1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Network filesystem high-level read support.
3  *
4  * Copyright (C) 2021 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/module.h>
9 #include <linux/export.h>
10 #include <linux/fs.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/slab.h>
14 #include <linux/uio.h>
15 #include <linux/sched/mm.h>
16 #include <linux/task_io_accounting_ops.h>
17 #include <linux/netfs.h>
18 #include "internal.h"
19 #define CREATE_TRACE_POINTS
20 #include <trace/events/netfs.h>
21 
22 MODULE_DESCRIPTION("Network fs support");
23 MODULE_AUTHOR("Red Hat, Inc.");
24 MODULE_LICENSE("GPL");
25 
26 unsigned netfs_debug;
27 module_param_named(debug, netfs_debug, uint, S_IWUSR | S_IRUGO);
28 MODULE_PARM_DESC(netfs_debug, "Netfs support debugging mask");
29 
30 static void netfs_rreq_work(struct work_struct *);
31 static void __netfs_put_subrequest(struct netfs_read_subrequest *, bool);
32 
netfs_put_subrequest(struct netfs_read_subrequest * subreq,bool was_async)33 static void netfs_put_subrequest(struct netfs_read_subrequest *subreq,
34 				 bool was_async)
35 {
36 	if (refcount_dec_and_test(&subreq->usage))
37 		__netfs_put_subrequest(subreq, was_async);
38 }
39 
netfs_alloc_read_request(const struct netfs_read_request_ops * ops,void * netfs_priv,struct file * file)40 static struct netfs_read_request *netfs_alloc_read_request(
41 	const struct netfs_read_request_ops *ops, void *netfs_priv,
42 	struct file *file)
43 {
44 	static atomic_t debug_ids;
45 	struct netfs_read_request *rreq;
46 
47 	rreq = kzalloc(sizeof(struct netfs_read_request), GFP_KERNEL);
48 	if (rreq) {
49 		rreq->netfs_ops	= ops;
50 		rreq->netfs_priv = netfs_priv;
51 		rreq->inode	= file_inode(file);
52 		rreq->i_size	= i_size_read(rreq->inode);
53 		rreq->debug_id	= atomic_inc_return(&debug_ids);
54 		INIT_LIST_HEAD(&rreq->subrequests);
55 		INIT_WORK(&rreq->work, netfs_rreq_work);
56 		refcount_set(&rreq->usage, 1);
57 		__set_bit(NETFS_RREQ_IN_PROGRESS, &rreq->flags);
58 		ops->init_rreq(rreq, file);
59 		netfs_stat(&netfs_n_rh_rreq);
60 	}
61 
62 	return rreq;
63 }
64 
netfs_get_read_request(struct netfs_read_request * rreq)65 static void netfs_get_read_request(struct netfs_read_request *rreq)
66 {
67 	refcount_inc(&rreq->usage);
68 }
69 
netfs_rreq_clear_subreqs(struct netfs_read_request * rreq,bool was_async)70 static void netfs_rreq_clear_subreqs(struct netfs_read_request *rreq,
71 				     bool was_async)
72 {
73 	struct netfs_read_subrequest *subreq;
74 
75 	while (!list_empty(&rreq->subrequests)) {
76 		subreq = list_first_entry(&rreq->subrequests,
77 					  struct netfs_read_subrequest, rreq_link);
78 		list_del(&subreq->rreq_link);
79 		netfs_put_subrequest(subreq, was_async);
80 	}
81 }
82 
netfs_free_read_request(struct work_struct * work)83 static void netfs_free_read_request(struct work_struct *work)
84 {
85 	struct netfs_read_request *rreq =
86 		container_of(work, struct netfs_read_request, work);
87 	netfs_rreq_clear_subreqs(rreq, false);
88 	if (rreq->netfs_priv)
89 		rreq->netfs_ops->cleanup(rreq->mapping, rreq->netfs_priv);
90 	trace_netfs_rreq(rreq, netfs_rreq_trace_free);
91 	if (rreq->cache_resources.ops)
92 		rreq->cache_resources.ops->end_operation(&rreq->cache_resources);
93 	kfree(rreq);
94 	netfs_stat_d(&netfs_n_rh_rreq);
95 }
96 
netfs_put_read_request(struct netfs_read_request * rreq,bool was_async)97 static void netfs_put_read_request(struct netfs_read_request *rreq, bool was_async)
98 {
99 	if (refcount_dec_and_test(&rreq->usage)) {
100 		if (was_async) {
101 			rreq->work.func = netfs_free_read_request;
102 			if (!queue_work(system_unbound_wq, &rreq->work))
103 				BUG();
104 		} else {
105 			netfs_free_read_request(&rreq->work);
106 		}
107 	}
108 }
109 
110 /*
111  * Allocate and partially initialise an I/O request structure.
112  */
netfs_alloc_subrequest(struct netfs_read_request * rreq)113 static struct netfs_read_subrequest *netfs_alloc_subrequest(
114 	struct netfs_read_request *rreq)
115 {
116 	struct netfs_read_subrequest *subreq;
117 
118 	subreq = kzalloc(sizeof(struct netfs_read_subrequest), GFP_KERNEL);
119 	if (subreq) {
120 		INIT_LIST_HEAD(&subreq->rreq_link);
121 		refcount_set(&subreq->usage, 2);
122 		subreq->rreq = rreq;
123 		netfs_get_read_request(rreq);
124 		netfs_stat(&netfs_n_rh_sreq);
125 	}
126 
127 	return subreq;
128 }
129 
netfs_get_read_subrequest(struct netfs_read_subrequest * subreq)130 static void netfs_get_read_subrequest(struct netfs_read_subrequest *subreq)
131 {
132 	refcount_inc(&subreq->usage);
133 }
134 
__netfs_put_subrequest(struct netfs_read_subrequest * subreq,bool was_async)135 static void __netfs_put_subrequest(struct netfs_read_subrequest *subreq,
136 				   bool was_async)
137 {
138 	struct netfs_read_request *rreq = subreq->rreq;
139 
140 	trace_netfs_sreq(subreq, netfs_sreq_trace_free);
141 	kfree(subreq);
142 	netfs_stat_d(&netfs_n_rh_sreq);
143 	netfs_put_read_request(rreq, was_async);
144 }
145 
146 /*
147  * Clear the unread part of an I/O request.
