1 /* This program is free software; you can redistribute it and/or modify
2 * it under the terms of the GNU General Public License as published by
3 * the Free Software Foundation; version 2 of the License
4 *
5 * This program is distributed in the hope that it will be useful,
6 * but WITHOUT ANY WARRANTY; without even the implied warranty of
7 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
8 * GNU General Public License for more details.
9 *
10 * Copyright (C) 2009-2016 John Crispin <blogic@openwrt.org>
11 * Copyright (C) 2009-2016 Felix Fietkau <nbd@openwrt.org>
12 * Copyright (C) 2013-2016 Michael Lee <igvtee@gmail.com>
13 */
14
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/init.h>
20 #include <linux/skbuff.h>
21 #include <linux/etherdevice.h>
22 #include <linux/ethtool.h>
23 #include <linux/platform_device.h>
24 #include <linux/of_device.h>
25 #include <linux/mfd/syscon.h>
26 #include <linux/clk.h>
27 #include <linux/of_net.h>
28 #include <linux/of_mdio.h>
29 #include <linux/if_vlan.h>
30 #include <linux/reset.h>
31 #include <linux/tcp.h>
32 #include <linux/io.h>
33 #include <linux/bug.h>
34 #include <linux/regmap.h>
35
36 #include "mtk_eth_soc.h"
37 #include "mdio.h"
38 #include "ethtool.h"
39
40 #define MAX_RX_LENGTH 1536
41 #define MTK_RX_ETH_HLEN (VLAN_ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN)
42 #define MTK_RX_HLEN (NET_SKB_PAD + MTK_RX_ETH_HLEN + NET_IP_ALIGN)
43 #define DMA_DUMMY_DESC 0xffffffff
44 #define MTK_DEFAULT_MSG_ENABLE \
45 (NETIF_MSG_DRV | \
46 NETIF_MSG_PROBE | \
47 NETIF_MSG_LINK | \
48 NETIF_MSG_TIMER | \
49 NETIF_MSG_IFDOWN | \
50 NETIF_MSG_IFUP | \
51 NETIF_MSG_RX_ERR | \
52 NETIF_MSG_TX_ERR)
53
54 #define TX_DMA_DESP2_DEF (TX_DMA_LS0 | TX_DMA_DONE)
55 #define NEXT_TX_DESP_IDX(X) (((X) + 1) & (ring->tx_ring_size - 1))
56 #define NEXT_RX_DESP_IDX(X) (((X) + 1) & (ring->rx_ring_size - 1))
57
58 #define SYSC_REG_RSTCTRL 0x34
59
60 static int mtk_msg_level = -1;
61 module_param_named(msg_level, mtk_msg_level, int, 0);
62 MODULE_PARM_DESC(msg_level, "Message level (-1=defaults,0=none,...,16=all)");
63
64 static const u16 mtk_reg_table_default[MTK_REG_COUNT] = {
65 [MTK_REG_PDMA_GLO_CFG] = MTK_PDMA_GLO_CFG,
66 [MTK_REG_PDMA_RST_CFG] = MTK_PDMA_RST_CFG,
67 [MTK_REG_DLY_INT_CFG] = MTK_DLY_INT_CFG,
68 [MTK_REG_TX_BASE_PTR0] = MTK_TX_BASE_PTR0,
69 [MTK_REG_TX_MAX_CNT0] = MTK_TX_MAX_CNT0,
70 [MTK_REG_TX_CTX_IDX0] = MTK_TX_CTX_IDX0,
71 [MTK_REG_TX_DTX_IDX0] = MTK_TX_DTX_IDX0,
72 [MTK_REG_RX_BASE_PTR0] = MTK_RX_BASE_PTR0,
73 [MTK_REG_RX_MAX_CNT0] = MTK_RX_MAX_CNT0,
74 [MTK_REG_RX_CALC_IDX0] = MTK_RX_CALC_IDX0,
75 [MTK_REG_RX_DRX_IDX0] = MTK_RX_DRX_IDX0,
76 [MTK_REG_MTK_INT_ENABLE] = MTK_INT_ENABLE,
77 [MTK_REG_MTK_INT_STATUS] = MTK_INT_STATUS,
78 [MTK_REG_MTK_DMA_VID_BASE] = MTK_DMA_VID0,
79 [MTK_REG_MTK_COUNTER_BASE] = MTK_GDMA1_TX_GBCNT,
80 [MTK_REG_MTK_RST_GL] = MTK_RST_GL,
81 };
82
83 static const u16 *mtk_reg_table = mtk_reg_table_default;
84
mtk_w32(struct mtk_eth * eth,u32 val,unsigned int reg)85 void mtk_w32(struct mtk_eth *eth, u32 val, unsigned int reg)
86 {
87 __raw_writel(val, eth->base + reg);
88 }
89
mtk_r32(struct mtk_eth * eth,unsigned int reg)90 u32 mtk_r32(struct mtk_eth *eth, unsigned int reg)
91 {
92 return __raw_readl(eth->base + reg);
93 }
94
mtk_reg_w32(struct mtk_eth * eth,u32 val,enum mtk_reg reg)95 static void mtk_reg_w32(struct mtk_eth *eth, u32 val, enum mtk_reg reg)
96 {
97 mtk_w32(eth, val, mtk_reg_table[reg]);
98 }
99
mtk_reg_r32(struct mtk_eth * eth,enum mtk_reg reg)100 static u32 mtk_reg_r32(struct mtk_eth *eth, enum mtk_reg reg)
101 {
102 return mtk_r32(eth, mtk_reg_table[reg]);
103 }
104
105 /* these bits are also exposed via the reset-controller API. however the switch
106 * and FE need to be brought out of reset in the exakt same moemtn and the
107 * reset-controller api does not provide this feature yet. Do the reset manually
108 * until we fixed the reset-controller api to be able to do this
109 */
mtk_reset(struct mtk_eth * eth,u32 reset_bits)110 void mtk_reset(struct mtk_eth *eth, u32 reset_bits)
111 {
112 u32 val;
113
114 regmap_read(eth->ethsys, SYSC_REG_RSTCTRL, &val);
115 val |= reset_bits;
116 regmap_write(eth->ethsys, SYSC_REG_RSTCTRL, val);
117 usleep_range(10, 20);
118 val &= ~reset_bits;
119 regmap_write(eth->ethsys, SYSC_REG_RSTCTRL, val);
120 usleep_range(10, 20);
121 }
122 EXPORT_SYMBOL(mtk_reset);
123
mtk_irq_ack(struct mtk_eth * eth,u32 mask)124 static inline void mtk_irq_ack(struct mtk_eth *eth, u32 mask)
125 {
126 if (eth->soc->dma_type & MTK_PDMA)
127 mtk_reg_w32(eth, mask, MTK_REG_MTK_INT_STATUS);
128 if (eth->soc->dma_type & MTK_QDMA)
129 mtk_w32(eth, mask, MTK_QMTK_INT_STATUS);
130 }
131
mtk_irq_pending(struct mtk_eth * eth)132 static inline u32 mtk_irq_pending(struct mtk_eth *eth)
133 {
134 u32 status = 0;
135
136 if (eth->soc->dma_type & MTK_PDMA)
137 status |= mtk_reg_r32(eth, MTK_REG_MTK_INT_STATUS);
138 if (eth->soc->dma_type & MTK_QDMA)
139 status |= mtk_r32(eth, MTK_QMTK_INT_STATUS);
140
141 return status;
142 }
143
mtk_irq_ack_status(struct mtk_eth * eth,u32 mask)144 static void mtk_irq_ack_status(struct mtk_eth *eth, u32 mask)
145 {
146 u32 status_reg = MTK_REG_MTK_INT_STATUS;
147
148 if (mtk_reg_table[MTK_REG_MTK_INT_STATUS2])
149 status_reg = MTK_REG_MTK_INT_STATUS2;
150
151 mtk_reg_w32(eth, mask, status_reg);
152 }
153
mtk_irq_pending_status(struct mtk_eth * eth)154 static u32 mtk_irq_pending_status(struct mtk_eth *eth)
155 {
156 u32 status_reg = MTK_REG_MTK_INT_STATUS;
157
158 if (mtk_reg_table[MTK_REG_MTK_INT_STATUS2])
159 status_reg = MTK_REG_MTK_INT_STATUS2;
160
161 return mtk_reg_r32(eth, status_reg);
162 }
163
mtk_irq_disable(struct mtk_eth * eth,u32 mask)164 static inline void mtk_irq_disable(struct mtk_eth *eth, u32 mask)
165 {
166 u32 val;
167
168 if (eth->soc->dma_type & MTK_PDMA) {
169 val = mtk_reg_r32(eth, MTK_REG_MTK_INT_ENABLE);
170 mtk_reg_w32(eth, val & ~mask, MTK_REG_MTK_INT_ENABLE);
171 /* flush write */
172 mtk_reg_r32(eth, MTK_REG_MTK_INT_ENABLE);
173 }
174 if (eth->soc->dma_type & MTK_QDMA) {
175 val = mtk_r32(eth, MTK_QMTK_INT_ENABLE);
176 mtk_w32(eth, val & ~mask, MTK_QMTK_INT_ENABLE);
177 /* flush write */
178 mtk_r32(eth, MTK_QMTK_INT_ENABLE);
179 }
180 }
181
mtk_irq_enable(struct mtk_eth * eth,u32 mask)182 static inline void mtk_irq_enable(struct mtk_eth *eth, u32 mask)
183 {
184 u32 val;
185
186 if (eth->soc->dma_type & MTK_PDMA) {
187 val = mtk_reg_r32(eth, MTK_REG_MTK_INT_ENABLE);
188 mtk_reg_w32(eth, val | mask, MTK_REG_MTK_INT_ENABLE);
189 /* flush write */
190 mtk_reg_r32(eth, MTK_REG_MTK_INT_ENABLE);
191 }
192 if (eth->soc->dma_type & MTK_QDMA) {
193 val = mtk_r32(eth, MTK_QMTK_INT_ENABLE);
194 mtk_w32(eth, val | mask, MTK_QMTK_INT_ENABLE);
195 /* flush write */
196 mtk_r32(eth, MTK_QMTK_INT_ENABLE);
197 }
198 }
199
mtk_irq_enabled(struct mtk_eth * eth)200 static inline u32 mtk_irq_enabled(struct mtk_eth *eth)
201 {
202 u32 enabled = 0;
203
204 if (eth->soc->dma_type & MTK_PDMA)
205 enabled |= mtk_reg_r32(eth, MTK_REG_MTK_INT_ENABLE);
206 if (eth->soc->dma_type & MTK_QDMA)
207 enabled |= mtk_r32(eth, MTK_QMTK_INT_ENABLE);
208
209 return enabled;
210 }
211
mtk_hw_set_macaddr(struct mtk_mac * mac,unsigned char * macaddr)212 static inline void mtk_hw_set_macaddr(struct mtk_mac *mac,
213 unsigned char *macaddr)
214 {
215 unsigned long flags;
216
217 spin_lock_irqsave(&mac->hw->page_lock, flags);
218 mtk_w32(mac->hw, (macaddr[0] << 8) | macaddr[1], MTK_GDMA1_MAC_ADRH);
219 mtk_w32(mac->hw, (macaddr[2] << 24) | (macaddr[3] << 16) |
220 (macaddr[4] << 8) | macaddr[5],
221 MTK_GDMA1_MAC_ADRL);
222 spin_unlock_irqrestore(&mac->hw->page_lock, flags);
223 }
224
mtk_set_mac_address(struct net_device * dev,void * p)225 static int mtk_set_mac_address(struct net_device *dev, void *p)
226 {
227 int ret = eth_mac_addr(dev, p);
228 struct mtk_mac *mac = netdev_priv(dev);
229 struct mtk_eth *eth = mac->hw;
230
231 if (ret)
232 return ret;
233
234 if (eth->soc->set_mac)
235 eth->soc->set_mac(mac, dev->dev_addr);
236 else
237 mtk_hw_set_macaddr(mac, p);
238
239 return 0;
240 }
241
