1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2004-2006 Silicon Graphics, Inc. All rights reserved.
7  *
8  * SGI Altix topology and hardware performance monitoring API.
9  * Mark Goodwin <markgw@sgi.com>.
10  *
11  * Creates /proc/sgi_sn/sn_topology (read-only) to export
12  * info about Altix nodes, routers, CPUs and NumaLink
13  * interconnection/topology.
14  *
15  * Also creates a dynamic misc device named "sn_hwperf"
16  * that supports an ioctl interface to call down into SAL
17  * to discover hw objects, topology and to read/write
18  * memory mapped registers, e.g. for performance monitoring.
19  * The "sn_hwperf" device is registered only after the procfs
20  * file is first opened, i.e. only if/when it's needed.
21  *
22  * This API is used by SGI Performance Co-Pilot and other
23  * tools, see http://oss.sgi.com/projects/pcp
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/seq_file.h>
31 #include <linux/miscdevice.h>
32 #include <linux/utsname.h>
33 #include <linux/cpumask.h>
34 #include <linux/nodemask.h>
35 #include <linux/smp.h>
36 #include <linux/mutex.h>
37 
38 #include <asm/processor.h>
39 #include <asm/topology.h>
40 #include <linux/uaccess.h>
41 #include <asm/sal.h>
42 #include <asm/sn/io.h>
43 #include <asm/sn/sn_sal.h>
44 #include <asm/sn/module.h>
45 #include <asm/sn/geo.h>
46 #include <asm/sn/sn2/sn_hwperf.h>
47 #include <asm/sn/addrs.h>
48 
49 static void *sn_hwperf_salheap = NULL;
50 static int sn_hwperf_obj_cnt = 0;
51 static nasid_t sn_hwperf_master_nasid = INVALID_NASID;
52 static int sn_hwperf_init(void);
53 static DEFINE_MUTEX(sn_hwperf_init_mutex);
54 
55 #define cnode_possible(n)	((n) < num_cnodes)
56 
sn_hwperf_enum_objects(int * nobj,struct sn_hwperf_object_info ** ret)57 static int sn_hwperf_enum_objects(int *nobj, struct sn_hwperf_object_info **ret)
58 {
59 	int e;
60 	u64 sz;
61 	struct sn_hwperf_object_info *objbuf = NULL;
62 
63 	if ((e = sn_hwperf_init()) < 0) {
64 		printk(KERN_ERR "sn_hwperf_init failed: err %d\n", e);
65 		goto out;
66 	}
67 
68 	sz = sn_hwperf_obj_cnt * sizeof(struct sn_hwperf_object_info);
69 	objbuf = vmalloc(sz);
70 	if (objbuf == NULL) {
71 		printk("sn_hwperf_enum_objects: vmalloc(%d) failed\n", (int)sz);
72 		e = -ENOMEM;
73 		goto out;
74 	}
75 
76 	e = ia64_sn_hwperf_op(sn_hwperf_master_nasid, SN_HWPERF_ENUM_OBJECTS,
77 		0, sz, (u64) objbuf, 0, 0, NULL);
78 	if (e != SN_HWPERF_OP_OK) {
79 		e = -EINVAL;
80 		vfree(objbuf);
81 	}
82 
83 out:
84 	*nobj = sn_hwperf_obj_cnt;
85 	*ret = objbuf;
86 	return e;
87 }
88 
sn_hwperf_location_to_bpos(char * location,int * rack,int * bay,int * slot,int * slab)89 static int sn_hwperf_location_to_bpos(char *location,
90 	int *rack, int *bay, int *slot, int *slab)
91 {
92 	char type;
93 
94 	/* first scan for an old style geoid string */
95 	if (sscanf(location, "%03d%c%02d#%d",
96 		rack, &type, bay, slab) == 4)
97 		*slot = 0;
98 	else /* scan for a new bladed geoid string */
99 	if (sscanf(location, "%03d%c%02d^%02d#%d",
100 		rack, &type, bay, slot, slab) != 5)
101 		return -1;
102 	/* success */
103 	return 0;
104 }
105 
sn_hwperf_geoid_to_cnode(char * location)106 static int sn_hwperf_geoid_to_cnode(char *location)
107 {
108 	int cnode;
109 	geoid_t geoid;
110 	moduleid_t module_id;
111 	int rack, bay, slot, slab;
112 	int this_rack, this_bay, this_slot, this_slab;
113 
114 	if (sn_hwperf_location_to_bpos(location, &rack, &bay, &slot, &slab))
115 		return -1;
116 
117 	/*
118 	 * FIXME: replace with cleaner for_each_XXX macro which addresses
119 	 * both compute and IO nodes once ACPI3.0 is available.
