1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2004-2006 Silicon Graphics, Inc. All rights reserved.
7 *
8 * SGI Altix topology and hardware performance monitoring API.
9 * Mark Goodwin <markgw@sgi.com>.
10 *
11 * Creates /proc/sgi_sn/sn_topology (read-only) to export
12 * info about Altix nodes, routers, CPUs and NumaLink
13 * interconnection/topology.
14 *
15 * Also creates a dynamic misc device named "sn_hwperf"
16 * that supports an ioctl interface to call down into SAL
17 * to discover hw objects, topology and to read/write
18 * memory mapped registers, e.g. for performance monitoring.
19 * The "sn_hwperf" device is registered only after the procfs
20 * file is first opened, i.e. only if/when it's needed.
21 *
22 * This API is used by SGI Performance Co-Pilot and other
23 * tools, see http://oss.sgi.com/projects/pcp
24 */
25
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/seq_file.h>
31 #include <linux/miscdevice.h>
32 #include <linux/utsname.h>
33 #include <linux/cpumask.h>
34 #include <linux/nodemask.h>
35 #include <linux/smp.h>
36 #include <linux/mutex.h>
37
38 #include <asm/processor.h>
39 #include <asm/topology.h>
40 #include <linux/uaccess.h>
41 #include <asm/sal.h>
42 #include <asm/sn/io.h>
43 #include <asm/sn/sn_sal.h>
44 #include <asm/sn/module.h>
45 #include <asm/sn/geo.h>
46 #include <asm/sn/sn2/sn_hwperf.h>
47 #include <asm/sn/addrs.h>
48
49 static void *sn_hwperf_salheap = NULL;
50 static int sn_hwperf_obj_cnt = 0;
51 static nasid_t sn_hwperf_master_nasid = INVALID_NASID;
52 static int sn_hwperf_init(void);
53 static DEFINE_MUTEX(sn_hwperf_init_mutex);
54
55 #define cnode_possible(n) ((n) < num_cnodes)
56
sn_hwperf_enum_objects(int * nobj,struct sn_hwperf_object_info ** ret)57 static int sn_hwperf_enum_objects(int *nobj, struct sn_hwperf_object_info **ret)
58 {
59 int e;
60 u64 sz;
61 struct sn_hwperf_object_info *objbuf = NULL;
62
63 if ((e = sn_hwperf_init()) < 0) {
64 printk(KERN_ERR "sn_hwperf_init failed: err %d\n", e);
65 goto out;
66 }
67
68 sz = sn_hwperf_obj_cnt * sizeof(struct sn_hwperf_object_info);
69 objbuf = vmalloc(sz);
70 if (objbuf == NULL) {
71 printk("sn_hwperf_enum_objects: vmalloc(%d) failed\n", (int)sz);
72 e = -ENOMEM;
73 goto out;
74 }
75
76 e = ia64_sn_hwperf_op(sn_hwperf_master_nasid, SN_HWPERF_ENUM_OBJECTS,
77 0, sz, (u64) objbuf, 0, 0, NULL);
78 if (e != SN_HWPERF_OP_OK) {
79 e = -EINVAL;
80 vfree(objbuf);
81 }
82
83 out:
84 *nobj = sn_hwperf_obj_cnt;
85 *ret = objbuf;
86 return e;
87 }
88
sn_hwperf_location_to_bpos(char * location,int * rack,int * bay,int * slot,int * slab)89 static int sn_hwperf_location_to_bpos(char *location,
90 int *rack, int *bay, int *slot, int *slab)
91 {
92 char type;
93
94 /* first scan for an old style geoid string */
95 if (sscanf(location, "%03d%c%02d#%d",
96 rack, &type, bay, slab) == 4)
97 *slot = 0;
98 else /* scan for a new bladed geoid string */
99 if (sscanf(location, "%03d%c%02d^%02d#%d",
100 rack, &type, bay, slot, slab) != 5)
101 return -1;
102 /* success */
103 return 0;
104 }
105
sn_hwperf_geoid_to_cnode(char * location)106 static int sn_hwperf_geoid_to_cnode(char *location)
107 {
108 int cnode;
109 geoid_t geoid;
110 moduleid_t module_id;
111 int rack, bay, slot, slab;
112 int this_rack, this_bay, this_slot, this_slab;
113
114 if (sn_hwperf_location_to_bpos(location, &rack, &bay, &slot, &slab))
115 return -1;
116
117 /*
118 * FIXME: replace with cleaner for_each_XXX macro which addresses
119 * both compute and IO nodes once ACPI3.0 is available.
