1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Core registration and callback routines for MTD
4 * drivers and users.
5 *
6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7 * Copyright © 2006 Red Hat UK Limited
8 */
9
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/ptrace.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/timer.h>
16 #include <linux/major.h>
17 #include <linux/fs.h>
18 #include <linux/err.h>
19 #include <linux/ioctl.h>
20 #include <linux/init.h>
21 #include <linux/of.h>
22 #include <linux/proc_fs.h>
23 #include <linux/idr.h>
24 #include <linux/backing-dev.h>
25 #include <linux/gfp.h>
26 #include <linux/slab.h>
27 #include <linux/reboot.h>
28 #include <linux/leds.h>
29 #include <linux/debugfs.h>
30 #include <linux/nvmem-provider.h>
31
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/partitions.h>
34
35 #include "mtdcore.h"
36
37 struct backing_dev_info *mtd_bdi;
38
39 #ifdef CONFIG_PM_SLEEP
40
mtd_cls_suspend(struct device * dev)41 static int mtd_cls_suspend(struct device *dev)
42 {
43 struct mtd_info *mtd = dev_get_drvdata(dev);
44
45 return mtd ? mtd_suspend(mtd) : 0;
46 }
47
mtd_cls_resume(struct device * dev)48 static int mtd_cls_resume(struct device *dev)
49 {
50 struct mtd_info *mtd = dev_get_drvdata(dev);
51
52 if (mtd)
53 mtd_resume(mtd);
54 return 0;
55 }
56
57 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
58 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
59 #else
60 #define MTD_CLS_PM_OPS NULL
61 #endif
62
63 static struct class mtd_class = {
64 .name = "mtd",
65 .owner = THIS_MODULE,
66 .pm = MTD_CLS_PM_OPS,
67 };
68
69 static DEFINE_IDR(mtd_idr);
70
71 /* These are exported solely for the purpose of mtd_blkdevs.c. You
72 should not use them for _anything_ else */
73 DEFINE_MUTEX(mtd_table_mutex);
74 EXPORT_SYMBOL_GPL(mtd_table_mutex);
75
__mtd_next_device(int i)76 struct mtd_info *__mtd_next_device(int i)
77 {
78 return idr_get_next(&mtd_idr, &i);
79 }
80 EXPORT_SYMBOL_GPL(__mtd_next_device);
81
82 static LIST_HEAD(mtd_notifiers);
83
84
85 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
86
87 /* REVISIT once MTD uses the driver model better, whoever allocates
88 * the mtd_info will probably want to use the release() hook...
89 */
mtd_release(struct device * dev)90 static void mtd_release(struct device *dev)
91 {
92 struct mtd_info *mtd = dev_get_drvdata(dev);
93 dev_t index = MTD_DEVT(mtd->index);
94
95 /* remove /dev/mtdXro node */
96 device_destroy(&mtd_class, index + 1);
97 }
98
99 #define MTD_DEVICE_ATTR_RO(name) \
100 static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL)
101
102 #define MTD_DEVICE_ATTR_RW(name) \
103 static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store)
104
mtd_type_show(struct device * dev,struct device_attribute * attr,char * buf)105 static ssize_t mtd_type_show(struct device *dev,
106 struct device_attribute *attr, char *buf)
107 {
108 struct mtd_info *mtd = dev_get_drvdata(dev);
109 char *type;
110
111 switch (mtd->type) {
112 case MTD_ABSENT:
113 type = "absent";
114 break;
115 case MTD_RAM:
116 type = "ram";
117 break;
118 case MTD_ROM:
119 type = "rom";
120 break;
121 case MTD_NORFLASH:
122 type = "nor";
123 break;
124 case MTD_NANDFLASH:
125 type = "nand";
126 break;
127 case MTD_DATAFLASH:
128 type = "dataflash";
129 break;
130 case MTD_UBIVOLUME:
131 type = "ubi";
132 break;
133 case MTD_MLCNANDFLASH:
134 type = "mlc-nand";
135 break;
136 default:
137 type = "unknown";
138 }
139
140 return sysfs_emit(buf, "%s\n", type);
141 }
142 MTD_DEVICE_ATTR_RO(type);
143
mtd_flags_show(struct device * dev,struct device_attribute * attr,char * buf)144 static ssize_t mtd_flags_show(struct device *dev,
145 struct device_attribute *attr, char *buf)
146 {
147 struct mtd_info *mtd = dev_get_drvdata(dev);
148
149 return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags);
150 }
151 MTD_DEVICE_ATTR_RO(flags);
152
mtd_size_show(struct device * dev,struct device_attribute * attr,char * buf)153 static ssize_t mtd_size_show(struct device *dev,
154 struct device_attribute *attr, char *buf)
155 {
156 struct mtd_info *mtd = dev_get_drvdata(dev);
157
158 return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size);
159 }
160 MTD_DEVICE_ATTR_RO(size);
161
mtd_erasesize_show(struct device * dev,struct device_attribute * attr,char * buf)162 static ssize_t mtd_erasesize_show(struct device *dev,
163 struct device_attribute *attr, char *buf)
164 {
165 struct mtd_info *mtd = dev_get_drvdata(dev);
166
167 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize);
168 }
169 MTD_DEVICE_ATTR_RO(erasesize);
170
mtd_writesize_show(struct device * dev,struct device_attribute * attr,char * buf)171 static ssize_t mtd_writesize_show(struct device *dev,
172 struct device_attribute *attr, char *buf)
173 {
174 struct mtd_info *mtd = dev_get_drvdata(dev);
175
176 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize);
177 }
178 MTD_DEVICE_ATTR_RO(writesize);
179
mtd_subpagesize_show(struct device * dev,struct device_attribute * attr,char * buf)180 static ssize_t mtd_subpagesize_show(struct device *dev,
181 struct device_attribute *attr, char *buf)
182 {
183 struct mtd_info *mtd = dev_get_drvdata(dev);
184 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
185
186 return sysfs_emit(buf, "%u\n", subpagesize);
187 }
188 MTD_DEVICE_ATTR_RO(subpagesize);
189
mtd_oobsize_show(struct device * dev,struct device_attribute * attr,char * buf)190 static ssize_t mtd_oobsize_show(struct device *dev,
191 struct device_attribute *attr, char *buf)
192 {
193 struct mtd_info *mtd = dev_get_drvdata(dev);
194
195 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize);
196 }
197 MTD_DEVICE_ATTR_RO(oobsize);
198
mtd_oobavail_show(struct device * dev,struct device_attribute * attr,char * buf)199 static ssize_t mtd_oobavail_show(struct device *dev,
200 struct device_attribute *attr, char *buf)
201 {
202 struct mtd_info *mtd = dev_get_drvdata(dev);
203
204 return sysfs_emit(buf, "%u\n", mtd->oobavail);
205 }
206 MTD_DEVICE_ATTR_RO(oobavail);
207
mtd_numeraseregions_show(struct device * dev,struct device_attribute * attr,char * buf)208 static ssize_t mtd_numeraseregions_show(struct device *dev,
209 struct device_attribute *attr, char *buf)
210 {
211 struct mtd_info *mtd = dev_get_drvdata(dev);
212
213 return sysfs_emit(buf, "%u\n", mtd->numeraseregions);
214 }
215 MTD_DEVICE_ATTR_RO(numeraseregions);
216
mtd_name_show(struct device * dev,struct device_attribute * attr,char * buf)217 static ssize_t mtd_name_show(struct device *dev,
218 struct device_attribute *attr, char *buf)
219 {
220 struct mtd_info *mtd = dev_get_drvdata(dev);
221
222 return sysfs_emit(buf, "%s\n", mtd->name);
223 }
224 MTD_DEVICE_ATTR_RO(name);
225
mtd_ecc_strength_show(struct device * dev,struct device_attribute * attr,char * buf)226 static ssize_t mtd_ecc_strength_show(struct device *dev,
227 struct device_attribute *attr, char *buf)
228 {
229 struct mtd_info *mtd = dev_get_drvdata(dev);
230
231 return sysfs_emit(buf, "%u\n", mtd->ecc_strength);
232 }
233 MTD_DEVICE_ATTR_RO(ecc_strength);
234
mtd_bitflip_threshold_show(struct device * dev,struct device_attribute * attr,char * buf)235 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
236 struct device_attribute *attr,
237 char *buf)
238 {
239 struct mtd_info *mtd = dev_get_drvdata(dev);
240
241 return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold);
242 }
243
mtd_bitflip_threshold_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)244 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
245 struct device_attribute *attr,
246 const char *buf, size_t count)
247 {
248 struct mtd_info *mtd = dev_get_drvdata(dev);
249 unsigned int bitflip_threshold;
250 int retval;
251
252 retval = kstrtouint(buf, 0, &bitflip_threshold);
253 if (retval)
254 return retval;
255
256 mtd->bitflip_threshold = bitflip_threshold;
257 return count;
258 }
259 MTD_DEVICE_ATTR_RW(bitflip_threshold);
260
mtd_ecc_step_size_show(struct device * dev,struct device_attribute * attr,char * buf)261 static ssize_t mtd_ecc_step_size_show(struct device *dev,
262 struct device_attribute *attr, char *buf)
263 {
264 struct mtd_info *mtd = dev_get_drvdata(dev);
265
266 return sysfs_emit(buf, "%u\n", mtd->ecc_step_size);
267
268 }
269 MTD_DEVICE_ATTR_RO(ecc_step_size);
270
mtd_corrected_bits_show(struct device * dev,struct device_attribute * attr,char * buf)271 static ssize_t mtd_corrected_bits_show(struct device *dev,
272 struct device_attribute *attr, char *buf)
273 {
274 struct mtd_info *mtd = dev_get_drvdata(dev);
275 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
276
277 return sysfs_emit(buf, "%u\n", ecc_stats->corrected);
278 }
279 MTD_DEVICE_ATTR_RO(corrected_bits); /* ecc stats corrected */
280
mtd_ecc_failures_show(struct device * dev,struct device_attribute * attr,char * buf)281 static ssize_t mtd_ecc_failures_show(struct device *dev,
282 struct device_attribute *attr, char *buf)
283 {
284 struct mtd_info *mtd = dev_get_drvdata(dev);
285 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
286
287 return sysfs_emit(buf, "%u\n", ecc_stats->failed);
288 }
289 MTD_DEVICE_ATTR_RO(ecc_failures); /* ecc stats errors */
290