120 	 */
121 	for (cnode = 0; cnode < num_cnodes; cnode++) {
122 		geoid = cnodeid_get_geoid(cnode);
123 		module_id = geo_module(geoid);
124 		this_rack = MODULE_GET_RACK(module_id);
125 		this_bay = MODULE_GET_BPOS(module_id);
126 		this_slot = geo_slot(geoid);
127 		this_slab = geo_slab(geoid);
128 		if (rack == this_rack && bay == this_bay &&
129 			slot == this_slot && slab == this_slab) {
130 			break;
131 		}
132 	}
133 
134 	return cnode_possible(cnode) ? cnode : -1;
135 }
136 
sn_hwperf_obj_to_cnode(struct sn_hwperf_object_info * obj)137 static int sn_hwperf_obj_to_cnode(struct sn_hwperf_object_info * obj)
138 {
139 	if (!SN_HWPERF_IS_NODE(obj) && !SN_HWPERF_IS_IONODE(obj))
140 		BUG();
141 	if (SN_HWPERF_FOREIGN(obj))
142 		return -1;
143 	return sn_hwperf_geoid_to_cnode(obj->location);
144 }
145 
sn_hwperf_generic_ordinal(struct sn_hwperf_object_info * obj,struct sn_hwperf_object_info * objs)146 static int sn_hwperf_generic_ordinal(struct sn_hwperf_object_info *obj,
147 				struct sn_hwperf_object_info *objs)
148 {
149 	int ordinal;
150 	struct sn_hwperf_object_info *p;
151 
152 	for (ordinal=0, p=objs; p != obj; p++) {
153 		if (SN_HWPERF_FOREIGN(p))
154 			continue;
155 		if (SN_HWPERF_SAME_OBJTYPE(p, obj))
156 			ordinal++;
157 	}
158 
159 	return ordinal;
160 }
161 
162 static const char *slabname_node =	"node"; /* SHub asic */
163 static const char *slabname_ionode =	"ionode"; /* TIO asic */
164 static const char *slabname_router =	"router"; /* NL3R or NL4R */
165 static const char *slabname_other =	"other"; /* unknown asic */
166 
sn_hwperf_get_slabname(struct sn_hwperf_object_info * obj,struct sn_hwperf_object_info * objs,int * ordinal)167 static const char *sn_hwperf_get_slabname(struct sn_hwperf_object_info *obj,
168 			struct sn_hwperf_object_info *objs, int *ordinal)
169 {
170 	int isnode;
171 	const char *slabname = slabname_other;
172 
173 	if ((isnode = SN_HWPERF_IS_NODE(obj)) || SN_HWPERF_IS_IONODE(obj)) {
174 	    	slabname = isnode ? slabname_node : slabname_ionode;
175 		*ordinal = sn_hwperf_obj_to_cnode(obj);
176 	}
177 	else {
178 		*ordinal = sn_hwperf_generic_ordinal(obj, objs);
179 		if (SN_HWPERF_IS_ROUTER(obj))
180 			slabname = slabname_router;
181 	}
182 
183 	return slabname;
184 }
185 
print_pci_topology(struct seq_file * s)186 static void print_pci_topology(struct seq_file *s)
187 {
188 	char *p;
189 	size_t sz;
190 	int e;
191 
192 	for (sz = PAGE_SIZE; sz < 16 * PAGE_SIZE; sz += PAGE_SIZE) {
193 		if (!(p = kmalloc(sz, GFP_KERNEL)))
194 			break;
195 		e = ia64_sn_ioif_get_pci_topology(__pa(p), sz);
196 		if (e == SALRET_OK)
197 			seq_puts(s, p);
198 		kfree(p);
199 		if (e == SALRET_OK || e == SALRET_NOT_IMPLEMENTED)
200 			break;
201 	}
202 }
203 
sn_hwperf_has_cpus(cnodeid_t node)204 static inline int sn_hwperf_has_cpus(cnodeid_t node)
205 {
206 	return node < MAX_NUMNODES && node_online(node) && nr_cpus_node(node);
207 }
208 
sn_hwperf_has_mem(cnodeid_t node)209 static inline int sn_hwperf_has_mem(cnodeid_t node)
210 {
211 	return node < MAX_NUMNODES && node_online(node) && NODE_DATA(node)->node_present_pages;
212 }
213 
214 static struct sn_hwperf_object_info *
sn_hwperf_findobj_id(struct sn_hwperf_object_info * objbuf,int nobj,int id)215 sn_hwperf_findobj_id(struct sn_hwperf_object_info *objbuf,
216 	int nobj, int id)
217 {
218 	int i;
219 	struct sn_hwperf_object_info *p = objbuf;
220 
221 	for (i=0; i < nobj; i++, p++) {
222 		if (p->id == id)
223 			return p;
224 	}
225 
