1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * net-sysfs.c - network device class and attributes
4 *
5 * Copyright (c) 2003 Stephen Hemminger <shemminger@osdl.org>
6 */
7
8 #include <linux/capability.h>
9 #include <linux/kernel.h>
10 #include <linux/netdevice.h>
11 #include <linux/if_arp.h>
12 #include <linux/slab.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sched/isolation.h>
15 #include <linux/nsproxy.h>
16 #include <net/sock.h>
17 #include <net/net_namespace.h>
18 #include <linux/rtnetlink.h>
19 #include <linux/vmalloc.h>
20 #include <linux/export.h>
21 #include <linux/jiffies.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/of.h>
24 #include <linux/of_net.h>
25 #include <linux/cpu.h>
26
27 #include "net-sysfs.h"
28
29 #ifdef CONFIG_SYSFS
30 static const char fmt_hex[] = "%#x\n";
31 static const char fmt_dec[] = "%d\n";
32 static const char fmt_ulong[] = "%lu\n";
33 static const char fmt_u64[] = "%llu\n";
34
dev_isalive(const struct net_device * dev)35 static inline int dev_isalive(const struct net_device *dev)
36 {
37 return dev->reg_state <= NETREG_REGISTERED;
38 }
39
40 /* use same locking rules as GIF* ioctl's */
netdev_show(const struct device * dev,struct device_attribute * attr,char * buf,ssize_t (* format)(const struct net_device *,char *))41 static ssize_t netdev_show(const struct device *dev,
42 struct device_attribute *attr, char *buf,
43 ssize_t (*format)(const struct net_device *, char *))
44 {
45 struct net_device *ndev = to_net_dev(dev);
46 ssize_t ret = -EINVAL;
47
48 read_lock(&dev_base_lock);
49 if (dev_isalive(ndev))
50 ret = (*format)(ndev, buf);
51 read_unlock(&dev_base_lock);
52
53 return ret;
54 }
55
56 /* generate a show function for simple field */
57 #define NETDEVICE_SHOW(field, format_string) \
58 static ssize_t format_##field(const struct net_device *dev, char *buf) \
59 { \
60 return sprintf(buf, format_string, dev->field); \
61 } \
62 static ssize_t field##_show(struct device *dev, \
63 struct device_attribute *attr, char *buf) \
64 { \
65 return netdev_show(dev, attr, buf, format_##field); \
66 } \
67
68 #define NETDEVICE_SHOW_RO(field, format_string) \
69 NETDEVICE_SHOW(field, format_string); \
70 static DEVICE_ATTR_RO(field)
71
72 #define NETDEVICE_SHOW_RW(field, format_string) \
73 NETDEVICE_SHOW(field, format_string); \
74 static DEVICE_ATTR_RW(field)
75
76 /* use same locking and permission rules as SIF* ioctl's */
netdev_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len,int (* set)(struct net_device *,unsigned long))77 static ssize_t netdev_store(struct device *dev, struct device_attribute *attr,
78 const char *buf, size_t len,
79 int (*set)(struct net_device *, unsigned long))
80 {
81 struct net_device *netdev = to_net_dev(dev);
82 struct net *net = dev_net(netdev);
83 unsigned long new;
84 int ret;
85
86 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
87 return -EPERM;
88
89 ret = kstrtoul(buf, 0, &new);
90 if (ret)
91 goto err;
92
93 if (!rtnl_trylock())
94 return restart_syscall();
95
96 if (dev_isalive(netdev)) {
97 ret = (*set)(netdev, new);
98 if (ret == 0)
99 ret = len;
100 }
101 rtnl_unlock();
102 err:
103 return ret;
104 }
105
106 NETDEVICE_SHOW_RO(dev_id, fmt_hex);
107 NETDEVICE_SHOW_RO(dev_port, fmt_dec);
108 NETDEVICE_SHOW_RO(addr_assign_type, fmt_dec);
109 NETDEVICE_SHOW_RO(addr_len, fmt_dec);
110 NETDEVICE_SHOW_RO(ifindex, fmt_dec);
111 NETDEVICE_SHOW_RO(type, fmt_dec);
112 NETDEVICE_SHOW_RO(link_mode, fmt_dec);
113
iflink_show(struct device * dev,struct device_attribute * attr,char * buf)114 static ssize_t iflink_show(struct device *dev, struct device_attribute *attr,
115 char *buf)
116 {
117 struct net_device *ndev = to_net_dev(dev);
118
119 return sprintf(buf, fmt_dec, dev_get_iflink(ndev));
120 }
121 static DEVICE_ATTR_RO(iflink);
122
format_name_assign_type(const struct net_device * dev,char * buf)123 static ssize_t format_name_assign_type(const struct net_device *dev, char *buf)
124 {
125 return sprintf(buf, fmt_dec, dev->name_assign_type);
126 }
127
name_assign_type_show(struct device * dev,struct device_attribute * attr,char * buf)128 static ssize_t name_assign_type_show(struct device *dev,
129 struct device_attribute *attr,
130 char *buf)
131 {
132 struct net_device *ndev = to_net_dev(dev);
133 ssize_t ret = -EINVAL;
134
135 if (ndev->name_assign_type != NET_NAME_UNKNOWN)
136 ret = netdev_show(dev, attr, buf, format_name_assign_type);
137
138 return ret;
139 }
140 static DEVICE_ATTR_RO(name_assign_type);
141
142 /* use same locking rules as GIFHWADDR ioctl's */
address_show(struct device * dev,struct device_attribute * attr,char * buf)143 static ssize_t address_show(struct device *dev, struct device_attribute *attr,
144 char *buf)
145 {
146 struct net_device *ndev = to_net_dev(dev);
147 ssize_t ret = -EINVAL;
148
149 read_lock(&dev_base_lock);
150 if (dev_isalive(ndev))
151 ret = sysfs_format_mac(buf, ndev->dev_addr, ndev->addr_len);
152 read_unlock(&dev_base_lock);
153 return ret;
154 }
155 static DEVICE_ATTR_RO(address);
156
broadcast_show(struct device * dev,struct device_attribute * attr,char * buf)157 static ssize_t broadcast_show(struct device *dev,
158 struct device_attribute *attr, char *buf)
159 {
160 struct net_device *ndev = to_net_dev(dev);
161
162 if (dev_isalive(ndev))
163 return sysfs_format_mac(buf, ndev->broadcast, ndev->addr_len);
164 return -EINVAL;
165 }
166 static DEVICE_ATTR_RO(broadcast);
167
change_carrier(struct net_device * dev,unsigned long new_carrier)168 static int change_carrier(struct net_device *dev, unsigned long new_carrier)
169 {
170 if (!netif_running(dev))
171 return -EINVAL;
172 return dev_change_carrier(dev, (bool)new_carrier);
173 }
174
carrier_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)175 static ssize_t carrier_store(struct device *dev, struct device_attribute *attr,
176 const char *buf, size_t len)
177 {
178 return netdev_store(dev, attr, buf, len, change_carrier);
179 }
180
carrier_show(struct device * dev,struct device_attribute * attr,char * buf)181 static ssize_t carrier_show(struct device *dev,
182 struct device_attribute *attr, char *buf)
183 {
184 struct net_device *netdev = to_net_dev(dev);
185
186 if (netif_running(netdev))
187 return sprintf(buf, fmt_dec, !!netif_carrier_ok(netdev));
188
189 return -EINVAL;
190 }
191 static DEVICE_ATTR_RW(carrier);
192
speed_show(struct device * dev,struct device_attribute * attr,char * buf)193 static ssize_t speed_show(struct device *dev,
194 struct device_attribute *attr, char *buf)
195 {
196 struct net_device *netdev = to_net_dev(dev);
197 int ret = -EINVAL;
198
199 if (!rtnl_trylock())
200 return restart_syscall();
201
202 if (netif_running(netdev)) {
203 struct ethtool_link_ksettings cmd;
204
205 if (!__ethtool_get_link_ksettings(netdev, &cmd))
206 ret = sprintf(buf, fmt_dec, cmd.base.speed);
207 }
208 rtnl_unlock();
209 return ret;
210 }
211 static DEVICE_ATTR_RO(speed);
212
duplex_show(struct device * dev,struct device_attribute * attr,char * buf)213 static ssize_t duplex_show(struct device *dev,
214 struct device_attribute *attr, char *buf)
215 {
216 struct net_device *netdev = to_net_dev(dev);
217 int ret = -EINVAL;
218
219 if (!rtnl_trylock())
220 return restart_syscall();
221
222 if (netif_running(netdev)) {
223 struct ethtool_link_ksettings cmd;
224
225 if (!__ethtool_get_link_ksettings(netdev, &cmd)) {
226 const char *duplex;
227
228 switch (cmd.base.duplex) {
229 case DUPLEX_HALF:
230 duplex = "half";
231 break;
232 case DUPLEX_FULL:
233 duplex = "full";
234 break;
235 default:
236 duplex = "unknown";
237 break;
238 }
239 ret = sprintf(buf, "%s\n", duplex);
240 }
241 }
242 rtnl_unlock();
243 return ret;
244 }
245 static DEVICE_ATTR_RO(duplex);
