1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/bpf.h>
95 #include <linux/bpf_trace.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <net/busy_poll.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dsa.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/pkt_cls.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141 #include <linux/crash_dump.h>
142 #include <linux/sctp.h>
143 #include <net/udp_tunnel.h>
144 #include <linux/net_namespace.h>
145 #include <linux/indirect_call_wrapper.h>
146 #include <net/devlink.h>
147 #include <linux/pm_runtime.h>
148 #include <linux/prandom.h>
149
150 #include "net-sysfs.h"
151
152 #define MAX_GRO_SKBS 8
153
154 /* This should be increased if a protocol with a bigger head is added. */
155 #define GRO_MAX_HEAD (MAX_HEADER + 128)
156
157 static DEFINE_SPINLOCK(ptype_lock);
158 static DEFINE_SPINLOCK(offload_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly; /* Taps */
161 static struct list_head offload_base __read_mostly;
162
163 static int netif_rx_internal(struct sk_buff *skb);
164 static int call_netdevice_notifiers_info(unsigned long val,
165 struct netdev_notifier_info *info);
166 static int call_netdevice_notifiers_extack(unsigned long val,
167 struct net_device *dev,
168 struct netlink_ext_ack *extack);
169 static struct napi_struct *napi_by_id(unsigned int napi_id);
170
171 /*
172 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
173 * semaphore.
174 *
175 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
176 *
177 * Writers must hold the rtnl semaphore while they loop through the
178 * dev_base_head list, and hold dev_base_lock for writing when they do the
179 * actual updates. This allows pure readers to access the list even
180 * while a writer is preparing to update it.
181 *
182 * To put it another way, dev_base_lock is held for writing only to
183 * protect against pure readers; the rtnl semaphore provides the
184 * protection against other writers.
185 *
186 * See, for example usages, register_netdevice() and
187 * unregister_netdevice(), which must be called with the rtnl
188 * semaphore held.
189 */
190 DEFINE_RWLOCK(dev_base_lock);
191 EXPORT_SYMBOL(dev_base_lock);
192
193 static DEFINE_MUTEX(ifalias_mutex);
194
195 /* protects napi_hash addition/deletion and napi_gen_id */
196 static DEFINE_SPINLOCK(napi_hash_lock);
197
198 static unsigned int napi_gen_id = NR_CPUS;
199 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
200
201 static DECLARE_RWSEM(devnet_rename_sem);
202
dev_base_seq_inc(struct net * net)203 static inline void dev_base_seq_inc(struct net *net)
204 {
205 while (++net->dev_base_seq == 0)
206 ;
207 }
208
dev_name_hash(struct net * net,const char * name)209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
212
213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215
dev_index_hash(struct net * net,int ifindex)216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220
rps_lock(struct softnet_data * sd)221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227
rps_unlock(struct softnet_data * sd)228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234
netdev_name_node_alloc(struct net_device * dev,const char * name)235 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
236 const char *name)
237 {
238 struct netdev_name_node *name_node;
239
240 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
241 if (!name_node)
242 return NULL;
243 INIT_HLIST_NODE(&name_node->hlist);
244 name_node->dev = dev;
245 name_node->name = name;
246 return name_node;
247 }
248
249 static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device * dev)250 netdev_name_node_head_alloc(struct net_device *dev)
251 {
252 struct netdev_name_node *name_node;
253
254 name_node = netdev_name_node_alloc(dev, dev->name);
255 if (!name_node)
256 return NULL;
257 INIT_LIST_HEAD(&name_node->list);
258 return name_node;
259 }
260
netdev_name_node_free(struct netdev_name_node * name_node)261 static void netdev_name_node_free(struct netdev_name_node *name_node)
262 {
263 kfree(name_node);
264 }
265
netdev_name_node_add(struct net * net,struct netdev_name_node * name_node)266 static void netdev_name_node_add(struct net *net,
267 struct netdev_name_node *name_node)
268 {
269 hlist_add_head_rcu(&name_node->hlist,
270 dev_name_hash(net, name_node->name));
271 }
272
netdev_name_node_del(struct netdev_name_node * name_node)273 static void netdev_name_node_del(struct netdev_name_node *name_node)
274 {
275 hlist_del_rcu(&name_node->hlist);
276 }
277
netdev_name_node_lookup(struct net * net,const char * name)278 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
279 const char *name)
280 {
281 struct hlist_head *head = dev_name_hash(net, name);
282 struct netdev_name_node *name_node;
283
284 hlist_for_each_entry(name_node, head, hlist)
285 if (!strcmp(name_node->name, name))
286 return name_node;
287 return NULL;
288 }
289
netdev_name_node_lookup_rcu(struct net * net,const char * name)290 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
291 const char *name)
292 {
293 struct hlist_head *head = dev_name_hash(net, name);
294 struct netdev_name_node *name_node;
295
296 hlist_for_each_entry_rcu(name_node, head, hlist)
297 if (!strcmp(name_node->name, name))
298 return name_node;
299 return NULL;
300 }
301
netdev_name_node_alt_create(struct net_device * dev,const char * name)302 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
303 {
304 struct netdev_name_node *name_node;
305 struct net *net = dev_net(dev);
306
307 name_node = netdev_name_node_lookup(net, name);
308 if (name_node)
309 return -EEXIST;
310 name_node = netdev_name_node_alloc(dev, name);
311 if (!name_node)
312 return -ENOMEM;
313 netdev_name_node_add(net, name_node);
314 /* The node that holds dev->name acts as a head of per-device list. */
315 list_add_tail(&name_node->list, &dev->name_node->list);
316
317 return 0;
318 }
319 EXPORT_SYMBOL(netdev_name_node_alt_create);
320
__netdev_name_node_alt_destroy(struct netdev_name_node * name_node)321 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
322 {
323 list_del(&name_node->list);
324 netdev_name_node_del(name_node);
325 kfree(name_node->name);
326 netdev_name_node_free(name_node);
327 }
328
netdev_name_node_alt_destroy(struct net_device * dev,const char * name)329 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
330 {
331 struct netdev_name_node *name_node;
332 struct net *net = dev_net(dev);
333
334 name_node = netdev_name_node_lookup(net, name);
335 if (!name_node)
336 return -ENOENT;
337 /* lookup might have found our primary name or a name belonging
338 * to another device.
339 */
340 if (name_node == dev->name_node || name_node->dev != dev)
341 return -EINVAL;
342
343 __netdev_name_node_alt_destroy(name_node);
344
345 return 0;
346 }
347 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
348
netdev_name_node_alt_flush(struct net_device * dev)349 static void netdev_name_node_alt_flush(struct net_device *dev)
350 {
351 struct netdev_name_node *name_node, *tmp;
352
353 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
354 __netdev_name_node_alt_destroy(name_node);
355 }
356
357 /* Device list insertion */
list_netdevice(struct net_device * dev)358 static void list_netdevice(struct net_device *dev)
359 {
360 struct net *net = dev_net(dev);
361
362 ASSERT_RTNL();
363
364 write_lock_bh(&dev_base_lock);
365 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
366 netdev_name_node_add(net, dev->name_node);
367 hlist_add_head_rcu(&dev->index_hlist,
368 dev_index_hash(net, dev->ifindex));
369 write_unlock_bh(&dev_base_lock);
370
371 dev_base_seq_inc(net);
372 }
373
374 /* Device list removal
375 * caller must respect a RCU grace period before freeing/reusing dev
376 */
unlist_netdevice(struct net_device * dev)377 static void unlist_netdevice(struct net_device *dev)
378 {
379 ASSERT_RTNL();
380
381 /* Unlink dev from the device chain */
382 write_lock_bh(&dev_base_lock);
383 list_del_rcu(&dev->dev_list);
384 netdev_name_node_del(dev->name_node);
385 hlist_del_rcu(&dev->index_hlist);
386 write_unlock_bh(&dev_base_lock);
387
388 dev_base_seq_inc(dev_net(dev));
389 }
390
391 /*
392 * Our notifier list
393 */
394
395 static RAW_NOTIFIER_HEAD(netdev_chain);
396
397 /*
398 * Device drivers call our routines to queue packets here. We empty the
399 * queue in the local softnet handler.
400 */
401
402 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
403 EXPORT_PER_CPU_SYMBOL(softnet_data);
404
405 #ifdef CONFIG_LOCKDEP
406 /*
407 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
408 * according to dev->type
409 */
410 static const unsigned short netdev_lock_type[] = {
411 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
412 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
413 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
414 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
415 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
416 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
417 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
418 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
419 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
420 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
421 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
422 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
423 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
424 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
425 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
426
427 static const char *const netdev_lock_name[] = {
428 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
429 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
430 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
431 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
432 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
433 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
434 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
435 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
436 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
437 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
438 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
439 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
440 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
441 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
442 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
443
444 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
445 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
446
netdev_lock_pos(unsigned short dev_type)447 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
448 {
449 int i;
450
451 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
452 if (netdev_lock_type[i] == dev_type)
453 return i;
454 /* the last key is used by default */
455 return ARRAY_SIZE(netdev_lock_type) - 1;
456 }
457
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)458 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
459 unsigned short dev_type)
460 {
461 int i;
462
463 i = netdev_lock_pos(dev_type);
464 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
465 netdev_lock_name[i]);
466 }
467
netdev_set_addr_lockdep_class(struct net_device * dev)468 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
469 {
470 int i;
471
472 i = netdev_lock_pos(dev->type);
473 lockdep_set_class_and_name(&dev->addr_list_lock,
474 &netdev_addr_lock_key[i],
475 netdev_lock_name[i]);
476 }
477 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)478 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
479 unsigned short dev_type)
480 {
481 }
482
netdev_set_addr_lockdep_class(struct net_device * dev)483 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
484 {
485 }
486 #endif
487
488 /*******************************************************************************
489 *
490 * Protocol management and registration routines
491 *
492 *******************************************************************************/
493
494
495 /*
496 * Add a protocol ID to the list. Now that the input handler is
497 * smarter we can dispense with all the messy stuff that used to be
498 * here.
499 *
500 * BEWARE!!! Protocol handlers, mangling input packets,
501 * MUST BE last in hash buckets and checking protocol handlers
502 * MUST start from promiscuous ptype_all chain in net_bh.
503 * It is true now, do not change it.
504 * Explanation follows: if protocol handler, mangling packet, will
505 * be the first on list, it is not able to sense, that packet
506 * is cloned and should be copied-on-write, so that it will
507 * change it and subsequent readers will get broken packet.
508 * --ANK (980803)
509 */
510
ptype_head(const struct packet_type * pt)511 static inline struct list_head *ptype_head(const struct packet_type *pt)
512 {
513 if (pt->type == htons(ETH_P_ALL))
514 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
515 else
516 return pt->dev ? &pt->dev->ptype_specific :
517 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
518 }
519
520 /**
521 * dev_add_pack - add packet handler
522 * @pt: packet type declaration
523 *
524 * Add a protocol handler to the networking stack. The passed &packet_type
525 * is linked into kernel lists and may not be freed until it has been
526 * removed from the kernel lists.
527 *
528 * This call does not sleep therefore it can not
529 * guarantee all CPU's that are in middle of receiving packets
530 * will see the new packet type (until the next received packet).
531 */
532
dev_add_pack(struct packet_type * pt)533 void dev_add_pack(struct packet_type *pt)
534 {
535 struct list_head *head = ptype_head(pt);
536
537 spin_lock(&ptype_lock);
538 list_add_rcu(&pt->list, head);
539 spin_unlock(&ptype_lock);
540 }
541 EXPORT_SYMBOL(dev_add_pack);
542
543 /**
544 * __dev_remove_pack - remove packet handler
545 * @pt: packet type declaration
546 *
547 * Remove a protocol handler that was previously added to the kernel
548 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
549 * from the kernel lists and can be freed or reused once this function
550 * returns.
551 *
552 * The packet type might still be in use by receivers
553 * and must not be freed until after all the CPU's have gone
554 * through a quiescent state.
555 */
__dev_remove_pack(struct packet_type * pt)556 void __dev_remove_pack(struct packet_type *pt)
557 {
558 struct list_head *head = ptype_head(pt);
559 struct packet_type *pt1;
560
561 spin_lock(&ptype_lock);
562
563 list_for_each_entry(pt1, head, list) {
564 if (pt == pt1) {
565 list_del_rcu(&pt->list);
566 goto out;
567 }
568 }
569
570 pr_warn("dev_remove_pack: %p not found\n", pt);
571 out:
572 spin_unlock(&ptype_lock);
573 }
574 EXPORT_SYMBOL(__dev_remove_pack);
575
576 /**
577 * dev_remove_pack - remove packet handler
578 * @pt: packet type declaration
579 *
580 * Remove a protocol handler that was previously added to the kernel
581 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
582 * from the kernel lists and can be freed or reused once this function
583 * returns.
584 *
585 * This call sleeps to guarantee that no CPU is looking at the packet
586 * type after return.
587 */
dev_remove_pack(struct packet_type * pt)588 void dev_remove_pack(struct packet_type *pt)
589 {
590 __dev_remove_pack(pt);
591
592 synchronize_net();
593 }
594 EXPORT_SYMBOL(dev_remove_pack);
595
596
597 /**
598 * dev_add_offload - register offload handlers
599 * @po: protocol offload declaration
600 *
601 * Add protocol offload handlers to the networking stack. The passed
602 * &proto_offload is linked into kernel lists and may not be freed until
603 * it has been removed from the kernel lists.
604 *
605 * This call does not sleep therefore it can not
606 * guarantee all CPU's that are in middle of receiving packets
607 * will see the new offload handlers (until the next received packet).
608 */
dev_add_offload(struct packet_offload * po)609 void dev_add_offload(struct packet_offload *po)
610 {
611 struct packet_offload *elem;
612
613 spin_lock(&offload_lock);
614 list_for_each_entry(elem, &offload_base, list) {
615 if (po->priority < elem->priority)
616 break;
617 }
618 list_add_rcu(&po->list, elem->list.prev);
619 spin_unlock(&offload_lock);
620 }
621 EXPORT_SYMBOL(dev_add_offload);
622
623 /**
624 * __dev_remove_offload - remove offload handler
625 * @po: packet offload declaration
626 *
627 * Remove a protocol offload handler that was previously added to the
628 * kernel offload handlers by dev_add_offload(). The passed &offload_type
629 * is removed from the kernel lists and can be freed or reused once this
630 * function returns.
631 *
632 * The packet type might still be in use by receivers
633 * and must not be freed until after all the CPU's have gone
634 * through a quiescent state.
635 */
__dev_remove_offload(struct packet_offload * po)636 static void __dev_remove_offload(struct packet_offload *po)
637 {
638 struct list_head *head = &offload_base;
639 struct packet_offload *po1;
640
641 spin_lock(&offload_lock);
642
643 list_for_each_entry(po1, head, list) {
644 if (po == po1) {
645 list_del_rcu(&po->list);
646 goto out;
647 }
648 }
649
650 pr_warn("dev_remove_offload: %p not found\n", po);
651 out:
652 spin_unlock(&offload_lock);
653 }
654
655 /**
656 * dev_remove_offload - remove packet offload handler
657 * @po: packet offload declaration
658 *
659 * Remove a packet offload handler that was previously added to the kernel
660 * offload handlers by dev_add_offload(). The passed &offload_type is
661 * removed from the kernel lists and can be freed or reused once this
662 * function returns.
663 *
664 * This call sleeps to guarantee that no CPU is looking at the packet
665 * type after return.
666 */
dev_remove_offload(struct packet_offload * po)667 void dev_remove_offload(struct packet_offload *po)
668 {
669 __dev_remove_offload(po);
670
671 synchronize_net();
672 }
673 EXPORT_SYMBOL(dev_remove_offload);
674
675 /******************************************************************************
676 *
677 * Device Boot-time Settings Routines
678 *
679 ******************************************************************************/
680
681 /* Boot time configuration table */
682 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
683
684 /**
685 * netdev_boot_setup_add - add new setup entry
686 * @name: name of the device
687 * @map: configured settings for the device
688 *
689 * Adds new setup entry to the dev_boot_setup list. The function
690 * returns 0 on error and 1 on success. This is a generic routine to
691 * all netdevices.
692 */
netdev_boot_setup_add(char * name,struct ifmap * map)693 static int netdev_boot_setup_add(char *name, struct ifmap *map)
694 {
695 struct netdev_boot_setup *s;
696 int i;
697
698 s = dev_boot_setup;
699 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
700 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
701 memset(s[i].name, 0, sizeof(s[i].name));
702 strlcpy(s[i].name, name, IFNAMSIZ);
703 memcpy(&s[i].map, map, sizeof(s[i].map));
704 break;
705 }
706 }
707
708 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
709 }
710
711 /**
712 * netdev_boot_setup_check - check boot time settings
713 * @dev: the netdevice
714 *
715 * Check boot time settings for the device.
716 * The found settings are set for the device to be used
717 * later in the device probing.
718 * Returns 0 if no settings found, 1 if they are.
719 */
netdev_boot_setup_check(struct net_device * dev)720 int netdev_boot_setup_check(struct net_device *dev)
721 {
722 struct netdev_boot_setup *s = dev_boot_setup;
723 int i;
724
725 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
726 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
727 !strcmp(dev->name, s[i].name)) {
728 dev->irq = s[i].map.irq;
729 dev->base_addr = s[i].map.base_addr;
730 dev->mem_start = s[i].map.mem_start;
731 dev->mem_end = s[i].map.mem_end;
732 return 1;
733 }
734 }
735 return 0;
736 }
737 EXPORT_SYMBOL(netdev_boot_setup_check);
738
739
740 /**
741 * netdev_boot_base - get address from boot time settings
742 * @prefix: prefix for network device
743 * @unit: id for network device
744 *
745 * Check boot time settings for the base address of device.
746 * The found settings are set for the device to be used
747 * later in the device probing.
748 * Returns 0 if no settings found.
749 */
netdev_boot_base(const char * prefix,int unit)750 unsigned long netdev_boot_base(const char *prefix, int unit)
751 {
752 const struct netdev_boot_setup *s = dev_boot_setup;
753 char name[IFNAMSIZ];
754 int i;
755
756 sprintf(name, "%s%d", prefix, unit);
757
758 /*
759 * If device already registered then return base of 1
760 * to indicate not to probe for this interface
761 */
762 if (__dev_get_by_name(&init_net, name))
763 return 1;
764
765 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
766 if (!strcmp(name, s[i].name))
767 return s[i].map.base_addr;
768 return 0;
769 }
770
771 /*
772 * Saves at boot time configured settings for any netdevice.
773 */
netdev_boot_setup(char * str)774 int __init netdev_boot_setup(char *str)
775 {
776 int ints[5];
777 struct ifmap map;
778
779 str = get_options(str, ARRAY_SIZE(ints), ints);
780 if (!str || !*str)
781 return 0;
782
783 /* Save settings */
784 memset(&map, 0, sizeof(map));
785 if (ints[0] > 0)
786 map.irq = ints[1];
787 if (ints[0] > 1)
788 map.base_addr = ints[2];
789 if (ints[0] > 2)
790 map.mem_start = ints[3];
791 if (ints[0] > 3)
792 map.mem_end = ints[4];
793
794 /* Add new entry to the list */
795 return netdev_boot_setup_add(str, &map);
796 }
797
798 __setup("netdev=", netdev_boot_setup);
799
800 /*******************************************************************************
801 *
802 * Device Interface Subroutines
803 *
804 *******************************************************************************/
805
806 /**
807 * dev_get_iflink - get 'iflink' value of a interface
808 * @dev: targeted interface
809 *
810 * Indicates the ifindex the interface is linked to.
811 * Physical interfaces have the same 'ifindex' and 'iflink' values.
812 */
813
dev_get_iflink(const struct net_device * dev)814 int dev_get_iflink(const struct net_device *dev)
815 {
816 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
817 return dev->netdev_ops->ndo_get_iflink(dev);
818
819 return dev->ifindex;
820 }
821 EXPORT_SYMBOL(dev_get_iflink);
822
823 /**
824 * dev_fill_metadata_dst - Retrieve tunnel egress information.
825 * @dev: targeted interface
826 * @skb: The packet.
827 *
828 * For better visibility of tunnel traffic OVS needs to retrieve
829 * egress tunnel information for a packet. Following API allows
830 * user to get this info.
831 */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)832 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
833 {
834 struct ip_tunnel_info *info;
835
836 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
837 return -EINVAL;
838
839 info = skb_tunnel_info_unclone(skb);
840 if (!info)
841 return -ENOMEM;
842 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
843 return -EINVAL;
844
845 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
846 }
847 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
848
849 /**
850 * __dev_get_by_name - find a device by its name
851 * @net: the applicable net namespace
852 * @name: name to find
853 *
854 * Find an interface by name. Must be called under RTNL semaphore
855 * or @dev_base_lock. If the name is found a pointer to the device
856 * is returned. If the name is not found then %NULL is returned. The
857 * reference counters are not incremented so the caller must be
858 * careful with locks.
859 */
860
__dev_get_by_name(struct net * net,const char * name)861 struct net_device *__dev_get_by_name(struct net *net, const char *name)
862 {
863 struct netdev_name_node *node_name;
864
865 node_name = netdev_name_node_lookup(net, name);
866 return node_name ? node_name->dev : NULL;
867 }
868 EXPORT_SYMBOL(__dev_get_by_name);
869
870 /**
871 * dev_get_by_name_rcu - find a device by its name
872 * @net: the applicable net namespace
873 * @name: name to find
874 *
875 * Find an interface by name.
876 * If the name is found a pointer to the device is returned.
877 * If the name is not found then %NULL is returned.
878 * The reference counters are not incremented so the caller must be
879 * careful with locks. The caller must hold RCU lock.
880 */
881
dev_get_by_name_rcu(struct net * net,const char * name)882 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
883 {
884 struct netdev_name_node *node_name;
885
886 node_name = netdev_name_node_lookup_rcu(net, name);
887 return node_name ? node_name->dev : NULL;
888 }
889 EXPORT_SYMBOL(dev_get_by_name_rcu);
890
891 /**
892 * dev_get_by_name - find a device by its name
893 * @net: the applicable net namespace
894 * @name: name to find
895 *
896 * Find an interface by name. This can be called from any
897 * context and does its own locking. The returned handle has
898 * the usage count incremented and the caller must use dev_put() to
899 * release it when it is no longer needed. %NULL is returned if no
900 * matching device is found.
901 */
902
dev_get_by_name(struct net * net,const char * name)903 struct net_device *dev_get_by_name(struct net *net, const char *name)
904 {
905 struct net_device *dev;
906
907 rcu_read_lock();
908 dev = dev_get_by_name_rcu(net, name);
909 if (dev)
910 dev_hold(dev);
911 rcu_read_unlock();
912 return dev;
913 }
914 EXPORT_SYMBOL(dev_get_by_name);
915
916 /**
917 * __dev_get_by_index - find a device by its ifindex
918 * @net: the applicable net namespace
919 * @ifindex: index of device
920 *
921 * Search for an interface by index. Returns %NULL if the device
922 * is not found or a pointer to the device. The device has not
923 * had its reference counter increased so the caller must be careful
924 * about locking. The caller must hold either the RTNL semaphore
925 * or @dev_base_lock.
926 */
927
__dev_get_by_index(struct net * net,int ifindex)928 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
929 {
930 struct net_device *dev;
931 struct hlist_head *head = dev_index_hash(net, ifindex);
932
933 hlist_for_each_entry(dev, head, index_hlist)
934 if (dev->ifindex == ifindex)
935 return dev;
936
937 return NULL;
938 }
939 EXPORT_SYMBOL(__dev_get_by_index);
940
941 /**
942 * dev_get_by_index_rcu - find a device by its ifindex
943 * @net: the applicable net namespace
944 * @ifindex: index of device
945 *
946 * Search for an interface by index. Returns %NULL if the device
947 * is not found or a pointer to the device. The device has not
948 * had its reference counter increased so the caller must be careful
949 * about locking. The caller must hold RCU lock.
950 */
951
dev_get_by_index_rcu(struct net * net,int ifindex)952 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
953 {
954 struct net_device *dev;
955 struct hlist_head *head = dev_index_hash(net, ifindex);
956
957 hlist_for_each_entry_rcu(dev, head, index_hlist)
958 if (dev->ifindex == ifindex)
959 return dev;
960
961 return NULL;
962 }
963 EXPORT_SYMBOL(dev_get_by_index_rcu);
964
965
966 /**
967 * dev_get_by_index - find a device by its ifindex
968 * @net: the applicable net namespace
969 * @ifindex: index of device
970 *
971 * Search for an interface by index. Returns NULL if the device
972 * is not found or a pointer to the device. The device returned has
973 * had a reference added and the pointer is safe until the user calls
974 * dev_put to indicate they have finished with it.
975 */
976
dev_get_by_index(struct net * net,int ifindex)977 struct net_device *dev_get_by_index(struct net *net, int ifindex)
978 {
979 struct net_device *dev;
980
981 rcu_read_lock();
982 dev = dev_get_by_index_rcu(net, ifindex);
983 if (dev)
984 dev_hold(dev);
985 rcu_read_unlock();
986 return dev;
987 }
988 EXPORT_SYMBOL(dev_get_by_index);
989
990 /**
991 * dev_get_by_napi_id - find a device by napi_id
992 * @napi_id: ID of the NAPI struct
993 *
994 * Search for an interface by NAPI ID. Returns %NULL if the device
995 * is not found or a pointer to the device. The device has not had
996 * its reference counter increased so the caller must be careful
997 * about locking. The caller must hold RCU lock.
998 */
999
dev_get_by_napi_id(unsigned int napi_id)1000 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1001 {
1002 struct napi_struct *napi;
1003
1004 WARN_ON_ONCE(!rcu_read_lock_held());
1005
1006 if (napi_id < MIN_NAPI_ID)
1007 return NULL;
1008
1009 napi = napi_by_id(napi_id);
1010
1011 return napi ? napi->dev : NULL;
1012 }
1013 EXPORT_SYMBOL(dev_get_by_napi_id);
1014
1015 /**
1016 * netdev_get_name - get a netdevice name, knowing its ifindex.
1017 * @net: network namespace
1018 * @name: a pointer to the buffer where the name will be stored.
1019 * @ifindex: the ifindex of the interface to get the name from.
1020 */
netdev_get_name(struct net * net,char * name,int ifindex)1021 int netdev_get_name(struct net *net, char *name, int ifindex)
1022 {
1023 struct net_device *dev;
1024 int ret;
1025
1026 down_read(&devnet_rename_sem);
1027 rcu_read_lock();
1028
1029 dev = dev_get_by_index_rcu(net, ifindex);
1030 if (!dev) {
1031 ret = -ENODEV;
1032 goto out;
1033 }
1034
1035 strcpy(name, dev->name);
1036
1037 ret = 0;
1038 out:
1039 rcu_read_unlock();
1040 up_read(&devnet_rename_sem);
1041 return ret;
1042 }
1043
1044 /**
1045 * dev_getbyhwaddr_rcu - find a device by its hardware address
1046 * @net: the applicable net namespace
1047 * @type: media type of device
1048 * @ha: hardware address
1049 *
1050 * Search for an interface by MAC address. Returns NULL if the device
1051 * is not found or a pointer to the device.
1052 * The caller must hold RCU or RTNL.
1053 * The returned device has not had its ref count increased
1054 * and the caller must therefore be careful about locking
1055 *
1056 */
1057
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)1058 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1059 const char *ha)
1060 {
1061 struct net_device *dev;
1062
1063 for_each_netdev_rcu(net, dev)
1064 if (dev->type == type &&
1065 !memcmp(dev->dev_addr, ha, dev->addr_len))
1066 return dev;
1067
1068 return NULL;
1069 }
1070 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1071
__dev_getfirstbyhwtype(struct net * net,unsigned short type)1072 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1073 {
1074 struct net_device *dev;
1075
1076 ASSERT_RTNL();
1077 for_each_netdev(net, dev)
1078 if (dev->type == type)
1079 return dev;
1080
1081 return NULL;
1082 }
1083 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1084
dev_getfirstbyhwtype(struct net * net,unsigned short type)1085 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1086 {
1087 struct net_device *dev, *ret = NULL;
1088
1089 rcu_read_lock();
1090 for_each_netdev_rcu(net, dev)
1091 if (dev->type == type) {
1092 dev_hold(dev);
1093 ret = dev;
1094 break;
1095 }
1096 rcu_read_unlock();
1097 return ret;
1098 }
1099 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1100
1101 /**
1102 * __dev_get_by_flags - find any device with given flags
1103 * @net: the applicable net namespace
1104 * @if_flags: IFF_* values
1105 * @mask: bitmask of bits in if_flags to check
1106 *
1107 * Search for any interface with the given flags. Returns NULL if a device
1108 * is not found or a pointer to the device. Must be called inside
1109 * rtnl_lock(), and result refcount is unchanged.
1110 */
1111
__dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)1112 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1113 unsigned short mask)
1114 {
1115 struct net_device *dev, *ret;
1116
1117 ASSERT_RTNL();
1118
1119 ret = NULL;
1120 for_each_netdev(net, dev) {
1121 if (((dev->flags ^ if_flags) & mask) == 0) {
1122 ret = dev;
1123 break;
1124 }
1125 }
1126 return ret;
1127 }
1128 EXPORT_SYMBOL(__dev_get_by_flags);
1129
1130 /**
1131 * dev_valid_name - check if name is okay for network device
1132 * @name: name string
1133 *
1134 * Network device names need to be valid file names to
1135 * allow sysfs to work. We also disallow any kind of
1136 * whitespace.
1137 */
dev_valid_name(const char * name)1138 bool dev_valid_name(const char *name)
1139 {
1140 if (*name == '\0')
1141 return false;
1142 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1143 return false;
1144 if (!strcmp(name, ".") || !strcmp(name, ".."))
1145 return false;
1146
1147 while (*name) {
1148 if (*name == '/' || *name == ':' || isspace(*name))
1149 return false;
1150 name++;
1151 }
1152 return true;
1153 }
1154 EXPORT_SYMBOL(dev_valid_name);
1155
1156 /**
1157 * __dev_alloc_name - allocate a name for a device
1158 * @net: network namespace to allocate the device name in
1159 * @name: name format string
1160 * @buf: scratch buffer and result name string
1161 *
1162 * Passed a format string - eg "lt%d" it will try and find a suitable
1163 * id. It scans list of devices to build up a free map, then chooses
1164 * the first empty slot. The caller must hold the dev_base or rtnl lock
1165 * while allocating the name and adding the device in order to avoid
1166 * duplicates.
1167 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1168 * Returns the number of the unit assigned or a negative errno code.
1169 */
1170
__dev_alloc_name(struct net * net,const char * name,char * buf)1171 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1172 {
1173 int i = 0;
1174 const char *p;
1175 const int max_netdevices = 8*PAGE_SIZE;
1176 unsigned long *inuse;
1177 struct net_device *d;
1178
1179 if (!dev_valid_name(name))
1180 return -EINVAL;
1181
1182 p = strchr(name, '%');
1183 if (p) {
1184 /*
1185 * Verify the string as this thing may have come from
1186 * the user. There must be either one "%d" and no other "%"
1187 * characters.
1188 */
1189 if (p[1] != 'd' || strchr(p + 2, '%'))
1190 return -EINVAL;
1191
1192 /* Use one page as a bit array of possible slots */
1193 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1194 if (!inuse)
1195 return -ENOMEM;
1196
1197 for_each_netdev(net, d) {
1198 if (!sscanf(d->name, name, &i))
1199 continue;
1200 if (i < 0 || i >= max_netdevices)
1201 continue;
1202
1203 /* avoid cases where sscanf is not exact inverse of printf */
1204 snprintf(buf, IFNAMSIZ, name, i);
1205 if (!strncmp(buf, d->name, IFNAMSIZ))
1206 set_bit(i, inuse);
1207 }
1208
1209 i = find_first_zero_bit(inuse, max_netdevices);
1210 free_page((unsigned long) inuse);
1211 }
1212
1213 snprintf(buf, IFNAMSIZ, name, i);
1214 if (!__dev_get_by_name(net, buf))
1215 return i;
1216
1217 /* It is possible to run out of possible slots
1218 * when the name is long and there isn't enough space left
1219 * for the digits, or if all bits are used.
1220 */
1221 return -ENFILE;
1222 }
1223
dev_alloc_name_ns(struct net * net,struct net_device * dev,const char * name)1224 static int dev_alloc_name_ns(struct net *net,
1225 struct net_device *dev,
1226 const char *name)
1227 {
1228 char buf[IFNAMSIZ];
1229 int ret;
1230
1231 BUG_ON(!net);
1232 ret = __dev_alloc_name(net, name, buf);
1233 if (ret >= 0)
1234 strlcpy(dev->name, buf, IFNAMSIZ);
1235 return ret;
1236 }
1237
1238 /**
1239 * dev_alloc_name - allocate a name for a device
1240 * @dev: device
1241 * @name: name format string
1242 *
1243 * Passed a format string - eg "lt%d" it will try and find a suitable
1244 * id. It scans list of devices to build up a free map, then chooses
1245 * the first empty slot. The caller must hold the dev_base or rtnl lock
1246 * while allocating the name and adding the device in order to avoid
1247 * duplicates.
1248 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1249 * Returns the number of the unit assigned or a negative errno code.
1250 */
1251
dev_alloc_name(struct net_device * dev,const char * name)1252 int dev_alloc_name(struct net_device *dev, const char *name)
1253 {
1254 return dev_alloc_name_ns(dev_net(dev), dev, name);
1255 }
1256 EXPORT_SYMBOL(dev_alloc_name);
1257
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1258 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1259 const char *name)
1260 {
1261 BUG_ON(!net);
1262
1263 if (!dev_valid_name(name))
1264 return -EINVAL;
1265
1266 if (strchr(name, '%'))
1267 return dev_alloc_name_ns(net, dev, name);
1268 else if (__dev_get_by_name(net, name))
1269 return -EEXIST;
1270 else if (dev->name != name)
1271 strlcpy(dev->name, name, IFNAMSIZ);
1272
1273 return 0;
1274 }
1275
1276 /**
1277 * dev_change_name - change name of a device
1278 * @dev: device
1279 * @newname: name (or format string) must be at least IFNAMSIZ
1280 *
1281 * Change name of a device, can pass format strings "eth%d".
1282 * for wildcarding.
1283 */
dev_change_name(struct net_device * dev,const char * newname)1284 int dev_change_name(struct net_device *dev, const char *newname)
1285 {
1286 unsigned char old_assign_type;
1287 char oldname[IFNAMSIZ];
1288 int err = 0;
1289 int ret;
1290 struct net *net;
1291
1292 ASSERT_RTNL();
1293 BUG_ON(!dev_net(dev));
1294
1295 net = dev_net(dev);
1296
1297 /* Some auto-enslaved devices e.g. failover slaves are
1298 * special, as userspace might rename the device after
1299 * the interface had been brought up and running since
1300 * the point kernel initiated auto-enslavement. Allow
1301 * live name change even when these slave devices are
1302 * up and running.
1303 *
1304 * Typically, users of these auto-enslaving devices
1305 * don't actually care about slave name change, as
1306 * they are supposed to operate on master interface
1307 * directly.
1308 */
1309 if (dev->flags & IFF_UP &&
1310 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1311 return -EBUSY;
1312
1313 down_write(&devnet_rename_sem);
1314
1315 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1316 up_write(&devnet_rename_sem);
1317 return 0;
1318 }
1319
1320 memcpy(oldname, dev->name, IFNAMSIZ);
1321
1322 err = dev_get_valid_name(net, dev, newname);
1323 if (err < 0) {
1324 up_write(&devnet_rename_sem);
1325 return err;
1326 }
1327
1328 if (oldname[0] && !strchr(oldname, '%'))
1329 netdev_info(dev, "renamed from %s\n", oldname);
1330
1331 old_assign_type = dev->name_assign_type;
1332 dev->name_assign_type = NET_NAME_RENAMED;
1333
1334 rollback:
1335 ret = device_rename(&dev->dev, dev->name);
1336 if (ret) {
1337 memcpy(dev->name, oldname, IFNAMSIZ);
1338 dev->name_assign_type = old_assign_type;
1339 up_write(&devnet_rename_sem);
1340 return ret;
1341 }
1342
1343 up_write(&devnet_rename_sem);
1344
1345 netdev_adjacent_rename_links(dev, oldname);
1346
1347 write_lock_bh(&dev_base_lock);
1348 netdev_name_node_del(dev->name_node);
1349 write_unlock_bh(&dev_base_lock);
1350
1351 synchronize_rcu();
1352
1353 write_lock_bh(&dev_base_lock);
1354 netdev_name_node_add(net, dev->name_node);
1355 write_unlock_bh(&dev_base_lock);
1356
1357 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1358 ret = notifier_to_errno(ret);
1359
1360 if (ret) {
1361 /* err >= 0 after dev_alloc_name() or stores the first errno */
1362 if (err >= 0) {
1363 err = ret;
1364 down_write(&devnet_rename_sem);
1365 memcpy(dev->name, oldname, IFNAMSIZ);
1366 memcpy(oldname, newname, IFNAMSIZ);
1367 dev->name_assign_type = old_assign_type;
1368 old_assign_type = NET_NAME_RENAMED;
1369 goto rollback;
1370 } else {
1371 pr_err("%s: name change rollback failed: %d\n",
1372 dev->name, ret);
1373 }
1374 }
1375
1376 return err;
1377 }
1378
1379 /**
1380 * dev_set_alias - change ifalias of a device
1381 * @dev: device
1382 * @alias: name up to IFALIASZ
1383 * @len: limit of bytes to copy from info
1384 *
1385 * Set ifalias for a device,
1386 */
dev_set_alias(struct net_device * dev,const char * alias,size_t len)1387 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1388 {
1389 struct dev_ifalias *new_alias = NULL;
1390
1391 if (len >= IFALIASZ)
1392 return -EINVAL;
1393
1394 if (len) {
1395 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1396 if (!new_alias)
1397 return -ENOMEM;
1398
1399 memcpy(new_alias->ifalias, alias, len);
1400 new_alias->ifalias[len] = 0;
1401 }
1402
1403 mutex_lock(&ifalias_mutex);
1404 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1405 mutex_is_locked(&ifalias_mutex));
1406 mutex_unlock(&ifalias_mutex);
1407
1408 if (new_alias)
1409 kfree_rcu(new_alias, rcuhead);
1410
1411 return len;
1412 }
1413 EXPORT_SYMBOL(dev_set_alias);
1414
1415 /**
1416 * dev_get_alias - get ifalias of a device
1417 * @dev: device
1418 * @name: buffer to store name of ifalias
1419 * @len: size of buffer
1420 *
1421 * get ifalias for a device. Caller must make sure dev cannot go
1422 * away, e.g. rcu read lock or own a reference count to device.
1423 */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1424 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1425 {
1426 const struct dev_ifalias *alias;
1427 int ret = 0;
1428
1429 rcu_read_lock();
1430 alias = rcu_dereference(dev->ifalias);
1431 if (alias)
1432 ret = snprintf(name, len, "%s", alias->ifalias);
1433 rcu_read_unlock();
1434
1435 return ret;
1436 }
1437
1438 /**
1439 * netdev_features_change - device changes features
1440 * @dev: device to cause notification
1441 *
1442 * Called to indicate a device has changed features.
1443 */
netdev_features_change(struct net_device * dev)1444 void netdev_features_change(struct net_device *dev)
1445 {
1446 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1447 }
1448 EXPORT_SYMBOL(netdev_features_change);
1449
1450 /**
1451 * netdev_state_change - device changes state
1452 * @dev: device to cause notification
1453 *
1454 * Called to indicate a device has changed state. This function calls
1455 * the notifier chains for netdev_chain and sends a NEWLINK message
1456 * to the routing socket.
1457 */
netdev_state_change(struct net_device * dev)1458 void netdev_state_change(struct net_device *dev)
1459 {
1460 if (dev->flags & IFF_UP) {
1461 struct netdev_notifier_change_info change_info = {
1462 .info.dev = dev,
1463 };
1464
1465 call_netdevice_notifiers_info(NETDEV_CHANGE,
1466 &change_info.info);
1467 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1468 }
1469 }
1470 EXPORT_SYMBOL(netdev_state_change);
1471
1472 /**
1473 * netdev_notify_peers - notify network peers about existence of @dev
1474 * @dev: network device
1475 *
1476 * Generate traffic such that interested network peers are aware of
1477 * @dev, such as by generating a gratuitous ARP. This may be used when
1478 * a device wants to inform the rest of the network about some sort of
1479 * reconfiguration such as a failover event or virtual machine
1480 * migration.
1481 */
netdev_notify_peers(struct net_device * dev)1482 void netdev_notify_peers(struct net_device *dev)
1483 {
1484 rtnl_lock();
1485 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1486 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1487 rtnl_unlock();
1488 }
1489 EXPORT_SYMBOL(netdev_notify_peers);
1490
__dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1491 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1492 {
1493 const struct net_device_ops *ops = dev->netdev_ops;
1494 int ret;
1495
1496 ASSERT_RTNL();
1497
1498 if (!netif_device_present(dev)) {
1499 /* may be detached because parent is runtime-suspended */
1500 if (dev->dev.parent)
1501 pm_runtime_resume(dev->dev.parent);
1502 if (!netif_device_present(dev))
1503 return -ENODEV;
1504 }
1505
1506 /* Block netpoll from trying to do any rx path servicing.