120 */
121 for (cnode = 0; cnode < num_cnodes; cnode++) {
122 geoid = cnodeid_get_geoid(cnode);
123 module_id = geo_module(geoid);
124 this_rack = MODULE_GET_RACK(module_id);
125 this_bay = MODULE_GET_BPOS(module_id);
126 this_slot = geo_slot(geoid);
127 this_slab = geo_slab(geoid);
128 if (rack == this_rack && bay == this_bay &&
129 slot == this_slot && slab == this_slab) {
130 break;
131 }
132 }
133
134 return cnode_possible(cnode) ? cnode : -1;
135 }
136
sn_hwperf_obj_to_cnode(struct sn_hwperf_object_info * obj)137 static int sn_hwperf_obj_to_cnode(struct sn_hwperf_object_info * obj)
138 {
139 if (!SN_HWPERF_IS_NODE(obj) && !SN_HWPERF_IS_IONODE(obj))
140 BUG();
141 if (SN_HWPERF_FOREIGN(obj))
142 return -1;
143 return sn_hwperf_geoid_to_cnode(obj->location);
144 }
145
sn_hwperf_generic_ordinal(struct sn_hwperf_object_info * obj,struct sn_hwperf_object_info * objs)146 static int sn_hwperf_generic_ordinal(struct sn_hwperf_object_info *obj,
147 struct sn_hwperf_object_info *objs)
148 {
149 int ordinal;
150 struct sn_hwperf_object_info *p;
151
152 for (ordinal=0, p=objs; p != obj; p++) {
153 if (SN_HWPERF_FOREIGN(p))
154 continue;
155 if (SN_HWPERF_SAME_OBJTYPE(p, obj))
156 ordinal++;
157 }
158
159 return ordinal;
160 }
161
162 static const char *slabname_node = "node"; /* SHub asic */
163 static const char *slabname_ionode = "ionode"; /* TIO asic */
164 static const char *slabname_router = "router"; /* NL3R or NL4R */
165 static const char *slabname_other = "other"; /* unknown asic */
166
sn_hwperf_get_slabname(struct sn_hwperf_object_info * obj,struct sn_hwperf_object_info * objs,int * ordinal)167 static const char *sn_hwperf_get_slabname(struct sn_hwperf_object_info *obj,
168 struct sn_hwperf_object_info *objs, int *ordinal)
169 {
170 int isnode;
171 const char *slabname = slabname_other;
172
173 if ((isnode = SN_HWPERF_IS_NODE(obj)) || SN_HWPERF_IS_IONODE(obj)) {
174 slabname = isnode ? slabname_node : slabname_ionode;
175 *ordinal = sn_hwperf_obj_to_cnode(obj);
176 }
177 else {
178 *ordinal = sn_hwperf_generic_ordinal(obj, objs);
179 if (SN_HWPERF_IS_ROUTER(obj))
180 slabname = slabname_router;
181 }
182
183 return slabname;
184 }
185
print_pci_topology(struct seq_file * s)186 static void print_pci_topology(struct seq_file *s)
187 {
188 char *p;
189 size_t sz;
190 int e;
191
192 for (sz = PAGE_SIZE; sz < 16 * PAGE_SIZE; sz += PAGE_SIZE) {
193 if (!(p = kmalloc(sz, GFP_KERNEL)))
194 break;
195 e = ia64_sn_ioif_get_pci_topology(__pa(p), sz);
196 if (e == SALRET_OK)
197 seq_puts(s, p);
198 kfree(p);
199 if (e == SALRET_OK || e == SALRET_NOT_IMPLEMENTED)
200 break;
201 }
202 }
203
sn_hwperf_has_cpus(cnodeid_t node)204 static inline int sn_hwperf_has_cpus(cnodeid_t node)
205 {
206 return node < MAX_NUMNODES && node_online(node) && nr_cpus_node(node);
207 }
208
sn_hwperf_has_mem(cnodeid_t node)209 static inline int sn_hwperf_has_mem(cnodeid_t node)
210 {
211 return node < MAX_NUMNODES && node_online(node) && NODE_DATA(node)->node_present_pages;
212 }
213
214 static struct sn_hwperf_object_info *
sn_hwperf_findobj_id(struct sn_hwperf_object_info * objbuf,int nobj,int id)215 sn_hwperf_findobj_id(struct sn_hwperf_object_info *objbuf,
216 int nobj, int id)
217 {
218 int i;
219 struct sn_hwperf_object_info *p = objbuf;
