1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Simple MTD partitioning layer
4 *
5 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
6 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
7 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
8 */
9
10 #include <linux/module.h>
11 #include <linux/types.h>
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/list.h>
15 #include <linux/kmod.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/mtd/partitions.h>
18 #include <linux/err.h>
19 #include <linux/of.h>
20
21 #include "mtdcore.h"
22
23 /* Our partition linked list */
24 static LIST_HEAD(mtd_partitions);
25 static DEFINE_MUTEX(mtd_partitions_mutex);
26
27 /**
28 * struct mtd_part - our partition node structure
29 *
30 * @mtd: struct holding partition details
31 * @parent: parent mtd - flash device or another partition
32 * @offset: partition offset relative to the *flash device*
33 */
34 struct mtd_part {
35 struct mtd_info mtd;
36 struct mtd_info *parent;
37 uint64_t offset;
38 struct list_head list;
39 };
40
41 /*
42 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
43 * the pointer to that structure.
44 */
mtd_to_part(const struct mtd_info * mtd)45 static inline struct mtd_part *mtd_to_part(const struct mtd_info *mtd)
46 {
47 return container_of(mtd, struct mtd_part, mtd);
48 }
49
part_absolute_offset(struct mtd_info * mtd)50 static u64 part_absolute_offset(struct mtd_info *mtd)
51 {
52 struct mtd_part *part = mtd_to_part(mtd);
53
54 if (!mtd_is_partition(mtd))
55 return 0;
56
57 return part_absolute_offset(part->parent) + part->offset;
58 }
59
60 /*
61 * MTD methods which simply translate the effective address and pass through
62 * to the _real_ device.
63 */
64
part_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)65 static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
66 size_t *retlen, u_char *buf)
67 {
68 struct mtd_part *part = mtd_to_part(mtd);
69 struct mtd_ecc_stats stats;
70 int res;
71
72 stats = part->parent->ecc_stats;
73 res = part->parent->_read(part->parent, from + part->offset, len,
74 retlen, buf);
75 if (unlikely(mtd_is_eccerr(res)))
76 mtd->ecc_stats.failed +=
77 part->parent->ecc_stats.failed - stats.failed;
78 else
79 mtd->ecc_stats.corrected +=
80 part->parent->ecc_stats.corrected - stats.corrected;
81 return res;
82 }
83
part_point(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,void ** virt,resource_size_t * phys)84 static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
85 size_t *retlen, void **virt, resource_size_t *phys)
86 {
87 struct mtd_part *part = mtd_to_part(mtd);
88
89 return part->parent->_point(part->parent, from + part->offset, len,
90 retlen, virt, phys);
91 }
92
part_unpoint(struct mtd_info * mtd,loff_t from,size_t len)93 static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
94 {
95 struct mtd_part *part = mtd_to_part(mtd);
96
97 return part->parent->_unpoint(part->parent, from + part->offset, len);
98 }
99
part_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)100 static int part_read_oob(struct mtd_info *mtd, loff_t from,
101 struct mtd_oob_ops *ops)
102 {
103 struct mtd_part *part = mtd_to_part(mtd);
104 struct mtd_ecc_stats stats;
105 int res;
106
107 stats = part->parent->ecc_stats;
108 res = part->parent->_read_oob(part->parent, from + part->offset, ops);
109 if (unlikely(mtd_is_eccerr(res)))
110 mtd->ecc_stats.failed +=
111 part->parent->ecc_stats.failed - stats.failed;
112 else
113 mtd->ecc_stats.corrected +=
114 part->parent->ecc_stats.corrected - stats.corrected;
115 return res;
116 }
117
part_read_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)118 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
119 size_t len, size_t *retlen, u_char *buf)
120 {
121 struct mtd_part *part = mtd_to_part(mtd);
122 return part->parent->_read_user_prot_reg(part->parent, from, len,
123 retlen, buf);
124 }
125
part_get_user_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)126 static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
127 size_t *retlen, struct otp_info *buf)
128 {
129 struct mtd_part *part = mtd_to_part(mtd);
130 return part->parent->_get_user_prot_info(part->parent, len, retlen,
131 buf);
132 }
133