148  */
netfs_clear_unread(struct netfs_read_subrequest * subreq)149 static void netfs_clear_unread(struct netfs_read_subrequest *subreq)
150 {
151 	struct iov_iter iter;
152 
153 	iov_iter_xarray(&iter, READ, &subreq->rreq->mapping->i_pages,
154 			subreq->start + subreq->transferred,
155 			subreq->len   - subreq->transferred);
156 	iov_iter_zero(iov_iter_count(&iter), &iter);
157 }
158 
netfs_cache_read_terminated(void * priv,ssize_t transferred_or_error,bool was_async)159 static void netfs_cache_read_terminated(void *priv, ssize_t transferred_or_error,
160 					bool was_async)
161 {
162 	struct netfs_read_subrequest *subreq = priv;
163 
164 	netfs_subreq_terminated(subreq, transferred_or_error, was_async);
165 }
166 
167 /*
168  * Issue a read against the cache.
169  * - Eats the caller's ref on subreq.
170  */
netfs_read_from_cache(struct netfs_read_request * rreq,struct netfs_read_subrequest * subreq,bool seek_data)171 static void netfs_read_from_cache(struct netfs_read_request *rreq,
172 				  struct netfs_read_subrequest *subreq,
173 				  bool seek_data)
174 {
175 	struct netfs_cache_resources *cres = &rreq->cache_resources;
176 	struct iov_iter iter;
177 
178 	netfs_stat(&netfs_n_rh_read);
179 	iov_iter_xarray(&iter, READ, &rreq->mapping->i_pages,
180 			subreq->start + subreq->transferred,
181 			subreq->len   - subreq->transferred);
182 
183 	cres->ops->read(cres, subreq->start, &iter, seek_data,
184 			netfs_cache_read_terminated, subreq);
185 }
186 
187 /*
188  * Fill a subrequest region with zeroes.
189  */
netfs_fill_with_zeroes(struct netfs_read_request * rreq,struct netfs_read_subrequest * subreq)190 static void netfs_fill_with_zeroes(struct netfs_read_request *rreq,
191 				   struct netfs_read_subrequest *subreq)
192 {
193 	netfs_stat(&netfs_n_rh_zero);
194 	__set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags);
195 	netfs_subreq_terminated(subreq, 0, false);
196 }
197 
198 /*
199  * Ask the netfs to issue a read request to the server for us.
200  *
201  * The netfs is expected to read from subreq->pos + subreq->transferred to
202  * subreq->pos + subreq->len - 1.  It may not backtrack and write data into the
203  * buffer prior to the transferred point as it might clobber dirty data
204  * obtained from the cache.
205  *
206  * Alternatively, the netfs is allowed to indicate one of two things:
207  *
208  * - NETFS_SREQ_SHORT_READ: A short read - it will get called again to try and
209  *   make progress.
210  *
211  * - NETFS_SREQ_CLEAR_TAIL: A short read - the rest of the buffer will be
212  *   cleared.
213  */
netfs_read_from_server(struct netfs_read_request * rreq,struct netfs_read_subrequest * subreq)214 static void netfs_read_from_server(struct netfs_read_request *rreq,
215 				   struct netfs_read_subrequest *subreq)
216 {
217 	netfs_stat(&netfs_n_rh_download);
218 	rreq->netfs_ops->issue_op(subreq);
219 }
220 
221 /*
222  * Release those waiting.
223  */
netfs_rreq_completed(struct netfs_read_request * rreq,bool was_async)224 static void netfs_rreq_completed(struct netfs_read_request *rreq, bool was_async)
225 {
226 	trace_netfs_rreq(rreq, netfs_rreq_trace_done);
227 	netfs_rreq_clear_subreqs(rreq, was_async);
228 	netfs_put_read_request(rreq, was_async);
229 }
230 
231 /*
232  * Deal with the completion of writing the data to the cache.  We have to clear
233  * the PG_fscache bits on the pages involved and release the caller's ref.
234  *
235  * May be called in softirq mode and we inherit a ref from the caller.
236  */
netfs_rreq_unmark_after_write(struct netfs_read_request * rreq,bool was_async)237 static void netfs_rreq_unmark_after_write(struct netfs_read_request *rreq,
238 					  bool was_async)
239 {
240 	struct netfs_read_subrequest *subreq;
241 	struct page *page;
242 	pgoff_t unlocked = 0;
243 	bool have_unlocked = false;
244 
245 	rcu_read_lock();
246 
247 	list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
248 		XA_STATE(xas, &rreq->mapping->i_pages, subreq->start / PAGE_SIZE);
249 
250 		xas_for_each(&xas, page, (subreq->start + subreq->len - 1) / PAGE_SIZE) {
251 			/* We might have multiple writes from the same huge
252 			 * page, but we mustn't unlock a page more than once.
253 			 */
254 			if (have_unlocked && page->index <= unlocked)
255 				continue;
256 			unlocked = page->index;
257 			end_page_fscache(page);
258 			have_unlocked = true;
259 		}
260 	}
261 
262 	rcu_read_unlock();
263 	netfs_rreq_completed(rreq, was_async);
264 }
265 
netfs_rreq_copy_terminated(void * priv,ssize_t transferred_or_error,bool was_async)266 static void netfs_rreq_copy_terminated(void *priv, ssize_t transferred_or_error,
267 				       bool was_async)
268 {
269 	struct netfs_read_subrequest *subreq = priv;
270 	struct netfs_read_request *rreq = subreq->rreq;
271 
272 	if (IS_ERR_VALUE(transferred_or_error)) {
273 		netfs_stat(&netfs_n_rh_write_failed);
274 		trace_netfs_failure(rreq, subreq, transferred_or_error,
275 				    netfs_fail_copy_to_cache);
276 	} else {
277 		netfs_stat(&netfs_n_rh_write_done);
278 	}
279 
280 	trace_netfs_sreq(subreq, netfs_sreq_trace_write_term);
281 
282 	/* If we decrement nr_wr_ops to 0, the ref belongs to us. */
283 	if (atomic_dec_and_test(&rreq->nr_wr_ops))
284 		netfs_rreq_unmark_after_write(rreq, was_async);
285 
286 	netfs_put_subrequest(subreq, was_async);
287 }
288 
289 /*
290  * Perform any outstanding writes to the cache.  We inherit a ref from the
291  * caller.