1507 * If we don't do this there is a chance ndo_poll_controller
1508 * or ndo_poll may be running while we open the device
1509 */
1510 netpoll_poll_disable(dev);
1511
1512 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1513 ret = notifier_to_errno(ret);
1514 if (ret)
1515 return ret;
1516
1517 set_bit(__LINK_STATE_START, &dev->state);
1518
1519 if (ops->ndo_validate_addr)
1520 ret = ops->ndo_validate_addr(dev);
1521
1522 if (!ret && ops->ndo_open)
1523 ret = ops->ndo_open(dev);
1524
1525 netpoll_poll_enable(dev);
1526
1527 if (ret)
1528 clear_bit(__LINK_STATE_START, &dev->state);
1529 else {
1530 dev->flags |= IFF_UP;
1531 dev_set_rx_mode(dev);
1532 dev_activate(dev);
1533 add_device_randomness(dev->dev_addr, dev->addr_len);
1534 }
1535
1536 return ret;
1537 }
1538
1539 /**
1540 * dev_open - prepare an interface for use.
1541 * @dev: device to open
1542 * @extack: netlink extended ack
1543 *
1544 * Takes a device from down to up state. The device's private open
1545 * function is invoked and then the multicast lists are loaded. Finally
1546 * the device is moved into the up state and a %NETDEV_UP message is
1547 * sent to the netdev notifier chain.
1548 *
1549 * Calling this function on an active interface is a nop. On a failure
1550 * a negative errno code is returned.
1551 */
dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1552 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1553 {
1554 int ret;
1555
1556 if (dev->flags & IFF_UP)
1557 return 0;
1558
1559 ret = __dev_open(dev, extack);
1560 if (ret < 0)
1561 return ret;
1562
1563 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1564 call_netdevice_notifiers(NETDEV_UP, dev);
1565
1566 return ret;
1567 }
1568 EXPORT_SYMBOL(dev_open);
1569
__dev_close_many(struct list_head * head)1570 static void __dev_close_many(struct list_head *head)
1571 {
1572 struct net_device *dev;
1573
1574 ASSERT_RTNL();
1575 might_sleep();
1576
1577 list_for_each_entry(dev, head, close_list) {
1578 /* Temporarily disable netpoll until the interface is down */
1579 netpoll_poll_disable(dev);
1580
1581 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1582
1583 clear_bit(__LINK_STATE_START, &dev->state);
1584
1585 /* Synchronize to scheduled poll. We cannot touch poll list, it
1586 * can be even on different cpu. So just clear netif_running().
1587 *
1588 * dev->stop() will invoke napi_disable() on all of it's
1589 * napi_struct instances on this device.
1590 */
1591 smp_mb__after_atomic(); /* Commit netif_running(). */
1592 }
1593
1594 dev_deactivate_many(head);
1595
1596 list_for_each_entry(dev, head, close_list) {
1597 const struct net_device_ops *ops = dev->netdev_ops;
1598
1599 /*
1600 * Call the device specific close. This cannot fail.
1601 * Only if device is UP
1602 *
1603 * We allow it to be called even after a DETACH hot-plug
1604 * event.
1605 */
1606 if (ops->ndo_stop)
1607 ops->ndo_stop(dev);
1608
1609 dev->flags &= ~IFF_UP;
1610 netpoll_poll_enable(dev);
1611 }
1612 }
1613
__dev_close(struct net_device * dev)1614 static void __dev_close(struct net_device *dev)
1615 {
1616 LIST_HEAD(single);
1617
1618 list_add(&dev->close_list, &single);
1619 __dev_close_many(&single);
1620 list_del(&single);
1621 }
1622
dev_close_many(struct list_head * head,bool unlink)1623 void dev_close_many(struct list_head *head, bool unlink)
1624 {
1625 struct net_device *dev, *tmp;
1626
1627 /* Remove the devices that don't need to be closed */
1628 list_for_each_entry_safe(dev, tmp, head, close_list)
1629 if (!(dev->flags & IFF_UP))
1630 list_del_init(&dev->close_list);
1631
1632 __dev_close_many(head);
1633
1634 list_for_each_entry_safe(dev, tmp, head, close_list) {
1635 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1636 call_netdevice_notifiers(NETDEV_DOWN, dev);
1637 if (unlink)
1638 list_del_init(&dev->close_list);
1639 }
1640 }
1641 EXPORT_SYMBOL(dev_close_many);
1642
1643 /**
1644 * dev_close - shutdown an interface.
1645 * @dev: device to shutdown
1646 *
1647 * This function moves an active device into down state. A
1648 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1649 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1650 * chain.
1651 */
dev_close(struct net_device * dev)1652 void dev_close(struct net_device *dev)
1653 {
1654 if (dev->flags & IFF_UP) {
1655 LIST_HEAD(single);
1656
1657 list_add(&dev->close_list, &single);
1658 dev_close_many(&single, true);
1659 list_del(&single);
1660 }
1661 }
1662 EXPORT_SYMBOL(dev_close);
1663
1664
1665 /**
1666 * dev_disable_lro - disable Large Receive Offload on a device
1667 * @dev: device
1668 *
1669 * Disable Large Receive Offload (LRO) on a net device. Must be
1670 * called under RTNL. This is needed if received packets may be
1671 * forwarded to another interface.
1672 */
dev_disable_lro(struct net_device * dev)1673 void dev_disable_lro(struct net_device *dev)
1674 {
1675 struct net_device *lower_dev;
1676 struct list_head *iter;
1677
1678 dev->wanted_features &= ~NETIF_F_LRO;
1679 netdev_update_features(dev);
1680
1681 if (unlikely(dev->features & NETIF_F_LRO))
1682 netdev_WARN(dev, "failed to disable LRO!\n");
1683
1684 netdev_for_each_lower_dev(dev, lower_dev, iter)
1685 dev_disable_lro(lower_dev);
1686 }
1687 EXPORT_SYMBOL(dev_disable_lro);
1688
1689 /**
1690 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1691 * @dev: device
1692 *
1693 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1694 * called under RTNL. This is needed if Generic XDP is installed on
1695 * the device.
1696 */
dev_disable_gro_hw(struct net_device * dev)1697 static void dev_disable_gro_hw(struct net_device *dev)
1698 {
1699 dev->wanted_features &= ~NETIF_F_GRO_HW;
1700 netdev_update_features(dev);
1701
1702 if (unlikely(dev->features & NETIF_F_GRO_HW))
1703 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1704 }
1705
netdev_cmd_to_name(enum netdev_cmd cmd)1706 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1707 {
1708 #define N(val) \
1709 case NETDEV_##val: \
1710 return "NETDEV_" __stringify(val);
1711 switch (cmd) {
1712 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1713 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1714 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1715 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1716 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1717 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1718 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1719 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1720 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1721 N(PRE_CHANGEADDR)
1722 }
1723 #undef N
1724 return "UNKNOWN_NETDEV_EVENT";
1725 }
1726 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1727
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1728 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1729 struct net_device *dev)
1730 {
1731 struct netdev_notifier_info info = {
1732 .dev = dev,
1733 };
1734
1735 return nb->notifier_call(nb, val, &info);
1736 }
1737
call_netdevice_register_notifiers(struct notifier_block * nb,struct net_device * dev)1738 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1739 struct net_device *dev)
1740 {
1741 int err;
1742
1743 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1744 err = notifier_to_errno(err);
1745 if (err)
1746 return err;
1747
1748 if (!(dev->flags & IFF_UP))
1749 return 0;
1750
1751 call_netdevice_notifier(nb, NETDEV_UP, dev);
1752 return 0;
1753 }
1754
call_netdevice_unregister_notifiers(struct notifier_block * nb,struct net_device * dev)1755 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1756 struct net_device *dev)
1757 {
1758 if (dev->flags & IFF_UP) {
1759 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1760 dev);
1761 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1762 }
1763 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1764 }
1765
call_netdevice_register_net_notifiers(struct notifier_block * nb,struct net * net)1766 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1767 struct net *net)
1768 {
1769 struct net_device *dev;
1770 int err;
1771
1772 for_each_netdev(net, dev) {
1773 err = call_netdevice_register_notifiers(nb, dev);
1774 if (err)
1775 goto rollback;
1776 }
1777 return 0;
1778
1779 rollback:
1780 for_each_netdev_continue_reverse(net, dev)
1781 call_netdevice_unregister_notifiers(nb, dev);
1782 return err;
1783 }
1784
call_netdevice_unregister_net_notifiers(struct notifier_block * nb,struct net * net)1785 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1786 struct net *net)
1787 {
1788 struct net_device *dev;
1789
1790 for_each_netdev(net, dev)
1791 call_netdevice_unregister_notifiers(nb, dev);
1792 }
1793
1794 static int dev_boot_phase = 1;
1795
1796 /**
1797 * register_netdevice_notifier - register a network notifier block
1798 * @nb: notifier
1799 *
1800 * Register a notifier to be called when network device events occur.
1801 * The notifier passed is linked into the kernel structures and must
1802 * not be reused until it has been unregistered. A negative errno code
1803 * is returned on a failure.
1804 *
1805 * When registered all registration and up events are replayed
1806 * to the new notifier to allow device to have a race free
1807 * view of the network device list.
1808 */
1809
register_netdevice_notifier(struct notifier_block * nb)1810 int register_netdevice_notifier(struct notifier_block *nb)
1811 {
1812 struct net *net;
1813 int err;
1814
1815 /* Close race with setup_net() and cleanup_net() */
1816 down_write(&pernet_ops_rwsem);
1817 rtnl_lock();
1818 err = raw_notifier_chain_register(&netdev_chain, nb);
1819 if (err)
1820 goto unlock;
1821 if (dev_boot_phase)
1822 goto unlock;
1823 for_each_net(net) {
1824 err = call_netdevice_register_net_notifiers(nb, net);
1825 if (err)
1826 goto rollback;
1827 }
1828
1829 unlock:
1830 rtnl_unlock();
1831 up_write(&pernet_ops_rwsem);
1832 return err;
1833
1834 rollback:
1835 for_each_net_continue_reverse(net)
1836 call_netdevice_unregister_net_notifiers(nb, net);
1837
1838 raw_notifier_chain_unregister(&netdev_chain, nb);
1839 goto unlock;
1840 }
1841 EXPORT_SYMBOL(register_netdevice_notifier);
1842
1843 /**
1844 * unregister_netdevice_notifier - unregister a network notifier block
1845 * @nb: notifier
1846 *
1847 * Unregister a notifier previously registered by
1848 * register_netdevice_notifier(). The notifier is unlinked into the
1849 * kernel structures and may then be reused. A negative errno code
1850 * is returned on a failure.
1851 *
1852 * After unregistering unregister and down device events are synthesized
1853 * for all devices on the device list to the removed notifier to remove
1854 * the need for special case cleanup code.
1855 */
1856
unregister_netdevice_notifier(struct notifier_block * nb)1857 int unregister_netdevice_notifier(struct notifier_block *nb)
1858 {
1859 struct net *net;
1860 int err;
1861
1862 /* Close race with setup_net() and cleanup_net() */
1863 down_write(&pernet_ops_rwsem);
1864 rtnl_lock();
1865 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1866 if (err)
1867 goto unlock;
1868
1869 for_each_net(net)
1870 call_netdevice_unregister_net_notifiers(nb, net);
1871
1872 unlock:
1873 rtnl_unlock();
1874 up_write(&pernet_ops_rwsem);
1875 return err;
1876 }
1877 EXPORT_SYMBOL(unregister_netdevice_notifier);
1878
__register_netdevice_notifier_net(struct net * net,struct notifier_block * nb,bool ignore_call_fail)1879 static int __register_netdevice_notifier_net(struct net *net,
1880 struct notifier_block *nb,
1881 bool ignore_call_fail)
1882 {
1883 int err;
1884
1885 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1886 if (err)
1887 return err;
1888 if (dev_boot_phase)
1889 return 0;
1890
1891 err = call_netdevice_register_net_notifiers(nb, net);
1892 if (err && !ignore_call_fail)
1893 goto chain_unregister;
1894
1895 return 0;
1896
1897 chain_unregister:
1898 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1899 return err;
1900 }
1901
__unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1902 static int __unregister_netdevice_notifier_net(struct net *net,
1903 struct notifier_block *nb)
1904 {
1905 int err;
1906
1907 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1908 if (err)
1909 return err;
1910
1911 call_netdevice_unregister_net_notifiers(nb, net);
1912 return 0;
1913 }
1914
1915 /**
1916 * register_netdevice_notifier_net - register a per-netns network notifier block
1917 * @net: network namespace
1918 * @nb: notifier
1919 *
1920 * Register a notifier to be called when network device events occur.
1921 * The notifier passed is linked into the kernel structures and must
1922 * not be reused until it has been unregistered. A negative errno code
1923 * is returned on a failure.
1924 *
1925 * When registered all registration and up events are replayed
1926 * to the new notifier to allow device to have a race free
1927 * view of the network device list.
1928 */
1929
register_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1930 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1931 {
1932 int err;
1933
1934 rtnl_lock();
1935 err = __register_netdevice_notifier_net(net, nb, false);
1936 rtnl_unlock();
1937 return err;
1938 }
1939 EXPORT_SYMBOL(register_netdevice_notifier_net);
1940
1941 /**
1942 * unregister_netdevice_notifier_net - unregister a per-netns
1943 * network notifier block
1944 * @net: network namespace
1945 * @nb: notifier
1946 *
1947 * Unregister a notifier previously registered by
1948 * register_netdevice_notifier(). The notifier is unlinked into the
1949 * kernel structures and may then be reused. A negative errno code
1950 * is returned on a failure.
1951 *
1952 * After unregistering unregister and down device events are synthesized
1953 * for all devices on the device list to the removed notifier to remove
1954 * the need for special case cleanup code.
1955 */
1956
unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1957 int unregister_netdevice_notifier_net(struct net *net,
1958 struct notifier_block *nb)
1959 {
1960 int err;
1961
1962 rtnl_lock();
1963 err = __unregister_netdevice_notifier_net(net, nb);
1964 rtnl_unlock();
1965 return err;
1966 }
1967 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1968
register_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)1969 int register_netdevice_notifier_dev_net(struct net_device *dev,
1970 struct notifier_block *nb,
1971 struct netdev_net_notifier *nn)
1972 {
1973 int err;
1974
1975 rtnl_lock();
1976 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1977 if (!err) {
1978 nn->nb = nb;
1979 list_add(&nn->list, &dev->net_notifier_list);
1980 }
1981 rtnl_unlock();
1982 return err;
1983 }
1984 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1985
unregister_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)1986 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1987 struct notifier_block *nb,
1988 struct netdev_net_notifier *nn)
1989 {
1990 int err;
1991
1992 rtnl_lock();
1993 list_del(&nn->list);
1994 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1995 rtnl_unlock();
1996 return err;
1997 }
1998 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1999
move_netdevice_notifiers_dev_net(struct net_device * dev,struct net * net)2000 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2001 struct net *net)
2002 {
2003 struct netdev_net_notifier *nn;
2004
2005 list_for_each_entry(nn, &dev->net_notifier_list, list) {
2006 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2007 __register_netdevice_notifier_net(net, nn->nb, true);
2008 }
2009 }
2010
2011 /**
2012 * call_netdevice_notifiers_info - call all network notifier blocks
2013 * @val: value passed unmodified to notifier function
2014 * @info: notifier information data
2015 *
2016 * Call all network notifier blocks. Parameters and return value
2017 * are as for raw_notifier_call_chain().
2018 */
2019
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)2020 static int call_netdevice_notifiers_info(unsigned long val,
2021 struct netdev_notifier_info *info)
2022 {
2023 struct net *net = dev_net(info->dev);
2024 int ret;
2025
2026 ASSERT_RTNL();
2027
2028 /* Run per-netns notifier block chain first, then run the global one.
2029 * Hopefully, one day, the global one is going to be removed after
2030 * all notifier block registrators get converted to be per-netns.
2031 */
2032 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2033 if (ret & NOTIFY_STOP_MASK)
2034 return ret;
2035 return raw_notifier_call_chain(&netdev_chain, val, info);
2036 }
2037
call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)2038 static int call_netdevice_notifiers_extack(unsigned long val,
2039 struct net_device *dev,
2040 struct netlink_ext_ack *extack)
2041 {
2042 struct netdev_notifier_info info = {
2043 .dev = dev,
2044 .extack = extack,
2045 };
2046
2047 return call_netdevice_notifiers_info(val, &info);
2048 }
2049
2050 /**
2051 * call_netdevice_notifiers - call all network notifier blocks
2052 * @val: value passed unmodified to notifier function
2053 * @dev: net_device pointer passed unmodified to notifier function
2054 *
2055 * Call all network notifier blocks. Parameters and return value
2056 * are as for raw_notifier_call_chain().
2057 */
2058
call_netdevice_notifiers(unsigned long val,struct net_device * dev)2059 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2060 {
2061 return call_netdevice_notifiers_extack(val, dev, NULL);
2062 }
2063 EXPORT_SYMBOL(call_netdevice_notifiers);
2064
2065 /**
2066 * call_netdevice_notifiers_mtu - call all network notifier blocks
2067 * @val: value passed unmodified to notifier function
2068 * @dev: net_device pointer passed unmodified to notifier function
2069 * @arg: additional u32 argument passed to the notifier function
2070 *
2071 * Call all network notifier blocks. Parameters and return value
2072 * are as for raw_notifier_call_chain().
2073 */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)2074 static int call_netdevice_notifiers_mtu(unsigned long val,
2075 struct net_device *dev, u32 arg)
2076 {
2077 struct netdev_notifier_info_ext info = {
2078 .info.dev = dev,
2079 .ext.mtu = arg,
2080 };
2081
2082 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2083
2084 return call_netdevice_notifiers_info(val, &info.info);
2085 }
2086
2087 #ifdef CONFIG_NET_INGRESS
2088 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2089
net_inc_ingress_queue(void)2090 void net_inc_ingress_queue(void)
2091 {
2092 static_branch_inc(&ingress_needed_key);
2093 }
2094 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2095
net_dec_ingress_queue(void)2096 void net_dec_ingress_queue(void)
2097 {
2098 static_branch_dec(&ingress_needed_key);
2099 }
2100 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2101 #endif
2102
2103 #ifdef CONFIG_NET_EGRESS
2104 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2105
net_inc_egress_queue(void)2106 void net_inc_egress_queue(void)
2107 {
2108 static_branch_inc(&egress_needed_key);
2109 }
2110 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2111
net_dec_egress_queue(void)2112 void net_dec_egress_queue(void)
2113 {
2114 static_branch_dec(&egress_needed_key);
2115 }
2116 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2117 #endif
2118
2119 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2120 #ifdef CONFIG_JUMP_LABEL
2121 static atomic_t netstamp_needed_deferred;
2122 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)2123 static void netstamp_clear(struct work_struct *work)
2124 {
2125 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2126 int wanted;
2127
2128 wanted = atomic_add_return(deferred, &netstamp_wanted);
2129 if (wanted > 0)
2130 static_branch_enable(&netstamp_needed_key);
2131 else
2132 static_branch_disable(&netstamp_needed_key);
2133 }
2134 static DECLARE_WORK(netstamp_work, netstamp_clear);
2135 #endif
2136
net_enable_timestamp(void)2137 void net_enable_timestamp(void)
2138 {
2139 #ifdef CONFIG_JUMP_LABEL
2140 int wanted;
2141
2142 while (1) {
2143 wanted = atomic_read(&netstamp_wanted);
2144 if (wanted <= 0)
2145 break;
2146 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2147 return;
2148 }
2149 atomic_inc(&netstamp_needed_deferred);
2150 schedule_work(&netstamp_work);
2151 #else
2152 static_branch_inc(&netstamp_needed_key);
2153 #endif
2154 }
2155 EXPORT_SYMBOL(net_enable_timestamp);
2156
net_disable_timestamp(void)2157 void net_disable_timestamp(void)
2158 {
2159 #ifdef CONFIG_JUMP_LABEL
2160 int wanted;
2161
2162 while (1) {
2163 wanted = atomic_read(&netstamp_wanted);
2164 if (wanted <= 1)
2165 break;
2166 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2167 return;
2168 }
2169 atomic_dec(&netstamp_needed_deferred);
2170 schedule_work(&netstamp_work);
2171 #else
2172 static_branch_dec(&netstamp_needed_key);
2173 #endif
2174 }
2175 EXPORT_SYMBOL(net_disable_timestamp);
2176
net_timestamp_set(struct sk_buff * skb)2177 static inline void net_timestamp_set(struct sk_buff *skb)
2178 {
2179 skb->tstamp = 0;
2180 if (static_branch_unlikely(&netstamp_needed_key))
2181 __net_timestamp(skb);
2182 }
2183
2184 #define net_timestamp_check(COND, SKB) \
2185 if (static_branch_unlikely(&netstamp_needed_key)) { \
2186 if ((COND) && !(SKB)->tstamp) \
2187 __net_timestamp(SKB); \
2188 } \
2189
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)2190 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2191 {
2192 unsigned int len;
2193
2194 if (!(dev->flags & IFF_UP))
2195 return false;
2196
2197 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2198 if (skb->len <= len)
2199 return true;
2200
2201 /* if TSO is enabled, we don't care about the length as the packet
2202 * could be forwarded without being segmented before
2203 */
2204 if (skb_is_gso(skb))
2205 return true;
2206
2207 return false;
2208 }
2209 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2210
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2211 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2212 {
2213 int ret = ____dev_forward_skb(dev, skb);
2214
2215 if (likely(!ret)) {
2216 skb->protocol = eth_type_trans(skb, dev);
2217 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2218 }
2219
2220 return ret;
2221 }
2222 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2223
2224 /**
2225 * dev_forward_skb - loopback an skb to another netif
2226 *
2227 * @dev: destination network device
2228 * @skb: buffer to forward
2229 *
2230 * return values:
2231 * NET_RX_SUCCESS (no congestion)
2232 * NET_RX_DROP (packet was dropped, but freed)
2233 *
2234 * dev_forward_skb can be used for injecting an skb from the
2235 * start_xmit function of one device into the receive queue
2236 * of another device.
2237 *
2238 * The receiving device may be in another namespace, so
2239 * we have to clear all information in the skb that could
2240 * impact namespace isolation.
2241 */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2242 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2243 {
2244 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2245 }
2246 EXPORT_SYMBOL_GPL(dev_forward_skb);
2247
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2248 static inline int deliver_skb(struct sk_buff *skb,
2249 struct packet_type *pt_prev,
2250 struct net_device *orig_dev)
2251 {
2252 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2253 return -ENOMEM;
2254 refcount_inc(&skb->users);
2255 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2256 }
2257
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)2258 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2259 struct packet_type **pt,
2260 struct net_device *orig_dev,
2261 __be16 type,
2262 struct list_head *ptype_list)
2263 {
2264 struct packet_type *ptype, *pt_prev = *pt;
2265
2266 list_for_each_entry_rcu(ptype, ptype_list, list) {
2267 if (ptype->type != type)
2268 continue;
2269 if (pt_prev)
2270 deliver_skb(skb, pt_prev, orig_dev);
2271 pt_prev = ptype;
2272 }
2273 *pt = pt_prev;
2274 }
2275
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)2276 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2277 {
2278 if (!ptype->af_packet_priv || !skb->sk)
2279 return false;
2280
2281 if (ptype->id_match)
2282 return ptype->id_match(ptype, skb->sk);
2283 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2284 return true;
2285
2286 return false;
2287 }
2288
2289 /**
2290 * dev_nit_active - return true if any network interface taps are in use
2291 *
2292 * @dev: network device to check for the presence of taps
2293 */
dev_nit_active(struct net_device * dev)2294 bool dev_nit_active(struct net_device *dev)
2295 {
2296 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2297 }
2298 EXPORT_SYMBOL_GPL(dev_nit_active);
2299
2300 /*
2301 * Support routine. Sends outgoing frames to any network
2302 * taps currently in use.
2303 */
2304
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)2305 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2306 {
2307 struct packet_type *ptype;
2308 struct sk_buff *skb2 = NULL;
2309 struct packet_type *pt_prev = NULL;
2310 struct list_head *ptype_list = &ptype_all;
2311
2312 rcu_read_lock();
2313 again:
2314 list_for_each_entry_rcu(ptype, ptype_list, list) {
2315 if (ptype->ignore_outgoing)
2316 continue;
2317
2318 /* Never send packets back to the socket
2319 * they originated from - MvS (miquels@drinkel.ow.org)
2320 */
2321 if (skb_loop_sk(ptype, skb))
2322 continue;
2323
2324 if (pt_prev) {
2325 deliver_skb(skb2, pt_prev, skb->dev);
2326 pt_prev = ptype;
2327 continue;
2328 }
2329
2330 /* need to clone skb, done only once */
2331 skb2 = skb_clone(skb, GFP_ATOMIC);
2332 if (!skb2)
2333 goto out_unlock;
2334
2335 net_timestamp_set(skb2);
2336
2337 /* skb->nh should be correctly
2338 * set by sender, so that the second statement is
2339 * just protection against buggy protocols.
2340 */
2341 skb_reset_mac_header(skb2);
2342
2343 if (skb_network_header(skb2) < skb2->data ||
2344 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2345 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2346 ntohs(skb2->protocol),
2347 dev->name);
2348 skb_reset_network_header(skb2);
2349 }
2350
2351 skb2->transport_header = skb2->network_header;
2352 skb2->pkt_type = PACKET_OUTGOING;
2353 pt_prev = ptype;
2354 }
2355
2356 if (ptype_list == &ptype_all) {
2357 ptype_list = &dev->ptype_all;
2358 goto again;
2359 }
2360 out_unlock:
2361 if (pt_prev) {
2362 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2363 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2364 else
2365 kfree_skb(skb2);
2366 }
2367 rcu_read_unlock();
2368 }
2369 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2370
2371 /**
2372 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2373 * @dev: Network device
2374 * @txq: number of queues available
2375 *
2376 * If real_num_tx_queues is changed the tc mappings may no longer be
2377 * valid. To resolve this verify the tc mapping remains valid and if
2378 * not NULL the mapping. With no priorities mapping to this
2379 * offset/count pair it will no longer be used. In the worst case TC0
2380 * is invalid nothing can be done so disable priority mappings. If is
2381 * expected that drivers will fix this mapping if they can before
2382 * calling netif_set_real_num_tx_queues.
2383 */
netif_setup_tc(struct net_device * dev,unsigned int txq)2384 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2385 {
2386 int i;
2387 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2388
2389 /* If TC0 is invalidated disable TC mapping */
2390 if (tc->offset + tc->count > txq) {
2391 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2392 dev->num_tc = 0;
2393 return;
2394 }
2395
2396 /* Invalidated prio to tc mappings set to TC0 */
2397 for (i = 1; i < TC_BITMASK + 1; i++) {
2398 int q = netdev_get_prio_tc_map(dev, i);
2399
2400 tc = &dev->tc_to_txq[q];
2401 if (tc->offset + tc->count > txq) {
2402 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2403 i, q);
2404 netdev_set_prio_tc_map(dev, i, 0);
2405 }
2406 }
2407 }
2408
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2409 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2410 {
2411 if (dev->num_tc) {
2412 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2413 int i;
2414
2415 /* walk through the TCs and see if it falls into any of them */
2416 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2417 if ((txq - tc->offset) < tc->count)
2418 return i;
2419 }
2420
2421 /* didn't find it, just return -1 to indicate no match */
2422 return -1;
2423 }
2424
2425 return 0;
2426 }
2427 EXPORT_SYMBOL(netdev_txq_to_tc);
2428
2429 #ifdef CONFIG_XPS
2430 struct static_key xps_needed __read_mostly;
2431 EXPORT_SYMBOL(xps_needed);
2432 struct static_key xps_rxqs_needed __read_mostly;
2433 EXPORT_SYMBOL(xps_rxqs_needed);
2434 static DEFINE_MUTEX(xps_map_mutex);
2435 #define xmap_dereference(P) \
2436 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2437
remove_xps_queue(struct xps_dev_maps * dev_maps,int tci,u16 index)2438 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2439 int tci, u16 index)
2440 {
2441 struct xps_map *map = NULL;
2442 int pos;
2443
2444 if (dev_maps)
2445 map = xmap_dereference(dev_maps->attr_map[tci]);
2446 if (!map)
2447 return false;
2448
2449 for (pos = map->len; pos--;) {
2450 if (map->queues[pos] != index)
2451 continue;
2452
2453 if (map->len > 1) {
2454 map->queues[pos] = map->queues[--map->len];
2455 break;
2456 }
2457
2458 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2459 kfree_rcu(map, rcu);
2460 return false;
2461 }
2462
2463 return true;
2464 }
2465
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2466 static bool remove_xps_queue_cpu(struct net_device *dev,
2467 struct xps_dev_maps *dev_maps,
2468 int cpu, u16 offset, u16 count)
2469 {
2470 int num_tc = dev->num_tc ? : 1;
2471 bool active = false;
2472 int tci;
2473
2474 for (tci = cpu * num_tc; num_tc--; tci++) {
2475 int i, j;
2476
2477 for (i = count, j = offset; i--; j++) {
2478 if (!remove_xps_queue(dev_maps, tci, j))
2479 break;
2480 }
2481
2482 active |= i < 0;
2483 }
2484
2485 return active;
2486 }
2487
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,bool is_rxqs_map)2488 static void reset_xps_maps(struct net_device *dev,
2489 struct xps_dev_maps *dev_maps,
2490 bool is_rxqs_map)
2491 {
2492 if (is_rxqs_map) {
2493 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2494 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2495 } else {
2496 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2497 }
2498 static_key_slow_dec_cpuslocked(&xps_needed);
2499 kfree_rcu(dev_maps, rcu);
2500 }
2501
clean_xps_maps(struct net_device * dev,const unsigned long * mask,struct xps_dev_maps * dev_maps,unsigned int nr_ids,u16 offset,u16 count,bool is_rxqs_map)2502 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2503 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2504 u16 offset, u16 count, bool is_rxqs_map)
2505 {
2506 bool active = false;
2507 int i, j;
2508
2509 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2510 j < nr_ids;)
2511 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2512 count);
2513 if (!active)
2514 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2515
2516 if (!is_rxqs_map) {
2517 for (i = offset + (count - 1); count--; i--) {
2518 netdev_queue_numa_node_write(
2519 netdev_get_tx_queue(dev, i),
2520 NUMA_NO_NODE);
2521 }
2522 }
2523 }
2524
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2525 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2526 u16 count)
2527 {
2528 const unsigned long *possible_mask = NULL;
2529 struct xps_dev_maps *dev_maps;
2530 unsigned int nr_ids;
2531
2532 if (!static_key_false(&xps_needed))
2533 return;
2534
2535 cpus_read_lock();
2536 mutex_lock(&xps_map_mutex);
2537
2538 if (static_key_false(&xps_rxqs_needed)) {
2539 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2540 if (dev_maps) {
2541 nr_ids = dev->num_rx_queues;
2542 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2543 offset, count, true);
2544 }
2545 }
2546
2547 dev_maps = xmap_dereference(dev->xps_cpus_map);
2548 if (!dev_maps)
2549 goto out_no_maps;
2550
2551 if (num_possible_cpus() > 1)
2552 possible_mask = cpumask_bits(cpu_possible_mask);
2553 nr_ids = nr_cpu_ids;
2554 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2555 false);
2556
2557 out_no_maps:
2558 mutex_unlock(&xps_map_mutex);
2559 cpus_read_unlock();
2560 }
2561
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2562 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2563 {
2564 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2565 }
2566
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2567 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2568 u16 index, bool is_rxqs_map)
2569 {
2570 struct xps_map *new_map;
2571 int alloc_len = XPS_MIN_MAP_ALLOC;
2572 int i, pos;
2573
2574 for (pos = 0; map && pos < map->len; pos++) {
2575 if (map->queues[pos] != index)
2576 continue;
2577 return map;
2578 }
2579
2580 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2581 if (map) {
2582 if (pos < map->alloc_len)
2583 return map;
2584
2585 alloc_len = map->alloc_len * 2;
2586 }
2587
2588 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2589 * map
2590 */
2591 if (is_rxqs_map)
2592 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2593 else
2594 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2595 cpu_to_node(attr_index));
2596 if (!new_map)
2597 return NULL;
2598
2599 for (i = 0; i < pos; i++)
2600 new_map->queues[i] = map->queues[i];
2601 new_map->alloc_len = alloc_len;
2602 new_map->len = pos;
2603
2604 return new_map;
2605 }
2606
2607 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,bool is_rxqs_map)2608 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2609 u16 index, bool is_rxqs_map)
2610 {
2611 const unsigned long *online_mask = NULL, *possible_mask = NULL;
2612 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2613 int i, j, tci, numa_node_id = -2;
2614 int maps_sz, num_tc = 1, tc = 0;
2615 struct xps_map *map, *new_map;
2616 bool active = false;
2617 unsigned int nr_ids;
2618
2619 if (dev->num_tc) {
2620 /* Do not allow XPS on subordinate device directly */
2621 num_tc = dev->num_tc;
2622 if (num_tc < 0)
2623 return -EINVAL;
2624
2625 /* If queue belongs to subordinate dev use its map */
2626 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2627
2628 tc = netdev_txq_to_tc(dev, index);
2629 if (tc < 0)
2630 return -EINVAL;
2631 }
2632
2633 mutex_lock(&xps_map_mutex);
2634 if (is_rxqs_map) {
2635 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2636 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2637 nr_ids = dev->num_rx_queues;
2638 } else {
2639 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2640 if (num_possible_cpus() > 1) {
2641 online_mask = cpumask_bits(cpu_online_mask);
2642 possible_mask = cpumask_bits(cpu_possible_mask);
2643 }
2644 dev_maps = xmap_dereference(dev->xps_cpus_map);
2645 nr_ids = nr_cpu_ids;
2646 }
2647
2648 if (maps_sz < L1_CACHE_BYTES)
2649 maps_sz = L1_CACHE_BYTES;
2650
2651 /* allocate memory for queue storage */
2652 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2653 j < nr_ids;) {
2654 if (!new_dev_maps)
2655 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2656 if (!new_dev_maps) {
2657 mutex_unlock(&xps_map_mutex);
2658 return -ENOMEM;
2659 }
2660
2661 tci = j * num_tc + tc;
2662 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2663 NULL;
2664
2665 map = expand_xps_map(map, j, index, is_rxqs_map);
2666 if (!map)
2667 goto error;
2668
2669 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2670 }
2671
2672 if (!new_dev_maps)
2673 goto out_no_new_maps;
2674
2675 if (!dev_maps) {
2676 /* Increment static keys at most once per type */
2677 static_key_slow_inc_cpuslocked(&xps_needed);
2678 if (is_rxqs_map)
2679 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2680 }
2681
2682 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2683 j < nr_ids;) {
2684 /* copy maps belonging to foreign traffic classes */
2685 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2686 /* fill in the new device map from the old device map */
2687 map = xmap_dereference(dev_maps->attr_map[tci]);
2688 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2689 }
2690
2691 /* We need to explicitly update tci as prevous loop
2692 * could break out early if dev_maps is NULL.
2693 */
2694 tci = j * num_tc + tc;
2695
2696 if (netif_attr_test_mask(j, mask, nr_ids) &&
2697 netif_attr_test_online(j, online_mask, nr_ids)) {
2698 /* add tx-queue to CPU/rx-queue maps */
2699 int pos = 0;
2700
2701 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2702 while ((pos < map->len) && (map->queues[pos] != index))
2703 pos++;
2704
2705 if (pos == map->len)
2706 map->queues[map->len++] = index;
2707 #ifdef CONFIG_NUMA
2708 if (!is_rxqs_map) {
2709 if (numa_node_id == -2)
2710 numa_node_id = cpu_to_node(j);
2711 else if (numa_node_id != cpu_to_node(j))
2712 numa_node_id = -1;
2713 }
2714 #endif
2715 } else if (dev_maps) {
2716 /* fill in the new device map from the old device map */
2717 map = xmap_dereference(dev_maps->attr_map[tci]);
2718 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2719 }
2720
2721 /* copy maps belonging to foreign traffic classes */
2722 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2723 /* fill in the new device map from the old device map */
2724 map = xmap_dereference(dev_maps->attr_map[tci]);
2725 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2726 }
2727 }
2728
2729 if (is_rxqs_map)
2730 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2731 else
2732 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2733
2734 /* Cleanup old maps */
2735 if (!dev_maps)
2736 goto out_no_old_maps;
2737
2738 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2739 j < nr_ids;) {
2740 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2741 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2742 map = xmap_dereference(dev_maps->attr_map[tci]);
2743 if (map && map != new_map)
2744 kfree_rcu(map, rcu);
2745 }
2746 }
2747
2748 kfree_rcu(dev_maps, rcu);
2749
2750 out_no_old_maps:
2751 dev_maps = new_dev_maps;
2752 active = true;
2753
2754 out_no_new_maps:
2755 if (!is_rxqs_map) {
2756 /* update Tx queue numa node */
2757 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2758 (numa_node_id >= 0) ?
2759 numa_node_id : NUMA_NO_NODE);
2760 }
2761
2762 if (!dev_maps)
2763 goto out_no_maps;
2764
2765 /* removes tx-queue from unused CPUs/rx-queues */
2766 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2767 j < nr_ids;) {
2768 for (i = tc, tci = j * num_tc; i--; tci++)
2769 active |= remove_xps_queue(dev_maps, tci, index);
2770 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2771 !netif_attr_test_online(j, online_mask, nr_ids))
2772 active |= remove_xps_queue(dev_maps, tci, index);
2773 for (i = num_tc - tc, tci++; --i; tci++)
2774 active |= remove_xps_queue(dev_maps, tci, index);
2775 }
2776
2777 /* free map if not active */
2778 if (!active)
2779 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2780
2781 out_no_maps:
2782 mutex_unlock(&xps_map_mutex);
2783
2784 return 0;
2785 error:
2786 /* remove any maps that we added */
2787 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2788 j < nr_ids;) {
2789 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2790 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2791 map = dev_maps ?
2792 xmap_dereference(dev_maps->attr_map[tci]) :
2793 NULL;
2794 if (new_map && new_map != map)
2795 kfree(new_map);
2796 }
2797 }
2798
2799 mutex_unlock(&xps_map_mutex);
2800
2801 kfree(new_dev_maps);
2802 return -ENOMEM;
2803 }
2804 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2805
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2806 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2807 u16 index)
2808 {
2809 int ret;
2810
2811 cpus_read_lock();
2812 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2813 cpus_read_unlock();
2814
2815 return ret;
2816 }
2817 EXPORT_SYMBOL(netif_set_xps_queue);
2818
2819 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)2820 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2821 {
2822 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2823
2824 /* Unbind any subordinate channels */
2825 while (txq-- != &dev->_tx[0]) {
2826 if (txq->sb_dev)
2827 netdev_unbind_sb_channel(dev, txq->sb_dev);
2828 }
2829 }
2830
netdev_reset_tc(struct net_device * dev)2831 void netdev_reset_tc(struct net_device *dev)
2832 {
2833 #ifdef CONFIG_XPS
2834 netif_reset_xps_queues_gt(dev, 0);
2835 #endif
2836 netdev_unbind_all_sb_channels(dev);
2837
2838 /* Reset TC configuration of device */
2839 dev->num_tc = 0;
2840 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2841 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2842 }
2843 EXPORT_SYMBOL(netdev_reset_tc);
2844
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)2845 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2846 {
2847 if (tc >= dev->num_tc)
2848 return -EINVAL;
2849
2850 #ifdef CONFIG_XPS
2851 netif_reset_xps_queues(dev, offset, count);
2852 #endif
2853 dev->tc_to_txq[tc].count = count;
2854 dev->tc_to_txq[tc].offset = offset;
2855 return 0;
2856 }
2857 EXPORT_SYMBOL(netdev_set_tc_queue);
2858
netdev_set_num_tc(struct net_device * dev,u8 num_tc)2859 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2860 {
2861 if (num_tc > TC_MAX_QUEUE)
2862 return -EINVAL;
2863
2864 #ifdef CONFIG_XPS
2865 netif_reset_xps_queues_gt(dev, 0);
2866 #endif
2867 netdev_unbind_all_sb_channels(dev);
2868
2869 dev->num_tc = num_tc;
2870 return 0;
2871 }
2872 EXPORT_SYMBOL(netdev_set_num_tc);
2873
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)2874 void netdev_unbind_sb_channel(struct net_device *dev,
2875 struct net_device *sb_dev)
2876 {
2877 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2878
2879 #ifdef CONFIG_XPS
2880 netif_reset_xps_queues_gt(sb_dev, 0);
2881 #endif
2882 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2883 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2884
2885 while (txq-- != &dev->_tx[0]) {
2886 if (txq->sb_dev == sb_dev)
2887 txq->sb_dev = NULL;
2888 }
2889 }
2890 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2891
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)2892 int netdev_bind_sb_channel_queue(struct net_device *dev,
2893 struct net_device *sb_dev,
2894 u8 tc, u16 count, u16 offset)
2895 {
2896 /* Make certain the sb_dev and dev are already configured */
2897 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2898 return -EINVAL;
2899
2900 /* We cannot hand out queues we don't have */
2901 if ((offset + count) > dev->real_num_tx_queues)
2902 return -EINVAL;
2903
2904 /* Record the mapping */
2905 sb_dev->tc_to_txq[tc].count = count;
2906 sb_dev->tc_to_txq[tc].offset = offset;
2907
2908 /* Provide a way for Tx queue to find the tc_to_txq map or
2909 * XPS map for itself.
2910 */
2911 while (count--)
2912 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2913
2914 return 0;
2915 }
2916 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2917
netdev_set_sb_channel(struct net_device * dev,u16 channel)2918 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2919 {
2920 /* Do not use a multiqueue device to represent a subordinate channel */
2921 if (netif_is_multiqueue(dev))
2922 return -ENODEV;
2923
2924 /* We allow channels 1 - 32767 to be used for subordinate channels.
2925 * Channel 0 is meant to be "native" mode and used only to represent
2926 * the main root device. We allow writing 0 to reset the device back
2927 * to normal mode after being used as a subordinate channel.