220
221 for (i=0; i < nobj; i++, p++) {
222 if (p->id == id)
223 return p;
224 }
225
226 return NULL;
227
228 }
229
sn_hwperf_get_nearest_node_objdata(struct sn_hwperf_object_info * objbuf,int nobj,cnodeid_t node,cnodeid_t * near_mem_node,cnodeid_t * near_cpu_node)230 static int sn_hwperf_get_nearest_node_objdata(struct sn_hwperf_object_info *objbuf,
231 int nobj, cnodeid_t node, cnodeid_t *near_mem_node, cnodeid_t *near_cpu_node)
232 {
233 int e;
234 struct sn_hwperf_object_info *nodeobj = NULL;
235 struct sn_hwperf_object_info *op;
236 struct sn_hwperf_object_info *dest;
237 struct sn_hwperf_object_info *router;
238 struct sn_hwperf_port_info ptdata[16];
239 int sz, i, j;
240 cnodeid_t c;
241 int found_mem = 0;
242 int found_cpu = 0;
243
244 if (!cnode_possible(node))
245 return -EINVAL;
246
247 if (sn_hwperf_has_cpus(node)) {
248 if (near_cpu_node)
249 *near_cpu_node = node;
250 found_cpu++;
251 }
252
253 if (sn_hwperf_has_mem(node)) {
254 if (near_mem_node)
255 *near_mem_node = node;
256 found_mem++;
257 }
258
259 if (found_cpu && found_mem)
260 return 0; /* trivially successful */
261
262 /* find the argument node object */
263 for (i=0, op=objbuf; i < nobj; i++, op++) {
264 if (!SN_HWPERF_IS_NODE(op) && !SN_HWPERF_IS_IONODE(op))
265 continue;
266 if (node == sn_hwperf_obj_to_cnode(op)) {
267 nodeobj = op;
268 break;
269 }
270 }
271 if (!nodeobj) {
272 e = -ENOENT;
273 goto err;
274 }
275
276 /* get it's interconnect topology */
277 sz = op->ports * sizeof(struct sn_hwperf_port_info);
278 BUG_ON(sz > sizeof(ptdata));
279 e = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
280 SN_HWPERF_ENUM_PORTS, nodeobj->id, sz,
281 (u64)&ptdata, 0, 0, NULL);
282 if (e != SN_HWPERF_OP_OK) {
283 e = -EINVAL;
284 goto err;
285 }
286
287 /* find nearest node with cpus and nearest memory */
288 for (router=NULL, j=0; j < op->ports; j++) {
289 dest = sn_hwperf_findobj_id(objbuf, nobj, ptdata[j].conn_id);
290 if (dest && SN_HWPERF_IS_ROUTER(dest))
291 router = dest;
292 if (!dest || SN_HWPERF_FOREIGN(dest) ||
293 !SN_HWPERF_IS_NODE(dest) || SN_HWPERF_IS_IONODE(dest)) {
294 continue;
295 }
296 c = sn_hwperf_obj_to_cnode(dest);
297 if (!found_cpu && sn_hwperf_has_cpus(c)) {
298 if (near_cpu_node)
299 *near_cpu_node = c;
300 found_cpu++;
301 }
302 if (!found_mem && sn_hwperf_has_mem(c)) {
303 if (near_mem_node)
304 *near_mem_node = c;
305 found_mem++;
306 }
307 }
308
309 if (router && (!found_cpu || !found_mem)) {
310 /* search for a node connected to the same router */
311 sz = router->ports * sizeof(struct sn_hwperf_port_info);
312 BUG_ON(sz > sizeof(ptdata));
313 e = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
314 SN_HWPERF_ENUM_PORTS, router->id, sz,
315 (u64)&ptdata, 0, 0, NULL);
316 if (e != SN_HWPERF_OP_OK) {
317 e = -EINVAL;
318 goto err;
319 }
320 for (j=0; j < router->ports; j++) {
321 dest = sn_hwperf_findobj_id(objbuf, nobj,
322 ptdata[j].conn_id);
323 if (!dest || dest->id == node ||
324 SN_HWPERF_FOREIGN(dest) ||
325 !SN_HWPERF_IS_NODE(dest) ||
326 SN_HWPERF_IS_IONODE(dest)) {
327 continue;
328 }
329 c = sn_hwperf_obj_to_cnode(dest);
330 if (!found_cpu && sn_hwperf_has_cpus(c)) {
331 if (near_cpu_node)
332 *near_cpu_node = c;
333 found_cpu++;
334 }
335 if (!found_mem && sn_hwperf_has_mem(c)) {