226 	return NULL;
227 
228 }
229 
sn_hwperf_get_nearest_node_objdata(struct sn_hwperf_object_info * objbuf,int nobj,cnodeid_t node,cnodeid_t * near_mem_node,cnodeid_t * near_cpu_node)230 static int sn_hwperf_get_nearest_node_objdata(struct sn_hwperf_object_info *objbuf,
231 	int nobj, cnodeid_t node, cnodeid_t *near_mem_node, cnodeid_t *near_cpu_node)
232 {
233 	int e;
234 	struct sn_hwperf_object_info *nodeobj = NULL;
235 	struct sn_hwperf_object_info *op;
236 	struct sn_hwperf_object_info *dest;
237 	struct sn_hwperf_object_info *router;
238 	struct sn_hwperf_port_info ptdata[16];
239 	int sz, i, j;
240 	cnodeid_t c;
241 	int found_mem = 0;
242 	int found_cpu = 0;
243 
244 	if (!cnode_possible(node))
245 		return -EINVAL;
246 
247 	if (sn_hwperf_has_cpus(node)) {
248 		if (near_cpu_node)
249 			*near_cpu_node = node;
250 		found_cpu++;
251 	}
252 
253 	if (sn_hwperf_has_mem(node)) {
254 		if (near_mem_node)
255 			*near_mem_node = node;
256 		found_mem++;
257 	}
258 
259 	if (found_cpu && found_mem)
260 		return 0; /* trivially successful */
261 
262 	/* find the argument node object */
263 	for (i=0, op=objbuf; i < nobj; i++, op++) {
264 		if (!SN_HWPERF_IS_NODE(op) && !SN_HWPERF_IS_IONODE(op))
265 			continue;
266 		if (node == sn_hwperf_obj_to_cnode(op)) {
267 			nodeobj = op;
268 			break;
269 		}
270 	}
271 	if (!nodeobj) {
272 		e = -ENOENT;
273 		goto err;
274 	}
275 
276 	/* get it's interconnect topology */
277 	sz = op->ports * sizeof(struct sn_hwperf_port_info);
278 	BUG_ON(sz > sizeof(ptdata));
279 	e = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
280 			      SN_HWPERF_ENUM_PORTS, nodeobj->id, sz,
281 			      (u64)&ptdata, 0, 0, NULL);
282 	if (e != SN_HWPERF_OP_OK) {
283 		e = -EINVAL;
284 		goto err;
285 	}
286 
287 	/* find nearest node with cpus and nearest memory */
288 	for (router=NULL, j=0; j < op->ports; j++) {
289 		dest = sn_hwperf_findobj_id(objbuf, nobj, ptdata[j].conn_id);
290 		if (dest && SN_HWPERF_IS_ROUTER(dest))
291 			router = dest;
292 		if (!dest || SN_HWPERF_FOREIGN(dest) ||
293 		    !SN_HWPERF_IS_NODE(dest) || SN_HWPERF_IS_IONODE(dest)) {
294 			continue;
295 		}
296 		c = sn_hwperf_obj_to_cnode(dest);
297 		if (!found_cpu && sn_hwperf_has_cpus(c)) {
298 			if (near_cpu_node)
299 				*near_cpu_node = c;
300 			found_cpu++;
301 		}
302 		if (!found_mem && sn_hwperf_has_mem(c)) {
303 			if (near_mem_node)
304 				*near_mem_node = c;
305 			found_mem++;
306 		}
307 	}
308 
309 	if (router && (!found_cpu || !found_mem)) {
310 		/* search for a node connected to the same router */
311 		sz = router->ports * sizeof(struct sn_hwperf_port_info);
312 		BUG_ON(sz > sizeof(ptdata));
313 		e = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
314 				      SN_HWPERF_ENUM_PORTS, router->id, sz,
315 				      (u64)&ptdata, 0, 0, NULL);
316 		if (e != SN_HWPERF_OP_OK) {
317 			e = -EINVAL;
318 			goto err;
319 		}
320 		for (j=0; j < router->ports; j++) {
321 			dest = sn_hwperf_findobj_id(objbuf, nobj,
322 				ptdata[j].conn_id);
323 			if (!dest || dest->id == node ||
324 			    SN_HWPERF_FOREIGN(dest) ||
325 			    !SN_HWPERF_IS_NODE(dest) ||
326 			    SN_HWPERF_IS_IONODE(dest)) {
327 				continue;
328 			}
329 			c = sn_hwperf_obj_to_cnode(dest);
330 			if (!found_cpu && sn_hwperf_has_cpus(c)) {
331 				if (near_cpu_node)
332 					*near_cpu_node = c;
333 				found_cpu++;
334 			}
335 			if (!found_mem && sn_hwperf_has_mem(c)) {
336 				if (near_mem_node)
337 					*near_mem_node = c;
338 				found_mem++;