246
testing_show(struct device * dev,struct device_attribute * attr,char * buf)247 static ssize_t testing_show(struct device *dev,
248 struct device_attribute *attr, char *buf)
249 {
250 struct net_device *netdev = to_net_dev(dev);
251
252 if (netif_running(netdev))
253 return sprintf(buf, fmt_dec, !!netif_testing(netdev));
254
255 return -EINVAL;
256 }
257 static DEVICE_ATTR_RO(testing);
258
dormant_show(struct device * dev,struct device_attribute * attr,char * buf)259 static ssize_t dormant_show(struct device *dev,
260 struct device_attribute *attr, char *buf)
261 {
262 struct net_device *netdev = to_net_dev(dev);
263
264 if (netif_running(netdev))
265 return sprintf(buf, fmt_dec, !!netif_dormant(netdev));
266
267 return -EINVAL;
268 }
269 static DEVICE_ATTR_RO(dormant);
270
271 static const char *const operstates[] = {
272 "unknown",
273 "notpresent", /* currently unused */
274 "down",
275 "lowerlayerdown",
276 "testing",
277 "dormant",
278 "up"
279 };
280
operstate_show(struct device * dev,struct device_attribute * attr,char * buf)281 static ssize_t operstate_show(struct device *dev,
282 struct device_attribute *attr, char *buf)
283 {
284 const struct net_device *netdev = to_net_dev(dev);
285 unsigned char operstate;
286
287 read_lock(&dev_base_lock);
288 operstate = netdev->operstate;
289 if (!netif_running(netdev))
290 operstate = IF_OPER_DOWN;
291 read_unlock(&dev_base_lock);
292
293 if (operstate >= ARRAY_SIZE(operstates))
294 return -EINVAL; /* should not happen */
295
296 return sprintf(buf, "%s\n", operstates[operstate]);
297 }
298 static DEVICE_ATTR_RO(operstate);
299
carrier_changes_show(struct device * dev,struct device_attribute * attr,char * buf)300 static ssize_t carrier_changes_show(struct device *dev,
301 struct device_attribute *attr,
302 char *buf)
303 {
304 struct net_device *netdev = to_net_dev(dev);
305
306 return sprintf(buf, fmt_dec,
307 atomic_read(&netdev->carrier_up_count) +
308 atomic_read(&netdev->carrier_down_count));
309 }
310 static DEVICE_ATTR_RO(carrier_changes);
311
carrier_up_count_show(struct device * dev,struct device_attribute * attr,char * buf)312 static ssize_t carrier_up_count_show(struct device *dev,
313 struct device_attribute *attr,
314 char *buf)
315 {
316 struct net_device *netdev = to_net_dev(dev);
317
318 return sprintf(buf, fmt_dec, atomic_read(&netdev->carrier_up_count));
319 }
320 static DEVICE_ATTR_RO(carrier_up_count);
321
carrier_down_count_show(struct device * dev,struct device_attribute * attr,char * buf)322 static ssize_t carrier_down_count_show(struct device *dev,
323 struct device_attribute *attr,
324 char *buf)
325 {
326 struct net_device *netdev = to_net_dev(dev);
327
328 return sprintf(buf, fmt_dec, atomic_read(&netdev->carrier_down_count));
329 }
330 static DEVICE_ATTR_RO(carrier_down_count);
331
332 /* read-write attributes */
333
change_mtu(struct net_device * dev,unsigned long new_mtu)334 static int change_mtu(struct net_device *dev, unsigned long new_mtu)
335 {
336 return dev_set_mtu(dev, (int)new_mtu);
337 }
338
mtu_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)339 static ssize_t mtu_store(struct device *dev, struct device_attribute *attr,
340 const char *buf, size_t len)
341 {
342 return netdev_store(dev, attr, buf, len, change_mtu);
343 }
344 NETDEVICE_SHOW_RW(mtu, fmt_dec);
345
change_flags(struct net_device * dev,unsigned long new_flags)346 static int change_flags(struct net_device *dev, unsigned long new_flags)
347 {
348 return dev_change_flags(dev, (unsigned int)new_flags, NULL);
349 }
350
flags_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)351 static ssize_t flags_store(struct device *dev, struct device_attribute *attr,
352 const char *buf, size_t len)
353 {
354 return netdev_store(dev, attr, buf, len, change_flags);
355 }
356 NETDEVICE_SHOW_RW(flags, fmt_hex);
357
tx_queue_len_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)358 static ssize_t tx_queue_len_store(struct device *dev,
359 struct device_attribute *attr,
360 const char *buf, size_t len)
361 {
362 if (!capable(CAP_NET_ADMIN))
363 return -EPERM;
364
365 return netdev_store(dev, attr, buf, len, dev_change_tx_queue_len);
366 }
367 NETDEVICE_SHOW_RW(tx_queue_len, fmt_dec);
368
change_gro_flush_timeout(struct net_device * dev,unsigned long val)369 static int change_gro_flush_timeout(struct net_device *dev, unsigned long val)
370 {
371 WRITE_ONCE(dev->gro_flush_timeout, val);
372 return 0;
373 }
374
gro_flush_timeout_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)375 static ssize_t gro_flush_timeout_store(struct device *dev,
376 struct device_attribute *attr,
377 const char *buf, size_t len)
378 {
379 if (!capable(CAP_NET_ADMIN))
380 return -EPERM;
381
382 return netdev_store(dev, attr, buf, len, change_gro_flush_timeout);
383 }
384 NETDEVICE_SHOW_RW(gro_flush_timeout, fmt_ulong);
385
change_napi_defer_hard_irqs(struct net_device * dev,unsigned long val)386 static int change_napi_defer_hard_irqs(struct net_device *dev, unsigned long val)
387 {
388 WRITE_ONCE(dev->napi_defer_hard_irqs, val);
389 return 0;
390 }
391
napi_defer_hard_irqs_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)392 static ssize_t napi_defer_hard_irqs_store(struct device *dev,
393 struct device_attribute *attr,
394 const char *buf, size_t len)
395 {
396 if (!capable(CAP_NET_ADMIN))
397 return -EPERM;
398
399 return netdev_store(dev, attr, buf, len, change_napi_defer_hard_irqs);
400 }
401 NETDEVICE_SHOW_RW(napi_defer_hard_irqs, fmt_dec);
402
ifalias_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)403 static ssize_t ifalias_store(struct device *dev, struct device_attribute *attr,
404 const char *buf, size_t len)
405 {
406 struct net_device *netdev = to_net_dev(dev);
407 struct net *net = dev_net(netdev);
408 size_t count = len;
409 ssize_t ret = 0;
410
411 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
412 return -EPERM;
413
414 /* ignore trailing newline */
415 if (len > 0 && buf[len - 1] == '\n')
416 --count;
417
418 if (!rtnl_trylock())
419 return restart_syscall();
420
421 if (dev_isalive(netdev)) {
422 ret = dev_set_alias(netdev, buf, count);
423 if (ret < 0)
424 goto err;
425 ret = len;
426 netdev_state_change(netdev);
427 }
428 err:
429 rtnl_unlock();
430
431 return ret;
432 }
433
ifalias_show(struct device * dev,struct device_attribute * attr,char * buf)434 static ssize_t ifalias_show(struct device *dev,
435 struct device_attribute *attr, char *buf)
436 {
437 const struct net_device *netdev = to_net_dev(dev);
438 char tmp[IFALIASZ];
439 ssize_t ret = 0;
440
441 ret = dev_get_alias(netdev, tmp, sizeof(tmp));
442 if (ret > 0)
443 ret = sprintf(buf, "%s\n", tmp);
444 return ret;
445 }
446 static DEVICE_ATTR_RW(ifalias);
447
change_group(struct net_device * dev,unsigned long new_group)448 static int change_group(struct net_device *dev, unsigned long new_group)
449 {
450 dev_set_group(dev, (int)new_group);
451 return 0;
452 }
453
group_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)454 static ssize_t group_store(struct device *dev, struct device_attribute *attr,
455 const char *buf, size_t len)
456 {
457 return netdev_store(dev, attr, buf, len, change_group);
458 }
459 NETDEVICE_SHOW(group, fmt_dec);
460 static DEVICE_ATTR(netdev_group, 0644, group_show, group_store);
461
change_proto_down(struct net_device * dev,unsigned long proto_down)462 static int change_proto_down(struct net_device *dev, unsigned long proto_down)
463 {
464 return dev_change_proto_down(dev, (bool)proto_down);
465 }
466
proto_down_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)467 static ssize_t proto_down_store(struct device *dev,
468 struct device_attribute *attr,
469 const char *buf, size_t len)
470 {
