1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Cryptographic API.
4 *
5 * Driver for EIP97 SHA1/SHA2(HMAC) acceleration.
6 *
7 * Copyright (c) 2016 Ryder Lee <ryder.lee@mediatek.com>
8 *
9 * Some ideas are from atmel-sha.c and omap-sham.c drivers.
10 */
11
12 #include <crypto/hmac.h>
13 #include <crypto/sha.h>
14 #include "mtk-platform.h"
15
16 #define SHA_ALIGN_MSK (sizeof(u32) - 1)
17 #define SHA_QUEUE_SIZE 512
18 #define SHA_BUF_SIZE ((u32)PAGE_SIZE)
19
20 #define SHA_OP_UPDATE 1
21 #define SHA_OP_FINAL 2
22
23 #define SHA_DATA_LEN_MSK cpu_to_le32(GENMASK(16, 0))
24 #define SHA_MAX_DIGEST_BUF_SIZE 32
25
26 /* SHA command token */
27 #define SHA_CT_SIZE 5
28 #define SHA_CT_CTRL_HDR cpu_to_le32(0x02220000)
29 #define SHA_CMD0 cpu_to_le32(0x03020000)
30 #define SHA_CMD1 cpu_to_le32(0x21060000)
31 #define SHA_CMD2 cpu_to_le32(0xe0e63802)
32
33 /* SHA transform information */
34 #define SHA_TFM_HASH cpu_to_le32(0x2 << 0)
35 #define SHA_TFM_SIZE(x) cpu_to_le32((x) << 8)
36 #define SHA_TFM_START cpu_to_le32(0x1 << 4)
37 #define SHA_TFM_CONTINUE cpu_to_le32(0x1 << 5)
38 #define SHA_TFM_HASH_STORE cpu_to_le32(0x1 << 19)
39 #define SHA_TFM_SHA1 cpu_to_le32(0x2 << 23)
40 #define SHA_TFM_SHA256 cpu_to_le32(0x3 << 23)
41 #define SHA_TFM_SHA224 cpu_to_le32(0x4 << 23)
42 #define SHA_TFM_SHA512 cpu_to_le32(0x5 << 23)
43 #define SHA_TFM_SHA384 cpu_to_le32(0x6 << 23)
44 #define SHA_TFM_DIGEST(x) cpu_to_le32(((x) & GENMASK(3, 0)) << 24)
45
46 /* SHA flags */
47 #define SHA_FLAGS_BUSY BIT(0)
48 #define SHA_FLAGS_FINAL BIT(1)
49 #define SHA_FLAGS_FINUP BIT(2)
50 #define SHA_FLAGS_SG BIT(3)
51 #define SHA_FLAGS_ALGO_MSK GENMASK(8, 4)
52 #define SHA_FLAGS_SHA1 BIT(4)
53 #define SHA_FLAGS_SHA224 BIT(5)
54 #define SHA_FLAGS_SHA256 BIT(6)
55 #define SHA_FLAGS_SHA384 BIT(7)
56 #define SHA_FLAGS_SHA512 BIT(8)
57 #define SHA_FLAGS_HMAC BIT(9)
58 #define SHA_FLAGS_PAD BIT(10)
59
60 /**
61 * mtk_sha_info - hardware information of AES
62 * @cmd: command token, hardware instruction
63 * @tfm: transform state of cipher algorithm.
64 * @state: contains keys and initial vectors.
65 *
66 */
67 struct mtk_sha_info {
68 __le32 ctrl[2];
69 __le32 cmd[3];
70 __le32 tfm[2];
71 __le32 digest[SHA_MAX_DIGEST_BUF_SIZE];
72 };
73
74 struct mtk_sha_reqctx {
75 struct mtk_sha_info info;
76 unsigned long flags;
77 unsigned long op;
78
79 u64 digcnt;
80 size_t bufcnt;
81 dma_addr_t dma_addr;
82
83 __le32 ct_hdr;
84 u32 ct_size;
85 dma_addr_t ct_dma;
86 dma_addr_t tfm_dma;
87
88 /* Walk state */
89 struct scatterlist *sg;
90 u32 offset; /* Offset in current sg */
91 u32 total; /* Total request */
92 size_t ds;
93 size_t bs;
94
95 u8 *buffer;
96 };
97
98 struct mtk_sha_hmac_ctx {
99 struct crypto_shash *shash;
100 u8 ipad[SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
101 u8 opad[SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
102 };
103
104 struct mtk_sha_ctx {
105 struct mtk_cryp *cryp;
106 unsigned long flags;
107 u8 id;
108 u8 buf[SHA_BUF_SIZE] __aligned(sizeof(u32));
109
110 struct mtk_sha_hmac_ctx base[0];
111 };
112
113 struct mtk_sha_drv {
114 struct list_head dev_list;
115 /* Device list lock */
116 spinlock_t lock;
117 };
118
119 static struct mtk_sha_drv mtk_sha = {
120 .dev_list = LIST_HEAD_INIT(mtk_sha.dev_list),
121 .lock = __SPIN_LOCK_UNLOCKED(mtk_sha.lock),
122 };
123
124 static int mtk_sha_handle_queue(struct mtk_cryp *cryp, u8 id,
125 struct ahash_request *req);
126
mtk_sha_read(struct mtk_cryp * cryp,u32 offset)127 static inline u32 mtk_sha_read(struct mtk_cryp *cryp, u32 offset)
128 {
129 return readl_relaxed(cryp->base + offset);
130 }
131
mtk_sha_write(struct mtk_cryp * cryp,u32 offset,u32 value)132 static inline void mtk_sha_write(struct mtk_cryp *cryp,
133 u32 offset, u32 value)
134 {
135 writel_relaxed(value, cryp->base + offset);
136 }
137
mtk_sha_ring_shift(struct mtk_ring * ring,struct mtk_desc ** cmd_curr,struct mtk_desc ** res_curr,int * count)138 static inline void mtk_sha_ring_shift(struct mtk_ring *ring,
139 struct mtk_desc **cmd_curr,
140 struct mtk_desc **res_curr,
141 int *count)
142 {
143 *cmd_curr = ring->cmd_next++;
144 *res_curr = ring->res_next++;
145 (*count)++;
146
147 if (ring->cmd_next == ring->cmd_base + MTK_DESC_NUM) {
148 ring->cmd_next = ring->cmd_base;
149 ring->res_next = ring->res_base;
150 }
151 }
152
mtk_sha_find_dev(struct mtk_sha_ctx * tctx)153 static struct mtk_cryp *mtk_sha_find_dev(struct mtk_sha_ctx *tctx)
154 {
155 struct mtk_cryp *cryp = NULL;
156 struct mtk_cryp *tmp;
157
158 spin_lock_bh(&mtk_sha.lock);
159 if (!tctx->cryp) {
160 list_for_each_entry(tmp, &mtk_sha.dev_list, sha_list) {
161 cryp = tmp;
162 break;
163 }
164 tctx->cryp = cryp;
165 } else {
166 cryp = tctx->cryp;
167 }
168
169 /*
170 * Assign record id to tfm in round-robin fashion, and this
171 * will help tfm to bind to corresponding descriptor rings.