mtd_bad_blocks_show(struct device * dev,struct device_attribute * attr,char * buf)291 static ssize_t mtd_bad_blocks_show(struct device *dev,
292 struct device_attribute *attr, char *buf)
293 {
294 struct mtd_info *mtd = dev_get_drvdata(dev);
295 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
296
297 return sysfs_emit(buf, "%u\n", ecc_stats->badblocks);
298 }
299 MTD_DEVICE_ATTR_RO(bad_blocks);
300
mtd_bbt_blocks_show(struct device * dev,struct device_attribute * attr,char * buf)301 static ssize_t mtd_bbt_blocks_show(struct device *dev,
302 struct device_attribute *attr, char *buf)
303 {
304 struct mtd_info *mtd = dev_get_drvdata(dev);
305 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
306
307 return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks);
308 }
309 MTD_DEVICE_ATTR_RO(bbt_blocks);
310
311 static struct attribute *mtd_attrs[] = {
312 &dev_attr_type.attr,
313 &dev_attr_flags.attr,
314 &dev_attr_size.attr,
315 &dev_attr_erasesize.attr,
316 &dev_attr_writesize.attr,
317 &dev_attr_subpagesize.attr,
318 &dev_attr_oobsize.attr,
319 &dev_attr_oobavail.attr,
320 &dev_attr_numeraseregions.attr,
321 &dev_attr_name.attr,
322 &dev_attr_ecc_strength.attr,
323 &dev_attr_ecc_step_size.attr,
324 &dev_attr_corrected_bits.attr,
325 &dev_attr_ecc_failures.attr,
326 &dev_attr_bad_blocks.attr,
327 &dev_attr_bbt_blocks.attr,
328 &dev_attr_bitflip_threshold.attr,
329 NULL,
330 };
331 ATTRIBUTE_GROUPS(mtd);
332
333 static const struct device_type mtd_devtype = {
334 .name = "mtd",
335 .groups = mtd_groups,
336 .release = mtd_release,
337 };
338
mtd_partid_debug_show(struct seq_file * s,void * p)339 static int mtd_partid_debug_show(struct seq_file *s, void *p)
340 {
341 struct mtd_info *mtd = s->private;
342
343 seq_printf(s, "%s\n", mtd->dbg.partid);
344
345 return 0;
346 }
347
348 DEFINE_SHOW_ATTRIBUTE(mtd_partid_debug);
349
mtd_partname_debug_show(struct seq_file * s,void * p)350 static int mtd_partname_debug_show(struct seq_file *s, void *p)
351 {
352 struct mtd_info *mtd = s->private;
353
354 seq_printf(s, "%s\n", mtd->dbg.partname);
355
356 return 0;
357 }
358
359 DEFINE_SHOW_ATTRIBUTE(mtd_partname_debug);
360
361 static struct dentry *dfs_dir_mtd;
362
mtd_debugfs_populate(struct mtd_info * mtd)363 static void mtd_debugfs_populate(struct mtd_info *mtd)
364 {
365 struct mtd_info *master = mtd_get_master(mtd);
366 struct device *dev = &mtd->dev;
367 struct dentry *root;
368
369 if (IS_ERR_OR_NULL(dfs_dir_mtd))
370 return;
371
372 root = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
373 mtd->dbg.dfs_dir = root;
374
375 if (master->dbg.partid)
376 debugfs_create_file("partid", 0400, root, master,
377 &mtd_partid_debug_fops);
378
379 if (master->dbg.partname)
380 debugfs_create_file("partname", 0400, root, master,
381 &mtd_partname_debug_fops);
382 }
383
384 #ifndef CONFIG_MMU
mtd_mmap_capabilities(struct mtd_info * mtd)385 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
386 {
387 switch (mtd->type) {
388 case MTD_RAM:
389 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
390 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
391 case MTD_ROM:
392 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
393 NOMMU_MAP_READ;
394 default:
395 return NOMMU_MAP_COPY;
396 }
397 }
398 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
399 #endif
400
mtd_reboot_notifier(struct notifier_block * n,unsigned long state,void * cmd)401 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
402 void *cmd)
403 {
404 struct mtd_info *mtd;
405
406 mtd = container_of(n, struct mtd_info, reboot_notifier);
407 mtd->_reboot(mtd);
408
409 return NOTIFY_DONE;
410 }
411
412 /**
413 * mtd_wunit_to_pairing_info - get pairing information of a wunit
414 * @mtd: pointer to new MTD device info structure
415 * @wunit: write unit we are interested in
416 * @info: returned pairing information
417 *
418 * Retrieve pairing information associated to the wunit.
419 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
420 * paired together, and where programming a page may influence the page it is
421 * paired with.
422 * The notion of page is replaced by the term wunit (write-unit) to stay
423 * consistent with the ->writesize field.
424 *
425 * The @wunit argument can be extracted from an absolute offset using
426 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
427 * to @wunit.
428 *
429 * From the pairing info the MTD user can find all the wunits paired with
430 * @wunit using the following loop:
431 *
432 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
433 * info.pair = i;
434 * mtd_pairing_info_to_wunit(mtd, &info);
435 * ...
436 * }
437 */
mtd_wunit_to_pairing_info(struct mtd_info * mtd,int wunit,struct mtd_pairing_info * info)438 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
439 struct mtd_pairing_info *info)
440 {
441 struct mtd_info *master = mtd_get_master(mtd);
442 int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
443
444 if (wunit < 0 || wunit >= npairs)
445 return -EINVAL;
446
447 if (master->pairing && master->pairing->get_info)
448 return master->pairing->get_info(master, wunit, info);
449
450 info->group = 0;
451 info->pair = wunit;
452
453 return 0;
454 }
455 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
456
457 /**
458 * mtd_pairing_info_to_wunit - get wunit from pairing information
459 * @mtd: pointer to new MTD device info structure
460 * @info: pairing information struct
461 *
462 * Returns a positive number representing the wunit associated to the info
463 * struct, or a negative error code.
464 *
465 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
466 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
467 * doc).
468 *
469 * It can also be used to only program the first page of each pair (i.e.
470 * page attached to group 0), which allows one to use an MLC NAND in
471 * software-emulated SLC mode:
472 *
473 * info.group = 0;
474 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
475 * for (info.pair = 0; info.pair < npairs; info.pair++) {
476 * wunit = mtd_pairing_info_to_wunit(mtd, &info);
477 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
478 * mtd->writesize, &retlen, buf + (i * mtd->writesize));
479 * }
480 */
mtd_pairing_info_to_wunit(struct mtd_info * mtd,const struct mtd_pairing_info * info)481 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
482 const struct mtd_pairing_info *info)
483 {
484 struct mtd_info *master = mtd_get_master(mtd);
485 int ngroups = mtd_pairing_groups(master);
486 int npairs = mtd_wunit_per_eb(master) / ngroups;
487
488 if (!info || info->pair < 0 || info->pair >= npairs ||
489 info->group < 0 || info->group >= ngroups)
490 return -EINVAL;
491
492 if (master->pairing && master->pairing->get_wunit)
493 return mtd->pairing->get_wunit(master, info);
494
495 return info->pair;
496 }
497 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
498
499 /**
500 * mtd_pairing_groups - get the number of pairing groups
501 * @mtd: pointer to new MTD device info structure
502 *
503 * Returns the number of pairing groups.
504 *
505 * This number is usually equal to the number of bits exposed by a single
506 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
507 * to iterate over all pages of a given pair.
508 */
mtd_pairing_groups(struct mtd_info * mtd)509 int mtd_pairing_groups(struct mtd_info *mtd)
510 {
511 struct mtd_info *master = mtd_get_master(mtd);
512
513 if (!master->pairing || !master->pairing->ngroups)
514 return 1;
515
516 return master->pairing->ngroups;
517 }
518 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
519
mtd_nvmem_reg_read(void * priv,unsigned int offset,void * val,size_t bytes)520 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
521 void *val, size_t bytes)
522 {
523 struct mtd_info *mtd = priv;
524 size_t retlen;
525 int err;
526
527 err = mtd_read(mtd, offset, bytes, &retlen, val);
528 if (err && err != -EUCLEAN)
529 return err;
530
531 return retlen == bytes ? 0 : -EIO;
532 }
533
mtd_nvmem_add(struct mtd_info * mtd)534 static int mtd_nvmem_add(struct mtd_info *mtd)
535 {
536 struct device_node *node = mtd_get_of_node(mtd);
537 struct nvmem_config config = {};
538
539 config.id = -1;
540 config.dev = &mtd->dev;
541 config.name = dev_name(&mtd->dev);
542 config.owner = THIS_MODULE;
543 config.reg_read = mtd_nvmem_reg_read;
544 config.size = mtd->size;
545 config.word_size = 1;
546 config.stride = 1;
547 config.read_only = true;
548 config.root_only = true;
549 config.no_of_node = !of_device_is_compatible(node, "nvmem-cells");
550 config.priv = mtd;
551
552 mtd->nvmem = nvmem_register(&config);
553 if (IS_ERR(mtd->nvmem)) {
554 /* Just ignore if there is no NVMEM support in the kernel */
555 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
556 mtd->nvmem = NULL;
557 } else {
558 dev_err(&mtd->dev, "Failed to register NVMEM device\n");
559 return PTR_ERR(mtd->nvmem);
560 }
561 }
562
563 return 0;
564 }
565
566 /**
567 * add_mtd_device - register an MTD device
568 * @mtd: pointer to new MTD device info structure
569 *
570 * Add a device to the list of MTD devices present in the system, and
571 * notify each currently active MTD 'user' of its arrival. Returns
572 * zero on success or non-zero on failure.