471 return netdev_store(dev, attr, buf, len, change_proto_down);
472 }
473 NETDEVICE_SHOW_RW(proto_down, fmt_dec);
474
phys_port_id_show(struct device * dev,struct device_attribute * attr,char * buf)475 static ssize_t phys_port_id_show(struct device *dev,
476 struct device_attribute *attr, char *buf)
477 {
478 struct net_device *netdev = to_net_dev(dev);
479 ssize_t ret = -EINVAL;
480
481 if (!rtnl_trylock())
482 return restart_syscall();
483
484 if (dev_isalive(netdev)) {
485 struct netdev_phys_item_id ppid;
486
487 ret = dev_get_phys_port_id(netdev, &ppid);
488 if (!ret)
489 ret = sprintf(buf, "%*phN\n", ppid.id_len, ppid.id);
490 }
491 rtnl_unlock();
492
493 return ret;
494 }
495 static DEVICE_ATTR_RO(phys_port_id);
496
phys_port_name_show(struct device * dev,struct device_attribute * attr,char * buf)497 static ssize_t phys_port_name_show(struct device *dev,
498 struct device_attribute *attr, char *buf)
499 {
500 struct net_device *netdev = to_net_dev(dev);
501 ssize_t ret = -EINVAL;
502
503 if (!rtnl_trylock())
504 return restart_syscall();
505
506 if (dev_isalive(netdev)) {
507 char name[IFNAMSIZ];
508
509 ret = dev_get_phys_port_name(netdev, name, sizeof(name));
510 if (!ret)
511 ret = sprintf(buf, "%s\n", name);
512 }
513 rtnl_unlock();
514
515 return ret;
516 }
517 static DEVICE_ATTR_RO(phys_port_name);
518
phys_switch_id_show(struct device * dev,struct device_attribute * attr,char * buf)519 static ssize_t phys_switch_id_show(struct device *dev,
520 struct device_attribute *attr, char *buf)
521 {
522 struct net_device *netdev = to_net_dev(dev);
523 ssize_t ret = -EINVAL;
524
525 if (!rtnl_trylock())
526 return restart_syscall();
527
528 if (dev_isalive(netdev)) {
529 struct netdev_phys_item_id ppid = { };
530
531 ret = dev_get_port_parent_id(netdev, &ppid, false);
532 if (!ret)
533 ret = sprintf(buf, "%*phN\n", ppid.id_len, ppid.id);
534 }
535 rtnl_unlock();
536
537 return ret;
538 }
539 static DEVICE_ATTR_RO(phys_switch_id);
540
threaded_show(struct device * dev,struct device_attribute * attr,char * buf)541 static ssize_t threaded_show(struct device *dev,
542 struct device_attribute *attr, char *buf)
543 {
544 struct net_device *netdev = to_net_dev(dev);
545 ssize_t ret = -EINVAL;
546
547 if (!rtnl_trylock())
548 return restart_syscall();
549
550 if (dev_isalive(netdev))
551 ret = sprintf(buf, fmt_dec, netdev->threaded);
552
553 rtnl_unlock();
554 return ret;
555 }
556
modify_napi_threaded(struct net_device * dev,unsigned long val)557 static int modify_napi_threaded(struct net_device *dev, unsigned long val)
558 {
559 int ret;
560
561 if (list_empty(&dev->napi_list))
562 return -EOPNOTSUPP;
563
564 if (val != 0 && val != 1)
565 return -EOPNOTSUPP;
566
567 ret = dev_set_threaded(dev, val);
568
569 return ret;
570 }
571
threaded_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)572 static ssize_t threaded_store(struct device *dev,
573 struct device_attribute *attr,
574 const char *buf, size_t len)
575 {
576 return netdev_store(dev, attr, buf, len, modify_napi_threaded);
577 }
578 static DEVICE_ATTR_RW(threaded);
579
580 static struct attribute *net_class_attrs[] __ro_after_init = {
581 &dev_attr_netdev_group.attr,
582 &dev_attr_type.attr,
583 &dev_attr_dev_id.attr,
584 &dev_attr_dev_port.attr,
585 &dev_attr_iflink.attr,
586 &dev_attr_ifindex.attr,
587 &dev_attr_name_assign_type.attr,
588 &dev_attr_addr_assign_type.attr,
589 &dev_attr_addr_len.attr,
590 &dev_attr_link_mode.attr,
591 &dev_attr_address.attr,
592 &dev_attr_broadcast.attr,
593 &dev_attr_speed.attr,
594 &dev_attr_duplex.attr,
595 &dev_attr_dormant.attr,
596 &dev_attr_testing.attr,
597 &dev_attr_operstate.attr,
598 &dev_attr_carrier_changes.attr,
599 &dev_attr_ifalias.attr,
600 &dev_attr_carrier.attr,
601 &dev_attr_mtu.attr,
602 &dev_attr_flags.attr,
603 &dev_attr_tx_queue_len.attr,
604 &dev_attr_gro_flush_timeout.attr,
605 &dev_attr_napi_defer_hard_irqs.attr,
606 &dev_attr_phys_port_id.attr,
607 &dev_attr_phys_port_name.attr,
608 &dev_attr_phys_switch_id.attr,
609 &dev_attr_proto_down.attr,
610 &dev_attr_carrier_up_count.attr,
611 &dev_attr_carrier_down_count.attr,
612 &dev_attr_threaded.attr,
613 NULL,
614 };
615 ATTRIBUTE_GROUPS(net_class);
616
617 /* Show a given an attribute in the statistics group */
netstat_show(const struct device * d,struct device_attribute * attr,char * buf,unsigned long offset)618 static ssize_t netstat_show(const struct device *d,
619 struct device_attribute *attr, char *buf,
620 unsigned long offset)
621 {
622 struct net_device *dev = to_net_dev(d);
623 ssize_t ret = -EINVAL;
624
625 WARN_ON(offset > sizeof(struct rtnl_link_stats64) ||
626 offset % sizeof(u64) != 0);
627
628 read_lock(&dev_base_lock);
629 if (dev_isalive(dev)) {
630 struct rtnl_link_stats64 temp;
631 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
632
633 ret = sprintf(buf, fmt_u64, *(u64 *)(((u8 *)stats) + offset));
634 }
635 read_unlock(&dev_base_lock);
636 return ret;
637 }
638
639 /* generate a read-only statistics attribute */
640 #define NETSTAT_ENTRY(name) \
641 static ssize_t name##_show(struct device *d, \
642 struct device_attribute *attr, char *buf) \
643 { \
644 return netstat_show(d, attr, buf, \
645 offsetof(struct rtnl_link_stats64, name)); \
646 } \
647 static DEVICE_ATTR_RO(name)
648
649 NETSTAT_ENTRY(rx_packets);
650 NETSTAT_ENTRY(tx_packets);
651 NETSTAT_ENTRY(rx_bytes);
652 NETSTAT_ENTRY(tx_bytes);
653 NETSTAT_ENTRY(rx_errors);
654 NETSTAT_ENTRY(tx_errors);
655 NETSTAT_ENTRY(rx_dropped);
656 NETSTAT_ENTRY(tx_dropped);
657 NETSTAT_ENTRY(multicast);
658 NETSTAT_ENTRY(collisions);
659 NETSTAT_ENTRY(rx_length_errors);
660 NETSTAT_ENTRY(rx_over_errors);
661 NETSTAT_ENTRY(rx_crc_errors);
662 NETSTAT_ENTRY(rx_frame_errors);
663 NETSTAT_ENTRY(rx_fifo_errors);
664 NETSTAT_ENTRY(rx_missed_errors);
665 NETSTAT_ENTRY(tx_aborted_errors);
666 NETSTAT_ENTRY(tx_carrier_errors);
667 NETSTAT_ENTRY(tx_fifo_errors);
668 NETSTAT_ENTRY(tx_heartbeat_errors);
669 NETSTAT_ENTRY(tx_window_errors);
670 NETSTAT_ENTRY(rx_compressed);
671 NETSTAT_ENTRY(tx_compressed);
672 NETSTAT_ENTRY(rx_nohandler);
673
674 static struct attribute *netstat_attrs[] __ro_after_init = {
675 &dev_attr_rx_packets.attr,
676 &dev_attr_tx_packets.attr,
677 &dev_attr_rx_bytes.attr,
678 &dev_attr_tx_bytes.attr,
679 &dev_attr_rx_errors.attr,
680 &dev_attr_tx_errors.attr,
681 &dev_attr_rx_dropped.attr,
682 &dev_attr_tx_dropped.attr,
683 &dev_attr_multicast.attr,
684 &dev_attr_collisions.attr,
685 &dev_attr_rx_length_errors.attr,
686 &dev_attr_rx_over_errors.attr,
687 &dev_attr_rx_crc_errors.attr,
688 &dev_attr_rx_frame_errors.attr,
689 &dev_attr_rx_fifo_errors.attr,
690 &dev_attr_rx_missed_errors.attr,
691 &dev_attr_tx_aborted_errors.attr,
692 &dev_attr_tx_carrier_errors.attr,
693 &dev_attr_tx_fifo_errors.attr,
694 &dev_attr_tx_heartbeat_errors.attr,
695 &dev_attr_tx_window_errors.attr,
696 &dev_attr_rx_compressed.attr,
697 &dev_attr_tx_compressed.attr,
698 &dev_attr_rx_nohandler.attr,
699 NULL
700 };
701
702 static const struct attribute_group netstat_group = {
703 .name = "statistics",
704 .attrs = netstat_attrs,
705 };
706
707 #if IS_ENABLED(CONFIG_WIRELESS_EXT) || IS_ENABLED(CONFIG_CFG80211)
708 static struct attribute *wireless_attrs[] = {
709 NULL
710 };
711
712 static const struct attribute_group wireless_group = {
713 .name = "wireless",
714 .attrs = wireless_attrs,
715 };
716 #endif
717
718 #else /* CONFIG_SYSFS */
719 #define net_class_groups NULL
720 #endif /* CONFIG_SYSFS */
721
722 #ifdef CONFIG_SYSFS
723 #define to_rx_queue_attr(_attr) \
724 container_of(_attr, struct rx_queue_attribute, attr)
725
726 #define to_rx_queue(obj) container_of(obj, struct netdev_rx_queue, kobj)
727