172 */
173 tctx->id = cryp->rec;
174 cryp->rec = !cryp->rec;
175
176 spin_unlock_bh(&mtk_sha.lock);
177
178 return cryp;
179 }
180
mtk_sha_append_sg(struct mtk_sha_reqctx * ctx)181 static int mtk_sha_append_sg(struct mtk_sha_reqctx *ctx)
182 {
183 size_t count;
184
185 while ((ctx->bufcnt < SHA_BUF_SIZE) && ctx->total) {
186 count = min(ctx->sg->length - ctx->offset, ctx->total);
187 count = min(count, SHA_BUF_SIZE - ctx->bufcnt);
188
189 if (count <= 0) {
190 /*
191 * Check if count <= 0 because the buffer is full or
192 * because the sg length is 0. In the latest case,
193 * check if there is another sg in the list, a 0 length
194 * sg doesn't necessarily mean the end of the sg list.
195 */
196 if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
197 ctx->sg = sg_next(ctx->sg);
198 continue;
199 } else {
200 break;
201 }
202 }
203
204 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
205 ctx->offset, count, 0);
206
207 ctx->bufcnt += count;
208 ctx->offset += count;
209 ctx->total -= count;
210
211 if (ctx->offset == ctx->sg->length) {
212 ctx->sg = sg_next(ctx->sg);
213 if (ctx->sg)
214 ctx->offset = 0;
215 else
216 ctx->total = 0;
217 }
218 }
219
220 return 0;
221 }
222
223 /*
224 * The purpose of this padding is to ensure that the padded message is a
225 * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
226 * The bit "1" is appended at the end of the message followed by
227 * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
228 * 128 bits block (SHA384/SHA512) equals to the message length in bits
229 * is appended.
230 *
231 * For SHA1/SHA224/SHA256, padlen is calculated as followed:
232 * - if message length < 56 bytes then padlen = 56 - message length
233 * - else padlen = 64 + 56 - message length
234 *
235 * For SHA384/SHA512, padlen is calculated as followed:
236 * - if message length < 112 bytes then padlen = 112 - message length
237 * - else padlen = 128 + 112 - message length
238 */
mtk_sha_fill_padding(struct mtk_sha_reqctx * ctx,u32 len)239 static void mtk_sha_fill_padding(struct mtk_sha_reqctx *ctx, u32 len)
240 {
241 u32 index, padlen;
242 u64 bits[2];
243 u64 size = ctx->digcnt;
244
245 size += ctx->bufcnt;
246 size += len;
247
248 bits[1] = cpu_to_be64(size << 3);
249 bits[0] = cpu_to_be64(size >> 61);
250
251 switch (ctx->flags & SHA_FLAGS_ALGO_MSK) {
252 case SHA_FLAGS_SHA384:
253 case SHA_FLAGS_SHA512:
254 index = ctx->bufcnt & 0x7f;
255 padlen = (index < 112) ? (112 - index) : ((128 + 112) - index);
256 *(ctx->buffer + ctx->bufcnt) = 0x80;
257 memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen - 1);
258 memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
259 ctx->bufcnt += padlen + 16;
260 ctx->flags |= SHA_FLAGS_PAD;
261 break;
262
263 default:
264 index = ctx->bufcnt & 0x3f;
265 padlen = (index < 56) ? (56 - index) : ((64 + 56) - index);
266 *(ctx->buffer + ctx->bufcnt) = 0x80;
267 memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen - 1);
268 memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
269 ctx->bufcnt += padlen + 8;
270 ctx->flags |= SHA_FLAGS_PAD;
271 break;
272 }
273 }
274
275 /* Initialize basic transform information of SHA */
mtk_sha_info_init(struct mtk_sha_reqctx * ctx)276 static void mtk_sha_info_init(struct mtk_sha_reqctx *ctx)
277 {
278 struct mtk_sha_info *info = &ctx->info;
279
280 ctx->ct_hdr = SHA_CT_CTRL_HDR;
281 ctx->ct_size = SHA_CT_SIZE;
282
283 info->tfm[0] = SHA_TFM_HASH | SHA_TFM_SIZE(SIZE_IN_WORDS(ctx->ds));
284
285 switch (ctx->flags & SHA_FLAGS_ALGO_MSK) {
286 case SHA_FLAGS_SHA1:
287 info->tfm[0] |= SHA_TFM_SHA1;
288 break;
289 case SHA_FLAGS_SHA224:
290 info->tfm[0] |= SHA_TFM_SHA224;
291 break;
292 case SHA_FLAGS_SHA256:
293 info->tfm[0] |= SHA_TFM_SHA256;
294 break;
295 case SHA_FLAGS_SHA384:
296 info->tfm[0] |= SHA_TFM_SHA384;
297 break;
298 case SHA_FLAGS_SHA512:
299 info->tfm[0] |= SHA_TFM_SHA512;
300 break;
301
302 default:
303 /* Should not happen... */
304 return;
305 }
306
307 info->tfm[1] = SHA_TFM_HASH_STORE;
308 info->ctrl[0] = info->tfm[0] | SHA_TFM_CONTINUE | SHA_TFM_START;
309 info->ctrl[1] = info->tfm[1];
310
311 info->cmd[0] = SHA_CMD0;
312 info->cmd[1] = SHA_CMD1;
313 info->cmd[2] = SHA_CMD2 | SHA_TFM_DIGEST(SIZE_IN_WORDS(ctx->ds));
314 }
315
316 /*
317 * Update input data length field of transform information and
318 * map it to DMA region.
319 */
mtk_sha_info_update(struct mtk_cryp * cryp,struct mtk_sha_rec * sha,size_t len1,size_t len2)320 static int mtk_sha_info_update(struct mtk_cryp *cryp,
321 struct mtk_sha_rec *sha,
322 size_t len1, size_t len2)
323 {
324 struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
325 struct mtk_sha_info *info = &ctx->info;
326
327 ctx->ct_hdr &= ~SHA_DATA_LEN_MSK;
328 ctx->ct_hdr |= cpu_to_le32(len1 + len2);
329 info->cmd[0] &= ~SHA_DATA_LEN_MSK;
330 info->cmd[0] |= cpu_to_le32(len1 + len2);
331
332 /* Setting SHA_TFM_START only for the first iteration */
333 if (ctx->digcnt)
334 info->ctrl[0] &= ~SHA_TFM_START;
335
336 ctx->digcnt += len1;
337
338 ctx->ct_dma = dma_map_single(cryp->dev, info, sizeof(*info),
339 DMA_BIDIRECTIONAL);
340 if (unlikely(dma_mapping_error(cryp->dev, ctx->ct_dma))) {
341 dev_err(cryp->dev, "dma %zu bytes error\n", sizeof(*info));
342 return -EINVAL;
343 }
344
345 ctx->tfm_dma = ctx->ct_dma + sizeof(info->ctrl) + sizeof(info->cmd);
346
347 return 0;
348 }
349
350 /*
351 * Because of hardware limitation, we must pre-calculate the inner
352 * and outer digest that need to be processed firstly by engine, then
353 * apply the result digest to the input message. These complex hashing
354 * procedures limits HMAC performance, so we use fallback SW encoding.
