1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * SPI bus driver for the Topcliff PCH used by Intel SoCs
4 *
5 * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
6 */
7
8 #include <linux/delay.h>
9 #include <linux/pci.h>
10 #include <linux/wait.h>
11 #include <linux/spi/spi.h>
12 #include <linux/interrupt.h>
13 #include <linux/sched.h>
14 #include <linux/spi/spidev.h>
15 #include <linux/module.h>
16 #include <linux/device.h>
17 #include <linux/platform_device.h>
18
19 #include <linux/dmaengine.h>
20 #include <linux/pch_dma.h>
21
22 /* Register offsets */
23 #define PCH_SPCR 0x00 /* SPI control register */
24 #define PCH_SPBRR 0x04 /* SPI baud rate register */
25 #define PCH_SPSR 0x08 /* SPI status register */
26 #define PCH_SPDWR 0x0C /* SPI write data register */
27 #define PCH_SPDRR 0x10 /* SPI read data register */
28 #define PCH_SSNXCR 0x18 /* SSN Expand Control Register */
29 #define PCH_SRST 0x1C /* SPI reset register */
30 #define PCH_ADDRESS_SIZE 0x20
31
32 #define PCH_SPSR_TFD 0x000007C0
33 #define PCH_SPSR_RFD 0x0000F800
34
35 #define PCH_READABLE(x) (((x) & PCH_SPSR_RFD)>>11)
36 #define PCH_WRITABLE(x) (((x) & PCH_SPSR_TFD)>>6)
37
38 #define PCH_RX_THOLD 7
39 #define PCH_RX_THOLD_MAX 15
40
41 #define PCH_TX_THOLD 2
42
43 #define PCH_MAX_BAUDRATE 5000000
44 #define PCH_MAX_FIFO_DEPTH 16
45
46 #define STATUS_RUNNING 1
47 #define STATUS_EXITING 2
48 #define PCH_SLEEP_TIME 10
49
50 #define SSN_LOW 0x02U
51 #define SSN_HIGH 0x03U
52 #define SSN_NO_CONTROL 0x00U
53 #define PCH_MAX_CS 0xFF
54 #define PCI_DEVICE_ID_GE_SPI 0x8816
55
56 #define SPCR_SPE_BIT (1 << 0)
57 #define SPCR_MSTR_BIT (1 << 1)
58 #define SPCR_LSBF_BIT (1 << 4)
59 #define SPCR_CPHA_BIT (1 << 5)
60 #define SPCR_CPOL_BIT (1 << 6)
61 #define SPCR_TFIE_BIT (1 << 8)
62 #define SPCR_RFIE_BIT (1 << 9)
63 #define SPCR_FIE_BIT (1 << 10)
64 #define SPCR_ORIE_BIT (1 << 11)
65 #define SPCR_MDFIE_BIT (1 << 12)
66 #define SPCR_FICLR_BIT (1 << 24)
67 #define SPSR_TFI_BIT (1 << 0)
68 #define SPSR_RFI_BIT (1 << 1)
69 #define SPSR_FI_BIT (1 << 2)
70 #define SPSR_ORF_BIT (1 << 3)
71 #define SPBRR_SIZE_BIT (1 << 10)
72
73 #define PCH_ALL (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
74 SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
75
76 #define SPCR_RFIC_FIELD 20
77 #define SPCR_TFIC_FIELD 16
78
79 #define MASK_SPBRR_SPBR_BITS ((1 << 10) - 1)
80 #define MASK_RFIC_SPCR_BITS (0xf << SPCR_RFIC_FIELD)
81 #define MASK_TFIC_SPCR_BITS (0xf << SPCR_TFIC_FIELD)
82
83 #define PCH_CLOCK_HZ 50000000
84 #define PCH_MAX_SPBR 1023
85
86 /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
87 #define PCI_DEVICE_ID_ML7213_SPI 0x802c
88 #define PCI_DEVICE_ID_ML7223_SPI 0x800F
89 #define PCI_DEVICE_ID_ML7831_SPI 0x8816
90
91 /*
92 * Set the number of SPI instance max
93 * Intel EG20T PCH : 1ch
94 * LAPIS Semiconductor ML7213 IOH : 2ch
95 * LAPIS Semiconductor ML7223 IOH : 1ch
96 * LAPIS Semiconductor ML7831 IOH : 1ch
97 */
98 #define PCH_SPI_MAX_DEV 2
99
100 #define PCH_BUF_SIZE 4096
101 #define PCH_DMA_TRANS_SIZE 12
102
103 static int use_dma = 1;
104
105 struct pch_spi_dma_ctrl {
106 struct dma_async_tx_descriptor *desc_tx;
107 struct dma_async_tx_descriptor *desc_rx;
108 struct pch_dma_slave param_tx;
109 struct pch_dma_slave param_rx;
110 struct dma_chan *chan_tx;
111 struct dma_chan *chan_rx;
112 struct scatterlist *sg_tx_p;
113 struct scatterlist *sg_rx_p;
114 struct scatterlist sg_tx;
115 struct scatterlist sg_rx;
116 int nent;
117 void *tx_buf_virt;
118 void *rx_buf_virt;
119 dma_addr_t tx_buf_dma;
120 dma_addr_t rx_buf_dma;
121 };
122 /**
123 * struct pch_spi_data - Holds the SPI channel specific details
124 * @io_remap_addr: The remapped PCI base address
125 * @master: Pointer to the SPI master structure
126 * @work: Reference to work queue handler
127 * @wait: Wait queue for waking up upon receiving an
128 * interrupt.
129 * @transfer_complete: Status of SPI Transfer
130 * @bcurrent_msg_processing: Status flag for message processing
131 * @lock: Lock for protecting this structure
132 * @queue: SPI Message queue
133 * @status: Status of the SPI driver
134 * @bpw_len: Length of data to be transferred in bits per
135 * word
136 * @transfer_active: Flag showing active transfer
137 * @tx_index: Transmit data count; for bookkeeping during
138 * transfer
139 * @rx_index: Receive data count; for bookkeeping during
140 * transfer
141 * @tx_buff: Buffer for data to be transmitted
142 * @rx_index: Buffer for Received data
143 * @n_curnt_chip: The chip number that this SPI driver currently
144 * operates on
145 * @current_chip: Reference to the current chip that this SPI
146 * driver currently operates on
147 * @current_msg: The current message that this SPI driver is
148 * handling
149 * @cur_trans: The current transfer that this SPI driver is
150 * handling
151 * @board_dat: Reference to the SPI device data structure
152 * @plat_dev: platform_device structure
153 * @ch: SPI channel number
154 * @irq_reg_sts: Status of IRQ registration
155 */
156 struct pch_spi_data {
157 void __iomem *io_remap_addr;
158 unsigned long io_base_addr;
159 struct spi_master *master;
160 struct work_struct work;
161 wait_queue_head_t wait;
162 u8 transfer_complete;
163 u8 bcurrent_msg_processing;
164 spinlock_t lock;
165 struct list_head queue;
166 u8 status;
167 u32 bpw_len;
168 u8 transfer_active;
169 u32 tx_index;
170 u32 rx_index;
171 u16 *pkt_tx_buff;
172 u16 *pkt_rx_buff;
173 u8 n_curnt_chip;
174 struct spi_device *current_chip;
175 struct spi_message *current_msg;
176 struct spi_transfer *cur_trans;
177 struct pch_spi_board_data *board_dat;
178 struct platform_device *plat_dev;
179 int ch;
180 struct pch_spi_dma_ctrl dma;
181 int use_dma;
182 u8 irq_reg_sts;
183 int save_total_len;
184 };
185
186 /**
187 * struct pch_spi_board_data - Holds the SPI device specific details
188 * @pdev: Pointer to the PCI device
189 * @suspend_sts: Status of suspend
190 * @num: The number of SPI device instance
191 */
192 struct pch_spi_board_data {
193 struct pci_dev *pdev;
194 u8 suspend_sts;
195 int num;
196 };
197
198 struct pch_pd_dev_save {
199 int num;
200 struct platform_device *pd_save[PCH_SPI_MAX_DEV];
201 struct pch_spi_board_data *board_dat;
202 };
203
204 static const struct pci_device_id pch_spi_pcidev_id[] = {
205 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI), 1, },
206 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
207 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
208 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
209 { }
210 };
211
212 /**
213 * pch_spi_writereg() - Performs register writes
214 * @master: Pointer to struct spi_master.