part_read_fact_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)134 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
135 size_t len, size_t *retlen, u_char *buf)
136 {
137 struct mtd_part *part = mtd_to_part(mtd);
138 return part->parent->_read_fact_prot_reg(part->parent, from, len,
139 retlen, buf);
140 }
141
part_get_fact_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)142 static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
143 size_t *retlen, struct otp_info *buf)
144 {
145 struct mtd_part *part = mtd_to_part(mtd);
146 return part->parent->_get_fact_prot_info(part->parent, len, retlen,
147 buf);
148 }
149
part_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)150 static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
151 size_t *retlen, const u_char *buf)
152 {
153 struct mtd_part *part = mtd_to_part(mtd);
154 return part->parent->_write(part->parent, to + part->offset, len,
155 retlen, buf);
156 }
157
part_panic_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)158 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
159 size_t *retlen, const u_char *buf)
160 {
161 struct mtd_part *part = mtd_to_part(mtd);
162 return part->parent->_panic_write(part->parent, to + part->offset, len,
163 retlen, buf);
164 }
165
part_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)166 static int part_write_oob(struct mtd_info *mtd, loff_t to,
167 struct mtd_oob_ops *ops)
168 {
169 struct mtd_part *part = mtd_to_part(mtd);
170
171 return part->parent->_write_oob(part->parent, to + part->offset, ops);
172 }
173
part_write_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)174 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
175 size_t len, size_t *retlen, u_char *buf)
176 {
177 struct mtd_part *part = mtd_to_part(mtd);
178 return part->parent->_write_user_prot_reg(part->parent, from, len,
179 retlen, buf);
180 }
181
part_lock_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)182 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
183 size_t len)
184 {
185 struct mtd_part *part = mtd_to_part(mtd);
186 return part->parent->_lock_user_prot_reg(part->parent, from, len);
187 }
188
part_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)189 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
190 unsigned long count, loff_t to, size_t *retlen)
191 {
192 struct mtd_part *part = mtd_to_part(mtd);
193 return part->parent->_writev(part->parent, vecs, count,
194 to + part->offset, retlen);
195 }
196
part_erase(struct mtd_info * mtd,struct erase_info * instr)197 static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
198 {
199 struct mtd_part *part = mtd_to_part(mtd);
200 int ret;
201
202 instr->addr += part->offset;
203 ret = part->parent->_erase(part->parent, instr);
204 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
205 instr->fail_addr -= part->offset;
206 instr->addr -= part->offset;
207
208 return ret;
209 }
210
part_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)211 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
212 {
213 struct mtd_part *part = mtd_to_part(mtd);
214 return part->parent->_lock(part->parent, ofs + part->offset, len);
215 }
216
part_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)217 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
218 {
219 struct mtd_part *part = mtd_to_part(mtd);
220 return part->parent->_unlock(part->parent, ofs + part->offset, len);
221 }
222
part_is_locked(struct mtd_info * mtd,loff_t ofs,uint64_t len)223 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
224 {
225 struct mtd_part *part = mtd_to_part(mtd);
226 return part->parent->_is_locked(part->parent, ofs + part->offset, len);
227 }
228
part_sync(struct mtd_info * mtd)229 static void part_sync(struct mtd_info *mtd)
230 {
231 struct mtd_part *part = mtd_to_part(mtd);
232 part->parent->_sync(part->parent);
233 }
234
part_suspend(struct mtd_info * mtd)235 static int part_suspend(struct mtd_info *mtd)
236 {
237 struct mtd_part *part = mtd_to_part(mtd);
238 return part->parent->_suspend(part->parent);
239 }
240
part_resume(struct mtd_info * mtd)241 static void part_resume(struct mtd_info *mtd)
242 {
243 struct mtd_part *part = mtd_to_part(mtd);
244 part->parent->_resume(part->parent);
245 }
246
part_block_isreserved(struct mtd_info * mtd,loff_t ofs)247 static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