355 */
mtk_sha_finish_hmac(struct ahash_request * req)356 static int mtk_sha_finish_hmac(struct ahash_request *req)
357 {
358 struct mtk_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
359 struct mtk_sha_hmac_ctx *bctx = tctx->base;
360 struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
361
362 SHASH_DESC_ON_STACK(shash, bctx->shash);
363
364 shash->tfm = bctx->shash;
365
366 return crypto_shash_init(shash) ?:
367 crypto_shash_update(shash, bctx->opad, ctx->bs) ?:
368 crypto_shash_finup(shash, req->result, ctx->ds, req->result);
369 }
370
371 /* Initialize request context */
mtk_sha_init(struct ahash_request * req)372 static int mtk_sha_init(struct ahash_request *req)
373 {
374 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
375 struct mtk_sha_ctx *tctx = crypto_ahash_ctx(tfm);
376 struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
377
378 ctx->flags = 0;
379 ctx->ds = crypto_ahash_digestsize(tfm);
380
381 switch (ctx->ds) {
382 case SHA1_DIGEST_SIZE:
383 ctx->flags |= SHA_FLAGS_SHA1;
384 ctx->bs = SHA1_BLOCK_SIZE;
385 break;
386 case SHA224_DIGEST_SIZE:
387 ctx->flags |= SHA_FLAGS_SHA224;
388 ctx->bs = SHA224_BLOCK_SIZE;
389 break;
390 case SHA256_DIGEST_SIZE:
391 ctx->flags |= SHA_FLAGS_SHA256;
392 ctx->bs = SHA256_BLOCK_SIZE;
393 break;
394 case SHA384_DIGEST_SIZE:
395 ctx->flags |= SHA_FLAGS_SHA384;
396 ctx->bs = SHA384_BLOCK_SIZE;
397 break;
398 case SHA512_DIGEST_SIZE:
399 ctx->flags |= SHA_FLAGS_SHA512;
400 ctx->bs = SHA512_BLOCK_SIZE;
401 break;
402 default:
403 return -EINVAL;
404 }
405
406 ctx->bufcnt = 0;
407 ctx->digcnt = 0;
408 ctx->buffer = tctx->buf;
409
410 if (tctx->flags & SHA_FLAGS_HMAC) {
411 struct mtk_sha_hmac_ctx *bctx = tctx->base;
412
413 memcpy(ctx->buffer, bctx->ipad, ctx->bs);
414 ctx->bufcnt = ctx->bs;
415 ctx->flags |= SHA_FLAGS_HMAC;
416 }
417
418 return 0;
419 }
420
mtk_sha_xmit(struct mtk_cryp * cryp,struct mtk_sha_rec * sha,dma_addr_t addr1,size_t len1,dma_addr_t addr2,size_t len2)421 static int mtk_sha_xmit(struct mtk_cryp *cryp, struct mtk_sha_rec *sha,
422 dma_addr_t addr1, size_t len1,
423 dma_addr_t addr2, size_t len2)
424 {
425 struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
426 struct mtk_ring *ring = cryp->ring[sha->id];
427 struct mtk_desc *cmd, *res;
428 int err, count = 0;
429
430 err = mtk_sha_info_update(cryp, sha, len1, len2);
431 if (err)
432 return err;
433
434 /* Fill in the command/result descriptors */
435 mtk_sha_ring_shift(ring, &cmd, &res, &count);
436
437 res->hdr = MTK_DESC_FIRST | MTK_DESC_BUF_LEN(len1);
438 cmd->hdr = MTK_DESC_FIRST | MTK_DESC_BUF_LEN(len1) |
439 MTK_DESC_CT_LEN(ctx->ct_size);
440 cmd->buf = cpu_to_le32(addr1);
441 cmd->ct = cpu_to_le32(ctx->ct_dma);
442 cmd->ct_hdr = ctx->ct_hdr;
443 cmd->tfm = cpu_to_le32(ctx->tfm_dma);
444
445 if (len2) {
446 mtk_sha_ring_shift(ring, &cmd, &res, &count);
447
448 res->hdr = MTK_DESC_BUF_LEN(len2);
449 cmd->hdr = MTK_DESC_BUF_LEN(len2);
450 cmd->buf = cpu_to_le32(addr2);
451 }
452
453 cmd->hdr |= MTK_DESC_LAST;
454 res->hdr |= MTK_DESC_LAST;
455
456 /*
457 * Make sure that all changes to the DMA ring are done before we
458 * start engine.
459 */
460 wmb();
461 /* Start DMA transfer */
462 mtk_sha_write(cryp, RDR_PREP_COUNT(sha->id), MTK_DESC_CNT(count));
463 mtk_sha_write(cryp, CDR_PREP_COUNT(sha->id), MTK_DESC_CNT(count));
464
465 return -EINPROGRESS;
466 }
467
mtk_sha_dma_map(struct mtk_cryp * cryp,struct mtk_sha_rec * sha,struct mtk_sha_reqctx * ctx,size_t count)468 static int mtk_sha_dma_map(struct mtk_cryp *cryp,
469 struct mtk_sha_rec *sha,
470 struct mtk_sha_reqctx *ctx,
471 size_t count)
472 {
473 ctx->dma_addr = dma_map_single(cryp->dev, ctx->buffer,
474 SHA_BUF_SIZE, DMA_TO_DEVICE);
475 if (unlikely(dma_mapping_error(cryp->dev, ctx->dma_addr))) {
476 dev_err(cryp->dev, "dma map error\n");
477 return -EINVAL;
478 }
479
480 ctx->flags &= ~SHA_FLAGS_SG;
481
482 return mtk_sha_xmit(cryp, sha, ctx->dma_addr, count, 0, 0);
483 }
484
mtk_sha_update_slow(struct mtk_cryp * cryp,struct mtk_sha_rec * sha)485 static int mtk_sha_update_slow(struct mtk_cryp *cryp,
486 struct mtk_sha_rec *sha)
487 {
488 struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
489 size_t count;
490 u32 final;
491
492 mtk_sha_append_sg(ctx);
493
494 final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
495
496 dev_dbg(cryp->dev, "slow: bufcnt: %zu\n", ctx->bufcnt);
497
498 if (final) {
499 sha->flags |= SHA_FLAGS_FINAL;
500 mtk_sha_fill_padding(ctx, 0);
501 }
502
503 if (final || (ctx->bufcnt == SHA_BUF_SIZE && ctx->total)) {
504 count = ctx->bufcnt;
505 ctx->bufcnt = 0;
506
507 return mtk_sha_dma_map(cryp, sha, ctx, count);
508 }
509 return 0;
510 }
511
mtk_sha_update_start(struct mtk_cryp * cryp,struct mtk_sha_rec * sha)512 static int mtk_sha_update_start(struct mtk_cryp *cryp,
513 struct mtk_sha_rec *sha)
514 {
515 struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
516 u32 len, final, tail;
517 struct scatterlist *sg;
518
519 if (!ctx->total)
520 return 0;
521
522 if (ctx->bufcnt || ctx->offset)
523 return mtk_sha_update_slow(cryp, sha);
524
525 sg = ctx->sg;