336 if (near_mem_node)
337 *near_mem_node = c;
338 found_mem++;
339 }
340 if (found_cpu && found_mem)
341 break;
342 }
343 }
344
345 if (!found_cpu || !found_mem) {
346 /* resort to _any_ node with CPUs and memory */
347 for (i=0, op=objbuf; i < nobj; i++, op++) {
348 if (SN_HWPERF_FOREIGN(op) ||
349 SN_HWPERF_IS_IONODE(op) ||
350 !SN_HWPERF_IS_NODE(op)) {
351 continue;
352 }
353 c = sn_hwperf_obj_to_cnode(op);
354 if (!found_cpu && sn_hwperf_has_cpus(c)) {
355 if (near_cpu_node)
356 *near_cpu_node = c;
357 found_cpu++;
358 }
359 if (!found_mem && sn_hwperf_has_mem(c)) {
360 if (near_mem_node)
361 *near_mem_node = c;
362 found_mem++;
363 }
364 if (found_cpu && found_mem)
365 break;
366 }
367 }
368
369 if (!found_cpu || !found_mem)
370 e = -ENODATA;
371
372 err:
373 return e;
374 }
375
376
sn_topology_show(struct seq_file * s,void * d)377 static int sn_topology_show(struct seq_file *s, void *d)
378 {
379 int sz;
380 int pt;
381 int e = 0;
382 int i;
383 int j;
384 const char *slabname;
385 int ordinal;
386 char slice;
387 struct cpuinfo_ia64 *c;
388 struct sn_hwperf_port_info *ptdata;
389 struct sn_hwperf_object_info *p;
390 struct sn_hwperf_object_info *obj = d; /* this object */
391 struct sn_hwperf_object_info *objs = s->private; /* all objects */
392 u8 shubtype;
393 u8 system_size;
394 u8 sharing_size;
395 u8 partid;
396 u8 coher;
397 u8 nasid_shift;
398 u8 region_size;
399 u16 nasid_mask;
400 int nasid_msb;
401
402 if (obj == objs) {
403 seq_printf(s, "# sn_topology version 2\n");
404 seq_printf(s, "# objtype ordinal location partition"
405 " [attribute value [, ...]]\n");
406
407 if (ia64_sn_get_sn_info(0,
408 &shubtype, &nasid_mask, &nasid_shift, &system_size,
409 &sharing_size, &partid, &coher, ®ion_size))
410 BUG();
411 for (nasid_msb=63; nasid_msb > 0; nasid_msb--) {
412 if (((u64)nasid_mask << nasid_shift) & (1ULL << nasid_msb))
413 break;
414 }
415 seq_printf(s, "partition %u %s local "
416 "shubtype %s, "
417 "nasid_mask 0x%016llx, "
418 "nasid_bits %d:%d, "
419 "system_size %d, "
420 "sharing_size %d, "
421 "coherency_domain %d, "
422 "region_size %d\n",
423
424 partid, utsname()->nodename,
425 shubtype ? "shub2" : "shub1",
426 (u64)nasid_mask << nasid_shift, nasid_msb, nasid_shift,
427 system_size, sharing_size, coher, region_size);
428
429 print_pci_topology(s);
430 }
431
432 if (SN_HWPERF_FOREIGN(obj)) {
433 /* private in another partition: not interesting */
434 return 0;
435 }
436
437 for (i = 0; i < SN_HWPERF_MAXSTRING && obj->name[i]; i++) {
438 if (obj->name[i] == ' ')
439 obj->name[i] = '_';
440 }
441
442 slabname = sn_hwperf_get_slabname(obj, objs, &ordinal);
443 seq_printf(s, "%s %d %s %s asic %s", slabname, ordinal, obj->location,
444 obj->sn_hwp_this_part ? "local" : "shared", obj->name);
445
446 if (ordinal < 0 || (!SN_HWPERF_IS_NODE(obj) && !SN_HWPERF_IS_IONODE(obj)))
447 seq_putc(s, '\n');
448 else {
449 cnodeid_t near_mem = -1;
450 cnodeid_t near_cpu = -1;
451
452 seq_printf(s, ", nasid 0x%x", cnodeid_to_nasid(ordinal));
453
454 if (sn_hwperf_get_nearest_node_objdata(objs, sn_hwperf_obj_cnt,
455 ordinal, &near_mem, &near_cpu) == 0) {
456 seq_printf(s, ", near_mem_nodeid %d, near_cpu_nodeid %d",
457 near_mem, near_cpu);
458 }
459
460 if (!SN_HWPERF_IS_IONODE(obj)) {