292  */
netfs_rreq_do_write_to_cache(struct netfs_read_request * rreq)293 static void netfs_rreq_do_write_to_cache(struct netfs_read_request *rreq)
294 {
295 	struct netfs_cache_resources *cres = &rreq->cache_resources;
296 	struct netfs_read_subrequest *subreq, *next, *p;
297 	struct iov_iter iter;
298 	int ret;
299 
300 	trace_netfs_rreq(rreq, netfs_rreq_trace_write);
301 
302 	/* We don't want terminating writes trying to wake us up whilst we're
303 	 * still going through the list.
304 	 */
305 	atomic_inc(&rreq->nr_wr_ops);
306 
307 	list_for_each_entry_safe(subreq, p, &rreq->subrequests, rreq_link) {
308 		if (!test_bit(NETFS_SREQ_WRITE_TO_CACHE, &subreq->flags)) {
309 			list_del_init(&subreq->rreq_link);
310 			netfs_put_subrequest(subreq, false);
311 		}
312 	}
313 
314 	list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
315 		/* Amalgamate adjacent writes */
316 		while (!list_is_last(&subreq->rreq_link, &rreq->subrequests)) {
317 			next = list_next_entry(subreq, rreq_link);
318 			if (next->start != subreq->start + subreq->len)
319 				break;
320 			subreq->len += next->len;
321 			list_del_init(&next->rreq_link);
322 			netfs_put_subrequest(next, false);
323 		}
324 
325 		ret = cres->ops->prepare_write(cres, &subreq->start, &subreq->len,
326 					       rreq->i_size);
327 		if (ret < 0) {
328 			trace_netfs_failure(rreq, subreq, ret, netfs_fail_prepare_write);
329 			trace_netfs_sreq(subreq, netfs_sreq_trace_write_skip);
330 			continue;
331 		}
332 
333 		iov_iter_xarray(&iter, WRITE, &rreq->mapping->i_pages,
334 				subreq->start, subreq->len);
335 
336 		atomic_inc(&rreq->nr_wr_ops);
337 		netfs_stat(&netfs_n_rh_write);
338 		netfs_get_read_subrequest(subreq);
339 		trace_netfs_sreq(subreq, netfs_sreq_trace_write);
340 		cres->ops->write(cres, subreq->start, &iter,
341 				 netfs_rreq_copy_terminated, subreq);
342 	}
343 
344 	/* If we decrement nr_wr_ops to 0, the usage ref belongs to us. */
345 	if (atomic_dec_and_test(&rreq->nr_wr_ops))
346 		netfs_rreq_unmark_after_write(rreq, false);
347 }
348 
netfs_rreq_write_to_cache_work(struct work_struct * work)349 static void netfs_rreq_write_to_cache_work(struct work_struct *work)
350 {
351 	struct netfs_read_request *rreq =
352 		container_of(work, struct netfs_read_request, work);
353 
354 	netfs_rreq_do_write_to_cache(rreq);
355 }
356 
netfs_rreq_write_to_cache(struct netfs_read_request * rreq,bool was_async)357 static void netfs_rreq_write_to_cache(struct netfs_read_request *rreq,
358 				      bool was_async)
359 {
360 	if (was_async) {
361 		rreq->work.func = netfs_rreq_write_to_cache_work;
362 		if (!queue_work(system_unbound_wq, &rreq->work))
363 			BUG();
364 	} else {
365 		netfs_rreq_do_write_to_cache(rreq);
366 	}
367 }
368 
369 /*
370  * Unlock the pages in a read operation.  We need to set PG_fscache on any
371  * pages we're going to write back before we unlock them.
372  */
netfs_rreq_unlock(struct netfs_read_request * rreq)373 static void netfs_rreq_unlock(struct netfs_read_request *rreq)
374 {
375 	struct netfs_read_subrequest *subreq;
376 	struct page *page;
377 	unsigned int iopos, account = 0;
378 	pgoff_t start_page = rreq->start / PAGE_SIZE;
379 	pgoff_t last_page = ((rreq->start + rreq->len) / PAGE_SIZE) - 1;
380 	bool subreq_failed = false;
381 	int i;
382 
383 	XA_STATE(xas, &rreq->mapping->i_pages, start_page);
384 
385 	if (test_bit(NETFS_RREQ_FAILED, &rreq->flags)) {
386 		__clear_bit(NETFS_RREQ_WRITE_TO_CACHE, &rreq->flags);
387 		list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
388 			__clear_bit(NETFS_SREQ_WRITE_TO_CACHE, &subreq->flags);
389 		}
390 	}
391 
392 	/* Walk through the pagecache and the I/O request lists simultaneously.
393 	 * We may have a mixture of cached and uncached sections and we only
394 	 * really want to write out the uncached sections.  This is slightly
395 	 * complicated by the possibility that we might have huge pages with a
396 	 * mixture inside.
397 	 */
398 	subreq = list_first_entry(&rreq->subrequests,
399 				  struct netfs_read_subrequest, rreq_link);
400 	iopos = 0;
401 	subreq_failed = (subreq->error < 0);
402 
403 	trace_netfs_rreq(rreq, netfs_rreq_trace_unlock);
404 
405 	rcu_read_lock();
406 	xas_for_each(&xas, page, last_page) {
407 		unsigned int pgpos = (page->index - start_page) * PAGE_SIZE;
408 		unsigned int pgend = pgpos + thp_size(page);
409 		bool pg_failed = false;
410 
411 		for (;;) {
412 			if (!subreq) {
413 				pg_failed = true;
414 				break;
415 			}
416 			if (test_bit(NETFS_SREQ_WRITE_TO_CACHE, &subreq->flags))
417 				set_page_fscache(page);
418 			pg_failed |= subreq_failed;
419 			if (pgend < iopos + subreq->len)
420 				break;
421 
422 			account += subreq->transferred;
423 			iopos += subreq->len;
424 			if (!list_is_last(&subreq->rreq_link, &rreq->subrequests)) {
425 				subreq = list_next_entry(subreq, rreq_link);
426 				subreq_failed = (subreq->error < 0);
427 			} else {
428 				subreq = NULL;
429 				subreq_failed = false;
430 			}
431 			if (pgend == iopos)
432 				break;
433 		}
434 
435 		if (!pg_failed) {
436 			for (i = 0; i < thp_nr_pages(page); i++)
437 				flush_dcache_page(page);
438 			SetPageUptodate(page);
439 		}
440 
441 		if (!test_bit(NETFS_RREQ_DONT_UNLOCK_PAGES, &rreq->flags)) {
442 			if (page->index == rreq->no_unlock_page &&
443 			    test_bit(NETFS_RREQ_NO_UNLOCK_PAGE, &rreq->flags))
444 				_debug("no unlock");
445 			else
446 				unlock_page(page);
447 		}
448 	}
449 	rcu_read_unlock();
450 
451 	task_io_account_read(account);
452 	if (rreq->netfs_ops->done)
453 		rreq->netfs_ops->done(rreq);
454 }
455 
456 /*
457  * Handle a short read.