526
527 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
528 return mtk_sha_update_slow(cryp, sha);
529
530 if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->bs))
531 /* size is not ctx->bs aligned */
532 return mtk_sha_update_slow(cryp, sha);
533
534 len = min(ctx->total, sg->length);
535
536 if (sg_is_last(sg)) {
537 if (!(ctx->flags & SHA_FLAGS_FINUP)) {
538 /* not last sg must be ctx->bs aligned */
539 tail = len & (ctx->bs - 1);
540 len -= tail;
541 }
542 }
543
544 ctx->total -= len;
545 ctx->offset = len; /* offset where to start slow */
546
547 final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
548
549 /* Add padding */
550 if (final) {
551 size_t count;
552
553 tail = len & (ctx->bs - 1);
554 len -= tail;
555 ctx->total += tail;
556 ctx->offset = len; /* offset where to start slow */
557
558 sg = ctx->sg;
559 mtk_sha_append_sg(ctx);
560 mtk_sha_fill_padding(ctx, len);
561
562 ctx->dma_addr = dma_map_single(cryp->dev, ctx->buffer,
563 SHA_BUF_SIZE, DMA_TO_DEVICE);
564 if (unlikely(dma_mapping_error(cryp->dev, ctx->dma_addr))) {
565 dev_err(cryp->dev, "dma map bytes error\n");
566 return -EINVAL;
567 }
568
569 sha->flags |= SHA_FLAGS_FINAL;
570 count = ctx->bufcnt;
571 ctx->bufcnt = 0;
572
573 if (len == 0) {
574 ctx->flags &= ~SHA_FLAGS_SG;
575 return mtk_sha_xmit(cryp, sha, ctx->dma_addr,
576 count, 0, 0);
577
578 } else {
579 ctx->sg = sg;
580 if (!dma_map_sg(cryp->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
581 dev_err(cryp->dev, "dma_map_sg error\n");
582 return -EINVAL;
583 }
584
585 ctx->flags |= SHA_FLAGS_SG;
586 return mtk_sha_xmit(cryp, sha, sg_dma_address(ctx->sg),
587 len, ctx->dma_addr, count);
588 }
589 }
590
591 if (!dma_map_sg(cryp->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
592 dev_err(cryp->dev, "dma_map_sg error\n");
593 return -EINVAL;
594 }
595
596 ctx->flags |= SHA_FLAGS_SG;
597
598 return mtk_sha_xmit(cryp, sha, sg_dma_address(ctx->sg),
599 len, 0, 0);
600 }
601
mtk_sha_final_req(struct mtk_cryp * cryp,struct mtk_sha_rec * sha)602 static int mtk_sha_final_req(struct mtk_cryp *cryp,
603 struct mtk_sha_rec *sha)
604 {
605 struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
606 size_t count;
607
608 mtk_sha_fill_padding(ctx, 0);
609
610 sha->flags |= SHA_FLAGS_FINAL;
611 count = ctx->bufcnt;
612 ctx->bufcnt = 0;
613
614 return mtk_sha_dma_map(cryp, sha, ctx, count);
615 }
616
617 /* Copy ready hash (+ finalize hmac) */
mtk_sha_finish(struct ahash_request * req)618 static int mtk_sha_finish(struct ahash_request *req)
619 {
620 struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
621 __le32 *digest = ctx->info.digest;
622 u32 *result = (u32 *)req->result;
623 int i;
624
625 /* Get the hash from the digest buffer */
626 for (i = 0; i < SIZE_IN_WORDS(ctx->ds); i++)
627 result[i] = le32_to_cpu(digest[i]);
628
629 if (ctx->flags & SHA_FLAGS_HMAC)
630 return mtk_sha_finish_hmac(req);
631
632 return 0;
633 }
634
mtk_sha_finish_req(struct mtk_cryp * cryp,struct mtk_sha_rec * sha,int err)635 static void mtk_sha_finish_req(struct mtk_cryp *cryp,
636 struct mtk_sha_rec *sha,
637 int err)
638 {
639 if (likely(!err && (SHA_FLAGS_FINAL & sha->flags)))
640 err = mtk_sha_finish(sha->req);
641
642 sha->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL);
643
644 sha->req->base.complete(&sha->req->base, err);
645
646 /* Handle new request */
647 tasklet_schedule(&sha->queue_task);
648 }
649
mtk_sha_handle_queue(struct mtk_cryp * cryp,u8 id,struct ahash_request * req)650 static int mtk_sha_handle_queue(struct mtk_cryp *cryp, u8 id,
651 struct ahash_request *req)
652 {
653 struct mtk_sha_rec *sha = cryp->sha[id];
654 struct crypto_async_request *async_req, *backlog;
655 struct mtk_sha_reqctx *ctx;
656 unsigned long flags;
657 int err = 0, ret = 0;
658
659 spin_lock_irqsave(&sha->lock, flags);
660 if (req)
661 ret = ahash_enqueue_request(&sha->queue, req);
662
663 if (SHA_FLAGS_BUSY & sha->flags) {
664 spin_unlock_irqrestore(&sha->lock, flags);
665 return ret;
666 }
667
668 backlog = crypto_get_backlog(&sha->queue);
669 async_req = crypto_dequeue_request(&sha->queue);
670 if (async_req)
671 sha->flags |= SHA_FLAGS_BUSY;
672 spin_unlock_irqrestore(&sha->lock, flags);
673
674 if (!async_req)
675 return ret;
676
677 if (backlog)
678 backlog->complete(backlog, -EINPROGRESS);
679
680 req = ahash_request_cast(async_req);
681 ctx = ahash_request_ctx(req);
682
683 sha->req = req;
684
685 mtk_sha_info_init(ctx);
686
687 if (ctx->op == SHA_OP_UPDATE) {
688 err = mtk_sha_update_start(cryp, sha);
689 if (err != -EINPROGRESS && (ctx->flags & SHA_FLAGS_FINUP))
690 /* No final() after finup() */
691 err = mtk_sha_final_req(cryp, sha);
692 } else if (ctx->op == SHA_OP_FINAL) {
693 err = mtk_sha_final_req(cryp, sha);
694 }
695
696 if (unlikely(err != -EINPROGRESS))
697 /* Task will not finish it, so do it here */
698 mtk_sha_finish_req(cryp, sha, err);
699
700 return ret;
701 }
702
mtk_sha_enqueue(struct ahash_request * req,u32 op)703 static int mtk_sha_enqueue(struct ahash_request *req, u32 op)
704 {
705 struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