339 			}
340 			if (found_cpu && found_mem)
341 				break;
342 		}
343 	}
344 
345 	if (!found_cpu || !found_mem) {
346 		/* resort to _any_ node with CPUs and memory */
347 		for (i=0, op=objbuf; i < nobj; i++, op++) {
348 			if (SN_HWPERF_FOREIGN(op) ||
349 			    SN_HWPERF_IS_IONODE(op) ||
350 			    !SN_HWPERF_IS_NODE(op)) {
351 				continue;
352 			}
353 			c = sn_hwperf_obj_to_cnode(op);
354 			if (!found_cpu && sn_hwperf_has_cpus(c)) {
355 				if (near_cpu_node)
356 					*near_cpu_node = c;
357 				found_cpu++;
358 			}
359 			if (!found_mem && sn_hwperf_has_mem(c)) {
360 				if (near_mem_node)
361 					*near_mem_node = c;
362 				found_mem++;
363 			}
364 			if (found_cpu && found_mem)
365 				break;
366 		}
367 	}
368 
369 	if (!found_cpu || !found_mem)
370 		e = -ENODATA;
371 
372 err:
373 	return e;
374 }
375 
376 
sn_topology_show(struct seq_file * s,void * d)377 static int sn_topology_show(struct seq_file *s, void *d)
378 {
379 	int sz;
380 	int pt;
381 	int e = 0;
382 	int i;
383 	int j;
384 	const char *slabname;
385 	int ordinal;
386 	char slice;
387 	struct cpuinfo_ia64 *c;
388 	struct sn_hwperf_port_info *ptdata;
389 	struct sn_hwperf_object_info *p;
390 	struct sn_hwperf_object_info *obj = d;	/* this object */
391 	struct sn_hwperf_object_info *objs = s->private; /* all objects */
392 	u8 shubtype;
393 	u8 system_size;
394 	u8 sharing_size;
395 	u8 partid;
396 	u8 coher;
397 	u8 nasid_shift;
398 	u8 region_size;
399 	u16 nasid_mask;
400 	int nasid_msb;
401 
402 	if (obj == objs) {
403 		seq_printf(s, "# sn_topology version 2\n");
404 		seq_printf(s, "# objtype ordinal location partition"
405 			" [attribute value [, ...]]\n");
406 
407 		if (ia64_sn_get_sn_info(0,
408 			&shubtype, &nasid_mask, &nasid_shift, &system_size,
409 			&sharing_size, &partid, &coher, &region_size))
410 			BUG();
411 		for (nasid_msb=63; nasid_msb > 0; nasid_msb--) {
412 			if (((u64)nasid_mask << nasid_shift) & (1ULL << nasid_msb))
413 				break;
414 		}
415 		seq_printf(s, "partition %u %s local "
416 			"shubtype %s, "
417 			"nasid_mask 0x%016llx, "
418 			"nasid_bits %d:%d, "
419 			"system_size %d, "
420 			"sharing_size %d, "
421 			"coherency_domain %d, "
422 			"region_size %d\n",
423 
424 			partid, utsname()->nodename,
425 			shubtype ? "shub2" : "shub1",
426 			(u64)nasid_mask << nasid_shift, nasid_msb, nasid_shift,
427 			system_size, sharing_size, coher, region_size);
428 
429 		print_pci_topology(s);
430 	}
431 
432 	if (SN_HWPERF_FOREIGN(obj)) {
433 		/* private in another partition: not interesting */
434 		return 0;
435 	}
436 
437 	for (i = 0; i < SN_HWPERF_MAXSTRING && obj->name[i]; i++) {
438 		if (obj->name[i] == ' ')
439 			obj->name[i] = '_';
440 	}
441 
442 	slabname = sn_hwperf_get_slabname(obj, objs, &ordinal);
443 	seq_printf(s, "%s %d %s %s asic %s", slabname, ordinal, obj->location,
444 		obj->sn_hwp_this_part ? "local" : "shared", obj->name);
445 
446 	if (ordinal < 0 || (!SN_HWPERF_IS_NODE(obj) && !SN_HWPERF_IS_IONODE(obj)))
447 		seq_putc(s, '\n');
448 	else {
449 		cnodeid_t near_mem = -1;
450 		cnodeid_t near_cpu = -1;
451 
452 		seq_printf(s, ", nasid 0x%x", cnodeid_to_nasid(ordinal));
453 
454 		if (sn_hwperf_get_nearest_node_objdata(objs, sn_hwperf_obj_cnt,
455 			ordinal, &near_mem, &near_cpu) == 0) {
456 			seq_printf(s, ", near_mem_nodeid %d, near_cpu_nodeid %d",
457 				near_mem, near_cpu);
458 		}
459 
460 		if (!SN_HWPERF_IS_IONODE(obj)) {
461 			for_each_online_node(i) {