458  */
netfs_rreq_short_read(struct netfs_read_request * rreq,struct netfs_read_subrequest * subreq)459 static void netfs_rreq_short_read(struct netfs_read_request *rreq,
460 				  struct netfs_read_subrequest *subreq)
461 {
462 	__clear_bit(NETFS_SREQ_SHORT_READ, &subreq->flags);
463 	__set_bit(NETFS_SREQ_SEEK_DATA_READ, &subreq->flags);
464 
465 	netfs_stat(&netfs_n_rh_short_read);
466 	trace_netfs_sreq(subreq, netfs_sreq_trace_resubmit_short);
467 
468 	netfs_get_read_subrequest(subreq);
469 	atomic_inc(&rreq->nr_rd_ops);
470 	if (subreq->source == NETFS_READ_FROM_CACHE)
471 		netfs_read_from_cache(rreq, subreq, true);
472 	else
473 		netfs_read_from_server(rreq, subreq);
474 }
475 
476 /*
477  * Resubmit any short or failed operations.  Returns true if we got the rreq
478  * ref back.
479  */
netfs_rreq_perform_resubmissions(struct netfs_read_request * rreq)480 static bool netfs_rreq_perform_resubmissions(struct netfs_read_request *rreq)
481 {
482 	struct netfs_read_subrequest *subreq;
483 
484 	WARN_ON(in_interrupt());
485 
486 	trace_netfs_rreq(rreq, netfs_rreq_trace_resubmit);
487 
488 	/* We don't want terminating submissions trying to wake us up whilst
489 	 * we're still going through the list.
490 	 */
491 	atomic_inc(&rreq->nr_rd_ops);
492 
493 	__clear_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
494 	list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
495 		if (subreq->error) {
496 			if (subreq->source != NETFS_READ_FROM_CACHE)
497 				break;
498 			subreq->source = NETFS_DOWNLOAD_FROM_SERVER;
499 			subreq->error = 0;
500 			netfs_stat(&netfs_n_rh_download_instead);
501 			trace_netfs_sreq(subreq, netfs_sreq_trace_download_instead);
502 			netfs_get_read_subrequest(subreq);
503 			atomic_inc(&rreq->nr_rd_ops);
504 			netfs_read_from_server(rreq, subreq);
505 		} else if (test_bit(NETFS_SREQ_SHORT_READ, &subreq->flags)) {
506 			netfs_rreq_short_read(rreq, subreq);
507 		}
508 	}
509 
510 	/* If we decrement nr_rd_ops to 0, the usage ref belongs to us. */
511 	if (atomic_dec_and_test(&rreq->nr_rd_ops))
512 		return true;
513 
514 	wake_up_var(&rreq->nr_rd_ops);
515 	return false;
516 }
517 
518 /*
519  * Check to see if the data read is still valid.
520  */
netfs_rreq_is_still_valid(struct netfs_read_request * rreq)521 static void netfs_rreq_is_still_valid(struct netfs_read_request *rreq)
522 {
523 	struct netfs_read_subrequest *subreq;
524 
525 	if (!rreq->netfs_ops->is_still_valid ||
526 	    rreq->netfs_ops->is_still_valid(rreq))
527 		return;
528 
529 	list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
530 		if (subreq->source == NETFS_READ_FROM_CACHE) {
531 			subreq->error = -ESTALE;
532 			__set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
533 		}
534 	}
535 }
536 
537 /*
538  * Assess the state of a read request and decide what to do next.
539  *
540  * Note that we could be in an ordinary kernel thread, on a workqueue or in
541  * softirq context at this point.  We inherit a ref from the caller.
542  */
netfs_rreq_assess(struct netfs_read_request * rreq,bool was_async)543 static void netfs_rreq_assess(struct netfs_read_request *rreq, bool was_async)
544 {
545 	trace_netfs_rreq(rreq, netfs_rreq_trace_assess);
546 
547 again:
548 	netfs_rreq_is_still_valid(rreq);
549 
550 	if (!test_bit(NETFS_RREQ_FAILED, &rreq->flags) &&
551 	    test_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags)) {
552 		if (netfs_rreq_perform_resubmissions(rreq))
553 			goto again;
554 		return;
555 	}
556 
557 	netfs_rreq_unlock(rreq);
558 
559 	clear_bit_unlock(NETFS_RREQ_IN_PROGRESS, &rreq->flags);
560 	wake_up_bit(&rreq->flags, NETFS_RREQ_IN_PROGRESS);
561 
562 	if (test_bit(NETFS_RREQ_WRITE_TO_CACHE, &rreq->flags))
563 		return netfs_rreq_write_to_cache(rreq, was_async);
564 
565 	netfs_rreq_completed(rreq, was_async);
566 }
567 
netfs_rreq_work(struct work_struct * work)568 static void netfs_rreq_work(struct work_struct *work)
569 {
570 	struct netfs_read_request *rreq =
571 		container_of(work, struct netfs_read_request, work);
572 	netfs_rreq_assess(rreq, false);
573 }
574 
575 /*
576  * Handle the completion of all outstanding I/O operations on a read request.
577  * We inherit a ref from the caller.
578  */
netfs_rreq_terminated(struct netfs_read_request * rreq,bool was_async)579 static void netfs_rreq_terminated(struct netfs_read_request *rreq,
580 				  bool was_async)
581 {
582 	if (test_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags) &&
583 	    was_async) {
584 		if (!queue_work(system_unbound_wq, &rreq->work))
585 			BUG();
586 	} else {
587 		netfs_rreq_assess(rreq, was_async);
588 	}
589 }
590 
591 /**
592  * netfs_subreq_terminated - Note the termination of an I/O operation.
593  * @subreq: The I/O request that has terminated.
594  * @transferred_or_error: The amount of data transferred or an error code.
595  * @was_async: The termination was asynchronous
596  *
597  * This tells the read helper that a contributory I/O operation has terminated,
598  * one way or another, and that it should integrate the results.