215 * @idx: Register offset.
216 * @val: Value to be written to register.
217 */
pch_spi_writereg(struct spi_master * master,int idx,u32 val)218 static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
219 {
220 struct pch_spi_data *data = spi_master_get_devdata(master);
221 iowrite32(val, (data->io_remap_addr + idx));
222 }
223
224 /**
225 * pch_spi_readreg() - Performs register reads
226 * @master: Pointer to struct spi_master.
227 * @idx: Register offset.
228 */
pch_spi_readreg(struct spi_master * master,int idx)229 static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
230 {
231 struct pch_spi_data *data = spi_master_get_devdata(master);
232 return ioread32(data->io_remap_addr + idx);
233 }
234
pch_spi_setclr_reg(struct spi_master * master,int idx,u32 set,u32 clr)235 static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
236 u32 set, u32 clr)
237 {
238 u32 tmp = pch_spi_readreg(master, idx);
239 tmp = (tmp & ~clr) | set;
240 pch_spi_writereg(master, idx, tmp);
241 }
242
pch_spi_set_master_mode(struct spi_master * master)243 static void pch_spi_set_master_mode(struct spi_master *master)
244 {
245 pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
246 }
247
248 /**
249 * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
250 * @master: Pointer to struct spi_master.
251 */
pch_spi_clear_fifo(struct spi_master * master)252 static void pch_spi_clear_fifo(struct spi_master *master)
253 {
254 pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
255 pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
256 }
257
pch_spi_handler_sub(struct pch_spi_data * data,u32 reg_spsr_val,void __iomem * io_remap_addr)258 static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
259 void __iomem *io_remap_addr)
260 {
261 u32 n_read, tx_index, rx_index, bpw_len;
262 u16 *pkt_rx_buffer, *pkt_tx_buff;
263 int read_cnt;
264 u32 reg_spcr_val;
265 void __iomem *spsr;
266 void __iomem *spdrr;
267 void __iomem *spdwr;
268
269 spsr = io_remap_addr + PCH_SPSR;
270 iowrite32(reg_spsr_val, spsr);
271
272 if (data->transfer_active) {
273 rx_index = data->rx_index;
274 tx_index = data->tx_index;
275 bpw_len = data->bpw_len;
276 pkt_rx_buffer = data->pkt_rx_buff;
277 pkt_tx_buff = data->pkt_tx_buff;
278
279 spdrr = io_remap_addr + PCH_SPDRR;
280 spdwr = io_remap_addr + PCH_SPDWR;
281
282 n_read = PCH_READABLE(reg_spsr_val);
283
284 for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
285 pkt_rx_buffer[rx_index++] = ioread32(spdrr);
286 if (tx_index < bpw_len)
287 iowrite32(pkt_tx_buff[tx_index++], spdwr);
288 }
289
290 /* disable RFI if not needed */
291 if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
292 reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
293 reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
294
295 /* reset rx threshold */
296 reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
297 reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
298
299 iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
300 }
301
302 /* update counts */
303 data->tx_index = tx_index;
304 data->rx_index = rx_index;
305
306 /* if transfer complete interrupt */
307 if (reg_spsr_val & SPSR_FI_BIT) {
308 if ((tx_index == bpw_len) && (rx_index == tx_index)) {
309 /* disable interrupts */
310 pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
311 PCH_ALL);
312
313 /* transfer is completed;
314 inform pch_spi_process_messages */
315 data->transfer_complete = true;
316 data->transfer_active = false;
317 wake_up(&data->wait);
318 } else {
319 dev_vdbg(&data->master->dev,
320 "%s : Transfer is not completed",
321 __func__);
322 }
323 }
324 }
325 }
326
327 /**
328 * pch_spi_handler() - Interrupt handler
329 * @irq: The interrupt number.
330 * @dev_id: Pointer to struct pch_spi_board_data.
331 */
pch_spi_handler(int irq,void * dev_id)332 static irqreturn_t pch_spi_handler(int irq, void *dev_id)
333 {
334 u32 reg_spsr_val;
335 void __iomem *spsr;
336 void __iomem *io_remap_addr;
337 irqreturn_t ret = IRQ_NONE;
338 struct pch_spi_data *data = dev_id;
339 struct pch_spi_board_data *board_dat = data->board_dat;
340
341 if (board_dat->suspend_sts) {
342 dev_dbg(&board_dat->pdev->dev,
343 "%s returning due to suspend\n", __func__);
344 return IRQ_NONE;
345 }
346
347 io_remap_addr = data->io_remap_addr;
348 spsr = io_remap_addr + PCH_SPSR;
349
350 reg_spsr_val = ioread32(spsr);
351
352 if (reg_spsr_val & SPSR_ORF_BIT) {
353 dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
354 if (data->current_msg->complete) {
355 data->transfer_complete = true;
356 data->current_msg->status = -EIO;
357 data->current_msg->complete(data->current_msg->context);
358 data->bcurrent_msg_processing = false;
359 data->current_msg = NULL;
360 data->cur_trans = NULL;
361 }
362 }
363
364 if (data->use_dma)
365 return IRQ_NONE;
366
367 /* Check if the interrupt is for SPI device */
368 if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
369 pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
370 ret = IRQ_HANDLED;
371 }
372
373 dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
374 __func__, ret);
375
376 return ret;
377 }
378
379 /**
380 * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
381 * @master: Pointer to struct spi_master.
382 * @speed_hz: Baud rate.
383 */
pch_spi_set_baud_rate(struct spi_master * master,u32 speed_hz)384 static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
385 {
386 u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
387
388 /* if baud rate is less than we can support limit it */
389 if (n_spbr > PCH_MAX_SPBR)
390 n_spbr = PCH_MAX_SPBR;
391
392 pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
393 }
394
395 /**
396 * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
397 * @master: Pointer to struct spi_master.
398 * @bits_per_word: Bits per word for SPI transfer.
399 */
pch_spi_set_bits_per_word(struct spi_master * master,u8 bits_per_word)400 static void pch_spi_set_bits_per_word(struct spi_master *master,
401 u8 bits_per_word)
402 {
403 if (bits_per_word == 8)
404 pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
405 else
406 pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
407 }
408
409 /**
410 * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
411 * @spi: Pointer to struct spi_device.