573 */
574
add_mtd_device(struct mtd_info * mtd)575 int add_mtd_device(struct mtd_info *mtd)
576 {
577 struct mtd_info *master = mtd_get_master(mtd);
578 struct mtd_notifier *not;
579 int i, error;
580
581 /*
582 * May occur, for instance, on buggy drivers which call
583 * mtd_device_parse_register() multiple times on the same master MTD,
584 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
585 */
586 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
587 return -EEXIST;
588
589 BUG_ON(mtd->writesize == 0);
590
591 /*
592 * MTD drivers should implement ->_{write,read}() or
593 * ->_{write,read}_oob(), but not both.
594 */
595 if (WARN_ON((mtd->_write && mtd->_write_oob) ||
596 (mtd->_read && mtd->_read_oob)))
597 return -EINVAL;
598
599 if (WARN_ON((!mtd->erasesize || !master->_erase) &&
600 !(mtd->flags & MTD_NO_ERASE)))
601 return -EINVAL;
602
603 /*
604 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
605 * master is an MLC NAND and has a proper pairing scheme defined.
606 * We also reject masters that implement ->_writev() for now, because
607 * NAND controller drivers don't implement this hook, and adding the
608 * SLC -> MLC address/length conversion to this path is useless if we
609 * don't have a user.
610 */
611 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
612 (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
613 !master->pairing || master->_writev))
614 return -EINVAL;
615
616 mutex_lock(&mtd_table_mutex);
617
618 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
619 if (i < 0) {
620 error = i;
621 goto fail_locked;
622 }
623
624 mtd->index = i;
625 mtd->usecount = 0;
626
627 /* default value if not set by driver */
628 if (mtd->bitflip_threshold == 0)
629 mtd->bitflip_threshold = mtd->ecc_strength;
630
631 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
632 int ngroups = mtd_pairing_groups(master);
633
634 mtd->erasesize /= ngroups;
635 mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
636 mtd->erasesize;
637 }
638
639 if (is_power_of_2(mtd->erasesize))
640 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
641 else
642 mtd->erasesize_shift = 0;
643
644 if (is_power_of_2(mtd->writesize))
645 mtd->writesize_shift = ffs(mtd->writesize) - 1;
646 else
647 mtd->writesize_shift = 0;
648
649 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
650 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
651
652 /* Some chips always power up locked. Unlock them now */
653 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
654 error = mtd_unlock(mtd, 0, mtd->size);
655 if (error && error != -EOPNOTSUPP)
656 printk(KERN_WARNING
657 "%s: unlock failed, writes may not work\n",
658 mtd->name);
659 /* Ignore unlock failures? */
660 error = 0;
661 }
662
663 /* Caller should have set dev.parent to match the
664 * physical device, if appropriate.
665 */
666 mtd->dev.type = &mtd_devtype;
667 mtd->dev.class = &mtd_class;
668 mtd->dev.devt = MTD_DEVT(i);
669 dev_set_name(&mtd->dev, "mtd%d", i);
670 dev_set_drvdata(&mtd->dev, mtd);
671 of_node_get(mtd_get_of_node(mtd));
672 error = device_register(&mtd->dev);
673 if (error)
674 goto fail_added;
675
676 /* Add the nvmem provider */
677 error = mtd_nvmem_add(mtd);
678 if (error)
679 goto fail_nvmem_add;
680
681 mtd_debugfs_populate(mtd);
682
683 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
684 "mtd%dro", i);
685
686 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
687 /* No need to get a refcount on the module containing
688 the notifier, since we hold the mtd_table_mutex */
689 list_for_each_entry(not, &mtd_notifiers, list)
690 not->add(mtd);
691
692 mutex_unlock(&mtd_table_mutex);
693 /* We _know_ we aren't being removed, because
694 our caller is still holding us here. So none
695 of this try_ nonsense, and no bitching about it
696 either. :) */
697 __module_get(THIS_MODULE);
698 return 0;
699
700 fail_nvmem_add:
701 device_unregister(&mtd->dev);
702 fail_added:
703 of_node_put(mtd_get_of_node(mtd));
704 idr_remove(&mtd_idr, i);
705 fail_locked:
706 mutex_unlock(&mtd_table_mutex);
707 return error;
708 }
709
710 /**
711 * del_mtd_device - unregister an MTD device
712 * @mtd: pointer to MTD device info structure
713 *
714 * Remove a device from the list of MTD devices present in the system,
715 * and notify each currently active MTD 'user' of its departure.
716 * Returns zero on success or 1 on failure, which currently will happen
717 * if the requested device does not appear to be present in the list.
718 */
719
del_mtd_device(struct mtd_info * mtd)720 int del_mtd_device(struct mtd_info *mtd)
721 {
722 int ret;
723 struct mtd_notifier *not;
724
725 mutex_lock(&mtd_table_mutex);
726
727 debugfs_remove_recursive(mtd->dbg.dfs_dir);
728
729 if (idr_find(&mtd_idr, mtd->index) != mtd) {
730 ret = -ENODEV;
731 goto out_error;
732 }
733
734 /* No need to get a refcount on the module containing
735 the notifier, since we hold the mtd_table_mutex */
736 list_for_each_entry(not, &mtd_notifiers, list)
737 not->remove(mtd);
738
739 if (mtd->usecount) {
740 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
741 mtd->index, mtd->name, mtd->usecount);
742 ret = -EBUSY;
743 } else {
744 /* Try to remove the NVMEM provider */
745 if (mtd->nvmem)
746 nvmem_unregister(mtd->nvmem);
747
748 device_unregister(&mtd->dev);
749
750 idr_remove(&mtd_idr, mtd->index);
751 of_node_put(mtd_get_of_node(mtd));
752
753 module_put(THIS_MODULE);
754 ret = 0;
755 }
756
757 out_error:
758 mutex_unlock(&mtd_table_mutex);
759 return ret;
760 }
761
762 /*
763 * Set a few defaults based on the parent devices, if not provided by the
764 * driver
765 */
mtd_set_dev_defaults(struct mtd_info * mtd)766 static void mtd_set_dev_defaults(struct mtd_info *mtd)
767 {
768 if (mtd->dev.parent) {
769 if (!mtd->owner && mtd->dev.parent->driver)
770 mtd->owner = mtd->dev.parent->driver->owner;
771 if (!mtd->name)
772 mtd->name = dev_name(mtd->dev.parent);
773 } else {
774 pr_debug("mtd device won't show a device symlink in sysfs\n");
775 }
776
777 INIT_LIST_HEAD(&mtd->partitions);
778 mutex_init(&mtd->master.partitions_lock);
779 mutex_init(&mtd->master.chrdev_lock);
780 }
781
mtd_otp_size(struct mtd_info * mtd,bool is_user)782 static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user)
783 {
784 struct otp_info *info;
785 ssize_t size = 0;
786 unsigned int i;
787 size_t retlen;
788 int ret;
789
790 info = kmalloc(PAGE_SIZE, GFP_KERNEL);
791 if (!info)
792 return -ENOMEM;
793
794 if (is_user)
795 ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info);
796 else
797 ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info);
798 if (ret)
799 goto err;
800
801 for (i = 0; i < retlen / sizeof(*info); i++)
802 size += info[i].length;
803
804 kfree(info);
805 return size;
806
807 err:
808 kfree(info);
809
810 /* ENODATA means there is no OTP region. */
811 return ret == -ENODATA ? 0 : ret;
812 }
813
mtd_otp_nvmem_register(struct mtd_info * mtd,const char * compatible,int size,nvmem_reg_read_t reg_read)814 static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd,
815 const char *compatible,
816 int size,
817 nvmem_reg_read_t reg_read)
818 {
819 struct nvmem_device *nvmem = NULL;
820 struct nvmem_config config = {};
821 struct device_node *np;
822
823 /* DT binding is optional */
824 np = of_get_compatible_child(mtd->dev.of_node, compatible);
825
826 /* OTP nvmem will be registered on the physical device */
827 config.dev = mtd->dev.parent;
828 /* just reuse the compatible as name */
829 config.name = compatible;
830 config.id = NVMEM_DEVID_NONE;
831 config.owner = THIS_MODULE;
832 config.type = NVMEM_TYPE_OTP;
833 config.root_only = true;
834 config.reg_read = reg_read;
835 config.size = size;
836 config.of_node = np;
837 config.priv = mtd;
838
839 nvmem = nvmem_register(&config);
840 /* Just ignore if there is no NVMEM support in the kernel */
841 if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP)
842 nvmem = NULL;
843
844 of_node_put(np);
845
846 return nvmem;
847 }
848
mtd_nvmem_user_otp_reg_read(void * priv,unsigned int offset,void * val,size_t bytes)849 static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset,
850 void *val, size_t bytes)
851 {
852 struct mtd_info *mtd = priv;
853 size_t retlen;
854 int ret;
855
856 ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val);
857 if (ret)
858 return ret;
859
860 return retlen == bytes ? 0 : -EIO;
861 }
862
mtd_nvmem_fact_otp_reg_read(void * priv,unsigned int offset,void * val,size_t bytes)863 static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset,
864 void *val, size_t bytes)
865 {
866 struct mtd_info *mtd = priv;
867 size_t retlen;
868 int ret;
869
870 ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val);
871 if (ret)
872 return ret;
873
874 return retlen == bytes ? 0 : -EIO;
875 }
876
mtd_otp_nvmem_add(struct mtd_info * mtd)877 static int mtd_otp_nvmem_add(struct mtd_info *mtd)
878 {
879 struct nvmem_device *nvmem;
880 ssize_t size;
881 int err;
882
883 if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) {
884 size = mtd_otp_size(mtd, true);
885 if (size < 0)
886 return size;
887
888 if (size > 0) {
889 nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size,
890 mtd_nvmem_user_otp_reg_read);
891 if (IS_ERR(nvmem)) {
892 dev_err(&mtd->dev, "Failed to register OTP NVMEM device\n");
893 return PTR_ERR(nvmem);
894 }
895 mtd->otp_user_nvmem = nvmem;
896 }
897 }
898
899 if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) {
900 size = mtd_otp_size(mtd, false);
901 if (size < 0) {
902 err = size;
903 goto err;
904 }
905
906 if (size > 0) {
907 nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size,
908 mtd_nvmem_fact_otp_reg_read);
909 if (IS_ERR(nvmem)) {
910 dev_err(&mtd->dev, "Failed to register OTP NVMEM device\n");
911 err = PTR_ERR(nvmem);
912 goto err;
913 }
914 mtd->otp_factory_nvmem = nvmem;
915 }
916 }
917
918 return 0;
919
920 err:
921 if (mtd->otp_user_nvmem)
922 nvmem_unregister(mtd->otp_user_nvmem);
923 return err;
924 }
925
926 /**
927 * mtd_device_parse_register - parse partitions and register an MTD device.