mtk_max_frag_size(int mtu)242 static inline int mtk_max_frag_size(int mtu)
243 {
244 /* make sure buf_size will be at least MAX_RX_LENGTH */
245 if (mtu + MTK_RX_ETH_HLEN < MAX_RX_LENGTH)
246 mtu = MAX_RX_LENGTH - MTK_RX_ETH_HLEN;
247
248 return SKB_DATA_ALIGN(MTK_RX_HLEN + mtu) +
249 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
250 }
251
mtk_max_buf_size(int frag_size)252 static inline int mtk_max_buf_size(int frag_size)
253 {
254 int buf_size = frag_size - NET_SKB_PAD - NET_IP_ALIGN -
255 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
256
257 WARN_ON(buf_size < MAX_RX_LENGTH);
258
259 return buf_size;
260 }
261
mtk_get_rxd(struct mtk_rx_dma * rxd,struct mtk_rx_dma * dma_rxd)262 static inline void mtk_get_rxd(struct mtk_rx_dma *rxd,
263 struct mtk_rx_dma *dma_rxd)
264 {
265 rxd->rxd1 = READ_ONCE(dma_rxd->rxd1);
266 rxd->rxd2 = READ_ONCE(dma_rxd->rxd2);
267 rxd->rxd3 = READ_ONCE(dma_rxd->rxd3);
268 rxd->rxd4 = READ_ONCE(dma_rxd->rxd4);
269 }
270
mtk_set_txd_pdma(struct mtk_tx_dma * txd,struct mtk_tx_dma * dma_txd)271 static inline void mtk_set_txd_pdma(struct mtk_tx_dma *txd,
272 struct mtk_tx_dma *dma_txd)
273 {
274 WRITE_ONCE(dma_txd->txd1, txd->txd1);
275 WRITE_ONCE(dma_txd->txd3, txd->txd3);
276 WRITE_ONCE(dma_txd->txd4, txd->txd4);
277 /* clean dma done flag last */
278 WRITE_ONCE(dma_txd->txd2, txd->txd2);
279 }
280
mtk_clean_rx(struct mtk_eth * eth,struct mtk_rx_ring * ring)281 static void mtk_clean_rx(struct mtk_eth *eth, struct mtk_rx_ring *ring)
282 {
283 int i;
284
285 if (ring->rx_data && ring->rx_dma) {
286 for (i = 0; i < ring->rx_ring_size; i++) {
287 if (!ring->rx_data[i])
288 continue;
289 if (!ring->rx_dma[i].rxd1)
290 continue;
291 dma_unmap_single(eth->dev,
292 ring->rx_dma[i].rxd1,
293 ring->rx_buf_size,
294 DMA_FROM_DEVICE);
295 skb_free_frag(ring->rx_data[i]);
296 }
297 kfree(ring->rx_data);
298 ring->rx_data = NULL;
299 }
300
301 if (ring->rx_dma) {
302 dma_free_coherent(eth->dev,
303 ring->rx_ring_size * sizeof(*ring->rx_dma),
304 ring->rx_dma,
305 ring->rx_phys);
306 ring->rx_dma = NULL;
307 }
308 }
309
mtk_dma_rx_alloc(struct mtk_eth * eth,struct mtk_rx_ring * ring)310 static int mtk_dma_rx_alloc(struct mtk_eth *eth, struct mtk_rx_ring *ring)
311 {
312 int i, pad = 0;
313
314 ring->frag_size = mtk_max_frag_size(ETH_DATA_LEN);
315 ring->rx_buf_size = mtk_max_buf_size(ring->frag_size);
316 ring->rx_ring_size = eth->soc->dma_ring_size;
317 ring->rx_data = kcalloc(ring->rx_ring_size, sizeof(*ring->rx_data),
318 GFP_KERNEL);
319 if (!ring->rx_data)
320 goto no_rx_mem;
321
322 for (i = 0; i < ring->rx_ring_size; i++) {
323 ring->rx_data[i] = netdev_alloc_frag(ring->frag_size);
324 if (!ring->rx_data[i])
325 goto no_rx_mem;
326 }
327
328 ring->rx_dma =
329 dma_alloc_coherent(eth->dev,
330 ring->rx_ring_size * sizeof(*ring->rx_dma),
331 &ring->rx_phys, GFP_ATOMIC | __GFP_ZERO);
332 if (!ring->rx_dma)
333 goto no_rx_mem;
334
335 if (!eth->soc->rx_2b_offset)
336 pad = NET_IP_ALIGN;
337
338 for (i = 0; i < ring->rx_ring_size; i++) {
339 dma_addr_t dma_addr = dma_map_single(eth->dev,
340 ring->rx_data[i] + NET_SKB_PAD + pad,
341 ring->rx_buf_size,
342 DMA_FROM_DEVICE);
343 if (unlikely(dma_mapping_error(eth->dev, dma_addr)))
344 goto no_rx_mem;
345 ring->rx_dma[i].rxd1 = (unsigned int)dma_addr;
346
347 if (eth->soc->rx_sg_dma)
348 ring->rx_dma[i].rxd2 = RX_DMA_PLEN0(ring->rx_buf_size);
349 else
350 ring->rx_dma[i].rxd2 = RX_DMA_LSO;
351 }
352 ring->rx_calc_idx = ring->rx_ring_size - 1;
353 /* make sure that all changes to the dma ring are flushed before we
354 * continue
355 */
356 wmb();
357
358 return 0;
359
360 no_rx_mem:
361 return -ENOMEM;
362 }
363
mtk_txd_unmap(struct device * dev,struct mtk_tx_buf * tx_buf)364 static void mtk_txd_unmap(struct device *dev, struct mtk_tx_buf *tx_buf)
365 {
366 if (tx_buf->flags & MTK_TX_FLAGS_SINGLE0) {
367 dma_unmap_single(dev,
368 dma_unmap_addr(tx_buf, dma_addr0),
369 dma_unmap_len(tx_buf, dma_len0),
370 DMA_TO_DEVICE);
371 } else if (tx_buf->flags & MTK_TX_FLAGS_PAGE0) {
372 dma_unmap_page(dev,
373 dma_unmap_addr(tx_buf, dma_addr0),
374 dma_unmap_len(tx_buf, dma_len0),
375 DMA_TO_DEVICE);
376 }
377 if (tx_buf->flags & MTK_TX_FLAGS_PAGE1)
378 dma_unmap_page(dev,
379 dma_unmap_addr(tx_buf, dma_addr1),
380 dma_unmap_len(tx_buf, dma_len1),
381 DMA_TO_DEVICE);
382
383 tx_buf->flags = 0;
384 if (tx_buf->skb && (tx_buf->skb != (struct sk_buff *)DMA_DUMMY_DESC))
385 dev_kfree_skb_any(tx_buf->skb);
386 tx_buf->skb = NULL;
387 }
388
mtk_pdma_tx_clean(struct mtk_eth * eth)389 static void mtk_pdma_tx_clean(struct mtk_eth *eth)
390 {
391 struct mtk_tx_ring *ring = ð->tx_ring;
392 int i;
393
394 if (ring->tx_buf) {
395 for (i = 0; i < ring->tx_ring_size; i++)
396 mtk_txd_unmap(eth->dev, &ring->tx_buf[i]);
397 kfree(ring->tx_buf);
398 ring->tx_buf = NULL;
399 }
400
401 if (ring->tx_dma) {
402 dma_free_coherent(eth->dev,
403 ring->tx_ring_size * sizeof(*ring->tx_dma),
404 ring->tx_dma,
405 ring->tx_phys);
406 ring->tx_dma = NULL;
407 }
408 }
409
mtk_qdma_tx_clean(struct mtk_eth * eth)410 static void mtk_qdma_tx_clean(struct mtk_eth *eth)
411 {
412 struct mtk_tx_ring *ring = ð->tx_ring;
413 int i;
414
415 if (ring->tx_buf) {
416 for (i = 0; i < ring->tx_ring_size; i++)
417 mtk_txd_unmap(eth->dev, &ring->tx_buf[i]);
418 kfree(ring->tx_buf);
419 ring->tx_buf = NULL;
420 }
421
422 if (ring->tx_dma) {
423 dma_free_coherent(eth->dev,
424 ring->tx_ring_size * sizeof(*ring->tx_dma),
425 ring->tx_dma,
426 ring->tx_phys);
427 ring->tx_dma = NULL;
428 }
429 }
430
mtk_stats_update_mac(struct mtk_mac * mac)431 void mtk_stats_update_mac(struct mtk_mac *mac)
432 {
433 struct mtk_hw_stats *hw_stats = mac->hw_stats;
434 unsigned int base = mtk_reg_table[MTK_REG_MTK_COUNTER_BASE];
435 u64 stats;
436
437 base += hw_stats->reg_offset;
438
439 u64_stats_update_begin(&hw_stats->syncp);
440
441 if (mac->hw->soc->new_stats) {
442 hw_stats->rx_bytes += mtk_r32(mac->hw, base);
443 stats = mtk_r32(mac->hw, base + 0x04);
444 if (stats)
445 hw_stats->rx_bytes += (stats << 32);
446 hw_stats->rx_packets += mtk_r32(mac->hw, base + 0x08);
447 hw_stats->rx_overflow += mtk_r32(mac->hw, base + 0x10);
448 hw_stats->rx_fcs_errors += mtk_r32(mac->hw, base + 0x14);
449 hw_stats->rx_short_errors += mtk_r32(mac->hw, base + 0x18);
450 hw_stats->rx_long_errors += mtk_r32(mac->hw, base + 0x1c);
451 hw_stats->rx_checksum_errors += mtk_r32(mac->hw, base + 0x20);
452 hw_stats->rx_flow_control_packets +=
453 mtk_r32(mac->hw, base + 0x24);
454 hw_stats->tx_skip += mtk_r32(mac->hw, base + 0x28);
455 hw_stats->tx_collisions += mtk_r32(mac->hw, base + 0x2c);
456 hw_stats->tx_bytes += mtk_r32(mac->hw, base + 0x30);
457 stats = mtk_r32(mac->hw, base + 0x34);
458 if (stats)
459 hw_stats->tx_bytes += (stats << 32);
460 hw_stats->tx_packets += mtk_r32(mac->hw, base + 0x38);
461 } else {
462 hw_stats->tx_bytes += mtk_r32(mac->hw, base);
463 hw_stats->tx_packets += mtk_r32(mac->hw, base + 0x04);
464 hw_stats->tx_skip += mtk_r32(mac->hw, base + 0x08);
465 hw_stats->tx_collisions += mtk_r32(mac->hw, base + 0x0c);
466 hw_stats->rx_bytes += mtk_r32(mac->hw, base + 0x20);
467 hw_stats->rx_packets += mtk_r32(mac->hw, base + 0x24);
468 hw_stats->rx_overflow += mtk_r32(mac->hw, base + 0x28);
469 hw_stats->rx_fcs_errors += mtk_r32(mac->hw, base + 0x2c);
470 hw_stats->rx_short_errors += mtk_r32(mac->hw, base + 0x30);
471 hw_stats->rx_long_errors += mtk_r32(mac->hw, base + 0x34);
472 hw_stats->rx_checksum_errors += mtk_r32(mac->hw, base + 0x38);
473 hw_stats->rx_flow_control_packets +=
474 mtk_r32(mac->hw, base + 0x3c);
475 }
476
477 u64_stats_update_end(&hw_stats->syncp);
478 }
479
mtk_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * storage)480 static void mtk_get_stats64(struct net_device *dev,
481 struct rtnl_link_stats64 *storage)
482 {
483 struct mtk_mac *mac = netdev_priv(dev);
484 struct mtk_hw_stats *hw_stats = mac->hw_stats;
485 unsigned int base = mtk_reg_table[MTK_REG_MTK_COUNTER_BASE];
486 unsigned int start;
487
488 if (!base) {
489 netdev_stats_to_stats64(storage, &dev->stats);
490 return;
491 }
492