412 */
pch_spi_setup_transfer(struct spi_device * spi)413 static void pch_spi_setup_transfer(struct spi_device *spi)
414 {
415 u32 flags = 0;
416
417 dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
418 __func__, pch_spi_readreg(spi->master, PCH_SPBRR),
419 spi->max_speed_hz);
420 pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
421
422 /* set bits per word */
423 pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
424
425 if (!(spi->mode & SPI_LSB_FIRST))
426 flags |= SPCR_LSBF_BIT;
427 if (spi->mode & SPI_CPOL)
428 flags |= SPCR_CPOL_BIT;
429 if (spi->mode & SPI_CPHA)
430 flags |= SPCR_CPHA_BIT;
431 pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
432 (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
433
434 /* Clear the FIFO by toggling FICLR to 1 and back to 0 */
435 pch_spi_clear_fifo(spi->master);
436 }
437
438 /**
439 * pch_spi_reset() - Clears SPI registers
440 * @master: Pointer to struct spi_master.
441 */
pch_spi_reset(struct spi_master * master)442 static void pch_spi_reset(struct spi_master *master)
443 {
444 /* write 1 to reset SPI */
445 pch_spi_writereg(master, PCH_SRST, 0x1);
446
447 /* clear reset */
448 pch_spi_writereg(master, PCH_SRST, 0x0);
449 }
450
pch_spi_transfer(struct spi_device * pspi,struct spi_message * pmsg)451 static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
452 {
453
454 struct spi_transfer *transfer;
455 struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
456 int retval;
457 unsigned long flags;
458
459 spin_lock_irqsave(&data->lock, flags);
460 /* validate Tx/Rx buffers and Transfer length */
461 list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
462 if (!transfer->tx_buf && !transfer->rx_buf) {
463 dev_err(&pspi->dev,
464 "%s Tx and Rx buffer NULL\n", __func__);
465 retval = -EINVAL;
466 goto err_return_spinlock;
467 }
468
469 if (!transfer->len) {
470 dev_err(&pspi->dev, "%s Transfer length invalid\n",
471 __func__);
472 retval = -EINVAL;
473 goto err_return_spinlock;
474 }
475
476 dev_dbg(&pspi->dev,
477 "%s Tx/Rx buffer valid. Transfer length valid\n",
478 __func__);
479 }
480 spin_unlock_irqrestore(&data->lock, flags);
481
482 /* We won't process any messages if we have been asked to terminate */
483 if (data->status == STATUS_EXITING) {
484 dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
485 retval = -ESHUTDOWN;
486 goto err_out;
487 }
488
489 /* If suspended ,return -EINVAL */
490 if (data->board_dat->suspend_sts) {
491 dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
492 retval = -EINVAL;
493 goto err_out;
494 }
495
496 /* set status of message */
497 pmsg->actual_length = 0;
498 dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
499
500 pmsg->status = -EINPROGRESS;
501 spin_lock_irqsave(&data->lock, flags);
502 /* add message to queue */
503 list_add_tail(&pmsg->queue, &data->queue);
504 spin_unlock_irqrestore(&data->lock, flags);
505
506 dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
507
508 schedule_work(&data->work);
509 dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
510
511 retval = 0;
512
513 err_out:
514 dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
515 return retval;
516 err_return_spinlock:
517 dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
518 spin_unlock_irqrestore(&data->lock, flags);
519 return retval;
520 }
521
pch_spi_select_chip(struct pch_spi_data * data,struct spi_device * pspi)522 static inline void pch_spi_select_chip(struct pch_spi_data *data,
523 struct spi_device *pspi)
524 {
525 if (data->current_chip != NULL) {
526 if (pspi->chip_select != data->n_curnt_chip) {
527 dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
528 data->current_chip = NULL;
529 }
530 }
531
532 data->current_chip = pspi;
533
534 data->n_curnt_chip = data->current_chip->chip_select;
535
536 dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
537 pch_spi_setup_transfer(pspi);
538 }
539
pch_spi_set_tx(struct pch_spi_data * data,int * bpw)540 static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
541 {
542 int size;
543 u32 n_writes;
544 int j;
545 struct spi_message *pmsg, *tmp;
546 const u8 *tx_buf;
547 const u16 *tx_sbuf;
548
549 /* set baud rate if needed */
550 if (data->cur_trans->speed_hz) {
551 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
552 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
553 }
554
555 /* set bits per word if needed */
556 if (data->cur_trans->bits_per_word &&
557 (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
558 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
559 pch_spi_set_bits_per_word(data->master,
560 data->cur_trans->bits_per_word);
561 *bpw = data->cur_trans->bits_per_word;
562 } else {
563 *bpw = data->current_msg->spi->bits_per_word;
564 }
565
566 /* reset Tx/Rx index */
567 data->tx_index = 0;
568 data->rx_index = 0;
569
570 data->bpw_len = data->cur_trans->len / (*bpw / 8);
571
572 /* find alloc size */
573 size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
574
575 /* allocate memory for pkt_tx_buff & pkt_rx_buffer */
576 data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
577 if (data->pkt_tx_buff != NULL) {
578 data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
579 if (!data->pkt_rx_buff)
580 kfree(data->pkt_tx_buff);
581 }
582
583 if (!data->pkt_rx_buff) {
584 /* flush queue and set status of all transfers to -ENOMEM */
585 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
586 pmsg->status = -ENOMEM;
587
588 if (pmsg->complete)
589 pmsg->complete(pmsg->context);
590
591 /* delete from queue */
592 list_del_init(&pmsg->queue);
593 }
594 return;
595 }
596
597 /* copy Tx Data */
598 if (data->cur_trans->tx_buf != NULL) {
599 if (*bpw == 8) {
600 tx_buf = data->cur_trans->tx_buf;
601 for (j = 0; j < data->bpw_len; j++)
602 data->pkt_tx_buff[j] = *tx_buf++;
603 } else {
604 tx_sbuf = data->cur_trans->tx_buf;
605 for (j = 0; j < data->bpw_len; j++)
606 data->pkt_tx_buff[j] = *tx_sbuf++;
607 }
608 }
609
610 /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
611 n_writes = data->bpw_len;
612 if (n_writes > PCH_MAX_FIFO_DEPTH)
613 n_writes = PCH_MAX_FIFO_DEPTH;
614
615 dev_dbg(&data->master->dev,
616 "\n%s:Pulling down SSN low - writing 0x2 to SSNXCR\n",
617 __func__);
618 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
619
620 for (j = 0; j < n_writes; j++)
621 pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
622
623 /* update tx_index */
624 data->tx_index = j;
625
626 /* reset transfer complete flag */
627 data->transfer_complete = false;
628 data->transfer_active = true;
629 }
630
pch_spi_nomore_transfer(struct pch_spi_data * data)631 static void pch_spi_nomore_transfer(struct pch_spi_data *data)
632 {
633 struct spi_message *pmsg, *tmp;