928 *
929 * @mtd: the MTD device to register
930 * @types: the list of MTD partition probes to try, see
931 * 'parse_mtd_partitions()' for more information
932 * @parser_data: MTD partition parser-specific data
933 * @parts: fallback partition information to register, if parsing fails;
934 * only valid if %nr_parts > %0
935 * @nr_parts: the number of partitions in parts, if zero then the full
936 * MTD device is registered if no partition info is found
937 *
938 * This function aggregates MTD partitions parsing (done by
939 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
940 * basically follows the most common pattern found in many MTD drivers:
941 *
942 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
943 * registered first.
944 * * Then It tries to probe partitions on MTD device @mtd using parsers
945 * specified in @types (if @types is %NULL, then the default list of parsers
946 * is used, see 'parse_mtd_partitions()' for more information). If none are
947 * found this functions tries to fallback to information specified in
948 * @parts/@nr_parts.
949 * * If no partitions were found this function just registers the MTD device
950 * @mtd and exits.
951 *
952 * Returns zero in case of success and a negative error code in case of failure.
953 */
mtd_device_parse_register(struct mtd_info * mtd,const char * const * types,struct mtd_part_parser_data * parser_data,const struct mtd_partition * parts,int nr_parts)954 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
955 struct mtd_part_parser_data *parser_data,
956 const struct mtd_partition *parts,
957 int nr_parts)
958 {
959 int ret;
960
961 mtd_set_dev_defaults(mtd);
962
963 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
964 ret = add_mtd_device(mtd);
965 if (ret)
966 return ret;
967 }
968
969 /* Prefer parsed partitions over driver-provided fallback */
970 ret = parse_mtd_partitions(mtd, types, parser_data);
971 if (ret == -EPROBE_DEFER)
972 goto out;
973
974 if (ret > 0)
975 ret = 0;
976 else if (nr_parts)
977 ret = add_mtd_partitions(mtd, parts, nr_parts);
978 else if (!device_is_registered(&mtd->dev))
979 ret = add_mtd_device(mtd);
980 else
981 ret = 0;
982
983 if (ret)
984 goto out;
985
986 /*
987 * FIXME: some drivers unfortunately call this function more than once.
988 * So we have to check if we've already assigned the reboot notifier.
989 *
990 * Generally, we can make multiple calls work for most cases, but it
991 * does cause problems with parse_mtd_partitions() above (e.g.,
992 * cmdlineparts will register partitions more than once).
993 */
994 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
995 "MTD already registered\n");
996 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
997 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
998 register_reboot_notifier(&mtd->reboot_notifier);
999 }
1000
1001 ret = mtd_otp_nvmem_add(mtd);
1002
1003 out:
1004 if (ret && device_is_registered(&mtd->dev))
1005 del_mtd_device(mtd);
1006
1007 return ret;
1008 }
1009 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
1010
1011 /**
1012 * mtd_device_unregister - unregister an existing MTD device.
1013 *
1014 * @master: the MTD device to unregister. This will unregister both the master
1015 * and any partitions if registered.
1016 */
mtd_device_unregister(struct mtd_info * master)1017 int mtd_device_unregister(struct mtd_info *master)
1018 {
1019 int err;
1020
1021 if (master->_reboot)
1022 unregister_reboot_notifier(&master->reboot_notifier);
1023
1024 if (master->otp_user_nvmem)
1025 nvmem_unregister(master->otp_user_nvmem);
1026
1027 if (master->otp_factory_nvmem)
1028 nvmem_unregister(master->otp_factory_nvmem);
1029
1030 err = del_mtd_partitions(master);
1031 if (err)
1032 return err;
1033
1034 if (!device_is_registered(&master->dev))
1035 return 0;
1036
1037 return del_mtd_device(master);
1038 }
1039 EXPORT_SYMBOL_GPL(mtd_device_unregister);
1040
1041 /**
1042 * register_mtd_user - register a 'user' of MTD devices.
1043 * @new: pointer to notifier info structure
1044 *
1045 * Registers a pair of callbacks function to be called upon addition
1046 * or removal of MTD devices. Causes the 'add' callback to be immediately
1047 * invoked for each MTD device currently present in the system.
1048 */
register_mtd_user(struct mtd_notifier * new)1049 void register_mtd_user (struct mtd_notifier *new)
1050 {
1051 struct mtd_info *mtd;
1052
1053 mutex_lock(&mtd_table_mutex);
1054
1055 list_add(&new->list, &mtd_notifiers);
1056
1057 __module_get(THIS_MODULE);
1058
1059 mtd_for_each_device(mtd)
1060 new->add(mtd);
1061
1062 mutex_unlock(&mtd_table_mutex);
1063 }
1064 EXPORT_SYMBOL_GPL(register_mtd_user);
1065
1066 /**
1067 * unregister_mtd_user - unregister a 'user' of MTD devices.
1068 * @old: pointer to notifier info structure
1069 *
1070 * Removes a callback function pair from the list of 'users' to be
1071 * notified upon addition or removal of MTD devices. Causes the
1072 * 'remove' callback to be immediately invoked for each MTD device
1073 * currently present in the system.
1074 */
unregister_mtd_user(struct mtd_notifier * old)1075 int unregister_mtd_user (struct mtd_notifier *old)
1076 {
1077 struct mtd_info *mtd;
1078
1079 mutex_lock(&mtd_table_mutex);
1080
1081 module_put(THIS_MODULE);
1082
1083 mtd_for_each_device(mtd)
1084 old->remove(mtd);
1085
1086 list_del(&old->list);
1087 mutex_unlock(&mtd_table_mutex);
1088 return 0;
1089 }
1090 EXPORT_SYMBOL_GPL(unregister_mtd_user);
1091
1092 /**
1093 * get_mtd_device - obtain a validated handle for an MTD device
1094 * @mtd: last known address of the required MTD device
1095 * @num: internal device number of the required MTD device
1096 *
1097 * Given a number and NULL address, return the num'th entry in the device
1098 * table, if any. Given an address and num == -1, search the device table
1099 * for a device with that address and return if it's still present. Given
1100 * both, return the num'th driver only if its address matches. Return
1101 * error code if not.
1102 */
get_mtd_device(struct mtd_info * mtd,int num)1103 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
1104 {
1105 struct mtd_info *ret = NULL, *other;
1106 int err = -ENODEV;
1107
1108 mutex_lock(&mtd_table_mutex);
1109
1110 if (num == -1) {
1111 mtd_for_each_device(other) {
1112 if (other == mtd) {
1113 ret = mtd;
1114 break;
1115 }
1116 }
1117 } else if (num >= 0) {
1118 ret = idr_find(&mtd_idr, num);
1119 if (mtd && mtd != ret)
1120 ret = NULL;
1121 }
1122
1123 if (!ret) {
1124 ret = ERR_PTR(err);
1125 goto out;
1126 }
1127
1128 err = __get_mtd_device(ret);
1129 if (err)
1130 ret = ERR_PTR(err);
1131 out:
1132 mutex_unlock(&mtd_table_mutex);
1133 return ret;
1134 }
1135 EXPORT_SYMBOL_GPL(get_mtd_device);
1136
1137
__get_mtd_device(struct mtd_info * mtd)1138 int __get_mtd_device(struct mtd_info *mtd)
1139 {
1140 struct mtd_info *master = mtd_get_master(mtd);
1141 int err;
1142
1143 if (!try_module_get(master->owner))
1144 return -ENODEV;
1145
1146 if (master->_get_device) {
1147 err = master->_get_device(mtd);
1148
1149 if (err) {
1150 module_put(master->owner);
1151 return err;
1152 }
1153 }
1154
1155 master->usecount++;
1156
1157 while (mtd->parent) {
1158 mtd->usecount++;
1159 mtd = mtd->parent;
1160 }
1161
1162 return 0;
1163 }
1164 EXPORT_SYMBOL_GPL(__get_mtd_device);
1165
1166 /**
1167 * get_mtd_device_nm - obtain a validated handle for an MTD device by
1168 * device name
1169 * @name: MTD device name to open
1170 *
1171 * This function returns MTD device description structure in case of
1172 * success and an error code in case of failure.