493 if (netif_running(dev) && netif_device_present(dev)) {
494 if (spin_trylock(&hw_stats->stats_lock)) {
495 mtk_stats_update_mac(mac);
496 spin_unlock(&hw_stats->stats_lock);
497 }
498 }
499
500 do {
501 start = u64_stats_fetch_begin_irq(&hw_stats->syncp);
502 storage->rx_packets = hw_stats->rx_packets;
503 storage->tx_packets = hw_stats->tx_packets;
504 storage->rx_bytes = hw_stats->rx_bytes;
505 storage->tx_bytes = hw_stats->tx_bytes;
506 storage->collisions = hw_stats->tx_collisions;
507 storage->rx_length_errors = hw_stats->rx_short_errors +
508 hw_stats->rx_long_errors;
509 storage->rx_over_errors = hw_stats->rx_overflow;
510 storage->rx_crc_errors = hw_stats->rx_fcs_errors;
511 storage->rx_errors = hw_stats->rx_checksum_errors;
512 storage->tx_aborted_errors = hw_stats->tx_skip;
513 } while (u64_stats_fetch_retry_irq(&hw_stats->syncp, start));
514
515 storage->tx_errors = dev->stats.tx_errors;
516 storage->rx_dropped = dev->stats.rx_dropped;
517 storage->tx_dropped = dev->stats.tx_dropped;
518 }
519
mtk_vlan_rx_add_vid(struct net_device * dev,__be16 proto,u16 vid)520 static int mtk_vlan_rx_add_vid(struct net_device *dev,
521 __be16 proto, u16 vid)
522 {
523 struct mtk_mac *mac = netdev_priv(dev);
524 struct mtk_eth *eth = mac->hw;
525 u32 idx = (vid & 0xf);
526 u32 vlan_cfg;
527
528 if (!((mtk_reg_table[MTK_REG_MTK_DMA_VID_BASE]) &&
529 (dev->features & NETIF_F_HW_VLAN_CTAG_TX)))
530 return 0;
531
532 if (test_bit(idx, ð->vlan_map)) {
533 netdev_warn(dev, "disable tx vlan offload\n");
534 dev->wanted_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
535 netdev_update_features(dev);
536 } else {
537 vlan_cfg = mtk_r32(eth,
538 mtk_reg_table[MTK_REG_MTK_DMA_VID_BASE] +
539 ((idx >> 1) << 2));
540 if (idx & 0x1) {
541 vlan_cfg &= 0xffff;
542 vlan_cfg |= (vid << 16);
543 } else {
544 vlan_cfg &= 0xffff0000;
545 vlan_cfg |= vid;
546 }
547 mtk_w32(eth,
548 vlan_cfg, mtk_reg_table[MTK_REG_MTK_DMA_VID_BASE] +
549 ((idx >> 1) << 2));
550 set_bit(idx, ð->vlan_map);
551 }
552
553 return 0;
554 }
555
mtk_vlan_rx_kill_vid(struct net_device * dev,__be16 proto,u16 vid)556 static int mtk_vlan_rx_kill_vid(struct net_device *dev,
557 __be16 proto, u16 vid)
558 {
559 struct mtk_mac *mac = netdev_priv(dev);
560 struct mtk_eth *eth = mac->hw;
561 u32 idx = (vid & 0xf);
562
563 if (!((mtk_reg_table[MTK_REG_MTK_DMA_VID_BASE]) &&
564 (dev->features & NETIF_F_HW_VLAN_CTAG_TX)))
565 return 0;
566
567 clear_bit(idx, ð->vlan_map);
568
569 return 0;
570 }
571
mtk_pdma_empty_txd(struct mtk_tx_ring * ring)572 static inline u32 mtk_pdma_empty_txd(struct mtk_tx_ring *ring)
573 {
574 barrier();
575 return (u32)(ring->tx_ring_size -
576 ((ring->tx_next_idx - ring->tx_free_idx) &
577 (ring->tx_ring_size - 1)));
578 }
579
mtk_skb_padto(struct sk_buff * skb,struct mtk_eth * eth)580 static int mtk_skb_padto(struct sk_buff *skb, struct mtk_eth *eth)
581 {
582 unsigned int len;
583 int ret;
584
585 if (unlikely(skb->len >= VLAN_ETH_ZLEN))
586 return 0;
587
588 if (eth->soc->padding_64b && !eth->soc->padding_bug)
589 return 0;
590
591 if (skb_vlan_tag_present(skb))
592 len = ETH_ZLEN;
593 else if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
594 len = VLAN_ETH_ZLEN;
595 else if (!eth->soc->padding_64b)
596 len = ETH_ZLEN;
597 else
598 return 0;
599
600 if (skb->len >= len)
601 return 0;
602
603 ret = skb_pad(skb, len - skb->len);
604 if (ret < 0)
605 return ret;
606 skb->len = len;
607 skb_set_tail_pointer(skb, len);
608
609 return ret;
610 }
611
mtk_pdma_tx_map(struct sk_buff * skb,struct net_device * dev,int tx_num,struct mtk_tx_ring * ring,bool gso)612 static int mtk_pdma_tx_map(struct sk_buff *skb, struct net_device *dev,
613 int tx_num, struct mtk_tx_ring *ring, bool gso)
614 {
615 struct mtk_mac *mac = netdev_priv(dev);
616 struct mtk_eth *eth = mac->hw;
617 struct skb_frag_struct *frag;
618 struct mtk_tx_dma txd, *ptxd;
619 struct mtk_tx_buf *tx_buf;
620 int i, j, k, frag_size, frag_map_size, offset;
621 dma_addr_t mapped_addr;
622 unsigned int nr_frags;
623 u32 def_txd4;
624
625 if (mtk_skb_padto(skb, eth)) {
626 netif_warn(eth, tx_err, dev, "tx padding failed!\n");
627 return -1;
628 }
629
630 tx_buf = &ring->tx_buf[ring->tx_next_idx];
631 memset(tx_buf, 0, sizeof(*tx_buf));
632 memset(&txd, 0, sizeof(txd));
633 nr_frags = skb_shinfo(skb)->nr_frags;
634
635 /* init tx descriptor */
636 def_txd4 = eth->soc->txd4;
637 txd.txd4 = def_txd4;
638
639 if (eth->soc->mac_count > 1)
640 txd.txd4 |= (mac->id + 1) << TX_DMA_FPORT_SHIFT;
641
642 if (gso)
643 txd.txd4 |= TX_DMA_TSO;
644
645 /* TX Checksum offload */
646 if (skb->ip_summed == CHECKSUM_PARTIAL)
647 txd.txd4 |= TX_DMA_CHKSUM;
648
649 /* VLAN header offload */
650 if (skb_vlan_tag_present(skb)) {
651 u16 tag = skb_vlan_tag_get(skb);
652
653 txd.txd4 |= TX_DMA_INS_VLAN |
654 ((tag >> VLAN_PRIO_SHIFT) << 4) |
655 (tag & 0xF);
656 }
657
658 mapped_addr = dma_map_single(&dev->dev, skb->data,
659 skb_headlen(skb), DMA_TO_DEVICE);
660 if (unlikely(dma_mapping_error(&dev->dev, mapped_addr)))
661 return -1;
662
663 txd.txd1 = mapped_addr;
664 txd.txd2 = TX_DMA_PLEN0(skb_headlen(skb));
665
666 tx_buf->flags |= MTK_TX_FLAGS_SINGLE0;
667 dma_unmap_addr_set(tx_buf, dma_addr0, mapped_addr);
668 dma_unmap_len_set(tx_buf, dma_len0, skb_headlen(skb));
669
670 /* TX SG offload */
671 j = ring->tx_next_idx;
672 k = 0;
673 for (i = 0; i < nr_frags; i++) {
674 offset = 0;
675 frag = &skb_shinfo(skb)->frags[i];
676 frag_size = skb_frag_size(frag);
677
678 while (frag_size > 0) {
679 frag_map_size = min(frag_size, TX_DMA_BUF_LEN);
680 mapped_addr = skb_frag_dma_map(&dev->dev, frag, offset,
681 frag_map_size,
682 DMA_TO_DEVICE);
683 if (unlikely(dma_mapping_error(&dev->dev, mapped_addr)))
684 goto err_dma;
685
686 if (k & 0x1) {
687 j = NEXT_TX_DESP_IDX(j);
688 txd.txd1 = mapped_addr;
689 txd.txd2 = TX_DMA_PLEN0(frag_map_size);
690 txd.txd4 = def_txd4;
691
692 tx_buf = &ring->tx_buf[j];
693 memset(tx_buf, 0, sizeof(*tx_buf));
694
695 tx_buf->flags |= MTK_TX_FLAGS_PAGE0;
696 dma_unmap_addr_set(tx_buf, dma_addr0,
697 mapped_addr);
698 dma_unmap_len_set(tx_buf, dma_len0,
699 frag_map_size);
700 } else {
701 txd.txd3 = mapped_addr;
702 txd.txd2 |= TX_DMA_PLEN1(frag_map_size);
703
704 tx_buf->skb = (struct sk_buff *)DMA_DUMMY_DESC;
705 tx_buf->flags |= MTK_TX_FLAGS_PAGE1;
706 dma_unmap_addr_set(tx_buf, dma_addr1,
707 mapped_addr);
708 dma_unmap_len_set(tx_buf, dma_len1,
709 frag_map_size);
710
711 if (!((i == (nr_frags - 1)) &&
712 (frag_map_size == frag_size))) {
713 mtk_set_txd_pdma(&txd,
714 &ring->tx_dma[j]);
715 memset(&txd, 0, sizeof(txd));
716 }
717 }
718 frag_size -= frag_map_size;
719 offset += frag_map_size;
720 k++;
721 }
722 }
723
724 /* set last segment */
725 if (k & 0x1)
726 txd.txd2 |= TX_DMA_LS1;
727 else
728 txd.txd2 |= TX_DMA_LS0;
729 mtk_set_txd_pdma(&txd, &ring->tx_dma[j]);
730
731 /* store skb to cleanup */
732 tx_buf->skb = skb;
733
734 netdev_sent_queue(dev, skb->len);
735 skb_tx_timestamp(skb);
736
737 ring->tx_next_idx = NEXT_TX_DESP_IDX(j);
738 /* make sure that all changes to the dma ring are flushed before we
739 * continue
740 */
741 wmb();
742 atomic_set(&ring->tx_free_count, mtk_pdma_empty_txd(ring));
743
744 if (netif_xmit_stopped(netdev_get_tx_queue(dev, 0)) || !skb->xmit_more)
745 mtk_reg_w32(eth, ring->tx_next_idx, MTK_REG_TX_CTX_IDX0);
746
747 return 0;
748
749 err_dma:
750 j = ring->tx_next_idx;
751 for (i = 0; i < tx_num; i++) {
752 ptxd = &ring->tx_dma[j];
753 tx_buf = &ring->tx_buf[j];
754
755 /* unmap dma */
756 mtk_txd_unmap(&dev->dev, tx_buf);
757
758 ptxd->txd2 = TX_DMA_DESP2_DEF;
759 j = NEXT_TX_DESP_IDX(j);
760 }
761 /* make sure that all changes to the dma ring are flushed before we
762 * continue
763 */
764 wmb();
765 return -1;
766 }
767
768 /* the qdma core needs scratch memory to be setup */
mtk_init_fq_dma(struct mtk_eth * eth)769 static int mtk_init_fq_dma(struct mtk_eth *eth)
770 {
771 dma_addr_t dma_addr, phy_ring_head, phy_ring_tail;
772 int cnt = eth->soc->dma_ring_size;
773 int i;
774
775 eth->scratch_ring = dma_alloc_coherent(eth->dev,
776 cnt * sizeof(struct mtk_tx_dma),