248 {
249 struct mtd_part *part = mtd_to_part(mtd);
250 ofs += part->offset;
251 return part->parent->_block_isreserved(part->parent, ofs);
252 }
253
part_block_isbad(struct mtd_info * mtd,loff_t ofs)254 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
255 {
256 struct mtd_part *part = mtd_to_part(mtd);
257 ofs += part->offset;
258 return part->parent->_block_isbad(part->parent, ofs);
259 }
260
part_block_markbad(struct mtd_info * mtd,loff_t ofs)261 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
262 {
263 struct mtd_part *part = mtd_to_part(mtd);
264 int res;
265
266 ofs += part->offset;
267 res = part->parent->_block_markbad(part->parent, ofs);
268 if (!res)
269 mtd->ecc_stats.badblocks++;
270 return res;
271 }
272
part_get_device(struct mtd_info * mtd)273 static int part_get_device(struct mtd_info *mtd)
274 {
275 struct mtd_part *part = mtd_to_part(mtd);
276 return part->parent->_get_device(part->parent);
277 }
278
part_put_device(struct mtd_info * mtd)279 static void part_put_device(struct mtd_info *mtd)
280 {
281 struct mtd_part *part = mtd_to_part(mtd);
282 part->parent->_put_device(part->parent);
283 }
284
part_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)285 static int part_ooblayout_ecc(struct mtd_info *mtd, int section,
286 struct mtd_oob_region *oobregion)
287 {
288 struct mtd_part *part = mtd_to_part(mtd);
289
290 return mtd_ooblayout_ecc(part->parent, section, oobregion);
291 }
292
part_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)293 static int part_ooblayout_free(struct mtd_info *mtd, int section,
294 struct mtd_oob_region *oobregion)
295 {
296 struct mtd_part *part = mtd_to_part(mtd);
297
298 return mtd_ooblayout_free(part->parent, section, oobregion);
299 }
300
301 static const struct mtd_ooblayout_ops part_ooblayout_ops = {
302 .ecc = part_ooblayout_ecc,
303 .free = part_ooblayout_free,
304 };
305
part_max_bad_blocks(struct mtd_info * mtd,loff_t ofs,size_t len)306 static int part_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len)
307 {
308 struct mtd_part *part = mtd_to_part(mtd);
309
310 return part->parent->_max_bad_blocks(part->parent,
311 ofs + part->offset, len);
312 }
313
free_partition(struct mtd_part * p)314 static inline void free_partition(struct mtd_part *p)
315 {
316 kfree(p->mtd.name);
317 kfree(p);
318 }
319
allocate_partition(struct mtd_info * parent,const struct mtd_partition * part,int partno,uint64_t cur_offset)320 static struct mtd_part *allocate_partition(struct mtd_info *parent,
321 const struct mtd_partition *part, int partno,
322 uint64_t cur_offset)
323 {
324 int wr_alignment = (parent->flags & MTD_NO_ERASE) ? parent->writesize :
325 parent->erasesize;
326 struct mtd_part *slave;
327 u32 remainder;
328 char *name;
329 u64 tmp;
330
331 /* allocate the partition structure */
332 slave = kzalloc(sizeof(*slave), GFP_KERNEL);
333 name = kstrdup(part->name, GFP_KERNEL);
334 if (!name || !slave) {
335 printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
336 parent->name);
337 kfree(name);
338 kfree(slave);
339 return ERR_PTR(-ENOMEM);
340 }
341
342 /* set up the MTD object for this partition */
343 slave->mtd.type = parent->type;
344 slave->mtd.flags = parent->orig_flags & ~part->mask_flags;
345 slave->mtd.orig_flags = slave->mtd.flags;
346 slave->mtd.size = part->size;
347 slave->mtd.writesize = parent->writesize;
348 slave->mtd.writebufsize = parent->writebufsize;
349 slave->mtd.oobsize = parent->oobsize;
350 slave->mtd.oobavail = parent->oobavail;
351 slave->mtd.subpage_sft = parent->subpage_sft;
352 slave->mtd.pairing = parent->pairing;
353
354 slave->mtd.name = name;
355 slave->mtd.owner = parent->owner;
356
357 /* NOTE: Historically, we didn't arrange MTDs as a tree out of
358 * concern for showing the same data in multiple partitions.
359 * However, it is very useful to have the master node present,
360 * so the MTD_PARTITIONED_MASTER option allows that. The master
361 * will have device nodes etc only if this is set, so make the
362 * parent conditional on that option. Note, this is a way to
363 * distinguish between the master and the partition in sysfs.
364 */
365 slave->mtd.dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) || mtd_is_partition(parent) ?