634 dev_dbg(&data->master->dev, "%s called\n", __func__);
635 /* Invoke complete callback
636 * [To the spi core..indicating end of transfer] */
637 data->current_msg->status = 0;
638
639 if (data->current_msg->complete) {
640 dev_dbg(&data->master->dev,
641 "%s:Invoking callback of SPI core\n", __func__);
642 data->current_msg->complete(data->current_msg->context);
643 }
644
645 /* update status in global variable */
646 data->bcurrent_msg_processing = false;
647
648 dev_dbg(&data->master->dev,
649 "%s:data->bcurrent_msg_processing = false\n", __func__);
650
651 data->current_msg = NULL;
652 data->cur_trans = NULL;
653
654 /* check if we have items in list and not suspending
655 * return 1 if list empty */
656 if ((list_empty(&data->queue) == 0) &&
657 (!data->board_dat->suspend_sts) &&
658 (data->status != STATUS_EXITING)) {
659 /* We have some more work to do (either there is more tranint
660 * bpw;sfer requests in the current message or there are
661 *more messages)
662 */
663 dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
664 schedule_work(&data->work);
665 } else if (data->board_dat->suspend_sts ||
666 data->status == STATUS_EXITING) {
667 dev_dbg(&data->master->dev,
668 "%s suspend/remove initiated, flushing queue\n",
669 __func__);
670 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
671 pmsg->status = -EIO;
672
673 if (pmsg->complete)
674 pmsg->complete(pmsg->context);
675
676 /* delete from queue */
677 list_del_init(&pmsg->queue);
678 }
679 }
680 }
681
pch_spi_set_ir(struct pch_spi_data * data)682 static void pch_spi_set_ir(struct pch_spi_data *data)
683 {
684 /* enable interrupts, set threshold, enable SPI */
685 if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
686 /* set receive threshold to PCH_RX_THOLD */
687 pch_spi_setclr_reg(data->master, PCH_SPCR,
688 PCH_RX_THOLD << SPCR_RFIC_FIELD |
689 SPCR_FIE_BIT | SPCR_RFIE_BIT |
690 SPCR_ORIE_BIT | SPCR_SPE_BIT,
691 MASK_RFIC_SPCR_BITS | PCH_ALL);
692 else
693 /* set receive threshold to maximum */
694 pch_spi_setclr_reg(data->master, PCH_SPCR,
695 PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
696 SPCR_FIE_BIT | SPCR_ORIE_BIT |
697 SPCR_SPE_BIT,
698 MASK_RFIC_SPCR_BITS | PCH_ALL);
699
700 /* Wait until the transfer completes; go to sleep after
701 initiating the transfer. */
702 dev_dbg(&data->master->dev,
703 "%s:waiting for transfer to get over\n", __func__);
704
705 wait_event_interruptible(data->wait, data->transfer_complete);
706
707 /* clear all interrupts */
708 pch_spi_writereg(data->master, PCH_SPSR,
709 pch_spi_readreg(data->master, PCH_SPSR));
710 /* Disable interrupts and SPI transfer */
711 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
712 /* clear FIFO */
713 pch_spi_clear_fifo(data->master);
714 }
715
pch_spi_copy_rx_data(struct pch_spi_data * data,int bpw)716 static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
717 {
718 int j;
719 u8 *rx_buf;
720 u16 *rx_sbuf;
721
722 /* copy Rx Data */
723 if (!data->cur_trans->rx_buf)
724 return;
725
726 if (bpw == 8) {
727 rx_buf = data->cur_trans->rx_buf;
728 for (j = 0; j < data->bpw_len; j++)
729 *rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
730 } else {
731 rx_sbuf = data->cur_trans->rx_buf;
732 for (j = 0; j < data->bpw_len; j++)
733 *rx_sbuf++ = data->pkt_rx_buff[j];
734 }
735 }
736
pch_spi_copy_rx_data_for_dma(struct pch_spi_data * data,int bpw)737 static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
738 {
739 int j;
740 u8 *rx_buf;
741 u16 *rx_sbuf;
742 const u8 *rx_dma_buf;
743 const u16 *rx_dma_sbuf;
744
745 /* copy Rx Data */
746 if (!data->cur_trans->rx_buf)
747 return;
748
749 if (bpw == 8) {
750 rx_buf = data->cur_trans->rx_buf;
751 rx_dma_buf = data->dma.rx_buf_virt;
752 for (j = 0; j < data->bpw_len; j++)
753 *rx_buf++ = *rx_dma_buf++ & 0xFF;
754 data->cur_trans->rx_buf = rx_buf;
755 } else {
756 rx_sbuf = data->cur_trans->rx_buf;
757 rx_dma_sbuf = data->dma.rx_buf_virt;
758 for (j = 0; j < data->bpw_len; j++)
759 *rx_sbuf++ = *rx_dma_sbuf++;
760 data->cur_trans->rx_buf = rx_sbuf;
761 }
762 }
763
pch_spi_start_transfer(struct pch_spi_data * data)764 static int pch_spi_start_transfer(struct pch_spi_data *data)
765 {
766 struct pch_spi_dma_ctrl *dma;
767 unsigned long flags;
768 int rtn;
769
770 dma = &data->dma;
771
772 spin_lock_irqsave(&data->lock, flags);
773
774 /* disable interrupts, SPI set enable */
775 pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
776
777 spin_unlock_irqrestore(&data->lock, flags);
778
779 /* Wait until the transfer completes; go to sleep after
780 initiating the transfer. */
781 dev_dbg(&data->master->dev,
782 "%s:waiting for transfer to get over\n", __func__);
783 rtn = wait_event_interruptible_timeout(data->wait,
784 data->transfer_complete,
785 msecs_to_jiffies(2 * HZ));
786 if (!rtn)
787 dev_err(&data->master->dev,
788 "%s wait-event timeout\n", __func__);
789
790 dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
791 DMA_FROM_DEVICE);
792
793 dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
794 DMA_FROM_DEVICE);
795 memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
796
797 async_tx_ack(dma->desc_rx);
798 async_tx_ack(dma->desc_tx);
799 kfree(dma->sg_tx_p);
800 kfree(dma->sg_rx_p);
801
802 spin_lock_irqsave(&data->lock, flags);
803
804 /* clear fifo threshold, disable interrupts, disable SPI transfer */
805 pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
806 MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
807 SPCR_SPE_BIT);
808 /* clear all interrupts */
809 pch_spi_writereg(data->master, PCH_SPSR,
810 pch_spi_readreg(data->master, PCH_SPSR));
811 /* clear FIFO */
812 pch_spi_clear_fifo(data->master);
813
814 spin_unlock_irqrestore(&data->lock, flags);
815
816 return rtn;
817 }
818
pch_dma_rx_complete(void * arg)819 static void pch_dma_rx_complete(void *arg)
820 {
821 struct pch_spi_data *data = arg;
822
823 /* transfer is completed;inform pch_spi_process_messages_dma */
824 data->transfer_complete = true;
825 wake_up_interruptible(&data->wait);
826 }
827
pch_spi_filter(struct dma_chan * chan,void * slave)828 static bool pch_spi_filter(struct dma_chan *chan, void *slave)
829 {
830 struct pch_dma_slave *param = slave;
831
832 if ((chan->chan_id == param->chan_id) &&
833 (param->dma_dev == chan->device->dev)) {
834 chan->private = param;
835 return true;
836 } else {
837 return false;
838 }
839 }
840
pch_spi_request_dma(struct pch_spi_data * data,int bpw)841 static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
842 {
843 dma_cap_mask_t mask;
844 struct dma_chan *chan;
845 struct pci_dev *dma_dev;
846 struct pch_dma_slave *param;
847 struct pch_spi_dma_ctrl *dma;
848 unsigned int width;
849
850 if (bpw == 8)
851 width = PCH_DMA_WIDTH_1_BYTE;