777 &phy_ring_head,
778 GFP_ATOMIC | __GFP_ZERO);
779 if (unlikely(!eth->scratch_ring))
780 return -ENOMEM;
781
782 eth->scratch_head = kcalloc(cnt, QDMA_PAGE_SIZE,
783 GFP_KERNEL);
784 dma_addr = dma_map_single(eth->dev,
785 eth->scratch_head, cnt * QDMA_PAGE_SIZE,
786 DMA_FROM_DEVICE);
787 if (unlikely(dma_mapping_error(eth->dev, dma_addr)))
788 return -ENOMEM;
789
790 memset(eth->scratch_ring, 0x0, sizeof(struct mtk_tx_dma) * cnt);
791 phy_ring_tail = phy_ring_head + (sizeof(struct mtk_tx_dma) * (cnt - 1));
792
793 for (i = 0; i < cnt; i++) {
794 eth->scratch_ring[i].txd1 = (dma_addr + (i * QDMA_PAGE_SIZE));
795 if (i < cnt - 1)
796 eth->scratch_ring[i].txd2 = (phy_ring_head +
797 ((i + 1) * sizeof(struct mtk_tx_dma)));
798 eth->scratch_ring[i].txd3 = TX_QDMA_SDL(QDMA_PAGE_SIZE);
799 }
800
801 mtk_w32(eth, phy_ring_head, MTK_QDMA_FQ_HEAD);
802 mtk_w32(eth, phy_ring_tail, MTK_QDMA_FQ_TAIL);
803 mtk_w32(eth, (cnt << 16) | cnt, MTK_QDMA_FQ_CNT);
804 mtk_w32(eth, QDMA_PAGE_SIZE << 16, MTK_QDMA_FQ_BLEN);
805
806 return 0;
807 }
808
mtk_qdma_phys_to_virt(struct mtk_tx_ring * ring,u32 desc)809 static void *mtk_qdma_phys_to_virt(struct mtk_tx_ring *ring, u32 desc)
810 {
811 void *ret = ring->tx_dma;
812
813 return ret + (desc - ring->tx_phys);
814 }
815
mtk_tx_next_qdma(struct mtk_tx_ring * ring,struct mtk_tx_dma * txd)816 static struct mtk_tx_dma *mtk_tx_next_qdma(struct mtk_tx_ring *ring,
817 struct mtk_tx_dma *txd)
818 {
819 return mtk_qdma_phys_to_virt(ring, txd->txd2);
820 }
821
mtk_desc_to_tx_buf(struct mtk_tx_ring * ring,struct mtk_tx_dma * txd)822 static struct mtk_tx_buf *mtk_desc_to_tx_buf(struct mtk_tx_ring *ring,
823 struct mtk_tx_dma *txd)
824 {
825 int idx = txd - ring->tx_dma;
826
827 return &ring->tx_buf[idx];
828 }
829
mtk_qdma_tx_map(struct sk_buff * skb,struct net_device * dev,int tx_num,struct mtk_tx_ring * ring,bool gso)830 static int mtk_qdma_tx_map(struct sk_buff *skb, struct net_device *dev,
831 int tx_num, struct mtk_tx_ring *ring, bool gso)
832 {
833 struct mtk_mac *mac = netdev_priv(dev);
834 struct mtk_eth *eth = mac->hw;
835 struct mtk_tx_dma *itxd, *txd;
836 struct mtk_tx_buf *tx_buf;
837 dma_addr_t mapped_addr;
838 unsigned int nr_frags;
839 int i, n_desc = 1;
840 u32 txd4 = eth->soc->txd4;
841
842 itxd = ring->tx_next_free;
843 if (itxd == ring->tx_last_free)
844 return -ENOMEM;
845
846 if (eth->soc->mac_count > 1)
847 txd4 |= (mac->id + 1) << TX_DMA_FPORT_SHIFT;
848
849 tx_buf = mtk_desc_to_tx_buf(ring, itxd);
850 memset(tx_buf, 0, sizeof(*tx_buf));
851
852 if (gso)
853 txd4 |= TX_DMA_TSO;
854
855 /* TX Checksum offload */
856 if (skb->ip_summed == CHECKSUM_PARTIAL)
857 txd4 |= TX_DMA_CHKSUM;
858
859 /* VLAN header offload */
860 if (skb_vlan_tag_present(skb))
861 txd4 |= TX_DMA_INS_VLAN_MT7621 | skb_vlan_tag_get(skb);
862
863 mapped_addr = dma_map_single(&dev->dev, skb->data,
864 skb_headlen(skb), DMA_TO_DEVICE);
865 if (unlikely(dma_mapping_error(&dev->dev, mapped_addr)))
866 return -ENOMEM;
867
868 WRITE_ONCE(itxd->txd1, mapped_addr);
869 tx_buf->flags |= MTK_TX_FLAGS_SINGLE0;
870 dma_unmap_addr_set(tx_buf, dma_addr0, mapped_addr);
871 dma_unmap_len_set(tx_buf, dma_len0, skb_headlen(skb));
872
873 /* TX SG offload */
874 txd = itxd;
875 nr_frags = skb_shinfo(skb)->nr_frags;
876 for (i = 0; i < nr_frags; i++) {
877 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i];
878 unsigned int offset = 0;
879 int frag_size = skb_frag_size(frag);
880
881 while (frag_size) {
882 bool last_frag = false;
883 unsigned int frag_map_size;
884
885 txd = mtk_tx_next_qdma(ring, txd);
886 if (txd == ring->tx_last_free)
887 goto err_dma;
888
889 n_desc++;
890 frag_map_size = min(frag_size, TX_DMA_BUF_LEN);
891 mapped_addr = skb_frag_dma_map(&dev->dev, frag, offset,
892 frag_map_size,
893 DMA_TO_DEVICE);
894 if (unlikely(dma_mapping_error(&dev->dev, mapped_addr)))
895 goto err_dma;
896
897 if (i == nr_frags - 1 &&
898 (frag_size - frag_map_size) == 0)
899 last_frag = true;
900
901 WRITE_ONCE(txd->txd1, mapped_addr);
902 WRITE_ONCE(txd->txd3, (QDMA_TX_SWC |
903 TX_DMA_PLEN0(frag_map_size) |
904 last_frag * TX_DMA_LS0) |
905 mac->id);
906 WRITE_ONCE(txd->txd4, 0);
907
908 tx_buf->skb = (struct sk_buff *)DMA_DUMMY_DESC;
909 tx_buf = mtk_desc_to_tx_buf(ring, txd);
910 memset(tx_buf, 0, sizeof(*tx_buf));
911
912 tx_buf->flags |= MTK_TX_FLAGS_PAGE0;
913 dma_unmap_addr_set(tx_buf, dma_addr0, mapped_addr);
914 dma_unmap_len_set(tx_buf, dma_len0, frag_map_size);
915 frag_size -= frag_map_size;
916 offset += frag_map_size;
917 }
918 }
919
920 /* store skb to cleanup */
921 tx_buf->skb = skb;
922
923 WRITE_ONCE(itxd->txd4, txd4);
924 WRITE_ONCE(itxd->txd3, (QDMA_TX_SWC | TX_DMA_PLEN0(skb_headlen(skb)) |
925 (!nr_frags * TX_DMA_LS0)));
926
927 netdev_sent_queue(dev, skb->len);
928 skb_tx_timestamp(skb);
929
930 ring->tx_next_free = mtk_tx_next_qdma(ring, txd);
931 atomic_sub(n_desc, &ring->tx_free_count);
932
933 /* make sure that all changes to the dma ring are flushed before we
934 * continue
935 */
936 wmb();
937
938 if (netif_xmit_stopped(netdev_get_tx_queue(dev, 0)) || !skb->xmit_more)
939 mtk_w32(eth, txd->txd2, MTK_QTX_CTX_PTR);
940
941 return 0;
942
943 err_dma:
944 do {
945 tx_buf = mtk_desc_to_tx_buf(ring, txd);
946
947 /* unmap dma */
948 mtk_txd_unmap(&dev->dev, tx_buf);
949
950 itxd->txd3 = TX_DMA_DESP2_DEF;
951 itxd = mtk_tx_next_qdma(ring, itxd);
952 } while (itxd != txd);
953
954 return -ENOMEM;
955 }
956
mtk_cal_txd_req(struct sk_buff * skb)957 static inline int mtk_cal_txd_req(struct sk_buff *skb)
958 {
959 int i, nfrags;
960 struct skb_frag_struct *frag;
961
962 nfrags = 1;
963 if (skb_is_gso(skb)) {
964 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
965 frag = &skb_shinfo(skb)->frags[i];
966 nfrags += DIV_ROUND_UP(frag->size, TX_DMA_BUF_LEN);
967 }
968 } else {
969 nfrags += skb_shinfo(skb)->nr_frags;
970 }
971
972 return DIV_ROUND_UP(nfrags, 2);
973 }
974
mtk_start_xmit(struct sk_buff * skb,struct net_device * dev)975 static int mtk_start_xmit(struct sk_buff *skb, struct net_device *dev)
976 {
977 struct mtk_mac *mac = netdev_priv(dev);
978 struct mtk_eth *eth = mac->hw;
979 struct mtk_tx_ring *ring = ð->tx_ring;
980 struct net_device_stats *stats = &dev->stats;
981 int tx_num;
982 int len = skb->len;
983 bool gso = false;
984
985 tx_num = mtk_cal_txd_req(skb);
986 if (unlikely(atomic_read(&ring->tx_free_count) <= tx_num)) {
987 netif_stop_queue(dev);
988 netif_err(eth, tx_queued, dev,
989 "Tx Ring full when queue awake!\n");
990 return NETDEV_TX_BUSY;
991 }
992
993 /* TSO: fill MSS info in tcp checksum field */
994 if (skb_is_gso(skb)) {
995 if (skb_cow_head(skb, 0)) {
996 netif_warn(eth, tx_err, dev,
997 "GSO expand head fail.\n");
998 goto drop;
999 }
1000
1001 if (skb_shinfo(skb)->gso_type &
1002 (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
1003 gso = true;
1004 tcp_hdr(skb)->check = htons(skb_shinfo(skb)->gso_size);
1005 }
1006 }
1007
1008 if (ring->tx_map(skb, dev, tx_num, ring, gso) < 0)
1009 goto drop;
1010
1011 stats->tx_packets++;
1012 stats->tx_bytes += len;
1013
1014 if (unlikely(atomic_read(&ring->tx_free_count) <= ring->tx_thresh)) {
1015 netif_stop_queue(dev);
1016 smp_mb();
1017 if (unlikely(atomic_read(&ring->tx_free_count) >
1018 ring->tx_thresh))
1019 netif_wake_queue(dev);
1020 }
1021
1022 return NETDEV_TX_OK;
1023
1024 drop:
1025 stats->tx_dropped++;
1026 dev_kfree_skb(skb);
1027 return NETDEV_TX_OK;
1028 }
1029
mtk_poll_rx(struct napi_struct * napi,int budget,struct mtk_eth * eth,u32 rx_intr)1030 static int mtk_poll_rx(struct napi_struct *napi, int budget,
1031 struct mtk_eth *eth, u32 rx_intr)
1032 {
1033 struct mtk_soc_data *soc = eth->soc;
1034 struct mtk_rx_ring *ring = ð->rx_ring[0];
1035 int idx = ring->rx_calc_idx;
1036 u32 checksum_bit;
1037 struct sk_buff *skb;
1038 u8 *data, *new_data;
1039 struct mtk_rx_dma *rxd, trxd;
1040 int done = 0, pad;
1041
1042 if (eth->soc->hw_features & NETIF_F_RXCSUM)
1043 checksum_bit = soc->checksum_bit;
1044 else
1045 checksum_bit = 0;
1046
1047 if (eth->soc->rx_2b_offset)
1048 pad = 0;
1049 else
1050 pad = NET_IP_ALIGN;