462 				seq_printf(s, i ? ":%d" : ", dist %d",
463 					node_distance(ordinal, i));
464 			}
465 		}
466 
467 		seq_putc(s, '\n');
468 
469 		/*
470 		 * CPUs on this node, if any
471 		 */
472 		if (!SN_HWPERF_IS_IONODE(obj)) {
473 			for_each_cpu_and(i, cpu_online_mask,
474 					 cpumask_of_node(ordinal)) {
475 				slice = 'a' + cpuid_to_slice(i);
476 				c = cpu_data(i);
477 				seq_printf(s, "cpu %d %s%c local"
478 					   " freq %luMHz, arch ia64",
479 					   i, obj->location, slice,
480 					   c->proc_freq / 1000000);
481 				for_each_online_cpu(j) {
482 					seq_printf(s, j ? ":%d" : ", dist %d",
483 						   node_distance(
484 						    	cpu_to_node(i),
485 						    	cpu_to_node(j)));
486 				}
487 				seq_putc(s, '\n');
488 			}
489 		}
490 	}
491 
492 	if (obj->ports) {
493 		/*
494 		 * numalink ports
495 		 */
496 		sz = obj->ports * sizeof(struct sn_hwperf_port_info);
497 		if ((ptdata = kmalloc(sz, GFP_KERNEL)) == NULL)
498 			return -ENOMEM;
499 		e = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
500 				      SN_HWPERF_ENUM_PORTS, obj->id, sz,
501 				      (u64) ptdata, 0, 0, NULL);
502 		if (e != SN_HWPERF_OP_OK)
503 			return -EINVAL;
504 		for (ordinal=0, p=objs; p != obj; p++) {
505 			if (!SN_HWPERF_FOREIGN(p))
506 				ordinal += p->ports;
507 		}
508 		for (pt = 0; pt < obj->ports; pt++) {
509 			for (p = objs, i = 0; i < sn_hwperf_obj_cnt; i++, p++) {
510 				if (ptdata[pt].conn_id == p->id) {
511 					break;
512 				}
513 			}
514 			seq_printf(s, "numalink %d %s-%d",
515 			    ordinal+pt, obj->location, ptdata[pt].port);
516 
517 			if (i >= sn_hwperf_obj_cnt) {
518 				/* no connection */
519 				seq_puts(s, " local endpoint disconnected"
520 					    ", protocol unknown\n");
521 				continue;
522 			}
523 
524 			if (obj->sn_hwp_this_part && p->sn_hwp_this_part)
525 				/* both ends local to this partition */
526 				seq_puts(s, " local");
527 			else if (SN_HWPERF_FOREIGN(p))
528 				/* both ends of the link in foreign partition */
529 				seq_puts(s, " foreign");
530 			else
531 				/* link straddles a partition */
532 				seq_puts(s, " shared");
533 
534 			/*
535 			 * Unlikely, but strictly should query the LLP config
536 			 * registers because an NL4R can be configured to run
537 			 * NL3 protocol, even when not talking to an NL3 router.
538 			 * Ditto for node-node.
539 			 */
540 			seq_printf(s, " endpoint %s-%d, protocol %s\n",
541 				p->location, ptdata[pt].conn_port,
542 				(SN_HWPERF_IS_NL3ROUTER(obj) ||
543 				SN_HWPERF_IS_NL3ROUTER(p)) ?  "LLP3" : "LLP4");
544 		}
545 		kfree(ptdata);
546 	}
547 
548 	return 0;
549 }
550 
sn_topology_start(struct seq_file * s,loff_t * pos)551 static void *sn_topology_start(struct seq_file *s, loff_t * pos)
552 {
553 	struct sn_hwperf_object_info *objs = s->private;
554 
555 	if (*pos < sn_hwperf_obj_cnt)
556 		return (void *)(objs + *pos);
557 
558 	return NULL;
559 }
560 
sn_topology_next(struct seq_file * s,void * v,loff_t * pos)561 static void *sn_topology_next(struct seq_file *s, void *v, loff_t * pos)
562 {
563 	++*pos;
564 	return sn_topology_start(s, pos);
565 }
566 
sn_topology_stop(struct seq_file * m,void * v)567 static void sn_topology_stop(struct seq_file *m, void *v)
568 {
569 	return;
570 }
571 
572 /*
573  * /proc/sgi_sn/sn_topology, read-only using seq_file
574  */
575 static const struct seq_operations sn_topology_seq_ops = {
576 	.start = sn_topology_start,
577 	.next = sn_topology_next,
578 	.stop = sn_topology_stop,
579 	.show = sn_topology_show