461 for_each_online_node(i) {
462 seq_printf(s, i ? ":%d" : ", dist %d",
463 node_distance(ordinal, i));
464 }
465 }
466
467 seq_putc(s, '\n');
468
469 /*
470 * CPUs on this node, if any
471 */
472 if (!SN_HWPERF_IS_IONODE(obj)) {
473 for_each_cpu_and(i, cpu_online_mask,
474 cpumask_of_node(ordinal)) {
475 slice = 'a' + cpuid_to_slice(i);
476 c = cpu_data(i);
477 seq_printf(s, "cpu %d %s%c local"
478 " freq %luMHz, arch ia64",
479 i, obj->location, slice,
480 c->proc_freq / 1000000);
481 for_each_online_cpu(j) {
482 seq_printf(s, j ? ":%d" : ", dist %d",
483 node_distance(
484 cpu_to_node(i),
485 cpu_to_node(j)));
486 }
487 seq_putc(s, '\n');
488 }
489 }
490 }
491
492 if (obj->ports) {
493 /*
494 * numalink ports
495 */
496 sz = obj->ports * sizeof(struct sn_hwperf_port_info);
497 if ((ptdata = kmalloc(sz, GFP_KERNEL)) == NULL)
498 return -ENOMEM;
499 e = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
500 SN_HWPERF_ENUM_PORTS, obj->id, sz,
501 (u64) ptdata, 0, 0, NULL);
502 if (e != SN_HWPERF_OP_OK)
503 return -EINVAL;
504 for (ordinal=0, p=objs; p != obj; p++) {
505 if (!SN_HWPERF_FOREIGN(p))
506 ordinal += p->ports;
507 }
508 for (pt = 0; pt < obj->ports; pt++) {
509 for (p = objs, i = 0; i < sn_hwperf_obj_cnt; i++, p++) {
510 if (ptdata[pt].conn_id == p->id) {
511 break;
512 }
513 }
514 seq_printf(s, "numalink %d %s-%d",
515 ordinal+pt, obj->location, ptdata[pt].port);
516
517 if (i >= sn_hwperf_obj_cnt) {
518 /* no connection */
519 seq_puts(s, " local endpoint disconnected"
520 ", protocol unknown\n");
521 continue;
522 }
523
524 if (obj->sn_hwp_this_part && p->sn_hwp_this_part)
525 /* both ends local to this partition */
526 seq_puts(s, " local");
527 else if (SN_HWPERF_FOREIGN(p))
528 /* both ends of the link in foreign partition */
529 seq_puts(s, " foreign");
530 else
531 /* link straddles a partition */
532 seq_puts(s, " shared");
533
534 /*
535 * Unlikely, but strictly should query the LLP config
536 * registers because an NL4R can be configured to run
537 * NL3 protocol, even when not talking to an NL3 router.
538 * Ditto for node-node.
539 */
540 seq_printf(s, " endpoint %s-%d, protocol %s\n",
541 p->location, ptdata[pt].conn_port,
542 (SN_HWPERF_IS_NL3ROUTER(obj) ||
543 SN_HWPERF_IS_NL3ROUTER(p)) ? "LLP3" : "LLP4");
544 }
545 kfree(ptdata);
546 }
547
548 return 0;
549 }
550
sn_topology_start(struct seq_file * s,loff_t * pos)551 static void *sn_topology_start(struct seq_file *s, loff_t * pos)
552 {
553 struct sn_hwperf_object_info *objs = s->private;
554
555 if (*pos < sn_hwperf_obj_cnt)
556 return (void *)(objs + *pos);
557
558 return NULL;
559 }
560
sn_topology_next(struct seq_file * s,void * v,loff_t * pos)561 static void *sn_topology_next(struct seq_file *s, void *v, loff_t * pos)
562 {
563 ++*pos;
564 return sn_topology_start(s, pos);
565 }
566
sn_topology_stop(struct seq_file * m,void * v)567 static void sn_topology_stop(struct seq_file *m, void *v)
568 {
569 return;
570 }
571
572 /*
573 * /proc/sgi_sn/sn_topology, read-only using seq_file
574 */
575 static const struct seq_operations sn_topology_seq_ops = {
576 .start = sn_topology_start,
577 .next = sn_topology_next,
578 .stop = sn_topology_stop,
579 .show = sn_topology_show
580 };
581
582 struct sn_hwperf_op_info {