1051
1052 while (done < budget) {
1053 struct net_device *netdev;
1054 unsigned int pktlen;
1055 dma_addr_t dma_addr;
1056 int mac = 0;
1057
1058 idx = NEXT_RX_DESP_IDX(idx);
1059 rxd = &ring->rx_dma[idx];
1060 data = ring->rx_data[idx];
1061
1062 mtk_get_rxd(&trxd, rxd);
1063 if (!(trxd.rxd2 & RX_DMA_DONE))
1064 break;
1065
1066 /* find out which mac the packet come from. values start at 1 */
1067 if (eth->soc->mac_count > 1) {
1068 mac = (trxd.rxd4 >> RX_DMA_FPORT_SHIFT) &
1069 RX_DMA_FPORT_MASK;
1070 mac--;
1071 if (mac < 0 || mac >= eth->soc->mac_count)
1072 goto release_desc;
1073 }
1074
1075 netdev = eth->netdev[mac];
1076
1077 /* alloc new buffer */
1078 new_data = napi_alloc_frag(ring->frag_size);
1079 if (unlikely(!new_data || !netdev)) {
1080 netdev->stats.rx_dropped++;
1081 goto release_desc;
1082 }
1083 dma_addr = dma_map_single(&netdev->dev,
1084 new_data + NET_SKB_PAD + pad,
1085 ring->rx_buf_size,
1086 DMA_FROM_DEVICE);
1087 if (unlikely(dma_mapping_error(&netdev->dev, dma_addr))) {
1088 skb_free_frag(new_data);
1089 goto release_desc;
1090 }
1091
1092 /* receive data */
1093 skb = build_skb(data, ring->frag_size);
1094 if (unlikely(!skb)) {
1095 put_page(virt_to_head_page(new_data));
1096 goto release_desc;
1097 }
1098 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
1099
1100 dma_unmap_single(&netdev->dev, trxd.rxd1,
1101 ring->rx_buf_size, DMA_FROM_DEVICE);
1102 pktlen = RX_DMA_GET_PLEN0(trxd.rxd2);
1103 skb->dev = netdev;
1104 skb_put(skb, pktlen);
1105 if (trxd.rxd4 & checksum_bit)
1106 skb->ip_summed = CHECKSUM_UNNECESSARY;
1107 else
1108 skb_checksum_none_assert(skb);
1109 skb->protocol = eth_type_trans(skb, netdev);
1110
1111 netdev->stats.rx_packets++;
1112 netdev->stats.rx_bytes += pktlen;
1113
1114 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX &&
1115 RX_DMA_VID(trxd.rxd3))
1116 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1117 RX_DMA_VID(trxd.rxd3));
1118 napi_gro_receive(napi, skb);
1119
1120 ring->rx_data[idx] = new_data;
1121 rxd->rxd1 = (unsigned int)dma_addr;
1122
1123 release_desc:
1124 if (eth->soc->rx_sg_dma)
1125 rxd->rxd2 = RX_DMA_PLEN0(ring->rx_buf_size);
1126 else
1127 rxd->rxd2 = RX_DMA_LSO;
1128
1129 ring->rx_calc_idx = idx;
1130 /* make sure that all changes to the dma ring are flushed before
1131 * we continue
1132 */
1133 wmb();
1134 if (eth->soc->dma_type == MTK_QDMA)
1135 mtk_w32(eth, ring->rx_calc_idx, MTK_QRX_CRX_IDX0);
1136 else
1137 mtk_reg_w32(eth, ring->rx_calc_idx,
1138 MTK_REG_RX_CALC_IDX0);
1139 done++;
1140 }
1141
1142 if (done < budget)
1143 mtk_irq_ack(eth, rx_intr);
1144
1145 return done;
1146 }
1147
mtk_pdma_tx_poll(struct mtk_eth * eth,int budget,bool * tx_again)1148 static int mtk_pdma_tx_poll(struct mtk_eth *eth, int budget, bool *tx_again)
1149 {
1150 struct sk_buff *skb;
1151 struct mtk_tx_buf *tx_buf;
1152 int done = 0;
1153 u32 idx, hwidx;
1154 struct mtk_tx_ring *ring = ð->tx_ring;
1155 unsigned int bytes = 0;
1156
1157 idx = ring->tx_free_idx;
1158 hwidx = mtk_reg_r32(eth, MTK_REG_TX_DTX_IDX0);
1159
1160 while ((idx != hwidx) && budget) {
1161 tx_buf = &ring->tx_buf[idx];
1162 skb = tx_buf->skb;
1163
1164 if (!skb)
1165 break;
1166
1167 if (skb != (struct sk_buff *)DMA_DUMMY_DESC) {
1168 bytes += skb->len;
1169 done++;
1170 budget--;
1171 }
1172 mtk_txd_unmap(eth->dev, tx_buf);
1173 idx = NEXT_TX_DESP_IDX(idx);
1174 }
1175 ring->tx_free_idx = idx;
1176 atomic_set(&ring->tx_free_count, mtk_pdma_empty_txd(ring));
1177
1178 /* read hw index again make sure no new tx packet */
1179 if (idx != hwidx || idx != mtk_reg_r32(eth, MTK_REG_TX_DTX_IDX0))
1180 *tx_again = 1;
1181
1182 if (done)
1183 netdev_completed_queue(*eth->netdev, done, bytes);
1184
1185 return done;
1186 }
1187
mtk_qdma_tx_poll(struct mtk_eth * eth,int budget,bool * tx_again)1188 static int mtk_qdma_tx_poll(struct mtk_eth *eth, int budget, bool *tx_again)
1189 {
1190 struct mtk_tx_ring *ring = ð->tx_ring;
1191 struct mtk_tx_dma *desc;
1192 struct sk_buff *skb;
1193 struct mtk_tx_buf *tx_buf;
1194 int total = 0, done[MTK_MAX_DEVS];
1195 unsigned int bytes[MTK_MAX_DEVS];
1196 u32 cpu, dma;
1197 int i;
1198
1199 memset(done, 0, sizeof(done));
1200 memset(bytes, 0, sizeof(bytes));
1201
1202 cpu = mtk_r32(eth, MTK_QTX_CRX_PTR);
1203 dma = mtk_r32(eth, MTK_QTX_DRX_PTR);
1204
1205 desc = mtk_qdma_phys_to_virt(ring, cpu);
1206
1207 while ((cpu != dma) && budget) {
1208 u32 next_cpu = desc->txd2;
1209 int mac;
1210
1211 desc = mtk_tx_next_qdma(ring, desc);
1212 if ((desc->txd3 & QDMA_TX_OWNER_CPU) == 0)
1213 break;
1214
1215 mac = (desc->txd4 >> TX_DMA_FPORT_SHIFT) &
1216 TX_DMA_FPORT_MASK;
1217 mac--;
1218
1219 tx_buf = mtk_desc_to_tx_buf(ring, desc);
1220 skb = tx_buf->skb;
1221 if (!skb)
1222 break;
1223
1224 if (skb != (struct sk_buff *)DMA_DUMMY_DESC) {
1225 bytes[mac] += skb->len;
1226 done[mac]++;
1227 budget--;
1228 }
1229 mtk_txd_unmap(eth->dev, tx_buf);
1230
1231 ring->tx_last_free->txd2 = next_cpu;
1232 ring->tx_last_free = desc;
1233 atomic_inc(&ring->tx_free_count);
1234
1235 cpu = next_cpu;
1236 }
1237
1238 mtk_w32(eth, cpu, MTK_QTX_CRX_PTR);
1239
1240 /* read hw index again make sure no new tx packet */
1241 if (cpu != dma || cpu != mtk_r32(eth, MTK_QTX_DRX_PTR))
1242 *tx_again = true;
1243
1244 for (i = 0; i < eth->soc->mac_count; i++) {
1245 if (!done[i])
1246 continue;
1247 netdev_completed_queue(eth->netdev[i], done[i], bytes[i]);
1248 total += done[i];
1249 }
1250
1251 return total;
1252 }
1253
mtk_poll_tx(struct mtk_eth * eth,int budget,u32 tx_intr,bool * tx_again)1254 static int mtk_poll_tx(struct mtk_eth *eth, int budget, u32 tx_intr,
1255 bool *tx_again)
1256 {
1257 struct mtk_tx_ring *ring = ð->tx_ring;
1258 struct net_device *netdev = eth->netdev[0];
1259 int done;
1260
1261 done = eth->tx_ring.tx_poll(eth, budget, tx_again);
1262 if (!*tx_again)
1263 mtk_irq_ack(eth, tx_intr);
1264
1265 if (!done)
1266 return 0;
1267
1268 smp_mb();
1269 if (unlikely(!netif_queue_stopped(netdev)))
1270 return done;
1271
1272 if (atomic_read(&ring->tx_free_count) > ring->tx_thresh)
1273 netif_wake_queue(netdev);
1274
1275 return done;
1276 }
1277
mtk_stats_update(struct mtk_eth * eth)1278 static void mtk_stats_update(struct mtk_eth *eth)
1279 {
1280 int i;
1281
1282 for (i = 0; i < eth->soc->mac_count; i++) {
1283 if (!eth->mac[i] || !eth->mac[i]->hw_stats)
1284 continue;
1285 if (spin_trylock(ð->mac[i]->hw_stats->stats_lock)) {
1286 mtk_stats_update_mac(eth->mac[i]);
1287 spin_unlock(ð->mac[i]->hw_stats->stats_lock);
1288 }
1289 }
1290 }
1291
mtk_poll(struct napi_struct * napi,int budget)1292 static int mtk_poll(struct napi_struct *napi, int budget)
1293 {
1294 struct mtk_eth *eth = container_of(napi, struct mtk_eth, rx_napi);
1295 u32 status, mtk_status, mask, tx_intr, rx_intr, status_intr;
1296 int tx_done, rx_done;
1297 bool tx_again = false;
1298
1299 status = mtk_irq_pending(eth);
1300 mtk_status = mtk_irq_pending_status(eth);
1301 tx_intr = eth->soc->tx_int;
1302 rx_intr = eth->soc->rx_int;
1303 status_intr = eth->soc->status_int;
1304 tx_done = 0;
1305 rx_done = 0;
1306 tx_again = 0;
1307
1308 if (status & tx_intr)
1309 tx_done = mtk_poll_tx(eth, budget, tx_intr, &tx_again);
1310
1311 if (status & rx_intr)
1312 rx_done = mtk_poll_rx(napi, budget, eth, rx_intr);
1313
1314 if (unlikely(mtk_status & status_intr)) {
1315 mtk_stats_update(eth);
1316 mtk_irq_ack_status(eth, status_intr);
1317 }
1318
1319 if (unlikely(netif_msg_intr(eth))) {
1320 mask = mtk_irq_enabled(eth);
1321 netdev_info(eth->netdev[0],
1322 "done tx %d, rx %d, intr 0x%08x/0x%x\n",
1323 tx_done, rx_done, status, mask);
1324 }
1325
1326 if (tx_again || rx_done == budget)
1327 return budget;
1328
1329 status = mtk_irq_pending(eth);
1330 if (status & (tx_intr | rx_intr))
1331 return budget;
1332
1333 napi_complete(napi);
1334 mtk_irq_enable(eth, tx_intr | rx_intr);
1335
1336 return rx_done;
1337 }
1338
mtk_pdma_tx_alloc(struct mtk_eth * eth)1339 static int mtk_pdma_tx_alloc(struct mtk_eth *eth)
1340 {
1341 int i;
1342 struct mtk_tx_ring *ring = ð->tx_ring;
1343
1344 ring->tx_ring_size = eth->soc->dma_ring_size;