366 &parent->dev :
367 parent->dev.parent;
368 slave->mtd.dev.of_node = part->of_node;
369
370 if (parent->_read)
371 slave->mtd._read = part_read;
372 if (parent->_write)
373 slave->mtd._write = part_write;
374
375 if (parent->_panic_write)
376 slave->mtd._panic_write = part_panic_write;
377
378 if (parent->_point && parent->_unpoint) {
379 slave->mtd._point = part_point;
380 slave->mtd._unpoint = part_unpoint;
381 }
382
383 if (parent->_read_oob)
384 slave->mtd._read_oob = part_read_oob;
385 if (parent->_write_oob)
386 slave->mtd._write_oob = part_write_oob;
387 if (parent->_read_user_prot_reg)
388 slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
389 if (parent->_read_fact_prot_reg)
390 slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
391 if (parent->_write_user_prot_reg)
392 slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
393 if (parent->_lock_user_prot_reg)
394 slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
395 if (parent->_get_user_prot_info)
396 slave->mtd._get_user_prot_info = part_get_user_prot_info;
397 if (parent->_get_fact_prot_info)
398 slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
399 if (parent->_sync)
400 slave->mtd._sync = part_sync;
401 if (!partno && !parent->dev.class && parent->_suspend &&
402 parent->_resume) {
403 slave->mtd._suspend = part_suspend;
404 slave->mtd._resume = part_resume;
405 }
406 if (parent->_writev)
407 slave->mtd._writev = part_writev;
408 if (parent->_lock)
409 slave->mtd._lock = part_lock;
410 if (parent->_unlock)
411 slave->mtd._unlock = part_unlock;
412 if (parent->_is_locked)
413 slave->mtd._is_locked = part_is_locked;
414 if (parent->_block_isreserved)
415 slave->mtd._block_isreserved = part_block_isreserved;
416 if (parent->_block_isbad)
417 slave->mtd._block_isbad = part_block_isbad;
418 if (parent->_block_markbad)
419 slave->mtd._block_markbad = part_block_markbad;
420 if (parent->_max_bad_blocks)
421 slave->mtd._max_bad_blocks = part_max_bad_blocks;
422
423 if (parent->_get_device)
424 slave->mtd._get_device = part_get_device;
425 if (parent->_put_device)
426 slave->mtd._put_device = part_put_device;
427
428 slave->mtd._erase = part_erase;
429 slave->parent = parent;
430 slave->offset = part->offset;
431
432 if (slave->offset == MTDPART_OFS_APPEND)
433 slave->offset = cur_offset;
434 if (slave->offset == MTDPART_OFS_NXTBLK) {
435 tmp = cur_offset;
436 slave->offset = cur_offset;
437 remainder = do_div(tmp, wr_alignment);
438 if (remainder) {
439 slave->offset += wr_alignment - remainder;
440 printk(KERN_NOTICE "Moving partition %d: "
441 "0x%012llx -> 0x%012llx\n", partno,
442 (unsigned long long)cur_offset, (unsigned long long)slave->offset);
443 }
444 }
445 if (slave->offset == MTDPART_OFS_RETAIN) {
446 slave->offset = cur_offset;
447 if (parent->size - slave->offset >= slave->mtd.size) {
448 slave->mtd.size = parent->size - slave->offset
449 - slave->mtd.size;
450 } else {
451 printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
452 part->name, parent->size - slave->offset,
453 slave->mtd.size);
454 /* register to preserve ordering */
455 goto out_register;
456 }
457 }
458 if (slave->mtd.size == MTDPART_SIZ_FULL)
459 slave->mtd.size = parent->size - slave->offset;
460
461 printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
462 (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
463
464 /* let's do some sanity checks */
465 if (slave->offset >= parent->size) {
466 /* let's register it anyway to preserve ordering */
467 slave->offset = 0;
468 slave->mtd.size = 0;
469
470 /* Initialize ->erasesize to make add_mtd_device() happy. */
471 slave->mtd.erasesize = parent->erasesize;
472
473 printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
474 part->name);
475 goto out_register;
476 }
477 if (slave->offset + slave->mtd.size > parent->size) {
478 slave->mtd.size = parent->size - slave->offset;
479 printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
480 part->name, parent->name, (unsigned long long)slave->mtd.size);
481 }
482 if (parent->numeraseregions > 1) {
483 /* Deal with variable erase size stuff */
484 int i, max = parent->numeraseregions;
485 u64 end = slave->offset + slave->mtd.size;
486 struct mtd_erase_region_info *regions = parent->eraseregions;
487
488 /* Find the first erase regions which is part of this
489 * partition. */
490 for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
491 ;
492 /* The loop searched for the region _behind_ the first one */
493 if (i > 0)
494 i--;
495
496 /* Pick biggest erasesize */
497 for (; i < max && regions[i].offset < end; i++) {
498 if (slave->mtd.erasesize < regions[i].erasesize) {
499 slave->mtd.erasesize = regions[i].erasesize;
500 }
501 }
502 BUG_ON(slave->mtd.erasesize == 0);
503 } else {
504 /* Single erase size */
505 slave->mtd.erasesize = parent->erasesize;
506 }
507
508 /*
509 * Slave erasesize might differ from the master one if the master
510 * exposes several regions with different erasesize. Adjust
511 * wr_alignment accordingly.