2928 */
2929 if (channel > S16_MAX)
2930 return -EINVAL;
2931
2932 dev->num_tc = -channel;
2933
2934 return 0;
2935 }
2936 EXPORT_SYMBOL(netdev_set_sb_channel);
2937
2938 /*
2939 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2940 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2941 */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)2942 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2943 {
2944 bool disabling;
2945 int rc;
2946
2947 disabling = txq < dev->real_num_tx_queues;
2948
2949 if (txq < 1 || txq > dev->num_tx_queues)
2950 return -EINVAL;
2951
2952 if (dev->reg_state == NETREG_REGISTERED ||
2953 dev->reg_state == NETREG_UNREGISTERING) {
2954 ASSERT_RTNL();
2955
2956 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2957 txq);
2958 if (rc)
2959 return rc;
2960
2961 if (dev->num_tc)
2962 netif_setup_tc(dev, txq);
2963
2964 dev->real_num_tx_queues = txq;
2965
2966 if (disabling) {
2967 synchronize_net();
2968 qdisc_reset_all_tx_gt(dev, txq);
2969 #ifdef CONFIG_XPS
2970 netif_reset_xps_queues_gt(dev, txq);
2971 #endif
2972 }
2973 } else {
2974 dev->real_num_tx_queues = txq;
2975 }
2976
2977 return 0;
2978 }
2979 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2980
2981 #ifdef CONFIG_SYSFS
2982 /**
2983 * netif_set_real_num_rx_queues - set actual number of RX queues used
2984 * @dev: Network device
2985 * @rxq: Actual number of RX queues
2986 *
2987 * This must be called either with the rtnl_lock held or before
2988 * registration of the net device. Returns 0 on success, or a
2989 * negative error code. If called before registration, it always
2990 * succeeds.
2991 */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)2992 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2993 {
2994 int rc;
2995
2996 if (rxq < 1 || rxq > dev->num_rx_queues)
2997 return -EINVAL;
2998
2999 if (dev->reg_state == NETREG_REGISTERED) {
3000 ASSERT_RTNL();
3001
3002 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3003 rxq);
3004 if (rc)
3005 return rc;
3006 }
3007
3008 dev->real_num_rx_queues = rxq;
3009 return 0;
3010 }
3011 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3012 #endif
3013
3014 /**
3015 * netif_get_num_default_rss_queues - default number of RSS queues
3016 *
3017 * This routine should set an upper limit on the number of RSS queues
3018 * used by default by multiqueue devices.
3019 */
netif_get_num_default_rss_queues(void)3020 int netif_get_num_default_rss_queues(void)
3021 {
3022 return is_kdump_kernel() ?
3023 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3024 }
3025 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3026
__netif_reschedule(struct Qdisc * q)3027 static void __netif_reschedule(struct Qdisc *q)
3028 {
3029 struct softnet_data *sd;
3030 unsigned long flags;
3031
3032 local_irq_save(flags);
3033 sd = this_cpu_ptr(&softnet_data);
3034 q->next_sched = NULL;
3035 *sd->output_queue_tailp = q;
3036 sd->output_queue_tailp = &q->next_sched;
3037 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3038 local_irq_restore(flags);
3039 }
3040
__netif_schedule(struct Qdisc * q)3041 void __netif_schedule(struct Qdisc *q)
3042 {
3043 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3044 __netif_reschedule(q);
3045 }
3046 EXPORT_SYMBOL(__netif_schedule);
3047
3048 struct dev_kfree_skb_cb {
3049 enum skb_free_reason reason;
3050 };
3051
get_kfree_skb_cb(const struct sk_buff * skb)3052 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3053 {
3054 return (struct dev_kfree_skb_cb *)skb->cb;
3055 }
3056
netif_schedule_queue(struct netdev_queue * txq)3057 void netif_schedule_queue(struct netdev_queue *txq)
3058 {
3059 rcu_read_lock();
3060 if (!netif_xmit_stopped(txq)) {
3061 struct Qdisc *q = rcu_dereference(txq->qdisc);
3062
3063 __netif_schedule(q);
3064 }
3065 rcu_read_unlock();
3066 }
3067 EXPORT_SYMBOL(netif_schedule_queue);
3068
netif_tx_wake_queue(struct netdev_queue * dev_queue)3069 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3070 {
3071 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3072 struct Qdisc *q;
3073
3074 rcu_read_lock();
3075 q = rcu_dereference(dev_queue->qdisc);
3076 __netif_schedule(q);
3077 rcu_read_unlock();
3078 }
3079 }
3080 EXPORT_SYMBOL(netif_tx_wake_queue);
3081
__dev_kfree_skb_irq(struct sk_buff * skb,enum skb_free_reason reason)3082 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3083 {
3084 unsigned long flags;
3085
3086 if (unlikely(!skb))
3087 return;
3088
3089 if (likely(refcount_read(&skb->users) == 1)) {
3090 smp_rmb();
3091 refcount_set(&skb->users, 0);
3092 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3093 return;
3094 }
3095 get_kfree_skb_cb(skb)->reason = reason;
3096 local_irq_save(flags);
3097 skb->next = __this_cpu_read(softnet_data.completion_queue);
3098 __this_cpu_write(softnet_data.completion_queue, skb);
3099 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3100 local_irq_restore(flags);
3101 }
3102 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3103
__dev_kfree_skb_any(struct sk_buff * skb,enum skb_free_reason reason)3104 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3105 {
3106 if (in_irq() || irqs_disabled())
3107 __dev_kfree_skb_irq(skb, reason);
3108 else
3109 dev_kfree_skb(skb);
3110 }
3111 EXPORT_SYMBOL(__dev_kfree_skb_any);
3112
3113
3114 /**
3115 * netif_device_detach - mark device as removed
3116 * @dev: network device
3117 *
3118 * Mark device as removed from system and therefore no longer available.
3119 */
netif_device_detach(struct net_device * dev)3120 void netif_device_detach(struct net_device *dev)
3121 {
3122 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3123 netif_running(dev)) {
3124 netif_tx_stop_all_queues(dev);
3125 }
3126 }
3127 EXPORT_SYMBOL(netif_device_detach);
3128
3129 /**
3130 * netif_device_attach - mark device as attached
3131 * @dev: network device
3132 *
3133 * Mark device as attached from system and restart if needed.
3134 */
netif_device_attach(struct net_device * dev)3135 void netif_device_attach(struct net_device *dev)
3136 {
3137 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3138 netif_running(dev)) {
3139 netif_tx_wake_all_queues(dev);
3140 __netdev_watchdog_up(dev);
3141 }
3142 }
3143 EXPORT_SYMBOL(netif_device_attach);
3144
3145 /*
3146 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3147 * to be used as a distribution range.
3148 */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)3149 static u16 skb_tx_hash(const struct net_device *dev,
3150 const struct net_device *sb_dev,
3151 struct sk_buff *skb)
3152 {
3153 u32 hash;
3154 u16 qoffset = 0;
3155 u16 qcount = dev->real_num_tx_queues;
3156
3157 if (dev->num_tc) {
3158 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3159
3160 qoffset = sb_dev->tc_to_txq[tc].offset;
3161 qcount = sb_dev->tc_to_txq[tc].count;
3162 }
3163
3164 if (skb_rx_queue_recorded(skb)) {
3165 hash = skb_get_rx_queue(skb);
3166 if (hash >= qoffset)
3167 hash -= qoffset;
3168 while (unlikely(hash >= qcount))
3169 hash -= qcount;
3170 return hash + qoffset;
3171 }
3172
3173 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3174 }
3175
skb_warn_bad_offload(const struct sk_buff * skb)3176 static void skb_warn_bad_offload(const struct sk_buff *skb)
3177 {
3178 static const netdev_features_t null_features;
3179 struct net_device *dev = skb->dev;
3180 const char *name = "";
3181
3182 if (!net_ratelimit())
3183 return;
3184
3185 if (dev) {
3186 if (dev->dev.parent)
3187 name = dev_driver_string(dev->dev.parent);
3188 else
3189 name = netdev_name(dev);
3190 }
3191 skb_dump(KERN_WARNING, skb, false);
3192 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3193 name, dev ? &dev->features : &null_features,
3194 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3195 }
3196
3197 /*
3198 * Invalidate hardware checksum when packet is to be mangled, and
3199 * complete checksum manually on outgoing path.
3200 */
skb_checksum_help(struct sk_buff * skb)3201 int skb_checksum_help(struct sk_buff *skb)
3202 {
3203 __wsum csum;
3204 int ret = 0, offset;
3205
3206 if (skb->ip_summed == CHECKSUM_COMPLETE)
3207 goto out_set_summed;
3208
3209 if (unlikely(skb_shinfo(skb)->gso_size)) {
3210 skb_warn_bad_offload(skb);
3211 return -EINVAL;
3212 }
3213
3214 /* Before computing a checksum, we should make sure no frag could
3215 * be modified by an external entity : checksum could be wrong.
3216 */
3217 if (skb_has_shared_frag(skb)) {
3218 ret = __skb_linearize(skb);
3219 if (ret)
3220 goto out;
3221 }
3222
3223 offset = skb_checksum_start_offset(skb);
3224 BUG_ON(offset >= skb_headlen(skb));
3225 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3226
3227 offset += skb->csum_offset;
3228 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3229
3230 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3231 if (ret)
3232 goto out;
3233
3234 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3235 out_set_summed:
3236 skb->ip_summed = CHECKSUM_NONE;
3237 out:
3238 return ret;
3239 }
3240 EXPORT_SYMBOL(skb_checksum_help);
3241
skb_crc32c_csum_help(struct sk_buff * skb)3242 int skb_crc32c_csum_help(struct sk_buff *skb)
3243 {
3244 __le32 crc32c_csum;
3245 int ret = 0, offset, start;
3246
3247 if (skb->ip_summed != CHECKSUM_PARTIAL)
3248 goto out;
3249
3250 if (unlikely(skb_is_gso(skb)))
3251 goto out;
3252
3253 /* Before computing a checksum, we should make sure no frag could
3254 * be modified by an external entity : checksum could be wrong.
3255 */
3256 if (unlikely(skb_has_shared_frag(skb))) {
3257 ret = __skb_linearize(skb);
3258 if (ret)
3259 goto out;
3260 }
3261 start = skb_checksum_start_offset(skb);
3262 offset = start + offsetof(struct sctphdr, checksum);
3263 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3264 ret = -EINVAL;
3265 goto out;
3266 }
3267
3268 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3269 if (ret)
3270 goto out;
3271
3272 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3273 skb->len - start, ~(__u32)0,
3274 crc32c_csum_stub));
3275 *(__le32 *)(skb->data + offset) = crc32c_csum;
3276 skb->ip_summed = CHECKSUM_NONE;
3277 skb->csum_not_inet = 0;
3278 out:
3279 return ret;
3280 }
3281
skb_network_protocol(struct sk_buff * skb,int * depth)3282 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3283 {
3284 __be16 type = skb->protocol;
3285
3286 /* Tunnel gso handlers can set protocol to ethernet. */
3287 if (type == htons(ETH_P_TEB)) {
3288 struct ethhdr *eth;
3289
3290 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3291 return 0;
3292
3293 eth = (struct ethhdr *)skb->data;
3294 type = eth->h_proto;
3295 }
3296
3297 return __vlan_get_protocol(skb, type, depth);
3298 }
3299
3300 /**
3301 * skb_mac_gso_segment - mac layer segmentation handler.
3302 * @skb: buffer to segment
3303 * @features: features for the output path (see dev->features)
3304 */
skb_mac_gso_segment(struct sk_buff * skb,netdev_features_t features)3305 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3306 netdev_features_t features)
3307 {
3308 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3309 struct packet_offload *ptype;
3310 int vlan_depth = skb->mac_len;
3311 __be16 type = skb_network_protocol(skb, &vlan_depth);
3312
3313 if (unlikely(!type))
3314 return ERR_PTR(-EINVAL);
3315
3316 __skb_pull(skb, vlan_depth);
3317
3318 rcu_read_lock();
3319 list_for_each_entry_rcu(ptype, &offload_base, list) {
3320 if (ptype->type == type && ptype->callbacks.gso_segment) {
3321 segs = ptype->callbacks.gso_segment(skb, features);
3322 break;
3323 }
3324 }
3325 rcu_read_unlock();
3326
3327 __skb_push(skb, skb->data - skb_mac_header(skb));
3328
3329 return segs;
3330 }
3331 EXPORT_SYMBOL(skb_mac_gso_segment);
3332
3333
3334 /* openvswitch calls this on rx path, so we need a different check.
3335 */
skb_needs_check(struct sk_buff * skb,bool tx_path)3336 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3337 {
3338 if (tx_path)
3339 return skb->ip_summed != CHECKSUM_PARTIAL &&
3340 skb->ip_summed != CHECKSUM_UNNECESSARY;
3341
3342 return skb->ip_summed == CHECKSUM_NONE;
3343 }
3344
3345 /**
3346 * __skb_gso_segment - Perform segmentation on skb.
3347 * @skb: buffer to segment
3348 * @features: features for the output path (see dev->features)
3349 * @tx_path: whether it is called in TX path
3350 *
3351 * This function segments the given skb and returns a list of segments.
3352 *
3353 * It may return NULL if the skb requires no segmentation. This is
3354 * only possible when GSO is used for verifying header integrity.
3355 *
3356 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3357 */
__skb_gso_segment(struct sk_buff * skb,netdev_features_t features,bool tx_path)3358 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3359 netdev_features_t features, bool tx_path)
3360 {
3361 struct sk_buff *segs;
3362
3363 if (unlikely(skb_needs_check(skb, tx_path))) {
3364 int err;
3365
3366 /* We're going to init ->check field in TCP or UDP header */
3367 err = skb_cow_head(skb, 0);
3368 if (err < 0)
3369 return ERR_PTR(err);
3370 }
3371
3372 /* Only report GSO partial support if it will enable us to
3373 * support segmentation on this frame without needing additional
3374 * work.
3375 */
3376 if (features & NETIF_F_GSO_PARTIAL) {
3377 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3378 struct net_device *dev = skb->dev;
3379
3380 partial_features |= dev->features & dev->gso_partial_features;
3381 if (!skb_gso_ok(skb, features | partial_features))
3382 features &= ~NETIF_F_GSO_PARTIAL;
3383 }
3384
3385 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3386 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3387
3388 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3389 SKB_GSO_CB(skb)->encap_level = 0;
3390
3391 skb_reset_mac_header(skb);
3392 skb_reset_mac_len(skb);
3393
3394 segs = skb_mac_gso_segment(skb, features);
3395
3396 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3397 skb_warn_bad_offload(skb);
3398
3399 return segs;
3400 }
3401 EXPORT_SYMBOL(__skb_gso_segment);
3402
3403 /* Take action when hardware reception checksum errors are detected. */
3404 #ifdef CONFIG_BUG
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3405 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3406 {
3407 if (net_ratelimit()) {
3408 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3409 skb_dump(KERN_ERR, skb, true);
3410 dump_stack();
3411 }
3412 }
3413 EXPORT_SYMBOL(netdev_rx_csum_fault);
3414 #endif
3415
3416 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3417 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3418 {
3419 #ifdef CONFIG_HIGHMEM
3420 int i;
3421
3422 if (!(dev->features & NETIF_F_HIGHDMA)) {
3423 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3424 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3425
3426 if (PageHighMem(skb_frag_page(frag)))
3427 return 1;
3428 }
3429 }
3430 #endif
3431 return 0;
3432 }
3433
3434 /* If MPLS offload request, verify we are testing hardware MPLS features
3435 * instead of standard features for the netdev.
3436 */
3437 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3438 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3439 netdev_features_t features,
3440 __be16 type)
3441 {
3442 if (eth_p_mpls(type))
3443 features &= skb->dev->mpls_features;
3444
3445 return features;
3446 }
3447 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3448 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3449 netdev_features_t features,
3450 __be16 type)
3451 {
3452 return features;
3453 }
3454 #endif
3455
harmonize_features(struct sk_buff * skb,netdev_features_t features)3456 static netdev_features_t harmonize_features(struct sk_buff *skb,
3457 netdev_features_t features)
3458 {
3459 __be16 type;
3460
3461 type = skb_network_protocol(skb, NULL);
3462 features = net_mpls_features(skb, features, type);
3463
3464 if (skb->ip_summed != CHECKSUM_NONE &&
3465 !can_checksum_protocol(features, type)) {
3466 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3467 }
3468 if (illegal_highdma(skb->dev, skb))
3469 features &= ~NETIF_F_SG;
3470
3471 return features;
3472 }
3473
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3474 netdev_features_t passthru_features_check(struct sk_buff *skb,
3475 struct net_device *dev,
3476 netdev_features_t features)
3477 {
3478 return features;
3479 }
3480 EXPORT_SYMBOL(passthru_features_check);
3481
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3482 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3483 struct net_device *dev,
3484 netdev_features_t features)
3485 {
3486 return vlan_features_check(skb, features);
3487 }
3488
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3489 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3490 struct net_device *dev,
3491 netdev_features_t features)
3492 {
3493 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3494
3495 if (gso_segs > dev->gso_max_segs)
3496 return features & ~NETIF_F_GSO_MASK;
3497
3498 /* Support for GSO partial features requires software
3499 * intervention before we can actually process the packets
3500 * so we need to strip support for any partial features now
3501 * and we can pull them back in after we have partially
3502 * segmented the frame.
3503 */
3504 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3505 features &= ~dev->gso_partial_features;
3506
3507 /* Make sure to clear the IPv4 ID mangling feature if the
3508 * IPv4 header has the potential to be fragmented.
3509 */
3510 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3511 struct iphdr *iph = skb->encapsulation ?
3512 inner_ip_hdr(skb) : ip_hdr(skb);
3513
3514 if (!(iph->frag_off & htons(IP_DF)))
3515 features &= ~NETIF_F_TSO_MANGLEID;
3516 }
3517
3518 return features;
3519 }
3520
netif_skb_features(struct sk_buff * skb)3521 netdev_features_t netif_skb_features(struct sk_buff *skb)
3522 {
3523 struct net_device *dev = skb->dev;
3524 netdev_features_t features = dev->features;
3525
3526 if (skb_is_gso(skb))
3527 features = gso_features_check(skb, dev, features);
3528
3529 /* If encapsulation offload request, verify we are testing
3530 * hardware encapsulation features instead of standard
3531 * features for the netdev
3532 */
3533 if (skb->encapsulation)
3534 features &= dev->hw_enc_features;
3535
3536 if (skb_vlan_tagged(skb))
3537 features = netdev_intersect_features(features,
3538 dev->vlan_features |
3539 NETIF_F_HW_VLAN_CTAG_TX |
3540 NETIF_F_HW_VLAN_STAG_TX);
3541
3542 if (dev->netdev_ops->ndo_features_check)
3543 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3544 features);
3545 else
3546 features &= dflt_features_check(skb, dev, features);
3547
3548 return harmonize_features(skb, features);
3549 }
3550 EXPORT_SYMBOL(netif_skb_features);
3551
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3552 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3553 struct netdev_queue *txq, bool more)
3554 {
3555 unsigned int len;
3556 int rc;
3557
3558 if (dev_nit_active(dev))
3559 dev_queue_xmit_nit(skb, dev);
3560
3561 len = skb->len;
3562 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3563 trace_net_dev_start_xmit(skb, dev);
3564 rc = netdev_start_xmit(skb, dev, txq, more);
3565 trace_net_dev_xmit(skb, rc, dev, len);
3566
3567 return rc;
3568 }
3569
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3570 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3571 struct netdev_queue *txq, int *ret)
3572 {
3573 struct sk_buff *skb = first;
3574 int rc = NETDEV_TX_OK;
3575
3576 while (skb) {
3577 struct sk_buff *next = skb->next;
3578
3579 skb_mark_not_on_list(skb);
3580 rc = xmit_one(skb, dev, txq, next != NULL);
3581 if (unlikely(!dev_xmit_complete(rc))) {
3582 skb->next = next;
3583 goto out;
3584 }
3585
3586 skb = next;
3587 if (netif_tx_queue_stopped(txq) && skb) {
3588 rc = NETDEV_TX_BUSY;
3589 break;
3590 }
3591 }
3592
3593 out:
3594 *ret = rc;
3595 return skb;
3596 }
3597
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3598 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3599 netdev_features_t features)
3600 {
3601 if (skb_vlan_tag_present(skb) &&
3602 !vlan_hw_offload_capable(features, skb->vlan_proto))
3603 skb = __vlan_hwaccel_push_inside(skb);
3604 return skb;
3605 }
3606
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3607 int skb_csum_hwoffload_help(struct sk_buff *skb,
3608 const netdev_features_t features)
3609 {
3610 if (unlikely(skb->csum_not_inet))
3611 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3612 skb_crc32c_csum_help(skb);
3613
3614 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3615 }
3616 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3617
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3618 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3619 {
3620 netdev_features_t features;
3621
3622 features = netif_skb_features(skb);
3623 skb = validate_xmit_vlan(skb, features);
3624 if (unlikely(!skb))
3625 goto out_null;
3626
3627 skb = sk_validate_xmit_skb(skb, dev);
3628 if (unlikely(!skb))
3629 goto out_null;
3630
3631 if (netif_needs_gso(skb, features)) {
3632 struct sk_buff *segs;
3633
3634 segs = skb_gso_segment(skb, features);
3635 if (IS_ERR(segs)) {
3636 goto out_kfree_skb;
3637 } else if (segs) {
3638 consume_skb(skb);
3639 skb = segs;
3640 }
3641 } else {
3642 if (skb_needs_linearize(skb, features) &&
3643 __skb_linearize(skb))
3644 goto out_kfree_skb;
3645
3646 /* If packet is not checksummed and device does not
3647 * support checksumming for this protocol, complete
3648 * checksumming here.
3649 */
3650 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3651 if (skb->encapsulation)
3652 skb_set_inner_transport_header(skb,
3653 skb_checksum_start_offset(skb));
3654 else
3655 skb_set_transport_header(skb,
3656 skb_checksum_start_offset(skb));
3657 if (skb_csum_hwoffload_help(skb, features))
3658 goto out_kfree_skb;
3659 }
3660 }
3661
3662 skb = validate_xmit_xfrm(skb, features, again);
3663
3664 return skb;
3665
3666 out_kfree_skb:
3667 kfree_skb(skb);
3668 out_null:
3669 atomic_long_inc(&dev->tx_dropped);
3670 return NULL;
3671 }
3672
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)3673 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3674 {
3675 struct sk_buff *next, *head = NULL, *tail;
3676
3677 for (; skb != NULL; skb = next) {
3678 next = skb->next;
3679 skb_mark_not_on_list(skb);
3680
3681 /* in case skb wont be segmented, point to itself */
3682 skb->prev = skb;
3683
3684 skb = validate_xmit_skb(skb, dev, again);
3685 if (!skb)
3686 continue;
3687
3688 if (!head)
3689 head = skb;
3690 else
3691 tail->next = skb;
3692 /* If skb was segmented, skb->prev points to
3693 * the last segment. If not, it still contains skb.
3694 */
3695 tail = skb->prev;
3696 }
3697 return head;
3698 }
3699 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3700
qdisc_pkt_len_init(struct sk_buff * skb)3701 static void qdisc_pkt_len_init(struct sk_buff *skb)
3702 {
3703 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3704
3705 qdisc_skb_cb(skb)->pkt_len = skb->len;
3706
3707 /* To get more precise estimation of bytes sent on wire,
3708 * we add to pkt_len the headers size of all segments
3709 */
3710 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3711 unsigned int hdr_len;
3712 u16 gso_segs = shinfo->gso_segs;
3713
3714 /* mac layer + network layer */
3715 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3716
3717 /* + transport layer */
3718 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3719 const struct tcphdr *th;
3720 struct tcphdr _tcphdr;
3721
3722 th = skb_header_pointer(skb, skb_transport_offset(skb),
3723 sizeof(_tcphdr), &_tcphdr);
3724 if (likely(th))
3725 hdr_len += __tcp_hdrlen(th);
3726 } else {
3727 struct udphdr _udphdr;
3728
3729 if (skb_header_pointer(skb, skb_transport_offset(skb),
3730 sizeof(_udphdr), &_udphdr))
3731 hdr_len += sizeof(struct udphdr);
3732 }
3733
3734 if (shinfo->gso_type & SKB_GSO_DODGY)
3735 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3736 shinfo->gso_size);
3737
3738 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3739 }
3740 }
3741
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)3742 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3743 struct net_device *dev,
3744 struct netdev_queue *txq)
3745 {
3746 spinlock_t *root_lock = qdisc_lock(q);
3747 struct sk_buff *to_free = NULL;
3748 bool contended;
3749 int rc;
3750
3751 qdisc_calculate_pkt_len(skb, q);
3752
3753 if (q->flags & TCQ_F_NOLOCK) {
3754 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3755 qdisc_run(q);
3756
3757 if (unlikely(to_free))
3758 kfree_skb_list(to_free);
3759 return rc;
3760 }
3761
3762 /*
3763 * Heuristic to force contended enqueues to serialize on a
3764 * separate lock before trying to get qdisc main lock.
3765 * This permits qdisc->running owner to get the lock more
3766 * often and dequeue packets faster.
3767 */
3768 contended = qdisc_is_running(q);
3769 if (unlikely(contended))
3770 spin_lock(&q->busylock);
3771
3772 spin_lock(root_lock);
3773 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3774 __qdisc_drop(skb, &to_free);
3775 rc = NET_XMIT_DROP;
3776 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3777 qdisc_run_begin(q)) {
3778 /*
3779 * This is a work-conserving queue; there are no old skbs
3780 * waiting to be sent out; and the qdisc is not running -
3781 * xmit the skb directly.
3782 */
3783
3784 qdisc_bstats_update(q, skb);
3785
3786 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3787 if (unlikely(contended)) {
3788 spin_unlock(&q->busylock);
3789 contended = false;
3790 }
3791 __qdisc_run(q);
3792 }
3793
3794 qdisc_run_end(q);
3795 rc = NET_XMIT_SUCCESS;
3796 } else {
3797 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3798 if (qdisc_run_begin(q)) {
3799 if (unlikely(contended)) {
3800 spin_unlock(&q->busylock);
3801 contended = false;
3802 }
3803 __qdisc_run(q);
3804 qdisc_run_end(q);
3805 }
3806 }
3807 spin_unlock(root_lock);
3808 if (unlikely(to_free))
3809 kfree_skb_list(to_free);
3810 if (unlikely(contended))
3811 spin_unlock(&q->busylock);
3812 return rc;
3813 }
3814
3815 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)3816 static void skb_update_prio(struct sk_buff *skb)
3817 {
3818 const struct netprio_map *map;
3819 const struct sock *sk;
3820 unsigned int prioidx;
3821
3822 if (skb->priority)
3823 return;
3824 map = rcu_dereference_bh(skb->dev->priomap);
3825 if (!map)
3826 return;
3827 sk = skb_to_full_sk(skb);
3828 if (!sk)
3829 return;
3830
3831 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3832
3833 if (prioidx < map->priomap_len)
3834 skb->priority = map->priomap[prioidx];
3835 }
3836 #else
3837 #define skb_update_prio(skb)
3838 #endif
3839
3840 /**
3841 * dev_loopback_xmit - loop back @skb
3842 * @net: network namespace this loopback is happening in
3843 * @sk: sk needed to be a netfilter okfn
3844 * @skb: buffer to transmit
3845 */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)3846 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3847 {
3848 skb_reset_mac_header(skb);
3849 __skb_pull(skb, skb_network_offset(skb));
3850 skb->pkt_type = PACKET_LOOPBACK;
3851 skb->ip_summed = CHECKSUM_UNNECESSARY;
3852 WARN_ON(!skb_dst(skb));
3853 skb_dst_force(skb);
3854 netif_rx_ni(skb);
3855 return 0;
3856 }
3857 EXPORT_SYMBOL(dev_loopback_xmit);
3858
3859 #ifdef CONFIG_NET_EGRESS
3860 static struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)3861 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3862 {
3863 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3864 struct tcf_result cl_res;
3865
3866 if (!miniq)
3867 return skb;
3868
3869 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3870 mini_qdisc_bstats_cpu_update(miniq, skb);
3871
3872 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3873 case TC_ACT_OK:
3874 case TC_ACT_RECLASSIFY:
3875 skb->tc_index = TC_H_MIN(cl_res.classid);
3876 break;
3877 case TC_ACT_SHOT:
3878 mini_qdisc_qstats_cpu_drop(miniq);
3879 *ret = NET_XMIT_DROP;
3880 kfree_skb(skb);
3881 return NULL;
3882 case TC_ACT_STOLEN:
3883 case TC_ACT_QUEUED:
3884 case TC_ACT_TRAP:
3885 *ret = NET_XMIT_SUCCESS;
3886 consume_skb(skb);
3887 return NULL;
3888 case TC_ACT_REDIRECT:
3889 /* No need to push/pop skb's mac_header here on egress! */
3890 skb_do_redirect(skb);
3891 *ret = NET_XMIT_SUCCESS;
3892 return NULL;
3893 default:
3894 break;
3895 }
3896
3897 return skb;
3898 }
3899 #endif /* CONFIG_NET_EGRESS */
3900
3901 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)3902 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3903 struct xps_dev_maps *dev_maps, unsigned int tci)
3904 {
3905 struct xps_map *map;
3906 int queue_index = -1;
3907
3908 if (dev->num_tc) {
3909 tci *= dev->num_tc;
3910 tci += netdev_get_prio_tc_map(dev, skb->priority);
3911 }
3912
3913 map = rcu_dereference(dev_maps->attr_map[tci]);
3914 if (map) {
3915 if (map->len == 1)
3916 queue_index = map->queues[0];
3917 else
3918 queue_index = map->queues[reciprocal_scale(
3919 skb_get_hash(skb), map->len)];
3920 if (unlikely(queue_index >= dev->real_num_tx_queues))
3921 queue_index = -1;
3922 }
3923 return queue_index;
3924 }
3925 #endif
3926
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)3927 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3928 struct sk_buff *skb)
3929 {
3930 #ifdef CONFIG_XPS
3931 struct xps_dev_maps *dev_maps;
3932 struct sock *sk = skb->sk;
3933 int queue_index = -1;
3934
3935 if (!static_key_false(&xps_needed))
3936 return -1;
3937
3938 rcu_read_lock();
3939 if (!static_key_false(&xps_rxqs_needed))
3940 goto get_cpus_map;
3941
3942 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3943 if (dev_maps) {
3944 int tci = sk_rx_queue_get(sk);
3945
3946 if (tci >= 0 && tci < dev->num_rx_queues)
3947 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3948 tci);
3949 }
3950
3951 get_cpus_map:
3952 if (queue_index < 0) {
3953 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3954 if (dev_maps) {
3955 unsigned int tci = skb->sender_cpu - 1;
3956
3957 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3958 tci);
3959 }
3960 }
3961 rcu_read_unlock();
3962
3963 return queue_index;
3964 #else
3965 return -1;
3966 #endif
3967 }
3968
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)3969 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3970 struct net_device *sb_dev)
3971 {
3972 return 0;
3973 }
3974 EXPORT_SYMBOL(dev_pick_tx_zero);
3975
dev_pick_tx_cpu_id(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)3976 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3977 struct net_device *sb_dev)
3978 {
3979 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3980 }
3981 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3982
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)3983 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3984 struct net_device *sb_dev)
3985 {
3986 struct sock *sk = skb->sk;
3987 int queue_index = sk_tx_queue_get(sk);
3988
3989 sb_dev = sb_dev ? : dev;
3990
3991 if (queue_index < 0 || skb->ooo_okay ||
3992 queue_index >= dev->real_num_tx_queues) {
3993 int new_index = get_xps_queue(dev, sb_dev, skb);
3994
3995 if (new_index < 0)
3996 new_index = skb_tx_hash(dev, sb_dev, skb);
3997
3998 if (queue_index != new_index && sk &&
3999 sk_fullsock(sk) &&
4000 rcu_access_pointer(sk->sk_dst_cache))
4001 sk_tx_queue_set(sk, new_index);
4002
4003 queue_index = new_index;
4004 }
4005
4006 return queue_index;
4007 }
4008 EXPORT_SYMBOL(netdev_pick_tx);
4009
netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4010 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4011 struct sk_buff *skb,
4012 struct net_device *sb_dev)
4013 {
4014 int queue_index = 0;
4015
4016 #ifdef CONFIG_XPS
4017 u32 sender_cpu = skb->sender_cpu - 1;
4018
4019 if (sender_cpu >= (u32)NR_CPUS)
4020 skb->sender_cpu = raw_smp_processor_id() + 1;
4021 #endif
4022
4023 if (dev->real_num_tx_queues != 1) {
4024 const struct net_device_ops *ops = dev->netdev_ops;
4025
4026 if (ops->ndo_select_queue)
4027 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4028 else
4029 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4030
4031 queue_index = netdev_cap_txqueue(dev, queue_index);
4032 }
4033
4034 skb_set_queue_mapping(skb, queue_index);
4035 return netdev_get_tx_queue(dev, queue_index);
4036 }
4037
4038 /**
4039 * __dev_queue_xmit - transmit a buffer
4040 * @skb: buffer to transmit
4041 * @sb_dev: suboordinate device used for L2 forwarding offload
4042 *
4043 * Queue a buffer for transmission to a network device. The caller must
4044 * have set the device and priority and built the buffer before calling
4045 * this function. The function can be called from an interrupt.
4046 *
4047 * A negative errno code is returned on a failure. A success does not
4048 * guarantee the frame will be transmitted as it may be dropped due
4049 * to congestion or traffic shaping.
4050 *
4051 * -----------------------------------------------------------------------------------
4052 * I notice this method can also return errors from the queue disciplines,
4053 * including NET_XMIT_DROP, which is a positive value. So, errors can also
4054 * be positive.
4055 *
4056 * Regardless of the return value, the skb is consumed, so it is currently
4057 * difficult to retry a send to this method. (You can bump the ref count
4058 * before sending to hold a reference for retry if you are careful.)
4059 *
4060 * When calling this method, interrupts MUST be enabled. This is because
4061 * the BH enable code must have IRQs enabled so that it will not deadlock.
4062 * --BLG
4063 */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)4064 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4065 {
4066 struct net_device *dev = skb->dev;
4067 struct netdev_queue *txq;
4068 struct Qdisc *q;
4069 int rc = -ENOMEM;
4070 bool again = false;
4071
4072 skb_reset_mac_header(skb);
4073
4074 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4075 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4076
4077 /* Disable soft irqs for various locks below. Also
4078 * stops preemption for RCU.
4079 */
4080 rcu_read_lock_bh();
4081
4082 skb_update_prio(skb);
4083
4084 qdisc_pkt_len_init(skb);
4085 #ifdef CONFIG_NET_CLS_ACT
4086 skb->tc_at_ingress = 0;
4087 # ifdef CONFIG_NET_EGRESS
4088 if (static_branch_unlikely(&egress_needed_key)) {
4089 skb = sch_handle_egress(skb, &rc, dev);
4090 if (!skb)
4091 goto out;
4092 }
4093 # endif
4094 #endif
4095 /* If device/qdisc don't need skb->dst, release it right now while
4096 * its hot in this cpu cache.
4097 */
4098 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4099 skb_dst_drop(skb);
4100 else
4101 skb_dst_force(skb);
4102
4103 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4104 q = rcu_dereference_bh(txq->qdisc);
4105
4106 trace_net_dev_queue(skb);
4107 if (q->enqueue) {
4108 rc = __dev_xmit_skb(skb, q, dev, txq);
4109 goto out;
4110 }
4111
4112 /* The device has no queue. Common case for software devices:
4113 * loopback, all the sorts of tunnels...
4114
4115 * Really, it is unlikely that netif_tx_lock protection is necessary
4116 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4117 * counters.)
4118 * However, it is possible, that they rely on protection
4119 * made by us here.
4120
4121 * Check this and shot the lock. It is not prone from deadlocks.
4122 *Either shot noqueue qdisc, it is even simpler 8)
4123 */
4124 if (dev->flags & IFF_UP) {
4125 int cpu = smp_processor_id(); /* ok because BHs are off */
4126
4127 if (txq->xmit_lock_owner != cpu) {
4128 if (dev_xmit_recursion())
4129 goto recursion_alert;
4130
4131 skb = validate_xmit_skb(skb, dev, &again);
4132 if (!skb)
4133 goto out;
4134
4135 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4136 HARD_TX_LOCK(dev, txq, cpu);
4137
4138 if (!netif_xmit_stopped(txq)) {
4139 dev_xmit_recursion_inc();
4140 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4141 dev_xmit_recursion_dec();
4142 if (dev_xmit_complete(rc)) {
4143 HARD_TX_UNLOCK(dev, txq);
4144 goto out;
4145 }
4146 }
4147 HARD_TX_UNLOCK(dev, txq);
4148 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4149 dev->name);
4150 } else {
4151 /* Recursion is detected! It is possible,
4152 * unfortunately
4153 */
4154 recursion_alert:
4155 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4156 dev->name);
4157 }
4158 }
4159
4160 rc = -ENETDOWN;
4161 rcu_read_unlock_bh();
4162
4163 atomic_long_inc(&dev->tx_dropped);
4164 kfree_skb_list(skb);
4165 return rc;
4166 out:
4167 rcu_read_unlock_bh();
4168 return rc;
4169 }
4170
dev_queue_xmit(struct sk_buff * skb)4171 int dev_queue_xmit(struct sk_buff *skb)
4172 {
4173 return __dev_queue_xmit(skb, NULL);
4174 }
4175 EXPORT_SYMBOL(dev_queue_xmit);
4176
dev_queue_xmit_accel(struct sk_buff * skb,struct net_device * sb_dev)4177 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4178 {
4179 return __dev_queue_xmit(skb, sb_dev);
4180 }
4181 EXPORT_SYMBOL(dev_queue_xmit_accel);
4182
__dev_direct_xmit(struct sk_buff * skb,u16 queue_id)4183 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4184 {
4185 struct net_device *dev = skb->dev;
4186 struct sk_buff *orig_skb = skb;
4187 struct netdev_queue *txq;
4188 int ret = NETDEV_TX_BUSY;
4189 bool again = false;
4190
4191 if (unlikely(!netif_running(dev) ||
4192 !netif_carrier_ok(dev)))
4193 goto drop;
4194
4195 skb = validate_xmit_skb_list(skb, dev, &again);
4196 if (skb != orig_skb)
4197 goto drop;
4198
4199 skb_set_queue_mapping(skb, queue_id);
4200 txq = skb_get_tx_queue(dev, skb);
4201 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4202
4203 local_bh_disable();
4204
4205 dev_xmit_recursion_inc();
4206 HARD_TX_LOCK(dev, txq, smp_processor_id());
4207 if (!netif_xmit_frozen_or_drv_stopped(txq))
4208 ret = netdev_start_xmit(skb, dev, txq, false);
4209 HARD_TX_UNLOCK(dev, txq);
4210 dev_xmit_recursion_dec();
4211
4212 local_bh_enable();
4213 return ret;
4214 drop:
4215 atomic_long_inc(&dev->tx_dropped);
4216 kfree_skb_list(skb);
4217 return NET_XMIT_DROP;
4218 }
4219 EXPORT_SYMBOL(__dev_direct_xmit);
4220
4221 /*************************************************************************
4222 * Receiver routines
4223 *************************************************************************/
4224
4225 int netdev_max_backlog __read_mostly = 1000;
4226 EXPORT_SYMBOL(netdev_max_backlog);
4227
4228 int netdev_tstamp_prequeue __read_mostly = 1;
4229 int netdev_budget __read_mostly = 300;
4230 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4231 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4232 int weight_p __read_mostly = 64; /* old backlog weight */
4233 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4234 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4235 int dev_rx_weight __read_mostly = 64;
4236 int dev_tx_weight __read_mostly = 64;
4237 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4238 int gro_normal_batch __read_mostly = 8;
4239
4240 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)4241 static inline void ____napi_schedule(struct softnet_data *sd,
4242 struct napi_struct *napi)
4243 {
4244 list_add_tail(&napi->poll_list, &sd->poll_list);
4245 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4246 }
4247
4248 #ifdef CONFIG_RPS
4249
4250 /* One global table that all flow-based protocols share. */
4251 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4252 EXPORT_SYMBOL(rps_sock_flow_table);
4253 u32 rps_cpu_mask __read_mostly;
4254 EXPORT_SYMBOL(rps_cpu_mask);
4255
4256 struct static_key_false rps_needed __read_mostly;
4257 EXPORT_SYMBOL(rps_needed);
4258 struct static_key_false rfs_needed __read_mostly;
4259 EXPORT_SYMBOL(rfs_needed);
4260
4261 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)4262 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4263 struct rps_dev_flow *rflow, u16 next_cpu)
4264 {
4265 if (next_cpu < nr_cpu_ids) {
4266 #ifdef CONFIG_RFS_ACCEL
4267 struct netdev_rx_queue *rxqueue;
4268 struct rps_dev_flow_table *flow_table;
4269 struct rps_dev_flow *old_rflow;
4270 u32 flow_id;
4271 u16 rxq_index;
4272 int rc;
4273
4274 /* Should we steer this flow to a different hardware queue? */
4275 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4276 !(dev->features & NETIF_F_NTUPLE))
4277 goto out;
4278 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4279 if (rxq_index == skb_get_rx_queue(skb))
4280 goto out;
4281
4282 rxqueue = dev->_rx + rxq_index;
4283 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4284 if (!flow_table)
4285 goto out;
4286 flow_id = skb_get_hash(skb) & flow_table->mask;
4287 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4288 rxq_index, flow_id);
4289 if (rc < 0)
4290 goto out;
4291 old_rflow = rflow;
4292 rflow = &flow_table->flows[flow_id];
4293 rflow->filter = rc;
4294 if (old_rflow->filter == rflow->filter)
4295 old_rflow->filter = RPS_NO_FILTER;
4296 out:
4297 #endif
4298 rflow->last_qtail =
4299 per_cpu(softnet_data, next_cpu).input_queue_head;
4300 }
4301
4302 rflow->cpu = next_cpu;
4303 return rflow;
4304 }
4305
4306 /*
4307 * get_rps_cpu is called from netif_receive_skb and returns the target
4308 * CPU from the RPS map of the receiving queue for a given skb.