706 struct mtk_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
707
708 ctx->op = op;
709
710 return mtk_sha_handle_queue(tctx->cryp, tctx->id, req);
711 }
712
mtk_sha_unmap(struct mtk_cryp * cryp,struct mtk_sha_rec * sha)713 static void mtk_sha_unmap(struct mtk_cryp *cryp, struct mtk_sha_rec *sha)
714 {
715 struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
716
717 dma_unmap_single(cryp->dev, ctx->ct_dma, sizeof(ctx->info),
718 DMA_BIDIRECTIONAL);
719
720 if (ctx->flags & SHA_FLAGS_SG) {
721 dma_unmap_sg(cryp->dev, ctx->sg, 1, DMA_TO_DEVICE);
722 if (ctx->sg->length == ctx->offset) {
723 ctx->sg = sg_next(ctx->sg);
724 if (ctx->sg)
725 ctx->offset = 0;
726 }
727 if (ctx->flags & SHA_FLAGS_PAD) {
728 dma_unmap_single(cryp->dev, ctx->dma_addr,
729 SHA_BUF_SIZE, DMA_TO_DEVICE);
730 }
731 } else
732 dma_unmap_single(cryp->dev, ctx->dma_addr,
733 SHA_BUF_SIZE, DMA_TO_DEVICE);
734 }
735
mtk_sha_complete(struct mtk_cryp * cryp,struct mtk_sha_rec * sha)736 static void mtk_sha_complete(struct mtk_cryp *cryp,
737 struct mtk_sha_rec *sha)
738 {
739 int err = 0;
740
741 err = mtk_sha_update_start(cryp, sha);
742 if (err != -EINPROGRESS)
743 mtk_sha_finish_req(cryp, sha, err);
744 }
745
mtk_sha_update(struct ahash_request * req)746 static int mtk_sha_update(struct ahash_request *req)
747 {
748 struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
749
750 ctx->total = req->nbytes;
751 ctx->sg = req->src;
752 ctx->offset = 0;
753
754 if ((ctx->bufcnt + ctx->total < SHA_BUF_SIZE) &&
755 !(ctx->flags & SHA_FLAGS_FINUP))
756 return mtk_sha_append_sg(ctx);
757
758 return mtk_sha_enqueue(req, SHA_OP_UPDATE);
759 }
760
mtk_sha_final(struct ahash_request * req)761 static int mtk_sha_final(struct ahash_request *req)
762 {
763 struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
764
765 ctx->flags |= SHA_FLAGS_FINUP;
766
767 if (ctx->flags & SHA_FLAGS_PAD)
768 return mtk_sha_finish(req);
769
770 return mtk_sha_enqueue(req, SHA_OP_FINAL);
771 }
772
mtk_sha_finup(struct ahash_request * req)773 static int mtk_sha_finup(struct ahash_request *req)
774 {
775 struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
776 int err1, err2;
777
778 ctx->flags |= SHA_FLAGS_FINUP;
779
780 err1 = mtk_sha_update(req);
781 if (err1 == -EINPROGRESS ||
782 (err1 == -EBUSY && (ahash_request_flags(req) &
783 CRYPTO_TFM_REQ_MAY_BACKLOG)))
784 return err1;
785 /*
786 * final() has to be always called to cleanup resources
787 * even if update() failed
788 */
789 err2 = mtk_sha_final(req);
790
791 return err1 ?: err2;
792 }
793
mtk_sha_digest(struct ahash_request * req)794 static int mtk_sha_digest(struct ahash_request *req)
795 {
796 return mtk_sha_init(req) ?: mtk_sha_finup(req);
797 }
798
mtk_sha_setkey(struct crypto_ahash * tfm,const u8 * key,u32 keylen)799 static int mtk_sha_setkey(struct crypto_ahash *tfm, const u8 *key,
800 u32 keylen)
801 {
802 struct mtk_sha_ctx *tctx = crypto_ahash_ctx(tfm);
803 struct mtk_sha_hmac_ctx *bctx = tctx->base;
804 size_t bs = crypto_shash_blocksize(bctx->shash);
805 size_t ds = crypto_shash_digestsize(bctx->shash);
806 int err, i;
807
808 SHASH_DESC_ON_STACK(shash, bctx->shash);
809
810 shash->tfm = bctx->shash;
811
812 if (keylen > bs) {
813 err = crypto_shash_digest(shash, key, keylen, bctx->ipad);
814 if (err)
815 return err;
816 keylen = ds;
817 } else {
818 memcpy(bctx->ipad, key, keylen);
819 }
820
821 memset(bctx->ipad + keylen, 0, bs - keylen);
822 memcpy(bctx->opad, bctx->ipad, bs);
823
824 for (i = 0; i < bs; i++) {
825 bctx->ipad[i] ^= HMAC_IPAD_VALUE;
826 bctx->opad[i] ^= HMAC_OPAD_VALUE;
827 }
828
829 return 0;
830 }
831
mtk_sha_export(struct ahash_request * req,void * out)832 static int mtk_sha_export(struct ahash_request *req, void *out)
833 {
834 const struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
835
836 memcpy(out, ctx, sizeof(*ctx));
837 return 0;
838 }
839
mtk_sha_import(struct ahash_request * req,const void * in)840 static int mtk_sha_import(struct ahash_request *req, const void *in)
841 {
842 struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
843
844 memcpy(ctx, in, sizeof(*ctx));
845 return 0;
846 }
847
mtk_sha_cra_init_alg(struct crypto_tfm * tfm,const char * alg_base)848 static int mtk_sha_cra_init_alg(struct crypto_tfm *tfm,
849 const char *alg_base)
850 {
851 struct mtk_sha_ctx *tctx = crypto_tfm_ctx(tfm);
852 struct mtk_cryp *cryp = NULL;
853
854 cryp = mtk_sha_find_dev(tctx);
855 if (!cryp)
856 return -ENODEV;
857
858 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
859 sizeof(struct mtk_sha_reqctx));
860
861 if (alg_base) {
862 struct mtk_sha_hmac_ctx *bctx = tctx->base;
863
864 tctx->flags |= SHA_FLAGS_HMAC;
865 bctx->shash = crypto_alloc_shash(alg_base, 0,
866 CRYPTO_ALG_NEED_FALLBACK);
867 if (IS_ERR(bctx->shash)) {
868 pr_err("base driver %s could not be loaded.\n",
869 alg_base);
870
871 return PTR_ERR(bctx->shash);
872 }
873 }
874 return 0;
875 }
876
mtk_sha_cra_init(struct crypto_tfm * tfm)877 static int mtk_sha_cra_init(struct crypto_tfm *tfm)
878 {
879 return mtk_sha_cra_init_alg(tfm, NULL);
880 }