1173 */
get_mtd_device_nm(const char * name)1174 struct mtd_info *get_mtd_device_nm(const char *name)
1175 {
1176 int err = -ENODEV;
1177 struct mtd_info *mtd = NULL, *other;
1178
1179 mutex_lock(&mtd_table_mutex);
1180
1181 mtd_for_each_device(other) {
1182 if (!strcmp(name, other->name)) {
1183 mtd = other;
1184 break;
1185 }
1186 }
1187
1188 if (!mtd)
1189 goto out_unlock;
1190
1191 err = __get_mtd_device(mtd);
1192 if (err)
1193 goto out_unlock;
1194
1195 mutex_unlock(&mtd_table_mutex);
1196 return mtd;
1197
1198 out_unlock:
1199 mutex_unlock(&mtd_table_mutex);
1200 return ERR_PTR(err);
1201 }
1202 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1203
put_mtd_device(struct mtd_info * mtd)1204 void put_mtd_device(struct mtd_info *mtd)
1205 {
1206 mutex_lock(&mtd_table_mutex);
1207 __put_mtd_device(mtd);
1208 mutex_unlock(&mtd_table_mutex);
1209
1210 }
1211 EXPORT_SYMBOL_GPL(put_mtd_device);
1212
__put_mtd_device(struct mtd_info * mtd)1213 void __put_mtd_device(struct mtd_info *mtd)
1214 {
1215 struct mtd_info *master = mtd_get_master(mtd);
1216
1217 while (mtd->parent) {
1218 --mtd->usecount;
1219 BUG_ON(mtd->usecount < 0);
1220 mtd = mtd->parent;
1221 }
1222
1223 master->usecount--;
1224
1225 if (master->_put_device)
1226 master->_put_device(master);
1227
1228 module_put(master->owner);
1229 }
1230 EXPORT_SYMBOL_GPL(__put_mtd_device);
1231
1232 /*
1233 * Erase is an synchronous operation. Device drivers are epected to return a
1234 * negative error code if the operation failed and update instr->fail_addr
1235 * to point the portion that was not properly erased.
1236 */
mtd_erase(struct mtd_info * mtd,struct erase_info * instr)1237 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1238 {
1239 struct mtd_info *master = mtd_get_master(mtd);
1240 u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1241 struct erase_info adjinstr;
1242 int ret;
1243
1244 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1245 adjinstr = *instr;
1246
1247 if (!mtd->erasesize || !master->_erase)
1248 return -ENOTSUPP;
1249
1250 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1251 return -EINVAL;
1252 if (!(mtd->flags & MTD_WRITEABLE))
1253 return -EROFS;
1254
1255 if (!instr->len)
1256 return 0;
1257
1258 ledtrig_mtd_activity();
1259
1260 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1261 adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1262 master->erasesize;
1263 adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1264 master->erasesize) -
1265 adjinstr.addr;
1266 }
1267
1268 adjinstr.addr += mst_ofs;
1269
1270 ret = master->_erase(master, &adjinstr);
1271
1272 if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1273 instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1274 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1275 instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1276 master);
1277 instr->fail_addr *= mtd->erasesize;
1278 }
1279 }
1280
1281 return ret;
1282 }
1283 EXPORT_SYMBOL_GPL(mtd_erase);
1284
1285 /*
1286 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1287 */
mtd_point(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,void ** virt,resource_size_t * phys)1288 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1289 void **virt, resource_size_t *phys)
1290 {
1291 struct mtd_info *master = mtd_get_master(mtd);
1292
1293 *retlen = 0;
1294 *virt = NULL;
1295 if (phys)
1296 *phys = 0;
1297 if (!master->_point)
1298 return -EOPNOTSUPP;
1299 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1300 return -EINVAL;
1301 if (!len)
1302 return 0;
1303
1304 from = mtd_get_master_ofs(mtd, from);
1305 return master->_point(master, from, len, retlen, virt, phys);
1306 }
1307 EXPORT_SYMBOL_GPL(mtd_point);
1308
1309 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
mtd_unpoint(struct mtd_info * mtd,loff_t from,size_t len)1310 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1311 {
1312 struct mtd_info *master = mtd_get_master(mtd);
1313
1314 if (!master->_unpoint)
1315 return -EOPNOTSUPP;
1316 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1317 return -EINVAL;
1318 if (!len)
1319 return 0;
1320 return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1321 }
1322 EXPORT_SYMBOL_GPL(mtd_unpoint);
1323
1324 /*
1325 * Allow NOMMU mmap() to directly map the device (if not NULL)
1326 * - return the address to which the offset maps
1327 * - return -ENOSYS to indicate refusal to do the mapping
1328 */
mtd_get_unmapped_area(struct mtd_info * mtd,unsigned long len,unsigned long offset,unsigned long flags)1329 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1330 unsigned long offset, unsigned long flags)
1331 {
1332 size_t retlen;
1333 void *virt;
1334 int ret;
1335
1336 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1337 if (ret)
1338 return ret;
1339 if (retlen != len) {
1340 mtd_unpoint(mtd, offset, retlen);
1341 return -ENOSYS;
1342 }
1343 return (unsigned long)virt;
1344 }
1345 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1346
mtd_update_ecc_stats(struct mtd_info * mtd,struct mtd_info * master,const struct mtd_ecc_stats * old_stats)1347 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1348 const struct mtd_ecc_stats *old_stats)
1349 {
1350 struct mtd_ecc_stats diff;
1351
1352 if (master == mtd)
1353 return;
1354
1355 diff = master->ecc_stats;
1356 diff.failed -= old_stats->failed;
1357 diff.corrected -= old_stats->corrected;
1358
1359 while (mtd->parent) {
1360 mtd->ecc_stats.failed += diff.failed;
1361 mtd->ecc_stats.corrected += diff.corrected;
1362 mtd = mtd->parent;
1363 }
1364 }
1365
mtd_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1366 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1367 u_char *buf)
1368 {
1369 struct mtd_oob_ops ops = {
1370 .len = len,
1371 .datbuf = buf,
1372 };
1373 int ret;
1374
1375 ret = mtd_read_oob(mtd, from, &ops);
1376 *retlen = ops.retlen;
1377
1378 return ret;
1379 }
1380 EXPORT_SYMBOL_GPL(mtd_read);
1381
mtd_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1382 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1383 const u_char *buf)
1384 {
1385 struct mtd_oob_ops ops = {
1386 .len = len,
1387 .datbuf = (u8 *)buf,
1388 };
1389 int ret;
1390
1391 ret = mtd_write_oob(mtd, to, &ops);
1392 *retlen = ops.retlen;
1393
1394 return ret;
1395 }
1396 EXPORT_SYMBOL_GPL(mtd_write);
1397
1398 /*
1399 * In blackbox flight recorder like scenarios we want to make successful writes
1400 * in interrupt context. panic_write() is only intended to be called when its
1401 * known the kernel is about to panic and we need the write to succeed. Since
1402 * the kernel is not going to be running for much longer, this function can
1403 * break locks and delay to ensure the write succeeds (but not sleep).
1404 */
mtd_panic_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1405 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1406 const u_char *buf)
1407 {
1408 struct mtd_info *master = mtd_get_master(mtd);
1409
1410 *retlen = 0;
1411 if (!master->_panic_write)
1412 return -EOPNOTSUPP;
1413 if (to < 0 || to >= mtd->size || len > mtd->size - to)
1414 return -EINVAL;
1415 if (!(mtd->flags & MTD_WRITEABLE))
1416 return -EROFS;
1417 if (!len)
1418 return 0;
1419 if (!master->oops_panic_write)
1420 master->oops_panic_write = true;
1421
1422 return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1423 retlen, buf);
1424 }
1425 EXPORT_SYMBOL_GPL(mtd_panic_write);
1426
mtd_check_oob_ops(struct mtd_info * mtd,loff_t offs,struct mtd_oob_ops * ops)1427 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1428 struct mtd_oob_ops *ops)
1429 {
1430 /*
1431 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1432 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1433 * this case.
