_rxfh_configured(const struct net_device * dev)4517 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4518 {
4519 return dev->priv_flags & IFF_RXFH_CONFIGURED;
4520 }
4521
netif_is_failover(const struct net_device * dev)4522 static inline bool netif_is_failover(const struct net_device *dev)
4523 {
4524 return dev->priv_flags & IFF_FAILOVER;
4525 }
4526
netif_is_failover_slave(const struct net_device * dev)4527 static inline bool netif_is_failover_slave(const struct net_device *dev)
4528 {
4529 return dev->priv_flags & IFF_FAILOVER_SLAVE;
4530 }
4531
4532 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
netif_keep_dst(struct net_device * dev)4533 static inline void netif_keep_dst(struct net_device *dev)
4534 {
4535 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4536 }
4537
4538 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
netif_reduces_vlan_mtu(struct net_device * dev)4539 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4540 {
4541 /* TODO: reserve and use an additional IFF bit, if we get more users */
4542 return dev->priv_flags & IFF_MACSEC;
4543 }
4544
4545 extern struct pernet_operations __net_initdata loopback_net_ops;
4546
4547 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4548
4549 /* netdev_printk helpers, similar to dev_printk */
4550
netdev_name(const struct net_device * dev)4551 static inline const char *netdev_name(const struct net_device *dev)
4552 {
4553 if (!dev->name[0] || strchr(dev->name, '%'))
4554 return "(unnamed net_device)";
4555 return dev->name;
4556 }
4557
netdev_unregistering(const struct net_device * dev)4558 static inline bool netdev_unregistering(const struct net_device *dev)
4559 {
4560 return dev->reg_state == NETREG_UNREGISTERING;
4561 }
4562
netdev_reg_state(const struct net_device * dev)4563 static inline const char *netdev_reg_state(const struct net_device *dev)
4564 {
4565 switch (dev->reg_state) {
4566 case NETREG_UNINITIALIZED: return " (uninitialized)";
4567 case NETREG_REGISTERED: return "";
4568 case NETREG_UNREGISTERING: return " (unregistering)";
4569 case NETREG_UNREGISTERED: return " (unregistered)";
4570 case NETREG_RELEASED: return " (released)";
4571 case NETREG_DUMMY: return " (dummy)";
4572 }
4573
4574 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4575 return " (unknown)";
4576 }
4577
4578 __printf(3, 4)
4579 void netdev_printk(const char *level, const struct net_device *dev,
4580 const char *format, ...);
4581 __printf(2, 3)
4582 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4583 __printf(2, 3)
4584 void netdev_alert(const struct net_device *dev, const char *format, ...);
4585 __printf(2, 3)
4586 void netdev_crit(const struct net_device *dev, const char *format, ...);
4587 __printf(2, 3)
4588 void netdev_err(const struct net_device *dev, const char *format, ...);
4589 __printf(2, 3)
4590 void netdev_warn(const struct net_device *dev, const char *format, ...);
4591 __printf(2, 3)
4592 void netdev_notice(const struct net_device *dev, const char *format, ...);
4593 __printf(2, 3)
4594 void netdev_info(const struct net_device *dev, const char *format, ...);
4595
4596 #define netdev_level_once(level, dev, fmt, ...) \
4597 do { \
4598 static bool __print_once __read_mostly; \
4599 \
4600 if (!__print_once) { \
4601 __print_once = true; \
4602 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \
4603 } \
4604 } while (0)
4605
4606 #define netdev_emerg_once(dev, fmt, ...) \
4607 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4608 #define netdev_alert_once(dev, fmt, ...) \
4609 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4610 #define netdev_crit_once(dev, fmt, ...) \
4611 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4612 #define netdev_err_once(dev, fmt, ...) \
4613 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4614 #define netdev_warn_once(dev, fmt, ...) \
4615 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4616 #define netdev_notice_once(dev, fmt, ...) \
4617 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4618 #define netdev_info_once(dev, fmt, ...) \
4619 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4620
4621 #define MODULE_ALIAS_NETDEV(device) \
4622 MODULE_ALIAS("netdev-" device)
4623
4624 #if defined(CONFIG_DYNAMIC_DEBUG)
4625 #define netdev_dbg(__dev, format, args...) \
4626 do { \
4627 dynamic_netdev_dbg(__dev, format, ##args); \
4628 } while (0)
4629 #elif defined(DEBUG)
4630 #define netdev_dbg(__dev, format, args...) \
4631 netdev_printk(KERN_DEBUG, __dev, format, ##args)
4632 #else
4633 #define netdev_dbg(__dev, format, args...) \
4634 ({ \
4635 if (0) \
4636 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4637 })
4638 #endif
4639
4640 #if defined(VERBOSE_DEBUG)
4641 #define netdev_vdbg netdev_dbg
4642 #else
4643
4644 #define netdev_vdbg(dev, format, args...) \
4645 ({ \
4646 if (0) \
4647 netdev_printk(KERN_DEBUG, dev, format, ##args); \
4648 0; \
4649 })
4650 #endif
4651
4652 /*
4653 * netdev_WARN() acts like dev_printk(), but with the key difference
4654 * of using a WARN/WARN_ON to get the message out, including the
4655 * file/line information and a backtrace.