580 };
581 
582 struct sn_hwperf_op_info {
583 	u64 op;
584 	struct sn_hwperf_ioctl_args *a;
585 	void *p;
586 	int *v0;
587 	int ret;
588 };
589 
sn_hwperf_call_sal(void * info)590 static void sn_hwperf_call_sal(void *info)
591 {
592 	struct sn_hwperf_op_info *op_info = info;
593 	int r;
594 
595 	r = ia64_sn_hwperf_op(sn_hwperf_master_nasid, op_info->op,
596 		      op_info->a->arg, op_info->a->sz,
597 		      (u64) op_info->p, 0, 0, op_info->v0);
598 	op_info->ret = r;
599 }
600 
sn_hwperf_call_sal_work(void * info)601 static long sn_hwperf_call_sal_work(void *info)
602 {
603 	sn_hwperf_call_sal(info);
604 	return 0;
605 }
606 
sn_hwperf_op_cpu(struct sn_hwperf_op_info * op_info)607 static int sn_hwperf_op_cpu(struct sn_hwperf_op_info *op_info)
608 {
609 	u32 cpu;
610 	u32 use_ipi;
611 	int r = 0;
612 
613 	cpu = (op_info->a->arg & SN_HWPERF_ARG_CPU_MASK) >> 32;
614 	use_ipi = op_info->a->arg & SN_HWPERF_ARG_USE_IPI_MASK;
615 	op_info->a->arg &= SN_HWPERF_ARG_OBJID_MASK;
616 
617 	if (cpu != SN_HWPERF_ARG_ANY_CPU) {
618 		if (cpu >= nr_cpu_ids || !cpu_online(cpu)) {
619 			r = -EINVAL;
620 			goto out;
621 		}
622 	}
623 
624 	if (cpu == SN_HWPERF_ARG_ANY_CPU) {
625 		/* don't care which cpu */
626 		sn_hwperf_call_sal(op_info);
627 	} else if (cpu == get_cpu()) {
628 		/* already on correct cpu */
629 		sn_hwperf_call_sal(op_info);
630 		put_cpu();
631 	} else {
632 		put_cpu();
633 		if (use_ipi) {
634 			/* use an interprocessor interrupt to call SAL */
635 			smp_call_function_single(cpu, sn_hwperf_call_sal,
636 				op_info, 1);
637 		} else {
638 			/* Call on the target CPU */
639 			work_on_cpu_safe(cpu, sn_hwperf_call_sal_work, op_info);
640 		}
641 	}
642 	r = op_info->ret;
643 
644 out:
645 	return r;
646 }
647 
648 /* map SAL hwperf error code to system error code */
sn_hwperf_map_err(int hwperf_err)649 static int sn_hwperf_map_err(int hwperf_err)
650 {
651 	int e;
652 
653 	switch(hwperf_err) {
654 	case SN_HWPERF_OP_OK:
655 		e = 0;
656 		break;
657 
658 	case SN_HWPERF_OP_NOMEM:
659 		e = -ENOMEM;
660 		break;
661 
662 	case SN_HWPERF_OP_NO_PERM:
663 		e = -EPERM;
664 		break;
665 
666 	case SN_HWPERF_OP_IO_ERROR:
667 		e = -EIO;
668 		break;
669 
670 	case SN_HWPERF_OP_BUSY:
671 		e = -EBUSY;
672 		break;
673 
674 	case SN_HWPERF_OP_RECONFIGURE:
675 		e = -EAGAIN;
676 		break;
677 
678 	case SN_HWPERF_OP_INVAL:
679 	default:
680 		e = -EINVAL;
681 		break;
682 	}
683 
684 	return e;
685 }
686 
687 /*
688  * ioctl for "sn_hwperf" misc device
689  */
sn_hwperf_ioctl(struct file * fp,u32 op,unsigned long arg)690 static long sn_hwperf_ioctl(struct file *fp, u32 op, unsigned long arg)
691 {
692 	struct sn_hwperf_ioctl_args a;
693 	struct cpuinfo_ia64 *cdata;
694 	struct sn_hwperf_object_info *objs;
695 	struct sn_hwperf_object_info *cpuobj;
696 	struct sn_hwperf_op_info op_info;
697 	void *p = NULL;
698 	int nobj;
699 	char slice;
700 	int node;
701 	int r;
702 	int v0;
703 	int i;
704 	int j;
705 
706 	/* only user requests are allowed here */
707 	if ((op & SN_HWPERF_OP_MASK) < 10) {
708 		r = -EINVAL;
709 		goto error;
710 	}
711 	r = copy_from_user(&a, (const void __user *)arg,
712 		sizeof(struct sn_hwperf_ioctl_args));
713 	if (r != 0) {
714 		r = -EFAULT;
715 		goto error;
716 	}
717 
718 	/*
719 	 * Allocate memory to hold a kernel copy of the user buffer. The
720 	 * buffer contents are either copied in or out (or both) of user
721 	 * space depending on the flags encoded in the requested operation.