1434 */
1435 if (!ops->datbuf)
1436 ops->len = 0;
1437
1438 if (!ops->oobbuf)
1439 ops->ooblen = 0;
1440
1441 if (offs < 0 || offs + ops->len > mtd->size)
1442 return -EINVAL;
1443
1444 if (ops->ooblen) {
1445 size_t maxooblen;
1446
1447 if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1448 return -EINVAL;
1449
1450 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1451 mtd_div_by_ws(offs, mtd)) *
1452 mtd_oobavail(mtd, ops)) - ops->ooboffs;
1453 if (ops->ooblen > maxooblen)
1454 return -EINVAL;
1455 }
1456
1457 return 0;
1458 }
1459
mtd_read_oob_std(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1460 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1461 struct mtd_oob_ops *ops)
1462 {
1463 struct mtd_info *master = mtd_get_master(mtd);
1464 int ret;
1465
1466 from = mtd_get_master_ofs(mtd, from);
1467 if (master->_read_oob)
1468 ret = master->_read_oob(master, from, ops);
1469 else
1470 ret = master->_read(master, from, ops->len, &ops->retlen,
1471 ops->datbuf);
1472
1473 return ret;
1474 }
1475
mtd_write_oob_std(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)1476 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1477 struct mtd_oob_ops *ops)
1478 {
1479 struct mtd_info *master = mtd_get_master(mtd);
1480 int ret;
1481
1482 to = mtd_get_master_ofs(mtd, to);
1483 if (master->_write_oob)
1484 ret = master->_write_oob(master, to, ops);
1485 else
1486 ret = master->_write(master, to, ops->len, &ops->retlen,
1487 ops->datbuf);
1488
1489 return ret;
1490 }
1491
mtd_io_emulated_slc(struct mtd_info * mtd,loff_t start,bool read,struct mtd_oob_ops * ops)1492 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1493 struct mtd_oob_ops *ops)
1494 {
1495 struct mtd_info *master = mtd_get_master(mtd);
1496 int ngroups = mtd_pairing_groups(master);
1497 int npairs = mtd_wunit_per_eb(master) / ngroups;
1498 struct mtd_oob_ops adjops = *ops;
1499 unsigned int wunit, oobavail;
1500 struct mtd_pairing_info info;
1501 int max_bitflips = 0;
1502 u32 ebofs, pageofs;
1503 loff_t base, pos;
1504
1505 ebofs = mtd_mod_by_eb(start, mtd);
1506 base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1507 info.group = 0;
1508 info.pair = mtd_div_by_ws(ebofs, mtd);
1509 pageofs = mtd_mod_by_ws(ebofs, mtd);
1510 oobavail = mtd_oobavail(mtd, ops);
1511
1512 while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1513 int ret;
1514
1515 if (info.pair >= npairs) {
1516 info.pair = 0;
1517 base += master->erasesize;
1518 }
1519
1520 wunit = mtd_pairing_info_to_wunit(master, &info);
1521 pos = mtd_wunit_to_offset(mtd, base, wunit);
1522
1523 adjops.len = ops->len - ops->retlen;
1524 if (adjops.len > mtd->writesize - pageofs)
1525 adjops.len = mtd->writesize - pageofs;
1526
1527 adjops.ooblen = ops->ooblen - ops->oobretlen;
1528 if (adjops.ooblen > oobavail - adjops.ooboffs)
1529 adjops.ooblen = oobavail - adjops.ooboffs;
1530
1531 if (read) {
1532 ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1533 if (ret > 0)
1534 max_bitflips = max(max_bitflips, ret);
1535 } else {
1536 ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1537 }
1538
1539 if (ret < 0)
1540 return ret;
1541
1542 max_bitflips = max(max_bitflips, ret);
1543 ops->retlen += adjops.retlen;
1544 ops->oobretlen += adjops.oobretlen;
1545 adjops.datbuf += adjops.retlen;
1546 adjops.oobbuf += adjops.oobretlen;
1547 adjops.ooboffs = 0;
1548 pageofs = 0;
1549 info.pair++;
1550 }
1551
1552 return max_bitflips;
1553 }
1554
mtd_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1555 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1556 {
1557 struct mtd_info *master = mtd_get_master(mtd);
1558 struct mtd_ecc_stats old_stats = master->ecc_stats;
1559 int ret_code;
1560
1561 ops->retlen = ops->oobretlen = 0;
1562
1563 ret_code = mtd_check_oob_ops(mtd, from, ops);
1564 if (ret_code)
1565 return ret_code;
1566
1567 ledtrig_mtd_activity();
1568
1569 /* Check the validity of a potential fallback on mtd->_read */
1570 if (!master->_read_oob && (!master->_read || ops->oobbuf))
1571 return -EOPNOTSUPP;
1572
1573 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1574 ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1575 else
1576 ret_code = mtd_read_oob_std(mtd, from, ops);
1577
1578 mtd_update_ecc_stats(mtd, master, &old_stats);
1579
1580 /*
1581 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1582 * similar to mtd->_read(), returning a non-negative integer
1583 * representing max bitflips. In other cases, mtd->_read_oob() may
1584 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1585 */
1586 if (unlikely(ret_code < 0))
1587 return ret_code;
1588 if (mtd->ecc_strength == 0)
1589 return 0; /* device lacks ecc */
1590 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1591 }
1592 EXPORT_SYMBOL_GPL(mtd_read_oob);
1593
mtd_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)1594 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1595 struct mtd_oob_ops *ops)
1596 {
1597 struct mtd_info *master = mtd_get_master(mtd);
1598 int ret;
1599
1600 ops->retlen = ops->oobretlen = 0;
1601
1602 if (!(mtd->flags & MTD_WRITEABLE))
1603 return -EROFS;
1604
1605 ret = mtd_check_oob_ops(mtd, to, ops);
1606 if (ret)
1607 return ret;
1608
1609 ledtrig_mtd_activity();
1610
1611 /* Check the validity of a potential fallback on mtd->_write */
1612 if (!master->_write_oob && (!master->_write || ops->oobbuf))
1613 return -EOPNOTSUPP;
1614
1615 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1616 return mtd_io_emulated_slc(mtd, to, false, ops);
1617
1618 return mtd_write_oob_std(mtd, to, ops);
1619 }
1620 EXPORT_SYMBOL_GPL(mtd_write_oob);
1621
1622 /**
1623 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1624 * @mtd: MTD device structure
1625 * @section: ECC section. Depending on the layout you may have all the ECC
1626 * bytes stored in a single contiguous section, or one section
1627 * per ECC chunk (and sometime several sections for a single ECC
1628 * ECC chunk)
1629 * @oobecc: OOB region struct filled with the appropriate ECC position
1630 * information
1631 *
1632 * This function returns ECC section information in the OOB area. If you want
1633 * to get all the ECC bytes information, then you should call
1634 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1635 *
1636 * Returns zero on success, a negative error code otherwise.
1637 */
mtd_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobecc)1638 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1639 struct mtd_oob_region *oobecc)
1640 {
1641 struct mtd_info *master = mtd_get_master(mtd);
1642
1643 memset(oobecc, 0, sizeof(*oobecc));
1644
1645 if (!master || section < 0)
1646 return -EINVAL;
1647
1648 if (!master->ooblayout || !master->ooblayout->ecc)
1649 return -ENOTSUPP;
1650
1651 return master->ooblayout->ecc(master, section, oobecc);
1652 }
1653 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1654
1655 /**
1656 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1657 * section
1658 * @mtd: MTD device structure
1659 * @section: Free section you are interested in. Depending on the layout
1660 * you may have all the free bytes stored in a single contiguous
1661 * section, or one section per ECC chunk plus an extra section
1662 * for the remaining bytes (or other funky layout).
1663 * @oobfree: OOB region struct filled with the appropriate free position
1664 * information
1665 *
1666 * This function returns free bytes position in the OOB area. If you want
1667 * to get all the free bytes information, then you should call
1668 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1669 *
1670 * Returns zero on success, a negative error code otherwise.
1671 */
mtd_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobfree)1672 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1673 struct mtd_oob_region *oobfree)
1674 {
1675 struct mtd_info *master = mtd_get_master(mtd);
1676
1677 memset(oobfree, 0, sizeof(*oobfree));
1678
1679 if (!master || section < 0)
1680 return -EINVAL;
1681
1682 if (!master->ooblayout || !master->ooblayout->free)
1683 return -ENOTSUPP;
1684
1685 return master->ooblayout->free(master, section, oobfree);
1686 }
1687 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1688
1689 /**
1690 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1691 * @mtd: mtd info structure
1692 * @byte: the byte we are searching for
1693 * @sectionp: pointer where the section id will be stored
1694 * @oobregion: used to retrieve the ECC position
1695 * @iter: iterator function. Should be either mtd_ooblayout_free or
1696 * mtd_ooblayout_ecc depending on the region type you're searching for
1697 *
1698 * This function returns the section id and oobregion information of a
1699 * specific byte. For example, say you want to know where the 4th ECC byte is
1700 * stored, you'll use:
1701 *
1702 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc);
1703 *
1704 * Returns zero on success, a negative error code otherwise.
1705 */
mtd_ooblayout_find_region(struct mtd_info * mtd,int byte,int * sectionp,struct mtd_oob_region * oobregion,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1706 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1707 int *sectionp, struct mtd_oob_region *oobregion,
1708 int (*iter)(struct mtd_info *,
1709 int section,
1710 struct mtd_oob_region *oobregion))
1711 {
1712 int pos = 0, ret, section = 0;
1713
1714 memset(oobregion, 0, sizeof(*oobregion));
1715
1716 while (1) {
1717 ret = iter(mtd, section, oobregion);
1718 if (ret)
1719 return ret;
1720
1721 if (pos + oobregion->length > byte)
1722 break;
1723
1724 pos += oobregion->length;
1725 section++;
1726 }
1727
1728 /*
1729 * Adjust region info to make it start at the beginning at the
1730 * 'start' ECC byte.
1731 */
1732 oobregion->offset += byte - pos;
1733 oobregion->length -= byte - pos;
1734 *sectionp = section;
1735
1736 return 0;
1737 }
1738
1739 /**
1740 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1741 * ECC byte
1742 * @mtd: mtd info structure
1743 * @eccbyte: the byte we are searching for
1744 * @section: pointer where the section id will be stored
1745 * @oobregion: OOB region information
1746 *
1747 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1748 * byte.
1749 *
1750 * Returns zero on success, a negative error code otherwise.
1751 */
mtd_ooblayout_find_eccregion(struct mtd_info * mtd,int eccbyte,int * section,struct mtd_oob_region * oobregion)1752 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1753 int *section,
1754 struct mtd_oob_region *oobregion)
1755 {
1756 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1757 mtd_ooblayout_ecc);
1758 }
1759 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1760
1761 /**
1762 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1763 * @mtd: mtd info structure
1764 * @buf: destination buffer to store OOB bytes
1765 * @oobbuf: OOB buffer
1766 * @start: first byte to retrieve
1767 * @nbytes: number of bytes to retrieve
1768 * @iter: section iterator
1769 *
1770 * Extract bytes attached to a specific category (ECC or free)
1771 * from the OOB buffer and copy them into buf.
1772 *
1773 * Returns zero on success, a negative error code otherwise.