599  *
600  * The caller indicates in @transferred_or_error the outcome of the operation,
601  * supplying a positive value to indicate the number of bytes transferred, 0 to
602  * indicate a failure to transfer anything that should be retried or a negative
603  * error code.  The helper will look after reissuing I/O operations as
604  * appropriate and writing downloaded data to the cache.
605  *
606  * If @was_async is true, the caller might be running in softirq or interrupt
607  * context and we can't sleep.
608  */
netfs_subreq_terminated(struct netfs_read_subrequest * subreq,ssize_t transferred_or_error,bool was_async)609 void netfs_subreq_terminated(struct netfs_read_subrequest *subreq,
610 			     ssize_t transferred_or_error,
611 			     bool was_async)
612 {
613 	struct netfs_read_request *rreq = subreq->rreq;
614 	int u;
615 
616 	_enter("[%u]{%llx,%lx},%zd",
617 	       subreq->debug_index, subreq->start, subreq->flags,
618 	       transferred_or_error);
619 
620 	switch (subreq->source) {
621 	case NETFS_READ_FROM_CACHE:
622 		netfs_stat(&netfs_n_rh_read_done);
623 		break;
624 	case NETFS_DOWNLOAD_FROM_SERVER:
625 		netfs_stat(&netfs_n_rh_download_done);
626 		break;
627 	default:
628 		break;
629 	}
630 
631 	if (IS_ERR_VALUE(transferred_or_error)) {
632 		subreq->error = transferred_or_error;
633 		trace_netfs_failure(rreq, subreq, transferred_or_error,
634 				    netfs_fail_read);
635 		goto failed;
636 	}
637 
638 	if (WARN(transferred_or_error > subreq->len - subreq->transferred,
639 		 "Subreq overread: R%x[%x] %zd > %zu - %zu",
640 		 rreq->debug_id, subreq->debug_index,
641 		 transferred_or_error, subreq->len, subreq->transferred))
642 		transferred_or_error = subreq->len - subreq->transferred;
643 
644 	subreq->error = 0;
645 	subreq->transferred += transferred_or_error;
646 	if (subreq->transferred < subreq->len)
647 		goto incomplete;
648 
649 complete:
650 	__clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
651 	if (test_bit(NETFS_SREQ_WRITE_TO_CACHE, &subreq->flags))
652 		set_bit(NETFS_RREQ_WRITE_TO_CACHE, &rreq->flags);
653 
654 out:
655 	trace_netfs_sreq(subreq, netfs_sreq_trace_terminated);
656 
657 	/* If we decrement nr_rd_ops to 0, the ref belongs to us. */
658 	u = atomic_dec_return(&rreq->nr_rd_ops);
659 	if (u == 0)
660 		netfs_rreq_terminated(rreq, was_async);
661 	else if (u == 1)
662 		wake_up_var(&rreq->nr_rd_ops);
663 
664 	netfs_put_subrequest(subreq, was_async);
665 	return;
666 
667 incomplete:
668 	if (test_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags)) {
669 		netfs_clear_unread(subreq);
670 		subreq->transferred = subreq->len;
671 		goto complete;
672 	}
673 
674 	if (transferred_or_error == 0) {
675 		if (__test_and_set_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags)) {
676 			subreq->error = -ENODATA;
677 			goto failed;
678 		}
679 	} else {
680 		__clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
681 	}
682 
683 	__set_bit(NETFS_SREQ_SHORT_READ, &subreq->flags);
684 	set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
685 	goto out;
686 
687 failed:
688 	if (subreq->source == NETFS_READ_FROM_CACHE) {
689 		netfs_stat(&netfs_n_rh_read_failed);
690 		set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
691 	} else {
692 		netfs_stat(&netfs_n_rh_download_failed);
693 		set_bit(NETFS_RREQ_FAILED, &rreq->flags);
694 		rreq->error = subreq->error;
695 	}
696 	goto out;
697 }
698 EXPORT_SYMBOL(netfs_subreq_terminated);
699 
netfs_cache_prepare_read(struct netfs_read_subrequest * subreq,loff_t i_size)700 static enum netfs_read_source netfs_cache_prepare_read(struct netfs_read_subrequest *subreq,
701 						       loff_t i_size)
702 {
703 	struct netfs_read_request *rreq = subreq->rreq;
704 	struct netfs_cache_resources *cres = &rreq->cache_resources;
705 
706 	if (cres->ops)
707 		return cres->ops->prepare_read(subreq, i_size);
708 	if (subreq->start >= rreq->i_size)
709 		return NETFS_FILL_WITH_ZEROES;
710 	return NETFS_DOWNLOAD_FROM_SERVER;
711 }
712 
713 /*
714  * Work out what sort of subrequest the next one will be.
715  */
716 static enum netfs_read_source
netfs_rreq_prepare_read(struct netfs_read_request * rreq,struct netfs_read_subrequest * subreq)717 netfs_rreq_prepare_read(struct netfs_read_request *rreq,
718 			struct netfs_read_subrequest *subreq)
719 {
720 	enum netfs_read_source source;
721 
722 	_enter("%llx-%llx,%llx", subreq->start, subreq->start + subreq->len, rreq->i_size);
723 
724 	source = netfs_cache_prepare_read(subreq, rreq->i_size);
725 	if (source == NETFS_INVALID_READ)
726 		goto out;
727 
728 	if (source == NETFS_DOWNLOAD_FROM_SERVER) {
729 		/* Call out to the netfs to let it shrink the request to fit
730 		 * its own I/O sizes and boundaries.  If it shinks it here, it
731 		 * will be called again to make simultaneous calls; if it wants
732 		 * to make serial calls, it can indicate a short read and then
733 		 * we will call it again.
734 		 */
735 		if (subreq->len > rreq->i_size - subreq->start)
736 			subreq->len = rreq->i_size - subreq->start;
737 
738 		if (rreq->netfs_ops->clamp_length &&
739 		    !rreq->netfs_ops->clamp_length(subreq)) {
740 			source = NETFS_INVALID_READ;
741 			goto out;
742 		}
743 	}
744 
745 	if (WARN_ON(subreq->len == 0))
746 		source = NETFS_INVALID_READ;
747 
748 out:
749 	subreq->source = source;
750 	trace_netfs_sreq(subreq, netfs_sreq_trace_prepare);
751 	return source;
752 }
753 
754 /*
755  * Slice off a piece of a read request and submit an I/O request for it.