722 	 */
723 	if (a.ptr) {
724 		p = vmalloc(a.sz);
725 		if (!p) {
726 			r = -ENOMEM;
727 			goto error;
728 		}
729 	}
730 
731 	if (op & SN_HWPERF_OP_MEM_COPYIN) {
732 		r = copy_from_user(p, (const void __user *)a.ptr, a.sz);
733 		if (r != 0) {
734 			r = -EFAULT;
735 			goto error;
736 		}
737 	}
738 
739 	switch (op) {
740 	case SN_HWPERF_GET_CPU_INFO:
741 		if (a.sz == sizeof(u64)) {
742 			/* special case to get size needed */
743 			*(u64 *) p = (u64) num_online_cpus() *
744 				sizeof(struct sn_hwperf_object_info);
745 		} else
746 		if (a.sz < num_online_cpus() * sizeof(struct sn_hwperf_object_info)) {
747 			r = -ENOMEM;
748 			goto error;
749 		} else
750 		if ((r = sn_hwperf_enum_objects(&nobj, &objs)) == 0) {
751 			int cpuobj_index = 0;
752 
753 			memset(p, 0, a.sz);
754 			for (i = 0; i < nobj; i++) {
755 				if (!SN_HWPERF_IS_NODE(objs + i))
756 					continue;
757 				node = sn_hwperf_obj_to_cnode(objs + i);
758 				for_each_online_cpu(j) {
759 					if (node != cpu_to_node(j))
760 						continue;
761 					cpuobj = (struct sn_hwperf_object_info *) p + cpuobj_index++;
762 					slice = 'a' + cpuid_to_slice(j);
763 					cdata = cpu_data(j);
764 					cpuobj->id = j;
765 					snprintf(cpuobj->name,
766 						 sizeof(cpuobj->name),
767 						 "CPU %luMHz %s",
768 						 cdata->proc_freq / 1000000,
769 						 cdata->vendor);
770 					snprintf(cpuobj->location,
771 						 sizeof(cpuobj->location),
772 						 "%s%c", objs[i].location,
773 						 slice);
774 				}
775 			}
776 
777 			vfree(objs);
778 		}
779 		break;
780 
781 	case SN_HWPERF_GET_NODE_NASID:
782 		if (a.sz != sizeof(u64) ||
783 		   (node = a.arg) < 0 || !cnode_possible(node)) {
784 			r = -EINVAL;
785 			goto error;
786 		}
787 		*(u64 *)p = (u64)cnodeid_to_nasid(node);
788 		break;
789 
790 	case SN_HWPERF_GET_OBJ_NODE:
791 		i = a.arg;
792 		if (a.sz != sizeof(u64) || i < 0) {
793 			r = -EINVAL;
794 			goto error;
795 		}
796 		if ((r = sn_hwperf_enum_objects(&nobj, &objs)) == 0) {
797 			if (i >= nobj) {
798 				r = -EINVAL;
799 				vfree(objs);
800 				goto error;
801 			}
802 			if (objs[i].id != a.arg) {
803 				for (i = 0; i < nobj; i++) {
804 					if (objs[i].id == a.arg)
805 						break;
806 				}
807 			}
808 			if (i == nobj) {
809 				r = -EINVAL;
810 				vfree(objs);
811 				goto error;
812 			}
813 
814 			if (!SN_HWPERF_IS_NODE(objs + i) &&
815 			    !SN_HWPERF_IS_IONODE(objs + i)) {
816 			    	r = -ENOENT;
817 				vfree(objs);
818 				goto error;
819 			}
820 
821 			*(u64 *)p = (u64)sn_hwperf_obj_to_cnode(objs + i);
822 			vfree(objs);
823 		}
824 		break;
825 
826 	case SN_HWPERF_GET_MMRS:
827 	case SN_HWPERF_SET_MMRS:
828 	case SN_HWPERF_OBJECT_DISTANCE:
829 		op_info.p = p;
830 		op_info.a = &a;
831 		op_info.v0 = &v0;
832 		op_info.op = op;
833 		r = sn_hwperf_op_cpu(&op_info);
834 		if (r) {
835 			r = sn_hwperf_map_err(r);
836 			a.v0 = v0;
837 			goto error;
838 		}
839 		break;
840 
841 	default:
842 		/* all other ops are a direct SAL call */
843 		r = ia64_sn_hwperf_op(sn_hwperf_master_nasid, op,
844 			      a.arg, a.sz, (u64) p, 0, 0, &v0);
845 		if (r) {
846 			r = sn_hwperf_map_err(r);
847 			goto error;
848 		}
849 		a.v0 = v0;
850 		break;
851 	}
852 
853 	if (op & SN_HWPERF_OP_MEM_COPYOUT) {
854 		r = copy_to_user((void __user *)a.ptr, p, a.sz);
855 		if (r != 0) {
856 			r = -EFAULT;
857 			goto error;
858 		}
859 	}
860 
861 error:
862 	vfree(p);
863 
864 	return r;
865 }
866 
867 static const struct file_operations sn_hwperf_fops = {
868 	.unlocked_ioctl = sn_hwperf_ioctl,
869 	.llseek = noop_llseek,
870 };
871 
872 static struct miscdevice sn_hwperf_dev = {
873 	MISC_DYNAMIC_MINOR,
874 	"sn_hwperf",
875 	&sn_hwperf_fops
876 };
877 
sn_hwperf_init(void)878 static int sn_hwperf_init(void)
879 {
880 	u64 v;
881 	int salr;
882 	int e = 0;
883 
884 	/* single threaded, once-only initialization */
885 	mutex_lock(&sn_hwperf_init_mutex);
886 
887 	if (sn_hwperf_salheap) {
888 		mutex_unlock(&sn_hwperf_init_mutex);
889 		return e;
890 	}
891 
892 	/*
893 	 * The PROM code needs a fixed reference node. For convenience the
894 	 * same node as the console I/O is used.