4309 * rcu_read_lock must be held on entry.
4310 */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)4311 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4312 struct rps_dev_flow **rflowp)
4313 {
4314 const struct rps_sock_flow_table *sock_flow_table;
4315 struct netdev_rx_queue *rxqueue = dev->_rx;
4316 struct rps_dev_flow_table *flow_table;
4317 struct rps_map *map;
4318 int cpu = -1;
4319 u32 tcpu;
4320 u32 hash;
4321
4322 if (skb_rx_queue_recorded(skb)) {
4323 u16 index = skb_get_rx_queue(skb);
4324
4325 if (unlikely(index >= dev->real_num_rx_queues)) {
4326 WARN_ONCE(dev->real_num_rx_queues > 1,
4327 "%s received packet on queue %u, but number "
4328 "of RX queues is %u\n",
4329 dev->name, index, dev->real_num_rx_queues);
4330 goto done;
4331 }
4332 rxqueue += index;
4333 }
4334
4335 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4336
4337 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4338 map = rcu_dereference(rxqueue->rps_map);
4339 if (!flow_table && !map)
4340 goto done;
4341
4342 skb_reset_network_header(skb);
4343 hash = skb_get_hash(skb);
4344 if (!hash)
4345 goto done;
4346
4347 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4348 if (flow_table && sock_flow_table) {
4349 struct rps_dev_flow *rflow;
4350 u32 next_cpu;
4351 u32 ident;
4352
4353 /* First check into global flow table if there is a match */
4354 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4355 if ((ident ^ hash) & ~rps_cpu_mask)
4356 goto try_rps;
4357
4358 next_cpu = ident & rps_cpu_mask;
4359
4360 /* OK, now we know there is a match,
4361 * we can look at the local (per receive queue) flow table
4362 */
4363 rflow = &flow_table->flows[hash & flow_table->mask];
4364 tcpu = rflow->cpu;
4365
4366 /*
4367 * If the desired CPU (where last recvmsg was done) is
4368 * different from current CPU (one in the rx-queue flow
4369 * table entry), switch if one of the following holds:
4370 * - Current CPU is unset (>= nr_cpu_ids).
4371 * - Current CPU is offline.
4372 * - The current CPU's queue tail has advanced beyond the
4373 * last packet that was enqueued using this table entry.
4374 * This guarantees that all previous packets for the flow
4375 * have been dequeued, thus preserving in order delivery.
4376 */
4377 if (unlikely(tcpu != next_cpu) &&
4378 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4379 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4380 rflow->last_qtail)) >= 0)) {
4381 tcpu = next_cpu;
4382 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4383 }
4384
4385 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4386 *rflowp = rflow;
4387 cpu = tcpu;
4388 goto done;
4389 }
4390 }
4391
4392 try_rps:
4393
4394 if (map) {
4395 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4396 if (cpu_online(tcpu)) {
4397 cpu = tcpu;
4398 goto done;
4399 }
4400 }
4401
4402 done:
4403 return cpu;
4404 }
4405
4406 #ifdef CONFIG_RFS_ACCEL
4407
4408 /**
4409 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4410 * @dev: Device on which the filter was set
4411 * @rxq_index: RX queue index
4412 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4413 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4414 *
4415 * Drivers that implement ndo_rx_flow_steer() should periodically call
4416 * this function for each installed filter and remove the filters for
4417 * which it returns %true.
4418 */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)4419 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4420 u32 flow_id, u16 filter_id)
4421 {
4422 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4423 struct rps_dev_flow_table *flow_table;
4424 struct rps_dev_flow *rflow;
4425 bool expire = true;
4426 unsigned int cpu;
4427
4428 rcu_read_lock();
4429 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4430 if (flow_table && flow_id <= flow_table->mask) {
4431 rflow = &flow_table->flows[flow_id];
4432 cpu = READ_ONCE(rflow->cpu);
4433 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4434 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4435 rflow->last_qtail) <
4436 (int)(10 * flow_table->mask)))
4437 expire = false;
4438 }
4439 rcu_read_unlock();
4440 return expire;
4441 }
4442 EXPORT_SYMBOL(rps_may_expire_flow);
4443
4444 #endif /* CONFIG_RFS_ACCEL */
4445
4446 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)4447 static void rps_trigger_softirq(void *data)
4448 {
4449 struct softnet_data *sd = data;
4450
4451 ____napi_schedule(sd, &sd->backlog);
4452 sd->received_rps++;
4453 }
4454
4455 #endif /* CONFIG_RPS */
4456
4457 /*
4458 * Check if this softnet_data structure is another cpu one
4459 * If yes, queue it to our IPI list and return 1
4460 * If no, return 0
4461 */
rps_ipi_queued(struct softnet_data * sd)4462 static int rps_ipi_queued(struct softnet_data *sd)
4463 {
4464 #ifdef CONFIG_RPS
4465 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4466
4467 if (sd != mysd) {
4468 sd->rps_ipi_next = mysd->rps_ipi_list;
4469 mysd->rps_ipi_list = sd;
4470
4471 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4472 return 1;
4473 }
4474 #endif /* CONFIG_RPS */
4475 return 0;
4476 }
4477
4478 #ifdef CONFIG_NET_FLOW_LIMIT
4479 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4480 #endif
4481
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)4482 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4483 {
4484 #ifdef CONFIG_NET_FLOW_LIMIT
4485 struct sd_flow_limit *fl;
4486 struct softnet_data *sd;
4487 unsigned int old_flow, new_flow;
4488
4489 if (qlen < (netdev_max_backlog >> 1))
4490 return false;
4491
4492 sd = this_cpu_ptr(&softnet_data);
4493
4494 rcu_read_lock();
4495 fl = rcu_dereference(sd->flow_limit);
4496 if (fl) {
4497 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4498 old_flow = fl->history[fl->history_head];
4499 fl->history[fl->history_head] = new_flow;
4500
4501 fl->history_head++;
4502 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4503
4504 if (likely(fl->buckets[old_flow]))
4505 fl->buckets[old_flow]--;
4506
4507 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4508 fl->count++;
4509 rcu_read_unlock();
4510 return true;
4511 }
4512 }
4513 rcu_read_unlock();
4514 #endif
4515 return false;
4516 }
4517
4518 /*
4519 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4520 * queue (may be a remote CPU queue).
4521 */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)4522 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4523 unsigned int *qtail)
4524 {
4525 struct softnet_data *sd;
4526 unsigned long flags;
4527 unsigned int qlen;
4528
4529 sd = &per_cpu(softnet_data, cpu);
4530
4531 local_irq_save(flags);
4532
4533 rps_lock(sd);
4534 if (!netif_running(skb->dev))
4535 goto drop;
4536 qlen = skb_queue_len(&sd->input_pkt_queue);
4537 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4538 if (qlen) {
4539 enqueue:
4540 __skb_queue_tail(&sd->input_pkt_queue, skb);
4541 input_queue_tail_incr_save(sd, qtail);
4542 rps_unlock(sd);
4543 local_irq_restore(flags);
4544 return NET_RX_SUCCESS;
4545 }
4546
4547 /* Schedule NAPI for backlog device
4548 * We can use non atomic operation since we own the queue lock
4549 */
4550 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4551 if (!rps_ipi_queued(sd))
4552 ____napi_schedule(sd, &sd->backlog);
4553 }
4554 goto enqueue;
4555 }
4556
4557 drop:
4558 sd->dropped++;
4559 rps_unlock(sd);
4560
4561 local_irq_restore(flags);
4562
4563 atomic_long_inc(&skb->dev->rx_dropped);
4564 kfree_skb(skb);
4565 return NET_RX_DROP;
4566 }
4567
netif_get_rxqueue(struct sk_buff * skb)4568 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4569 {
4570 struct net_device *dev = skb->dev;
4571 struct netdev_rx_queue *rxqueue;
4572
4573 rxqueue = dev->_rx;
4574
4575 if (skb_rx_queue_recorded(skb)) {
4576 u16 index = skb_get_rx_queue(skb);
4577
4578 if (unlikely(index >= dev->real_num_rx_queues)) {
4579 WARN_ONCE(dev->real_num_rx_queues > 1,
4580 "%s received packet on queue %u, but number "
4581 "of RX queues is %u\n",
4582 dev->name, index, dev->real_num_rx_queues);
4583
4584 return rxqueue; /* Return first rxqueue */
4585 }
4586 rxqueue += index;
4587 }
4588 return rxqueue;
4589 }
4590
netif_receive_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4591 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4592 struct xdp_buff *xdp,
4593 struct bpf_prog *xdp_prog)
4594 {
4595 struct netdev_rx_queue *rxqueue;
4596 void *orig_data, *orig_data_end;
4597 u32 metalen, act = XDP_DROP;
4598 __be16 orig_eth_type;
4599 struct ethhdr *eth;
4600 bool orig_bcast;
4601 int hlen, off;
4602 u32 mac_len;
4603
4604 /* Reinjected packets coming from act_mirred or similar should
4605 * not get XDP generic processing.
4606 */
4607 if (skb_is_redirected(skb))
4608 return XDP_PASS;
4609
4610 /* XDP packets must be linear and must have sufficient headroom
4611 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4612 * native XDP provides, thus we need to do it here as well.
4613 */
4614 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4615 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4616 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4617 int troom = skb->tail + skb->data_len - skb->end;
4618
4619 /* In case we have to go down the path and also linearize,
4620 * then lets do the pskb_expand_head() work just once here.
4621 */
4622 if (pskb_expand_head(skb,
4623 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4624 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4625 goto do_drop;
4626 if (skb_linearize(skb))
4627 goto do_drop;
4628 }
4629
4630 /* The XDP program wants to see the packet starting at the MAC
4631 * header.
4632 */
4633 mac_len = skb->data - skb_mac_header(skb);
4634 hlen = skb_headlen(skb) + mac_len;
4635 xdp->data = skb->data - mac_len;
4636 xdp->data_meta = xdp->data;
4637 xdp->data_end = xdp->data + hlen;
4638 xdp->data_hard_start = skb->data - skb_headroom(skb);
4639
4640 /* SKB "head" area always have tailroom for skb_shared_info */
4641 xdp->frame_sz = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4642 xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4643
4644 orig_data_end = xdp->data_end;
4645 orig_data = xdp->data;
4646 eth = (struct ethhdr *)xdp->data;
4647 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4648 orig_eth_type = eth->h_proto;
4649
4650 rxqueue = netif_get_rxqueue(skb);
4651 xdp->rxq = &rxqueue->xdp_rxq;
4652
4653 act = bpf_prog_run_xdp(xdp_prog, xdp);
4654
4655 /* check if bpf_xdp_adjust_head was used */
4656 off = xdp->data - orig_data;
4657 if (off) {
4658 if (off > 0)
4659 __skb_pull(skb, off);
4660 else if (off < 0)
4661 __skb_push(skb, -off);
4662
4663 skb->mac_header += off;
4664 skb_reset_network_header(skb);
4665 }
4666
4667 /* check if bpf_xdp_adjust_tail was used */
4668 off = xdp->data_end - orig_data_end;
4669 if (off != 0) {
4670 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4671 skb->len += off; /* positive on grow, negative on shrink */
4672 }
4673
4674 /* check if XDP changed eth hdr such SKB needs update */
4675 eth = (struct ethhdr *)xdp->data;
4676 if ((orig_eth_type != eth->h_proto) ||
4677 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4678 __skb_push(skb, ETH_HLEN);
4679 skb->protocol = eth_type_trans(skb, skb->dev);
4680 }
4681
4682 switch (act) {
4683 case XDP_REDIRECT:
4684 case XDP_TX:
4685 __skb_push(skb, mac_len);
4686 break;
4687 case XDP_PASS:
4688 metalen = xdp->data - xdp->data_meta;
4689 if (metalen)
4690 skb_metadata_set(skb, metalen);
4691 break;
4692 default:
4693 bpf_warn_invalid_xdp_action(act);
4694 fallthrough;
4695 case XDP_ABORTED:
4696 trace_xdp_exception(skb->dev, xdp_prog, act);
4697 fallthrough;
4698 case XDP_DROP:
4699 do_drop:
4700 kfree_skb(skb);
4701 break;
4702 }
4703
4704 return act;
4705 }
4706
4707 /* When doing generic XDP we have to bypass the qdisc layer and the
4708 * network taps in order to match in-driver-XDP behavior.
4709 */
generic_xdp_tx(struct sk_buff * skb,struct bpf_prog * xdp_prog)4710 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4711 {
4712 struct net_device *dev = skb->dev;
4713 struct netdev_queue *txq;
4714 bool free_skb = true;
4715 int cpu, rc;
4716
4717 txq = netdev_core_pick_tx(dev, skb, NULL);
4718 cpu = smp_processor_id();
4719 HARD_TX_LOCK(dev, txq, cpu);
4720 if (!netif_xmit_stopped(txq)) {
4721 rc = netdev_start_xmit(skb, dev, txq, 0);
4722 if (dev_xmit_complete(rc))
4723 free_skb = false;
4724 }
4725 HARD_TX_UNLOCK(dev, txq);
4726 if (free_skb) {
4727 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4728 kfree_skb(skb);
4729 }
4730 }
4731
4732 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4733
do_xdp_generic(struct bpf_prog * xdp_prog,struct sk_buff * skb)4734 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4735 {
4736 if (xdp_prog) {
4737 struct xdp_buff xdp;
4738 u32 act;
4739 int err;
4740
4741 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4742 if (act != XDP_PASS) {
4743 switch (act) {
4744 case XDP_REDIRECT:
4745 err = xdp_do_generic_redirect(skb->dev, skb,
4746 &xdp, xdp_prog);
4747 if (err)
4748 goto out_redir;
4749 break;
4750 case XDP_TX:
4751 generic_xdp_tx(skb, xdp_prog);
4752 break;
4753 }
4754 return XDP_DROP;
4755 }
4756 }
4757 return XDP_PASS;
4758 out_redir:
4759 kfree_skb(skb);
4760 return XDP_DROP;
4761 }
4762 EXPORT_SYMBOL_GPL(do_xdp_generic);
4763
netif_rx_internal(struct sk_buff * skb)4764 static int netif_rx_internal(struct sk_buff *skb)
4765 {
4766 int ret;
4767
4768 net_timestamp_check(netdev_tstamp_prequeue, skb);
4769
4770 trace_netif_rx(skb);
4771
4772 #ifdef CONFIG_RPS
4773 if (static_branch_unlikely(&rps_needed)) {
4774 struct rps_dev_flow voidflow, *rflow = &voidflow;
4775 int cpu;
4776
4777 preempt_disable();
4778 rcu_read_lock();
4779
4780 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4781 if (cpu < 0)
4782 cpu = smp_processor_id();
4783
4784 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4785
4786 rcu_read_unlock();
4787 preempt_enable();
4788 } else
4789 #endif
4790 {
4791 unsigned int qtail;
4792
4793 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4794 put_cpu();
4795 }
4796 return ret;
4797 }
4798
4799 /**
4800 * netif_rx - post buffer to the network code
4801 * @skb: buffer to post
4802 *
4803 * This function receives a packet from a device driver and queues it for
4804 * the upper (protocol) levels to process. It always succeeds. The buffer
4805 * may be dropped during processing for congestion control or by the
4806 * protocol layers.
4807 *
4808 * return values:
4809 * NET_RX_SUCCESS (no congestion)
4810 * NET_RX_DROP (packet was dropped)
4811 *
4812 */
4813
netif_rx(struct sk_buff * skb)4814 int netif_rx(struct sk_buff *skb)
4815 {
4816 int ret;
4817
4818 trace_netif_rx_entry(skb);
4819
4820 ret = netif_rx_internal(skb);
4821 trace_netif_rx_exit(ret);
4822
4823 return ret;
4824 }
4825 EXPORT_SYMBOL(netif_rx);
4826
netif_rx_ni(struct sk_buff * skb)4827 int netif_rx_ni(struct sk_buff *skb)
4828 {
4829 int err;
4830
4831 trace_netif_rx_ni_entry(skb);
4832
4833 preempt_disable();
4834 err = netif_rx_internal(skb);
4835 if (local_softirq_pending())
4836 do_softirq();
4837 preempt_enable();
4838 trace_netif_rx_ni_exit(err);
4839
4840 return err;
4841 }
4842 EXPORT_SYMBOL(netif_rx_ni);
4843
netif_rx_any_context(struct sk_buff * skb)4844 int netif_rx_any_context(struct sk_buff *skb)
4845 {
4846 /*
4847 * If invoked from contexts which do not invoke bottom half
4848 * processing either at return from interrupt or when softrqs are
4849 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4850 * directly.
4851 */
4852 if (in_interrupt())
4853 return netif_rx(skb);
4854 else
4855 return netif_rx_ni(skb);
4856 }
4857 EXPORT_SYMBOL(netif_rx_any_context);
4858
net_tx_action(struct softirq_action * h)4859 static __latent_entropy void net_tx_action(struct softirq_action *h)
4860 {
4861 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4862
4863 if (sd->completion_queue) {
4864 struct sk_buff *clist;
4865
4866 local_irq_disable();
4867 clist = sd->completion_queue;
4868 sd->completion_queue = NULL;
4869 local_irq_enable();
4870
4871 while (clist) {
4872 struct sk_buff *skb = clist;
4873
4874 clist = clist->next;
4875
4876 WARN_ON(refcount_read(&skb->users));
4877 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4878 trace_consume_skb(skb);
4879 else
4880 trace_kfree_skb(skb, net_tx_action);
4881
4882 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4883 __kfree_skb(skb);
4884 else
4885 __kfree_skb_defer(skb);
4886 }
4887
4888 __kfree_skb_flush();
4889 }
4890
4891 if (sd->output_queue) {
4892 struct Qdisc *head;
4893
4894 local_irq_disable();
4895 head = sd->output_queue;
4896 sd->output_queue = NULL;
4897 sd->output_queue_tailp = &sd->output_queue;
4898 local_irq_enable();
4899
4900 while (head) {
4901 struct Qdisc *q = head;
4902 spinlock_t *root_lock = NULL;
4903
4904 head = head->next_sched;
4905
4906 if (!(q->flags & TCQ_F_NOLOCK)) {
4907 root_lock = qdisc_lock(q);
4908 spin_lock(root_lock);
4909 }
4910 /* We need to make sure head->next_sched is read
4911 * before clearing __QDISC_STATE_SCHED
4912 */
4913 smp_mb__before_atomic();
4914 clear_bit(__QDISC_STATE_SCHED, &q->state);
4915 qdisc_run(q);
4916 if (root_lock)
4917 spin_unlock(root_lock);
4918 }
4919 }
4920
4921 xfrm_dev_backlog(sd);
4922 }
4923
4924 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4925 /* This hook is defined here for ATM LANE */
4926 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4927 unsigned char *addr) __read_mostly;
4928 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4929 #endif
4930
4931 static inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4932 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4933 struct net_device *orig_dev, bool *another)
4934 {
4935 #ifdef CONFIG_NET_CLS_ACT
4936 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4937 struct tcf_result cl_res;
4938
4939 /* If there's at least one ingress present somewhere (so
4940 * we get here via enabled static key), remaining devices
4941 * that are not configured with an ingress qdisc will bail
4942 * out here.
4943 */
4944 if (!miniq)
4945 return skb;
4946
4947 if (*pt_prev) {
4948 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4949 *pt_prev = NULL;
4950 }
4951
4952 qdisc_skb_cb(skb)->pkt_len = skb->len;
4953 skb->tc_at_ingress = 1;
4954 mini_qdisc_bstats_cpu_update(miniq, skb);
4955
4956 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4957 &cl_res, false)) {
4958 case TC_ACT_OK:
4959 case TC_ACT_RECLASSIFY:
4960 skb->tc_index = TC_H_MIN(cl_res.classid);
4961 break;
4962 case TC_ACT_SHOT:
4963 mini_qdisc_qstats_cpu_drop(miniq);
4964 kfree_skb(skb);
4965 return NULL;
4966 case TC_ACT_STOLEN:
4967 case TC_ACT_QUEUED:
4968 case TC_ACT_TRAP:
4969 consume_skb(skb);
4970 return NULL;
4971 case TC_ACT_REDIRECT:
4972 /* skb_mac_header check was done by cls/act_bpf, so
4973 * we can safely push the L2 header back before
4974 * redirecting to another netdev
4975 */
4976 __skb_push(skb, skb->mac_len);
4977 if (skb_do_redirect(skb) == -EAGAIN) {
4978 __skb_pull(skb, skb->mac_len);
4979 *another = true;
4980 break;
4981 }
4982 return NULL;
4983 case TC_ACT_CONSUMED:
4984 return NULL;
4985 default:
4986 break;
4987 }
4988 #endif /* CONFIG_NET_CLS_ACT */
4989 return skb;
4990 }
4991
4992 /**
4993 * netdev_is_rx_handler_busy - check if receive handler is registered
4994 * @dev: device to check
4995 *
4996 * Check if a receive handler is already registered for a given device.
4997 * Return true if there one.
4998 *
4999 * The caller must hold the rtnl_mutex.
5000 */
netdev_is_rx_handler_busy(struct net_device * dev)5001 bool netdev_is_rx_handler_busy(struct net_device *dev)
5002 {
5003 ASSERT_RTNL();
5004 return dev && rtnl_dereference(dev->rx_handler);
5005 }
5006 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5007
5008 /**
5009 * netdev_rx_handler_register - register receive handler
5010 * @dev: device to register a handler for
5011 * @rx_handler: receive handler to register
5012 * @rx_handler_data: data pointer that is used by rx handler
5013 *
5014 * Register a receive handler for a device. This handler will then be
5015 * called from __netif_receive_skb. A negative errno code is returned
5016 * on a failure.
5017 *
5018 * The caller must hold the rtnl_mutex.
5019 *
5020 * For a general description of rx_handler, see enum rx_handler_result.
5021 */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)5022 int netdev_rx_handler_register(struct net_device *dev,
5023 rx_handler_func_t *rx_handler,
5024 void *rx_handler_data)
5025 {
5026 if (netdev_is_rx_handler_busy(dev))
5027 return -EBUSY;
5028
5029 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5030 return -EINVAL;
5031
5032 /* Note: rx_handler_data must be set before rx_handler */
5033 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5034 rcu_assign_pointer(dev->rx_handler, rx_handler);
5035
5036 return 0;
5037 }
5038 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5039
5040 /**
5041 * netdev_rx_handler_unregister - unregister receive handler
5042 * @dev: device to unregister a handler from
5043 *
5044 * Unregister a receive handler from a device.
5045 *
5046 * The caller must hold the rtnl_mutex.
5047 */
netdev_rx_handler_unregister(struct net_device * dev)5048 void netdev_rx_handler_unregister(struct net_device *dev)
5049 {
5050
5051 ASSERT_RTNL();
5052 RCU_INIT_POINTER(dev->rx_handler, NULL);
5053 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5054 * section has a guarantee to see a non NULL rx_handler_data
5055 * as well.
5056 */
5057 synchronize_net();
5058 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5059 }
5060 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5061
5062 /*
5063 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5064 * the special handling of PFMEMALLOC skbs.
5065 */
skb_pfmemalloc_protocol(struct sk_buff * skb)5066 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5067 {
5068 switch (skb->protocol) {
5069 case htons(ETH_P_ARP):
5070 case htons(ETH_P_IP):
5071 case htons(ETH_P_IPV6):
5072 case htons(ETH_P_8021Q):
5073 case htons(ETH_P_8021AD):
5074 return true;
5075 default:
5076 return false;
5077 }
5078 }
5079
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)5080 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5081 int *ret, struct net_device *orig_dev)
5082 {
5083 if (nf_hook_ingress_active(skb)) {
5084 int ingress_retval;
5085
5086 if (*pt_prev) {
5087 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5088 *pt_prev = NULL;
5089 }
5090
5091 rcu_read_lock();
5092 ingress_retval = nf_hook_ingress(skb);
5093 rcu_read_unlock();
5094 return ingress_retval;
5095 }
5096 return 0;
5097 }
5098
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)5099 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5100 struct packet_type **ppt_prev)
5101 {
5102 struct packet_type *ptype, *pt_prev;
5103 rx_handler_func_t *rx_handler;
5104 struct sk_buff *skb = *pskb;
5105 struct net_device *orig_dev;
5106 bool deliver_exact = false;
5107 int ret = NET_RX_DROP;
5108 __be16 type;
5109
5110 net_timestamp_check(!netdev_tstamp_prequeue, skb);
5111
5112 trace_netif_receive_skb(skb);
5113
5114 orig_dev = skb->dev;
5115
5116 skb_reset_network_header(skb);
5117 if (!skb_transport_header_was_set(skb))
5118 skb_reset_transport_header(skb);
5119 skb_reset_mac_len(skb);
5120
5121 pt_prev = NULL;
5122
5123 another_round:
5124 skb->skb_iif = skb->dev->ifindex;
5125
5126 __this_cpu_inc(softnet_data.processed);
5127
5128 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5129 int ret2;
5130
5131 preempt_disable();
5132 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5133 preempt_enable();
5134
5135 if (ret2 != XDP_PASS) {
5136 ret = NET_RX_DROP;
5137 goto out;
5138 }
5139 skb_reset_mac_len(skb);
5140 }
5141
5142 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5143 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5144 skb = skb_vlan_untag(skb);
5145 if (unlikely(!skb))
5146 goto out;
5147 }
5148
5149 if (skb_skip_tc_classify(skb))
5150 goto skip_classify;
5151
5152 if (pfmemalloc)
5153 goto skip_taps;
5154
5155 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5156 if (pt_prev)
5157 ret = deliver_skb(skb, pt_prev, orig_dev);
5158 pt_prev = ptype;
5159 }
5160
5161 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5162 if (pt_prev)
5163 ret = deliver_skb(skb, pt_prev, orig_dev);
5164 pt_prev = ptype;
5165 }
5166
5167 skip_taps:
5168 #ifdef CONFIG_NET_INGRESS
5169 if (static_branch_unlikely(&ingress_needed_key)) {
5170 bool another = false;
5171
5172 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5173 &another);
5174 if (another)
5175 goto another_round;
5176 if (!skb)
5177 goto out;
5178
5179 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5180 goto out;
5181 }
5182 #endif
5183 skb_reset_redirect(skb);
5184 skip_classify:
5185 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5186 goto drop;
5187
5188 if (skb_vlan_tag_present(skb)) {
5189 if (pt_prev) {
5190 ret = deliver_skb(skb, pt_prev, orig_dev);
5191 pt_prev = NULL;
5192 }
5193 if (vlan_do_receive(&skb))
5194 goto another_round;
5195 else if (unlikely(!skb))
5196 goto out;
5197 }
5198
5199 rx_handler = rcu_dereference(skb->dev->rx_handler);
5200 if (rx_handler) {
5201 if (pt_prev) {
5202 ret = deliver_skb(skb, pt_prev, orig_dev);
5203 pt_prev = NULL;
5204 }
5205 switch (rx_handler(&skb)) {
5206 case RX_HANDLER_CONSUMED:
5207 ret = NET_RX_SUCCESS;
5208 goto out;
5209 case RX_HANDLER_ANOTHER:
5210 goto another_round;
5211 case RX_HANDLER_EXACT:
5212 deliver_exact = true;
5213 case RX_HANDLER_PASS:
5214 break;
5215 default:
5216 BUG();
5217 }
5218 }
5219
5220 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5221 check_vlan_id:
5222 if (skb_vlan_tag_get_id(skb)) {
5223 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5224 * find vlan device.
5225 */
5226 skb->pkt_type = PACKET_OTHERHOST;
5227 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5228 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5229 /* Outer header is 802.1P with vlan 0, inner header is
5230 * 802.1Q or 802.1AD and vlan_do_receive() above could
5231 * not find vlan dev for vlan id 0.
5232 */
5233 __vlan_hwaccel_clear_tag(skb);
5234 skb = skb_vlan_untag(skb);
5235 if (unlikely(!skb))
5236 goto out;
5237 if (vlan_do_receive(&skb))
5238 /* After stripping off 802.1P header with vlan 0
5239 * vlan dev is found for inner header.
5240 */
5241 goto another_round;
5242 else if (unlikely(!skb))
5243 goto out;
5244 else
5245 /* We have stripped outer 802.1P vlan 0 header.
5246 * But could not find vlan dev.
5247 * check again for vlan id to set OTHERHOST.
5248 */
5249 goto check_vlan_id;
5250 }
5251 /* Note: we might in the future use prio bits
5252 * and set skb->priority like in vlan_do_receive()
5253 * For the time being, just ignore Priority Code Point
5254 */
5255 __vlan_hwaccel_clear_tag(skb);
5256 }
5257
5258 type = skb->protocol;
5259
5260 /* deliver only exact match when indicated */
5261 if (likely(!deliver_exact)) {
5262 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5263 &ptype_base[ntohs(type) &
5264 PTYPE_HASH_MASK]);
5265 }
5266
5267 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5268 &orig_dev->ptype_specific);
5269
5270 if (unlikely(skb->dev != orig_dev)) {
5271 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5272 &skb->dev->ptype_specific);
5273 }
5274
5275 if (pt_prev) {
5276 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5277 goto drop;
5278 *ppt_prev = pt_prev;
5279 } else {
5280 drop:
5281 if (!deliver_exact)
5282 atomic_long_inc(&skb->dev->rx_dropped);
5283 else
5284 atomic_long_inc(&skb->dev->rx_nohandler);
5285 kfree_skb(skb);
5286 /* Jamal, now you will not able to escape explaining
5287 * me how you were going to use this. :-)
5288 */
5289 ret = NET_RX_DROP;
5290 }
5291
5292 out:
5293 /* The invariant here is that if *ppt_prev is not NULL
5294 * then skb should also be non-NULL.
5295 *
5296 * Apparently *ppt_prev assignment above holds this invariant due to
5297 * skb dereferencing near it.
5298 */
5299 *pskb = skb;
5300 return ret;
5301 }
5302
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)5303 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5304 {
5305 struct net_device *orig_dev = skb->dev;
5306 struct packet_type *pt_prev = NULL;
5307 int ret;
5308
5309 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5310 if (pt_prev)
5311 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5312 skb->dev, pt_prev, orig_dev);
5313 return ret;
5314 }
5315
5316 /**
5317 * netif_receive_skb_core - special purpose version of netif_receive_skb
5318 * @skb: buffer to process
5319 *
5320 * More direct receive version of netif_receive_skb(). It should
5321 * only be used by callers that have a need to skip RPS and Generic XDP.
5322 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5323 *
5324 * This function may only be called from softirq context and interrupts
5325 * should be enabled.
5326 *
5327 * Return values (usually ignored):
5328 * NET_RX_SUCCESS: no congestion
5329 * NET_RX_DROP: packet was dropped
5330 */
netif_receive_skb_core(struct sk_buff * skb)5331 int netif_receive_skb_core(struct sk_buff *skb)
5332 {
5333 int ret;
5334
5335 rcu_read_lock();
5336 ret = __netif_receive_skb_one_core(skb, false);
5337 rcu_read_unlock();
5338
5339 return ret;
5340 }
5341 EXPORT_SYMBOL(netif_receive_skb_core);
5342
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)5343 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5344 struct packet_type *pt_prev,
5345 struct net_device *orig_dev)
5346 {
5347 struct sk_buff *skb, *next;
5348
5349 if (!pt_prev)
5350 return;
5351 if (list_empty(head))
5352 return;
5353 if (pt_prev->list_func != NULL)
5354 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5355 ip_list_rcv, head, pt_prev, orig_dev);
5356 else
5357 list_for_each_entry_safe(skb, next, head, list) {
5358 skb_list_del_init(skb);
5359 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5360 }
5361 }
5362
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)5363 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5364 {
5365 /* Fast-path assumptions:
5366 * - There is no RX handler.
5367 * - Only one packet_type matches.
5368 * If either of these fails, we will end up doing some per-packet
5369 * processing in-line, then handling the 'last ptype' for the whole
5370 * sublist. This can't cause out-of-order delivery to any single ptype,
5371 * because the 'last ptype' must be constant across the sublist, and all
5372 * other ptypes are handled per-packet.
5373 */
5374 /* Current (common) ptype of sublist */
5375 struct packet_type *pt_curr = NULL;
5376 /* Current (common) orig_dev of sublist */
5377 struct net_device *od_curr = NULL;
5378 struct list_head sublist;
5379 struct sk_buff *skb, *next;
5380
5381 INIT_LIST_HEAD(&sublist);
5382 list_for_each_entry_safe(skb, next, head, list) {
5383 struct net_device *orig_dev = skb->dev;
5384 struct packet_type *pt_prev = NULL;
5385
5386 skb_list_del_init(skb);
5387 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5388 if (!pt_prev)
5389 continue;
5390 if (pt_curr != pt_prev || od_curr != orig_dev) {
5391 /* dispatch old sublist */
5392 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5393 /* start new sublist */
5394 INIT_LIST_HEAD(&sublist);
5395 pt_curr = pt_prev;
5396 od_curr = orig_dev;
5397 }
5398 list_add_tail(&skb->list, &sublist);
5399 }
5400
5401 /* dispatch final sublist */
5402 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5403 }
5404
__netif_receive_skb(struct sk_buff * skb)5405 static int __netif_receive_skb(struct sk_buff *skb)
5406 {
5407 int ret;
5408
5409 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5410 unsigned int noreclaim_flag;
5411
5412 /*
5413 * PFMEMALLOC skbs are special, they should
5414 * - be delivered to SOCK_MEMALLOC sockets only
5415 * - stay away from userspace
5416 * - have bounded memory usage
5417 *
5418 * Use PF_MEMALLOC as this saves us from propagating the allocation
5419 * context down to all allocation sites.
5420 */
5421 noreclaim_flag = memalloc_noreclaim_save();
5422 ret = __netif_receive_skb_one_core(skb, true);
5423 memalloc_noreclaim_restore(noreclaim_flag);
5424 } else
5425 ret = __netif_receive_skb_one_core(skb, false);
5426
5427 return ret;
5428 }
5429
__netif_receive_skb_list(struct list_head * head)5430 static void __netif_receive_skb_list(struct list_head *head)
5431 {
5432 unsigned long noreclaim_flag = 0;
5433 struct sk_buff *skb, *next;
5434 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5435
5436 list_for_each_entry_safe(skb, next, head, list) {
5437 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5438 struct list_head sublist;
5439
5440 /* Handle the previous sublist */
5441 list_cut_before(&sublist, head, &skb->list);
5442 if (!list_empty(&sublist))
5443 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5444 pfmemalloc = !pfmemalloc;
5445 /* See comments in __netif_receive_skb */
5446 if (pfmemalloc)
5447 noreclaim_flag = memalloc_noreclaim_save();
5448 else
5449 memalloc_noreclaim_restore(noreclaim_flag);
5450 }
5451 }
5452 /* Handle the remaining sublist */
5453 if (!list_empty(head))
5454 __netif_receive_skb_list_core(head, pfmemalloc);
5455 /* Restore pflags */
5456 if (pfmemalloc)
5457 memalloc_noreclaim_restore(noreclaim_flag);
5458 }
5459
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)5460 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5461 {
5462 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5463 struct bpf_prog *new = xdp->prog;
5464 int ret = 0;
5465
5466 if (new) {
5467 u32 i;
5468
5469 mutex_lock(&new->aux->used_maps_mutex);
5470
5471 /* generic XDP does not work with DEVMAPs that can
5472 * have a bpf_prog installed on an entry
5473 */
5474 for (i = 0; i < new->aux->used_map_cnt; i++) {
5475 if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5476 cpu_map_prog_allowed(new->aux->used_maps[i])) {
5477 mutex_unlock(&new->aux->used_maps_mutex);
5478 return -EINVAL;
5479 }
5480 }
5481
5482 mutex_unlock(&new->aux->used_maps_mutex);
5483 }
5484
5485 switch (xdp->command) {
5486 case XDP_SETUP_PROG:
5487 rcu_assign_pointer(dev->xdp_prog, new);
5488 if (old)
5489 bpf_prog_put(old);
5490
5491 if (old && !new) {
5492 static_branch_dec(&generic_xdp_needed_key);
5493 } else if (new && !old) {
5494 static_branch_inc(&generic_xdp_needed_key);
5495 dev_disable_lro(dev);
5496 dev_disable_gro_hw(dev);
5497 }
5498 break;
5499
5500 default:
5501 ret = -EINVAL;
5502 break;
5503 }
5504
5505 return ret;
5506 }
5507
netif_receive_skb_internal(struct sk_buff * skb)5508 static int netif_receive_skb_internal(struct sk_buff *skb)
5509 {
5510 int ret;
5511
5512 net_timestamp_check(netdev_tstamp_prequeue, skb);
5513
5514 if (skb_defer_rx_timestamp(skb))
5515 return NET_RX_SUCCESS;
5516
5517 rcu_read_lock();
5518 #ifdef CONFIG_RPS
5519 if (static_branch_unlikely(&rps_needed)) {
5520 struct rps_dev_flow voidflow, *rflow = &voidflow;
5521 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5522
5523 if (cpu >= 0) {
5524 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5525 rcu_read_unlock();
5526 return ret;
5527 }
5528 }
5529 #endif
5530 ret = __netif_receive_skb(skb);
5531 rcu_read_unlock();
5532 return ret;
5533 }
5534
netif_receive_skb_list_internal(struct list_head * head)5535 static void netif_receive_skb_list_internal(struct list_head *head)
5536 {
5537 struct sk_buff *skb, *next;
5538 struct list_head sublist;
5539
5540 INIT_LIST_HEAD(&sublist);
5541 list_for_each_entry_safe(skb, next, head, list) {
5542 net_timestamp_check(netdev_tstamp_prequeue, skb);
5543 skb_list_del_init(skb);
5544 if (!skb_defer_rx_timestamp(skb))
5545 list_add_tail(&skb->list, &sublist);
5546 }
5547 list_splice_init(&sublist, head);
5548
5549 rcu_read_lock();
5550 #ifdef CONFIG_RPS
5551 if (static_branch_unlikely(&rps_needed)) {
5552 list_for_each_entry_safe(skb, next, head, list) {
5553 struct rps_dev_flow voidflow, *rflow = &voidflow;
5554 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5555
5556 if (cpu >= 0) {
5557 /* Will be handled, remove from list */
5558 skb_list_del_init(skb);
5559 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5560 }
5561 }
5562 }
5563 #endif
5564 __netif_receive_skb_list(head);
5565 rcu_read_unlock();
5566 }
5567
5568 /**
5569 * netif_receive_skb - process receive buffer from network
5570 * @skb: buffer to process
5571 *
5572 * netif_receive_skb() is the main receive data processing function.
5573 * It always succeeds. The buffer may be dropped during processing
5574 * for congestion control or by the protocol layers.
5575 *
5576 * This function may only be called from softirq context and interrupts
5577 * should be enabled.
5578 *
5579 * Return values (usually ignored):
5580 * NET_RX_SUCCESS: no congestion
5581 * NET_RX_DROP: packet was dropped
5582 */
netif_receive_skb(struct sk_buff * skb)5583 int netif_receive_skb(struct sk_buff *skb)
5584 {
5585 int ret;
5586
5587 trace_netif_receive_skb_entry(skb);
5588
5589 ret = netif_receive_skb_internal(skb);
5590 trace_netif_receive_skb_exit(ret);
5591
5592 return ret;
5593 }
5594 EXPORT_SYMBOL(netif_receive_skb);
5595
5596 /**
5597 * netif_receive_skb_list - process many receive buffers from network
5598 * @head: list of skbs to process.
5599 *
5600 * Since return value of netif_receive_skb() is normally ignored, and
5601 * wouldn't be meaningful for a list, this function returns void.
5602 *
5603 * This function may only be called from softirq context and interrupts
5604 * should be enabled.
5605 */
netif_receive_skb_list(struct list_head * head)5606 void netif_receive_skb_list(struct list_head *head)
5607 {
5608 struct sk_buff *skb;
5609
5610 if (list_empty(head))
5611 return;
5612 if (trace_netif_receive_skb_list_entry_enabled()) {
5613 list_for_each_entry(skb, head, list)
5614 trace_netif_receive_skb_list_entry(skb);
5615 }
5616 netif_receive_skb_list_internal(head);
5617 trace_netif_receive_skb_list_exit(0);
5618 }
5619 EXPORT_SYMBOL(netif_receive_skb_list);
5620
5621 static DEFINE_PER_CPU(struct work_struct, flush_works);
5622
5623 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)5624 static void flush_backlog(struct work_struct *work)
5625 {
5626 struct sk_buff *skb, *tmp;
5627 struct softnet_data *sd;
5628
5629 local_bh_disable();
5630 sd = this_cpu_ptr(&softnet_data);
5631
5632 local_irq_disable();
5633 rps_lock(sd);
5634 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5635 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5636 __skb_unlink(skb, &sd->input_pkt_queue);
5637 dev_kfree_skb_irq(skb);
5638 input_queue_head_incr(sd);
5639 }
5640 }
5641 rps_unlock(sd);
5642 local_irq_enable();
5643
5644 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5645 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5646 __skb_unlink(skb, &sd->process_queue);
5647 kfree_skb(skb);
5648 input_queue_head_incr(sd);
5649 }
5650 }
5651 local_bh_enable();
5652 }
5653
flush_required(int cpu)5654 static bool flush_required(int cpu)
5655 {
5656 #if IS_ENABLED(CONFIG_RPS)
5657 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5658 bool do_flush;
5659
5660 local_irq_disable();
5661 rps_lock(sd);
5662
5663 /* as insertion into process_queue happens with the rps lock held,
5664 * process_queue access may race only with dequeue
5665 */
5666 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5667 !skb_queue_empty_lockless(&sd->process_queue);
5668 rps_unlock(sd);
5669 local_irq_enable();
5670
5671 return do_flush;
5672 #endif
5673 /* without RPS we can't safely check input_pkt_queue: during a
5674 * concurrent remote skb_queue_splice() we can detect as empty both
5675 * input_pkt_queue and process_queue even if the latter could end-up
5676 * containing a lot of packets.