881
mtk_sha_cra_sha1_init(struct crypto_tfm * tfm)882 static int mtk_sha_cra_sha1_init(struct crypto_tfm *tfm)
883 {
884 return mtk_sha_cra_init_alg(tfm, "sha1");
885 }
886
mtk_sha_cra_sha224_init(struct crypto_tfm * tfm)887 static int mtk_sha_cra_sha224_init(struct crypto_tfm *tfm)
888 {
889 return mtk_sha_cra_init_alg(tfm, "sha224");
890 }
891
mtk_sha_cra_sha256_init(struct crypto_tfm * tfm)892 static int mtk_sha_cra_sha256_init(struct crypto_tfm *tfm)
893 {
894 return mtk_sha_cra_init_alg(tfm, "sha256");
895 }
896
mtk_sha_cra_sha384_init(struct crypto_tfm * tfm)897 static int mtk_sha_cra_sha384_init(struct crypto_tfm *tfm)
898 {
899 return mtk_sha_cra_init_alg(tfm, "sha384");
900 }
901
mtk_sha_cra_sha512_init(struct crypto_tfm * tfm)902 static int mtk_sha_cra_sha512_init(struct crypto_tfm *tfm)
903 {
904 return mtk_sha_cra_init_alg(tfm, "sha512");
905 }
906
mtk_sha_cra_exit(struct crypto_tfm * tfm)907 static void mtk_sha_cra_exit(struct crypto_tfm *tfm)
908 {
909 struct mtk_sha_ctx *tctx = crypto_tfm_ctx(tfm);
910
911 if (tctx->flags & SHA_FLAGS_HMAC) {
912 struct mtk_sha_hmac_ctx *bctx = tctx->base;
913
914 crypto_free_shash(bctx->shash);
915 }
916 }
917
918 static struct ahash_alg algs_sha1_sha224_sha256[] = {
919 {
920 .init = mtk_sha_init,
921 .update = mtk_sha_update,
922 .final = mtk_sha_final,
923 .finup = mtk_sha_finup,
924 .digest = mtk_sha_digest,
925 .export = mtk_sha_export,
926 .import = mtk_sha_import,
927 .halg.digestsize = SHA1_DIGEST_SIZE,
928 .halg.statesize = sizeof(struct mtk_sha_reqctx),
929 .halg.base = {
930 .cra_name = "sha1",
931 .cra_driver_name = "mtk-sha1",
932 .cra_priority = 400,
933 .cra_flags = CRYPTO_ALG_ASYNC,
934 .cra_blocksize = SHA1_BLOCK_SIZE,
935 .cra_ctxsize = sizeof(struct mtk_sha_ctx),
936 .cra_alignmask = SHA_ALIGN_MSK,
937 .cra_module = THIS_MODULE,
938 .cra_init = mtk_sha_cra_init,
939 .cra_exit = mtk_sha_cra_exit,
940 }
941 },
942 {
943 .init = mtk_sha_init,
944 .update = mtk_sha_update,
945 .final = mtk_sha_final,
946 .finup = mtk_sha_finup,
947 .digest = mtk_sha_digest,
948 .export = mtk_sha_export,
949 .import = mtk_sha_import,
950 .halg.digestsize = SHA224_DIGEST_SIZE,
951 .halg.statesize = sizeof(struct mtk_sha_reqctx),
952 .halg.base = {
953 .cra_name = "sha224",
954 .cra_driver_name = "mtk-sha224",
955 .cra_priority = 400,
956 .cra_flags = CRYPTO_ALG_ASYNC,
957 .cra_blocksize = SHA224_BLOCK_SIZE,
958 .cra_ctxsize = sizeof(struct mtk_sha_ctx),
959 .cra_alignmask = SHA_ALIGN_MSK,
960 .cra_module = THIS_MODULE,
961 .cra_init = mtk_sha_cra_init,
962 .cra_exit = mtk_sha_cra_exit,
963 }
964 },
965 {
966 .init = mtk_sha_init,
967 .update = mtk_sha_update,
968 .final = mtk_sha_final,
969 .finup = mtk_sha_finup,
970 .digest = mtk_sha_digest,
971 .export = mtk_sha_export,
972 .import = mtk_sha_import,
973 .halg.digestsize = SHA256_DIGEST_SIZE,
974 .halg.statesize = sizeof(struct mtk_sha_reqctx),
975 .halg.base = {
976 .cra_name = "sha256",
977 .cra_driver_name = "mtk-sha256",
978 .cra_priority = 400,
979 .cra_flags = CRYPTO_ALG_ASYNC,
980 .cra_blocksize = SHA256_BLOCK_SIZE,
981 .cra_ctxsize = sizeof(struct mtk_sha_ctx),
982 .cra_alignmask = SHA_ALIGN_MSK,
983 .cra_module = THIS_MODULE,
984 .cra_init = mtk_sha_cra_init,
985 .cra_exit = mtk_sha_cra_exit,
986 }
987 },
988 {
989 .init = mtk_sha_init,
990 .update = mtk_sha_update,
991 .final = mtk_sha_final,
992 .finup = mtk_sha_finup,
993 .digest = mtk_sha_digest,
994 .export = mtk_sha_export,
995 .import = mtk_sha_import,
996 .setkey = mtk_sha_setkey,
997 .halg.digestsize = SHA1_DIGEST_SIZE,
998 .halg.statesize = sizeof(struct mtk_sha_reqctx),
999 .halg.base = {
1000 .cra_name = "hmac(sha1)",
1001 .cra_driver_name = "mtk-hmac-sha1",
1002 .cra_priority = 400,
1003 .cra_flags = CRYPTO_ALG_ASYNC |
1004 CRYPTO_ALG_NEED_FALLBACK,
1005 .cra_blocksize = SHA1_BLOCK_SIZE,
1006 .cra_ctxsize = sizeof(struct mtk_sha_ctx) +
1007 sizeof(struct mtk_sha_hmac_ctx),
1008 .cra_alignmask = SHA_ALIGN_MSK,
1009 .cra_module = THIS_MODULE,
1010 .cra_init = mtk_sha_cra_sha1_init,
1011 .cra_exit = mtk_sha_cra_exit,
1012 }
1013 },
1014 {
1015 .init = mtk_sha_init,
1016 .update = mtk_sha_update,
1017 .final = mtk_sha_final,
1018 .finup = mtk_sha_finup,
1019 .digest = mtk_sha_digest,
1020 .export = mtk_sha_export,
1021 .import = mtk_sha_import,
1022 .setkey = mtk_sha_setkey,
1023 .halg.digestsize = SHA224_DIGEST_SIZE,
1024 .halg.statesize = sizeof(struct mtk_sha_reqctx),
1025 .halg.base = {
1026 .cra_name = "hmac(sha224)",
1027 .cra_driver_name = "mtk-hmac-sha224",
1028 .cra_priority = 400,
1029 .cra_flags = CRYPTO_ALG_ASYNC |
1030 CRYPTO_ALG_NEED_FALLBACK,
1031 .cra_blocksize = SHA224_BLOCK_SIZE,
1032 .cra_ctxsize = sizeof(struct mtk_sha_ctx) +
1033 sizeof(struct mtk_sha_hmac_ctx),
1034 .cra_alignmask = SHA_ALIGN_MSK,
1035 .cra_module = THIS_MODULE,
1036 .cra_init = mtk_sha_cra_sha224_init,
1037 .cra_exit = mtk_sha_cra_exit,
1038 }
1039 },
1040 {
1041 .init = mtk_sha_init,
1042 .update = mtk_sha_update,
1043 .final = mtk_sha_final,
1044 .finup = mtk_sha_finup,
1045 .digest = mtk_sha_digest,
1046 .export = mtk_sha_export,