1774 */
mtd_ooblayout_get_bytes(struct mtd_info * mtd,u8 * buf,const u8 * oobbuf,int start,int nbytes,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1775 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1776 const u8 *oobbuf, int start, int nbytes,
1777 int (*iter)(struct mtd_info *,
1778 int section,
1779 struct mtd_oob_region *oobregion))
1780 {
1781 struct mtd_oob_region oobregion;
1782 int section, ret;
1783
1784 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1785 &oobregion, iter);
1786
1787 while (!ret) {
1788 int cnt;
1789
1790 cnt = min_t(int, nbytes, oobregion.length);
1791 memcpy(buf, oobbuf + oobregion.offset, cnt);
1792 buf += cnt;
1793 nbytes -= cnt;
1794
1795 if (!nbytes)
1796 break;
1797
1798 ret = iter(mtd, ++section, &oobregion);
1799 }
1800
1801 return ret;
1802 }
1803
1804 /**
1805 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1806 * @mtd: mtd info structure
1807 * @buf: source buffer to get OOB bytes from
1808 * @oobbuf: OOB buffer
1809 * @start: first OOB byte to set
1810 * @nbytes: number of OOB bytes to set
1811 * @iter: section iterator
1812 *
1813 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1814 * is selected by passing the appropriate iterator.
1815 *
1816 * Returns zero on success, a negative error code otherwise.
1817 */
mtd_ooblayout_set_bytes(struct mtd_info * mtd,const u8 * buf,u8 * oobbuf,int start,int nbytes,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1818 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1819 u8 *oobbuf, int start, int nbytes,
1820 int (*iter)(struct mtd_info *,
1821 int section,
1822 struct mtd_oob_region *oobregion))
1823 {
1824 struct mtd_oob_region oobregion;
1825 int section, ret;
1826
1827 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1828 &oobregion, iter);
1829
1830 while (!ret) {
1831 int cnt;
1832
1833 cnt = min_t(int, nbytes, oobregion.length);
1834 memcpy(oobbuf + oobregion.offset, buf, cnt);
1835 buf += cnt;
1836 nbytes -= cnt;
1837
1838 if (!nbytes)
1839 break;
1840
1841 ret = iter(mtd, ++section, &oobregion);
1842 }
1843
1844 return ret;
1845 }
1846
1847 /**
1848 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1849 * @mtd: mtd info structure
1850 * @iter: category iterator
1851 *
1852 * Count the number of bytes in a given category.
1853 *
1854 * Returns a positive value on success, a negative error code otherwise.
1855 */
mtd_ooblayout_count_bytes(struct mtd_info * mtd,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1856 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1857 int (*iter)(struct mtd_info *,
1858 int section,
1859 struct mtd_oob_region *oobregion))
1860 {
1861 struct mtd_oob_region oobregion;
1862 int section = 0, ret, nbytes = 0;
1863
1864 while (1) {
1865 ret = iter(mtd, section++, &oobregion);
1866 if (ret) {
1867 if (ret == -ERANGE)
1868 ret = nbytes;
1869 break;
1870 }
1871
1872 nbytes += oobregion.length;
1873 }
1874
1875 return ret;
1876 }
1877
1878 /**
1879 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1880 * @mtd: mtd info structure
1881 * @eccbuf: destination buffer to store ECC bytes
1882 * @oobbuf: OOB buffer
1883 * @start: first ECC byte to retrieve
1884 * @nbytes: number of ECC bytes to retrieve
1885 *
1886 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1887 *
1888 * Returns zero on success, a negative error code otherwise.
1889 */
mtd_ooblayout_get_eccbytes(struct mtd_info * mtd,u8 * eccbuf,const u8 * oobbuf,int start,int nbytes)1890 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1891 const u8 *oobbuf, int start, int nbytes)
1892 {
1893 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1894 mtd_ooblayout_ecc);
1895 }
1896 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1897
1898 /**
1899 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1900 * @mtd: mtd info structure
1901 * @eccbuf: source buffer to get ECC bytes from
1902 * @oobbuf: OOB buffer
1903 * @start: first ECC byte to set
1904 * @nbytes: number of ECC bytes to set
1905 *
1906 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1907 *
1908 * Returns zero on success, a negative error code otherwise.
1909 */
mtd_ooblayout_set_eccbytes(struct mtd_info * mtd,const u8 * eccbuf,u8 * oobbuf,int start,int nbytes)1910 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1911 u8 *oobbuf, int start, int nbytes)
1912 {
1913 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1914 mtd_ooblayout_ecc);
1915 }
1916 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1917
1918 /**
1919 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1920 * @mtd: mtd info structure
1921 * @databuf: destination buffer to store ECC bytes
1922 * @oobbuf: OOB buffer
1923 * @start: first ECC byte to retrieve
1924 * @nbytes: number of ECC bytes to retrieve
1925 *
1926 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1927 *
1928 * Returns zero on success, a negative error code otherwise.
1929 */
mtd_ooblayout_get_databytes(struct mtd_info * mtd,u8 * databuf,const u8 * oobbuf,int start,int nbytes)1930 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1931 const u8 *oobbuf, int start, int nbytes)
1932 {
1933 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1934 mtd_ooblayout_free);
1935 }
1936 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1937
1938 /**
1939 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1940 * @mtd: mtd info structure
1941 * @databuf: source buffer to get data bytes from
1942 * @oobbuf: OOB buffer
1943 * @start: first ECC byte to set
1944 * @nbytes: number of ECC bytes to set
1945 *
1946 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
1947 *
1948 * Returns zero on success, a negative error code otherwise.
1949 */
mtd_ooblayout_set_databytes(struct mtd_info * mtd,const u8 * databuf,u8 * oobbuf,int start,int nbytes)1950 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1951 u8 *oobbuf, int start, int nbytes)
1952 {
1953 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1954 mtd_ooblayout_free);
1955 }
1956 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1957
1958 /**
1959 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1960 * @mtd: mtd info structure
1961 *
1962 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1963 *
1964 * Returns zero on success, a negative error code otherwise.
1965 */
mtd_ooblayout_count_freebytes(struct mtd_info * mtd)1966 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1967 {
1968 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1969 }
1970 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1971
1972 /**
1973 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1974 * @mtd: mtd info structure
1975 *
1976 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1977 *
1978 * Returns zero on success, a negative error code otherwise.
1979 */
mtd_ooblayout_count_eccbytes(struct mtd_info * mtd)1980 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1981 {
1982 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1983 }
1984 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1985
1986 /*
1987 * Method to access the protection register area, present in some flash
1988 * devices. The user data is one time programmable but the factory data is read
1989 * only.
1990 */
mtd_get_fact_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)1991 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1992 struct otp_info *buf)
1993 {
1994 struct mtd_info *master = mtd_get_master(mtd);
1995
1996 if (!master->_get_fact_prot_info)
1997 return -EOPNOTSUPP;
1998 if (!len)
1999 return 0;
2000 return master->_get_fact_prot_info(master, len, retlen, buf);
2001 }
2002 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
2003
mtd_read_fact_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)2004 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2005 size_t *retlen, u_char *buf)
2006 {
2007 struct mtd_info *master = mtd_get_master(mtd);
2008
2009 *retlen = 0;
2010 if (!master->_read_fact_prot_reg)
2011 return -EOPNOTSUPP;
2012 if (!len)
2013 return 0;
2014 return master->_read_fact_prot_reg(master, from, len, retlen, buf);
2015 }
2016 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
2017
mtd_get_user_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)2018 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2019 struct otp_info *buf)
2020 {
2021 struct mtd_info *master = mtd_get_master(mtd);
2022
2023 if (!master->_get_user_prot_info)
2024 return -EOPNOTSUPP;
2025 if (!len)
2026 return 0;
2027 return master->_get_user_prot_info(master, len, retlen, buf);
2028 }
2029 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
2030
mtd_read_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)2031 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2032 size_t *retlen, u_char *buf)
2033 {
2034 struct mtd_info *master = mtd_get_master(mtd);
2035
2036 *retlen = 0;
2037 if (!master->_read_user_prot_reg)
2038 return -EOPNOTSUPP;
2039 if (!len)
2040 return 0;
2041 return master->_read_user_prot_reg(master, from, len, retlen, buf);
2042 }
2043 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
2044
mtd_write_user_prot_reg(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)2045 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
2046 size_t *retlen, const u_char *buf)
2047 {
2048 struct mtd_info *master = mtd_get_master(mtd);
2049 int ret;
2050
2051 *retlen = 0;
2052 if (!master->_write_user_prot_reg)
2053 return -EOPNOTSUPP;
2054 if (!len)
2055 return 0;
2056 ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
2057 if (ret)
2058 return ret;
2059
2060 /*
2061 * If no data could be written at all, we are out of memory and
2062 * must return -ENOSPC.