rx_queue_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)728 static ssize_t rx_queue_attr_show(struct kobject *kobj, struct attribute *attr,
729 char *buf)
730 {
731 const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
732 struct netdev_rx_queue *queue = to_rx_queue(kobj);
733
734 if (!attribute->show)
735 return -EIO;
736
737 return attribute->show(queue, buf);
738 }
739
rx_queue_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)740 static ssize_t rx_queue_attr_store(struct kobject *kobj, struct attribute *attr,
741 const char *buf, size_t count)
742 {
743 const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
744 struct netdev_rx_queue *queue = to_rx_queue(kobj);
745
746 if (!attribute->store)
747 return -EIO;
748
749 return attribute->store(queue, buf, count);
750 }
751
752 static const struct sysfs_ops rx_queue_sysfs_ops = {
753 .show = rx_queue_attr_show,
754 .store = rx_queue_attr_store,
755 };
756
757 #ifdef CONFIG_RPS
show_rps_map(struct netdev_rx_queue * queue,char * buf)758 static ssize_t show_rps_map(struct netdev_rx_queue *queue, char *buf)
759 {
760 struct rps_map *map;
761 cpumask_var_t mask;
762 int i, len;
763
764 if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
765 return -ENOMEM;
766
767 rcu_read_lock();
768 map = rcu_dereference(queue->rps_map);
769 if (map)
770 for (i = 0; i < map->len; i++)
771 cpumask_set_cpu(map->cpus[i], mask);
772
773 len = snprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
774 rcu_read_unlock();
775 free_cpumask_var(mask);
776
777 return len < PAGE_SIZE ? len : -EINVAL;
778 }
779
store_rps_map(struct netdev_rx_queue * queue,const char * buf,size_t len)780 static ssize_t store_rps_map(struct netdev_rx_queue *queue,
781 const char *buf, size_t len)
782 {
783 struct rps_map *old_map, *map;
784 cpumask_var_t mask;
785 int err, cpu, i, hk_flags;
786 static DEFINE_MUTEX(rps_map_mutex);
787
788 if (!capable(CAP_NET_ADMIN))
789 return -EPERM;
790
791 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
792 return -ENOMEM;
793
794 err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
795 if (err) {
796 free_cpumask_var(mask);
797 return err;
798 }
799
800 if (!cpumask_empty(mask)) {
801 hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
802 cpumask_and(mask, mask, housekeeping_cpumask(hk_flags));
803 if (cpumask_empty(mask)) {
804 free_cpumask_var(mask);
805 return -EINVAL;
806 }
807 }
808
809 map = kzalloc(max_t(unsigned int,
810 RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES),
811 GFP_KERNEL);
812 if (!map) {
813 free_cpumask_var(mask);
814 return -ENOMEM;
815 }
816
817 i = 0;
818 for_each_cpu_and(cpu, mask, cpu_online_mask)
819 map->cpus[i++] = cpu;
820
821 if (i) {
822 map->len = i;
823 } else {
824 kfree(map);
825 map = NULL;
826 }
827
828 mutex_lock(&rps_map_mutex);
829 old_map = rcu_dereference_protected(queue->rps_map,
830 mutex_is_locked(&rps_map_mutex));
831 rcu_assign_pointer(queue->rps_map, map);
832
833 if (map)
834 static_branch_inc(&rps_needed);
835 if (old_map)
836 static_branch_dec(&rps_needed);
837
838 mutex_unlock(&rps_map_mutex);
839
840 if (old_map)
841 kfree_rcu(old_map, rcu);
842
843 free_cpumask_var(mask);
844 return len;
845 }
846
show_rps_dev_flow_table_cnt(struct netdev_rx_queue * queue,char * buf)847 static ssize_t show_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
848 char *buf)
849 {
850 struct rps_dev_flow_table *flow_table;
851 unsigned long val = 0;
852
853 rcu_read_lock();
854 flow_table = rcu_dereference(queue->rps_flow_table);
855 if (flow_table)
856 val = (unsigned long)flow_table->mask + 1;
857 rcu_read_unlock();
858
859 return sprintf(buf, "%lu\n", val);
860 }
861
rps_dev_flow_table_release(struct rcu_head * rcu)862 static void rps_dev_flow_table_release(struct rcu_head *rcu)
863 {
864 struct rps_dev_flow_table *table = container_of(rcu,
865 struct rps_dev_flow_table, rcu);
866 vfree(table);
867 }
868
store_rps_dev_flow_table_cnt(struct netdev_rx_queue * queue,const char * buf,size_t len)869 static ssize_t store_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
870 const char *buf, size_t len)
871 {
872 unsigned long mask, count;
873 struct rps_dev_flow_table *table, *old_table;
874 static DEFINE_SPINLOCK(rps_dev_flow_lock);
875 int rc;
876
877 if (!capable(CAP_NET_ADMIN))
878 return -EPERM;
879
880 rc = kstrtoul(buf, 0, &count);
881 if (rc < 0)
882 return rc;
883
884 if (count) {
885 mask = count - 1;
886 /* mask = roundup_pow_of_two(count) - 1;
887 * without overflows...
888 */
889 while ((mask | (mask >> 1)) != mask)
890 mask |= (mask >> 1);
891 /* On 64 bit arches, must check mask fits in table->mask (u32),
892 * and on 32bit arches, must check
893 * RPS_DEV_FLOW_TABLE_SIZE(mask + 1) doesn't overflow.
894 */
895 #if BITS_PER_LONG > 32
896 if (mask > (unsigned long)(u32)mask)
897 return -EINVAL;
898 #else
899 if (mask > (ULONG_MAX - RPS_DEV_FLOW_TABLE_SIZE(1))
900 / sizeof(struct rps_dev_flow)) {
901 /* Enforce a limit to prevent overflow */
902 return -EINVAL;
903 }
904 #endif
905 table = vmalloc(RPS_DEV_FLOW_TABLE_SIZE(mask + 1));
906 if (!table)
907 return -ENOMEM;
908
909 table->mask = mask;
910 for (count = 0; count <= mask; count++)
911 table->flows[count].cpu = RPS_NO_CPU;
912 } else {
913 table = NULL;
914 }
915
916 spin_lock(&rps_dev_flow_lock);
917 old_table = rcu_dereference_protected(queue->rps_flow_table,
918 lockdep_is_held(&rps_dev_flow_lock));
919 rcu_assign_pointer(queue->rps_flow_table, table);
920 spin_unlock(&rps_dev_flow_lock);
921
922 if (old_table)
923 call_rcu(&old_table->rcu, rps_dev_flow_table_release);
924
925 return len;
926 }
927
928 static struct rx_queue_attribute rps_cpus_attribute __ro_after_init
929 = __ATTR(rps_cpus, 0644, show_rps_map, store_rps_map);
930
931 static struct rx_queue_attribute rps_dev_flow_table_cnt_attribute __ro_after_init
932 = __ATTR(rps_flow_cnt, 0644,
933 show_rps_dev_flow_table_cnt, store_rps_dev_flow_table_cnt);
934 #endif /* CONFIG_RPS */
935
936 static struct attribute *rx_queue_default_attrs[] __ro_after_init = {
937 #ifdef CONFIG_RPS
938 &rps_cpus_attribute.attr,
939 &rps_dev_flow_table_cnt_attribute.attr,
940 #endif
941 NULL
942 };
943 ATTRIBUTE_GROUPS(rx_queue_default);
944
rx_queue_release(struct kobject * kobj)945 static void rx_queue_release(struct kobject *kobj)
946 {
947 struct netdev_rx_queue *queue = to_rx_queue(kobj);
948 #ifdef CONFIG_RPS
949 struct rps_map *map;
950 struct rps_dev_flow_table *flow_table;
951
952 map = rcu_dereference_protected(queue->rps_map, 1);
953 if (map) {
954 RCU_INIT_POINTER(queue->rps_map, NULL);
955 kfree_rcu(map, rcu);
956 }
957
958 flow_table = rcu_dereference_protected(queue->rps_flow_table, 1);
959 if (flow_table) {
960 RCU_INIT_POINTER(queue->rps_flow_table, NULL);
961 call_rcu(&flow_table->rcu, rps_dev_flow_table_release);
962 }
963 #endif
964
965 memset(kobj, 0, sizeof(*kobj));
966 dev_put(queue->dev);
967 }
968
rx_queue_namespace(struct kobject * kobj)969 static const void *rx_queue_namespace(struct kobject *kobj)
970 {
971 struct netdev_rx_queue *queue = to_rx_queue(kobj);
972 struct device *dev = &queue->dev->dev;
973 const void *ns = NULL;
974
975 if (dev->class && dev->class->ns_type)
976 ns = dev->class->namespace(dev);
977
978 return ns;
979 }
980
rx_queue_get_ownership(struct kobject * kobj,kuid_t * uid,kgid_t * gid)981 static void rx_queue_get_ownership(struct kobject *kobj,
982 kuid_t *uid, kgid_t *gid)
983 {
984 const struct net *net = rx_queue_namespace(kobj);
985
986 net_ns_get_ownership(net, uid, gid);
987 }
988
989 static struct kobj_type rx_queue_ktype __ro_after_init = {
990 .sysfs_ops = &rx_queue_sysfs_ops,
991 .release = rx_queue_release,
992 .default_groups = rx_queue_default_groups,
993 .namespace = rx_queue_namespace,