583 u64 op;
584 struct sn_hwperf_ioctl_args *a;
585 void *p;
586 int *v0;
587 int ret;
588 };
589
sn_hwperf_call_sal(void * info)590 static void sn_hwperf_call_sal(void *info)
591 {
592 struct sn_hwperf_op_info *op_info = info;
593 int r;
594
595 r = ia64_sn_hwperf_op(sn_hwperf_master_nasid, op_info->op,
596 op_info->a->arg, op_info->a->sz,
597 (u64) op_info->p, 0, 0, op_info->v0);
598 op_info->ret = r;
599 }
600
sn_hwperf_call_sal_work(void * info)601 static long sn_hwperf_call_sal_work(void *info)
602 {
603 sn_hwperf_call_sal(info);
604 return 0;
605 }
606
sn_hwperf_op_cpu(struct sn_hwperf_op_info * op_info)607 static int sn_hwperf_op_cpu(struct sn_hwperf_op_info *op_info)
608 {
609 u32 cpu;
610 u32 use_ipi;
611 int r = 0;
612
613 cpu = (op_info->a->arg & SN_HWPERF_ARG_CPU_MASK) >> 32;
614 use_ipi = op_info->a->arg & SN_HWPERF_ARG_USE_IPI_MASK;
615 op_info->a->arg &= SN_HWPERF_ARG_OBJID_MASK;
616
617 if (cpu != SN_HWPERF_ARG_ANY_CPU) {
618 if (cpu >= nr_cpu_ids || !cpu_online(cpu)) {
619 r = -EINVAL;
620 goto out;
621 }
622 }
623
624 if (cpu == SN_HWPERF_ARG_ANY_CPU) {
625 /* don't care which cpu */
626 sn_hwperf_call_sal(op_info);
627 } else if (cpu == get_cpu()) {
628 /* already on correct cpu */
629 sn_hwperf_call_sal(op_info);
630 put_cpu();
631 } else {
632 put_cpu();
633 if (use_ipi) {
634 /* use an interprocessor interrupt to call SAL */
635 smp_call_function_single(cpu, sn_hwperf_call_sal,
636 op_info, 1);
637 } else {
638 /* Call on the target CPU */
639 work_on_cpu_safe(cpu, sn_hwperf_call_sal_work, op_info);
640 }
641 }
642 r = op_info->ret;
643
644 out:
645 return r;
646 }
647
648 /* map SAL hwperf error code to system error code */
sn_hwperf_map_err(int hwperf_err)649 static int sn_hwperf_map_err(int hwperf_err)
650 {
651 int e;
652
653 switch(hwperf_err) {
654 case SN_HWPERF_OP_OK:
655 e = 0;
656 break;
657
658 case SN_HWPERF_OP_NOMEM:
659 e = -ENOMEM;
660 break;
661
662 case SN_HWPERF_OP_NO_PERM:
663 e = -EPERM;
664 break;
665
666 case SN_HWPERF_OP_IO_ERROR:
667 e = -EIO;
668 break;
669
670 case SN_HWPERF_OP_BUSY:
671 e = -EBUSY;
672 break;
673
674 case SN_HWPERF_OP_RECONFIGURE:
675 e = -EAGAIN;
676 break;
677
678 case SN_HWPERF_OP_INVAL:
679 default:
680 e = -EINVAL;
681 break;
682 }
683
684 return e;
685 }
686
687 /*
688 * ioctl for "sn_hwperf" misc device
689 */
sn_hwperf_ioctl(struct file * fp,u32 op,unsigned long arg)690 static long sn_hwperf_ioctl(struct file *fp, u32 op, unsigned long arg)
691 {
692 struct sn_hwperf_ioctl_args a;
693 struct cpuinfo_ia64 *cdata;
694 struct sn_hwperf_object_info *objs;
695 struct sn_hwperf_object_info *cpuobj;
696 struct sn_hwperf_op_info op_info;
697 void *p = NULL;
698 int nobj;
699 char slice;
700 int node;
701 int r;
702 int v0;
703 int i;
704 int j;
705
706 /* only user requests are allowed here */
707 if ((op & SN_HWPERF_OP_MASK) < 10) {
708 r = -EINVAL;
709 goto error;
710 }
711 r = copy_from_user(&a, (const void __user *)arg,
712 sizeof(struct sn_hwperf_ioctl_args));
713 if (r != 0) {
714 r = -EFAULT;
715 goto error;
716 }
717
718 /*
719 * Allocate memory to hold a kernel copy of the user buffer. The
720 * buffer contents are either copied in or out (or both) of user
721 * space depending on the flags encoded in the requested operation.