1345 ring->tx_free_idx = 0;
1346 ring->tx_next_idx = 0;
1347 ring->tx_thresh = max((unsigned long)ring->tx_ring_size >> 2,
1348 MAX_SKB_FRAGS);
1349
1350 ring->tx_buf = kcalloc(ring->tx_ring_size, sizeof(*ring->tx_buf),
1351 GFP_KERNEL);
1352 if (!ring->tx_buf)
1353 goto no_tx_mem;
1354
1355 ring->tx_dma =
1356 dma_alloc_coherent(eth->dev,
1357 ring->tx_ring_size * sizeof(*ring->tx_dma),
1358 &ring->tx_phys, GFP_ATOMIC | __GFP_ZERO);
1359 if (!ring->tx_dma)
1360 goto no_tx_mem;
1361
1362 for (i = 0; i < ring->tx_ring_size; i++) {
1363 ring->tx_dma[i].txd2 = TX_DMA_DESP2_DEF;
1364 ring->tx_dma[i].txd4 = eth->soc->txd4;
1365 }
1366
1367 atomic_set(&ring->tx_free_count, mtk_pdma_empty_txd(ring));
1368 ring->tx_map = mtk_pdma_tx_map;
1369 ring->tx_poll = mtk_pdma_tx_poll;
1370 ring->tx_clean = mtk_pdma_tx_clean;
1371
1372 /* make sure that all changes to the dma ring are flushed before we
1373 * continue
1374 */
1375 wmb();
1376
1377 mtk_reg_w32(eth, ring->tx_phys, MTK_REG_TX_BASE_PTR0);
1378 mtk_reg_w32(eth, ring->tx_ring_size, MTK_REG_TX_MAX_CNT0);
1379 mtk_reg_w32(eth, 0, MTK_REG_TX_CTX_IDX0);
1380 mtk_reg_w32(eth, MTK_PST_DTX_IDX0, MTK_REG_PDMA_RST_CFG);
1381
1382 return 0;
1383
1384 no_tx_mem:
1385 return -ENOMEM;
1386 }
1387
mtk_qdma_tx_alloc_tx(struct mtk_eth * eth)1388 static int mtk_qdma_tx_alloc_tx(struct mtk_eth *eth)
1389 {
1390 struct mtk_tx_ring *ring = ð->tx_ring;
1391 int i, sz = sizeof(*ring->tx_dma);
1392
1393 ring->tx_ring_size = eth->soc->dma_ring_size;
1394 ring->tx_buf = kcalloc(ring->tx_ring_size, sizeof(*ring->tx_buf),
1395 GFP_KERNEL);
1396 if (!ring->tx_buf)
1397 goto no_tx_mem;
1398
1399 ring->tx_dma = dma_zalloc_coherent(eth->dev,
1400 ring->tx_ring_size * sz,
1401 &ring->tx_phys,
1402 GFP_ATOMIC | __GFP_ZERO);
1403 if (!ring->tx_dma)
1404 goto no_tx_mem;
1405
1406 for (i = 0; i < ring->tx_ring_size; i++) {
1407 int next = (i + 1) % ring->tx_ring_size;
1408 u32 next_ptr = ring->tx_phys + next * sz;
1409
1410 ring->tx_dma[i].txd2 = next_ptr;
1411 ring->tx_dma[i].txd3 = TX_DMA_DESP2_DEF;
1412 }
1413
1414 atomic_set(&ring->tx_free_count, ring->tx_ring_size - 2);
1415 ring->tx_next_free = &ring->tx_dma[0];
1416 ring->tx_last_free = &ring->tx_dma[ring->tx_ring_size - 2];
1417 ring->tx_thresh = max((unsigned long)ring->tx_ring_size >> 2,
1418 MAX_SKB_FRAGS);
1419
1420 ring->tx_map = mtk_qdma_tx_map;
1421 ring->tx_poll = mtk_qdma_tx_poll;
1422 ring->tx_clean = mtk_qdma_tx_clean;
1423
1424 /* make sure that all changes to the dma ring are flushed before we
1425 * continue
1426 */
1427 wmb();
1428
1429 mtk_w32(eth, ring->tx_phys, MTK_QTX_CTX_PTR);
1430 mtk_w32(eth, ring->tx_phys, MTK_QTX_DTX_PTR);
1431 mtk_w32(eth,
1432 ring->tx_phys + ((ring->tx_ring_size - 1) * sz),
1433 MTK_QTX_CRX_PTR);
1434 mtk_w32(eth,
1435 ring->tx_phys + ((ring->tx_ring_size - 1) * sz),
1436 MTK_QTX_DRX_PTR);
1437
1438 return 0;
1439
1440 no_tx_mem:
1441 return -ENOMEM;
1442 }
1443
mtk_qdma_init(struct mtk_eth * eth,int ring)1444 static int mtk_qdma_init(struct mtk_eth *eth, int ring)
1445 {
1446 int err;
1447
1448 err = mtk_init_fq_dma(eth);
1449 if (err)
1450 return err;
1451
1452 err = mtk_qdma_tx_alloc_tx(eth);
1453 if (err)
1454 return err;
1455
1456 err = mtk_dma_rx_alloc(eth, ð->rx_ring[ring]);
1457 if (err)
1458 return err;
1459
1460 mtk_w32(eth, eth->rx_ring[ring].rx_phys, MTK_QRX_BASE_PTR0);
1461 mtk_w32(eth, eth->rx_ring[ring].rx_ring_size, MTK_QRX_MAX_CNT0);
1462 mtk_w32(eth, eth->rx_ring[ring].rx_calc_idx, MTK_QRX_CRX_IDX0);
1463 mtk_w32(eth, MTK_PST_DRX_IDX0, MTK_QDMA_RST_IDX);
1464 mtk_w32(eth, (QDMA_RES_THRES << 8) | QDMA_RES_THRES, MTK_QTX_CFG(0));
1465
1466 /* Enable random early drop and set drop threshold automatically */
1467 mtk_w32(eth, 0x174444, MTK_QDMA_FC_THRES);
1468 mtk_w32(eth, 0x0, MTK_QDMA_HRED2);
1469
1470 return 0;
1471 }
1472
mtk_pdma_qdma_init(struct mtk_eth * eth)1473 static int mtk_pdma_qdma_init(struct mtk_eth *eth)
1474 {
1475 int err = mtk_qdma_init(eth, 1);
1476
1477 if (err)
1478 return err;
1479
1480 err = mtk_dma_rx_alloc(eth, ð->rx_ring[0]);
1481 if (err)
1482 return err;
1483
1484 mtk_reg_w32(eth, eth->rx_ring[0].rx_phys, MTK_REG_RX_BASE_PTR0);
1485 mtk_reg_w32(eth, eth->rx_ring[0].rx_ring_size, MTK_REG_RX_MAX_CNT0);
1486 mtk_reg_w32(eth, eth->rx_ring[0].rx_calc_idx, MTK_REG_RX_CALC_IDX0);
1487 mtk_reg_w32(eth, MTK_PST_DRX_IDX0, MTK_REG_PDMA_RST_CFG);
1488
1489 return 0;
1490 }
1491
mtk_pdma_init(struct mtk_eth * eth)1492 static int mtk_pdma_init(struct mtk_eth *eth)
1493 {
1494 struct mtk_rx_ring *ring = ð->rx_ring[0];
1495 int err;
1496
1497 err = mtk_pdma_tx_alloc(eth);
1498 if (err)
1499 return err;
1500
1501 err = mtk_dma_rx_alloc(eth, ring);
1502 if (err)
1503 return err;
1504
1505 mtk_reg_w32(eth, ring->rx_phys, MTK_REG_RX_BASE_PTR0);
1506 mtk_reg_w32(eth, ring->rx_ring_size, MTK_REG_RX_MAX_CNT0);
1507 mtk_reg_w32(eth, ring->rx_calc_idx, MTK_REG_RX_CALC_IDX0);
1508 mtk_reg_w32(eth, MTK_PST_DRX_IDX0, MTK_REG_PDMA_RST_CFG);
1509
1510 return 0;
1511 }
1512
mtk_dma_free(struct mtk_eth * eth)1513 static void mtk_dma_free(struct mtk_eth *eth)
1514 {
1515 int i;
1516
1517 for (i = 0; i < eth->soc->mac_count; i++)
1518 if (eth->netdev[i])
1519 netdev_reset_queue(eth->netdev[i]);
1520 eth->tx_ring.tx_clean(eth);
1521 mtk_clean_rx(eth, ð->rx_ring[0]);
1522 mtk_clean_rx(eth, ð->rx_ring[1]);
1523 kfree(eth->scratch_head);
1524 }
1525
mtk_tx_timeout(struct net_device * dev)1526 static void mtk_tx_timeout(struct net_device *dev)
1527 {
1528 struct mtk_mac *mac = netdev_priv(dev);
1529 struct mtk_eth *eth = mac->hw;
1530 struct mtk_tx_ring *ring = ð->tx_ring;
1531
1532 eth->netdev[mac->id]->stats.tx_errors++;
1533 netif_err(eth, tx_err, dev,
1534 "transmit timed out\n");
1535 if (eth->soc->dma_type & MTK_PDMA) {
1536 netif_info(eth, drv, dev, "pdma_cfg:%08x\n",
1537 mtk_reg_r32(eth, MTK_REG_PDMA_GLO_CFG));
1538 netif_info(eth, drv, dev,
1539 "tx_ring=%d, base=%08x, max=%u, ctx=%u, dtx=%u, fdx=%hu, next=%hu\n",
1540 0, mtk_reg_r32(eth, MTK_REG_TX_BASE_PTR0),
1541 mtk_reg_r32(eth, MTK_REG_TX_MAX_CNT0),
1542 mtk_reg_r32(eth, MTK_REG_TX_CTX_IDX0),
1543 mtk_reg_r32(eth, MTK_REG_TX_DTX_IDX0),
1544 ring->tx_free_idx,
1545 ring->tx_next_idx);
1546 }
1547 if (eth->soc->dma_type & MTK_QDMA) {
1548 netif_info(eth, drv, dev, "qdma_cfg:%08x\n",
1549 mtk_r32(eth, MTK_QDMA_GLO_CFG));
1550 netif_info(eth, drv, dev,
1551 "tx_ring=%d, ctx=%08x, dtx=%08x, crx=%08x, drx=%08x, free=%hu\n",
1552 0, mtk_r32(eth, MTK_QTX_CTX_PTR),
1553 mtk_r32(eth, MTK_QTX_DTX_PTR),
1554 mtk_r32(eth, MTK_QTX_CRX_PTR),
1555 mtk_r32(eth, MTK_QTX_DRX_PTR),
1556 atomic_read(&ring->tx_free_count));
1557 }
1558 netif_info(eth, drv, dev,
1559 "rx_ring=%d, base=%08x, max=%u, calc=%u, drx=%u\n",
1560 0, mtk_reg_r32(eth, MTK_REG_RX_BASE_PTR0),
1561 mtk_reg_r32(eth, MTK_REG_RX_MAX_CNT0),
1562 mtk_reg_r32(eth, MTK_REG_RX_CALC_IDX0),
1563 mtk_reg_r32(eth, MTK_REG_RX_DRX_IDX0));
1564
1565 schedule_work(&mac->pending_work);
1566 }
1567
mtk_handle_irq(int irq,void * _eth)1568 static irqreturn_t mtk_handle_irq(int irq, void *_eth)
1569 {
1570 struct mtk_eth *eth = _eth;
1571 u32 status, int_mask;
1572
1573 status = mtk_irq_pending(eth);
1574 if (unlikely(!status))
1575 return IRQ_NONE;
1576
1577 int_mask = (eth->soc->rx_int | eth->soc->tx_int);
1578 if (likely(status & int_mask)) {
1579 if (likely(napi_schedule_prep(ð->rx_napi)))
1580 __napi_schedule(ð->rx_napi);
1581 } else {
1582 mtk_irq_ack(eth, status);
1583 }
1584 mtk_irq_disable(eth, int_mask);
1585
1586 return IRQ_HANDLED;
1587 }
1588
1589 #ifdef CONFIG_NET_POLL_CONTROLLER
mtk_poll_controller(struct net_device * dev)1590 static void mtk_poll_controller(struct net_device *dev)
1591 {
1592 struct mtk_mac *mac = netdev_priv(dev);
1593 struct mtk_eth *eth = mac->hw;
1594 u32 int_mask = eth->soc->tx_int | eth->soc->rx_int;
1595
1596 mtk_irq_disable(eth, int_mask);
1597 mtk_handle_irq(dev->irq, dev);
1598 mtk_irq_enable(eth, int_mask);
1599 }
1600 #endif
1601
mtk_set_clock_cycle(struct mtk_eth * eth)1602 int mtk_set_clock_cycle(struct mtk_eth *eth)
1603 {
1604 unsigned long sysclk = eth->sysclk;