756  */
netfs_rreq_submit_slice(struct netfs_read_request * rreq,unsigned int * _debug_index)757 static bool netfs_rreq_submit_slice(struct netfs_read_request *rreq,
758 				    unsigned int *_debug_index)
759 {
760 	struct netfs_read_subrequest *subreq;
761 	enum netfs_read_source source;
762 
763 	subreq = netfs_alloc_subrequest(rreq);
764 	if (!subreq)
765 		return false;
766 
767 	subreq->debug_index	= (*_debug_index)++;
768 	subreq->start		= rreq->start + rreq->submitted;
769 	subreq->len		= rreq->len   - rreq->submitted;
770 
771 	_debug("slice %llx,%zx,%zx", subreq->start, subreq->len, rreq->submitted);
772 	list_add_tail(&subreq->rreq_link, &rreq->subrequests);
773 
774 	/* Call out to the cache to find out what it can do with the remaining
775 	 * subset.  It tells us in subreq->flags what it decided should be done
776 	 * and adjusts subreq->len down if the subset crosses a cache boundary.
777 	 *
778 	 * Then when we hand the subset, it can choose to take a subset of that
779 	 * (the starts must coincide), in which case, we go around the loop
780 	 * again and ask it to download the next piece.
781 	 */
782 	source = netfs_rreq_prepare_read(rreq, subreq);
783 	if (source == NETFS_INVALID_READ)
784 		goto subreq_failed;
785 
786 	atomic_inc(&rreq->nr_rd_ops);
787 
788 	rreq->submitted += subreq->len;
789 
790 	trace_netfs_sreq(subreq, netfs_sreq_trace_submit);
791 	switch (source) {
792 	case NETFS_FILL_WITH_ZEROES:
793 		netfs_fill_with_zeroes(rreq, subreq);
794 		break;
795 	case NETFS_DOWNLOAD_FROM_SERVER:
796 		netfs_read_from_server(rreq, subreq);
797 		break;
798 	case NETFS_READ_FROM_CACHE:
799 		netfs_read_from_cache(rreq, subreq, false);
800 		break;
801 	default:
802 		BUG();
803 	}
804 
805 	return true;
806 
807 subreq_failed:
808 	rreq->error = subreq->error;
809 	netfs_put_subrequest(subreq, false);
810 	return false;
811 }
812 
netfs_cache_expand_readahead(struct netfs_read_request * rreq,loff_t * _start,size_t * _len,loff_t i_size)813 static void netfs_cache_expand_readahead(struct netfs_read_request *rreq,
814 					 loff_t *_start, size_t *_len, loff_t i_size)
815 {
816 	struct netfs_cache_resources *cres = &rreq->cache_resources;
817 
818 	if (cres->ops && cres->ops->expand_readahead)
819 		cres->ops->expand_readahead(cres, _start, _len, i_size);
820 }
821 
netfs_rreq_expand(struct netfs_read_request * rreq,struct readahead_control * ractl)822 static void netfs_rreq_expand(struct netfs_read_request *rreq,
823 			      struct readahead_control *ractl)
824 {
825 	/* Give the cache a chance to change the request parameters.  The
826 	 * resultant request must contain the original region.
827 	 */
828 	netfs_cache_expand_readahead(rreq, &rreq->start, &rreq->len, rreq->i_size);
829 
830 	/* Give the netfs a chance to change the request parameters.  The
831 	 * resultant request must contain the original region.
832 	 */
833 	if (rreq->netfs_ops->expand_readahead)
834 		rreq->netfs_ops->expand_readahead(rreq);
835 
836 	/* Expand the request if the cache wants it to start earlier.  Note
837 	 * that the expansion may get further extended if the VM wishes to
838 	 * insert THPs and the preferred start and/or end wind up in the middle
839 	 * of THPs.
840 	 *
841 	 * If this is the case, however, the THP size should be an integer
842 	 * multiple of the cache granule size, so we get a whole number of
843 	 * granules to deal with.
844 	 */
845 	if (rreq->start  != readahead_pos(ractl) ||
846 	    rreq->len != readahead_length(ractl)) {
847 		readahead_expand(ractl, rreq->start, rreq->len);
848 		rreq->start  = readahead_pos(ractl);
849 		rreq->len = readahead_length(ractl);
850 
851 		trace_netfs_read(rreq, readahead_pos(ractl), readahead_length(ractl),
852 				 netfs_read_trace_expanded);
853 	}
854 }
855 
856 /**
857  * netfs_readahead - Helper to manage a read request
858  * @ractl: The description of the readahead request
859  * @ops: The network filesystem's operations for the helper to use
860  * @netfs_priv: Private netfs data to be retained in the request
861  *
862  * Fulfil a readahead request by drawing data from the cache if possible, or
863  * the netfs if not.  Space beyond the EOF is zero-filled.  Multiple I/O
864  * requests from different sources will get munged together.  If necessary, the
865  * readahead window can be expanded in either direction to a more convenient
866  * alighment for RPC efficiency or to make storage in the cache feasible.
867  *
868  * The calling netfs must provide a table of operations, only one of which,
869  * issue_op, is mandatory.  It may also be passed a private token, which will
870  * be retained in rreq->netfs_priv and will be cleaned up by ops->cleanup().
871  *
872  * This is usable whether or not caching is enabled.
873  */
netfs_readahead(struct readahead_control * ractl,const struct netfs_read_request_ops * ops,void * netfs_priv)874 void netfs_readahead(struct readahead_control *ractl,
875 		     const struct netfs_read_request_ops *ops,
876 		     void *netfs_priv)
877 {
878 	struct netfs_read_request *rreq;
879 	struct page *page;
880 	unsigned int debug_index = 0;
881 	int ret;
882 
883 	_enter("%lx,%x", readahead_index(ractl), readahead_count(ractl));
884 
885 	if (readahead_count(ractl) == 0)
886 		goto cleanup;
887 
888 	rreq = netfs_alloc_read_request(ops, netfs_priv, ractl->file);
889 	if (!rreq)
890 		goto cleanup;
891 	rreq->mapping	= ractl->mapping;
892 	rreq->start	= readahead_pos(ractl);
893 	rreq->len	= readahead_length(ractl);
894 
895 	if (ops->begin_cache_operation) {
896 		ret = ops->begin_cache_operation(rreq);
897 		if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS)
898 			goto cleanup_free;
899 	}
900 
901 	netfs_stat(&netfs_n_rh_readahead);
902 	trace_netfs_read(rreq, readahead_pos(ractl), readahead_length(ractl),
903 			 netfs_read_trace_readahead);
904 
905 	netfs_rreq_expand(rreq, ractl);
906 
907 	atomic_set(&rreq->nr_rd_ops, 1);
908 	do {
909 		if (!netfs_rreq_submit_slice(rreq, &debug_index))
910 			break;
911 
912 	} while (rreq->submitted < rreq->len);
913 
914 	/* Drop the refs on the pages here rather than in the cache or
915 	 * filesystem.  The locks will be dropped in netfs_rreq_unlock().