5677 */
5678 return true;
5679 }
5680
flush_all_backlogs(void)5681 static void flush_all_backlogs(void)
5682 {
5683 static cpumask_t flush_cpus;
5684 unsigned int cpu;
5685
5686 /* since we are under rtnl lock protection we can use static data
5687 * for the cpumask and avoid allocating on stack the possibly
5688 * large mask
5689 */
5690 ASSERT_RTNL();
5691
5692 get_online_cpus();
5693
5694 cpumask_clear(&flush_cpus);
5695 for_each_online_cpu(cpu) {
5696 if (flush_required(cpu)) {
5697 queue_work_on(cpu, system_highpri_wq,
5698 per_cpu_ptr(&flush_works, cpu));
5699 cpumask_set_cpu(cpu, &flush_cpus);
5700 }
5701 }
5702
5703 /* we can have in flight packet[s] on the cpus we are not flushing,
5704 * synchronize_net() in rollback_registered_many() will take care of
5705 * them
5706 */
5707 for_each_cpu(cpu, &flush_cpus)
5708 flush_work(per_cpu_ptr(&flush_works, cpu));
5709
5710 put_online_cpus();
5711 }
5712
5713 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
gro_normal_list(struct napi_struct * napi)5714 static void gro_normal_list(struct napi_struct *napi)
5715 {
5716 if (!napi->rx_count)
5717 return;
5718 netif_receive_skb_list_internal(&napi->rx_list);
5719 INIT_LIST_HEAD(&napi->rx_list);
5720 napi->rx_count = 0;
5721 }
5722
5723 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5724 * pass the whole batch up to the stack.
5725 */
gro_normal_one(struct napi_struct * napi,struct sk_buff * skb)5726 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5727 {
5728 list_add_tail(&skb->list, &napi->rx_list);
5729 if (++napi->rx_count >= gro_normal_batch)
5730 gro_normal_list(napi);
5731 }
5732
5733 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5734 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
napi_gro_complete(struct napi_struct * napi,struct sk_buff * skb)5735 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5736 {
5737 struct packet_offload *ptype;
5738 __be16 type = skb->protocol;
5739 struct list_head *head = &offload_base;
5740 int err = -ENOENT;
5741
5742 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5743
5744 if (NAPI_GRO_CB(skb)->count == 1) {
5745 skb_shinfo(skb)->gso_size = 0;
5746 goto out;
5747 }
5748
5749 rcu_read_lock();
5750 list_for_each_entry_rcu(ptype, head, list) {
5751 if (ptype->type != type || !ptype->callbacks.gro_complete)
5752 continue;
5753
5754 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5755 ipv6_gro_complete, inet_gro_complete,
5756 skb, 0);
5757 break;
5758 }
5759 rcu_read_unlock();
5760
5761 if (err) {
5762 WARN_ON(&ptype->list == head);
5763 kfree_skb(skb);
5764 return NET_RX_SUCCESS;
5765 }
5766
5767 out:
5768 gro_normal_one(napi, skb);
5769 return NET_RX_SUCCESS;
5770 }
5771
__napi_gro_flush_chain(struct napi_struct * napi,u32 index,bool flush_old)5772 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5773 bool flush_old)
5774 {
5775 struct list_head *head = &napi->gro_hash[index].list;
5776 struct sk_buff *skb, *p;
5777
5778 list_for_each_entry_safe_reverse(skb, p, head, list) {
5779 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5780 return;
5781 skb_list_del_init(skb);
5782 napi_gro_complete(napi, skb);
5783 napi->gro_hash[index].count--;
5784 }
5785
5786 if (!napi->gro_hash[index].count)
5787 __clear_bit(index, &napi->gro_bitmask);
5788 }
5789
5790 /* napi->gro_hash[].list contains packets ordered by age.
5791 * youngest packets at the head of it.
5792 * Complete skbs in reverse order to reduce latencies.
5793 */
napi_gro_flush(struct napi_struct * napi,bool flush_old)5794 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5795 {
5796 unsigned long bitmask = napi->gro_bitmask;
5797 unsigned int i, base = ~0U;
5798
5799 while ((i = ffs(bitmask)) != 0) {
5800 bitmask >>= i;
5801 base += i;
5802 __napi_gro_flush_chain(napi, base, flush_old);
5803 }
5804 }
5805 EXPORT_SYMBOL(napi_gro_flush);
5806
gro_list_prepare(struct napi_struct * napi,struct sk_buff * skb)5807 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5808 struct sk_buff *skb)
5809 {
5810 unsigned int maclen = skb->dev->hard_header_len;
5811 u32 hash = skb_get_hash_raw(skb);
5812 struct list_head *head;
5813 struct sk_buff *p;
5814
5815 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5816 list_for_each_entry(p, head, list) {
5817 unsigned long diffs;
5818
5819 NAPI_GRO_CB(p)->flush = 0;
5820
5821 if (hash != skb_get_hash_raw(p)) {
5822 NAPI_GRO_CB(p)->same_flow = 0;
5823 continue;
5824 }
5825
5826 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5827 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5828 if (skb_vlan_tag_present(p))
5829 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5830 diffs |= skb_metadata_dst_cmp(p, skb);
5831 diffs |= skb_metadata_differs(p, skb);
5832 if (maclen == ETH_HLEN)
5833 diffs |= compare_ether_header(skb_mac_header(p),
5834 skb_mac_header(skb));
5835 else if (!diffs)
5836 diffs = memcmp(skb_mac_header(p),
5837 skb_mac_header(skb),
5838 maclen);
5839 NAPI_GRO_CB(p)->same_flow = !diffs;
5840 }
5841
5842 return head;
5843 }
5844
skb_gro_reset_offset(struct sk_buff * skb)5845 static void skb_gro_reset_offset(struct sk_buff *skb)
5846 {
5847 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5848 const skb_frag_t *frag0 = &pinfo->frags[0];
5849
5850 NAPI_GRO_CB(skb)->data_offset = 0;
5851 NAPI_GRO_CB(skb)->frag0 = NULL;
5852 NAPI_GRO_CB(skb)->frag0_len = 0;
5853
5854 if (!skb_headlen(skb) && pinfo->nr_frags &&
5855 !PageHighMem(skb_frag_page(frag0))) {
5856 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5857 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5858 skb_frag_size(frag0),
5859 skb->end - skb->tail);
5860 }
5861 }
5862
gro_pull_from_frag0(struct sk_buff * skb,int grow)5863 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5864 {
5865 struct skb_shared_info *pinfo = skb_shinfo(skb);
5866
5867 BUG_ON(skb->end - skb->tail < grow);
5868
5869 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5870
5871 skb->data_len -= grow;
5872 skb->tail += grow;
5873
5874 skb_frag_off_add(&pinfo->frags[0], grow);
5875 skb_frag_size_sub(&pinfo->frags[0], grow);
5876
5877 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5878 skb_frag_unref(skb, 0);
5879 memmove(pinfo->frags, pinfo->frags + 1,
5880 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5881 }
5882 }
5883
gro_flush_oldest(struct napi_struct * napi,struct list_head * head)5884 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5885 {
5886 struct sk_buff *oldest;
5887
5888 oldest = list_last_entry(head, struct sk_buff, list);
5889
5890 /* We are called with head length >= MAX_GRO_SKBS, so this is
5891 * impossible.
5892 */
5893 if (WARN_ON_ONCE(!oldest))
5894 return;
5895
5896 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5897 * SKB to the chain.
5898 */
5899 skb_list_del_init(oldest);
5900 napi_gro_complete(napi, oldest);
5901 }
5902
5903 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5904 struct sk_buff *));
5905 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5906 struct sk_buff *));
dev_gro_receive(struct napi_struct * napi,struct sk_buff * skb)5907 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5908 {
5909 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5910 struct list_head *head = &offload_base;
5911 struct packet_offload *ptype;
5912 __be16 type = skb->protocol;
5913 struct list_head *gro_head;
5914 struct sk_buff *pp = NULL;
5915 enum gro_result ret;
5916 int same_flow;
5917 int grow;
5918
5919 if (netif_elide_gro(skb->dev))
5920 goto normal;
5921
5922 gro_head = gro_list_prepare(napi, skb);
5923
5924 rcu_read_lock();
5925 list_for_each_entry_rcu(ptype, head, list) {
5926 if (ptype->type != type || !ptype->callbacks.gro_receive)
5927 continue;
5928
5929 skb_set_network_header(skb, skb_gro_offset(skb));
5930 skb_reset_mac_len(skb);
5931 NAPI_GRO_CB(skb)->same_flow = 0;
5932 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5933 NAPI_GRO_CB(skb)->free = 0;
5934 NAPI_GRO_CB(skb)->encap_mark = 0;
5935 NAPI_GRO_CB(skb)->recursion_counter = 0;
5936 NAPI_GRO_CB(skb)->is_fou = 0;
5937 NAPI_GRO_CB(skb)->is_atomic = 1;
5938 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5939
5940 /* Setup for GRO checksum validation */
5941 switch (skb->ip_summed) {
5942 case CHECKSUM_COMPLETE:
5943 NAPI_GRO_CB(skb)->csum = skb->csum;
5944 NAPI_GRO_CB(skb)->csum_valid = 1;
5945 NAPI_GRO_CB(skb)->csum_cnt = 0;
5946 break;
5947 case CHECKSUM_UNNECESSARY:
5948 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5949 NAPI_GRO_CB(skb)->csum_valid = 0;
5950 break;
5951 default:
5952 NAPI_GRO_CB(skb)->csum_cnt = 0;
5953 NAPI_GRO_CB(skb)->csum_valid = 0;
5954 }
5955
5956 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5957 ipv6_gro_receive, inet_gro_receive,
5958 gro_head, skb);
5959 break;
5960 }
5961 rcu_read_unlock();
5962
5963 if (&ptype->list == head)
5964 goto normal;
5965
5966 if (PTR_ERR(pp) == -EINPROGRESS) {
5967 ret = GRO_CONSUMED;
5968 goto ok;
5969 }
5970
5971 same_flow = NAPI_GRO_CB(skb)->same_flow;
5972 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5973
5974 if (pp) {
5975 skb_list_del_init(pp);
5976 napi_gro_complete(napi, pp);
5977 napi->gro_hash[hash].count--;
5978 }
5979
5980 if (same_flow)
5981 goto ok;
5982
5983 if (NAPI_GRO_CB(skb)->flush)
5984 goto normal;
5985
5986 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5987 gro_flush_oldest(napi, gro_head);
5988 } else {
5989 napi->gro_hash[hash].count++;
5990 }
5991 NAPI_GRO_CB(skb)->count = 1;
5992 NAPI_GRO_CB(skb)->age = jiffies;
5993 NAPI_GRO_CB(skb)->last = skb;
5994 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5995 list_add(&skb->list, gro_head);
5996 ret = GRO_HELD;
5997
5998 pull:
5999 grow = skb_gro_offset(skb) - skb_headlen(skb);
6000 if (grow > 0)
6001 gro_pull_from_frag0(skb, grow);
6002 ok:
6003 if (napi->gro_hash[hash].count) {
6004 if (!test_bit(hash, &napi->gro_bitmask))
6005 __set_bit(hash, &napi->gro_bitmask);
6006 } else if (test_bit(hash, &napi->gro_bitmask)) {
6007 __clear_bit(hash, &napi->gro_bitmask);
6008 }
6009
6010 return ret;
6011
6012 normal:
6013 ret = GRO_NORMAL;
6014 goto pull;
6015 }
6016
gro_find_receive_by_type(__be16 type)6017 struct packet_offload *gro_find_receive_by_type(__be16 type)
6018 {
6019 struct list_head *offload_head = &offload_base;
6020 struct packet_offload *ptype;
6021
6022 list_for_each_entry_rcu(ptype, offload_head, list) {
6023 if (ptype->type != type || !ptype->callbacks.gro_receive)
6024 continue;
6025 return ptype;
6026 }
6027 return NULL;
6028 }
6029 EXPORT_SYMBOL(gro_find_receive_by_type);
6030
gro_find_complete_by_type(__be16 type)6031 struct packet_offload *gro_find_complete_by_type(__be16 type)
6032 {
6033 struct list_head *offload_head = &offload_base;
6034 struct packet_offload *ptype;
6035
6036 list_for_each_entry_rcu(ptype, offload_head, list) {
6037 if (ptype->type != type || !ptype->callbacks.gro_complete)
6038 continue;
6039 return ptype;
6040 }
6041 return NULL;
6042 }
6043 EXPORT_SYMBOL(gro_find_complete_by_type);
6044
napi_skb_free_stolen_head(struct sk_buff * skb)6045 static void napi_skb_free_stolen_head(struct sk_buff *skb)
6046 {
6047 skb_dst_drop(skb);
6048 skb_ext_put(skb);
6049 kmem_cache_free(skbuff_head_cache, skb);
6050 }
6051
napi_skb_finish(struct napi_struct * napi,struct sk_buff * skb,gro_result_t ret)6052 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6053 struct sk_buff *skb,
6054 gro_result_t ret)
6055 {
6056 switch (ret) {
6057 case GRO_NORMAL:
6058 gro_normal_one(napi, skb);
6059 break;
6060
6061 case GRO_DROP:
6062 kfree_skb(skb);
6063 break;
6064
6065 case GRO_MERGED_FREE:
6066 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6067 napi_skb_free_stolen_head(skb);
6068 else
6069 __kfree_skb(skb);
6070 break;
6071
6072 case GRO_HELD:
6073 case GRO_MERGED:
6074 case GRO_CONSUMED:
6075 break;
6076 }
6077
6078 return ret;
6079 }
6080
napi_gro_receive(struct napi_struct * napi,struct sk_buff * skb)6081 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6082 {
6083 gro_result_t ret;
6084
6085 skb_mark_napi_id(skb, napi);
6086 trace_napi_gro_receive_entry(skb);
6087
6088 skb_gro_reset_offset(skb);
6089
6090 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6091 trace_napi_gro_receive_exit(ret);
6092
6093 return ret;
6094 }
6095 EXPORT_SYMBOL(napi_gro_receive);
6096
napi_reuse_skb(struct napi_struct * napi,struct sk_buff * skb)6097 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6098 {
6099 if (unlikely(skb->pfmemalloc)) {
6100 consume_skb(skb);
6101 return;
6102 }
6103 __skb_pull(skb, skb_headlen(skb));
6104 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6105 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6106 __vlan_hwaccel_clear_tag(skb);
6107 skb->dev = napi->dev;
6108 skb->skb_iif = 0;
6109
6110 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6111 skb->pkt_type = PACKET_HOST;
6112
6113 skb->encapsulation = 0;
6114 skb_shinfo(skb)->gso_type = 0;
6115 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6116 skb_ext_reset(skb);
6117
6118 napi->skb = skb;
6119 }
6120
napi_get_frags(struct napi_struct * napi)6121 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6122 {
6123 struct sk_buff *skb = napi->skb;
6124
6125 if (!skb) {
6126 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6127 if (skb) {
6128 napi->skb = skb;
6129 skb_mark_napi_id(skb, napi);
6130 }
6131 }
6132 return skb;
6133 }
6134 EXPORT_SYMBOL(napi_get_frags);
6135
napi_frags_finish(struct napi_struct * napi,struct sk_buff * skb,gro_result_t ret)6136 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6137 struct sk_buff *skb,
6138 gro_result_t ret)
6139 {
6140 switch (ret) {
6141 case GRO_NORMAL:
6142 case GRO_HELD:
6143 __skb_push(skb, ETH_HLEN);
6144 skb->protocol = eth_type_trans(skb, skb->dev);
6145 if (ret == GRO_NORMAL)
6146 gro_normal_one(napi, skb);
6147 break;
6148
6149 case GRO_DROP:
6150 napi_reuse_skb(napi, skb);
6151 break;
6152
6153 case GRO_MERGED_FREE:
6154 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6155 napi_skb_free_stolen_head(skb);
6156 else
6157 napi_reuse_skb(napi, skb);
6158 break;
6159
6160 case GRO_MERGED:
6161 case GRO_CONSUMED:
6162 break;
6163 }
6164
6165 return ret;
6166 }
6167
6168 /* Upper GRO stack assumes network header starts at gro_offset=0
6169 * Drivers could call both napi_gro_frags() and napi_gro_receive()
6170 * We copy ethernet header into skb->data to have a common layout.
6171 */
napi_frags_skb(struct napi_struct * napi)6172 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6173 {
6174 struct sk_buff *skb = napi->skb;
6175 const struct ethhdr *eth;
6176 unsigned int hlen = sizeof(*eth);
6177
6178 napi->skb = NULL;
6179
6180 skb_reset_mac_header(skb);
6181 skb_gro_reset_offset(skb);
6182
6183 if (unlikely(skb_gro_header_hard(skb, hlen))) {
6184 eth = skb_gro_header_slow(skb, hlen, 0);
6185 if (unlikely(!eth)) {
6186 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6187 __func__, napi->dev->name);
6188 napi_reuse_skb(napi, skb);
6189 return NULL;
6190 }
6191 } else {
6192 eth = (const struct ethhdr *)skb->data;
6193 gro_pull_from_frag0(skb, hlen);
6194 NAPI_GRO_CB(skb)->frag0 += hlen;
6195 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6196 }
6197 __skb_pull(skb, hlen);
6198
6199 /*
6200 * This works because the only protocols we care about don't require
6201 * special handling.
6202 * We'll fix it up properly in napi_frags_finish()
6203 */
6204 skb->protocol = eth->h_proto;
6205
6206 return skb;
6207 }
6208
napi_gro_frags(struct napi_struct * napi)6209 gro_result_t napi_gro_frags(struct napi_struct *napi)
6210 {
6211 gro_result_t ret;
6212 struct sk_buff *skb = napi_frags_skb(napi);
6213
6214 if (!skb)
6215 return GRO_DROP;
6216
6217 trace_napi_gro_frags_entry(skb);
6218
6219 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6220 trace_napi_gro_frags_exit(ret);
6221
6222 return ret;
6223 }
6224 EXPORT_SYMBOL(napi_gro_frags);
6225
6226 /* Compute the checksum from gro_offset and return the folded value
6227 * after adding in any pseudo checksum.
6228 */
__skb_gro_checksum_complete(struct sk_buff * skb)6229 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6230 {
6231 __wsum wsum;
6232 __sum16 sum;
6233
6234 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6235
6236 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6237 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6238 /* See comments in __skb_checksum_complete(). */
6239 if (likely(!sum)) {
6240 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6241 !skb->csum_complete_sw)
6242 netdev_rx_csum_fault(skb->dev, skb);
6243 }
6244
6245 NAPI_GRO_CB(skb)->csum = wsum;
6246 NAPI_GRO_CB(skb)->csum_valid = 1;
6247
6248 return sum;
6249 }
6250 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6251
net_rps_send_ipi(struct softnet_data * remsd)6252 static void net_rps_send_ipi(struct softnet_data *remsd)
6253 {
6254 #ifdef CONFIG_RPS
6255 while (remsd) {
6256 struct softnet_data *next = remsd->rps_ipi_next;
6257
6258 if (cpu_online(remsd->cpu))
6259 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6260 remsd = next;
6261 }
6262 #endif
6263 }
6264
6265 /*
6266 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6267 * Note: called with local irq disabled, but exits with local irq enabled.
6268 */
net_rps_action_and_irq_enable(struct softnet_data * sd)6269 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6270 {
6271 #ifdef CONFIG_RPS
6272 struct softnet_data *remsd = sd->rps_ipi_list;
6273
6274 if (remsd) {
6275 sd->rps_ipi_list = NULL;
6276
6277 local_irq_enable();
6278
6279 /* Send pending IPI's to kick RPS processing on remote cpus. */
6280 net_rps_send_ipi(remsd);
6281 } else
6282 #endif
6283 local_irq_enable();
6284 }
6285
sd_has_rps_ipi_waiting(struct softnet_data * sd)6286 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6287 {
6288 #ifdef CONFIG_RPS
6289 return sd->rps_ipi_list != NULL;
6290 #else
6291 return false;
6292 #endif
6293 }
6294
process_backlog(struct napi_struct * napi,int quota)6295 static int process_backlog(struct napi_struct *napi, int quota)
6296 {
6297 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6298 bool again = true;
6299 int work = 0;
6300
6301 /* Check if we have pending ipi, its better to send them now,
6302 * not waiting net_rx_action() end.
6303 */
6304 if (sd_has_rps_ipi_waiting(sd)) {
6305 local_irq_disable();
6306 net_rps_action_and_irq_enable(sd);
6307 }
6308
6309 napi->weight = dev_rx_weight;
6310 while (again) {
6311 struct sk_buff *skb;
6312
6313 while ((skb = __skb_dequeue(&sd->process_queue))) {
6314 rcu_read_lock();
6315 __netif_receive_skb(skb);
6316 rcu_read_unlock();
6317 input_queue_head_incr(sd);
6318 if (++work >= quota)
6319 return work;
6320
6321 }
6322
6323 local_irq_disable();
6324 rps_lock(sd);
6325 if (skb_queue_empty(&sd->input_pkt_queue)) {
6326 /*
6327 * Inline a custom version of __napi_complete().
6328 * only current cpu owns and manipulates this napi,
6329 * and NAPI_STATE_SCHED is the only possible flag set
6330 * on backlog.
6331 * We can use a plain write instead of clear_bit(),
6332 * and we dont need an smp_mb() memory barrier.
6333 */
6334 napi->state = 0;
6335 again = false;
6336 } else {
6337 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6338 &sd->process_queue);
6339 }
6340 rps_unlock(sd);
6341 local_irq_enable();
6342 }
6343
6344 return work;
6345 }
6346
6347 /**
6348 * __napi_schedule - schedule for receive
6349 * @n: entry to schedule
6350 *
6351 * The entry's receive function will be scheduled to run.
6352 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6353 */
__napi_schedule(struct napi_struct * n)6354 void __napi_schedule(struct napi_struct *n)
6355 {
6356 unsigned long flags;
6357
6358 local_irq_save(flags);
6359 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6360 local_irq_restore(flags);
6361 }
6362 EXPORT_SYMBOL(__napi_schedule);
6363
6364 /**
6365 * napi_schedule_prep - check if napi can be scheduled
6366 * @n: napi context
6367 *
6368 * Test if NAPI routine is already running, and if not mark
6369 * it as running. This is used as a condition variable to
6370 * insure only one NAPI poll instance runs. We also make
6371 * sure there is no pending NAPI disable.
6372 */
napi_schedule_prep(struct napi_struct * n)6373 bool napi_schedule_prep(struct napi_struct *n)
6374 {
6375 unsigned long val, new;
6376
6377 do {
6378 val = READ_ONCE(n->state);
6379 if (unlikely(val & NAPIF_STATE_DISABLE))
6380 return false;
6381 new = val | NAPIF_STATE_SCHED;
6382
6383 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6384 * This was suggested by Alexander Duyck, as compiler
6385 * emits better code than :
6386 * if (val & NAPIF_STATE_SCHED)
6387 * new |= NAPIF_STATE_MISSED;
6388 */
6389 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6390 NAPIF_STATE_MISSED;
6391 } while (cmpxchg(&n->state, val, new) != val);
6392
6393 return !(val & NAPIF_STATE_SCHED);
6394 }
6395 EXPORT_SYMBOL(napi_schedule_prep);
6396
6397 /**
6398 * __napi_schedule_irqoff - schedule for receive
6399 * @n: entry to schedule
6400 *
6401 * Variant of __napi_schedule() assuming hard irqs are masked
6402 */
__napi_schedule_irqoff(struct napi_struct * n)6403 void __napi_schedule_irqoff(struct napi_struct *n)
6404 {
6405 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6406 }
6407 EXPORT_SYMBOL(__napi_schedule_irqoff);
6408
napi_complete_done(struct napi_struct * n,int work_done)6409 bool napi_complete_done(struct napi_struct *n, int work_done)
6410 {
6411 unsigned long flags, val, new, timeout = 0;
6412 bool ret = true;
6413
6414 /*
6415 * 1) Don't let napi dequeue from the cpu poll list
6416 * just in case its running on a different cpu.
6417 * 2) If we are busy polling, do nothing here, we have
6418 * the guarantee we will be called later.
6419 */
6420 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6421 NAPIF_STATE_IN_BUSY_POLL)))
6422 return false;
6423
6424 if (work_done) {
6425 if (n->gro_bitmask)
6426 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6427 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6428 }
6429 if (n->defer_hard_irqs_count > 0) {
6430 n->defer_hard_irqs_count--;
6431 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6432 if (timeout)
6433 ret = false;
6434 }
6435 if (n->gro_bitmask) {
6436 /* When the NAPI instance uses a timeout and keeps postponing
6437 * it, we need to bound somehow the time packets are kept in
6438 * the GRO layer
6439 */
6440 napi_gro_flush(n, !!timeout);
6441 }
6442
6443 gro_normal_list(n);
6444
6445 if (unlikely(!list_empty(&n->poll_list))) {
6446 /* If n->poll_list is not empty, we need to mask irqs */
6447 local_irq_save(flags);
6448 list_del_init(&n->poll_list);
6449 local_irq_restore(flags);
6450 }
6451
6452 do {
6453 val = READ_ONCE(n->state);
6454
6455 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6456
6457 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6458
6459 /* If STATE_MISSED was set, leave STATE_SCHED set,
6460 * because we will call napi->poll() one more time.
6461 * This C code was suggested by Alexander Duyck to help gcc.
6462 */
6463 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6464 NAPIF_STATE_SCHED;
6465 } while (cmpxchg(&n->state, val, new) != val);
6466
6467 if (unlikely(val & NAPIF_STATE_MISSED)) {
6468 __napi_schedule(n);
6469 return false;
6470 }
6471
6472 if (timeout)
6473 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6474 HRTIMER_MODE_REL_PINNED);
6475 return ret;
6476 }
6477 EXPORT_SYMBOL(napi_complete_done);
6478
6479 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)6480 static struct napi_struct *napi_by_id(unsigned int napi_id)
6481 {
6482 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6483 struct napi_struct *napi;
6484
6485 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6486 if (napi->napi_id == napi_id)
6487 return napi;
6488
6489 return NULL;
6490 }
6491
6492 #if defined(CONFIG_NET_RX_BUSY_POLL)
6493
6494 #define BUSY_POLL_BUDGET 8
6495
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock)6496 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6497 {
6498 int rc;
6499
6500 /* Busy polling means there is a high chance device driver hard irq
6501 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6502 * set in napi_schedule_prep().
6503 * Since we are about to call napi->poll() once more, we can safely
6504 * clear NAPI_STATE_MISSED.
6505 *
6506 * Note: x86 could use a single "lock and ..." instruction
6507 * to perform these two clear_bit()
6508 */
6509 clear_bit(NAPI_STATE_MISSED, &napi->state);
6510 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6511
6512 local_bh_disable();
6513
6514 /* All we really want here is to re-enable device interrupts.
6515 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6516 */
6517 rc = napi->poll(napi, BUSY_POLL_BUDGET);
6518 /* We can't gro_normal_list() here, because napi->poll() might have
6519 * rearmed the napi (napi_complete_done()) in which case it could
6520 * already be running on another CPU.
6521 */
6522 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6523 netpoll_poll_unlock(have_poll_lock);
6524 if (rc == BUSY_POLL_BUDGET) {
6525 /* As the whole budget was spent, we still own the napi so can
6526 * safely handle the rx_list.
6527 */
6528 gro_normal_list(napi);
6529 __napi_schedule(napi);
6530 }
6531 local_bh_enable();
6532 }
6533
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg)6534 void napi_busy_loop(unsigned int napi_id,
6535 bool (*loop_end)(void *, unsigned long),
6536 void *loop_end_arg)
6537 {
6538 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6539 int (*napi_poll)(struct napi_struct *napi, int budget);
6540 void *have_poll_lock = NULL;
6541 struct napi_struct *napi;
6542
6543 restart:
6544 napi_poll = NULL;
6545
6546 rcu_read_lock();
6547
6548 napi = napi_by_id(napi_id);
6549 if (!napi)
6550 goto out;
6551
6552 preempt_disable();
6553 for (;;) {
6554 int work = 0;
6555
6556 local_bh_disable();
6557 if (!napi_poll) {
6558 unsigned long val = READ_ONCE(napi->state);
6559
6560 /* If multiple threads are competing for this napi,
6561 * we avoid dirtying napi->state as much as we can.
6562 */
6563 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6564 NAPIF_STATE_IN_BUSY_POLL))
6565 goto count;
6566 if (cmpxchg(&napi->state, val,
6567 val | NAPIF_STATE_IN_BUSY_POLL |
6568 NAPIF_STATE_SCHED) != val)
6569 goto count;
6570 have_poll_lock = netpoll_poll_lock(napi);
6571 napi_poll = napi->poll;
6572 }
6573 work = napi_poll(napi, BUSY_POLL_BUDGET);
6574 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6575 gro_normal_list(napi);
6576 count:
6577 if (work > 0)
6578 __NET_ADD_STATS(dev_net(napi->dev),
6579 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6580 local_bh_enable();
6581
6582 if (!loop_end || loop_end(loop_end_arg, start_time))
6583 break;
6584
6585 if (unlikely(need_resched())) {
6586 if (napi_poll)
6587 busy_poll_stop(napi, have_poll_lock);
6588 preempt_enable();
6589 rcu_read_unlock();
6590 cond_resched();
6591 if (loop_end(loop_end_arg, start_time))
6592 return;
6593 goto restart;
6594 }
6595 cpu_relax();
6596 }
6597 if (napi_poll)
6598 busy_poll_stop(napi, have_poll_lock);
6599 preempt_enable();
6600 out:
6601 rcu_read_unlock();
6602 }
6603 EXPORT_SYMBOL(napi_busy_loop);
6604
6605 #endif /* CONFIG_NET_RX_BUSY_POLL */
6606
napi_hash_add(struct napi_struct * napi)6607 static void napi_hash_add(struct napi_struct *napi)
6608 {
6609 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6610 return;
6611
6612 spin_lock(&napi_hash_lock);
6613
6614 /* 0..NR_CPUS range is reserved for sender_cpu use */
6615 do {
6616 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6617 napi_gen_id = MIN_NAPI_ID;
6618 } while (napi_by_id(napi_gen_id));
6619 napi->napi_id = napi_gen_id;
6620
6621 hlist_add_head_rcu(&napi->napi_hash_node,
6622 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6623
6624 spin_unlock(&napi_hash_lock);
6625 }
6626
6627 /* Warning : caller is responsible to make sure rcu grace period
6628 * is respected before freeing memory containing @napi
6629 */
napi_hash_del(struct napi_struct * napi)6630 static void napi_hash_del(struct napi_struct *napi)
6631 {
6632 spin_lock(&napi_hash_lock);
6633
6634 hlist_del_init_rcu(&napi->napi_hash_node);
6635
6636 spin_unlock(&napi_hash_lock);
6637 }
6638
napi_watchdog(struct hrtimer * timer)6639 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6640 {
6641 struct napi_struct *napi;
6642
6643 napi = container_of(timer, struct napi_struct, timer);
6644
6645 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6646 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6647 */
6648 if (!napi_disable_pending(napi) &&
6649 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6650 __napi_schedule_irqoff(napi);
6651
6652 return HRTIMER_NORESTART;
6653 }
6654
init_gro_hash(struct napi_struct * napi)6655 static void init_gro_hash(struct napi_struct *napi)
6656 {
6657 int i;
6658
6659 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6660 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6661 napi->gro_hash[i].count = 0;
6662 }
6663 napi->gro_bitmask = 0;
6664 }
6665
netif_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)6666 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6667 int (*poll)(struct napi_struct *, int), int weight)
6668 {
6669 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6670 return;
6671
6672 INIT_LIST_HEAD(&napi->poll_list);
6673 INIT_HLIST_NODE(&napi->napi_hash_node);
6674 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6675 napi->timer.function = napi_watchdog;
6676 init_gro_hash(napi);
6677 napi->skb = NULL;
6678 INIT_LIST_HEAD(&napi->rx_list);
6679 napi->rx_count = 0;
6680 napi->poll = poll;
6681 if (weight > NAPI_POLL_WEIGHT)
6682 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6683 weight);
6684 napi->weight = weight;
6685 napi->dev = dev;
6686 #ifdef CONFIG_NETPOLL
6687 napi->poll_owner = -1;
6688 #endif
6689 set_bit(NAPI_STATE_SCHED, &napi->state);
6690 set_bit(NAPI_STATE_NPSVC, &napi->state);
6691 list_add_rcu(&napi->dev_list, &dev->napi_list);
6692 napi_hash_add(napi);
6693 }
6694 EXPORT_SYMBOL(netif_napi_add);
6695
napi_disable(struct napi_struct * n)6696 void napi_disable(struct napi_struct *n)
6697 {
6698 might_sleep();
6699 set_bit(NAPI_STATE_DISABLE, &n->state);
6700
6701 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6702 msleep(1);
6703 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6704 msleep(1);
6705
6706 hrtimer_cancel(&n->timer);
6707
6708 clear_bit(NAPI_STATE_DISABLE, &n->state);
6709 }
6710 EXPORT_SYMBOL(napi_disable);
6711
flush_gro_hash(struct napi_struct * napi)6712 static void flush_gro_hash(struct napi_struct *napi)
6713 {
6714 int i;
6715
6716 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6717 struct sk_buff *skb, *n;
6718
6719 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6720 kfree_skb(skb);
6721 napi->gro_hash[i].count = 0;
6722 }
6723 }
6724
6725 /* Must be called in process context */
__netif_napi_del(struct napi_struct * napi)6726 void __netif_napi_del(struct napi_struct *napi)
6727 {
6728 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6729 return;
6730
6731 napi_hash_del(napi);
6732 list_del_rcu(&napi->dev_list);
6733 napi_free_frags(napi);
6734
6735 flush_gro_hash(napi);
6736 napi->gro_bitmask = 0;
6737 }
6738 EXPORT_SYMBOL(__netif_napi_del);
6739
napi_poll(struct napi_struct * n,struct list_head * repoll)6740 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6741 {
6742 void *have;
6743 int work, weight;
6744
6745 list_del_init(&n->poll_list);
6746
6747 have = netpoll_poll_lock(n);
6748
6749 weight = n->weight;
6750
6751 /* This NAPI_STATE_SCHED test is for avoiding a race
6752 * with netpoll's poll_napi(). Only the entity which
6753 * obtains the lock and sees NAPI_STATE_SCHED set will
6754 * actually make the ->poll() call. Therefore we avoid
6755 * accidentally calling ->poll() when NAPI is not scheduled.
6756 */
6757 work = 0;
6758 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6759 work = n->poll(n, weight);
6760 trace_napi_poll(n, work, weight);
6761 }
6762
6763 if (unlikely(work > weight))
6764 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6765 n->poll, work, weight);
6766
6767 if (likely(work < weight))
6768 goto out_unlock;
6769
6770 /* Drivers must not modify the NAPI state if they
6771 * consume the entire weight. In such cases this code
6772 * still "owns" the NAPI instance and therefore can
6773 * move the instance around on the list at-will.
6774 */
6775 if (unlikely(napi_disable_pending(n))) {
6776 napi_complete(n);
6777 goto out_unlock;
6778 }
6779
6780 if (n->gro_bitmask) {
6781 /* flush too old packets
6782 * If HZ < 1000, flush all packets.
6783 */
6784 napi_gro_flush(n, HZ >= 1000);
6785 }
6786
6787 gro_normal_list(n);
6788
6789 /* Some drivers may have called napi_schedule
6790 * prior to exhausting their budget.
6791 */
6792 if (unlikely(!list_empty(&n->poll_list))) {
6793 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6794 n->dev ? n->dev->name : "backlog");
6795 goto out_unlock;
6796 }
6797
6798 list_add_tail(&n->poll_list, repoll);
6799
6800 out_unlock:
6801 netpoll_poll_unlock(have);
6802
6803 return work;
6804 }
6805
net_rx_action(struct softirq_action * h)6806 static __latent_entropy void net_rx_action(struct softirq_action *h)
6807 {
6808 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6809 unsigned long time_limit = jiffies +
6810 usecs_to_jiffies(netdev_budget_usecs);
6811 int budget = netdev_budget;
6812 LIST_HEAD(list);
6813 LIST_HEAD(repoll);
6814
6815 local_irq_disable();
6816 list_splice_init(&sd->poll_list, &list);
6817 local_irq_enable();
6818
6819 for (;;) {
6820 struct napi_struct *n;
6821
6822 if (list_empty(&list)) {
6823 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6824 goto out;
6825 break;
6826 }
6827
6828 n = list_first_entry(&list, struct napi_struct, poll_list);
6829 budget -= napi_poll(n, &repoll);
6830
6831 /* If softirq window is exhausted then punt.
6832 * Allow this to run for 2 jiffies since which will allow
6833 * an average latency of 1.5/HZ.
6834 */
6835 if (unlikely(budget <= 0 ||
6836 time_after_eq(jiffies, time_limit))) {
6837 sd->time_squeeze++;
6838 break;
6839 }
6840 }
6841
6842 local_irq_disable();
6843
6844 list_splice_tail_init(&sd->poll_list, &list);
6845 list_splice_tail(&repoll, &list);
6846 list_splice(&list, &sd->poll_list);
6847 if (!list_empty(&sd->poll_list))
6848 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6849
6850 net_rps_action_and_irq_enable(sd);
6851 out:
6852 __kfree_skb_flush();
6853 }
6854
6855 struct netdev_adjacent {
6856 struct net_device *dev;
6857
6858 /* upper master flag, there can only be one master device per list */
6859 bool master;
6860
6861 /* lookup ignore flag */
6862 bool ignore;
6863
6864 /* counter for the number of times this device was added to us */
6865 u16 ref_nr;
6866
6867 /* private field for the users */
6868 void *private;
6869
6870 struct list_head list;
6871 struct rcu_head rcu;
6872 };
6873
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)6874 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6875 struct list_head *adj_list)
6876 {
6877 struct netdev_adjacent *adj;
6878
6879 list_for_each_entry(adj, adj_list, list) {
6880 if (adj->dev == adj_dev)
6881 return adj;
6882 }
6883 return NULL;
6884 }
6885
____netdev_has_upper_dev(struct net_device * upper_dev,struct netdev_nested_priv * priv)6886 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6887 struct netdev_nested_priv *priv)
6888 {
6889 struct net_device *dev = (struct net_device *)priv->data;
6890
6891 return upper_dev == dev;
6892 }
6893
6894 /**
6895 * netdev_has_upper_dev - Check if device is linked to an upper device
6896 * @dev: device
6897 * @upper_dev: upper device to check
6898 *
6899 * Find out if a device is linked to specified upper device and return true
6900 * in case it is. Note that this checks only immediate upper device,
6901 * not through a complete stack of devices. The caller must hold the RTNL lock.
6902 */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)6903 bool netdev_has_upper_dev(struct net_device *dev,
6904 struct net_device *upper_dev)
6905 {
6906 struct netdev_nested_priv priv = {
6907 .data = (void *)upper_dev,
6908 };
6909
6910 ASSERT_RTNL();
6911
6912 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6913 &priv);
6914 }
6915 EXPORT_SYMBOL(netdev_has_upper_dev);
6916
6917 /**
6918 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6919 * @dev: device
6920 * @upper_dev: upper device to check
6921 *
6922 * Find out if a device is linked to specified upper device and return true
6923 * in case it is. Note that this checks the entire upper device chain.
6924 * The caller must hold rcu lock.
6925 */
6926
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)6927 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6928 struct net_device *upper_dev)
6929 {
6930 struct netdev_nested_priv priv = {
6931 .data = (void *)upper_dev,
6932 };
6933
6934 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6935 &priv);
6936 }
6937 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6938
6939 /**
6940 * netdev_has_any_upper_dev - Check if device is linked to some device
6941 * @dev: device
6942 *
6943 * Find out if a device is linked to an upper device and return true in case
6944 * it is. The caller must hold the RTNL lock.
6945 */
netdev_has_any_upper_dev(struct net_device * dev)6946 bool netdev_has_any_upper_dev(struct net_device *dev)
6947 {
6948 ASSERT_RTNL();
6949
6950 return !list_empty(&dev->adj_list.upper);
6951 }
6952 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6953
6954 /**
6955 * netdev_master_upper_dev_get - Get master upper device
6956 * @dev: device
6957 *
6958 * Find a master upper device and return pointer to it or NULL in case
6959 * it's not there. The caller must hold the RTNL lock.
6960 */
netdev_master_upper_dev_get(struct net_device * dev)6961 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6962 {
6963 struct netdev_adjacent *upper;
6964
6965 ASSERT_RTNL();
6966
6967 if (list_empty(&dev->adj_list.upper))
6968 return NULL;
6969
6970 upper = list_first_entry(&dev->adj_list.upper,
6971 struct netdev_adjacent, list);
6972 if (likely(upper->master))
6973 return upper->dev;
6974 return NULL;
6975 }
6976 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6977
__netdev_master_upper_dev_get(struct net_device * dev)6978 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6979 {
6980 struct netdev_adjacent *upper;
6981
6982 ASSERT_RTNL();
6983
6984 if (list_empty(&dev->adj_list.upper))
6985 return NULL;
6986
6987 upper = list_first_entry(&dev->adj_list.upper,
6988 struct netdev_adjacent, list);
6989 if (likely(upper->master) && !upper->ignore)
6990 return upper->dev;
6991 return NULL;
6992 }
6993
6994 /**
6995 * netdev_has_any_lower_dev - Check if device is linked to some device
6996 * @dev: device
6997 *
6998 * Find out if a device is linked to a lower device and return true in case
6999 * it is. The caller must hold the RTNL lock.