1605
1606 sysclk /= MTK_US_CYC_CNT_DIVISOR;
1607 sysclk <<= MTK_US_CYC_CNT_SHIFT;
1608
1609 mtk_w32(eth, (mtk_r32(eth, MTK_GLO_CFG) &
1610 ~(MTK_US_CYC_CNT_MASK << MTK_US_CYC_CNT_SHIFT)) |
1611 sysclk,
1612 MTK_GLO_CFG);
1613 return 0;
1614 }
1615
mtk_fwd_config(struct mtk_eth * eth)1616 void mtk_fwd_config(struct mtk_eth *eth)
1617 {
1618 u32 fwd_cfg;
1619
1620 fwd_cfg = mtk_r32(eth, MTK_GDMA1_FWD_CFG);
1621
1622 /* disable jumbo frame */
1623 if (eth->soc->jumbo_frame)
1624 fwd_cfg &= ~MTK_GDM1_JMB_EN;
1625
1626 /* set unicast/multicast/broadcast frame to cpu */
1627 fwd_cfg &= ~0xffff;
1628
1629 mtk_w32(eth, fwd_cfg, MTK_GDMA1_FWD_CFG);
1630 }
1631
mtk_csum_config(struct mtk_eth * eth)1632 void mtk_csum_config(struct mtk_eth *eth)
1633 {
1634 if (eth->soc->hw_features & NETIF_F_RXCSUM)
1635 mtk_w32(eth, mtk_r32(eth, MTK_GDMA1_FWD_CFG) |
1636 (MTK_GDM1_ICS_EN | MTK_GDM1_TCS_EN | MTK_GDM1_UCS_EN),
1637 MTK_GDMA1_FWD_CFG);
1638 else
1639 mtk_w32(eth, mtk_r32(eth, MTK_GDMA1_FWD_CFG) &
1640 ~(MTK_GDM1_ICS_EN | MTK_GDM1_TCS_EN | MTK_GDM1_UCS_EN),
1641 MTK_GDMA1_FWD_CFG);
1642 if (eth->soc->hw_features & NETIF_F_IP_CSUM)
1643 mtk_w32(eth, mtk_r32(eth, MTK_CDMA_CSG_CFG) |
1644 (MTK_ICS_GEN_EN | MTK_TCS_GEN_EN | MTK_UCS_GEN_EN),
1645 MTK_CDMA_CSG_CFG);
1646 else
1647 mtk_w32(eth, mtk_r32(eth, MTK_CDMA_CSG_CFG) &
1648 ~(MTK_ICS_GEN_EN | MTK_TCS_GEN_EN | MTK_UCS_GEN_EN),
1649 MTK_CDMA_CSG_CFG);
1650 }
1651
mtk_start_dma(struct mtk_eth * eth)1652 static int mtk_start_dma(struct mtk_eth *eth)
1653 {
1654 unsigned long flags;
1655 u32 val;
1656 int err;
1657
1658 if (eth->soc->dma_type == MTK_PDMA)
1659 err = mtk_pdma_init(eth);
1660 else if (eth->soc->dma_type == MTK_QDMA)
1661 err = mtk_qdma_init(eth, 0);
1662 else
1663 err = mtk_pdma_qdma_init(eth);
1664 if (err) {
1665 mtk_dma_free(eth);
1666 return err;
1667 }
1668
1669 spin_lock_irqsave(ð->page_lock, flags);
1670
1671 val = MTK_TX_WB_DDONE | MTK_RX_DMA_EN | MTK_TX_DMA_EN;
1672 if (eth->soc->rx_2b_offset)
1673 val |= MTK_RX_2B_OFFSET;
1674 val |= eth->soc->pdma_glo_cfg;
1675
1676 if (eth->soc->dma_type & MTK_PDMA)
1677 mtk_reg_w32(eth, val, MTK_REG_PDMA_GLO_CFG);
1678
1679 if (eth->soc->dma_type & MTK_QDMA)
1680 mtk_w32(eth, val, MTK_QDMA_GLO_CFG);
1681
1682 spin_unlock_irqrestore(ð->page_lock, flags);
1683
1684 return 0;
1685 }
1686
mtk_open(struct net_device * dev)1687 static int mtk_open(struct net_device *dev)
1688 {
1689 struct mtk_mac *mac = netdev_priv(dev);
1690 struct mtk_eth *eth = mac->hw;
1691
1692 if (!atomic_read(ð->dma_refcnt)) {
1693 int err = mtk_start_dma(eth);
1694
1695 if (err)
1696 return err;
1697
1698 napi_enable(ð->rx_napi);
1699 mtk_irq_enable(eth, eth->soc->tx_int | eth->soc->rx_int);
1700 }
1701 atomic_inc(ð->dma_refcnt);
1702
1703 if (eth->phy)
1704 eth->phy->start(mac);
1705
1706 if (eth->soc->has_carrier && eth->soc->has_carrier(eth))
1707 netif_carrier_on(dev);
1708
1709 netif_start_queue(dev);
1710 eth->soc->fwd_config(eth);
1711
1712 return 0;
1713 }
1714
mtk_stop_dma(struct mtk_eth * eth,u32 glo_cfg)1715 static void mtk_stop_dma(struct mtk_eth *eth, u32 glo_cfg)
1716 {
1717 unsigned long flags;
1718 u32 val;
1719 int i;
1720
1721 /* stop the dma enfine */
1722 spin_lock_irqsave(ð->page_lock, flags);
1723 val = mtk_r32(eth, glo_cfg);
1724 mtk_w32(eth, val & ~(MTK_TX_WB_DDONE | MTK_RX_DMA_EN | MTK_TX_DMA_EN),
1725 glo_cfg);
1726 spin_unlock_irqrestore(ð->page_lock, flags);
1727
1728 /* wait for dma stop */
1729 for (i = 0; i < 10; i++) {
1730 val = mtk_r32(eth, glo_cfg);
1731 if (val & (MTK_TX_DMA_BUSY | MTK_RX_DMA_BUSY)) {
1732 msleep(20);
1733 continue;
1734 }
1735 break;
1736 }
1737 }
1738
mtk_stop(struct net_device * dev)1739 static int mtk_stop(struct net_device *dev)
1740 {
1741 struct mtk_mac *mac = netdev_priv(dev);
1742 struct mtk_eth *eth = mac->hw;
1743
1744 netif_tx_disable(dev);
1745 if (eth->phy)
1746 eth->phy->stop(mac);
1747
1748 if (!atomic_dec_and_test(ð->dma_refcnt))
1749 return 0;
1750
1751 mtk_irq_disable(eth, eth->soc->tx_int | eth->soc->rx_int);
1752 napi_disable(ð->rx_napi);
1753
1754 if (eth->soc->dma_type & MTK_PDMA)
1755 mtk_stop_dma(eth, mtk_reg_table[MTK_REG_PDMA_GLO_CFG]);
1756
1757 if (eth->soc->dma_type & MTK_QDMA)
1758 mtk_stop_dma(eth, MTK_QDMA_GLO_CFG);
1759
1760 mtk_dma_free(eth);
1761
1762 return 0;
1763 }
1764
mtk_init_hw(struct mtk_eth * eth)1765 static int __init mtk_init_hw(struct mtk_eth *eth)
1766 {
1767 int i, err;
1768
1769 eth->soc->reset_fe(eth);
1770
1771 if (eth->soc->switch_init)
1772 if (eth->soc->switch_init(eth)) {
1773 dev_err(eth->dev, "failed to initialize switch core\n");
1774 return -ENODEV;
1775 }
1776
1777 err = devm_request_irq(eth->dev, eth->irq, mtk_handle_irq, 0,
1778 dev_name(eth->dev), eth);
1779 if (err)
1780 return err;
1781
1782 err = mtk_mdio_init(eth);
1783 if (err)
1784 return err;
1785
1786 /* disable delay and normal interrupt */
1787 mtk_reg_w32(eth, 0, MTK_REG_DLY_INT_CFG);
1788 if (eth->soc->dma_type & MTK_QDMA)
1789 mtk_w32(eth, 0, MTK_QDMA_DELAY_INT);
1790 mtk_irq_disable(eth, eth->soc->tx_int | eth->soc->rx_int);
1791
1792 /* frame engine will push VLAN tag regarding to VIDX field in Tx desc */
1793 if (mtk_reg_table[MTK_REG_MTK_DMA_VID_BASE])
1794 for (i = 0; i < 16; i += 2)
1795 mtk_w32(eth, ((i + 1) << 16) + i,
1796 mtk_reg_table[MTK_REG_MTK_DMA_VID_BASE] +
1797 (i * 2));
1798
1799 if (eth->soc->fwd_config(eth))
1800 dev_err(eth->dev, "unable to get clock\n");
1801
1802 if (mtk_reg_table[MTK_REG_MTK_RST_GL]) {
1803 mtk_reg_w32(eth, 1, MTK_REG_MTK_RST_GL);
1804 mtk_reg_w32(eth, 0, MTK_REG_MTK_RST_GL);
1805 }
1806
1807 return 0;
1808 }
1809
mtk_init(struct net_device * dev)1810 static int __init mtk_init(struct net_device *dev)
1811 {
1812 struct mtk_mac *mac = netdev_priv(dev);
1813 struct mtk_eth *eth = mac->hw;
1814 struct device_node *port;
1815 const char *mac_addr;
1816 int err;
1817
1818 mac_addr = of_get_mac_address(mac->of_node);
1819 if (mac_addr)
1820 ether_addr_copy(dev->dev_addr, mac_addr);
1821
1822 /* If the mac address is invalid, use random mac address */
1823 if (!is_valid_ether_addr(dev->dev_addr)) {
1824 eth_hw_addr_random(dev);
1825 dev_err(eth->dev, "generated random MAC address %pM\n",
1826 dev->dev_addr);
1827 }
1828 mac->hw->soc->set_mac(mac, dev->dev_addr);
1829
1830 if (eth->soc->port_init)
1831 for_each_child_of_node(mac->of_node, port)
1832 if (of_device_is_compatible(port,
1833 "mediatek,eth-port") &&
1834 of_device_is_available(port))
1835 eth->soc->port_init(eth, mac, port);
1836
1837 if (eth->phy) {
1838 err = eth->phy->connect(mac);
1839 if (err)
1840 return err;
1841 }
1842
1843 return 0;
1844 }
1845
mtk_uninit(struct net_device * dev)1846 static void mtk_uninit(struct net_device *dev)
1847 {
1848 struct mtk_mac *mac = netdev_priv(dev);
1849 struct mtk_eth *eth = mac->hw;
1850
1851 if (eth->phy)
1852 eth->phy->disconnect(mac);
1853 mtk_mdio_cleanup(eth);
1854
1855 mtk_irq_disable(eth, ~0);
1856 free_irq(dev->irq, dev);
1857 }
1858
mtk_do_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)1859 static int mtk_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1860 {
1861 struct mtk_mac *mac = netdev_priv(dev);
1862
1863 if (!mac->phy_dev)
1864 return -ENODEV;
1865
1866 switch (cmd) {
1867 case SIOCGMIIPHY:
1868 case SIOCGMIIREG:
1869 case SIOCSMIIREG:
1870 return phy_mii_ioctl(mac->phy_dev, ifr, cmd);
1871 default:
1872 break;
1873 }
1874
1875 return -EOPNOTSUPP;
1876 }
1877
mtk_change_mtu(struct net_device * dev,int new_mtu)1878 static int mtk_change_mtu(struct net_device *dev, int new_mtu)
1879 {
1880 struct mtk_mac *mac = netdev_priv(dev);
1881 struct mtk_eth *eth = mac->hw;
1882 int frag_size, old_mtu;
1883 u32 fwd_cfg;
1884
1885 if (!eth->soc->jumbo_frame)
1886 return eth_change_mtu(dev, new_mtu);
1887
1888 frag_size = mtk_max_frag_size(new_mtu);
1889 if (new_mtu < 68 || frag_size > PAGE_SIZE)
1890 return -EINVAL;
1891
1892 old_mtu = dev->mtu;
1893 dev->mtu = new_mtu;
1894
1895 /* return early if the buffer sizes will not change */
1896 if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
1897 return 0;