916 	 */
917 	while ((page = readahead_page(ractl)))
918 		put_page(page);
919 
920 	/* If we decrement nr_rd_ops to 0, the ref belongs to us. */
921 	if (atomic_dec_and_test(&rreq->nr_rd_ops))
922 		netfs_rreq_assess(rreq, false);
923 	return;
924 
925 cleanup_free:
926 	netfs_put_read_request(rreq, false);
927 	return;
928 cleanup:
929 	if (netfs_priv)
930 		ops->cleanup(ractl->mapping, netfs_priv);
931 	return;
932 }
933 EXPORT_SYMBOL(netfs_readahead);
934 
935 /**
936  * netfs_readpage - Helper to manage a readpage request
937  * @file: The file to read from
938  * @page: The page to read
939  * @ops: The network filesystem's operations for the helper to use
940  * @netfs_priv: Private netfs data to be retained in the request
941  *
942  * Fulfil a readpage request by drawing data from the cache if possible, or the
943  * netfs if not.  Space beyond the EOF is zero-filled.  Multiple I/O requests
944  * from different sources will get munged together.
945  *
946  * The calling netfs must provide a table of operations, only one of which,
947  * issue_op, is mandatory.  It may also be passed a private token, which will
948  * be retained in rreq->netfs_priv and will be cleaned up by ops->cleanup().
949  *
950  * This is usable whether or not caching is enabled.
951  */
netfs_readpage(struct file * file,struct page * page,const struct netfs_read_request_ops * ops,void * netfs_priv)952 int netfs_readpage(struct file *file,
953 		   struct page *page,
954 		   const struct netfs_read_request_ops *ops,
955 		   void *netfs_priv)
956 {
957 	struct netfs_read_request *rreq;
958 	unsigned int debug_index = 0;
959 	int ret;
960 
961 	_enter("%lx", page_index(page));
962 
963 	rreq = netfs_alloc_read_request(ops, netfs_priv, file);
964 	if (!rreq) {
965 		if (netfs_priv)
966 			ops->cleanup(netfs_priv, page_file_mapping(page));
967 		unlock_page(page);
968 		return -ENOMEM;
969 	}
970 	rreq->mapping	= page_file_mapping(page);
971 	rreq->start	= page_file_offset(page);
972 	rreq->len	= thp_size(page);
973 
974 	if (ops->begin_cache_operation) {
975 		ret = ops->begin_cache_operation(rreq);
976 		if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS) {
977 			unlock_page(page);
978 			goto out;
979 		}
980 	}
981 
982 	netfs_stat(&netfs_n_rh_readpage);
983 	trace_netfs_read(rreq, rreq->start, rreq->len, netfs_read_trace_readpage);
984 
985 	netfs_get_read_request(rreq);
986 
987 	atomic_set(&rreq->nr_rd_ops, 1);
988 	do {
989 		if (!netfs_rreq_submit_slice(rreq, &debug_index))
990 			break;
991 
992 	} while (rreq->submitted < rreq->len);
993 
994 	/* Keep nr_rd_ops incremented so that the ref always belongs to us, and
995 	 * the service code isn't punted off to a random thread pool to
996 	 * process.
997 	 */
998 	do {
999 		wait_var_event(&rreq->nr_rd_ops, atomic_read(&rreq->nr_rd_ops) == 1);
1000 		netfs_rreq_assess(rreq, false);
1001 	} while (test_bit(NETFS_RREQ_IN_PROGRESS, &rreq->flags));
1002 
1003 	ret = rreq->error;
1004 	if (ret == 0 && rreq->submitted < rreq->len) {
1005 		trace_netfs_failure(rreq, NULL, ret, netfs_fail_short_readpage);
1006 		ret = -EIO;
1007 	}
1008 out:
1009 	netfs_put_read_request(rreq, false);
1010 	return ret;
1011 }
1012 EXPORT_SYMBOL(netfs_readpage);
1013 
1014 /**
1015  * netfs_skip_page_read - prep a page for writing without reading first
1016  * @page: page being prepared
1017  * @pos: starting position for the write
1018  * @len: length of write
1019  *
1020  * In some cases, write_begin doesn't need to read at all:
1021  * - full page write
1022  * - write that lies in a page that is completely beyond EOF
1023  * - write that covers the the page from start to EOF or beyond it
1024  *
1025  * If any of these criteria are met, then zero out the unwritten parts
1026  * of the page and return true. Otherwise, return false.
1027  */
netfs_skip_page_read(struct page * page,loff_t pos,size_t len)1028 static bool netfs_skip_page_read(struct page *page, loff_t pos, size_t len)
1029 {
1030 	struct inode *inode = page->mapping->host;
1031 	loff_t i_size = i_size_read(inode);
1032 	size_t offset = offset_in_thp(page, pos);
1033 
1034 	/* Full page write */
1035 	if (offset == 0 && len >= thp_size(page))
1036 		return true;
1037 
1038 	/* pos beyond last page in the file */
1039 	if (pos - offset >= i_size)
1040 		goto zero_out;
1041 
1042 	/* Write that covers from the start of the page to EOF or beyond */
1043 	if (offset == 0 && (pos + len) >= i_size)
1044 		goto zero_out;
1045 
1046 	return false;
1047 zero_out:
1048 	zero_user_segments(page, 0, offset, offset + len, thp_size(page));
1049 	return true;
1050 }
1051 
1052 /**
1053  * netfs_write_begin - Helper to prepare for writing
1054  * @file: The file to read from
1055  * @mapping: The mapping to read from
1056  * @pos: File position at which the write will begin
1057  * @len: The length of the write (may extend beyond the end of the page chosen)
1058  * @flags: AOP_* flags
1059  * @_page: Where to put the resultant page
1060  * @_fsdata: Place for the netfs to store a cookie
1061  * @ops: The network filesystem's operations for the helper to use
1062  * @netfs_priv: Private netfs data to be retained in the request
1063  *
1064  * Pre-read data for a write-begin request by drawing data from the cache if
1065  * possible, or the netfs if not.  Space beyond the EOF is zero-filled.