7000 */
netdev_has_any_lower_dev(struct net_device * dev)7001 static bool netdev_has_any_lower_dev(struct net_device *dev)
7002 {
7003 ASSERT_RTNL();
7004
7005 return !list_empty(&dev->adj_list.lower);
7006 }
7007
netdev_adjacent_get_private(struct list_head * adj_list)7008 void *netdev_adjacent_get_private(struct list_head *adj_list)
7009 {
7010 struct netdev_adjacent *adj;
7011
7012 adj = list_entry(adj_list, struct netdev_adjacent, list);
7013
7014 return adj->private;
7015 }
7016 EXPORT_SYMBOL(netdev_adjacent_get_private);
7017
7018 /**
7019 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7020 * @dev: device
7021 * @iter: list_head ** of the current position
7022 *
7023 * Gets the next device from the dev's upper list, starting from iter
7024 * position. The caller must hold RCU read lock.
7025 */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)7026 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7027 struct list_head **iter)
7028 {
7029 struct netdev_adjacent *upper;
7030
7031 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7032
7033 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7034
7035 if (&upper->list == &dev->adj_list.upper)
7036 return NULL;
7037
7038 *iter = &upper->list;
7039
7040 return upper->dev;
7041 }
7042 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7043
__netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7044 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7045 struct list_head **iter,
7046 bool *ignore)
7047 {
7048 struct netdev_adjacent *upper;
7049
7050 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7051
7052 if (&upper->list == &dev->adj_list.upper)
7053 return NULL;
7054
7055 *iter = &upper->list;
7056 *ignore = upper->ignore;
7057
7058 return upper->dev;
7059 }
7060
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)7061 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7062 struct list_head **iter)
7063 {
7064 struct netdev_adjacent *upper;
7065
7066 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7067
7068 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7069
7070 if (&upper->list == &dev->adj_list.upper)
7071 return NULL;
7072
7073 *iter = &upper->list;
7074
7075 return upper->dev;
7076 }
7077
__netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7078 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7079 int (*fn)(struct net_device *dev,
7080 struct netdev_nested_priv *priv),
7081 struct netdev_nested_priv *priv)
7082 {
7083 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7084 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7085 int ret, cur = 0;
7086 bool ignore;
7087
7088 now = dev;
7089 iter = &dev->adj_list.upper;
7090
7091 while (1) {
7092 if (now != dev) {
7093 ret = fn(now, priv);
7094 if (ret)
7095 return ret;
7096 }
7097
7098 next = NULL;
7099 while (1) {
7100 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7101 if (!udev)
7102 break;
7103 if (ignore)
7104 continue;
7105
7106 next = udev;
7107 niter = &udev->adj_list.upper;
7108 dev_stack[cur] = now;
7109 iter_stack[cur++] = iter;
7110 break;
7111 }
7112
7113 if (!next) {
7114 if (!cur)
7115 return 0;
7116 next = dev_stack[--cur];
7117 niter = iter_stack[cur];
7118 }
7119
7120 now = next;
7121 iter = niter;
7122 }
7123
7124 return 0;
7125 }
7126
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7127 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7128 int (*fn)(struct net_device *dev,
7129 struct netdev_nested_priv *priv),
7130 struct netdev_nested_priv *priv)
7131 {
7132 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7133 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7134 int ret, cur = 0;
7135
7136 now = dev;
7137 iter = &dev->adj_list.upper;
7138
7139 while (1) {
7140 if (now != dev) {
7141 ret = fn(now, priv);
7142 if (ret)
7143 return ret;
7144 }
7145
7146 next = NULL;
7147 while (1) {
7148 udev = netdev_next_upper_dev_rcu(now, &iter);
7149 if (!udev)
7150 break;
7151
7152 next = udev;
7153 niter = &udev->adj_list.upper;
7154 dev_stack[cur] = now;
7155 iter_stack[cur++] = iter;
7156 break;
7157 }
7158
7159 if (!next) {
7160 if (!cur)
7161 return 0;
7162 next = dev_stack[--cur];
7163 niter = iter_stack[cur];
7164 }
7165
7166 now = next;
7167 iter = niter;
7168 }
7169
7170 return 0;
7171 }
7172 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7173
__netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7174 static bool __netdev_has_upper_dev(struct net_device *dev,
7175 struct net_device *upper_dev)
7176 {
7177 struct netdev_nested_priv priv = {
7178 .flags = 0,
7179 .data = (void *)upper_dev,
7180 };
7181
7182 ASSERT_RTNL();
7183
7184 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7185 &priv);
7186 }
7187
7188 /**
7189 * netdev_lower_get_next_private - Get the next ->private from the
7190 * lower neighbour list
7191 * @dev: device
7192 * @iter: list_head ** of the current position
7193 *
7194 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7195 * list, starting from iter position. The caller must hold either hold the
7196 * RTNL lock or its own locking that guarantees that the neighbour lower
7197 * list will remain unchanged.
7198 */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)7199 void *netdev_lower_get_next_private(struct net_device *dev,
7200 struct list_head **iter)
7201 {
7202 struct netdev_adjacent *lower;
7203
7204 lower = list_entry(*iter, struct netdev_adjacent, list);
7205
7206 if (&lower->list == &dev->adj_list.lower)
7207 return NULL;
7208
7209 *iter = lower->list.next;
7210
7211 return lower->private;
7212 }
7213 EXPORT_SYMBOL(netdev_lower_get_next_private);
7214
7215 /**
7216 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7217 * lower neighbour list, RCU
7218 * variant
7219 * @dev: device
7220 * @iter: list_head ** of the current position
7221 *
7222 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7223 * list, starting from iter position. The caller must hold RCU read lock.
7224 */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)7225 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7226 struct list_head **iter)
7227 {
7228 struct netdev_adjacent *lower;
7229
7230 WARN_ON_ONCE(!rcu_read_lock_held());
7231
7232 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7233
7234 if (&lower->list == &dev->adj_list.lower)
7235 return NULL;
7236
7237 *iter = &lower->list;
7238
7239 return lower->private;
7240 }
7241 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7242
7243 /**
7244 * netdev_lower_get_next - Get the next device from the lower neighbour
7245 * list
7246 * @dev: device
7247 * @iter: list_head ** of the current position
7248 *
7249 * Gets the next netdev_adjacent from the dev's lower neighbour
7250 * list, starting from iter position. The caller must hold RTNL lock or
7251 * its own locking that guarantees that the neighbour lower
7252 * list will remain unchanged.
7253 */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)7254 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7255 {
7256 struct netdev_adjacent *lower;
7257
7258 lower = list_entry(*iter, struct netdev_adjacent, list);
7259
7260 if (&lower->list == &dev->adj_list.lower)
7261 return NULL;
7262
7263 *iter = lower->list.next;
7264
7265 return lower->dev;
7266 }
7267 EXPORT_SYMBOL(netdev_lower_get_next);
7268
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)7269 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7270 struct list_head **iter)
7271 {
7272 struct netdev_adjacent *lower;
7273
7274 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7275
7276 if (&lower->list == &dev->adj_list.lower)
7277 return NULL;
7278
7279 *iter = &lower->list;
7280
7281 return lower->dev;
7282 }
7283
__netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7284 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7285 struct list_head **iter,
7286 bool *ignore)
7287 {
7288 struct netdev_adjacent *lower;
7289
7290 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7291
7292 if (&lower->list == &dev->adj_list.lower)
7293 return NULL;
7294
7295 *iter = &lower->list;
7296 *ignore = lower->ignore;
7297
7298 return lower->dev;
7299 }
7300
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7301 int netdev_walk_all_lower_dev(struct net_device *dev,
7302 int (*fn)(struct net_device *dev,
7303 struct netdev_nested_priv *priv),
7304 struct netdev_nested_priv *priv)
7305 {
7306 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7307 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7308 int ret, cur = 0;
7309
7310 now = dev;
7311 iter = &dev->adj_list.lower;
7312
7313 while (1) {
7314 if (now != dev) {
7315 ret = fn(now, priv);
7316 if (ret)
7317 return ret;
7318 }
7319
7320 next = NULL;
7321 while (1) {
7322 ldev = netdev_next_lower_dev(now, &iter);
7323 if (!ldev)
7324 break;
7325
7326 next = ldev;
7327 niter = &ldev->adj_list.lower;
7328 dev_stack[cur] = now;
7329 iter_stack[cur++] = iter;
7330 break;
7331 }
7332
7333 if (!next) {
7334 if (!cur)
7335 return 0;
7336 next = dev_stack[--cur];
7337 niter = iter_stack[cur];
7338 }
7339
7340 now = next;
7341 iter = niter;
7342 }
7343
7344 return 0;
7345 }
7346 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7347
__netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7348 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7349 int (*fn)(struct net_device *dev,
7350 struct netdev_nested_priv *priv),
7351 struct netdev_nested_priv *priv)
7352 {
7353 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7354 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7355 int ret, cur = 0;
7356 bool ignore;
7357
7358 now = dev;
7359 iter = &dev->adj_list.lower;
7360
7361 while (1) {
7362 if (now != dev) {
7363 ret = fn(now, priv);
7364 if (ret)
7365 return ret;
7366 }
7367
7368 next = NULL;
7369 while (1) {
7370 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7371 if (!ldev)
7372 break;
7373 if (ignore)
7374 continue;
7375
7376 next = ldev;
7377 niter = &ldev->adj_list.lower;
7378 dev_stack[cur] = now;
7379 iter_stack[cur++] = iter;
7380 break;
7381 }
7382
7383 if (!next) {
7384 if (!cur)
7385 return 0;
7386 next = dev_stack[--cur];
7387 niter = iter_stack[cur];
7388 }
7389
7390 now = next;
7391 iter = niter;
7392 }
7393
7394 return 0;
7395 }
7396
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)7397 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7398 struct list_head **iter)
7399 {
7400 struct netdev_adjacent *lower;
7401
7402 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7403 if (&lower->list == &dev->adj_list.lower)
7404 return NULL;
7405
7406 *iter = &lower->list;
7407
7408 return lower->dev;
7409 }
7410 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7411
__netdev_upper_depth(struct net_device * dev)7412 static u8 __netdev_upper_depth(struct net_device *dev)
7413 {
7414 struct net_device *udev;
7415 struct list_head *iter;
7416 u8 max_depth = 0;
7417 bool ignore;
7418
7419 for (iter = &dev->adj_list.upper,
7420 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7421 udev;
7422 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7423 if (ignore)
7424 continue;
7425 if (max_depth < udev->upper_level)
7426 max_depth = udev->upper_level;
7427 }
7428
7429 return max_depth;
7430 }
7431
__netdev_lower_depth(struct net_device * dev)7432 static u8 __netdev_lower_depth(struct net_device *dev)
7433 {
7434 struct net_device *ldev;
7435 struct list_head *iter;
7436 u8 max_depth = 0;
7437 bool ignore;
7438
7439 for (iter = &dev->adj_list.lower,
7440 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7441 ldev;
7442 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7443 if (ignore)
7444 continue;
7445 if (max_depth < ldev->lower_level)
7446 max_depth = ldev->lower_level;
7447 }
7448
7449 return max_depth;
7450 }
7451
__netdev_update_upper_level(struct net_device * dev,struct netdev_nested_priv * __unused)7452 static int __netdev_update_upper_level(struct net_device *dev,
7453 struct netdev_nested_priv *__unused)
7454 {
7455 dev->upper_level = __netdev_upper_depth(dev) + 1;
7456 return 0;
7457 }
7458
__netdev_update_lower_level(struct net_device * dev,struct netdev_nested_priv * priv)7459 static int __netdev_update_lower_level(struct net_device *dev,
7460 struct netdev_nested_priv *priv)
7461 {
7462 dev->lower_level = __netdev_lower_depth(dev) + 1;
7463
7464 #ifdef CONFIG_LOCKDEP
7465 if (!priv)
7466 return 0;
7467
7468 if (priv->flags & NESTED_SYNC_IMM)
7469 dev->nested_level = dev->lower_level - 1;
7470 if (priv->flags & NESTED_SYNC_TODO)
7471 net_unlink_todo(dev);
7472 #endif
7473 return 0;
7474 }
7475
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7476 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7477 int (*fn)(struct net_device *dev,
7478 struct netdev_nested_priv *priv),
7479 struct netdev_nested_priv *priv)
7480 {
7481 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7482 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7483 int ret, cur = 0;
7484
7485 now = dev;
7486 iter = &dev->adj_list.lower;
7487
7488 while (1) {
7489 if (now != dev) {
7490 ret = fn(now, priv);
7491 if (ret)
7492 return ret;
7493 }
7494
7495 next = NULL;
7496 while (1) {
7497 ldev = netdev_next_lower_dev_rcu(now, &iter);
7498 if (!ldev)
7499 break;
7500
7501 next = ldev;
7502 niter = &ldev->adj_list.lower;
7503 dev_stack[cur] = now;
7504 iter_stack[cur++] = iter;
7505 break;
7506 }
7507
7508 if (!next) {
7509 if (!cur)
7510 return 0;
7511 next = dev_stack[--cur];
7512 niter = iter_stack[cur];
7513 }
7514
7515 now = next;
7516 iter = niter;
7517 }
7518
7519 return 0;
7520 }
7521 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7522
7523 /**
7524 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7525 * lower neighbour list, RCU
7526 * variant
7527 * @dev: device
7528 *
7529 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7530 * list. The caller must hold RCU read lock.
7531 */
netdev_lower_get_first_private_rcu(struct net_device * dev)7532 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7533 {
7534 struct netdev_adjacent *lower;
7535
7536 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7537 struct netdev_adjacent, list);
7538 if (lower)
7539 return lower->private;
7540 return NULL;
7541 }
7542 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7543
7544 /**
7545 * netdev_master_upper_dev_get_rcu - Get master upper device
7546 * @dev: device
7547 *
7548 * Find a master upper device and return pointer to it or NULL in case
7549 * it's not there. The caller must hold the RCU read lock.
7550 */
netdev_master_upper_dev_get_rcu(struct net_device * dev)7551 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7552 {
7553 struct netdev_adjacent *upper;
7554
7555 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7556 struct netdev_adjacent, list);
7557 if (upper && likely(upper->master))
7558 return upper->dev;
7559 return NULL;
7560 }
7561 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7562
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7563 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7564 struct net_device *adj_dev,
7565 struct list_head *dev_list)
7566 {
7567 char linkname[IFNAMSIZ+7];
7568
7569 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7570 "upper_%s" : "lower_%s", adj_dev->name);
7571 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7572 linkname);
7573 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)7574 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7575 char *name,
7576 struct list_head *dev_list)
7577 {
7578 char linkname[IFNAMSIZ+7];
7579
7580 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7581 "upper_%s" : "lower_%s", name);
7582 sysfs_remove_link(&(dev->dev.kobj), linkname);
7583 }
7584
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7585 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7586 struct net_device *adj_dev,
7587 struct list_head *dev_list)
7588 {
7589 return (dev_list == &dev->adj_list.upper ||
7590 dev_list == &dev->adj_list.lower) &&
7591 net_eq(dev_net(dev), dev_net(adj_dev));
7592 }
7593
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)7594 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7595 struct net_device *adj_dev,
7596 struct list_head *dev_list,
7597 void *private, bool master)
7598 {
7599 struct netdev_adjacent *adj;
7600 int ret;
7601
7602 adj = __netdev_find_adj(adj_dev, dev_list);
7603
7604 if (adj) {
7605 adj->ref_nr += 1;
7606 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7607 dev->name, adj_dev->name, adj->ref_nr);
7608
7609 return 0;
7610 }
7611
7612 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7613 if (!adj)
7614 return -ENOMEM;
7615
7616 adj->dev = adj_dev;
7617 adj->master = master;
7618 adj->ref_nr = 1;
7619 adj->private = private;
7620 adj->ignore = false;
7621 dev_hold(adj_dev);
7622
7623 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7624 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7625
7626 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7627 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7628 if (ret)
7629 goto free_adj;
7630 }
7631
7632 /* Ensure that master link is always the first item in list. */
7633 if (master) {
7634 ret = sysfs_create_link(&(dev->dev.kobj),
7635 &(adj_dev->dev.kobj), "master");
7636 if (ret)
7637 goto remove_symlinks;
7638
7639 list_add_rcu(&adj->list, dev_list);
7640 } else {
7641 list_add_tail_rcu(&adj->list, dev_list);
7642 }
7643
7644 return 0;
7645
7646 remove_symlinks:
7647 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7648 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7649 free_adj:
7650 kfree(adj);
7651 dev_put(adj_dev);
7652
7653 return ret;
7654 }
7655
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)7656 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7657 struct net_device *adj_dev,
7658 u16 ref_nr,
7659 struct list_head *dev_list)
7660 {
7661 struct netdev_adjacent *adj;
7662
7663 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7664 dev->name, adj_dev->name, ref_nr);
7665
7666 adj = __netdev_find_adj(adj_dev, dev_list);
7667
7668 if (!adj) {
7669 pr_err("Adjacency does not exist for device %s from %s\n",
7670 dev->name, adj_dev->name);
7671 WARN_ON(1);
7672 return;
7673 }
7674
7675 if (adj->ref_nr > ref_nr) {
7676 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7677 dev->name, adj_dev->name, ref_nr,
7678 adj->ref_nr - ref_nr);
7679 adj->ref_nr -= ref_nr;
7680 return;
7681 }
7682
7683 if (adj->master)
7684 sysfs_remove_link(&(dev->dev.kobj), "master");
7685
7686 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7687 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7688
7689 list_del_rcu(&adj->list);
7690 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7691 adj_dev->name, dev->name, adj_dev->name);
7692 dev_put(adj_dev);
7693 kfree_rcu(adj, rcu);
7694 }
7695
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)7696 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7697 struct net_device *upper_dev,
7698 struct list_head *up_list,
7699 struct list_head *down_list,
7700 void *private, bool master)
7701 {
7702 int ret;
7703
7704 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7705 private, master);
7706 if (ret)
7707 return ret;
7708
7709 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7710 private, false);
7711 if (ret) {
7712 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7713 return ret;
7714 }
7715
7716 return 0;
7717 }
7718
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)7719 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7720 struct net_device *upper_dev,
7721 u16 ref_nr,
7722 struct list_head *up_list,
7723 struct list_head *down_list)
7724 {
7725 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7726 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7727 }
7728
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)7729 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7730 struct net_device *upper_dev,
7731 void *private, bool master)
7732 {
7733 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7734 &dev->adj_list.upper,
7735 &upper_dev->adj_list.lower,
7736 private, master);
7737 }
7738
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)7739 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7740 struct net_device *upper_dev)
7741 {
7742 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7743 &dev->adj_list.upper,
7744 &upper_dev->adj_list.lower);
7745 }
7746
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netdev_nested_priv * priv,struct netlink_ext_ack * extack)7747 static int __netdev_upper_dev_link(struct net_device *dev,
7748 struct net_device *upper_dev, bool master,
7749 void *upper_priv, void *upper_info,
7750 struct netdev_nested_priv *priv,
7751 struct netlink_ext_ack *extack)
7752 {
7753 struct netdev_notifier_changeupper_info changeupper_info = {
7754 .info = {
7755 .dev = dev,
7756 .extack = extack,
7757 },
7758 .upper_dev = upper_dev,
7759 .master = master,
7760 .linking = true,
7761 .upper_info = upper_info,
7762 };
7763 struct net_device *master_dev;
7764 int ret = 0;
7765
7766 ASSERT_RTNL();
7767
7768 if (dev == upper_dev)
7769 return -EBUSY;
7770
7771 /* To prevent loops, check if dev is not upper device to upper_dev. */
7772 if (__netdev_has_upper_dev(upper_dev, dev))
7773 return -EBUSY;
7774
7775 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7776 return -EMLINK;
7777
7778 if (!master) {
7779 if (__netdev_has_upper_dev(dev, upper_dev))
7780 return -EEXIST;
7781 } else {
7782 master_dev = __netdev_master_upper_dev_get(dev);
7783 if (master_dev)
7784 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7785 }
7786
7787 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7788 &changeupper_info.info);
7789 ret = notifier_to_errno(ret);
7790 if (ret)
7791 return ret;
7792
7793 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7794 master);
7795 if (ret)
7796 return ret;
7797
7798 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7799 &changeupper_info.info);
7800 ret = notifier_to_errno(ret);
7801 if (ret)
7802 goto rollback;
7803
7804 __netdev_update_upper_level(dev, NULL);
7805 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7806
7807 __netdev_update_lower_level(upper_dev, priv);
7808 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7809 priv);
7810
7811 return 0;
7812
7813 rollback:
7814 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7815
7816 return ret;
7817 }
7818
7819 /**
7820 * netdev_upper_dev_link - Add a link to the upper device
7821 * @dev: device
7822 * @upper_dev: new upper device
7823 * @extack: netlink extended ack
7824 *
7825 * Adds a link to device which is upper to this one. The caller must hold
7826 * the RTNL lock. On a failure a negative errno code is returned.
7827 * On success the reference counts are adjusted and the function
7828 * returns zero.
7829 */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)7830 int netdev_upper_dev_link(struct net_device *dev,
7831 struct net_device *upper_dev,
7832 struct netlink_ext_ack *extack)
7833 {
7834 struct netdev_nested_priv priv = {
7835 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7836 .data = NULL,
7837 };
7838
7839 return __netdev_upper_dev_link(dev, upper_dev, false,
7840 NULL, NULL, &priv, extack);
7841 }
7842 EXPORT_SYMBOL(netdev_upper_dev_link);
7843
7844 /**
7845 * netdev_master_upper_dev_link - Add a master link to the upper device
7846 * @dev: device
7847 * @upper_dev: new upper device
7848 * @upper_priv: upper device private
7849 * @upper_info: upper info to be passed down via notifier
7850 * @extack: netlink extended ack
7851 *
7852 * Adds a link to device which is upper to this one. In this case, only
7853 * one master upper device can be linked, although other non-master devices
7854 * might be linked as well. The caller must hold the RTNL lock.
7855 * On a failure a negative errno code is returned. On success the reference
7856 * counts are adjusted and the function returns zero.
7857 */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)7858 int netdev_master_upper_dev_link(struct net_device *dev,
7859 struct net_device *upper_dev,
7860 void *upper_priv, void *upper_info,
7861 struct netlink_ext_ack *extack)
7862 {
7863 struct netdev_nested_priv priv = {
7864 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7865 .data = NULL,
7866 };
7867
7868 return __netdev_upper_dev_link(dev, upper_dev, true,
7869 upper_priv, upper_info, &priv, extack);
7870 }
7871 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7872
__netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev,struct netdev_nested_priv * priv)7873 static void __netdev_upper_dev_unlink(struct net_device *dev,
7874 struct net_device *upper_dev,
7875 struct netdev_nested_priv *priv)
7876 {
7877 struct netdev_notifier_changeupper_info changeupper_info = {
7878 .info = {
7879 .dev = dev,
7880 },
7881 .upper_dev = upper_dev,
7882 .linking = false,
7883 };
7884
7885 ASSERT_RTNL();
7886
7887 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7888
7889 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7890 &changeupper_info.info);
7891
7892 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7893
7894 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7895 &changeupper_info.info);
7896
7897 __netdev_update_upper_level(dev, NULL);
7898 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7899
7900 __netdev_update_lower_level(upper_dev, priv);
7901 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7902 priv);
7903 }
7904
7905 /**
7906 * netdev_upper_dev_unlink - Removes a link to upper device
7907 * @dev: device
7908 * @upper_dev: new upper device
7909 *
7910 * Removes a link to device which is upper to this one. The caller must hold
7911 * the RTNL lock.
7912 */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)7913 void netdev_upper_dev_unlink(struct net_device *dev,
7914 struct net_device *upper_dev)
7915 {
7916 struct netdev_nested_priv priv = {
7917 .flags = NESTED_SYNC_TODO,
7918 .data = NULL,
7919 };
7920
7921 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7922 }
7923 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7924
__netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)7925 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7926 struct net_device *lower_dev,
7927 bool val)
7928 {
7929 struct netdev_adjacent *adj;
7930
7931 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7932 if (adj)
7933 adj->ignore = val;
7934
7935 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7936 if (adj)
7937 adj->ignore = val;
7938 }
7939
netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)7940 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7941 struct net_device *lower_dev)
7942 {
7943 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7944 }
7945
netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)7946 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7947 struct net_device *lower_dev)
7948 {
7949 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7950 }
7951
netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)7952 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7953 struct net_device *new_dev,
7954 struct net_device *dev,
7955 struct netlink_ext_ack *extack)
7956 {
7957 struct netdev_nested_priv priv = {
7958 .flags = 0,
7959 .data = NULL,
7960 };
7961 int err;
7962
7963 if (!new_dev)
7964 return 0;
7965
7966 if (old_dev && new_dev != old_dev)
7967 netdev_adjacent_dev_disable(dev, old_dev);
7968 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7969 extack);
7970 if (err) {
7971 if (old_dev && new_dev != old_dev)
7972 netdev_adjacent_dev_enable(dev, old_dev);
7973 return err;
7974 }
7975
7976 return 0;
7977 }
7978 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7979
netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)7980 void netdev_adjacent_change_commit(struct net_device *old_dev,
7981 struct net_device *new_dev,
7982 struct net_device *dev)
7983 {
7984 struct netdev_nested_priv priv = {
7985 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7986 .data = NULL,
7987 };
7988
7989 if (!new_dev || !old_dev)
7990 return;
7991
7992 if (new_dev == old_dev)
7993 return;
7994
7995 netdev_adjacent_dev_enable(dev, old_dev);
7996 __netdev_upper_dev_unlink(old_dev, dev, &priv);
7997 }
7998 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7999
netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8000 void netdev_adjacent_change_abort(struct net_device *old_dev,
8001 struct net_device *new_dev,
8002 struct net_device *dev)
8003 {
8004 struct netdev_nested_priv priv = {
8005 .flags = 0,
8006 .data = NULL,
8007 };
8008
8009 if (!new_dev)
8010 return;
8011
8012 if (old_dev && new_dev != old_dev)
8013 netdev_adjacent_dev_enable(dev, old_dev);
8014
8015 __netdev_upper_dev_unlink(new_dev, dev, &priv);
8016 }
8017 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8018
8019 /**
8020 * netdev_bonding_info_change - Dispatch event about slave change
8021 * @dev: device
8022 * @bonding_info: info to dispatch
8023 *
8024 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8025 * The caller must hold the RTNL lock.
8026 */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)8027 void netdev_bonding_info_change(struct net_device *dev,
8028 struct netdev_bonding_info *bonding_info)
8029 {
8030 struct netdev_notifier_bonding_info info = {
8031 .info.dev = dev,
8032 };
8033
8034 memcpy(&info.bonding_info, bonding_info,
8035 sizeof(struct netdev_bonding_info));
8036 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8037 &info.info);
8038 }
8039 EXPORT_SYMBOL(netdev_bonding_info_change);
8040
8041 /**
8042 * netdev_get_xmit_slave - Get the xmit slave of master device
8043 * @dev: device
8044 * @skb: The packet
8045 * @all_slaves: assume all the slaves are active
8046 *
8047 * The reference counters are not incremented so the caller must be
8048 * careful with locks. The caller must hold RCU lock.
8049 * %NULL is returned if no slave is found.
8050 */
8051
netdev_get_xmit_slave(struct net_device * dev,struct sk_buff * skb,bool all_slaves)8052 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8053 struct sk_buff *skb,
8054 bool all_slaves)
8055 {
8056 const struct net_device_ops *ops = dev->netdev_ops;
8057
8058 if (!ops->ndo_get_xmit_slave)
8059 return NULL;
8060 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8061 }
8062 EXPORT_SYMBOL(netdev_get_xmit_slave);
8063
netdev_adjacent_add_links(struct net_device * dev)8064 static void netdev_adjacent_add_links(struct net_device *dev)
8065 {
8066 struct netdev_adjacent *iter;
8067
8068 struct net *net = dev_net(dev);
8069
8070 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8071 if (!net_eq(net, dev_net(iter->dev)))
8072 continue;
8073 netdev_adjacent_sysfs_add(iter->dev, dev,
8074 &iter->dev->adj_list.lower);
8075 netdev_adjacent_sysfs_add(dev, iter->dev,
8076 &dev->adj_list.upper);
8077 }
8078
8079 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8080 if (!net_eq(net, dev_net(iter->dev)))
8081 continue;
8082 netdev_adjacent_sysfs_add(iter->dev, dev,
8083 &iter->dev->adj_list.upper);
8084 netdev_adjacent_sysfs_add(dev, iter->dev,
8085 &dev->adj_list.lower);
8086 }
8087 }
8088
netdev_adjacent_del_links(struct net_device * dev)8089 static void netdev_adjacent_del_links(struct net_device *dev)
8090 {
8091 struct netdev_adjacent *iter;
8092
8093 struct net *net = dev_net(dev);
8094
8095 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8096 if (!net_eq(net, dev_net(iter->dev)))
8097 continue;
8098 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8099 &iter->dev->adj_list.lower);
8100 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8101 &dev->adj_list.upper);
8102 }
8103
8104 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8105 if (!net_eq(net, dev_net(iter->dev)))
8106 continue;
8107 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8108 &iter->dev->adj_list.upper);
8109 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8110 &dev->adj_list.lower);
8111 }
8112 }
8113
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)8114 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8115 {
8116 struct netdev_adjacent *iter;
8117
8118 struct net *net = dev_net(dev);
8119
8120 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8121 if (!net_eq(net, dev_net(iter->dev)))
8122 continue;
8123 netdev_adjacent_sysfs_del(iter->dev, oldname,
8124 &iter->dev->adj_list.lower);
8125 netdev_adjacent_sysfs_add(iter->dev, dev,
8126 &iter->dev->adj_list.lower);
8127 }
8128
8129 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8130 if (!net_eq(net, dev_net(iter->dev)))
8131 continue;
8132 netdev_adjacent_sysfs_del(iter->dev, oldname,
8133 &iter->dev->adj_list.upper);
8134 netdev_adjacent_sysfs_add(iter->dev, dev,
8135 &iter->dev->adj_list.upper);
8136 }
8137 }
8138
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)8139 void *netdev_lower_dev_get_private(struct net_device *dev,
8140 struct net_device *lower_dev)
8141 {
8142 struct netdev_adjacent *lower;
8143
8144 if (!lower_dev)
8145 return NULL;
8146 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8147 if (!lower)
8148 return NULL;
8149
8150 return lower->private;
8151 }
8152 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8153
8154
8155 /**
8156 * netdev_lower_change - Dispatch event about lower device state change
8157 * @lower_dev: device
8158 * @lower_state_info: state to dispatch
8159 *
8160 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8161 * The caller must hold the RTNL lock.
8162 */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)8163 void netdev_lower_state_changed(struct net_device *lower_dev,
8164 void *lower_state_info)
8165 {
8166 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8167 .info.dev = lower_dev,
8168 };
8169
8170 ASSERT_RTNL();
8171 changelowerstate_info.lower_state_info = lower_state_info;
8172 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8173 &changelowerstate_info.info);
8174 }
8175 EXPORT_SYMBOL(netdev_lower_state_changed);
8176
dev_change_rx_flags(struct net_device * dev,int flags)8177 static void dev_change_rx_flags(struct net_device *dev, int flags)
8178 {
8179 const struct net_device_ops *ops = dev->netdev_ops;
8180
8181 if (ops->ndo_change_rx_flags)
8182 ops->ndo_change_rx_flags(dev, flags);
8183 }
8184
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)8185 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8186 {
8187 unsigned int old_flags = dev->flags;
8188 kuid_t uid;
8189 kgid_t gid;
8190
8191 ASSERT_RTNL();
8192
8193 dev->flags |= IFF_PROMISC;
8194 dev->promiscuity += inc;
8195 if (dev->promiscuity == 0) {
8196 /*
8197 * Avoid overflow.
8198 * If inc causes overflow, untouch promisc and return error.
8199 */
8200 if (inc < 0)
8201 dev->flags &= ~IFF_PROMISC;
8202 else {
8203 dev->promiscuity -= inc;
8204 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8205 dev->name);
8206 return -EOVERFLOW;
8207 }
8208 }
8209 if (dev->flags != old_flags) {
8210 pr_info("device %s %s promiscuous mode\n",
8211 dev->name,
8212 dev->flags & IFF_PROMISC ? "entered" : "left");
8213 if (audit_enabled) {
8214 current_uid_gid(&uid, &gid);
8215 audit_log(audit_context(), GFP_ATOMIC,
8216 AUDIT_ANOM_PROMISCUOUS,
8217 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8218 dev->name, (dev->flags & IFF_PROMISC),
8219 (old_flags & IFF_PROMISC),
8220 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8221 from_kuid(&init_user_ns, uid),
8222 from_kgid(&init_user_ns, gid),
8223 audit_get_sessionid(current));
8224 }
8225
8226 dev_change_rx_flags(dev, IFF_PROMISC);
8227 }
8228 if (notify)
8229 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8230 return 0;
8231 }
8232
8233 /**
8234 * dev_set_promiscuity - update promiscuity count on a device
8235 * @dev: device
8236 * @inc: modifier
8237 *
8238 * Add or remove promiscuity from a device. While the count in the device
8239 * remains above zero the interface remains promiscuous. Once it hits zero
8240 * the device reverts back to normal filtering operation. A negative inc
8241 * value is used to drop promiscuity on the device.
8242 * Return 0 if successful or a negative errno code on error.
8243 */
dev_set_promiscuity(struct net_device * dev,int inc)8244 int dev_set_promiscuity(struct net_device *dev, int inc)
8245 {
8246 unsigned int old_flags = dev->flags;
8247 int err;
8248
8249 err = __dev_set_promiscuity(dev, inc, true);
8250 if (err < 0)
8251 return err;
8252 if (dev->flags != old_flags)
8253 dev_set_rx_mode(dev);
8254 return err;
8255 }
8256 EXPORT_SYMBOL(dev_set_promiscuity);
8257
__dev_set_allmulti(struct net_device * dev,int inc,bool notify)8258 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8259 {
8260 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8261
8262 ASSERT_RTNL();
8263
8264 dev->flags |= IFF_ALLMULTI;
8265 dev->allmulti += inc;
8266 if (dev->allmulti == 0) {
8267 /*
8268 * Avoid overflow.
8269 * If inc causes overflow, untouch allmulti and return error.
8270 */
8271 if (inc < 0)
8272 dev->flags &= ~IFF_ALLMULTI;
8273 else {
8274 dev->allmulti -= inc;
8275 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8276 dev->name);
8277 return -EOVERFLOW;
8278 }
8279 }
8280 if (dev->flags ^ old_flags) {
8281 dev_change_rx_flags(dev, IFF_ALLMULTI);
8282 dev_set_rx_mode(dev);
8283 if (notify)
8284 __dev_notify_flags(dev, old_flags,
8285 dev->gflags ^ old_gflags);
8286 }
8287 return 0;
8288 }
8289
8290 /**
8291 * dev_set_allmulti - update allmulti count on a device
8292 * @dev: device
8293 * @inc: modifier
8294 *
8295 * Add or remove reception of all multicast frames to a device. While the
8296 * count in the device remains above zero the interface remains listening
8297 * to all interfaces. Once it hits zero the device reverts back to normal
8298 * filtering operation. A negative @inc value is used to drop the counter
8299 * when releasing a resource needing all multicasts.
8300 * Return 0 if successful or a negative errno code on error.
8301 */
8302
dev_set_allmulti(struct net_device * dev,int inc)8303 int dev_set_allmulti(struct net_device *dev, int inc)
8304 {
8305 return __dev_set_allmulti(dev, inc, true);
8306 }
8307 EXPORT_SYMBOL(dev_set_allmulti);
8308
8309 /*
8310 * Upload unicast and multicast address lists to device and
8311 * configure RX filtering. When the device doesn't support unicast
8312 * filtering it is put in promiscuous mode while unicast addresses
8313 * are present.
8314 */
__dev_set_rx_mode(struct net_device * dev)8315 void __dev_set_rx_mode(struct net_device *dev)
8316 {
8317 const struct net_device_ops *ops = dev->netdev_ops;
8318
8319 /* dev_open will call this function so the list will stay sane. */
8320 if (!(dev->flags&IFF_UP))
8321 return;
8322
8323 if (!netif_device_present(dev))
8324 return;
8325
8326 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8327 /* Unicast addresses changes may only happen under the rtnl,
8328 * therefore calling __dev_set_promiscuity here is safe.
8329 */
8330 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8331 __dev_set_promiscuity(dev, 1, false);
8332 dev->uc_promisc = true;
8333 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8334 __dev_set_promiscuity(dev, -1, false);
8335 dev->uc_promisc = false;
8336 }
8337 }
8338
8339 if (ops->ndo_set_rx_mode)
8340 ops->ndo_set_rx_mode(dev);
8341 }
8342
dev_set_rx_mode(struct net_device * dev)8343 void dev_set_rx_mode(struct net_device *dev)
8344 {
8345 netif_addr_lock_bh(dev);
8346 __dev_set_rx_mode(dev);
8347 netif_addr_unlock_bh(dev);
8348 }
8349
8350 /**
8351 * dev_get_flags - get flags reported to userspace
8352 * @dev: device
8353 *
8354 * Get the combination of flag bits exported through APIs to userspace.
8355 */
dev_get_flags(const struct net_device * dev)8356 unsigned int dev_get_flags(const struct net_device *dev)
8357 {
8358 unsigned int flags;
8359
8360 flags = (dev->flags & ~(IFF_PROMISC |
8361 IFF_ALLMULTI |
8362 IFF_RUNNING |
8363 IFF_LOWER_UP |
8364 IFF_DORMANT)) |
8365 (dev->gflags & (IFF_PROMISC |
8366 IFF_ALLMULTI));
8367
8368 if (netif_running(dev)) {
8369 if (netif_oper_up(dev))
8370 flags |= IFF_RUNNING;
8371 if (netif_carrier_ok(dev))
8372 flags |= IFF_LOWER_UP;
8373 if (netif_dormant(dev))
8374 flags |= IFF_DORMANT;
8375 }
8376
8377 return flags;
8378 }
8379 EXPORT_SYMBOL(dev_get_flags);
8380
__dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8381 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8382 struct netlink_ext_ack *extack)
8383 {
8384 unsigned int old_flags = dev->flags;
8385 int ret;
8386
8387 ASSERT_RTNL();
8388
8389 /*
8390 * Set the flags on our device.
8391 */
8392
8393 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8394 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8395 IFF_AUTOMEDIA)) |
8396 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8397 IFF_ALLMULTI));
8398
8399 /*
8400 * Load in the correct multicast list now the flags have changed.
8401 */
8402
8403 if ((old_flags ^ flags) & IFF_MULTICAST)
8404 dev_change_rx_flags(dev, IFF_MULTICAST);
8405
8406 dev_set_rx_mode(dev);
8407
8408 /*
8409 * Have we downed the interface. We handle IFF_UP ourselves
8410 * according to user attempts to set it, rather than blindly
8411 * setting it.
8412 */
8413
8414 ret = 0;
8415 if ((old_flags ^ flags) & IFF_UP) {
8416 if (old_flags & IFF_UP)
8417 __dev_close(dev);
8418 else
8419 ret = __dev_open(dev, extack);
8420 }
8421
8422 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8423 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8424 unsigned int old_flags = dev->flags;
8425
8426 dev->gflags ^= IFF_PROMISC;
8427
8428 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8429 if (dev->flags != old_flags)
8430 dev_set_rx_mode(dev);
8431 }
8432
8433 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8434 * is important. Some (broken) drivers set IFF_PROMISC, when
8435 * IFF_ALLMULTI is requested not asking us and not reporting.
8436 */
8437 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8438 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8439
8440 dev->gflags ^= IFF_ALLMULTI;
8441 __dev_set_allmulti(dev, inc, false);
8442 }
8443
8444 return ret;
8445 }
8446
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges)8447 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8448 unsigned int gchanges)
8449 {
8450 unsigned int changes = dev->flags ^ old_flags;
8451
8452 if (gchanges)
8453 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8454
8455 if (changes & IFF_UP) {
8456 if (dev->flags & IFF_UP)
8457 call_netdevice_notifiers(NETDEV_UP, dev);
8458 else
8459 call_netdevice_notifiers(NETDEV_DOWN, dev);
8460 }
8461
8462 if (dev->flags & IFF_UP &&
8463 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8464 struct netdev_notifier_change_info change_info = {
8465 .info = {
8466 .dev = dev,
8467 },
8468 .flags_changed = changes,
8469 };
8470
8471 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8472 }
8473 }
8474
8475 /**
8476 * dev_change_flags - change device settings
8477 * @dev: device
8478 * @flags: device state flags
8479 * @extack: netlink extended ack
8480 *
8481 * Change settings on device based state flags. The flags are
8482 * in the userspace exported format.
8483 */
dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8484 int dev_change_flags(struct net_device *dev, unsigned int flags,
8485 struct netlink_ext_ack *extack)
8486 {
8487 int ret;
8488 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8489
8490 ret = __dev_change_flags(dev, flags, extack);
8491 if (ret < 0)
8492 return ret;
8493
8494 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8495 __dev_notify_flags(dev, old_flags, changes);
8496 return ret;
8497 }
8498 EXPORT_SYMBOL(dev_change_flags);
8499
__dev_set_mtu(struct net_device * dev,int new_mtu)8500 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8501 {
8502 const struct net_device_ops *ops = dev->netdev_ops;
8503
8504 if (ops->ndo_change_mtu)
8505 return ops->ndo_change_mtu(dev, new_mtu);
8506
8507 /* Pairs with all the lockless reads of dev->mtu in the stack */
8508 WRITE_ONCE(dev->mtu, new_mtu);
8509 return 0;
8510 }
8511 EXPORT_SYMBOL(__dev_set_mtu);
8512
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8513 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8514 struct netlink_ext_ack *extack)
8515 {
8516 /* MTU must be positive, and in range */
8517 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8518 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8519 return -EINVAL;
8520 }
8521
8522 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8523 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8524 return -EINVAL;
8525 }
8526 return 0;
8527 }
8528
8529 /**
8530 * dev_set_mtu_ext - Change maximum transfer unit
8531 * @dev: device
8532 * @new_mtu: new transfer unit
8533 * @extack: netlink extended ack
8534 *
8535 * Change the maximum transfer size of the network device.