852 else
853 width = PCH_DMA_WIDTH_2_BYTES;
854
855 dma = &data->dma;
856 dma_cap_zero(mask);
857 dma_cap_set(DMA_SLAVE, mask);
858
859 /* Get DMA's dev information */
860 dma_dev = pci_get_slot(data->board_dat->pdev->bus,
861 PCI_DEVFN(PCI_SLOT(data->board_dat->pdev->devfn), 0));
862
863 /* Set Tx DMA */
864 param = &dma->param_tx;
865 param->dma_dev = &dma_dev->dev;
866 param->chan_id = data->ch * 2; /* Tx = 0, 2 */;
867 param->tx_reg = data->io_base_addr + PCH_SPDWR;
868 param->width = width;
869 chan = dma_request_channel(mask, pch_spi_filter, param);
870 if (!chan) {
871 dev_err(&data->master->dev,
872 "ERROR: dma_request_channel FAILS(Tx)\n");
873 data->use_dma = 0;
874 return;
875 }
876 dma->chan_tx = chan;
877
878 /* Set Rx DMA */
879 param = &dma->param_rx;
880 param->dma_dev = &dma_dev->dev;
881 param->chan_id = data->ch * 2 + 1; /* Rx = Tx + 1 */;
882 param->rx_reg = data->io_base_addr + PCH_SPDRR;
883 param->width = width;
884 chan = dma_request_channel(mask, pch_spi_filter, param);
885 if (!chan) {
886 dev_err(&data->master->dev,
887 "ERROR: dma_request_channel FAILS(Rx)\n");
888 dma_release_channel(dma->chan_tx);
889 dma->chan_tx = NULL;
890 data->use_dma = 0;
891 return;
892 }
893 dma->chan_rx = chan;
894 }
895
pch_spi_release_dma(struct pch_spi_data * data)896 static void pch_spi_release_dma(struct pch_spi_data *data)
897 {
898 struct pch_spi_dma_ctrl *dma;
899
900 dma = &data->dma;
901 if (dma->chan_tx) {
902 dma_release_channel(dma->chan_tx);
903 dma->chan_tx = NULL;
904 }
905 if (dma->chan_rx) {
906 dma_release_channel(dma->chan_rx);
907 dma->chan_rx = NULL;
908 }
909 }
910
pch_spi_handle_dma(struct pch_spi_data * data,int * bpw)911 static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
912 {
913 const u8 *tx_buf;
914 const u16 *tx_sbuf;
915 u8 *tx_dma_buf;
916 u16 *tx_dma_sbuf;
917 struct scatterlist *sg;
918 struct dma_async_tx_descriptor *desc_tx;
919 struct dma_async_tx_descriptor *desc_rx;
920 int num;
921 int i;
922 int size;
923 int rem;
924 int head;
925 unsigned long flags;
926 struct pch_spi_dma_ctrl *dma;
927
928 dma = &data->dma;
929
930 /* set baud rate if needed */
931 if (data->cur_trans->speed_hz) {
932 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
933 spin_lock_irqsave(&data->lock, flags);
934 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
935 spin_unlock_irqrestore(&data->lock, flags);
936 }
937
938 /* set bits per word if needed */
939 if (data->cur_trans->bits_per_word &&
940 (data->current_msg->spi->bits_per_word !=
941 data->cur_trans->bits_per_word)) {
942 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
943 spin_lock_irqsave(&data->lock, flags);
944 pch_spi_set_bits_per_word(data->master,
945 data->cur_trans->bits_per_word);
946 spin_unlock_irqrestore(&data->lock, flags);
947 *bpw = data->cur_trans->bits_per_word;
948 } else {
949 *bpw = data->current_msg->spi->bits_per_word;
950 }
951 data->bpw_len = data->cur_trans->len / (*bpw / 8);
952
953 if (data->bpw_len > PCH_BUF_SIZE) {
954 data->bpw_len = PCH_BUF_SIZE;
955 data->cur_trans->len -= PCH_BUF_SIZE;
956 }
957
958 /* copy Tx Data */
959 if (data->cur_trans->tx_buf != NULL) {
960 if (*bpw == 8) {
961 tx_buf = data->cur_trans->tx_buf;
962 tx_dma_buf = dma->tx_buf_virt;
963 for (i = 0; i < data->bpw_len; i++)
964 *tx_dma_buf++ = *tx_buf++;
965 } else {
966 tx_sbuf = data->cur_trans->tx_buf;
967 tx_dma_sbuf = dma->tx_buf_virt;
968 for (i = 0; i < data->bpw_len; i++)
969 *tx_dma_sbuf++ = *tx_sbuf++;
970 }
971 }
972
973 /* Calculate Rx parameter for DMA transmitting */
974 if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
975 if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
976 num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
977 rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
978 } else {
979 num = data->bpw_len / PCH_DMA_TRANS_SIZE;
980 rem = PCH_DMA_TRANS_SIZE;
981 }
982 size = PCH_DMA_TRANS_SIZE;
983 } else {
984 num = 1;
985 size = data->bpw_len;
986 rem = data->bpw_len;
987 }
988 dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
989 __func__, num, size, rem);
990 spin_lock_irqsave(&data->lock, flags);
991
992 /* set receive fifo threshold and transmit fifo threshold */
993 pch_spi_setclr_reg(data->master, PCH_SPCR,
994 ((size - 1) << SPCR_RFIC_FIELD) |
995 (PCH_TX_THOLD << SPCR_TFIC_FIELD),
996 MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
997
998 spin_unlock_irqrestore(&data->lock, flags);
999
1000 /* RX */
1001 dma->sg_rx_p = kcalloc(num, sizeof(*dma->sg_rx_p), GFP_ATOMIC);
1002 if (!dma->sg_rx_p)
1003 return;
1004
1005 sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
1006 /* offset, length setting */
1007 sg = dma->sg_rx_p;
1008 for (i = 0; i < num; i++, sg++) {
1009 if (i == (num - 2)) {
1010 sg->offset = size * i;
1011 sg->offset = sg->offset * (*bpw / 8);
1012 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
1013 sg->offset);
1014 sg_dma_len(sg) = rem;
1015 } else if (i == (num - 1)) {
1016 sg->offset = size * (i - 1) + rem;
1017 sg->offset = sg->offset * (*bpw / 8);
1018 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1019 sg->offset);
1020 sg_dma_len(sg) = size;
1021 } else {
1022 sg->offset = size * i;
1023 sg->offset = sg->offset * (*bpw / 8);
1024 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1025 sg->offset);
1026 sg_dma_len(sg) = size;
1027 }
1028 sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1029 }
1030 sg = dma->sg_rx_p;
1031 desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
1032 num, DMA_DEV_TO_MEM,
1033 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1034 if (!desc_rx) {
1035 dev_err(&data->master->dev,
1036 "%s:dmaengine_prep_slave_sg Failed\n", __func__);
1037 return;
1038 }
1039 dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1040 desc_rx->callback = pch_dma_rx_complete;
1041 desc_rx->callback_param = data;
1042 dma->nent = num;
1043 dma->desc_rx = desc_rx;
1044
1045 /* Calculate Tx parameter for DMA transmitting */
1046 if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
1047 head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
1048 if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
1049 num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1050 rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
1051 } else {
1052 num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1053 rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
1054 PCH_DMA_TRANS_SIZE - head;
1055 }
1056 size = PCH_DMA_TRANS_SIZE;
1057 } else {
1058 num = 1;
1059 size = data->bpw_len;
1060 rem = data->bpw_len;
1061 head = 0;
1062 }
1063
1064 dma->sg_tx_p = kcalloc(num, sizeof(*dma->sg_tx_p), GFP_ATOMIC);
1065 if (!dma->sg_tx_p)
1066 return;
1067