1066  * Multiple I/O requests from different sources will get munged together.  If
1067  * necessary, the readahead window can be expanded in either direction to a
1068  * more convenient alighment for RPC efficiency or to make storage in the cache
1069  * feasible.
1070  *
1071  * The calling netfs must provide a table of operations, only one of which,
1072  * issue_op, is mandatory.
1073  *
1074  * The check_write_begin() operation can be provided to check for and flush
1075  * conflicting writes once the page is grabbed and locked.  It is passed a
1076  * pointer to the fsdata cookie that gets returned to the VM to be passed to
1077  * write_end.  It is permitted to sleep.  It should return 0 if the request
1078  * should go ahead; unlock the page and return -EAGAIN to cause the page to be
1079  * regot; or return an error.
1080  *
1081  * This is usable whether or not caching is enabled.
1082  */
netfs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned int len,unsigned int flags,struct page ** _page,void ** _fsdata,const struct netfs_read_request_ops * ops,void * netfs_priv)1083 int netfs_write_begin(struct file *file, struct address_space *mapping,
1084 		      loff_t pos, unsigned int len, unsigned int flags,
1085 		      struct page **_page, void **_fsdata,
1086 		      const struct netfs_read_request_ops *ops,
1087 		      void *netfs_priv)
1088 {
1089 	struct netfs_read_request *rreq;
1090 	struct page *page, *xpage;
1091 	struct inode *inode = file_inode(file);
1092 	unsigned int debug_index = 0;
1093 	pgoff_t index = pos >> PAGE_SHIFT;
1094 	int ret;
1095 
1096 	DEFINE_READAHEAD(ractl, file, NULL, mapping, index);
1097 
1098 retry:
1099 	page = grab_cache_page_write_begin(mapping, index, flags);
1100 	if (!page)
1101 		return -ENOMEM;
1102 
1103 	if (ops->check_write_begin) {
1104 		/* Allow the netfs (eg. ceph) to flush conflicts. */
1105 		ret = ops->check_write_begin(file, pos, len, page, _fsdata);
1106 		if (ret < 0) {
1107 			trace_netfs_failure(NULL, NULL, ret, netfs_fail_check_write_begin);
1108 			if (ret == -EAGAIN)
1109 				goto retry;
1110 			goto error;
1111 		}
1112 	}
1113 
1114 	if (PageUptodate(page))
1115 		goto have_page;
1116 
1117 	/* If the page is beyond the EOF, we want to clear it - unless it's
1118 	 * within the cache granule containing the EOF, in which case we need
1119 	 * to preload the granule.
1120 	 */
1121 	if (!ops->is_cache_enabled(inode) &&
1122 	    netfs_skip_page_read(page, pos, len)) {
1123 		netfs_stat(&netfs_n_rh_write_zskip);
1124 		goto have_page_no_wait;
1125 	}
1126 
1127 	ret = -ENOMEM;
1128 	rreq = netfs_alloc_read_request(ops, netfs_priv, file);
1129 	if (!rreq)
1130 		goto error;
1131 	rreq->mapping		= page->mapping;
1132 	rreq->start		= page_offset(page);
1133 	rreq->len		= thp_size(page);
1134 	rreq->no_unlock_page	= page->index;
1135 	__set_bit(NETFS_RREQ_NO_UNLOCK_PAGE, &rreq->flags);
1136 	netfs_priv = NULL;
1137 
1138 	if (ops->begin_cache_operation) {
1139 		ret = ops->begin_cache_operation(rreq);
1140 		if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS)
1141 			goto error_put;
1142 	}
1143 
1144 	netfs_stat(&netfs_n_rh_write_begin);
1145 	trace_netfs_read(rreq, pos, len, netfs_read_trace_write_begin);
1146 
1147 	/* Expand the request to meet caching requirements and download
1148 	 * preferences.
1149 	 */
1150 	ractl._nr_pages = thp_nr_pages(page);
1151 	netfs_rreq_expand(rreq, &ractl);
1152 	netfs_get_read_request(rreq);
1153 
1154 	/* We hold the page locks, so we can drop the references */
1155 	while ((xpage = readahead_page(&ractl)))
1156 		if (xpage != page)
1157 			put_page(xpage);
1158 
1159 	atomic_set(&rreq->nr_rd_ops, 1);
1160 	do {
1161 		if (!netfs_rreq_submit_slice(rreq, &debug_index))
1162 			break;
1163 
1164 	} while (rreq->submitted < rreq->len);
1165 
1166 	/* Keep nr_rd_ops incremented so that the ref always belongs to us, and
1167 	 * the service code isn't punted off to a random thread pool to
1168 	 * process.
1169 	 */
1170 	for (;;) {
1171 		wait_var_event(&rreq->nr_rd_ops, atomic_read(&rreq->nr_rd_ops) == 1);
1172 		netfs_rreq_assess(rreq, false);
1173 		if (!test_bit(NETFS_RREQ_IN_PROGRESS, &rreq->flags))
1174 			break;
1175 		cond_resched();
1176 	}
1177 
1178 	ret = rreq->error;
1179 	if (ret == 0 && rreq->submitted < rreq->len) {
1180 		trace_netfs_failure(rreq, NULL, ret, netfs_fail_short_write_begin);
1181 		ret = -EIO;
1182 	}
1183 	netfs_put_read_request(rreq, false);
1184 	if (ret < 0)
1185 		goto error;
1186 
1187 have_page:
1188 	ret = wait_on_page_fscache_killable(page);
1189 	if (ret < 0)
1190 		goto error;
1191 have_page_no_wait:
1192 	if (netfs_priv)
1193 		ops->cleanup(netfs_priv, mapping);
1194 	*_page = page;
1195 	_leave(" = 0");
1196 	return 0;
1197 
1198 error_put:
1199 	netfs_put_read_request(rreq, false);
1200 error:
1201 	unlock_page(page);
1202 	put_page(page);
1203 	if (netfs_priv)
1204 		ops->cleanup(netfs_priv, mapping);
1205 	_leave(" = %d", ret);
1206 	return ret;
1207 }
1208 EXPORT_SYMBOL(netfs_write_begin);
1209