994 .get_ownership = rx_queue_get_ownership,
995 };
996
rx_queue_add_kobject(struct net_device * dev,int index)997 static int rx_queue_add_kobject(struct net_device *dev, int index)
998 {
999 struct netdev_rx_queue *queue = dev->_rx + index;
1000 struct kobject *kobj = &queue->kobj;
1001 int error = 0;
1002
1003 /* Kobject_put later will trigger rx_queue_release call which
1004 * decreases dev refcount: Take that reference here
1005 */
1006 dev_hold(queue->dev);
1007
1008 kobj->kset = dev->queues_kset;
1009 error = kobject_init_and_add(kobj, &rx_queue_ktype, NULL,
1010 "rx-%u", index);
1011 if (error)
1012 goto err;
1013
1014 if (dev->sysfs_rx_queue_group) {
1015 error = sysfs_create_group(kobj, dev->sysfs_rx_queue_group);
1016 if (error)
1017 goto err;
1018 }
1019
1020 kobject_uevent(kobj, KOBJ_ADD);
1021
1022 return error;
1023
1024 err:
1025 kobject_put(kobj);
1026 return error;
1027 }
1028
rx_queue_change_owner(struct net_device * dev,int index,kuid_t kuid,kgid_t kgid)1029 static int rx_queue_change_owner(struct net_device *dev, int index, kuid_t kuid,
1030 kgid_t kgid)
1031 {
1032 struct netdev_rx_queue *queue = dev->_rx + index;
1033 struct kobject *kobj = &queue->kobj;
1034 int error;
1035
1036 error = sysfs_change_owner(kobj, kuid, kgid);
1037 if (error)
1038 return error;
1039
1040 if (dev->sysfs_rx_queue_group)
1041 error = sysfs_group_change_owner(
1042 kobj, dev->sysfs_rx_queue_group, kuid, kgid);
1043
1044 return error;
1045 }
1046 #endif /* CONFIG_SYSFS */
1047
1048 int
net_rx_queue_update_kobjects(struct net_device * dev,int old_num,int new_num)1049 net_rx_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
1050 {
1051 #ifdef CONFIG_SYSFS
1052 int i;
1053 int error = 0;
1054
1055 #ifndef CONFIG_RPS
1056 if (!dev->sysfs_rx_queue_group)
1057 return 0;
1058 #endif
1059 for (i = old_num; i < new_num; i++) {
1060 error = rx_queue_add_kobject(dev, i);
1061 if (error) {
1062 new_num = old_num;
1063 break;
1064 }
1065 }
1066
1067 while (--i >= new_num) {
1068 struct kobject *kobj = &dev->_rx[i].kobj;
1069
1070 if (!refcount_read(&dev_net(dev)->ns.count))
1071 kobj->uevent_suppress = 1;
1072 if (dev->sysfs_rx_queue_group)
1073 sysfs_remove_group(kobj, dev->sysfs_rx_queue_group);
1074 kobject_put(kobj);
1075 }
1076
1077 return error;
1078 #else
1079 return 0;
1080 #endif
1081 }
1082
net_rx_queue_change_owner(struct net_device * dev,int num,kuid_t kuid,kgid_t kgid)1083 static int net_rx_queue_change_owner(struct net_device *dev, int num,
1084 kuid_t kuid, kgid_t kgid)
1085 {
1086 #ifdef CONFIG_SYSFS
1087 int error = 0;
1088 int i;
1089
1090 #ifndef CONFIG_RPS
1091 if (!dev->sysfs_rx_queue_group)
1092 return 0;
1093 #endif
1094 for (i = 0; i < num; i++) {
1095 error = rx_queue_change_owner(dev, i, kuid, kgid);
1096 if (error)
1097 break;
1098 }
1099
1100 return error;
1101 #else
1102 return 0;
1103 #endif
1104 }
1105
1106 #ifdef CONFIG_SYSFS
1107 /*
1108 * netdev_queue sysfs structures and functions.
1109 */
1110 struct netdev_queue_attribute {
1111 struct attribute attr;
1112 ssize_t (*show)(struct netdev_queue *queue, char *buf);
1113 ssize_t (*store)(struct netdev_queue *queue,
1114 const char *buf, size_t len);
1115 };
1116 #define to_netdev_queue_attr(_attr) \
1117 container_of(_attr, struct netdev_queue_attribute, attr)
1118
1119 #define to_netdev_queue(obj) container_of(obj, struct netdev_queue, kobj)
1120
netdev_queue_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)1121 static ssize_t netdev_queue_attr_show(struct kobject *kobj,
1122 struct attribute *attr, char *buf)
1123 {
1124 const struct netdev_queue_attribute *attribute
1125 = to_netdev_queue_attr(attr);
1126 struct netdev_queue *queue = to_netdev_queue(kobj);
1127
1128 if (!attribute->show)
1129 return -EIO;
1130
1131 return attribute->show(queue, buf);
1132 }
1133
netdev_queue_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)1134 static ssize_t netdev_queue_attr_store(struct kobject *kobj,
1135 struct attribute *attr,
1136 const char *buf, size_t count)
1137 {
1138 const struct netdev_queue_attribute *attribute
1139 = to_netdev_queue_attr(attr);
1140 struct netdev_queue *queue = to_netdev_queue(kobj);
1141
1142 if (!attribute->store)
1143 return -EIO;
1144
1145 return attribute->store(queue, buf, count);
1146 }
1147
1148 static const struct sysfs_ops netdev_queue_sysfs_ops = {
1149 .show = netdev_queue_attr_show,
1150 .store = netdev_queue_attr_store,
1151 };
1152
tx_timeout_show(struct netdev_queue * queue,char * buf)1153 static ssize_t tx_timeout_show(struct netdev_queue *queue, char *buf)
1154 {
1155 unsigned long trans_timeout;
1156
1157 spin_lock_irq(&queue->_xmit_lock);
1158 trans_timeout = queue->trans_timeout;
1159 spin_unlock_irq(&queue->_xmit_lock);
1160
1161 return sprintf(buf, fmt_ulong, trans_timeout);
1162 }
1163
get_netdev_queue_index(struct netdev_queue * queue)1164 static unsigned int get_netdev_queue_index(struct netdev_queue *queue)
1165 {
1166 struct net_device *dev = queue->dev;
1167 unsigned int i;
1168
1169 i = queue - dev->_tx;
1170 BUG_ON(i >= dev->num_tx_queues);
1171
1172 return i;
1173 }
1174
traffic_class_show(struct netdev_queue * queue,char * buf)1175 static ssize_t traffic_class_show(struct netdev_queue *queue,
1176 char *buf)
1177 {
1178 struct net_device *dev = queue->dev;
1179 int num_tc, tc;
1180 int index;
1181
1182 if (!netif_is_multiqueue(dev))
1183 return -ENOENT;
1184
1185 if (!rtnl_trylock())
1186 return restart_syscall();
1187
1188 index = get_netdev_queue_index(queue);
1189
1190 /* If queue belongs to subordinate dev use its TC mapping */
1191 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1192
1193 num_tc = dev->num_tc;
1194 tc = netdev_txq_to_tc(dev, index);
1195
1196 rtnl_unlock();
1197
1198 if (tc < 0)
1199 return -EINVAL;
1200
1201 /* We can report the traffic class one of two ways:
1202 * Subordinate device traffic classes are reported with the traffic
1203 * class first, and then the subordinate class so for example TC0 on
1204 * subordinate device 2 will be reported as "0-2". If the queue
1205 * belongs to the root device it will be reported with just the
1206 * traffic class, so just "0" for TC 0 for example.
1207 */
1208 return num_tc < 0 ? sprintf(buf, "%d%d\n", tc, num_tc) :
1209 sprintf(buf, "%d\n", tc);
1210 }
1211
1212 #ifdef CONFIG_XPS
tx_maxrate_show(struct netdev_queue * queue,char * buf)1213 static ssize_t tx_maxrate_show(struct netdev_queue *queue,
1214 char *buf)
1215 {
1216 return sprintf(buf, "%lu\n", queue->tx_maxrate);
1217 }
1218
tx_maxrate_store(struct netdev_queue * queue,const char * buf,size_t len)1219 static ssize_t tx_maxrate_store(struct netdev_queue *queue,
1220 const char *buf, size_t len)
1221 {
1222 struct net_device *dev = queue->dev;
1223 int err, index = get_netdev_queue_index(queue);
1224 u32 rate = 0;
1225
1226 if (!capable(CAP_NET_ADMIN))
1227 return -EPERM;
1228
1229 err = kstrtou32(buf, 10, &rate);
1230 if (err < 0)
1231 return err;
1232
1233 if (!rtnl_trylock())
1234 return restart_syscall();
1235
1236 err = -EOPNOTSUPP;
1237 if (dev->netdev_ops->ndo_set_tx_maxrate)
1238 err = dev->netdev_ops->ndo_set_tx_maxrate(dev, index, rate);
1239
1240 rtnl_unlock();
1241 if (!err) {
1242 queue->tx_maxrate = rate;
1243 return len;
1244 }
1245 return err;
1246 }
1247
1248 static struct netdev_queue_attribute queue_tx_maxrate __ro_after_init
1249 = __ATTR_RW(tx_maxrate);
1250 #endif
1251
1252 static struct netdev_queue_attribute queue_trans_timeout __ro_after_init
1253 = __ATTR_RO(tx_timeout);
1254
1255 static struct netdev_queue_attribute queue_traffic_class __ro_after_init
1256 = __ATTR_RO(traffic_class);
1257
1258 #ifdef CONFIG_BQL
1259 /*
1260 * Byte queue limits sysfs structures and functions.