1068 sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1069 /* offset, length setting */
1070 sg = dma->sg_tx_p;
1071 for (i = 0; i < num; i++, sg++) {
1072 if (i == 0) {
1073 sg->offset = 0;
1074 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
1075 sg->offset);
1076 sg_dma_len(sg) = size + head;
1077 } else if (i == (num - 1)) {
1078 sg->offset = head + size * i;
1079 sg->offset = sg->offset * (*bpw / 8);
1080 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1081 sg->offset);
1082 sg_dma_len(sg) = rem;
1083 } else {
1084 sg->offset = head + size * i;
1085 sg->offset = sg->offset * (*bpw / 8);
1086 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1087 sg->offset);
1088 sg_dma_len(sg) = size;
1089 }
1090 sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1091 }
1092 sg = dma->sg_tx_p;
1093 desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
1094 sg, num, DMA_MEM_TO_DEV,
1095 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1096 if (!desc_tx) {
1097 dev_err(&data->master->dev,
1098 "%s:dmaengine_prep_slave_sg Failed\n", __func__);
1099 return;
1100 }
1101 dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1102 desc_tx->callback = NULL;
1103 desc_tx->callback_param = data;
1104 dma->nent = num;
1105 dma->desc_tx = desc_tx;
1106
1107 dev_dbg(&data->master->dev, "%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", __func__);
1108
1109 spin_lock_irqsave(&data->lock, flags);
1110 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1111 desc_rx->tx_submit(desc_rx);
1112 desc_tx->tx_submit(desc_tx);
1113 spin_unlock_irqrestore(&data->lock, flags);
1114
1115 /* reset transfer complete flag */
1116 data->transfer_complete = false;
1117 }
1118
pch_spi_process_messages(struct work_struct * pwork)1119 static void pch_spi_process_messages(struct work_struct *pwork)
1120 {
1121 struct spi_message *pmsg, *tmp;
1122 struct pch_spi_data *data;
1123 int bpw;
1124
1125 data = container_of(pwork, struct pch_spi_data, work);
1126 dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1127
1128 spin_lock(&data->lock);
1129 /* check if suspend has been initiated;if yes flush queue */
1130 if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1131 dev_dbg(&data->master->dev,
1132 "%s suspend/remove initiated, flushing queue\n", __func__);
1133 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
1134 pmsg->status = -EIO;
1135
1136 if (pmsg->complete) {
1137 spin_unlock(&data->lock);
1138 pmsg->complete(pmsg->context);
1139 spin_lock(&data->lock);
1140 }
1141
1142 /* delete from queue */
1143 list_del_init(&pmsg->queue);
1144 }
1145
1146 spin_unlock(&data->lock);
1147 return;
1148 }
1149
1150 data->bcurrent_msg_processing = true;
1151 dev_dbg(&data->master->dev,
1152 "%s Set data->bcurrent_msg_processing= true\n", __func__);
1153
1154 /* Get the message from the queue and delete it from there. */
1155 data->current_msg = list_entry(data->queue.next, struct spi_message,
1156 queue);
1157
1158 list_del_init(&data->current_msg->queue);
1159
1160 data->current_msg->status = 0;
1161
1162 pch_spi_select_chip(data, data->current_msg->spi);
1163
1164 spin_unlock(&data->lock);
1165
1166 if (data->use_dma)
1167 pch_spi_request_dma(data,
1168 data->current_msg->spi->bits_per_word);
1169 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
1170 do {
1171 int cnt;
1172 /* If we are already processing a message get the next
1173 transfer structure from the message otherwise retrieve
1174 the 1st transfer request from the message. */
1175 spin_lock(&data->lock);
1176 if (data->cur_trans == NULL) {
1177 data->cur_trans =
1178 list_entry(data->current_msg->transfers.next,
1179 struct spi_transfer, transfer_list);
1180 dev_dbg(&data->master->dev,
1181 "%s :Getting 1st transfer message\n",
1182 __func__);
1183 } else {
1184 data->cur_trans =
1185 list_entry(data->cur_trans->transfer_list.next,
1186 struct spi_transfer, transfer_list);
1187 dev_dbg(&data->master->dev,
1188 "%s :Getting next transfer message\n",
1189 __func__);
1190 }
1191 spin_unlock(&data->lock);
1192
1193 if (!data->cur_trans->len)
1194 goto out;
1195 cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
1196 data->save_total_len = data->cur_trans->len;
1197 if (data->use_dma) {
1198 int i;
1199 char *save_rx_buf = data->cur_trans->rx_buf;
1200 for (i = 0; i < cnt; i ++) {
1201 pch_spi_handle_dma(data, &bpw);
1202 if (!pch_spi_start_transfer(data)) {
1203 data->transfer_complete = true;
1204 data->current_msg->status = -EIO;
1205 data->current_msg->complete
1206 (data->current_msg->context);
1207 data->bcurrent_msg_processing = false;
1208 data->current_msg = NULL;
1209 data->cur_trans = NULL;
1210 goto out;
1211 }
1212 pch_spi_copy_rx_data_for_dma(data, bpw);
1213 }
1214 data->cur_trans->rx_buf = save_rx_buf;
1215 } else {
1216 pch_spi_set_tx(data, &bpw);
1217 pch_spi_set_ir(data);
1218 pch_spi_copy_rx_data(data, bpw);
1219 kfree(data->pkt_rx_buff);
1220 data->pkt_rx_buff = NULL;
1221 kfree(data->pkt_tx_buff);
1222 data->pkt_tx_buff = NULL;
1223 }
1224 /* increment message count */
1225 data->cur_trans->len = data->save_total_len;
1226 data->current_msg->actual_length += data->cur_trans->len;
1227
1228 dev_dbg(&data->master->dev,
1229 "%s:data->current_msg->actual_length=%d\n",
1230 __func__, data->current_msg->actual_length);
1231
1232 /* check for delay */
1233 if (data->cur_trans->delay_usecs) {
1234 dev_dbg(&data->master->dev, "%s:delay in usec=%d\n",
1235 __func__, data->cur_trans->delay_usecs);
1236 udelay(data->cur_trans->delay_usecs);
1237 }
1238
1239 spin_lock(&data->lock);
1240
1241 /* No more transfer in this message. */
1242 if ((data->cur_trans->transfer_list.next) ==
1243 &(data->current_msg->transfers)) {
1244 pch_spi_nomore_transfer(data);
1245 }
1246
1247 spin_unlock(&data->lock);
1248
1249 } while (data->cur_trans != NULL);
1250
1251 out:
1252 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
1253 if (data->use_dma)
1254 pch_spi_release_dma(data);
1255 }
1256
pch_spi_free_resources(struct pch_spi_board_data * board_dat,struct pch_spi_data * data)1257 static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1258 struct pch_spi_data *data)
1259 {
1260 dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1261
1262 flush_work(&data->work);
1263 }
1264
pch_spi_get_resources(struct pch_spi_board_data * board_dat,struct pch_spi_data * data)1265 static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1266 struct pch_spi_data *data)
1267 {
1268 dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1269
1270 /* reset PCH SPI h/w */
1271 pch_spi_reset(data->master);
1272 dev_dbg(&board_dat->pdev->dev,
1273 "%s pch_spi_reset invoked successfully\n", __func__);
1274
1275 dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1276