8536 */
dev_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8537 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8538 struct netlink_ext_ack *extack)
8539 {
8540 int err, orig_mtu;
8541
8542 if (new_mtu == dev->mtu)
8543 return 0;
8544
8545 err = dev_validate_mtu(dev, new_mtu, extack);
8546 if (err)
8547 return err;
8548
8549 if (!netif_device_present(dev))
8550 return -ENODEV;
8551
8552 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8553 err = notifier_to_errno(err);
8554 if (err)
8555 return err;
8556
8557 orig_mtu = dev->mtu;
8558 err = __dev_set_mtu(dev, new_mtu);
8559
8560 if (!err) {
8561 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8562 orig_mtu);
8563 err = notifier_to_errno(err);
8564 if (err) {
8565 /* setting mtu back and notifying everyone again,
8566 * so that they have a chance to revert changes.
8567 */
8568 __dev_set_mtu(dev, orig_mtu);
8569 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8570 new_mtu);
8571 }
8572 }
8573 return err;
8574 }
8575
dev_set_mtu(struct net_device * dev,int new_mtu)8576 int dev_set_mtu(struct net_device *dev, int new_mtu)
8577 {
8578 struct netlink_ext_ack extack;
8579 int err;
8580
8581 memset(&extack, 0, sizeof(extack));
8582 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8583 if (err && extack._msg)
8584 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8585 return err;
8586 }
8587 EXPORT_SYMBOL(dev_set_mtu);
8588
8589 /**
8590 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8591 * @dev: device
8592 * @new_len: new tx queue length
8593 */
dev_change_tx_queue_len(struct net_device * dev,unsigned long new_len)8594 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8595 {
8596 unsigned int orig_len = dev->tx_queue_len;
8597 int res;
8598
8599 if (new_len != (unsigned int)new_len)
8600 return -ERANGE;
8601
8602 if (new_len != orig_len) {
8603 dev->tx_queue_len = new_len;
8604 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8605 res = notifier_to_errno(res);
8606 if (res)
8607 goto err_rollback;
8608 res = dev_qdisc_change_tx_queue_len(dev);
8609 if (res)
8610 goto err_rollback;
8611 }
8612
8613 return 0;
8614
8615 err_rollback:
8616 netdev_err(dev, "refused to change device tx_queue_len\n");
8617 dev->tx_queue_len = orig_len;
8618 return res;
8619 }
8620
8621 /**
8622 * dev_set_group - Change group this device belongs to
8623 * @dev: device
8624 * @new_group: group this device should belong to
8625 */
dev_set_group(struct net_device * dev,int new_group)8626 void dev_set_group(struct net_device *dev, int new_group)
8627 {
8628 dev->group = new_group;
8629 }
8630 EXPORT_SYMBOL(dev_set_group);
8631
8632 /**
8633 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8634 * @dev: device
8635 * @addr: new address
8636 * @extack: netlink extended ack
8637 */
dev_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)8638 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8639 struct netlink_ext_ack *extack)
8640 {
8641 struct netdev_notifier_pre_changeaddr_info info = {
8642 .info.dev = dev,
8643 .info.extack = extack,
8644 .dev_addr = addr,
8645 };
8646 int rc;
8647
8648 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8649 return notifier_to_errno(rc);
8650 }
8651 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8652
8653 /**
8654 * dev_set_mac_address - Change Media Access Control Address
8655 * @dev: device
8656 * @sa: new address
8657 * @extack: netlink extended ack
8658 *
8659 * Change the hardware (MAC) address of the device
8660 */
dev_set_mac_address(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)8661 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8662 struct netlink_ext_ack *extack)
8663 {
8664 const struct net_device_ops *ops = dev->netdev_ops;
8665 int err;
8666
8667 if (!ops->ndo_set_mac_address)
8668 return -EOPNOTSUPP;
8669 if (sa->sa_family != dev->type)
8670 return -EINVAL;
8671 if (!netif_device_present(dev))
8672 return -ENODEV;
8673 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8674 if (err)
8675 return err;
8676 err = ops->ndo_set_mac_address(dev, sa);
8677 if (err)
8678 return err;
8679 dev->addr_assign_type = NET_ADDR_SET;
8680 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8681 add_device_randomness(dev->dev_addr, dev->addr_len);
8682 return 0;
8683 }
8684 EXPORT_SYMBOL(dev_set_mac_address);
8685
8686 /**
8687 * dev_change_carrier - Change device carrier
8688 * @dev: device
8689 * @new_carrier: new value
8690 *
8691 * Change device carrier
8692 */
dev_change_carrier(struct net_device * dev,bool new_carrier)8693 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8694 {
8695 const struct net_device_ops *ops = dev->netdev_ops;
8696
8697 if (!ops->ndo_change_carrier)
8698 return -EOPNOTSUPP;
8699 if (!netif_device_present(dev))
8700 return -ENODEV;
8701 return ops->ndo_change_carrier(dev, new_carrier);
8702 }
8703 EXPORT_SYMBOL(dev_change_carrier);
8704
8705 /**
8706 * dev_get_phys_port_id - Get device physical port ID
8707 * @dev: device
8708 * @ppid: port ID
8709 *
8710 * Get device physical port ID
8711 */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)8712 int dev_get_phys_port_id(struct net_device *dev,
8713 struct netdev_phys_item_id *ppid)
8714 {
8715 const struct net_device_ops *ops = dev->netdev_ops;
8716
8717 if (!ops->ndo_get_phys_port_id)
8718 return -EOPNOTSUPP;
8719 return ops->ndo_get_phys_port_id(dev, ppid);
8720 }
8721 EXPORT_SYMBOL(dev_get_phys_port_id);
8722
8723 /**
8724 * dev_get_phys_port_name - Get device physical port name
8725 * @dev: device
8726 * @name: port name
8727 * @len: limit of bytes to copy to name
8728 *
8729 * Get device physical port name
8730 */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)8731 int dev_get_phys_port_name(struct net_device *dev,
8732 char *name, size_t len)
8733 {
8734 const struct net_device_ops *ops = dev->netdev_ops;
8735 int err;
8736
8737 if (ops->ndo_get_phys_port_name) {
8738 err = ops->ndo_get_phys_port_name(dev, name, len);
8739 if (err != -EOPNOTSUPP)
8740 return err;
8741 }
8742 return devlink_compat_phys_port_name_get(dev, name, len);
8743 }
8744 EXPORT_SYMBOL(dev_get_phys_port_name);
8745
8746 /**
8747 * dev_get_port_parent_id - Get the device's port parent identifier
8748 * @dev: network device
8749 * @ppid: pointer to a storage for the port's parent identifier
8750 * @recurse: allow/disallow recursion to lower devices
8751 *
8752 * Get the devices's port parent identifier
8753 */
dev_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)8754 int dev_get_port_parent_id(struct net_device *dev,
8755 struct netdev_phys_item_id *ppid,
8756 bool recurse)
8757 {
8758 const struct net_device_ops *ops = dev->netdev_ops;
8759 struct netdev_phys_item_id first = { };
8760 struct net_device *lower_dev;
8761 struct list_head *iter;
8762 int err;
8763
8764 if (ops->ndo_get_port_parent_id) {
8765 err = ops->ndo_get_port_parent_id(dev, ppid);
8766 if (err != -EOPNOTSUPP)
8767 return err;
8768 }
8769
8770 err = devlink_compat_switch_id_get(dev, ppid);
8771 if (!err || err != -EOPNOTSUPP)
8772 return err;
8773
8774 if (!recurse)
8775 return -EOPNOTSUPP;
8776
8777 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8778 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8779 if (err)
8780 break;
8781 if (!first.id_len)
8782 first = *ppid;
8783 else if (memcmp(&first, ppid, sizeof(*ppid)))
8784 return -EOPNOTSUPP;
8785 }
8786
8787 return err;
8788 }
8789 EXPORT_SYMBOL(dev_get_port_parent_id);
8790
8791 /**
8792 * netdev_port_same_parent_id - Indicate if two network devices have
8793 * the same port parent identifier
8794 * @a: first network device
8795 * @b: second network device
8796 */
netdev_port_same_parent_id(struct net_device * a,struct net_device * b)8797 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8798 {
8799 struct netdev_phys_item_id a_id = { };
8800 struct netdev_phys_item_id b_id = { };
8801
8802 if (dev_get_port_parent_id(a, &a_id, true) ||
8803 dev_get_port_parent_id(b, &b_id, true))
8804 return false;
8805
8806 return netdev_phys_item_id_same(&a_id, &b_id);
8807 }
8808 EXPORT_SYMBOL(netdev_port_same_parent_id);
8809
8810 /**
8811 * dev_change_proto_down - update protocol port state information
8812 * @dev: device
8813 * @proto_down: new value
8814 *
8815 * This info can be used by switch drivers to set the phys state of the
8816 * port.
8817 */
dev_change_proto_down(struct net_device * dev,bool proto_down)8818 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8819 {
8820 const struct net_device_ops *ops = dev->netdev_ops;
8821
8822 if (!ops->ndo_change_proto_down)
8823 return -EOPNOTSUPP;
8824 if (!netif_device_present(dev))
8825 return -ENODEV;
8826 return ops->ndo_change_proto_down(dev, proto_down);
8827 }
8828 EXPORT_SYMBOL(dev_change_proto_down);
8829
8830 /**
8831 * dev_change_proto_down_generic - generic implementation for
8832 * ndo_change_proto_down that sets carrier according to
8833 * proto_down.
8834 *
8835 * @dev: device
8836 * @proto_down: new value
8837 */
dev_change_proto_down_generic(struct net_device * dev,bool proto_down)8838 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8839 {
8840 if (proto_down)
8841 netif_carrier_off(dev);
8842 else
8843 netif_carrier_on(dev);
8844 dev->proto_down = proto_down;
8845 return 0;
8846 }
8847 EXPORT_SYMBOL(dev_change_proto_down_generic);
8848
8849 /**
8850 * dev_change_proto_down_reason - proto down reason
8851 *
8852 * @dev: device
8853 * @mask: proto down mask
8854 * @value: proto down value
8855 */
dev_change_proto_down_reason(struct net_device * dev,unsigned long mask,u32 value)8856 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8857 u32 value)
8858 {
8859 int b;
8860
8861 if (!mask) {
8862 dev->proto_down_reason = value;
8863 } else {
8864 for_each_set_bit(b, &mask, 32) {
8865 if (value & (1 << b))
8866 dev->proto_down_reason |= BIT(b);
8867 else
8868 dev->proto_down_reason &= ~BIT(b);
8869 }
8870 }
8871 }
8872 EXPORT_SYMBOL(dev_change_proto_down_reason);
8873
8874 struct bpf_xdp_link {
8875 struct bpf_link link;
8876 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8877 int flags;
8878 };
8879
dev_xdp_mode(struct net_device * dev,u32 flags)8880 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
8881 {
8882 if (flags & XDP_FLAGS_HW_MODE)
8883 return XDP_MODE_HW;
8884 if (flags & XDP_FLAGS_DRV_MODE)
8885 return XDP_MODE_DRV;
8886 if (flags & XDP_FLAGS_SKB_MODE)
8887 return XDP_MODE_SKB;
8888 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
8889 }
8890
dev_xdp_bpf_op(struct net_device * dev,enum bpf_xdp_mode mode)8891 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8892 {
8893 switch (mode) {
8894 case XDP_MODE_SKB:
8895 return generic_xdp_install;
8896 case XDP_MODE_DRV:
8897 case XDP_MODE_HW:
8898 return dev->netdev_ops->ndo_bpf;
8899 default:
8900 return NULL;
8901 };
8902 }
8903
dev_xdp_link(struct net_device * dev,enum bpf_xdp_mode mode)8904 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
8905 enum bpf_xdp_mode mode)
8906 {
8907 return dev->xdp_state[mode].link;
8908 }
8909
dev_xdp_prog(struct net_device * dev,enum bpf_xdp_mode mode)8910 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
8911 enum bpf_xdp_mode mode)
8912 {
8913 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
8914
8915 if (link)
8916 return link->link.prog;
8917 return dev->xdp_state[mode].prog;
8918 }
8919
dev_xdp_prog_count(struct net_device * dev)8920 static u8 dev_xdp_prog_count(struct net_device *dev)
8921 {
8922 u8 count = 0;
8923 int i;
8924
8925 for (i = 0; i < __MAX_XDP_MODE; i++)
8926 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
8927 count++;
8928 return count;
8929 }
8930
dev_xdp_prog_id(struct net_device * dev,enum bpf_xdp_mode mode)8931 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
8932 {
8933 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
8934
8935 return prog ? prog->aux->id : 0;
8936 }
8937
dev_xdp_set_link(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_xdp_link * link)8938 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
8939 struct bpf_xdp_link *link)
8940 {
8941 dev->xdp_state[mode].link = link;
8942 dev->xdp_state[mode].prog = NULL;
8943 }
8944
dev_xdp_set_prog(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_prog * prog)8945 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
8946 struct bpf_prog *prog)
8947 {
8948 dev->xdp_state[mode].link = NULL;
8949 dev->xdp_state[mode].prog = prog;
8950 }
8951
dev_xdp_install(struct net_device * dev,enum bpf_xdp_mode mode,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)8952 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
8953 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
8954 u32 flags, struct bpf_prog *prog)
8955 {
8956 struct netdev_bpf xdp;
8957 int err;
8958
8959 memset(&xdp, 0, sizeof(xdp));
8960 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
8961 xdp.extack = extack;
8962 xdp.flags = flags;
8963 xdp.prog = prog;
8964
8965 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
8966 * "moved" into driver), so they don't increment it on their own, but
8967 * they do decrement refcnt when program is detached or replaced.
8968 * Given net_device also owns link/prog, we need to bump refcnt here
8969 * to prevent drivers from underflowing it.
8970 */
8971 if (prog)
8972 bpf_prog_inc(prog);
8973 err = bpf_op(dev, &xdp);
8974 if (err) {
8975 if (prog)
8976 bpf_prog_put(prog);
8977 return err;
8978 }
8979
8980 if (mode != XDP_MODE_HW)
8981 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
8982
8983 return 0;
8984 }
8985
dev_xdp_uninstall(struct net_device * dev)8986 static void dev_xdp_uninstall(struct net_device *dev)
8987 {
8988 struct bpf_xdp_link *link;
8989 struct bpf_prog *prog;
8990 enum bpf_xdp_mode mode;
8991 bpf_op_t bpf_op;
8992
8993 ASSERT_RTNL();
8994
8995 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
8996 prog = dev_xdp_prog(dev, mode);
8997 if (!prog)
8998 continue;
8999
9000 bpf_op = dev_xdp_bpf_op(dev, mode);
9001 if (!bpf_op)
9002 continue;
9003
9004 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9005
9006 /* auto-detach link from net device */
9007 link = dev_xdp_link(dev, mode);
9008 if (link)
9009 link->dev = NULL;
9010 else
9011 bpf_prog_put(prog);
9012
9013 dev_xdp_set_link(dev, mode, NULL);
9014 }
9015 }
9016
dev_xdp_attach(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog,u32 flags)9017 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9018 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9019 struct bpf_prog *old_prog, u32 flags)
9020 {
9021 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9022 struct bpf_prog *cur_prog;
9023 enum bpf_xdp_mode mode;
9024 bpf_op_t bpf_op;
9025 int err;
9026
9027 ASSERT_RTNL();
9028
9029 /* either link or prog attachment, never both */
9030 if (link && (new_prog || old_prog))
9031 return -EINVAL;
9032 /* link supports only XDP mode flags */
9033 if (link && (flags & ~XDP_FLAGS_MODES)) {
9034 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9035 return -EINVAL;
9036 }
9037 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9038 if (num_modes > 1) {
9039 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9040 return -EINVAL;
9041 }
9042 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9043 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9044 NL_SET_ERR_MSG(extack,
9045 "More than one program loaded, unset mode is ambiguous");
9046 return -EINVAL;
9047 }
9048 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9049 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9050 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9051 return -EINVAL;
9052 }
9053
9054 mode = dev_xdp_mode(dev, flags);
9055 /* can't replace attached link */
9056 if (dev_xdp_link(dev, mode)) {
9057 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9058 return -EBUSY;
9059 }
9060
9061 cur_prog = dev_xdp_prog(dev, mode);
9062 /* can't replace attached prog with link */
9063 if (link && cur_prog) {
9064 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9065 return -EBUSY;
9066 }
9067 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9068 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9069 return -EEXIST;
9070 }
9071
9072 /* put effective new program into new_prog */
9073 if (link)
9074 new_prog = link->link.prog;
9075
9076 if (new_prog) {
9077 bool offload = mode == XDP_MODE_HW;
9078 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9079 ? XDP_MODE_DRV : XDP_MODE_SKB;
9080
9081 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9082 NL_SET_ERR_MSG(extack, "XDP program already attached");
9083 return -EBUSY;
9084 }
9085 if (!offload && dev_xdp_prog(dev, other_mode)) {
9086 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9087 return -EEXIST;
9088 }
9089 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9090 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9091 return -EINVAL;
9092 }
9093 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9094 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9095 return -EINVAL;
9096 }
9097 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9098 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9099 return -EINVAL;
9100 }
9101 }
9102
9103 /* don't call drivers if the effective program didn't change */
9104 if (new_prog != cur_prog) {
9105 bpf_op = dev_xdp_bpf_op(dev, mode);
9106 if (!bpf_op) {
9107 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9108 return -EOPNOTSUPP;
9109 }
9110
9111 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9112 if (err)
9113 return err;
9114 }
9115
9116 if (link)
9117 dev_xdp_set_link(dev, mode, link);
9118 else
9119 dev_xdp_set_prog(dev, mode, new_prog);
9120 if (cur_prog)
9121 bpf_prog_put(cur_prog);
9122
9123 return 0;
9124 }
9125
dev_xdp_attach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9126 static int dev_xdp_attach_link(struct net_device *dev,
9127 struct netlink_ext_ack *extack,
9128 struct bpf_xdp_link *link)
9129 {
9130 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9131 }
9132
dev_xdp_detach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9133 static int dev_xdp_detach_link(struct net_device *dev,
9134 struct netlink_ext_ack *extack,
9135 struct bpf_xdp_link *link)
9136 {
9137 enum bpf_xdp_mode mode;
9138 bpf_op_t bpf_op;
9139
9140 ASSERT_RTNL();
9141
9142 mode = dev_xdp_mode(dev, link->flags);
9143 if (dev_xdp_link(dev, mode) != link)
9144 return -EINVAL;
9145
9146 bpf_op = dev_xdp_bpf_op(dev, mode);
9147 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9148 dev_xdp_set_link(dev, mode, NULL);
9149 return 0;
9150 }
9151
bpf_xdp_link_release(struct bpf_link * link)9152 static void bpf_xdp_link_release(struct bpf_link *link)
9153 {
9154 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9155
9156 rtnl_lock();
9157
9158 /* if racing with net_device's tear down, xdp_link->dev might be
9159 * already NULL, in which case link was already auto-detached
9160 */
9161 if (xdp_link->dev) {
9162 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9163 xdp_link->dev = NULL;
9164 }
9165
9166 rtnl_unlock();
9167 }
9168
bpf_xdp_link_detach(struct bpf_link * link)9169 static int bpf_xdp_link_detach(struct bpf_link *link)
9170 {
9171 bpf_xdp_link_release(link);
9172 return 0;
9173 }
9174
bpf_xdp_link_dealloc(struct bpf_link * link)9175 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9176 {
9177 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9178
9179 kfree(xdp_link);
9180 }
9181
bpf_xdp_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)9182 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9183 struct seq_file *seq)
9184 {
9185 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9186 u32 ifindex = 0;
9187
9188 rtnl_lock();
9189 if (xdp_link->dev)
9190 ifindex = xdp_link->dev->ifindex;
9191 rtnl_unlock();
9192
9193 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9194 }
9195
bpf_xdp_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)9196 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9197 struct bpf_link_info *info)
9198 {
9199 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9200 u32 ifindex = 0;
9201
9202 rtnl_lock();
9203 if (xdp_link->dev)
9204 ifindex = xdp_link->dev->ifindex;
9205 rtnl_unlock();
9206
9207 info->xdp.ifindex = ifindex;
9208 return 0;
9209 }
9210
bpf_xdp_link_update(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)9211 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9212 struct bpf_prog *old_prog)
9213 {
9214 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9215 enum bpf_xdp_mode mode;
9216 bpf_op_t bpf_op;
9217 int err = 0;
9218
9219 rtnl_lock();
9220
9221 /* link might have been auto-released already, so fail */
9222 if (!xdp_link->dev) {
9223 err = -ENOLINK;
9224 goto out_unlock;
9225 }
9226
9227 if (old_prog && link->prog != old_prog) {
9228 err = -EPERM;
9229 goto out_unlock;
9230 }
9231 old_prog = link->prog;
9232 if (old_prog == new_prog) {
9233 /* no-op, don't disturb drivers */
9234 bpf_prog_put(new_prog);
9235 goto out_unlock;
9236 }
9237
9238 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9239 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9240 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9241 xdp_link->flags, new_prog);
9242 if (err)
9243 goto out_unlock;
9244
9245 old_prog = xchg(&link->prog, new_prog);
9246 bpf_prog_put(old_prog);
9247
9248 out_unlock:
9249 rtnl_unlock();
9250 return err;
9251 }
9252
9253 static const struct bpf_link_ops bpf_xdp_link_lops = {
9254 .release = bpf_xdp_link_release,
9255 .dealloc = bpf_xdp_link_dealloc,
9256 .detach = bpf_xdp_link_detach,
9257 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9258 .fill_link_info = bpf_xdp_link_fill_link_info,
9259 .update_prog = bpf_xdp_link_update,
9260 };
9261
bpf_xdp_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)9262 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9263 {
9264 struct net *net = current->nsproxy->net_ns;
9265 struct bpf_link_primer link_primer;
9266 struct bpf_xdp_link *link;
9267 struct net_device *dev;
9268 int err, fd;
9269
9270 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9271 if (!dev)
9272 return -EINVAL;
9273
9274 link = kzalloc(sizeof(*link), GFP_USER);
9275 if (!link) {
9276 err = -ENOMEM;
9277 goto out_put_dev;
9278 }
9279
9280 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9281 link->dev = dev;
9282 link->flags = attr->link_create.flags;
9283
9284 err = bpf_link_prime(&link->link, &link_primer);
9285 if (err) {
9286 kfree(link);
9287 goto out_put_dev;
9288 }
9289
9290 rtnl_lock();
9291 err = dev_xdp_attach_link(dev, NULL, link);
9292 rtnl_unlock();
9293
9294 if (err) {
9295 bpf_link_cleanup(&link_primer);
9296 goto out_put_dev;
9297 }
9298
9299 fd = bpf_link_settle(&link_primer);
9300 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9301 dev_put(dev);
9302 return fd;
9303
9304 out_put_dev:
9305 dev_put(dev);
9306 return err;
9307 }
9308
9309 /**
9310 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9311 * @dev: device
9312 * @extack: netlink extended ack
9313 * @fd: new program fd or negative value to clear
9314 * @expected_fd: old program fd that userspace expects to replace or clear
9315 * @flags: xdp-related flags
9316 *
9317 * Set or clear a bpf program for a device
9318 */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,int expected_fd,u32 flags)9319 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9320 int fd, int expected_fd, u32 flags)
9321 {
9322 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9323 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9324 int err;
9325
9326 ASSERT_RTNL();
9327
9328 if (fd >= 0) {
9329 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9330 mode != XDP_MODE_SKB);
9331 if (IS_ERR(new_prog))
9332 return PTR_ERR(new_prog);
9333 }
9334
9335 if (expected_fd >= 0) {
9336 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9337 mode != XDP_MODE_SKB);
9338 if (IS_ERR(old_prog)) {
9339 err = PTR_ERR(old_prog);
9340 old_prog = NULL;
9341 goto err_out;
9342 }
9343 }
9344
9345 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9346
9347 err_out:
9348 if (err && new_prog)
9349 bpf_prog_put(new_prog);
9350 if (old_prog)
9351 bpf_prog_put(old_prog);
9352 return err;
9353 }
9354
9355 /**
9356 * dev_new_index - allocate an ifindex
9357 * @net: the applicable net namespace
9358 *
9359 * Returns a suitable unique value for a new device interface
9360 * number. The caller must hold the rtnl semaphore or the
9361 * dev_base_lock to be sure it remains unique.
9362 */
dev_new_index(struct net * net)9363 static int dev_new_index(struct net *net)
9364 {
9365 int ifindex = net->ifindex;
9366
9367 for (;;) {
9368 if (++ifindex <= 0)
9369 ifindex = 1;
9370 if (!__dev_get_by_index(net, ifindex))
9371 return net->ifindex = ifindex;
9372 }
9373 }
9374
9375 /* Delayed registration/unregisteration */
9376 static LIST_HEAD(net_todo_list);
9377 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9378
net_set_todo(struct net_device * dev)9379 static void net_set_todo(struct net_device *dev)
9380 {
9381 list_add_tail(&dev->todo_list, &net_todo_list);
9382 dev_net(dev)->dev_unreg_count++;
9383 }
9384
rollback_registered_many(struct list_head * head)9385 static void rollback_registered_many(struct list_head *head)
9386 {
9387 struct net_device *dev, *tmp;
9388 LIST_HEAD(close_head);
9389
9390 BUG_ON(dev_boot_phase);
9391 ASSERT_RTNL();
9392
9393 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9394 /* Some devices call without registering
9395 * for initialization unwind. Remove those
9396 * devices and proceed with the remaining.
9397 */
9398 if (dev->reg_state == NETREG_UNINITIALIZED) {
9399 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
9400 dev->name, dev);
9401
9402 WARN_ON(1);
9403 list_del(&dev->unreg_list);
9404 continue;
9405 }
9406 dev->dismantle = true;
9407 BUG_ON(dev->reg_state != NETREG_REGISTERED);
9408 }
9409
9410 /* If device is running, close it first. */
9411 list_for_each_entry(dev, head, unreg_list)
9412 list_add_tail(&dev->close_list, &close_head);
9413 dev_close_many(&close_head, true);
9414
9415 list_for_each_entry(dev, head, unreg_list) {
9416 /* And unlink it from device chain. */
9417 unlist_netdevice(dev);
9418
9419 dev->reg_state = NETREG_UNREGISTERING;
9420 }
9421 flush_all_backlogs();
9422
9423 synchronize_net();
9424
9425 list_for_each_entry(dev, head, unreg_list) {
9426 struct sk_buff *skb = NULL;
9427
9428 /* Shutdown queueing discipline. */
9429 dev_shutdown(dev);
9430
9431 dev_xdp_uninstall(dev);
9432
9433 /* Notify protocols, that we are about to destroy
9434 * this device. They should clean all the things.
9435 */
9436 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9437
9438 if (!dev->rtnl_link_ops ||
9439 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9440 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
9441 GFP_KERNEL, NULL, 0);
9442
9443 /*
9444 * Flush the unicast and multicast chains
9445 */
9446 dev_uc_flush(dev);
9447 dev_mc_flush(dev);
9448
9449 netdev_name_node_alt_flush(dev);
9450 netdev_name_node_free(dev->name_node);
9451
9452 if (dev->netdev_ops->ndo_uninit)
9453 dev->netdev_ops->ndo_uninit(dev);
9454
9455 if (skb)
9456 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
9457
9458 /* Notifier chain MUST detach us all upper devices. */
9459 WARN_ON(netdev_has_any_upper_dev(dev));
9460 WARN_ON(netdev_has_any_lower_dev(dev));
9461
9462 /* Remove entries from kobject tree */
9463 netdev_unregister_kobject(dev);
9464 #ifdef CONFIG_XPS
9465 /* Remove XPS queueing entries */
9466 netif_reset_xps_queues_gt(dev, 0);
9467 #endif
9468 }
9469
9470 synchronize_net();
9471
9472 list_for_each_entry(dev, head, unreg_list)
9473 dev_put(dev);
9474 }
9475
rollback_registered(struct net_device * dev)9476 static void rollback_registered(struct net_device *dev)
9477 {
9478 LIST_HEAD(single);
9479
9480 list_add(&dev->unreg_list, &single);
9481 rollback_registered_many(&single);
9482 list_del(&single);
9483 }
9484
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)9485 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9486 struct net_device *upper, netdev_features_t features)
9487 {
9488 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9489 netdev_features_t feature;
9490 int feature_bit;
9491
9492 for_each_netdev_feature(upper_disables, feature_bit) {
9493 feature = __NETIF_F_BIT(feature_bit);
9494 if (!(upper->wanted_features & feature)
9495 && (features & feature)) {
9496 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9497 &feature, upper->name);
9498 features &= ~feature;
9499 }
9500 }
9501
9502 return features;
9503 }
9504
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)9505 static void netdev_sync_lower_features(struct net_device *upper,
9506 struct net_device *lower, netdev_features_t features)
9507 {
9508 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9509 netdev_features_t feature;
9510 int feature_bit;
9511
9512 for_each_netdev_feature(upper_disables, feature_bit) {
9513 feature = __NETIF_F_BIT(feature_bit);
9514 if (!(features & feature) && (lower->features & feature)) {
9515 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9516 &feature, lower->name);
9517 lower->wanted_features &= ~feature;
9518 __netdev_update_features(lower);
9519
9520 if (unlikely(lower->features & feature))
9521 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9522 &feature, lower->name);
9523 else
9524 netdev_features_change(lower);
9525 }
9526 }
9527 }
9528
netdev_fix_features(struct net_device * dev,netdev_features_t features)9529 static netdev_features_t netdev_fix_features(struct net_device *dev,
9530 netdev_features_t features)
9531 {
9532 /* Fix illegal checksum combinations */
9533 if ((features & NETIF_F_HW_CSUM) &&
9534 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9535 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9536 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9537 }
9538
9539 /* TSO requires that SG is present as well. */
9540 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9541 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9542 features &= ~NETIF_F_ALL_TSO;
9543 }
9544
9545 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9546 !(features & NETIF_F_IP_CSUM)) {
9547 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9548 features &= ~NETIF_F_TSO;
9549 features &= ~NETIF_F_TSO_ECN;
9550 }
9551
9552 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9553 !(features & NETIF_F_IPV6_CSUM)) {
9554 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9555 features &= ~NETIF_F_TSO6;
9556 }
9557
9558 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9559 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9560 features &= ~NETIF_F_TSO_MANGLEID;
9561
9562 /* TSO ECN requires that TSO is present as well. */
9563 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9564 features &= ~NETIF_F_TSO_ECN;
9565
9566 /* Software GSO depends on SG. */
9567 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9568 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9569 features &= ~NETIF_F_GSO;
9570 }
9571
9572 /* GSO partial features require GSO partial be set */
9573 if ((features & dev->gso_partial_features) &&
9574 !(features & NETIF_F_GSO_PARTIAL)) {
9575 netdev_dbg(dev,
9576 "Dropping partially supported GSO features since no GSO partial.\n");
9577 features &= ~dev->gso_partial_features;
9578 }
9579
9580 if (!(features & NETIF_F_RXCSUM)) {
9581 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9582 * successfully merged by hardware must also have the
9583 * checksum verified by hardware. If the user does not
9584 * want to enable RXCSUM, logically, we should disable GRO_HW.
9585 */
9586 if (features & NETIF_F_GRO_HW) {
9587 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9588 features &= ~NETIF_F_GRO_HW;
9589 }
9590 }
9591
9592 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9593 if (features & NETIF_F_RXFCS) {
9594 if (features & NETIF_F_LRO) {
9595 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9596 features &= ~NETIF_F_LRO;
9597 }
9598
9599 if (features & NETIF_F_GRO_HW) {
9600 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9601 features &= ~NETIF_F_GRO_HW;
9602 }
9603 }
9604
9605 return features;
9606 }
9607
__netdev_update_features(struct net_device * dev)9608 int __netdev_update_features(struct net_device *dev)
9609 {
9610 struct net_device *upper, *lower;
9611 netdev_features_t features;
9612 struct list_head *iter;
9613 int err = -1;
9614
9615 ASSERT_RTNL();
9616
9617 features = netdev_get_wanted_features(dev);
9618
9619 if (dev->netdev_ops->ndo_fix_features)
9620 features = dev->netdev_ops->ndo_fix_features(dev, features);
9621
9622 /* driver might be less strict about feature dependencies */
9623 features = netdev_fix_features(dev, features);
9624
9625 /* some features can't be enabled if they're off on an upper device */
9626 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9627 features = netdev_sync_upper_features(dev, upper, features);
9628
9629 if (dev->features == features)
9630 goto sync_lower;
9631
9632 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9633 &dev->features, &features);
9634
9635 if (dev->netdev_ops->ndo_set_features)
9636 err = dev->netdev_ops->ndo_set_features(dev, features);
9637 else
9638 err = 0;
9639
9640 if (unlikely(err < 0)) {
9641 netdev_err(dev,
9642 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9643 err, &features, &dev->features);
9644 /* return non-0 since some features might have changed and
9645 * it's better to fire a spurious notification than miss it
9646 */
9647 return -1;
9648 }
9649
9650 sync_lower:
9651 /* some features must be disabled on lower devices when disabled
9652 * on an upper device (think: bonding master or bridge)
9653 */
9654 netdev_for_each_lower_dev(dev, lower, iter)
9655 netdev_sync_lower_features(dev, lower, features);
9656
9657 if (!err) {
9658 netdev_features_t diff = features ^ dev->features;
9659
9660 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9661 /* udp_tunnel_{get,drop}_rx_info both need
9662 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9663 * device, or they won't do anything.
9664 * Thus we need to update dev->features
9665 * *before* calling udp_tunnel_get_rx_info,
9666 * but *after* calling udp_tunnel_drop_rx_info.
9667 */
9668 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9669 dev->features = features;
9670 udp_tunnel_get_rx_info(dev);
9671 } else {
9672 udp_tunnel_drop_rx_info(dev);
9673 }
9674 }
9675
9676 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9677 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9678 dev->features = features;
9679 err |= vlan_get_rx_ctag_filter_info(dev);
9680 } else {
9681 vlan_drop_rx_ctag_filter_info(dev);
9682 }
9683 }
9684
9685 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9686 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9687 dev->features = features;
9688 err |= vlan_get_rx_stag_filter_info(dev);
9689 } else {
9690 vlan_drop_rx_stag_filter_info(dev);
9691 }
9692 }
9693
9694 dev->features = features;
9695 }
9696
9697 return err < 0 ? 0 : 1;
9698 }
9699
9700 /**
9701 * netdev_update_features - recalculate device features
9702 * @dev: the device to check
9703 *
9704 * Recalculate dev->features set and send notifications if it
9705 * has changed. Should be called after driver or hardware dependent
9706 * conditions might have changed that influence the features.
9707 */
netdev_update_features(struct net_device * dev)9708 void netdev_update_features(struct net_device *dev)
9709 {
9710 if (__netdev_update_features(dev))
9711 netdev_features_change(dev);
9712 }
9713 EXPORT_SYMBOL(netdev_update_features);
9714
9715 /**
9716 * netdev_change_features - recalculate device features
9717 * @dev: the device to check
9718 *
9719 * Recalculate dev->features set and send notifications even
9720 * if they have not changed. Should be called instead of
9721 * netdev_update_features() if also dev->vlan_features might
9722 * have changed to allow the changes to be propagated to stacked
9723 * VLAN devices.
9724 */
netdev_change_features(struct net_device * dev)9725 void netdev_change_features(struct net_device *dev)
9726 {
9727 __netdev_update_features(dev);
9728 netdev_features_change(dev);
9729 }
9730 EXPORT_SYMBOL(netdev_change_features);
9731
9732 /**
9733 * netif_stacked_transfer_operstate - transfer operstate
9734 * @rootdev: the root or lower level device to transfer state from
9735 * @dev: the device to transfer operstate to
9736 *
9737 * Transfer operational state from root to device. This is normally
9738 * called when a stacking relationship exists between the root
9739 * device and the device(a leaf device).
9740 */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)9741 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9742 struct net_device *dev)
9743 {
9744 if (rootdev->operstate == IF_OPER_DORMANT)
9745 netif_dormant_on(dev);
9746 else
9747 netif_dormant_off(dev);
9748
9749 if (rootdev->operstate == IF_OPER_TESTING)
9750 netif_testing_on(dev);
9751 else
9752 netif_testing_off(dev);
9753
9754 if (netif_carrier_ok(rootdev))
9755 netif_carrier_on(dev);
9756 else
9757 netif_carrier_off(dev);
9758 }
9759 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9760
netif_alloc_rx_queues(struct net_device * dev)9761 static int netif_alloc_rx_queues(struct net_device *dev)
9762 {
9763 unsigned int i, count = dev->num_rx_queues;
9764 struct netdev_rx_queue *rx;
9765 size_t sz = count * sizeof(*rx);
9766 int err = 0;
9767
9768 BUG_ON(count < 1);
9769
9770 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9771 if (!rx)
9772 return -ENOMEM;
9773
9774 dev->_rx = rx;
9775
9776 for (i = 0; i < count; i++) {
9777 rx[i].dev = dev;
9778
9779 /* XDP RX-queue setup */
9780 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9781 if (err < 0)
9782 goto err_rxq_info;
9783 }
9784 return 0;
9785
9786 err_rxq_info:
9787 /* Rollback successful reg's and free other resources */
9788 while (i--)
9789 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9790 kvfree(dev->_rx);
9791 dev->_rx = NULL;
9792 return err;
9793 }
9794
netif_free_rx_queues(struct net_device * dev)9795 static void netif_free_rx_queues(struct net_device *dev)
9796 {
9797 unsigned int i, count = dev->num_rx_queues;
9798
9799 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9800 if (!dev->_rx)
9801 return;
9802
9803 for (i = 0; i < count; i++)
9804 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9805
9806 kvfree(dev->_rx);
9807 }
9808
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)9809 static void netdev_init_one_queue(struct net_device *dev,
9810 struct netdev_queue *queue, void *_unused)
9811 {
9812 /* Initialize queue lock */
9813 spin_lock_init(&queue->_xmit_lock);
9814 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9815 queue->xmit_lock_owner = -1;
9816 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9817 queue->dev = dev;
9818 #ifdef CONFIG_BQL
9819 dql_init(&queue->dql, HZ);
9820 #endif
9821 }
9822
netif_free_tx_queues(struct net_device * dev)9823 static void netif_free_tx_queues(struct net_device *dev)
9824 {
9825 kvfree(dev->_tx);
9826 }
9827
netif_alloc_netdev_queues(struct net_device * dev)9828 static int netif_alloc_netdev_queues(struct net_device *dev)
9829 {
9830 unsigned int count = dev->num_tx_queues;
9831 struct netdev_queue *tx;
9832 size_t sz = count * sizeof(*tx);
9833
9834 if (count < 1 || count > 0xffff)
9835 return -EINVAL;
9836
9837 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9838 if (!tx)
9839 return -ENOMEM;
9840
9841 dev->_tx = tx;
9842
9843 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9844 spin_lock_init(&dev->tx_global_lock);
9845
9846 return 0;
9847 }
9848
netif_tx_stop_all_queues(struct net_device * dev)9849 void netif_tx_stop_all_queues(struct net_device *dev)
9850 {
9851 unsigned int i;
9852
9853 for (i = 0; i < dev->num_tx_queues; i++) {
9854 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9855
9856 netif_tx_stop_queue(txq);
9857 }
9858 }
9859 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9860
9861 /**
9862 * register_netdevice - register a network device
9863 * @dev: device to register
9864 *
9865 * Take a completed network device structure and add it to the kernel
9866 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9867 * chain. 0 is returned on success. A negative errno code is returned
9868 * on a failure to set up the device, or if the name is a duplicate.
9869 *
9870 * Callers must hold the rtnl semaphore. You may want
9871 * register_netdev() instead of this.
9872 *
9873 * BUGS:
9874 * The locking appears insufficient to guarantee two parallel registers
9875 * will not get the same name.
9876 */
9877
register_netdevice(struct net_device * dev)9878 int register_netdevice(struct net_device *dev)
9879 {
9880 int ret;
9881 struct net *net = dev_net(dev);
9882
9883 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9884 NETDEV_FEATURE_COUNT);
9885 BUG_ON(dev_boot_phase);
9886 ASSERT_RTNL();
9887
9888 might_sleep();
9889
9890 /* When net_device's are persistent, this will be fatal. */
9891 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9892 BUG_ON(!net);
9893
9894 ret = ethtool_check_ops(dev->ethtool_ops);
9895 if (ret)
9896 return ret;
9897
9898 spin_lock_init(&dev->addr_list_lock);
9899 netdev_set_addr_lockdep_class(dev);
9900
9901 ret = dev_get_valid_name(net, dev, dev->name);
9902 if (ret < 0)
9903 goto out;
9904
9905 ret = -ENOMEM;
9906 dev->name_node = netdev_name_node_head_alloc(dev);
9907 if (!dev->name_node)
9908 goto out;
9909
9910 /* Init, if this function is available */
9911 if (dev->netdev_ops->ndo_init) {
9912 ret = dev->netdev_ops->ndo_init(dev);
9913 if (ret) {
9914 if (ret > 0)
9915 ret = -EIO;
9916 goto err_free_name;
9917 }
9918 }
9919
9920 if (((dev->hw_features | dev->features) &
9921 NETIF_F_HW_VLAN_CTAG_FILTER) &&
9922 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9923 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9924 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9925 ret = -EINVAL;
9926 goto err_uninit;
9927 }
9928
9929 ret = -EBUSY;
9930 if (!dev->ifindex)
9931 dev->ifindex = dev_new_index(net);
9932 else if (__dev_get_by_index(net, dev->ifindex))
9933 goto err_uninit;
9934
9935 /* Transfer changeable features to wanted_features and enable
9936 * software offloads (GSO and GRO).