512 */
513 if (!(slave->mtd.flags & MTD_NO_ERASE))
514 wr_alignment = slave->mtd.erasesize;
515
516 tmp = part_absolute_offset(parent) + slave->offset;
517 remainder = do_div(tmp, wr_alignment);
518 if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) {
519 /* Doesn't start on a boundary of major erase size */
520 /* FIXME: Let it be writable if it is on a boundary of
521 * _minor_ erase size though */
522 slave->mtd.flags &= ~MTD_WRITEABLE;
523 printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase/write block boundary -- force read-only\n",
524 part->name);
525 }
526
527 tmp = part_absolute_offset(parent) + slave->mtd.size;
528 remainder = do_div(tmp, wr_alignment);
529 if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) {
530 slave->mtd.flags &= ~MTD_WRITEABLE;
531 printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase/write block -- force read-only\n",
532 part->name);
533 }
534
535 mtd_set_ooblayout(&slave->mtd, &part_ooblayout_ops);
536 slave->mtd.ecc_step_size = parent->ecc_step_size;
537 slave->mtd.ecc_strength = parent->ecc_strength;
538 slave->mtd.bitflip_threshold = parent->bitflip_threshold;
539
540 if (parent->_block_isbad) {
541 uint64_t offs = 0;
542
543 while (offs < slave->mtd.size) {
544 if (mtd_block_isreserved(parent, offs + slave->offset))
545 slave->mtd.ecc_stats.bbtblocks++;
546 else if (mtd_block_isbad(parent, offs + slave->offset))
547 slave->mtd.ecc_stats.badblocks++;
548 offs += slave->mtd.erasesize;
549 }
550 }
551
552 out_register:
553 return slave;
554 }
555
mtd_partition_offset_show(struct device * dev,struct device_attribute * attr,char * buf)556 static ssize_t mtd_partition_offset_show(struct device *dev,
557 struct device_attribute *attr, char *buf)
558 {
559 struct mtd_info *mtd = dev_get_drvdata(dev);
560 struct mtd_part *part = mtd_to_part(mtd);
561 return snprintf(buf, PAGE_SIZE, "%llu\n", part->offset);
562 }
563
564 static DEVICE_ATTR(offset, S_IRUGO, mtd_partition_offset_show, NULL);
565
566 static const struct attribute *mtd_partition_attrs[] = {
567 &dev_attr_offset.attr,
568 NULL
569 };
570
mtd_add_partition_attrs(struct mtd_part * new)571 static int mtd_add_partition_attrs(struct mtd_part *new)
572 {
573 int ret = sysfs_create_files(&new->mtd.dev.kobj, mtd_partition_attrs);
574 if (ret)
575 printk(KERN_WARNING
576 "mtd: failed to create partition attrs, err=%d\n", ret);
577 return ret;
578 }
579
mtd_add_partition(struct mtd_info * parent,const char * name,long long offset,long long length)580 int mtd_add_partition(struct mtd_info *parent, const char *name,
581 long long offset, long long length)
582 {
583 struct mtd_partition part;
584 struct mtd_part *new;
585 int ret = 0;
586
587 /* the direct offset is expected */
588 if (offset == MTDPART_OFS_APPEND ||
589 offset == MTDPART_OFS_NXTBLK)
590 return -EINVAL;
591
592 if (length == MTDPART_SIZ_FULL)
593 length = parent->size - offset;
594
595 if (length <= 0)
596 return -EINVAL;
597
598 memset(&part, 0, sizeof(part));
599 part.name = name;
600 part.size = length;
601 part.offset = offset;
602
603 new = allocate_partition(parent, &part, -1, offset);
604 if (IS_ERR(new))
605 return PTR_ERR(new);
606
607 mutex_lock(&mtd_partitions_mutex);
608 list_add(&new->list, &mtd_partitions);
609 mutex_unlock(&mtd_partitions_mutex);
610
611 ret = add_mtd_device(&new->mtd);
612 if (ret)
613 goto err_remove_part;
614
615 mtd_add_partition_attrs(new);
616
617 return 0;
618
619 err_remove_part:
620 mutex_lock(&mtd_partitions_mutex);
621 list_del(&new->list);
622 mutex_unlock(&mtd_partitions_mutex);
623
624 free_partition(new);
625
626 return ret;
627 }
628 EXPORT_SYMBOL_GPL(mtd_add_partition);
629
630 /**
631 * __mtd_del_partition - delete MTD partition
632 *
633 * @priv: internal MTD struct for partition to be deleted
634 *
635 * This function must be called with the partitions mutex locked.