1277 return 0;
1278 }
1279
pch_free_dma_buf(struct pch_spi_board_data * board_dat,struct pch_spi_data * data)1280 static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1281 struct pch_spi_data *data)
1282 {
1283 struct pch_spi_dma_ctrl *dma;
1284
1285 dma = &data->dma;
1286 if (dma->tx_buf_dma)
1287 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1288 dma->tx_buf_virt, dma->tx_buf_dma);
1289 if (dma->rx_buf_dma)
1290 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1291 dma->rx_buf_virt, dma->rx_buf_dma);
1292 }
1293
pch_alloc_dma_buf(struct pch_spi_board_data * board_dat,struct pch_spi_data * data)1294 static int pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1295 struct pch_spi_data *data)
1296 {
1297 struct pch_spi_dma_ctrl *dma;
1298 int ret;
1299
1300 dma = &data->dma;
1301 ret = 0;
1302 /* Get Consistent memory for Tx DMA */
1303 dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1304 PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1305 if (!dma->tx_buf_virt)
1306 ret = -ENOMEM;
1307
1308 /* Get Consistent memory for Rx DMA */
1309 dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1310 PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1311 if (!dma->rx_buf_virt)
1312 ret = -ENOMEM;
1313
1314 return ret;
1315 }
1316
pch_spi_pd_probe(struct platform_device * plat_dev)1317 static int pch_spi_pd_probe(struct platform_device *plat_dev)
1318 {
1319 int ret;
1320 struct spi_master *master;
1321 struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1322 struct pch_spi_data *data;
1323
1324 dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1325
1326 master = spi_alloc_master(&board_dat->pdev->dev,
1327 sizeof(struct pch_spi_data));
1328 if (!master) {
1329 dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1330 plat_dev->id);
1331 return -ENOMEM;
1332 }
1333
1334 data = spi_master_get_devdata(master);
1335 data->master = master;
1336
1337 platform_set_drvdata(plat_dev, data);
1338
1339 /* baseaddress + address offset) */
1340 data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1341 PCH_ADDRESS_SIZE * plat_dev->id;
1342 data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0);
1343 if (!data->io_remap_addr) {
1344 dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1345 ret = -ENOMEM;
1346 goto err_pci_iomap;
1347 }
1348 data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id;
1349
1350 dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1351 plat_dev->id, data->io_remap_addr);
1352
1353 /* initialize members of SPI master */
1354 master->num_chipselect = PCH_MAX_CS;
1355 master->transfer = pch_spi_transfer;
1356 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1357 master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
1358 master->max_speed_hz = PCH_MAX_BAUDRATE;
1359
1360 data->board_dat = board_dat;
1361 data->plat_dev = plat_dev;
1362 data->n_curnt_chip = 255;
1363 data->status = STATUS_RUNNING;
1364 data->ch = plat_dev->id;
1365 data->use_dma = use_dma;
1366
1367 INIT_LIST_HEAD(&data->queue);
1368 spin_lock_init(&data->lock);
1369 INIT_WORK(&data->work, pch_spi_process_messages);
1370 init_waitqueue_head(&data->wait);
1371
1372 ret = pch_spi_get_resources(board_dat, data);
1373 if (ret) {
1374 dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1375 goto err_spi_get_resources;
1376 }
1377
1378 ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1379 IRQF_SHARED, KBUILD_MODNAME, data);
1380 if (ret) {
1381 dev_err(&plat_dev->dev,
1382 "%s request_irq failed\n", __func__);
1383 goto err_request_irq;
1384 }
1385 data->irq_reg_sts = true;
1386
1387 pch_spi_set_master_mode(master);
1388
1389 if (use_dma) {
1390 dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1391 ret = pch_alloc_dma_buf(board_dat, data);
1392 if (ret)
1393 goto err_spi_register_master;
1394 }
1395
1396 ret = spi_register_master(master);
1397 if (ret != 0) {
1398 dev_err(&plat_dev->dev,
1399 "%s spi_register_master FAILED\n", __func__);
1400 goto err_spi_register_master;
1401 }
1402
1403 return 0;
1404
1405 err_spi_register_master:
1406 pch_free_dma_buf(board_dat, data);
1407 free_irq(board_dat->pdev->irq, data);
1408 err_request_irq:
1409 pch_spi_free_resources(board_dat, data);
1410 err_spi_get_resources:
1411 pci_iounmap(board_dat->pdev, data->io_remap_addr);
1412 err_pci_iomap:
1413 spi_master_put(master);
1414
1415 return ret;
1416 }
1417
pch_spi_pd_remove(struct platform_device * plat_dev)1418 static int pch_spi_pd_remove(struct platform_device *plat_dev)
1419 {
1420 struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1421 struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1422 int count;
1423 unsigned long flags;
1424
1425 dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1426 __func__, plat_dev->id, board_dat->pdev->irq);
1427
1428 if (use_dma)
1429 pch_free_dma_buf(board_dat, data);
1430
1431 /* check for any pending messages; no action is taken if the queue
1432 * is still full; but at least we tried. Unload anyway */
1433 count = 500;
1434 spin_lock_irqsave(&data->lock, flags);
1435 data->status = STATUS_EXITING;
1436 while ((list_empty(&data->queue) == 0) && --count) {
1437 dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1438 __func__);
1439 spin_unlock_irqrestore(&data->lock, flags);
1440 msleep(PCH_SLEEP_TIME);
1441 spin_lock_irqsave(&data->lock, flags);
1442 }
1443 spin_unlock_irqrestore(&data->lock, flags);
1444
1445 pch_spi_free_resources(board_dat, data);
1446 /* disable interrupts & free IRQ */
1447 if (data->irq_reg_sts) {
1448 /* disable interrupts */
1449 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1450 data->irq_reg_sts = false;
1451 free_irq(board_dat->pdev->irq, data);
1452 }
1453
1454 pci_iounmap(board_dat->pdev, data->io_remap_addr);
1455 spi_unregister_master(data->master);
1456
1457 return 0;
1458 }
1459 #ifdef CONFIG_PM
pch_spi_pd_suspend(struct platform_device * pd_dev,pm_message_t state)1460 static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1461 pm_message_t state)
1462 {
1463 u8 count;
1464 struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1465 struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1466
1467 dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1468
1469 if (!board_dat) {
1470 dev_err(&pd_dev->dev,
1471 "%s pci_get_drvdata returned NULL\n", __func__);
1472 return -EFAULT;
1473 }
1474
1475 /* check if the current message is processed:
1476 Only after thats done the transfer will be suspended */
1477 count = 255;
1478 while ((--count) > 0) {
1479 if (!(data->bcurrent_msg_processing))
1480 break;
1481 msleep(PCH_SLEEP_TIME);
1482 }
1483
1484 /* Free IRQ */
1485 if (data->irq_reg_sts) {
1486 /* disable all interrupts */