1261 */
bql_show(char * buf,unsigned int value)1262 static ssize_t bql_show(char *buf, unsigned int value)
1263 {
1264 return sprintf(buf, "%u\n", value);
1265 }
1266
bql_set(const char * buf,const size_t count,unsigned int * pvalue)1267 static ssize_t bql_set(const char *buf, const size_t count,
1268 unsigned int *pvalue)
1269 {
1270 unsigned int value;
1271 int err;
1272
1273 if (!strcmp(buf, "max") || !strcmp(buf, "max\n")) {
1274 value = DQL_MAX_LIMIT;
1275 } else {
1276 err = kstrtouint(buf, 10, &value);
1277 if (err < 0)
1278 return err;
1279 if (value > DQL_MAX_LIMIT)
1280 return -EINVAL;
1281 }
1282
1283 *pvalue = value;
1284
1285 return count;
1286 }
1287
bql_show_hold_time(struct netdev_queue * queue,char * buf)1288 static ssize_t bql_show_hold_time(struct netdev_queue *queue,
1289 char *buf)
1290 {
1291 struct dql *dql = &queue->dql;
1292
1293 return sprintf(buf, "%u\n", jiffies_to_msecs(dql->slack_hold_time));
1294 }
1295
bql_set_hold_time(struct netdev_queue * queue,const char * buf,size_t len)1296 static ssize_t bql_set_hold_time(struct netdev_queue *queue,
1297 const char *buf, size_t len)
1298 {
1299 struct dql *dql = &queue->dql;
1300 unsigned int value;
1301 int err;
1302
1303 err = kstrtouint(buf, 10, &value);
1304 if (err < 0)
1305 return err;
1306
1307 dql->slack_hold_time = msecs_to_jiffies(value);
1308
1309 return len;
1310 }
1311
1312 static struct netdev_queue_attribute bql_hold_time_attribute __ro_after_init
1313 = __ATTR(hold_time, 0644,
1314 bql_show_hold_time, bql_set_hold_time);
1315
bql_show_inflight(struct netdev_queue * queue,char * buf)1316 static ssize_t bql_show_inflight(struct netdev_queue *queue,
1317 char *buf)
1318 {
1319 struct dql *dql = &queue->dql;
1320
1321 return sprintf(buf, "%u\n", dql->num_queued - dql->num_completed);
1322 }
1323
1324 static struct netdev_queue_attribute bql_inflight_attribute __ro_after_init =
1325 __ATTR(inflight, 0444, bql_show_inflight, NULL);
1326
1327 #define BQL_ATTR(NAME, FIELD) \
1328 static ssize_t bql_show_ ## NAME(struct netdev_queue *queue, \
1329 char *buf) \
1330 { \
1331 return bql_show(buf, queue->dql.FIELD); \
1332 } \
1333 \
1334 static ssize_t bql_set_ ## NAME(struct netdev_queue *queue, \
1335 const char *buf, size_t len) \
1336 { \
1337 return bql_set(buf, len, &queue->dql.FIELD); \
1338 } \
1339 \
1340 static struct netdev_queue_attribute bql_ ## NAME ## _attribute __ro_after_init \
1341 = __ATTR(NAME, 0644, \
1342 bql_show_ ## NAME, bql_set_ ## NAME)
1343
1344 BQL_ATTR(limit, limit);
1345 BQL_ATTR(limit_max, max_limit);
1346 BQL_ATTR(limit_min, min_limit);
1347
1348 static struct attribute *dql_attrs[] __ro_after_init = {
1349 &bql_limit_attribute.attr,
1350 &bql_limit_max_attribute.attr,
1351 &bql_limit_min_attribute.attr,
1352 &bql_hold_time_attribute.attr,
1353 &bql_inflight_attribute.attr,
1354 NULL
1355 };
1356
1357 static const struct attribute_group dql_group = {
1358 .name = "byte_queue_limits",
1359 .attrs = dql_attrs,
1360 };
1361 #endif /* CONFIG_BQL */
1362
1363 #ifdef CONFIG_XPS
xps_queue_show(struct net_device * dev,unsigned int index,int tc,char * buf,enum xps_map_type type)1364 static ssize_t xps_queue_show(struct net_device *dev, unsigned int index,
1365 int tc, char *buf, enum xps_map_type type)
1366 {
1367 struct xps_dev_maps *dev_maps;
1368 unsigned long *mask;
1369 unsigned int nr_ids;
1370 int j, len;
1371
1372 rcu_read_lock();
1373 dev_maps = rcu_dereference(dev->xps_maps[type]);
1374
1375 /* Default to nr_cpu_ids/dev->num_rx_queues and do not just return 0
1376 * when dev_maps hasn't been allocated yet, to be backward compatible.
1377 */
1378 nr_ids = dev_maps ? dev_maps->nr_ids :
1379 (type == XPS_CPUS ? nr_cpu_ids : dev->num_rx_queues);
1380
1381 mask = bitmap_zalloc(nr_ids, GFP_NOWAIT);
1382 if (!mask) {
1383 rcu_read_unlock();
1384 return -ENOMEM;
1385 }
1386
1387 if (!dev_maps || tc >= dev_maps->num_tc)
1388 goto out_no_maps;
1389
1390 for (j = 0; j < nr_ids; j++) {
1391 int i, tci = j * dev_maps->num_tc + tc;
1392 struct xps_map *map;
1393
1394 map = rcu_dereference(dev_maps->attr_map[tci]);
1395 if (!map)
1396 continue;
1397
1398 for (i = map->len; i--;) {
1399 if (map->queues[i] == index) {
1400 set_bit(j, mask);
1401 break;
1402 }
1403 }
1404 }
1405 out_no_maps:
1406 rcu_read_unlock();
1407
1408 len = bitmap_print_to_pagebuf(false, buf, mask, nr_ids);
1409 bitmap_free(mask);
1410
1411 return len < PAGE_SIZE ? len : -EINVAL;
1412 }
1413
xps_cpus_show(struct netdev_queue * queue,char * buf)1414 static ssize_t xps_cpus_show(struct netdev_queue *queue, char *buf)
1415 {
1416 struct net_device *dev = queue->dev;
1417 unsigned int index;
1418 int len, tc;
1419
1420 if (!netif_is_multiqueue(dev))
1421 return -ENOENT;
1422
1423 index = get_netdev_queue_index(queue);
1424
1425 if (!rtnl_trylock())
1426 return restart_syscall();
1427
1428 /* If queue belongs to subordinate dev use its map */
1429 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1430
1431 tc = netdev_txq_to_tc(dev, index);
1432 if (tc < 0) {
1433 rtnl_unlock();
1434 return -EINVAL;
1435 }
1436
1437 /* Make sure the subordinate device can't be freed */
1438 get_device(&dev->dev);
1439 rtnl_unlock();
1440
1441 len = xps_queue_show(dev, index, tc, buf, XPS_CPUS);
1442
1443 put_device(&dev->dev);
1444 return len;
1445 }
1446
xps_cpus_store(struct netdev_queue * queue,const char * buf,size_t len)1447 static ssize_t xps_cpus_store(struct netdev_queue *queue,
1448 const char *buf, size_t len)
1449 {
1450 struct net_device *dev = queue->dev;
1451 unsigned int index;
1452 cpumask_var_t mask;
1453 int err;
1454
1455 if (!netif_is_multiqueue(dev))
1456 return -ENOENT;
1457
1458 if (!capable(CAP_NET_ADMIN))
1459 return -EPERM;
1460
1461 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
1462 return -ENOMEM;
1463
1464 index = get_netdev_queue_index(queue);
1465
1466 err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
1467 if (err) {
1468 free_cpumask_var(mask);
1469 return err;
1470 }
1471
1472 if (!rtnl_trylock()) {
1473 free_cpumask_var(mask);
1474 return restart_syscall();
1475 }
1476
1477 err = netif_set_xps_queue(dev, mask, index);
1478 rtnl_unlock();
1479
1480 free_cpumask_var(mask);
1481
1482 return err ? : len;
1483 }
1484
1485 static struct netdev_queue_attribute xps_cpus_attribute __ro_after_init
1486 = __ATTR_RW(xps_cpus);
1487
xps_rxqs_show(struct netdev_queue * queue,char * buf)1488 static ssize_t xps_rxqs_show(struct netdev_queue *queue, char *buf)
1489 {
1490 struct net_device *dev = queue->dev;
1491 unsigned int index;
1492 int tc;
1493
1494 index = get_netdev_queue_index(queue);
1495
1496 if (!rtnl_trylock())
1497 return restart_syscall();
1498
1499 tc = netdev_txq_to_tc(dev, index);
1500 rtnl_unlock();
1501 if (tc < 0)
1502 return -EINVAL;
1503
1504 return xps_queue_show(dev, index, tc, buf, XPS_RXQS);
1505 }
1506
xps_rxqs_store(struct netdev_queue * queue,const char * buf,size_t len)1507 static ssize_t xps_rxqs_store(struct netdev_queue *queue, const char *buf,
1508 size_t len)
1509 {
1510 struct net_device *dev = queue->dev;
1511 struct net *net = dev_net(dev);
1512 unsigned long *mask;
1513 unsigned int index;
1514 int err;
1515
1516 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1517 return -EPERM;
1518
1519 mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL);
1520 if (!mask)
1521 return -ENOMEM;
1522
1523 index = get_netdev_queue_index(queue);
1524
1525 err = bitmap_parse(buf, len, mask, dev->num_rx_queues);
1526 if (err) {
1527 bitmap_free(mask);
1528 return err;
1529 }
1530
1531 if (!rtnl_trylock()) {
1532 bitmap_free(mask);
1533 return restart_syscall();
1534 }
1535
1536 cpus_read_lock();
1537 err = __netif_set_xps_queue(dev, mask, index, XPS_RXQS);
1538 cpus_read_unlock();
1539
1540 rtnl_unlock();
1541
1542 bitmap_free(mask);
1543 return err ? : len;
1544 }
1545