636 */
__mtd_del_partition(struct mtd_part * priv)637 static int __mtd_del_partition(struct mtd_part *priv)
638 {
639 struct mtd_part *child, *next;
640 int err;
641
642 list_for_each_entry_safe(child, next, &mtd_partitions, list) {
643 if (child->parent == &priv->mtd) {
644 err = __mtd_del_partition(child);
645 if (err)
646 return err;
647 }
648 }
649
650 sysfs_remove_files(&priv->mtd.dev.kobj, mtd_partition_attrs);
651
652 err = del_mtd_device(&priv->mtd);
653 if (err)
654 return err;
655
656 list_del(&priv->list);
657 free_partition(priv);
658
659 return 0;
660 }
661
662 /*
663 * This function unregisters and destroy all slave MTD objects which are
664 * attached to the given MTD object.
665 */
del_mtd_partitions(struct mtd_info * mtd)666 int del_mtd_partitions(struct mtd_info *mtd)
667 {
668 struct mtd_part *slave, *next;
669 int ret, err = 0;
670
671 mutex_lock(&mtd_partitions_mutex);
672 list_for_each_entry_safe(slave, next, &mtd_partitions, list)
673 if (slave->parent == mtd) {
674 ret = __mtd_del_partition(slave);
675 if (ret < 0)
676 err = ret;
677 }
678 mutex_unlock(&mtd_partitions_mutex);
679
680 return err;
681 }
682
mtd_del_partition(struct mtd_info * mtd,int partno)683 int mtd_del_partition(struct mtd_info *mtd, int partno)
684 {
685 struct mtd_part *slave, *next;
686 int ret = -EINVAL;
687
688 mutex_lock(&mtd_partitions_mutex);
689 list_for_each_entry_safe(slave, next, &mtd_partitions, list)
690 if ((slave->parent == mtd) &&
691 (slave->mtd.index == partno)) {
692 ret = __mtd_del_partition(slave);
693 break;
694 }
695 mutex_unlock(&mtd_partitions_mutex);
696
697 return ret;
698 }
699 EXPORT_SYMBOL_GPL(mtd_del_partition);
700
701 /*
702 * This function, given a master MTD object and a partition table, creates
703 * and registers slave MTD objects which are bound to the master according to
704 * the partition definitions.
705 *
706 * For historical reasons, this function's caller only registers the master
707 * if the MTD_PARTITIONED_MASTER config option is set.
708 */
709
add_mtd_partitions(struct mtd_info * master,const struct mtd_partition * parts,int nbparts)710 int add_mtd_partitions(struct mtd_info *master,
711 const struct mtd_partition *parts,
712 int nbparts)
713 {
714 struct mtd_part *slave;
715 uint64_t cur_offset = 0;
716 int i, ret;
717
718 printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
719
720 for (i = 0; i < nbparts; i++) {
721 slave = allocate_partition(master, parts + i, i, cur_offset);
722 if (IS_ERR(slave)) {
723 ret = PTR_ERR(slave);
724 goto err_del_partitions;
725 }
726
727 mutex_lock(&mtd_partitions_mutex);
728 list_add(&slave->list, &mtd_partitions);
729 mutex_unlock(&mtd_partitions_mutex);
730
731 ret = add_mtd_device(&slave->mtd);
732 if (ret) {
733 mutex_lock(&mtd_partitions_mutex);
734 list_del(&slave->list);
735 mutex_unlock(&mtd_partitions_mutex);
736
737 free_partition(slave);
738 goto err_del_partitions;
739 }
740
741 mtd_add_partition_attrs(slave);
742 /* Look for subpartitions */
743 parse_mtd_partitions(&slave->mtd, parts[i].types, NULL);
744
745 cur_offset = slave->offset + slave->mtd.size;
746 }
747
748 return 0;
749
750 err_del_partitions:
751 del_mtd_partitions(master);
752
753 return ret;
754 }
755
756 static DEFINE_SPINLOCK(part_parser_lock);
757 static LIST_HEAD(part_parsers);
758
mtd_part_parser_get(const char * name)759 static struct mtd_part_parser *mtd_part_parser_get(const char *name)
760 {
761 struct mtd_part_parser *p, *ret = NULL;
762
763 spin_lock(&part_parser_lock);
764
765 list_for_each_entry(p, &part_parsers, list)
766 if (!strcmp(p->name, name) && try_module_get(p->owner)) {
767 ret = p;
768 break;
769 }
770
771 spin_unlock(&part_parser_lock);
772
773 return ret;
774 }
775
mtd_part_parser_put(const struct mtd_part_parser * p)776 static inline void mtd_part_parser_put(const struct mtd_part_parser *p)
777 {
778 module_put(p->owner);
779 }
780
781 /*
782 * Many partition parsers just expected the core to kfree() all their data in
783 * one chunk. Do that by default.