895 	 */
896 	sn_hwperf_master_nasid = (nasid_t) ia64_sn_get_console_nasid();
897 
898 	/*
899 	 * Request the needed size and install the PROM scratch area.
900 	 * The PROM keeps various tracking bits in this memory area.
901 	 */
902 	salr = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
903 				 (u64) SN_HWPERF_GET_HEAPSIZE, 0,
904 				 (u64) sizeof(u64), (u64) &v, 0, 0, NULL);
905 	if (salr != SN_HWPERF_OP_OK) {
906 		e = -EINVAL;
907 		goto out;
908 	}
909 
910 	if ((sn_hwperf_salheap = vmalloc(v)) == NULL) {
911 		e = -ENOMEM;
912 		goto out;
913 	}
914 	salr = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
915 				 SN_HWPERF_INSTALL_HEAP, 0, v,
916 				 (u64) sn_hwperf_salheap, 0, 0, NULL);
917 	if (salr != SN_HWPERF_OP_OK) {
918 		e = -EINVAL;
919 		goto out;
920 	}
921 
922 	salr = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
923 				 SN_HWPERF_OBJECT_COUNT, 0,
924 				 sizeof(u64), (u64) &v, 0, 0, NULL);
925 	if (salr != SN_HWPERF_OP_OK) {
926 		e = -EINVAL;
927 		goto out;
928 	}
929 	sn_hwperf_obj_cnt = (int)v;
930 
931 out:
932 	if (e < 0 && sn_hwperf_salheap) {
933 		vfree(sn_hwperf_salheap);
934 		sn_hwperf_salheap = NULL;
935 		sn_hwperf_obj_cnt = 0;
936 	}
937 	mutex_unlock(&sn_hwperf_init_mutex);
938 	return e;
939 }
940 
sn_topology_open(struct inode * inode,struct file * file)941 int sn_topology_open(struct inode *inode, struct file *file)
942 {
943 	int e;
944 	struct seq_file *seq;
945 	struct sn_hwperf_object_info *objbuf;
946 	int nobj;
947 
948 	if ((e = sn_hwperf_enum_objects(&nobj, &objbuf)) == 0) {
949 		e = seq_open(file, &sn_topology_seq_ops);
950 		seq = file->private_data;
951 		seq->private = objbuf;
952 	}
953 
954 	return e;
955 }
956 
sn_topology_release(struct inode * inode,struct file * file)957 int sn_topology_release(struct inode *inode, struct file *file)
958 {
959 	struct seq_file *seq = file->private_data;
960 
961 	vfree(seq->private);
962 	return seq_release(inode, file);
963 }
964 
sn_hwperf_get_nearest_node(cnodeid_t node,cnodeid_t * near_mem_node,cnodeid_t * near_cpu_node)965 int sn_hwperf_get_nearest_node(cnodeid_t node,
966 	cnodeid_t *near_mem_node, cnodeid_t *near_cpu_node)
967 {
968 	int e;
969 	int nobj;
970 	struct sn_hwperf_object_info *objbuf;
971 
972 	if ((e = sn_hwperf_enum_objects(&nobj, &objbuf)) == 0) {
973 		e = sn_hwperf_get_nearest_node_objdata(objbuf, nobj,
974 			node, near_mem_node, near_cpu_node);
975 		vfree(objbuf);
976 	}
977 
978 	return e;
979 }
980 
sn_hwperf_misc_register_init(void)981 static int sn_hwperf_misc_register_init(void)
982 {
983 	int e;
984 
985 	if (!ia64_platform_is("sn2"))
986 		return 0;
987 
988 	sn_hwperf_init();
989 
990 	/*
991 	 * Register a dynamic misc device for hwperf ioctls. Platforms
992 	 * supporting hotplug will create /dev/sn_hwperf, else user
993 	 * can to look up the minor number in /proc/misc.
994 	 */
995 	if ((e = misc_register(&sn_hwperf_dev)) != 0) {
996 		printk(KERN_ERR "sn_hwperf_misc_register_init: failed to "
997 		"register misc device for \"%s\"\n", sn_hwperf_dev.name);
998 	}
999 
1000 	return e;
1001 }
1002 
1003 device_initcall(sn_hwperf_misc_register_init); /* after misc_init() */
1004 EXPORT_SYMBOL(sn_hwperf_get_nearest_node);
1005