1898 if (old_mtu > ETH_DATA_LEN && new_mtu > ETH_DATA_LEN)
1899 return 0;
1900
1901 if (new_mtu <= ETH_DATA_LEN)
1902 eth->rx_ring[0].frag_size = mtk_max_frag_size(ETH_DATA_LEN);
1903 else
1904 eth->rx_ring[0].frag_size = PAGE_SIZE;
1905 eth->rx_ring[0].rx_buf_size =
1906 mtk_max_buf_size(eth->rx_ring[0].frag_size);
1907
1908 if (!netif_running(dev))
1909 return 0;
1910
1911 mtk_stop(dev);
1912 fwd_cfg = mtk_r32(eth, MTK_GDMA1_FWD_CFG);
1913 if (new_mtu <= ETH_DATA_LEN) {
1914 fwd_cfg &= ~MTK_GDM1_JMB_EN;
1915 } else {
1916 fwd_cfg &= ~(MTK_GDM1_JMB_LEN_MASK << MTK_GDM1_JMB_LEN_SHIFT);
1917 fwd_cfg |= (DIV_ROUND_UP(frag_size, 1024) <<
1918 MTK_GDM1_JMB_LEN_SHIFT) | MTK_GDM1_JMB_EN;
1919 }
1920 mtk_w32(eth, fwd_cfg, MTK_GDMA1_FWD_CFG);
1921
1922 return mtk_open(dev);
1923 }
1924
mtk_pending_work(struct work_struct * work)1925 static void mtk_pending_work(struct work_struct *work)
1926 {
1927 struct mtk_mac *mac = container_of(work, struct mtk_mac, pending_work);
1928 struct mtk_eth *eth = mac->hw;
1929 struct net_device *dev = eth->netdev[mac->id];
1930 int err;
1931
1932 rtnl_lock();
1933 mtk_stop(dev);
1934
1935 err = mtk_open(dev);
1936 if (err) {
1937 netif_alert(eth, ifup, dev,
1938 "Driver up/down cycle failed, closing device.\n");
1939 dev_close(dev);
1940 }
1941 rtnl_unlock();
1942 }
1943
mtk_cleanup(struct mtk_eth * eth)1944 static int mtk_cleanup(struct mtk_eth *eth)
1945 {
1946 int i;
1947
1948 for (i = 0; i < eth->soc->mac_count; i++) {
1949 struct mtk_mac *mac = netdev_priv(eth->netdev[i]);
1950
1951 if (!eth->netdev[i])
1952 continue;
1953
1954 unregister_netdev(eth->netdev[i]);
1955 free_netdev(eth->netdev[i]);
1956 cancel_work_sync(&mac->pending_work);
1957 }
1958
1959 return 0;
1960 }
1961
1962 static const struct net_device_ops mtk_netdev_ops = {
1963 .ndo_init = mtk_init,
1964 .ndo_uninit = mtk_uninit,
1965 .ndo_open = mtk_open,
1966 .ndo_stop = mtk_stop,
1967 .ndo_start_xmit = mtk_start_xmit,
1968 .ndo_set_mac_address = mtk_set_mac_address,
1969 .ndo_validate_addr = eth_validate_addr,
1970 .ndo_do_ioctl = mtk_do_ioctl,
1971 .ndo_change_mtu = mtk_change_mtu,
1972 .ndo_tx_timeout = mtk_tx_timeout,
1973 .ndo_get_stats64 = mtk_get_stats64,
1974 .ndo_vlan_rx_add_vid = mtk_vlan_rx_add_vid,
1975 .ndo_vlan_rx_kill_vid = mtk_vlan_rx_kill_vid,
1976 #ifdef CONFIG_NET_POLL_CONTROLLER
1977 .ndo_poll_controller = mtk_poll_controller,
1978 #endif
1979 };
1980
mtk_add_mac(struct mtk_eth * eth,struct device_node * np)1981 static int mtk_add_mac(struct mtk_eth *eth, struct device_node *np)
1982 {
1983 struct mtk_mac *mac;
1984 const __be32 *_id = of_get_property(np, "reg", NULL);
1985 int id, err;
1986
1987 if (!_id) {
1988 dev_err(eth->dev, "missing mac id\n");
1989 return -EINVAL;
1990 }
1991 id = be32_to_cpup(_id);
1992 if (id >= eth->soc->mac_count || eth->netdev[id]) {
1993 dev_err(eth->dev, "%d is not a valid mac id\n", id);
1994 return -EINVAL;
1995 }
1996
1997 eth->netdev[id] = alloc_etherdev(sizeof(*mac));
1998 if (!eth->netdev[id]) {
1999 dev_err(eth->dev, "alloc_etherdev failed\n");
2000 return -ENOMEM;
2001 }
2002 mac = netdev_priv(eth->netdev[id]);
2003 eth->mac[id] = mac;
2004 mac->id = id;
2005 mac->hw = eth;
2006 mac->of_node = np;
2007 INIT_WORK(&mac->pending_work, mtk_pending_work);
2008
2009 if (mtk_reg_table[MTK_REG_MTK_COUNTER_BASE]) {
2010 mac->hw_stats = devm_kzalloc(eth->dev,
2011 sizeof(*mac->hw_stats),
2012 GFP_KERNEL);
2013 if (!mac->hw_stats) {
2014 err = -ENOMEM;
2015 goto free_netdev;
2016 }
2017 spin_lock_init(&mac->hw_stats->stats_lock);
2018 mac->hw_stats->reg_offset = id * MTK_STAT_OFFSET;
2019 }
2020
2021 SET_NETDEV_DEV(eth->netdev[id], eth->dev);
2022 eth->netdev[id]->netdev_ops = &mtk_netdev_ops;
2023 eth->netdev[id]->base_addr = (unsigned long)eth->base;
2024
2025 if (eth->soc->init_data)
2026 eth->soc->init_data(eth->soc, eth->netdev[id]);
2027
2028 eth->netdev[id]->vlan_features = eth->soc->hw_features &
2029 ~(NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX);
2030 eth->netdev[id]->features |= eth->soc->hw_features;
2031
2032 if (mtk_reg_table[MTK_REG_MTK_DMA_VID_BASE])
2033 eth->netdev[id]->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2034
2035 mtk_set_ethtool_ops(eth->netdev[id]);
2036
2037 err = register_netdev(eth->netdev[id]);
2038 if (err) {
2039 dev_err(eth->dev, "error bringing up device\n");
2040 err = -ENOMEM;
2041 goto free_netdev;
2042 }
2043 eth->netdev[id]->irq = eth->irq;
2044 netif_info(eth, probe, eth->netdev[id],
2045 "mediatek frame engine at 0x%08lx, irq %d\n",
2046 eth->netdev[id]->base_addr, eth->netdev[id]->irq);
2047
2048 return 0;
2049
2050 free_netdev:
2051 free_netdev(eth->netdev[id]);
2052 return err;
2053 }
2054
mtk_probe(struct platform_device * pdev)2055 static int mtk_probe(struct platform_device *pdev)
2056 {
2057 struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2058 const struct of_device_id *match;
2059 struct device_node *mac_np;
2060 struct mtk_soc_data *soc;
2061 struct mtk_eth *eth;
2062 struct clk *sysclk;
2063 int err;
2064
2065 pdev->dev.coherent_dma_mask = DMA_BIT_MASK(32);
2066 pdev->dev.dma_mask = &pdev->dev.coherent_dma_mask;
2067
2068 device_reset(&pdev->dev);
2069
2070 match = of_match_device(of_mtk_match, &pdev->dev);
2071 soc = (struct mtk_soc_data *)match->data;
2072
2073 if (soc->reg_table)
2074 mtk_reg_table = soc->reg_table;
2075
2076 eth = devm_kzalloc(&pdev->dev, sizeof(*eth), GFP_KERNEL);
2077 if (!eth)
2078 return -ENOMEM;
2079
2080 eth->base = devm_ioremap_resource(&pdev->dev, res);
2081 if (IS_ERR(eth->base))
2082 return PTR_ERR(eth->base);
2083
2084 spin_lock_init(ð->page_lock);
2085
2086 eth->ethsys = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
2087 "mediatek,ethsys");
2088 if (IS_ERR(eth->ethsys))
2089 return PTR_ERR(eth->ethsys);
2090
2091 eth->irq = platform_get_irq(pdev, 0);
2092 if (eth->irq < 0) {
2093 dev_err(&pdev->dev, "no IRQ resource found\n");
2094 return -ENXIO;
2095 }
2096
2097 sysclk = devm_clk_get(&pdev->dev, NULL);
2098 if (IS_ERR(sysclk)) {
2099 dev_err(&pdev->dev,
2100 "the clock is not defined in the devicetree\n");
2101 return -ENXIO;
2102 }
2103 eth->sysclk = clk_get_rate(sysclk);
2104
2105 eth->switch_np = of_parse_phandle(pdev->dev.of_node,
2106 "mediatek,switch", 0);
2107 if (soc->has_switch && !eth->switch_np) {
2108 dev_err(&pdev->dev, "failed to read switch phandle\n");
2109 return -ENODEV;
2110 }
2111
2112 eth->dev = &pdev->dev;
2113 eth->soc = soc;
2114 eth->msg_enable = netif_msg_init(mtk_msg_level, MTK_DEFAULT_MSG_ENABLE);
2115
2116 err = mtk_init_hw(eth);
2117 if (err)
2118 return err;
2119
2120 if (eth->soc->mac_count > 1) {
2121 for_each_child_of_node(pdev->dev.of_node, mac_np) {
2122 if (!of_device_is_compatible(mac_np,
2123 "mediatek,eth-mac"))
2124 continue;
2125
2126 if (!of_device_is_available(mac_np))
2127 continue;
2128
2129 err = mtk_add_mac(eth, mac_np);
2130 if (err)
2131 goto err_free_dev;
2132 }
2133
2134 init_dummy_netdev(ð->dummy_dev);
2135 netif_napi_add(ð->dummy_dev, ð->rx_napi, mtk_poll,
2136 soc->napi_weight);
2137 } else {
2138 err = mtk_add_mac(eth, pdev->dev.of_node);
2139 if (err)
2140 goto err_free_dev;
2141 netif_napi_add(eth->netdev[0], ð->rx_napi, mtk_poll,
2142 soc->napi_weight);
2143 }
2144
2145 platform_set_drvdata(pdev, eth);
2146
2147 return 0;
2148
2149 err_free_dev:
2150 mtk_cleanup(eth);
2151 return err;
2152 }
2153
mtk_remove(struct platform_device * pdev)2154 static int mtk_remove(struct platform_device *pdev)
2155 {
2156 struct mtk_eth *eth = platform_get_drvdata(pdev);
2157
2158 netif_napi_del(ð->rx_napi);
2159 mtk_cleanup(eth);
2160 platform_set_drvdata(pdev, NULL);
2161
2162 return 0;
2163 }
2164
2165 static struct platform_driver mtk_driver = {
2166 .probe = mtk_probe,
2167 .remove = mtk_remove,
2168 .driver = {
2169 .name = "mtk_soc_eth",
2170 .owner = THIS_MODULE,
2171 .of_match_table = of_mtk_match,
2172 },
2173 };
2174
2175 module_platform_driver(mtk_driver);
2176
2177 MODULE_LICENSE("GPL");
2178 MODULE_AUTHOR("John Crispin <blogic@openwrt.org>");
2179 MODULE_DESCRIPTION("Ethernet driver for MediaTek SoC");
2180