784 */
mtd_part_parser_cleanup_default(const struct mtd_partition * pparts,int nr_parts)785 static void mtd_part_parser_cleanup_default(const struct mtd_partition *pparts,
786 int nr_parts)
787 {
788 kfree(pparts);
789 }
790
__register_mtd_parser(struct mtd_part_parser * p,struct module * owner)791 int __register_mtd_parser(struct mtd_part_parser *p, struct module *owner)
792 {
793 p->owner = owner;
794
795 if (!p->cleanup)
796 p->cleanup = &mtd_part_parser_cleanup_default;
797
798 spin_lock(&part_parser_lock);
799 list_add(&p->list, &part_parsers);
800 spin_unlock(&part_parser_lock);
801
802 return 0;
803 }
804 EXPORT_SYMBOL_GPL(__register_mtd_parser);
805
deregister_mtd_parser(struct mtd_part_parser * p)806 void deregister_mtd_parser(struct mtd_part_parser *p)
807 {
808 spin_lock(&part_parser_lock);
809 list_del(&p->list);
810 spin_unlock(&part_parser_lock);
811 }
812 EXPORT_SYMBOL_GPL(deregister_mtd_parser);
813
814 /*
815 * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
816 * are changing this array!
817 */
818 static const char * const default_mtd_part_types[] = {
819 "cmdlinepart",
820 "ofpart",
821 NULL
822 };
823
824 /* Check DT only when looking for subpartitions. */
825 static const char * const default_subpartition_types[] = {
826 "ofpart",
827 NULL
828 };
829
mtd_part_do_parse(struct mtd_part_parser * parser,struct mtd_info * master,struct mtd_partitions * pparts,struct mtd_part_parser_data * data)830 static int mtd_part_do_parse(struct mtd_part_parser *parser,
831 struct mtd_info *master,
832 struct mtd_partitions *pparts,
833 struct mtd_part_parser_data *data)
834 {
835 int ret;
836
837 ret = (*parser->parse_fn)(master, &pparts->parts, data);
838 pr_debug("%s: parser %s: %i\n", master->name, parser->name, ret);
839 if (ret <= 0)
840 return ret;
841
842 pr_notice("%d %s partitions found on MTD device %s\n", ret,
843 parser->name, master->name);
844
845 pparts->nr_parts = ret;
846 pparts->parser = parser;
847
848 return ret;
849 }
850
851 /**
852 * mtd_part_get_compatible_parser - find MTD parser by a compatible string
853 *
854 * @compat: compatible string describing partitions in a device tree
855 *
856 * MTD parsers can specify supported partitions by providing a table of
857 * compatibility strings. This function finds a parser that advertises support
858 * for a passed value of "compatible".
859 */
mtd_part_get_compatible_parser(const char * compat)860 static struct mtd_part_parser *mtd_part_get_compatible_parser(const char *compat)
861 {
862 struct mtd_part_parser *p, *ret = NULL;
863
864 spin_lock(&part_parser_lock);
865
866 list_for_each_entry(p, &part_parsers, list) {
867 const struct of_device_id *matches;
868
869 matches = p->of_match_table;
870 if (!matches)
871 continue;
872
873 for (; matches->compatible[0]; matches++) {
874 if (!strcmp(matches->compatible, compat) &&
875 try_module_get(p->owner)) {
876 ret = p;
877 break;
878 }
879 }
880
881 if (ret)
882 break;
883 }
884
885 spin_unlock(&part_parser_lock);
886
887 return ret;
888 }
889
mtd_part_of_parse(struct mtd_info * master,struct mtd_partitions * pparts)890 static int mtd_part_of_parse(struct mtd_info *master,
891 struct mtd_partitions *pparts)
892 {
893 struct mtd_part_parser *parser;
894 struct device_node *np;
895 struct property *prop;
896 const char *compat;
897 const char *fixed = "fixed-partitions";
898 int ret, err = 0;
899
900 np = mtd_get_of_node(master);
901 if (mtd_is_partition(master))
902 of_node_get(np);
903 else
904 np = of_get_child_by_name(np, "partitions");
905
906 of_property_for_each_string(np, "compatible", prop, compat) {
907 parser = mtd_part_get_compatible_parser(compat);
908 if (!parser)
909 continue;
910 ret = mtd_part_do_parse(parser, master, pparts, NULL);
911 if (ret > 0) {
912 of_node_put(np);
913 return ret;
914 }
915 mtd_part_parser_put(parser);
916 if (ret < 0 && !err)
917 err = ret;
918 }
919 of_node_put(np);
920
921 /*
922 * For backward compatibility we have to try the "fixed-partitions"
923 * parser. It supports old DT format with partitions specified as a
924 * direct subnodes of a flash device DT node without any compatibility
925 * specified we could match.