1546 static struct netdev_queue_attribute xps_rxqs_attribute __ro_after_init
1547 = __ATTR_RW(xps_rxqs);
1548 #endif /* CONFIG_XPS */
1549
1550 static struct attribute *netdev_queue_default_attrs[] __ro_after_init = {
1551 &queue_trans_timeout.attr,
1552 &queue_traffic_class.attr,
1553 #ifdef CONFIG_XPS
1554 &xps_cpus_attribute.attr,
1555 &xps_rxqs_attribute.attr,
1556 &queue_tx_maxrate.attr,
1557 #endif
1558 NULL
1559 };
1560 ATTRIBUTE_GROUPS(netdev_queue_default);
1561
netdev_queue_release(struct kobject * kobj)1562 static void netdev_queue_release(struct kobject *kobj)
1563 {
1564 struct netdev_queue *queue = to_netdev_queue(kobj);
1565
1566 memset(kobj, 0, sizeof(*kobj));
1567 dev_put(queue->dev);
1568 }
1569
netdev_queue_namespace(struct kobject * kobj)1570 static const void *netdev_queue_namespace(struct kobject *kobj)
1571 {
1572 struct netdev_queue *queue = to_netdev_queue(kobj);
1573 struct device *dev = &queue->dev->dev;
1574 const void *ns = NULL;
1575
1576 if (dev->class && dev->class->ns_type)
1577 ns = dev->class->namespace(dev);
1578
1579 return ns;
1580 }
1581
netdev_queue_get_ownership(struct kobject * kobj,kuid_t * uid,kgid_t * gid)1582 static void netdev_queue_get_ownership(struct kobject *kobj,
1583 kuid_t *uid, kgid_t *gid)
1584 {
1585 const struct net *net = netdev_queue_namespace(kobj);
1586
1587 net_ns_get_ownership(net, uid, gid);
1588 }
1589
1590 static struct kobj_type netdev_queue_ktype __ro_after_init = {
1591 .sysfs_ops = &netdev_queue_sysfs_ops,
1592 .release = netdev_queue_release,
1593 .default_groups = netdev_queue_default_groups,
1594 .namespace = netdev_queue_namespace,
1595 .get_ownership = netdev_queue_get_ownership,
1596 };
1597
netdev_queue_add_kobject(struct net_device * dev,int index)1598 static int netdev_queue_add_kobject(struct net_device *dev, int index)
1599 {
1600 struct netdev_queue *queue = dev->_tx + index;
1601 struct kobject *kobj = &queue->kobj;
1602 int error = 0;
1603
1604 /* Kobject_put later will trigger netdev_queue_release call
1605 * which decreases dev refcount: Take that reference here
1606 */
1607 dev_hold(queue->dev);
1608
1609 kobj->kset = dev->queues_kset;
1610 error = kobject_init_and_add(kobj, &netdev_queue_ktype, NULL,
1611 "tx-%u", index);
1612 if (error)
1613 goto err;
1614
1615 #ifdef CONFIG_BQL
1616 error = sysfs_create_group(kobj, &dql_group);
1617 if (error)
1618 goto err;
1619 #endif
1620
1621 kobject_uevent(kobj, KOBJ_ADD);
1622 return 0;
1623
1624 err:
1625 kobject_put(kobj);
1626 return error;
1627 }
1628
tx_queue_change_owner(struct net_device * ndev,int index,kuid_t kuid,kgid_t kgid)1629 static int tx_queue_change_owner(struct net_device *ndev, int index,
1630 kuid_t kuid, kgid_t kgid)
1631 {
1632 struct netdev_queue *queue = ndev->_tx + index;
1633 struct kobject *kobj = &queue->kobj;
1634 int error;
1635
1636 error = sysfs_change_owner(kobj, kuid, kgid);
1637 if (error)
1638 return error;
1639
1640 #ifdef CONFIG_BQL
1641 error = sysfs_group_change_owner(kobj, &dql_group, kuid, kgid);
1642 #endif
1643 return error;
1644 }
1645 #endif /* CONFIG_SYSFS */
1646
1647 int
netdev_queue_update_kobjects(struct net_device * dev,int old_num,int new_num)1648 netdev_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
1649 {
1650 #ifdef CONFIG_SYSFS
1651 int i;
1652 int error = 0;
1653
1654 for (i = old_num; i < new_num; i++) {
1655 error = netdev_queue_add_kobject(dev, i);
1656 if (error) {
1657 new_num = old_num;
1658 break;
1659 }
1660 }
1661
1662 while (--i >= new_num) {
1663 struct netdev_queue *queue = dev->_tx + i;
1664
1665 if (!refcount_read(&dev_net(dev)->ns.count))
1666 queue->kobj.uevent_suppress = 1;
1667 #ifdef CONFIG_BQL
1668 sysfs_remove_group(&queue->kobj, &dql_group);
1669 #endif
1670 kobject_put(&queue->kobj);
1671 }
1672
1673 return error;
1674 #else
1675 return 0;
1676 #endif /* CONFIG_SYSFS */
1677 }
1678
net_tx_queue_change_owner(struct net_device * dev,int num,kuid_t kuid,kgid_t kgid)1679 static int net_tx_queue_change_owner(struct net_device *dev, int num,
1680 kuid_t kuid, kgid_t kgid)
1681 {
1682 #ifdef CONFIG_SYSFS
1683 int error = 0;
1684 int i;
1685
1686 for (i = 0; i < num; i++) {
1687 error = tx_queue_change_owner(dev, i, kuid, kgid);
1688 if (error)
1689 break;
1690 }
1691
1692 return error;
1693 #else
1694 return 0;
1695 #endif /* CONFIG_SYSFS */
1696 }
1697
register_queue_kobjects(struct net_device * dev)1698 static int register_queue_kobjects(struct net_device *dev)
1699 {
1700 int error = 0, txq = 0, rxq = 0, real_rx = 0, real_tx = 0;
1701
1702 #ifdef CONFIG_SYSFS
1703 dev->queues_kset = kset_create_and_add("queues",
1704 NULL, &dev->dev.kobj);
1705 if (!dev->queues_kset)
1706 return -ENOMEM;
1707 real_rx = dev->real_num_rx_queues;
1708 #endif
1709 real_tx = dev->real_num_tx_queues;
1710
1711 error = net_rx_queue_update_kobjects(dev, 0, real_rx);
1712 if (error)
1713 goto error;
1714 rxq = real_rx;
1715
1716 error = netdev_queue_update_kobjects(dev, 0, real_tx);
1717 if (error)
1718 goto error;
1719 txq = real_tx;
1720
1721 return 0;
1722
1723 error:
1724 netdev_queue_update_kobjects(dev, txq, 0);
1725 net_rx_queue_update_kobjects(dev, rxq, 0);
1726 #ifdef CONFIG_SYSFS
1727 kset_unregister(dev->queues_kset);
1728 #endif
1729 return error;
1730 }
1731
queue_change_owner(struct net_device * ndev,kuid_t kuid,kgid_t kgid)1732 static int queue_change_owner(struct net_device *ndev, kuid_t kuid, kgid_t kgid)
1733 {
1734 int error = 0, real_rx = 0, real_tx = 0;
1735
1736 #ifdef CONFIG_SYSFS
1737 if (ndev->queues_kset) {
1738 error = sysfs_change_owner(&ndev->queues_kset->kobj, kuid, kgid);
1739 if (error)
1740 return error;
1741 }
1742 real_rx = ndev->real_num_rx_queues;
1743 #endif
1744 real_tx = ndev->real_num_tx_queues;
1745
1746 error = net_rx_queue_change_owner(ndev, real_rx, kuid, kgid);
1747 if (error)
1748 return error;
1749
1750 error = net_tx_queue_change_owner(ndev, real_tx, kuid, kgid);
1751 if (error)
1752 return error;
1753
1754 return 0;
1755 }
1756
remove_queue_kobjects(struct net_device * dev)1757 static void remove_queue_kobjects(struct net_device *dev)
1758 {
1759 int real_rx = 0, real_tx = 0;
1760
1761 #ifdef CONFIG_SYSFS
1762 real_rx = dev->real_num_rx_queues;
1763 #endif
1764 real_tx = dev->real_num_tx_queues;
1765
1766 net_rx_queue_update_kobjects(dev, real_rx, 0);
1767 netdev_queue_update_kobjects(dev, real_tx, 0);
1768 #ifdef CONFIG_SYSFS
1769 kset_unregister(dev->queues_kset);
1770 #endif
1771 }
1772
net_current_may_mount(void)1773 static bool net_current_may_mount(void)
1774 {
1775 struct net *net = current->nsproxy->net_ns;
1776
1777 return ns_capable(net->user_ns, CAP_SYS_ADMIN);
1778 }
1779
net_grab_current_ns(void)1780 static void *net_grab_current_ns(void)
1781 {
1782 struct net *ns = current->nsproxy->net_ns;
1783 #ifdef CONFIG_NET_NS
1784 if (ns)
1785 refcount_inc(&ns->passive);
1786 #endif
1787 return ns;
1788 }
1789
net_initial_ns(void)1790 static const void *net_initial_ns(void)
1791 {
1792 return &init_net;
1793 }
1794
net_netlink_ns(struct sock * sk)1795 static const void *net_netlink_ns(struct sock *sk)
1796 {
1797 return sock_net(sk);
1798 }
1799
1800 const struct kobj_ns_type_operations net_ns_type_operations = {
1801 .type = KOBJ_NS_TYPE_NET,
1802 .current_may_mount = net_current_may_mount,
1803 .grab_current_ns = net_grab_current_ns,
1804 .netlink_ns = net_netlink_ns,
1805 .initial_ns = net_initial_ns,
1806 .drop_ns = net_drop_ns,
1807 };
1808 EXPORT_SYMBOL_GPL(net_ns_type_operations);
1809
netdev_uevent(struct device * d,struct kobj_uevent_env * env)1810 static int netdev_uevent(struct device *d, struct kobj_uevent_env *env)
1811 {
1812 struct net_device *dev = to_net_dev(d);
1813 int retval;
1814
1815 /* pass interface to uevent. */
1816 retval = add_uevent_var(env, "INTERFACE=%s", dev->name);
1817 if (retval)
1818 goto exit;
1819
1820 /* pass ifindex to uevent.