1047 .import = mtk_sha_import,
1048 .setkey = mtk_sha_setkey,
1049 .halg.digestsize = SHA256_DIGEST_SIZE,
1050 .halg.statesize = sizeof(struct mtk_sha_reqctx),
1051 .halg.base = {
1052 .cra_name = "hmac(sha256)",
1053 .cra_driver_name = "mtk-hmac-sha256",
1054 .cra_priority = 400,
1055 .cra_flags = CRYPTO_ALG_ASYNC |
1056 CRYPTO_ALG_NEED_FALLBACK,
1057 .cra_blocksize = SHA256_BLOCK_SIZE,
1058 .cra_ctxsize = sizeof(struct mtk_sha_ctx) +
1059 sizeof(struct mtk_sha_hmac_ctx),
1060 .cra_alignmask = SHA_ALIGN_MSK,
1061 .cra_module = THIS_MODULE,
1062 .cra_init = mtk_sha_cra_sha256_init,
1063 .cra_exit = mtk_sha_cra_exit,
1064 }
1065 },
1066 };
1067
1068 static struct ahash_alg algs_sha384_sha512[] = {
1069 {
1070 .init = mtk_sha_init,
1071 .update = mtk_sha_update,
1072 .final = mtk_sha_final,
1073 .finup = mtk_sha_finup,
1074 .digest = mtk_sha_digest,
1075 .export = mtk_sha_export,
1076 .import = mtk_sha_import,
1077 .halg.digestsize = SHA384_DIGEST_SIZE,
1078 .halg.statesize = sizeof(struct mtk_sha_reqctx),
1079 .halg.base = {
1080 .cra_name = "sha384",
1081 .cra_driver_name = "mtk-sha384",
1082 .cra_priority = 400,
1083 .cra_flags = CRYPTO_ALG_ASYNC,
1084 .cra_blocksize = SHA384_BLOCK_SIZE,
1085 .cra_ctxsize = sizeof(struct mtk_sha_ctx),
1086 .cra_alignmask = SHA_ALIGN_MSK,
1087 .cra_module = THIS_MODULE,
1088 .cra_init = mtk_sha_cra_init,
1089 .cra_exit = mtk_sha_cra_exit,
1090 }
1091 },
1092 {
1093 .init = mtk_sha_init,
1094 .update = mtk_sha_update,
1095 .final = mtk_sha_final,
1096 .finup = mtk_sha_finup,
1097 .digest = mtk_sha_digest,
1098 .export = mtk_sha_export,
1099 .import = mtk_sha_import,
1100 .halg.digestsize = SHA512_DIGEST_SIZE,
1101 .halg.statesize = sizeof(struct mtk_sha_reqctx),
1102 .halg.base = {
1103 .cra_name = "sha512",
1104 .cra_driver_name = "mtk-sha512",
1105 .cra_priority = 400,
1106 .cra_flags = CRYPTO_ALG_ASYNC,
1107 .cra_blocksize = SHA512_BLOCK_SIZE,
1108 .cra_ctxsize = sizeof(struct mtk_sha_ctx),
1109 .cra_alignmask = SHA_ALIGN_MSK,
1110 .cra_module = THIS_MODULE,
1111 .cra_init = mtk_sha_cra_init,
1112 .cra_exit = mtk_sha_cra_exit,
1113 }
1114 },
1115 {
1116 .init = mtk_sha_init,
1117 .update = mtk_sha_update,
1118 .final = mtk_sha_final,
1119 .finup = mtk_sha_finup,
1120 .digest = mtk_sha_digest,
1121 .export = mtk_sha_export,
1122 .import = mtk_sha_import,
1123 .setkey = mtk_sha_setkey,
1124 .halg.digestsize = SHA384_DIGEST_SIZE,
1125 .halg.statesize = sizeof(struct mtk_sha_reqctx),
1126 .halg.base = {
1127 .cra_name = "hmac(sha384)",
1128 .cra_driver_name = "mtk-hmac-sha384",
1129 .cra_priority = 400,
1130 .cra_flags = CRYPTO_ALG_ASYNC |
1131 CRYPTO_ALG_NEED_FALLBACK,
1132 .cra_blocksize = SHA384_BLOCK_SIZE,
1133 .cra_ctxsize = sizeof(struct mtk_sha_ctx) +
1134 sizeof(struct mtk_sha_hmac_ctx),
1135 .cra_alignmask = SHA_ALIGN_MSK,
1136 .cra_module = THIS_MODULE,
1137 .cra_init = mtk_sha_cra_sha384_init,
1138 .cra_exit = mtk_sha_cra_exit,
1139 }
1140 },
1141 {
1142 .init = mtk_sha_init,
1143 .update = mtk_sha_update,
1144 .final = mtk_sha_final,
1145 .finup = mtk_sha_finup,
1146 .digest = mtk_sha_digest,
1147 .export = mtk_sha_export,
1148 .import = mtk_sha_import,
1149 .setkey = mtk_sha_setkey,
1150 .halg.digestsize = SHA512_DIGEST_SIZE,
1151 .halg.statesize = sizeof(struct mtk_sha_reqctx),
1152 .halg.base = {
1153 .cra_name = "hmac(sha512)",
1154 .cra_driver_name = "mtk-hmac-sha512",
1155 .cra_priority = 400,
1156 .cra_flags = CRYPTO_ALG_ASYNC |
1157 CRYPTO_ALG_NEED_FALLBACK,
1158 .cra_blocksize = SHA512_BLOCK_SIZE,
1159 .cra_ctxsize = sizeof(struct mtk_sha_ctx) +
1160 sizeof(struct mtk_sha_hmac_ctx),
1161 .cra_alignmask = SHA_ALIGN_MSK,
1162 .cra_module = THIS_MODULE,
1163 .cra_init = mtk_sha_cra_sha512_init,
1164 .cra_exit = mtk_sha_cra_exit,
1165 }
1166 },
1167 };
1168
mtk_sha_queue_task(unsigned long data)1169 static void mtk_sha_queue_task(unsigned long data)
1170 {
1171 struct mtk_sha_rec *sha = (struct mtk_sha_rec *)data;
1172
1173 mtk_sha_handle_queue(sha->cryp, sha->id - MTK_RING2, NULL);
1174 }
1175
mtk_sha_done_task(unsigned long data)1176 static void mtk_sha_done_task(unsigned long data)
1177 {
1178 struct mtk_sha_rec *sha = (struct mtk_sha_rec *)data;
1179 struct mtk_cryp *cryp = sha->cryp;
1180
1181 mtk_sha_unmap(cryp, sha);
1182 mtk_sha_complete(cryp, sha);
1183 }
1184
mtk_sha_irq(int irq,void * dev_id)1185 static irqreturn_t mtk_sha_irq(int irq, void *dev_id)
1186 {
1187 struct mtk_sha_rec *sha = (struct mtk_sha_rec *)dev_id;
1188 struct mtk_cryp *cryp = sha->cryp;
1189 u32 val = mtk_sha_read(cryp, RDR_STAT(sha->id));
1190
1191 mtk_sha_write(cryp, RDR_STAT(sha->id), val);
1192
1193 if (likely((SHA_FLAGS_BUSY & sha->flags))) {
1194 mtk_sha_write(cryp, RDR_PROC_COUNT(sha->id), MTK_CNT_RST);
1195 mtk_sha_write(cryp, RDR_THRESH(sha->id),
1196 MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE);
1197
1198 tasklet_schedule(&sha->done_task);
1199 } else {
1200 dev_warn(cryp->dev, "SHA interrupt when no active requests.\n");
1201 }
1202 return IRQ_HANDLED;
1203 }
1204
1205 /*
1206 * The purpose of two SHA records is used to get extra performance.