926 */
927 parser = mtd_part_parser_get(fixed);
928 if (!parser && !request_module("%s", fixed))
929 parser = mtd_part_parser_get(fixed);
930 if (parser) {
931 ret = mtd_part_do_parse(parser, master, pparts, NULL);
932 if (ret > 0)
933 return ret;
934 mtd_part_parser_put(parser);
935 if (ret < 0 && !err)
936 err = ret;
937 }
938
939 return err;
940 }
941
942 /**
943 * parse_mtd_partitions - parse and register MTD partitions
944 *
945 * @master: the master partition (describes whole MTD device)
946 * @types: names of partition parsers to try or %NULL
947 * @data: MTD partition parser-specific data
948 *
949 * This function tries to find & register partitions on MTD device @master. It
950 * uses MTD partition parsers, specified in @types. However, if @types is %NULL,
951 * then the default list of parsers is used. The default list contains only the
952 * "cmdlinepart" and "ofpart" parsers ATM.
953 * Note: If there are more then one parser in @types, the kernel only takes the
954 * partitions parsed out by the first parser.
955 *
956 * This function may return:
957 * o a negative error code in case of failure
958 * o number of found partitions otherwise
959 */
parse_mtd_partitions(struct mtd_info * master,const char * const * types,struct mtd_part_parser_data * data)960 int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
961 struct mtd_part_parser_data *data)
962 {
963 struct mtd_partitions pparts = { };
964 struct mtd_part_parser *parser;
965 int ret, err = 0;
966
967 if (!types)
968 types = mtd_is_partition(master) ? default_subpartition_types :
969 default_mtd_part_types;
970
971 for ( ; *types; types++) {
972 /*
973 * ofpart is a special type that means OF partitioning info
974 * should be used. It requires a bit different logic so it is
975 * handled in a separated function.
976 */
977 if (!strcmp(*types, "ofpart")) {
978 ret = mtd_part_of_parse(master, &pparts);
979 } else {
980 pr_debug("%s: parsing partitions %s\n", master->name,
981 *types);
982 parser = mtd_part_parser_get(*types);
983 if (!parser && !request_module("%s", *types))
984 parser = mtd_part_parser_get(*types);
985 pr_debug("%s: got parser %s\n", master->name,
986 parser ? parser->name : NULL);
987 if (!parser)
988 continue;
989 ret = mtd_part_do_parse(parser, master, &pparts, data);
990 if (ret <= 0)
991 mtd_part_parser_put(parser);
992 }
993 /* Found partitions! */
994 if (ret > 0) {
995 err = add_mtd_partitions(master, pparts.parts,
996 pparts.nr_parts);
997 mtd_part_parser_cleanup(&pparts);
998 return err ? err : pparts.nr_parts;
999 }
1000 /*
1001 * Stash the first error we see; only report it if no parser
1002 * succeeds
1003 */
1004 if (ret < 0 && !err)
1005 err = ret;
1006 }
1007 return err;
1008 }
1009
mtd_part_parser_cleanup(struct mtd_partitions * parts)1010 void mtd_part_parser_cleanup(struct mtd_partitions *parts)
1011 {
1012 const struct mtd_part_parser *parser;
1013
1014 if (!parts)
1015 return;
1016
1017 parser = parts->parser;
1018 if (parser) {
1019 if (parser->cleanup)
1020 parser->cleanup(parts->parts, parts->nr_parts);
1021
1022 mtd_part_parser_put(parser);
1023 }
1024 }
1025
mtd_is_partition(const struct mtd_info * mtd)1026 int mtd_is_partition(const struct mtd_info *mtd)
1027 {
1028 struct mtd_part *part;
1029 int ispart = 0;
1030
1031 mutex_lock(&mtd_partitions_mutex);
1032 list_for_each_entry(part, &mtd_partitions, list)
1033 if (&part->mtd == mtd) {
1034 ispart = 1;
1035 break;
1036 }
1037 mutex_unlock(&mtd_partitions_mutex);
1038
1039 return ispart;
1040 }
1041 EXPORT_SYMBOL_GPL(mtd_is_partition);
1042
1043 /* Returns the size of the entire flash chip */
mtd_get_device_size(const struct mtd_info * mtd)1044 uint64_t mtd_get_device_size(const struct mtd_info *mtd)
1045 {
1046 if (!mtd_is_partition(mtd))
1047 return mtd->size;
1048
1049 return mtd_get_device_size(mtd_to_part(mtd)->parent);
1050 }
1051 EXPORT_SYMBOL_GPL(mtd_get_device_size);
1052