1821 * ifindex is useful as it won't change (interface name may change)
1822 * and is what RtNetlink uses natively.
1823 */
1824 retval = add_uevent_var(env, "IFINDEX=%d", dev->ifindex);
1825
1826 exit:
1827 return retval;
1828 }
1829
1830 /*
1831 * netdev_release -- destroy and free a dead device.
1832 * Called when last reference to device kobject is gone.
1833 */
netdev_release(struct device * d)1834 static void netdev_release(struct device *d)
1835 {
1836 struct net_device *dev = to_net_dev(d);
1837
1838 BUG_ON(dev->reg_state != NETREG_RELEASED);
1839
1840 /* no need to wait for rcu grace period:
1841 * device is dead and about to be freed.
1842 */
1843 kfree(rcu_access_pointer(dev->ifalias));
1844 netdev_freemem(dev);
1845 }
1846
net_namespace(struct device * d)1847 static const void *net_namespace(struct device *d)
1848 {
1849 struct net_device *dev = to_net_dev(d);
1850
1851 return dev_net(dev);
1852 }
1853
net_get_ownership(struct device * d,kuid_t * uid,kgid_t * gid)1854 static void net_get_ownership(struct device *d, kuid_t *uid, kgid_t *gid)
1855 {
1856 struct net_device *dev = to_net_dev(d);
1857 const struct net *net = dev_net(dev);
1858
1859 net_ns_get_ownership(net, uid, gid);
1860 }
1861
1862 static struct class net_class __ro_after_init = {
1863 .name = "net",
1864 .dev_release = netdev_release,
1865 .dev_groups = net_class_groups,
1866 .dev_uevent = netdev_uevent,
1867 .ns_type = &net_ns_type_operations,
1868 .namespace = net_namespace,
1869 .get_ownership = net_get_ownership,
1870 };
1871
1872 #ifdef CONFIG_OF_NET
of_dev_node_match(struct device * dev,const void * data)1873 static int of_dev_node_match(struct device *dev, const void *data)
1874 {
1875 for (; dev; dev = dev->parent) {
1876 if (dev->of_node == data)
1877 return 1;
1878 }
1879
1880 return 0;
1881 }
1882
1883 /*
1884 * of_find_net_device_by_node - lookup the net device for the device node
1885 * @np: OF device node
1886 *
1887 * Looks up the net_device structure corresponding with the device node.
1888 * If successful, returns a pointer to the net_device with the embedded
1889 * struct device refcount incremented by one, or NULL on failure. The
1890 * refcount must be dropped when done with the net_device.
1891 */
of_find_net_device_by_node(struct device_node * np)1892 struct net_device *of_find_net_device_by_node(struct device_node *np)
1893 {
1894 struct device *dev;
1895
1896 dev = class_find_device(&net_class, NULL, np, of_dev_node_match);
1897 if (!dev)
1898 return NULL;
1899
1900 return to_net_dev(dev);
1901 }
1902 EXPORT_SYMBOL(of_find_net_device_by_node);
1903 #endif
1904
1905 /* Delete sysfs entries but hold kobject reference until after all
1906 * netdev references are gone.
1907 */
netdev_unregister_kobject(struct net_device * ndev)1908 void netdev_unregister_kobject(struct net_device *ndev)
1909 {
1910 struct device *dev = &ndev->dev;
1911
1912 if (!refcount_read(&dev_net(ndev)->ns.count))
1913 dev_set_uevent_suppress(dev, 1);
1914
1915 kobject_get(&dev->kobj);
1916
1917 remove_queue_kobjects(ndev);
1918
1919 pm_runtime_set_memalloc_noio(dev, false);
1920
1921 device_del(dev);
1922 }
1923
1924 /* Create sysfs entries for network device. */
netdev_register_kobject(struct net_device * ndev)1925 int netdev_register_kobject(struct net_device *ndev)
1926 {
1927 struct device *dev = &ndev->dev;
1928 const struct attribute_group **groups = ndev->sysfs_groups;
1929 int error = 0;
1930
1931 device_initialize(dev);
1932 dev->class = &net_class;
1933 dev->platform_data = ndev;
1934 dev->groups = groups;
1935
1936 dev_set_name(dev, "%s", ndev->name);
1937
1938 #ifdef CONFIG_SYSFS
1939 /* Allow for a device specific group */
1940 if (*groups)
1941 groups++;
1942
1943 *groups++ = &netstat_group;
1944
1945 #if IS_ENABLED(CONFIG_WIRELESS_EXT) || IS_ENABLED(CONFIG_CFG80211)
1946 if (ndev->ieee80211_ptr)
1947 *groups++ = &wireless_group;
1948 #if IS_ENABLED(CONFIG_WIRELESS_EXT)
1949 else if (ndev->wireless_handlers)
1950 *groups++ = &wireless_group;
1951 #endif
1952 #endif
1953 #endif /* CONFIG_SYSFS */
1954
1955 error = device_add(dev);
1956 if (error)
1957 return error;
1958
1959 error = register_queue_kobjects(ndev);
1960 if (error) {
1961 device_del(dev);
1962 return error;
1963 }
1964
1965 pm_runtime_set_memalloc_noio(dev, true);
1966
1967 return error;
1968 }
1969
1970 /* Change owner for sysfs entries when moving network devices across network
1971 * namespaces owned by different user namespaces.
1972 */
netdev_change_owner(struct net_device * ndev,const struct net * net_old,const struct net * net_new)1973 int netdev_change_owner(struct net_device *ndev, const struct net *net_old,
1974 const struct net *net_new)
1975 {
1976 kuid_t old_uid = GLOBAL_ROOT_UID, new_uid = GLOBAL_ROOT_UID;
1977 kgid_t old_gid = GLOBAL_ROOT_GID, new_gid = GLOBAL_ROOT_GID;
1978 struct device *dev = &ndev->dev;
1979 int error;
1980
1981 net_ns_get_ownership(net_old, &old_uid, &old_gid);
1982 net_ns_get_ownership(net_new, &new_uid, &new_gid);
1983
1984 /* The network namespace was changed but the owning user namespace is
1985 * identical so there's no need to change the owner of sysfs entries.
1986 */
1987 if (uid_eq(old_uid, new_uid) && gid_eq(old_gid, new_gid))
1988 return 0;
1989
1990 error = device_change_owner(dev, new_uid, new_gid);
1991 if (error)
1992 return error;
1993
1994 error = queue_change_owner(ndev, new_uid, new_gid);
1995 if (error)
1996 return error;
1997
1998 return 0;
1999 }
2000
netdev_class_create_file_ns(const struct class_attribute * class_attr,const void * ns)2001 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
2002 const void *ns)
2003 {
2004 return class_create_file_ns(&net_class, class_attr, ns);
2005 }
2006 EXPORT_SYMBOL(netdev_class_create_file_ns);
2007
netdev_class_remove_file_ns(const struct class_attribute * class_attr,const void * ns)2008 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
2009 const void *ns)
2010 {
2011 class_remove_file_ns(&net_class, class_attr, ns);
2012 }
2013 EXPORT_SYMBOL(netdev_class_remove_file_ns);
2014
netdev_kobject_init(void)2015 int __init netdev_kobject_init(void)
2016 {
2017 kobj_ns_type_register(&net_ns_type_operations);
2018 return class_register(&net_class);
2019 }
2020