722 */
723 if (a.ptr) {
724 p = vmalloc(a.sz);
725 if (!p) {
726 r = -ENOMEM;
727 goto error;
728 }
729 }
730
731 if (op & SN_HWPERF_OP_MEM_COPYIN) {
732 r = copy_from_user(p, (const void __user *)a.ptr, a.sz);
733 if (r != 0) {
734 r = -EFAULT;
735 goto error;
736 }
737 }
738
739 switch (op) {
740 case SN_HWPERF_GET_CPU_INFO:
741 if (a.sz == sizeof(u64)) {
742 /* special case to get size needed */
743 *(u64 *) p = (u64) num_online_cpus() *
744 sizeof(struct sn_hwperf_object_info);
745 } else
746 if (a.sz < num_online_cpus() * sizeof(struct sn_hwperf_object_info)) {
747 r = -ENOMEM;
748 goto error;
749 } else
750 if ((r = sn_hwperf_enum_objects(&nobj, &objs)) == 0) {
751 int cpuobj_index = 0;
752
753 memset(p, 0, a.sz);
754 for (i = 0; i < nobj; i++) {
755 if (!SN_HWPERF_IS_NODE(objs + i))
756 continue;
757 node = sn_hwperf_obj_to_cnode(objs + i);
758 for_each_online_cpu(j) {
759 if (node != cpu_to_node(j))
760 continue;
761 cpuobj = (struct sn_hwperf_object_info *) p + cpuobj_index++;
762 slice = 'a' + cpuid_to_slice(j);
763 cdata = cpu_data(j);
764 cpuobj->id = j;
765 snprintf(cpuobj->name,
766 sizeof(cpuobj->name),
767 "CPU %luMHz %s",
768 cdata->proc_freq / 1000000,
769 cdata->vendor);
770 snprintf(cpuobj->location,
771 sizeof(cpuobj->location),
772 "%s%c", objs[i].location,
773 slice);
774 }
775 }
776
777 vfree(objs);
778 }
779 break;
780
781 case SN_HWPERF_GET_NODE_NASID:
782 if (a.sz != sizeof(u64) ||
783 (node = a.arg) < 0 || !cnode_possible(node)) {
784 r = -EINVAL;
785 goto error;
786 }
787 *(u64 *)p = (u64)cnodeid_to_nasid(node);
788 break;
789
790 case SN_HWPERF_GET_OBJ_NODE:
791 i = a.arg;
792 if (a.sz != sizeof(u64) || i < 0) {
793 r = -EINVAL;
794 goto error;
795 }
796 if ((r = sn_hwperf_enum_objects(&nobj, &objs)) == 0) {
797 if (i >= nobj) {
798 r = -EINVAL;
799 vfree(objs);
800 goto error;
801 }
802 if (objs[i].id != a.arg) {
803 for (i = 0; i < nobj; i++) {
804 if (objs[i].id == a.arg)
805 break;
806 }
807 }
808 if (i == nobj) {
809 r = -EINVAL;
810 vfree(objs);
811 goto error;
812 }
813
814 if (!SN_HWPERF_IS_NODE(objs + i) &&
815 !SN_HWPERF_IS_IONODE(objs + i)) {
816 r = -ENOENT;
817 vfree(objs);
818 goto error;
819 }
820
821 *(u64 *)p = (u64)sn_hwperf_obj_to_cnode(objs + i);
822 vfree(objs);
823 }
824 break;
825
826 case SN_HWPERF_GET_MMRS:
827 case SN_HWPERF_SET_MMRS:
828 case SN_HWPERF_OBJECT_DISTANCE:
829 op_info.p = p;
830 op_info.a = &a;
831 op_info.v0 = &v0;
832 op_info.op = op;
833 r = sn_hwperf_op_cpu(&op_info);
834 if (r) {
835 r = sn_hwperf_map_err(r);
836 a.v0 = v0;
837 goto error;
838 }
839 break;
840
841 default:
842 /* all other ops are a direct SAL call */
843 r = ia64_sn_hwperf_op(sn_hwperf_master_nasid, op,
844 a.arg, a.sz, (u64) p, 0, 0, &v0);
845 if (r) {
846 r = sn_hwperf_map_err(r);
847 goto error;
848 }
849 a.v0 = v0;
850 break;
851 }
852
853 if (op & SN_HWPERF_OP_MEM_COPYOUT) {
854 r = copy_to_user((void __user *)a.ptr, p, a.sz);
855 if (r != 0) {
856 r = -EFAULT;
857 goto error;
858 }
859 }
860
861 error:
862 vfree(p);
863
864 return r;
865 }
866
867 static const struct file_operations sn_hwperf_fops = {
868 .unlocked_ioctl = sn_hwperf_ioctl,
869 .llseek = noop_llseek,
870 };
871
872 static struct miscdevice sn_hwperf_dev = {
873 MISC_DYNAMIC_MINOR,
874 "sn_hwperf",
875 &sn_hwperf_fops
876 };
877
sn_hwperf_init(void)878 static int sn_hwperf_init(void)
879 {
880 u64 v;
881 int salr;
882 int e = 0;
883
884 /* single threaded, once-only initialization */
885 mutex_lock(&sn_hwperf_init_mutex);
886
887 if (sn_hwperf_salheap) {
888 mutex_unlock(&sn_hwperf_init_mutex);
889 return e;
890 }
891
892 /*
893 * The PROM code needs a fixed reference node. For convenience the
894 * same node as the console I/O is used.