1487 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1488 pch_spi_reset(data->master);
1489 free_irq(board_dat->pdev->irq, data);
1490
1491 data->irq_reg_sts = false;
1492 dev_dbg(&pd_dev->dev,
1493 "%s free_irq invoked successfully.\n", __func__);
1494 }
1495
1496 return 0;
1497 }
1498
pch_spi_pd_resume(struct platform_device * pd_dev)1499 static int pch_spi_pd_resume(struct platform_device *pd_dev)
1500 {
1501 struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1502 struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1503 int retval;
1504
1505 if (!board_dat) {
1506 dev_err(&pd_dev->dev,
1507 "%s pci_get_drvdata returned NULL\n", __func__);
1508 return -EFAULT;
1509 }
1510
1511 if (!data->irq_reg_sts) {
1512 /* register IRQ */
1513 retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1514 IRQF_SHARED, KBUILD_MODNAME, data);
1515 if (retval < 0) {
1516 dev_err(&pd_dev->dev,
1517 "%s request_irq failed\n", __func__);
1518 return retval;
1519 }
1520
1521 /* reset PCH SPI h/w */
1522 pch_spi_reset(data->master);
1523 pch_spi_set_master_mode(data->master);
1524 data->irq_reg_sts = true;
1525 }
1526 return 0;
1527 }
1528 #else
1529 #define pch_spi_pd_suspend NULL
1530 #define pch_spi_pd_resume NULL
1531 #endif
1532
1533 static struct platform_driver pch_spi_pd_driver = {
1534 .driver = {
1535 .name = "pch-spi",
1536 },
1537 .probe = pch_spi_pd_probe,
1538 .remove = pch_spi_pd_remove,
1539 .suspend = pch_spi_pd_suspend,
1540 .resume = pch_spi_pd_resume
1541 };
1542
pch_spi_probe(struct pci_dev * pdev,const struct pci_device_id * id)1543 static int pch_spi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1544 {
1545 struct pch_spi_board_data *board_dat;
1546 struct platform_device *pd_dev = NULL;
1547 int retval;
1548 int i;
1549 struct pch_pd_dev_save *pd_dev_save;
1550
1551 pd_dev_save = kzalloc(sizeof(*pd_dev_save), GFP_KERNEL);
1552 if (!pd_dev_save)
1553 return -ENOMEM;
1554
1555 board_dat = kzalloc(sizeof(*board_dat), GFP_KERNEL);
1556 if (!board_dat) {
1557 retval = -ENOMEM;
1558 goto err_no_mem;
1559 }
1560
1561 retval = pci_request_regions(pdev, KBUILD_MODNAME);
1562 if (retval) {
1563 dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1564 goto pci_request_regions;
1565 }
1566
1567 board_dat->pdev = pdev;
1568 board_dat->num = id->driver_data;
1569 pd_dev_save->num = id->driver_data;
1570 pd_dev_save->board_dat = board_dat;
1571
1572 retval = pci_enable_device(pdev);
1573 if (retval) {
1574 dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1575 goto pci_enable_device;
1576 }
1577
1578 for (i = 0; i < board_dat->num; i++) {
1579 pd_dev = platform_device_alloc("pch-spi", i);
1580 if (!pd_dev) {
1581 dev_err(&pdev->dev, "platform_device_alloc failed\n");
1582 retval = -ENOMEM;
1583 goto err_platform_device;
1584 }
1585 pd_dev_save->pd_save[i] = pd_dev;
1586 pd_dev->dev.parent = &pdev->dev;
1587
1588 retval = platform_device_add_data(pd_dev, board_dat,
1589 sizeof(*board_dat));
1590 if (retval) {
1591 dev_err(&pdev->dev,
1592 "platform_device_add_data failed\n");
1593 platform_device_put(pd_dev);
1594 goto err_platform_device;
1595 }
1596
1597 retval = platform_device_add(pd_dev);
1598 if (retval) {
1599 dev_err(&pdev->dev, "platform_device_add failed\n");
1600 platform_device_put(pd_dev);
1601 goto err_platform_device;
1602 }
1603 }
1604
1605 pci_set_drvdata(pdev, pd_dev_save);
1606
1607 return 0;
1608
1609 err_platform_device:
1610 while (--i >= 0)
1611 platform_device_unregister(pd_dev_save->pd_save[i]);
1612 pci_disable_device(pdev);
1613 pci_enable_device:
1614 pci_release_regions(pdev);
1615 pci_request_regions:
1616 kfree(board_dat);
1617 err_no_mem:
1618 kfree(pd_dev_save);
1619
1620 return retval;
1621 }
1622
pch_spi_remove(struct pci_dev * pdev)1623 static void pch_spi_remove(struct pci_dev *pdev)
1624 {
1625 int i;
1626 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1627
1628 dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1629
1630 for (i = 0; i < pd_dev_save->num; i++)
1631 platform_device_unregister(pd_dev_save->pd_save[i]);
1632
1633 pci_disable_device(pdev);
1634 pci_release_regions(pdev);
1635 kfree(pd_dev_save->board_dat);
1636 kfree(pd_dev_save);
1637 }
1638
1639 #ifdef CONFIG_PM
pch_spi_suspend(struct pci_dev * pdev,pm_message_t state)1640 static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
1641 {
1642 int retval;
1643 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1644
1645 dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1646
1647 pd_dev_save->board_dat->suspend_sts = true;
1648
1649 /* save config space */
1650 retval = pci_save_state(pdev);
1651 if (retval == 0) {
1652 pci_enable_wake(pdev, PCI_D3hot, 0);
1653 pci_disable_device(pdev);
1654 pci_set_power_state(pdev, PCI_D3hot);
1655 } else {
1656 dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
1657 }
1658
1659 return retval;
1660 }
1661
pch_spi_resume(struct pci_dev * pdev)1662 static int pch_spi_resume(struct pci_dev *pdev)
1663 {
1664 int retval;
1665 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1666 dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1667
1668 pci_set_power_state(pdev, PCI_D0);
1669 pci_restore_state(pdev);
1670
1671 retval = pci_enable_device(pdev);
1672 if (retval < 0) {
1673 dev_err(&pdev->dev,
1674 "%s pci_enable_device failed\n", __func__);
1675 } else {
1676 pci_enable_wake(pdev, PCI_D3hot, 0);
1677
1678 /* set suspend status to false */
1679 pd_dev_save->board_dat->suspend_sts = false;
1680 }
1681
1682 return retval;
1683 }
1684 #else
1685 #define pch_spi_suspend NULL
1686 #define pch_spi_resume NULL
1687
1688 #endif
1689
1690 static struct pci_driver pch_spi_pcidev_driver = {
1691 .name = "pch_spi",
1692 .id_table = pch_spi_pcidev_id,
1693 .probe = pch_spi_probe,
1694 .remove = pch_spi_remove,
1695 .suspend = pch_spi_suspend,
1696 .resume = pch_spi_resume,
1697 };
1698
pch_spi_init(void)1699 static int __init pch_spi_init(void)
1700 {
1701 int ret;
1702 ret = platform_driver_register(&pch_spi_pd_driver);
1703 if (ret)
1704 return ret;
1705
1706 ret = pci_register_driver(&pch_spi_pcidev_driver);
1707 if (ret) {
1708 platform_driver_unregister(&pch_spi_pd_driver);
1709 return ret;
1710 }
1711
1712 return 0;
1713 }
1714 module_init(pch_spi_init);
1715
pch_spi_exit(void)1716 static void __exit pch_spi_exit(void)
1717 {
1718 pci_unregister_driver(&pch_spi_pcidev_driver);
1719 platform_driver_unregister(&pch_spi_pd_driver);
1720 }
1721 module_exit(pch_spi_exit);
1722
1723 module_param(use_dma, int, 0644);
1724 MODULE_PARM_DESC(use_dma,
1725 "to use DMA for data transfers pass 1 else 0; default 1");
1726
1727 MODULE_LICENSE("GPL");
1728 MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
1729 MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id);
1730
1731