1207 * It is similar to mtk_aes_record_init().
1208 */
mtk_sha_record_init(struct mtk_cryp * cryp)1209 static int mtk_sha_record_init(struct mtk_cryp *cryp)
1210 {
1211 struct mtk_sha_rec **sha = cryp->sha;
1212 int i, err = -ENOMEM;
1213
1214 for (i = 0; i < MTK_REC_NUM; i++) {
1215 sha[i] = kzalloc(sizeof(**sha), GFP_KERNEL);
1216 if (!sha[i])
1217 goto err_cleanup;
1218
1219 sha[i]->cryp = cryp;
1220
1221 spin_lock_init(&sha[i]->lock);
1222 crypto_init_queue(&sha[i]->queue, SHA_QUEUE_SIZE);
1223
1224 tasklet_init(&sha[i]->queue_task, mtk_sha_queue_task,
1225 (unsigned long)sha[i]);
1226 tasklet_init(&sha[i]->done_task, mtk_sha_done_task,
1227 (unsigned long)sha[i]);
1228 }
1229
1230 /* Link to ring2 and ring3 respectively */
1231 sha[0]->id = MTK_RING2;
1232 sha[1]->id = MTK_RING3;
1233
1234 cryp->rec = 1;
1235
1236 return 0;
1237
1238 err_cleanup:
1239 for (; i--; )
1240 kfree(sha[i]);
1241 return err;
1242 }
1243
mtk_sha_record_free(struct mtk_cryp * cryp)1244 static void mtk_sha_record_free(struct mtk_cryp *cryp)
1245 {
1246 int i;
1247
1248 for (i = 0; i < MTK_REC_NUM; i++) {
1249 tasklet_kill(&cryp->sha[i]->done_task);
1250 tasklet_kill(&cryp->sha[i]->queue_task);
1251
1252 kfree(cryp->sha[i]);
1253 }
1254 }
1255
mtk_sha_unregister_algs(void)1256 static void mtk_sha_unregister_algs(void)
1257 {
1258 int i;
1259
1260 for (i = 0; i < ARRAY_SIZE(algs_sha1_sha224_sha256); i++)
1261 crypto_unregister_ahash(&algs_sha1_sha224_sha256[i]);
1262
1263 for (i = 0; i < ARRAY_SIZE(algs_sha384_sha512); i++)
1264 crypto_unregister_ahash(&algs_sha384_sha512[i]);
1265 }
1266
mtk_sha_register_algs(void)1267 static int mtk_sha_register_algs(void)
1268 {
1269 int err, i;
1270
1271 for (i = 0; i < ARRAY_SIZE(algs_sha1_sha224_sha256); i++) {
1272 err = crypto_register_ahash(&algs_sha1_sha224_sha256[i]);
1273 if (err)
1274 goto err_sha_224_256_algs;
1275 }
1276
1277 for (i = 0; i < ARRAY_SIZE(algs_sha384_sha512); i++) {
1278 err = crypto_register_ahash(&algs_sha384_sha512[i]);
1279 if (err)
1280 goto err_sha_384_512_algs;
1281 }
1282
1283 return 0;
1284
1285 err_sha_384_512_algs:
1286 for (; i--; )
1287 crypto_unregister_ahash(&algs_sha384_sha512[i]);
1288 i = ARRAY_SIZE(algs_sha1_sha224_sha256);
1289 err_sha_224_256_algs:
1290 for (; i--; )
1291 crypto_unregister_ahash(&algs_sha1_sha224_sha256[i]);
1292
1293 return err;
1294 }
1295
mtk_hash_alg_register(struct mtk_cryp * cryp)1296 int mtk_hash_alg_register(struct mtk_cryp *cryp)
1297 {
1298 int err;
1299
1300 INIT_LIST_HEAD(&cryp->sha_list);
1301
1302 /* Initialize two hash records */
1303 err = mtk_sha_record_init(cryp);
1304 if (err)
1305 goto err_record;
1306
1307 err = devm_request_irq(cryp->dev, cryp->irq[MTK_RING2], mtk_sha_irq,
1308 0, "mtk-sha", cryp->sha[0]);
1309 if (err) {
1310 dev_err(cryp->dev, "unable to request sha irq0.\n");
1311 goto err_res;
1312 }
1313
1314 err = devm_request_irq(cryp->dev, cryp->irq[MTK_RING3], mtk_sha_irq,
1315 0, "mtk-sha", cryp->sha[1]);
1316 if (err) {
1317 dev_err(cryp->dev, "unable to request sha irq1.\n");
1318 goto err_res;
1319 }
1320
1321 /* Enable ring2 and ring3 interrupt for hash */
1322 mtk_sha_write(cryp, AIC_ENABLE_SET(MTK_RING2), MTK_IRQ_RDR2);
1323 mtk_sha_write(cryp, AIC_ENABLE_SET(MTK_RING3), MTK_IRQ_RDR3);
1324
1325 spin_lock(&mtk_sha.lock);
1326 list_add_tail(&cryp->sha_list, &mtk_sha.dev_list);
1327 spin_unlock(&mtk_sha.lock);
1328
1329 err = mtk_sha_register_algs();
1330 if (err)
1331 goto err_algs;
1332
1333 return 0;
1334
1335 err_algs:
1336 spin_lock(&mtk_sha.lock);
1337 list_del(&cryp->sha_list);
1338 spin_unlock(&mtk_sha.lock);
1339 err_res:
1340 mtk_sha_record_free(cryp);
1341 err_record:
1342
1343 dev_err(cryp->dev, "mtk-sha initialization failed.\n");
1344 return err;
1345 }
1346
mtk_hash_alg_release(struct mtk_cryp * cryp)1347 void mtk_hash_alg_release(struct mtk_cryp *cryp)
1348 {
1349 spin_lock(&mtk_sha.lock);
1350 list_del(&cryp->sha_list);
1351 spin_unlock(&mtk_sha.lock);
1352
1353 mtk_sha_unregister_algs();
1354 mtk_sha_record_free(cryp);
1355 }
1356