4656 */
4657 #define netdev_WARN(dev, format, args...) \
4658 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \
4659 netdev_reg_state(dev), ##args)
4660
4661 #define netdev_WARN_ONCE(dev, format, args...) \
4662 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \
4663 netdev_reg_state(dev), ##args)
4664
4665 /* netif printk helpers, similar to netdev_printk */
4666
4667 #define netif_printk(priv, type, level, dev, fmt, args...) \
4668 do { \
4669 if (netif_msg_##type(priv)) \
4670 netdev_printk(level, (dev), fmt, ##args); \
4671 } while (0)
4672
4673 #define netif_level(level, priv, type, dev, fmt, args...) \
4674 do { \
4675 if (netif_msg_##type(priv)) \
4676 netdev_##level(dev, fmt, ##args); \
4677 } while (0)
4678
4679 #define netif_emerg(priv, type, dev, fmt, args...) \
4680 netif_level(emerg, priv, type, dev, fmt, ##args)
4681 #define netif_alert(priv, type, dev, fmt, args...) \
4682 netif_level(alert, priv, type, dev, fmt, ##args)
4683 #define netif_crit(priv, type, dev, fmt, args...) \
4684 netif_level(crit, priv, type, dev, fmt, ##args)
4685 #define netif_err(priv, type, dev, fmt, args...) \
4686 netif_level(err, priv, type, dev, fmt, ##args)
4687 #define netif_warn(priv, type, dev, fmt, args...) \
4688 netif_level(warn, priv, type, dev, fmt, ##args)
4689 #define netif_notice(priv, type, dev, fmt, args...) \
4690 netif_level(notice, priv, type, dev, fmt, ##args)
4691 #define netif_info(priv, type, dev, fmt, args...) \
4692 netif_level(info, priv, type, dev, fmt, ##args)
4693
4694 #if defined(CONFIG_DYNAMIC_DEBUG)
4695 #define netif_dbg(priv, type, netdev, format, args...) \
4696 do { \
4697 if (netif_msg_##type(priv)) \
4698 dynamic_netdev_dbg(netdev, format, ##args); \
4699 } while (0)
4700 #elif defined(DEBUG)
4701 #define netif_dbg(priv, type, dev, format, args...) \
4702 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4703 #else
4704 #define netif_dbg(priv, type, dev, format, args...) \
4705 ({ \
4706 if (0) \
4707 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4708 0; \
4709 })
4710 #endif
4711
4712 /* if @cond then downgrade to debug, else print at @level */
4713 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \
4714 do { \
4715 if (cond) \
4716 netif_dbg(priv, type, netdev, fmt, ##args); \
4717 else \
4718 netif_ ## level(priv, type, netdev, fmt, ##args); \
4719 } while (0)
4720
4721 #if defined(VERBOSE_DEBUG)
4722 #define netif_vdbg netif_dbg
4723 #else
4724 #define netif_vdbg(priv, type, dev, format, args...) \
4725 ({ \
4726 if (0) \
4727 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4728 0; \
4729 })
4730 #endif
4731
4732 /*
4733 * The list of packet types we will receive (as opposed to discard)
4734 * and the routines to invoke.
4735 *
4736 * Why 16. Because with 16 the only overlap we get on a hash of the
4737 * low nibble of the protocol value is RARP/SNAP/X.25.
4738 *
4739 * 0800 IP
4740 * 0001 802.3
4741 * 0002 AX.25
4742 * 0004 802.2
4743 * 8035 RARP
4744 * 0005 SNAP
4745 * 0805 X.25
4746 * 0806 ARP
4747 * 8137 IPX
4748 * 0009 Localtalk
4749 * 86DD IPv6
4750 */
4751 #define PTYPE_HASH_SIZE (16)
4752 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4753
4754 #endif /* _LINUX_NETDEVICE_H */
4755