895 */
896 sn_hwperf_master_nasid = (nasid_t) ia64_sn_get_console_nasid();
897
898 /*
899 * Request the needed size and install the PROM scratch area.
900 * The PROM keeps various tracking bits in this memory area.
901 */
902 salr = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
903 (u64) SN_HWPERF_GET_HEAPSIZE, 0,
904 (u64) sizeof(u64), (u64) &v, 0, 0, NULL);
905 if (salr != SN_HWPERF_OP_OK) {
906 e = -EINVAL;
907 goto out;
908 }
909
910 if ((sn_hwperf_salheap = vmalloc(v)) == NULL) {
911 e = -ENOMEM;
912 goto out;
913 }
914 salr = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
915 SN_HWPERF_INSTALL_HEAP, 0, v,
916 (u64) sn_hwperf_salheap, 0, 0, NULL);
917 if (salr != SN_HWPERF_OP_OK) {
918 e = -EINVAL;
919 goto out;
920 }
921
922 salr = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
923 SN_HWPERF_OBJECT_COUNT, 0,
924 sizeof(u64), (u64) &v, 0, 0, NULL);
925 if (salr != SN_HWPERF_OP_OK) {
926 e = -EINVAL;
927 goto out;
928 }
929 sn_hwperf_obj_cnt = (int)v;
930
931 out:
932 if (e < 0 && sn_hwperf_salheap) {
933 vfree(sn_hwperf_salheap);
934 sn_hwperf_salheap = NULL;
935 sn_hwperf_obj_cnt = 0;
936 }
937 mutex_unlock(&sn_hwperf_init_mutex);
938 return e;
939 }
940
sn_topology_open(struct inode * inode,struct file * file)941 int sn_topology_open(struct inode *inode, struct file *file)
942 {
943 int e;
944 struct seq_file *seq;
945 struct sn_hwperf_object_info *objbuf;
946 int nobj;
947
948 if ((e = sn_hwperf_enum_objects(&nobj, &objbuf)) == 0) {
949 e = seq_open(file, &sn_topology_seq_ops);
950 seq = file->private_data;
951 seq->private = objbuf;
952 }
953
954 return e;
955 }
956
sn_topology_release(struct inode * inode,struct file * file)957 int sn_topology_release(struct inode *inode, struct file *file)
958 {
959 struct seq_file *seq = file->private_data;
960
961 vfree(seq->private);
962 return seq_release(inode, file);
963 }
964
sn_hwperf_get_nearest_node(cnodeid_t node,cnodeid_t * near_mem_node,cnodeid_t * near_cpu_node)965 int sn_hwperf_get_nearest_node(cnodeid_t node,
966 cnodeid_t *near_mem_node, cnodeid_t *near_cpu_node)
967 {
968 int e;
969 int nobj;
970 struct sn_hwperf_object_info *objbuf;
971
972 if ((e = sn_hwperf_enum_objects(&nobj, &objbuf)) == 0) {
973 e = sn_hwperf_get_nearest_node_objdata(objbuf, nobj,
974 node, near_mem_node, near_cpu_node);
975 vfree(objbuf);
976 }
977
978 return e;
979 }
980
sn_hwperf_misc_register_init(void)981 static int sn_hwperf_misc_register_init(void)
982 {
983 int e;
984
985 if (!ia64_platform_is("sn2"))
986 return 0;
987
988 sn_hwperf_init();
989
990 /*
991 * Register a dynamic misc device for hwperf ioctls. Platforms
992 * supporting hotplug will create /dev/sn_hwperf, else user
993 * can to look up the minor number in /proc/misc.
994 */
995 if ((e = misc_register(&sn_hwperf_dev)) != 0) {
996 printk(KERN_ERR "sn_hwperf_misc_register_init: failed to "
997 "register misc device for \"%s\"\n", sn_hwperf_dev.name);
998 }
999
1000 return e;
1001 }
1002
1003 device_initcall(sn_hwperf_misc_register_init); /* after misc_init() */
1004 EXPORT_SYMBOL(sn_hwperf_get_nearest_node);
1005