9937 */
9938 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9939 dev->features |= NETIF_F_SOFT_FEATURES;
9940
9941 if (dev->netdev_ops->ndo_udp_tunnel_add) {
9942 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9943 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9944 }
9945
9946 dev->wanted_features = dev->features & dev->hw_features;
9947
9948 if (!(dev->flags & IFF_LOOPBACK))
9949 dev->hw_features |= NETIF_F_NOCACHE_COPY;
9950
9951 /* If IPv4 TCP segmentation offload is supported we should also
9952 * allow the device to enable segmenting the frame with the option
9953 * of ignoring a static IP ID value. This doesn't enable the
9954 * feature itself but allows the user to enable it later.
9955 */
9956 if (dev->hw_features & NETIF_F_TSO)
9957 dev->hw_features |= NETIF_F_TSO_MANGLEID;
9958 if (dev->vlan_features & NETIF_F_TSO)
9959 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9960 if (dev->mpls_features & NETIF_F_TSO)
9961 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9962 if (dev->hw_enc_features & NETIF_F_TSO)
9963 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9964
9965 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9966 */
9967 dev->vlan_features |= NETIF_F_HIGHDMA;
9968
9969 /* Make NETIF_F_SG inheritable to tunnel devices.
9970 */
9971 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9972
9973 /* Make NETIF_F_SG inheritable to MPLS.
9974 */
9975 dev->mpls_features |= NETIF_F_SG;
9976
9977 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9978 ret = notifier_to_errno(ret);
9979 if (ret)
9980 goto err_uninit;
9981
9982 ret = netdev_register_kobject(dev);
9983 if (ret) {
9984 dev->reg_state = NETREG_UNREGISTERED;
9985 goto err_uninit;
9986 }
9987 dev->reg_state = NETREG_REGISTERED;
9988
9989 __netdev_update_features(dev);
9990
9991 /*
9992 * Default initial state at registry is that the
9993 * device is present.
9994 */
9995
9996 set_bit(__LINK_STATE_PRESENT, &dev->state);
9997
9998 linkwatch_init_dev(dev);
9999
10000 dev_init_scheduler(dev);
10001 dev_hold(dev);
10002 list_netdevice(dev);
10003 add_device_randomness(dev->dev_addr, dev->addr_len);
10004
10005 /* If the device has permanent device address, driver should
10006 * set dev_addr and also addr_assign_type should be set to
10007 * NET_ADDR_PERM (default value).
10008 */
10009 if (dev->addr_assign_type == NET_ADDR_PERM)
10010 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10011
10012 /* Notify protocols, that a new device appeared. */
10013 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10014 ret = notifier_to_errno(ret);
10015 if (ret) {
10016 rollback_registered(dev);
10017 rcu_barrier();
10018
10019 dev->reg_state = NETREG_UNREGISTERED;
10020 /* We should put the kobject that hold in
10021 * netdev_unregister_kobject(), otherwise
10022 * the net device cannot be freed when
10023 * driver calls free_netdev(), because the
10024 * kobject is being hold.
10025 */
10026 kobject_put(&dev->dev.kobj);
10027 }
10028 /*
10029 * Prevent userspace races by waiting until the network
10030 * device is fully setup before sending notifications.
10031 */
10032 if (!dev->rtnl_link_ops ||
10033 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10034 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10035
10036 out:
10037 return ret;
10038
10039 err_uninit:
10040 if (dev->netdev_ops->ndo_uninit)
10041 dev->netdev_ops->ndo_uninit(dev);
10042 if (dev->priv_destructor)
10043 dev->priv_destructor(dev);
10044 err_free_name:
10045 netdev_name_node_free(dev->name_node);
10046 goto out;
10047 }
10048 EXPORT_SYMBOL(register_netdevice);
10049
10050 /**
10051 * init_dummy_netdev - init a dummy network device for NAPI
10052 * @dev: device to init
10053 *
10054 * This takes a network device structure and initialize the minimum
10055 * amount of fields so it can be used to schedule NAPI polls without
10056 * registering a full blown interface. This is to be used by drivers
10057 * that need to tie several hardware interfaces to a single NAPI
10058 * poll scheduler due to HW limitations.
10059 */
init_dummy_netdev(struct net_device * dev)10060 int init_dummy_netdev(struct net_device *dev)
10061 {
10062 /* Clear everything. Note we don't initialize spinlocks
10063 * are they aren't supposed to be taken by any of the
10064 * NAPI code and this dummy netdev is supposed to be
10065 * only ever used for NAPI polls
10066 */
10067 memset(dev, 0, sizeof(struct net_device));
10068
10069 /* make sure we BUG if trying to hit standard
10070 * register/unregister code path
10071 */
10072 dev->reg_state = NETREG_DUMMY;
10073
10074 /* NAPI wants this */
10075 INIT_LIST_HEAD(&dev->napi_list);
10076
10077 /* a dummy interface is started by default */
10078 set_bit(__LINK_STATE_PRESENT, &dev->state);
10079 set_bit(__LINK_STATE_START, &dev->state);
10080
10081 /* napi_busy_loop stats accounting wants this */
10082 dev_net_set(dev, &init_net);
10083
10084 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10085 * because users of this 'device' dont need to change
10086 * its refcount.
10087 */
10088
10089 return 0;
10090 }
10091 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10092
10093
10094 /**
10095 * register_netdev - register a network device
10096 * @dev: device to register
10097 *
10098 * Take a completed network device structure and add it to the kernel
10099 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10100 * chain. 0 is returned on success. A negative errno code is returned
10101 * on a failure to set up the device, or if the name is a duplicate.
10102 *
10103 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10104 * and expands the device name if you passed a format string to
10105 * alloc_netdev.
10106 */
register_netdev(struct net_device * dev)10107 int register_netdev(struct net_device *dev)
10108 {
10109 int err;
10110
10111 if (rtnl_lock_killable())
10112 return -EINTR;
10113 err = register_netdevice(dev);
10114 rtnl_unlock();
10115 return err;
10116 }
10117 EXPORT_SYMBOL(register_netdev);
10118
netdev_refcnt_read(const struct net_device * dev)10119 int netdev_refcnt_read(const struct net_device *dev)
10120 {
10121 int i, refcnt = 0;
10122
10123 for_each_possible_cpu(i)
10124 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10125 return refcnt;
10126 }
10127 EXPORT_SYMBOL(netdev_refcnt_read);
10128
10129 #define WAIT_REFS_MIN_MSECS 1
10130 #define WAIT_REFS_MAX_MSECS 250
10131 /**
10132 * netdev_wait_allrefs - wait until all references are gone.
10133 * @dev: target net_device
10134 *
10135 * This is called when unregistering network devices.
10136 *
10137 * Any protocol or device that holds a reference should register
10138 * for netdevice notification, and cleanup and put back the
10139 * reference if they receive an UNREGISTER event.
10140 * We can get stuck here if buggy protocols don't correctly
10141 * call dev_put.
10142 */
netdev_wait_allrefs(struct net_device * dev)10143 static void netdev_wait_allrefs(struct net_device *dev)
10144 {
10145 unsigned long rebroadcast_time, warning_time;
10146 int wait = 0, refcnt;
10147
10148 linkwatch_forget_dev(dev);
10149
10150 rebroadcast_time = warning_time = jiffies;
10151 refcnt = netdev_refcnt_read(dev);
10152
10153 while (refcnt != 0) {
10154 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10155 rtnl_lock();
10156
10157 /* Rebroadcast unregister notification */
10158 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10159
10160 __rtnl_unlock();
10161 rcu_barrier();
10162 rtnl_lock();
10163
10164 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10165 &dev->state)) {
10166 /* We must not have linkwatch events
10167 * pending on unregister. If this
10168 * happens, we simply run the queue
10169 * unscheduled, resulting in a noop
10170 * for this device.
10171 */
10172 linkwatch_run_queue();
10173 }
10174
10175 __rtnl_unlock();
10176
10177 rebroadcast_time = jiffies;
10178 }
10179
10180 if (!wait) {
10181 rcu_barrier();
10182 wait = WAIT_REFS_MIN_MSECS;
10183 } else {
10184 msleep(wait);
10185 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10186 }
10187
10188 refcnt = netdev_refcnt_read(dev);
10189
10190 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
10191 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10192 dev->name, refcnt);
10193 warning_time = jiffies;
10194 }
10195 }
10196 }
10197
10198 /* The sequence is:
10199 *
10200 * rtnl_lock();
10201 * ...
10202 * register_netdevice(x1);
10203 * register_netdevice(x2);
10204 * ...
10205 * unregister_netdevice(y1);
10206 * unregister_netdevice(y2);
10207 * ...
10208 * rtnl_unlock();
10209 * free_netdev(y1);
10210 * free_netdev(y2);
10211 *
10212 * We are invoked by rtnl_unlock().
10213 * This allows us to deal with problems:
10214 * 1) We can delete sysfs objects which invoke hotplug
10215 * without deadlocking with linkwatch via keventd.
10216 * 2) Since we run with the RTNL semaphore not held, we can sleep
10217 * safely in order to wait for the netdev refcnt to drop to zero.
10218 *
10219 * We must not return until all unregister events added during
10220 * the interval the lock was held have been completed.
10221 */
netdev_run_todo(void)10222 void netdev_run_todo(void)
10223 {
10224 struct list_head list;
10225 #ifdef CONFIG_LOCKDEP
10226 struct list_head unlink_list;
10227
10228 list_replace_init(&net_unlink_list, &unlink_list);
10229
10230 while (!list_empty(&unlink_list)) {
10231 struct net_device *dev = list_first_entry(&unlink_list,
10232 struct net_device,
10233 unlink_list);
10234 list_del_init(&dev->unlink_list);
10235 dev->nested_level = dev->lower_level - 1;
10236 }
10237 #endif
10238
10239 /* Snapshot list, allow later requests */
10240 list_replace_init(&net_todo_list, &list);
10241
10242 __rtnl_unlock();
10243
10244
10245 /* Wait for rcu callbacks to finish before next phase */
10246 if (!list_empty(&list))
10247 rcu_barrier();
10248
10249 while (!list_empty(&list)) {
10250 struct net_device *dev
10251 = list_first_entry(&list, struct net_device, todo_list);
10252 list_del(&dev->todo_list);
10253
10254 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10255 pr_err("network todo '%s' but state %d\n",
10256 dev->name, dev->reg_state);
10257 dump_stack();
10258 continue;
10259 }
10260
10261 dev->reg_state = NETREG_UNREGISTERED;
10262
10263 netdev_wait_allrefs(dev);
10264
10265 /* paranoia */
10266 BUG_ON(netdev_refcnt_read(dev));
10267 BUG_ON(!list_empty(&dev->ptype_all));
10268 BUG_ON(!list_empty(&dev->ptype_specific));
10269 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10270 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10271 #if IS_ENABLED(CONFIG_DECNET)
10272 WARN_ON(dev->dn_ptr);
10273 #endif
10274 if (dev->priv_destructor)
10275 dev->priv_destructor(dev);
10276 if (dev->needs_free_netdev)
10277 free_netdev(dev);
10278
10279 /* Report a network device has been unregistered */
10280 rtnl_lock();
10281 dev_net(dev)->dev_unreg_count--;
10282 __rtnl_unlock();
10283 wake_up(&netdev_unregistering_wq);
10284
10285 /* Free network device */
10286 kobject_put(&dev->dev.kobj);
10287 }
10288 }
10289
10290 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10291 * all the same fields in the same order as net_device_stats, with only
10292 * the type differing, but rtnl_link_stats64 may have additional fields
10293 * at the end for newer counters.
10294 */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)10295 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10296 const struct net_device_stats *netdev_stats)
10297 {
10298 #if BITS_PER_LONG == 64
10299 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10300 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10301 /* zero out counters that only exist in rtnl_link_stats64 */
10302 memset((char *)stats64 + sizeof(*netdev_stats), 0,
10303 sizeof(*stats64) - sizeof(*netdev_stats));
10304 #else
10305 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10306 const unsigned long *src = (const unsigned long *)netdev_stats;
10307 u64 *dst = (u64 *)stats64;
10308
10309 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10310 for (i = 0; i < n; i++)
10311 dst[i] = src[i];
10312 /* zero out counters that only exist in rtnl_link_stats64 */
10313 memset((char *)stats64 + n * sizeof(u64), 0,
10314 sizeof(*stats64) - n * sizeof(u64));
10315 #endif
10316 }
10317 EXPORT_SYMBOL(netdev_stats_to_stats64);
10318
10319 /**
10320 * dev_get_stats - get network device statistics
10321 * @dev: device to get statistics from
10322 * @storage: place to store stats
10323 *
10324 * Get network statistics from device. Return @storage.
10325 * The device driver may provide its own method by setting
10326 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10327 * otherwise the internal statistics structure is used.
10328 */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)10329 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10330 struct rtnl_link_stats64 *storage)
10331 {
10332 const struct net_device_ops *ops = dev->netdev_ops;
10333
10334 if (ops->ndo_get_stats64) {
10335 memset(storage, 0, sizeof(*storage));
10336 ops->ndo_get_stats64(dev, storage);
10337 } else if (ops->ndo_get_stats) {
10338 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10339 } else {
10340 netdev_stats_to_stats64(storage, &dev->stats);
10341 }
10342 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10343 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10344 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10345 return storage;
10346 }
10347 EXPORT_SYMBOL(dev_get_stats);
10348
10349 /**
10350 * dev_fetch_sw_netstats - get per-cpu network device statistics
10351 * @s: place to store stats
10352 * @netstats: per-cpu network stats to read from
10353 *
10354 * Read per-cpu network statistics and populate the related fields in @s.
10355 */
dev_fetch_sw_netstats(struct rtnl_link_stats64 * s,const struct pcpu_sw_netstats __percpu * netstats)10356 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10357 const struct pcpu_sw_netstats __percpu *netstats)
10358 {
10359 int cpu;
10360
10361 for_each_possible_cpu(cpu) {
10362 const struct pcpu_sw_netstats *stats;
10363 struct pcpu_sw_netstats tmp;
10364 unsigned int start;
10365
10366 stats = per_cpu_ptr(netstats, cpu);
10367 do {
10368 start = u64_stats_fetch_begin_irq(&stats->syncp);
10369 tmp.rx_packets = stats->rx_packets;
10370 tmp.rx_bytes = stats->rx_bytes;
10371 tmp.tx_packets = stats->tx_packets;
10372 tmp.tx_bytes = stats->tx_bytes;
10373 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10374
10375 s->rx_packets += tmp.rx_packets;
10376 s->rx_bytes += tmp.rx_bytes;
10377 s->tx_packets += tmp.tx_packets;
10378 s->tx_bytes += tmp.tx_bytes;
10379 }
10380 }
10381 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10382
dev_ingress_queue_create(struct net_device * dev)10383 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10384 {
10385 struct netdev_queue *queue = dev_ingress_queue(dev);
10386
10387 #ifdef CONFIG_NET_CLS_ACT
10388 if (queue)
10389 return queue;
10390 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10391 if (!queue)
10392 return NULL;
10393 netdev_init_one_queue(dev, queue, NULL);
10394 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10395 queue->qdisc_sleeping = &noop_qdisc;
10396 rcu_assign_pointer(dev->ingress_queue, queue);
10397 #endif
10398 return queue;
10399 }
10400
10401 static const struct ethtool_ops default_ethtool_ops;
10402
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)10403 void netdev_set_default_ethtool_ops(struct net_device *dev,
10404 const struct ethtool_ops *ops)
10405 {
10406 if (dev->ethtool_ops == &default_ethtool_ops)
10407 dev->ethtool_ops = ops;
10408 }
10409 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10410
netdev_freemem(struct net_device * dev)10411 void netdev_freemem(struct net_device *dev)
10412 {
10413 char *addr = (char *)dev - dev->padded;
10414
10415 kvfree(addr);
10416 }
10417
10418 /**
10419 * alloc_netdev_mqs - allocate network device
10420 * @sizeof_priv: size of private data to allocate space for
10421 * @name: device name format string
10422 * @name_assign_type: origin of device name
10423 * @setup: callback to initialize device
10424 * @txqs: the number of TX subqueues to allocate
10425 * @rxqs: the number of RX subqueues to allocate
10426 *
10427 * Allocates a struct net_device with private data area for driver use
10428 * and performs basic initialization. Also allocates subqueue structs
10429 * for each queue on the device.
10430 */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)10431 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10432 unsigned char name_assign_type,
10433 void (*setup)(struct net_device *),
10434 unsigned int txqs, unsigned int rxqs)
10435 {
10436 struct net_device *dev;
10437 unsigned int alloc_size;
10438 struct net_device *p;
10439
10440 BUG_ON(strlen(name) >= sizeof(dev->name));
10441
10442 if (txqs < 1) {
10443 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10444 return NULL;
10445 }
10446
10447 if (rxqs < 1) {
10448 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10449 return NULL;
10450 }
10451
10452 alloc_size = sizeof(struct net_device);
10453 if (sizeof_priv) {
10454 /* ensure 32-byte alignment of private area */
10455 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10456 alloc_size += sizeof_priv;
10457 }
10458 /* ensure 32-byte alignment of whole construct */
10459 alloc_size += NETDEV_ALIGN - 1;
10460
10461 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10462 if (!p)
10463 return NULL;
10464
10465 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10466 dev->padded = (char *)dev - (char *)p;
10467
10468 dev->pcpu_refcnt = alloc_percpu(int);
10469 if (!dev->pcpu_refcnt)
10470 goto free_dev;
10471
10472 if (dev_addr_init(dev))
10473 goto free_pcpu;
10474
10475 dev_mc_init(dev);
10476 dev_uc_init(dev);
10477
10478 dev_net_set(dev, &init_net);
10479
10480 dev->gso_max_size = GSO_MAX_SIZE;
10481 dev->gso_max_segs = GSO_MAX_SEGS;
10482 dev->upper_level = 1;
10483 dev->lower_level = 1;
10484 #ifdef CONFIG_LOCKDEP
10485 dev->nested_level = 0;
10486 INIT_LIST_HEAD(&dev->unlink_list);
10487 #endif
10488
10489 INIT_LIST_HEAD(&dev->napi_list);
10490 INIT_LIST_HEAD(&dev->unreg_list);
10491 INIT_LIST_HEAD(&dev->close_list);
10492 INIT_LIST_HEAD(&dev->link_watch_list);
10493 INIT_LIST_HEAD(&dev->adj_list.upper);
10494 INIT_LIST_HEAD(&dev->adj_list.lower);
10495 INIT_LIST_HEAD(&dev->ptype_all);
10496 INIT_LIST_HEAD(&dev->ptype_specific);
10497 INIT_LIST_HEAD(&dev->net_notifier_list);
10498 #ifdef CONFIG_NET_SCHED
10499 hash_init(dev->qdisc_hash);
10500 #endif
10501 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10502 setup(dev);
10503
10504 if (!dev->tx_queue_len) {
10505 dev->priv_flags |= IFF_NO_QUEUE;
10506 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10507 }
10508
10509 dev->num_tx_queues = txqs;
10510 dev->real_num_tx_queues = txqs;
10511 if (netif_alloc_netdev_queues(dev))
10512 goto free_all;
10513
10514 dev->num_rx_queues = rxqs;
10515 dev->real_num_rx_queues = rxqs;
10516 if (netif_alloc_rx_queues(dev))
10517 goto free_all;
10518
10519 strcpy(dev->name, name);
10520 dev->name_assign_type = name_assign_type;
10521 dev->group = INIT_NETDEV_GROUP;
10522 if (!dev->ethtool_ops)
10523 dev->ethtool_ops = &default_ethtool_ops;
10524
10525 nf_hook_ingress_init(dev);
10526
10527 return dev;
10528
10529 free_all:
10530 free_netdev(dev);
10531 return NULL;
10532
10533 free_pcpu:
10534 free_percpu(dev->pcpu_refcnt);
10535 free_dev:
10536 netdev_freemem(dev);
10537 return NULL;
10538 }
10539 EXPORT_SYMBOL(alloc_netdev_mqs);
10540
10541 /**
10542 * free_netdev - free network device
10543 * @dev: device
10544 *
10545 * This function does the last stage of destroying an allocated device
10546 * interface. The reference to the device object is released. If this
10547 * is the last reference then it will be freed.Must be called in process
10548 * context.
10549 */
free_netdev(struct net_device * dev)10550 void free_netdev(struct net_device *dev)
10551 {
10552 struct napi_struct *p, *n;
10553
10554 might_sleep();
10555 netif_free_tx_queues(dev);
10556 netif_free_rx_queues(dev);
10557
10558 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10559
10560 /* Flush device addresses */
10561 dev_addr_flush(dev);
10562
10563 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10564 netif_napi_del(p);
10565
10566 free_percpu(dev->pcpu_refcnt);
10567 dev->pcpu_refcnt = NULL;
10568 free_percpu(dev->xdp_bulkq);
10569 dev->xdp_bulkq = NULL;
10570
10571 /* Compatibility with error handling in drivers */
10572 if (dev->reg_state == NETREG_UNINITIALIZED) {
10573 netdev_freemem(dev);
10574 return;
10575 }
10576
10577 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10578 dev->reg_state = NETREG_RELEASED;
10579
10580 /* will free via device release */
10581 put_device(&dev->dev);
10582 }
10583 EXPORT_SYMBOL(free_netdev);
10584
10585 /**
10586 * synchronize_net - Synchronize with packet receive processing
10587 *
10588 * Wait for packets currently being received to be done.
10589 * Does not block later packets from starting.
10590 */
synchronize_net(void)10591 void synchronize_net(void)
10592 {
10593 might_sleep();
10594 if (rtnl_is_locked())
10595 synchronize_rcu_expedited();
10596 else
10597 synchronize_rcu();
10598 }
10599 EXPORT_SYMBOL(synchronize_net);
10600
10601 /**
10602 * unregister_netdevice_queue - remove device from the kernel
10603 * @dev: device
10604 * @head: list
10605 *
10606 * This function shuts down a device interface and removes it
10607 * from the kernel tables.
10608 * If head not NULL, device is queued to be unregistered later.
10609 *
10610 * Callers must hold the rtnl semaphore. You may want
10611 * unregister_netdev() instead of this.
10612 */
10613
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)10614 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10615 {
10616 ASSERT_RTNL();
10617
10618 if (head) {
10619 list_move_tail(&dev->unreg_list, head);
10620 } else {
10621 rollback_registered(dev);
10622 /* Finish processing unregister after unlock */
10623 net_set_todo(dev);
10624 }
10625 }
10626 EXPORT_SYMBOL(unregister_netdevice_queue);
10627
10628 /**
10629 * unregister_netdevice_many - unregister many devices
10630 * @head: list of devices
10631 *
10632 * Note: As most callers use a stack allocated list_head,
10633 * we force a list_del() to make sure stack wont be corrupted later.
10634 */
unregister_netdevice_many(struct list_head * head)10635 void unregister_netdevice_many(struct list_head *head)
10636 {
10637 struct net_device *dev;
10638
10639 if (!list_empty(head)) {
10640 rollback_registered_many(head);
10641 list_for_each_entry(dev, head, unreg_list)
10642 net_set_todo(dev);
10643 list_del(head);
10644 }
10645 }
10646 EXPORT_SYMBOL(unregister_netdevice_many);
10647
10648 /**
10649 * unregister_netdev - remove device from the kernel
10650 * @dev: device
10651 *
10652 * This function shuts down a device interface and removes it
10653 * from the kernel tables.
10654 *
10655 * This is just a wrapper for unregister_netdevice that takes
10656 * the rtnl semaphore. In general you want to use this and not
10657 * unregister_netdevice.
10658 */
unregister_netdev(struct net_device * dev)10659 void unregister_netdev(struct net_device *dev)
10660 {
10661 rtnl_lock();
10662 unregister_netdevice(dev);
10663 rtnl_unlock();
10664 }
10665 EXPORT_SYMBOL(unregister_netdev);
10666
10667 /**
10668 * dev_change_net_namespace - move device to different nethost namespace
10669 * @dev: device
10670 * @net: network namespace
10671 * @pat: If not NULL name pattern to try if the current device name
10672 * is already taken in the destination network namespace.
10673 *
10674 * This function shuts down a device interface and moves it
10675 * to a new network namespace. On success 0 is returned, on
10676 * a failure a netagive errno code is returned.
10677 *
10678 * Callers must hold the rtnl semaphore.
10679 */
10680
dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat)10681 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10682 {
10683 struct net *net_old = dev_net(dev);
10684 int err, new_nsid, new_ifindex;
10685
10686 ASSERT_RTNL();
10687
10688 /* Don't allow namespace local devices to be moved. */
10689 err = -EINVAL;
10690 if (dev->features & NETIF_F_NETNS_LOCAL)
10691 goto out;
10692
10693 /* Ensure the device has been registrered */
10694 if (dev->reg_state != NETREG_REGISTERED)
10695 goto out;
10696
10697 /* Get out if there is nothing todo */
10698 err = 0;
10699 if (net_eq(net_old, net))
10700 goto out;
10701
10702 /* Pick the destination device name, and ensure
10703 * we can use it in the destination network namespace.
10704 */
10705 err = -EEXIST;
10706 if (__dev_get_by_name(net, dev->name)) {
10707 /* We get here if we can't use the current device name */
10708 if (!pat)
10709 goto out;
10710 err = dev_get_valid_name(net, dev, pat);
10711 if (err < 0)
10712 goto out;
10713 }
10714
10715 /*
10716 * And now a mini version of register_netdevice unregister_netdevice.
10717 */
10718
10719 /* If device is running close it first. */
10720 dev_close(dev);
10721
10722 /* And unlink it from device chain */
10723 unlist_netdevice(dev);
10724
10725 synchronize_net();
10726
10727 /* Shutdown queueing discipline. */
10728 dev_shutdown(dev);
10729
10730 /* Notify protocols, that we are about to destroy
10731 * this device. They should clean all the things.
10732 *
10733 * Note that dev->reg_state stays at NETREG_REGISTERED.
10734 * This is wanted because this way 8021q and macvlan know
10735 * the device is just moving and can keep their slaves up.
10736 */
10737 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10738 rcu_barrier();
10739
10740 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10741 /* If there is an ifindex conflict assign a new one */
10742 if (__dev_get_by_index(net, dev->ifindex))
10743 new_ifindex = dev_new_index(net);
10744 else
10745 new_ifindex = dev->ifindex;
10746
10747 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10748 new_ifindex);
10749
10750 /*
10751 * Flush the unicast and multicast chains
10752 */
10753 dev_uc_flush(dev);
10754 dev_mc_flush(dev);
10755
10756 /* Send a netdev-removed uevent to the old namespace */
10757 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10758 netdev_adjacent_del_links(dev);
10759
10760 /* Move per-net netdevice notifiers that are following the netdevice */
10761 move_netdevice_notifiers_dev_net(dev, net);
10762
10763 /* Actually switch the network namespace */
10764 dev_net_set(dev, net);
10765 dev->ifindex = new_ifindex;
10766
10767 /* Send a netdev-add uevent to the new namespace */
10768 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10769 netdev_adjacent_add_links(dev);
10770
10771 /* Fixup kobjects */
10772 err = device_rename(&dev->dev, dev->name);
10773 WARN_ON(err);
10774
10775 /* Adapt owner in case owning user namespace of target network
10776 * namespace is different from the original one.
10777 */
10778 err = netdev_change_owner(dev, net_old, net);
10779 WARN_ON(err);
10780
10781 /* Add the device back in the hashes */
10782 list_netdevice(dev);
10783
10784 /* Notify protocols, that a new device appeared. */
10785 call_netdevice_notifiers(NETDEV_REGISTER, dev);
10786
10787 /*
10788 * Prevent userspace races by waiting until the network
10789 * device is fully setup before sending notifications.
10790 */
10791 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10792
10793 synchronize_net();
10794 err = 0;
10795 out:
10796 return err;
10797 }
10798 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10799
dev_cpu_dead(unsigned int oldcpu)10800 static int dev_cpu_dead(unsigned int oldcpu)
10801 {
10802 struct sk_buff **list_skb;
10803 struct sk_buff *skb;
10804 unsigned int cpu;
10805 struct softnet_data *sd, *oldsd, *remsd = NULL;
10806
10807 local_irq_disable();
10808 cpu = smp_processor_id();
10809 sd = &per_cpu(softnet_data, cpu);
10810 oldsd = &per_cpu(softnet_data, oldcpu);
10811
10812 /* Find end of our completion_queue. */
10813 list_skb = &sd->completion_queue;
10814 while (*list_skb)
10815 list_skb = &(*list_skb)->next;
10816 /* Append completion queue from offline CPU. */
10817 *list_skb = oldsd->completion_queue;
10818 oldsd->completion_queue = NULL;
10819
10820 /* Append output queue from offline CPU. */
10821 if (oldsd->output_queue) {
10822 *sd->output_queue_tailp = oldsd->output_queue;
10823 sd->output_queue_tailp = oldsd->output_queue_tailp;
10824 oldsd->output_queue = NULL;
10825 oldsd->output_queue_tailp = &oldsd->output_queue;
10826 }
10827 /* Append NAPI poll list from offline CPU, with one exception :
10828 * process_backlog() must be called by cpu owning percpu backlog.
10829 * We properly handle process_queue & input_pkt_queue later.
10830 */
10831 while (!list_empty(&oldsd->poll_list)) {
10832 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10833 struct napi_struct,
10834 poll_list);
10835
10836 list_del_init(&napi->poll_list);
10837 if (napi->poll == process_backlog)
10838 napi->state = 0;
10839 else
10840 ____napi_schedule(sd, napi);
10841 }
10842
10843 raise_softirq_irqoff(NET_TX_SOFTIRQ);
10844 local_irq_enable();
10845
10846 #ifdef CONFIG_RPS
10847 remsd = oldsd->rps_ipi_list;
10848 oldsd->rps_ipi_list = NULL;
10849 #endif
10850 /* send out pending IPI's on offline CPU */
10851 net_rps_send_ipi(remsd);
10852
10853 /* Process offline CPU's input_pkt_queue */
10854 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10855 netif_rx_ni(skb);
10856 input_queue_head_incr(oldsd);
10857 }
10858 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10859 netif_rx_ni(skb);
10860 input_queue_head_incr(oldsd);
10861 }
10862
10863 return 0;
10864 }
10865
10866 /**
10867 * netdev_increment_features - increment feature set by one
10868 * @all: current feature set
10869 * @one: new feature set
10870 * @mask: mask feature set
10871 *
10872 * Computes a new feature set after adding a device with feature set
10873 * @one to the master device with current feature set @all. Will not
10874 * enable anything that is off in @mask. Returns the new feature set.
10875 */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)10876 netdev_features_t netdev_increment_features(netdev_features_t all,
10877 netdev_features_t one, netdev_features_t mask)
10878 {
10879 if (mask & NETIF_F_HW_CSUM)
10880 mask |= NETIF_F_CSUM_MASK;
10881 mask |= NETIF_F_VLAN_CHALLENGED;
10882
10883 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10884 all &= one | ~NETIF_F_ALL_FOR_ALL;
10885
10886 /* If one device supports hw checksumming, set for all. */
10887 if (all & NETIF_F_HW_CSUM)
10888 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10889
10890 return all;
10891 }
10892 EXPORT_SYMBOL(netdev_increment_features);
10893
netdev_create_hash(void)10894 static struct hlist_head * __net_init netdev_create_hash(void)
10895 {
10896 int i;
10897 struct hlist_head *hash;
10898
10899 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10900 if (hash != NULL)
10901 for (i = 0; i < NETDEV_HASHENTRIES; i++)
10902 INIT_HLIST_HEAD(&hash[i]);
10903
10904 return hash;
10905 }
10906
10907 /* Initialize per network namespace state */
netdev_init(struct net * net)10908 static int __net_init netdev_init(struct net *net)
10909 {
10910 BUILD_BUG_ON(GRO_HASH_BUCKETS >
10911 8 * sizeof_field(struct napi_struct, gro_bitmask));
10912
10913 if (net != &init_net)
10914 INIT_LIST_HEAD(&net->dev_base_head);
10915
10916 net->dev_name_head = netdev_create_hash();
10917 if (net->dev_name_head == NULL)
10918 goto err_name;
10919
10920 net->dev_index_head = netdev_create_hash();
10921 if (net->dev_index_head == NULL)
10922 goto err_idx;
10923
10924 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10925
10926 return 0;
10927
10928 err_idx:
10929 kfree(net->dev_name_head);
10930 err_name:
10931 return -ENOMEM;
10932 }
10933
10934 /**
10935 * netdev_drivername - network driver for the device
10936 * @dev: network device
10937 *
10938 * Determine network driver for device.
10939 */
netdev_drivername(const struct net_device * dev)10940 const char *netdev_drivername(const struct net_device *dev)
10941 {
10942 const struct device_driver *driver;
10943 const struct device *parent;
10944 const char *empty = "";
10945
10946 parent = dev->dev.parent;
10947 if (!parent)
10948 return empty;
10949
10950 driver = parent->driver;
10951 if (driver && driver->name)
10952 return driver->name;
10953 return empty;
10954 }
10955
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)10956 static void __netdev_printk(const char *level, const struct net_device *dev,
10957 struct va_format *vaf)
10958 {
10959 if (dev && dev->dev.parent) {
10960 dev_printk_emit(level[1] - '0',
10961 dev->dev.parent,
10962 "%s %s %s%s: %pV",
10963 dev_driver_string(dev->dev.parent),
10964 dev_name(dev->dev.parent),
10965 netdev_name(dev), netdev_reg_state(dev),
10966 vaf);
10967 } else if (dev) {
10968 printk("%s%s%s: %pV",
10969 level, netdev_name(dev), netdev_reg_state(dev), vaf);
10970 } else {
10971 printk("%s(NULL net_device): %pV", level, vaf);
10972 }
10973 }
10974
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)10975 void netdev_printk(const char *level, const struct net_device *dev,
10976 const char *format, ...)
10977 {
10978 struct va_format vaf;
10979 va_list args;
10980
10981 va_start(args, format);
10982
10983 vaf.fmt = format;
10984 vaf.va = &args;
10985
10986 __netdev_printk(level, dev, &vaf);
10987
10988 va_end(args);
10989 }
10990 EXPORT_SYMBOL(netdev_printk);
10991
10992 #define define_netdev_printk_level(func, level) \
10993 void func(const struct net_device *dev, const char *fmt, ...) \
10994 { \
10995 struct va_format vaf; \
10996 va_list args; \
10997 \
10998 va_start(args, fmt); \
10999 \
11000 vaf.fmt = fmt; \
11001 vaf.va = &args; \
11002 \
11003 __netdev_printk(level, dev, &vaf); \
11004 \
11005 va_end(args); \
11006 } \
11007 EXPORT_SYMBOL(func);
11008
11009 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11010 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11011 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11012 define_netdev_printk_level(netdev_err, KERN_ERR);
11013 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11014 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11015 define_netdev_printk_level(netdev_info, KERN_INFO);
11016
netdev_exit(struct net * net)11017 static void __net_exit netdev_exit(struct net *net)
11018 {
11019 kfree(net->dev_name_head);
11020 kfree(net->dev_index_head);
11021 if (net != &init_net)
11022 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11023 }
11024
11025 static struct pernet_operations __net_initdata netdev_net_ops = {
11026 .init = netdev_init,
11027 .exit = netdev_exit,
11028 };
11029
default_device_exit(struct net * net)11030 static void __net_exit default_device_exit(struct net *net)
11031 {
11032 struct net_device *dev, *aux;
11033 /*
11034 * Push all migratable network devices back to the
11035 * initial network namespace
11036 */
11037 rtnl_lock();
11038 for_each_netdev_safe(net, dev, aux) {
11039 int err;
11040 char fb_name[IFNAMSIZ];
11041
11042 /* Ignore unmoveable devices (i.e. loopback) */
11043 if (dev->features & NETIF_F_NETNS_LOCAL)
11044 continue;
11045
11046 /* Leave virtual devices for the generic cleanup */
11047 if (dev->rtnl_link_ops)
11048 continue;
11049
11050 /* Push remaining network devices to init_net */
11051 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11052 if (__dev_get_by_name(&init_net, fb_name))
11053 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11054 err = dev_change_net_namespace(dev, &init_net, fb_name);
11055 if (err) {
11056 pr_emerg("%s: failed to move %s to init_net: %d\n",
11057 __func__, dev->name, err);
11058 BUG();
11059 }
11060 }
11061 rtnl_unlock();
11062 }
11063
rtnl_lock_unregistering(struct list_head * net_list)11064 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11065 {
11066 /* Return with the rtnl_lock held when there are no network
11067 * devices unregistering in any network namespace in net_list.
11068 */
11069 struct net *net;
11070 bool unregistering;
11071 DEFINE_WAIT_FUNC(wait, woken_wake_function);
11072
11073 add_wait_queue(&netdev_unregistering_wq, &wait);
11074 for (;;) {
11075 unregistering = false;
11076 rtnl_lock();
11077 list_for_each_entry(net, net_list, exit_list) {
11078 if (net->dev_unreg_count > 0) {
11079 unregistering = true;
11080 break;
11081 }
11082 }
11083 if (!unregistering)
11084 break;
11085 __rtnl_unlock();
11086
11087 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11088 }
11089 remove_wait_queue(&netdev_unregistering_wq, &wait);
11090 }
11091
default_device_exit_batch(struct list_head * net_list)11092 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11093 {
11094 /* At exit all network devices most be removed from a network
11095 * namespace. Do this in the reverse order of registration.
11096 * Do this across as many network namespaces as possible to
11097 * improve batching efficiency.
11098 */
11099 struct net_device *dev;
11100 struct net *net;
11101 LIST_HEAD(dev_kill_list);
11102
11103 /* To prevent network device cleanup code from dereferencing
11104 * loopback devices or network devices that have been freed
11105 * wait here for all pending unregistrations to complete,
11106 * before unregistring the loopback device and allowing the
11107 * network namespace be freed.
11108 *
11109 * The netdev todo list containing all network devices
11110 * unregistrations that happen in default_device_exit_batch
11111 * will run in the rtnl_unlock() at the end of
11112 * default_device_exit_batch.
11113 */
11114 rtnl_lock_unregistering(net_list);
11115 list_for_each_entry(net, net_list, exit_list) {
11116 for_each_netdev_reverse(net, dev) {
11117 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11118 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11119 else
11120 unregister_netdevice_queue(dev, &dev_kill_list);
11121 }
11122 }
11123 unregister_netdevice_many(&dev_kill_list);
11124 rtnl_unlock();
11125 }
11126
11127 static struct pernet_operations __net_initdata default_device_ops = {
11128 .exit = default_device_exit,
11129 .exit_batch = default_device_exit_batch,
11130 };
11131
11132 /*
11133 * Initialize the DEV module. At boot time this walks the device list and
11134 * unhooks any devices that fail to initialise (normally hardware not
11135 * present) and leaves us with a valid list of present and active devices.
11136 *
11137 */
11138
11139 /*
11140 * This is called single threaded during boot, so no need
11141 * to take the rtnl semaphore.
11142 */
net_dev_init(void)11143 static int __init net_dev_init(void)
11144 {
11145 int i, rc = -ENOMEM;
11146
11147 BUG_ON(!dev_boot_phase);
11148
11149 if (dev_proc_init())
11150 goto out;
11151
11152 if (netdev_kobject_init())
11153 goto out;
11154
11155 INIT_LIST_HEAD(&ptype_all);
11156 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11157 INIT_LIST_HEAD(&ptype_base[i]);
11158
11159 INIT_LIST_HEAD(&offload_base);
11160
11161 if (register_pernet_subsys(&netdev_net_ops))
11162 goto out;
11163
11164 /*
11165 * Initialise the packet receive queues.
11166 */
11167
11168 for_each_possible_cpu(i) {
11169 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11170 struct softnet_data *sd = &per_cpu(softnet_data, i);
11171
11172 INIT_WORK(flush, flush_backlog);
11173
11174 skb_queue_head_init(&sd->input_pkt_queue);
11175 skb_queue_head_init(&sd->process_queue);
11176 #ifdef CONFIG_XFRM_OFFLOAD
11177 skb_queue_head_init(&sd->xfrm_backlog);
11178 #endif
11179 INIT_LIST_HEAD(&sd->poll_list);
11180 sd->output_queue_tailp = &sd->output_queue;
11181 #ifdef CONFIG_RPS
11182 sd->csd.func = rps_trigger_softirq;
11183 sd->csd.info = sd;
11184 sd->cpu = i;
11185 #endif
11186
11187 init_gro_hash(&sd->backlog);
11188 sd->backlog.poll = process_backlog;
11189 sd->backlog.weight = weight_p;
11190 }
11191
11192 dev_boot_phase = 0;
11193
11194 /* The loopback device is special if any other network devices
11195 * is present in a network namespace the loopback device must
11196 * be present. Since we now dynamically allocate and free the
11197 * loopback device ensure this invariant is maintained by
11198 * keeping the loopback device as the first device on the
11199 * list of network devices. Ensuring the loopback devices
11200 * is the first device that appears and the last network device
11201 * that disappears.
11202 */
11203 if (register_pernet_device(&loopback_net_ops))
11204 goto out;
11205
11206 if (register_pernet_device(&default_device_ops))
11207 goto out;
11208
11209 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11210 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11211
11212 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11213 NULL, dev_cpu_dead);
11214 WARN_ON(rc < 0);
11215 rc = 0;
11216 out:
11217 return rc;
11218 }
11219
11220 subsys_initcall(net_dev_init);
11221