2063 */
2064 return (*retlen) ? 0 : -ENOSPC;
2065 }
2066 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
2067
mtd_lock_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)2068 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2069 {
2070 struct mtd_info *master = mtd_get_master(mtd);
2071
2072 if (!master->_lock_user_prot_reg)
2073 return -EOPNOTSUPP;
2074 if (!len)
2075 return 0;
2076 return master->_lock_user_prot_reg(master, from, len);
2077 }
2078 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
2079
mtd_erase_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)2080 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2081 {
2082 struct mtd_info *master = mtd_get_master(mtd);
2083
2084 if (!master->_erase_user_prot_reg)
2085 return -EOPNOTSUPP;
2086 if (!len)
2087 return 0;
2088 return master->_erase_user_prot_reg(master, from, len);
2089 }
2090 EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg);
2091
2092 /* Chip-supported device locking */
mtd_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)2093 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2094 {
2095 struct mtd_info *master = mtd_get_master(mtd);
2096
2097 if (!master->_lock)
2098 return -EOPNOTSUPP;
2099 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2100 return -EINVAL;
2101 if (!len)
2102 return 0;
2103
2104 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2105 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2106 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2107 }
2108
2109 return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
2110 }
2111 EXPORT_SYMBOL_GPL(mtd_lock);
2112
mtd_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)2113 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2114 {
2115 struct mtd_info *master = mtd_get_master(mtd);
2116
2117 if (!master->_unlock)
2118 return -EOPNOTSUPP;
2119 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2120 return -EINVAL;
2121 if (!len)
2122 return 0;
2123
2124 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2125 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2126 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2127 }
2128
2129 return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
2130 }
2131 EXPORT_SYMBOL_GPL(mtd_unlock);
2132
mtd_is_locked(struct mtd_info * mtd,loff_t ofs,uint64_t len)2133 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2134 {
2135 struct mtd_info *master = mtd_get_master(mtd);
2136
2137 if (!master->_is_locked)
2138 return -EOPNOTSUPP;
2139 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2140 return -EINVAL;
2141 if (!len)
2142 return 0;
2143
2144 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2145 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2146 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2147 }
2148
2149 return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
2150 }
2151 EXPORT_SYMBOL_GPL(mtd_is_locked);
2152
mtd_block_isreserved(struct mtd_info * mtd,loff_t ofs)2153 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
2154 {
2155 struct mtd_info *master = mtd_get_master(mtd);
2156
2157 if (ofs < 0 || ofs >= mtd->size)
2158 return -EINVAL;
2159 if (!master->_block_isreserved)
2160 return 0;
2161
2162 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2163 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2164
2165 return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2166 }
2167 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2168
mtd_block_isbad(struct mtd_info * mtd,loff_t ofs)2169 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2170 {
2171 struct mtd_info *master = mtd_get_master(mtd);
2172
2173 if (ofs < 0 || ofs >= mtd->size)
2174 return -EINVAL;
2175 if (!master->_block_isbad)
2176 return 0;
2177
2178 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2179 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2180
2181 return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2182 }
2183 EXPORT_SYMBOL_GPL(mtd_block_isbad);
2184
mtd_block_markbad(struct mtd_info * mtd,loff_t ofs)2185 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2186 {
2187 struct mtd_info *master = mtd_get_master(mtd);
2188 int ret;
2189
2190 if (!master->_block_markbad)
2191 return -EOPNOTSUPP;
2192 if (ofs < 0 || ofs >= mtd->size)
2193 return -EINVAL;
2194 if (!(mtd->flags & MTD_WRITEABLE))
2195 return -EROFS;
2196
2197 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2198 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2199
2200 ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2201 if (ret)
2202 return ret;
2203
2204 while (mtd->parent) {
2205 mtd->ecc_stats.badblocks++;
2206 mtd = mtd->parent;
2207 }
2208
2209 return 0;
2210 }
2211 EXPORT_SYMBOL_GPL(mtd_block_markbad);
2212
2213 /*
2214 * default_mtd_writev - the default writev method
2215 * @mtd: mtd device description object pointer
2216 * @vecs: the vectors to write
2217 * @count: count of vectors in @vecs
2218 * @to: the MTD device offset to write to
2219 * @retlen: on exit contains the count of bytes written to the MTD device.
2220 *
2221 * This function returns zero in case of success and a negative error code in
2222 * case of failure.
2223 */
default_mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)2224 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2225 unsigned long count, loff_t to, size_t *retlen)
2226 {
2227 unsigned long i;
2228 size_t totlen = 0, thislen;
2229 int ret = 0;
2230
2231 for (i = 0; i < count; i++) {
2232 if (!vecs[i].iov_len)
2233 continue;
2234 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2235 vecs[i].iov_base);
2236 totlen += thislen;
2237 if (ret || thislen != vecs[i].iov_len)
2238 break;
2239 to += vecs[i].iov_len;
2240 }
2241 *retlen = totlen;
2242 return ret;
2243 }
2244
2245 /*
2246 * mtd_writev - the vector-based MTD write method
2247 * @mtd: mtd device description object pointer
2248 * @vecs: the vectors to write
2249 * @count: count of vectors in @vecs
2250 * @to: the MTD device offset to write to
2251 * @retlen: on exit contains the count of bytes written to the MTD device.
2252 *
2253 * This function returns zero in case of success and a negative error code in
2254 * case of failure.
2255 */
mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)2256 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2257 unsigned long count, loff_t to, size_t *retlen)
2258 {
2259 struct mtd_info *master = mtd_get_master(mtd);
2260
2261 *retlen = 0;
2262 if (!(mtd->flags & MTD_WRITEABLE))
2263 return -EROFS;
2264
2265 if (!master->_writev)
2266 return default_mtd_writev(mtd, vecs, count, to, retlen);
2267
2268 return master->_writev(master, vecs, count,
2269 mtd_get_master_ofs(mtd, to), retlen);
2270 }
2271 EXPORT_SYMBOL_GPL(mtd_writev);
2272
2273 /**
2274 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2275 * @mtd: mtd device description object pointer
2276 * @size: a pointer to the ideal or maximum size of the allocation, points
2277 * to the actual allocation size on success.
2278 *
2279 * This routine attempts to allocate a contiguous kernel buffer up to
2280 * the specified size, backing off the size of the request exponentially
2281 * until the request succeeds or until the allocation size falls below
2282 * the system page size. This attempts to make sure it does not adversely
2283 * impact system performance, so when allocating more than one page, we
2284 * ask the memory allocator to avoid re-trying, swapping, writing back
2285 * or performing I/O.
2286 *
2287 * Note, this function also makes sure that the allocated buffer is aligned to
2288 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2289 *
2290 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2291 * to handle smaller (i.e. degraded) buffer allocations under low- or
2292 * fragmented-memory situations where such reduced allocations, from a
2293 * requested ideal, are allowed.
2294 *
2295 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2296 */
mtd_kmalloc_up_to(const struct mtd_info * mtd,size_t * size)2297 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2298 {
2299 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2300 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2301 void *kbuf;
2302
2303 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2304
2305 while (*size > min_alloc) {
2306 kbuf = kmalloc(*size, flags);
2307 if (kbuf)
2308 return kbuf;
2309
2310 *size >>= 1;
2311 *size = ALIGN(*size, mtd->writesize);
2312 }
2313
2314 /*
2315 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2316 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2317 */
2318 return kmalloc(*size, GFP_KERNEL);
2319 }
2320 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2321
2322 #ifdef CONFIG_PROC_FS
2323
2324 /*====================================================================*/
2325 /* Support for /proc/mtd */
2326
mtd_proc_show(struct seq_file * m,void * v)2327 static int mtd_proc_show(struct seq_file *m, void *v)
2328 {
2329 struct mtd_info *mtd;
2330
2331 seq_puts(m, "dev: size erasesize name\n");
2332 mutex_lock(&mtd_table_mutex);
2333 mtd_for_each_device(mtd) {
2334 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2335 mtd->index, (unsigned long long)mtd->size,
2336 mtd->erasesize, mtd->name);
2337 }
2338 mutex_unlock(&mtd_table_mutex);
2339 return 0;
2340 }
2341 #endif /* CONFIG_PROC_FS */
2342
2343 /*====================================================================*/
2344 /* Init code */
2345
mtd_bdi_init(const char * name)2346 static struct backing_dev_info * __init mtd_bdi_init(const char *name)
2347 {
2348 struct backing_dev_info *bdi;
2349 int ret;
2350
2351 bdi = bdi_alloc(NUMA_NO_NODE);
2352 if (!bdi)
2353 return ERR_PTR(-ENOMEM);
2354 bdi->ra_pages = 0;
2355 bdi->io_pages = 0;
2356
2357 /*
2358 * We put '-0' suffix to the name to get the same name format as we
2359 * used to get. Since this is called only once, we get a unique name.
2360 */
2361 ret = bdi_register(bdi, "%.28s-0", name);
2362 if (ret)
2363 bdi_put(bdi);
2364
2365 return ret ? ERR_PTR(ret) : bdi;
2366 }
2367
2368 static struct proc_dir_entry *proc_mtd;
2369
init_mtd(void)2370 static int __init init_mtd(void)
2371 {
2372 int ret;
2373
2374 ret = class_register(&mtd_class);
2375 if (ret)
2376 goto err_reg;
2377
2378 mtd_bdi = mtd_bdi_init("mtd");
2379 if (IS_ERR(mtd_bdi)) {
2380 ret = PTR_ERR(mtd_bdi);
2381 goto err_bdi;
2382 }
2383
2384 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2385
2386 ret = init_mtdchar();
2387 if (ret)
2388 goto out_procfs;
2389
2390 dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2391
2392 return 0;
2393
2394 out_procfs:
2395 if (proc_mtd)
2396 remove_proc_entry("mtd", NULL);
2397 bdi_put(mtd_bdi);
2398 err_bdi:
2399 class_unregister(&mtd_class);
2400 err_reg:
2401 pr_err("Error registering mtd class or bdi: %d\n", ret);
2402 return ret;
2403 }
2404
cleanup_mtd(void)2405 static void __exit cleanup_mtd(void)
2406 {
2407 debugfs_remove_recursive(dfs_dir_mtd);
2408 cleanup_mtdchar();
2409 if (proc_mtd)
2410 remove_proc_entry("mtd", NULL);
2411 class_unregister(&mtd_class);
2412 bdi_put(mtd_bdi);
2413 idr_destroy(&mtd_idr);
2414 }
2415
2416 module_init(init_mtd);
2417 module_exit(cleanup_mtd);
2418
2419 MODULE_LICENSE("GPL");
2420 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2421 MODULE_DESCRIPTION("Core MTD registration and access routines");
2422