1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Simple MTD partitioning layer
4  *
5  * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
6  * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
7  * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
8  */
9 
10 #include <linux/module.h>
11 #include <linux/types.h>
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/list.h>
15 #include <linux/kmod.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/mtd/partitions.h>
18 #include <linux/err.h>
19 #include <linux/of.h>
20 
21 #include "mtdcore.h"
22 
23 /*
24  * MTD methods which simply translate the effective address and pass through
25  * to the _real_ device.
26  */
27 
free_partition(struct mtd_info * mtd)28 static inline void free_partition(struct mtd_info *mtd)
29 {
30 	kfree(mtd->name);
31 	kfree(mtd);
32 }
33 
allocate_partition(struct mtd_info * parent,const struct mtd_partition * part,int partno,uint64_t cur_offset)34 static struct mtd_info *allocate_partition(struct mtd_info *parent,
35 					   const struct mtd_partition *part,
36 					   int partno, uint64_t cur_offset)
37 {
38 	struct mtd_info *master = mtd_get_master(parent);
39 	int wr_alignment = (parent->flags & MTD_NO_ERASE) ?
40 			   master->writesize : master->erasesize;
41 	u64 parent_size = mtd_is_partition(parent) ?
42 			  parent->part.size : parent->size;
43 	struct mtd_info *child;
44 	u32 remainder;
45 	char *name;
46 	u64 tmp;
47 
48 	/* allocate the partition structure */
49 	child = kzalloc(sizeof(*child), GFP_KERNEL);
50 	name = kstrdup(part->name, GFP_KERNEL);
51 	if (!name || !child) {
52 		printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
53 		       parent->name);
54 		kfree(name);
55 		kfree(child);
56 		return ERR_PTR(-ENOMEM);
57 	}
58 
59 	/* set up the MTD object for this partition */
60 	child->type = parent->type;
61 	child->part.flags = parent->flags & ~part->mask_flags;
62 	child->part.flags |= part->add_flags;
63 	child->flags = child->part.flags;
64 	child->part.size = part->size;
65 	child->writesize = parent->writesize;
66 	child->writebufsize = parent->writebufsize;
67 	child->oobsize = parent->oobsize;
68 	child->oobavail = parent->oobavail;
69 	child->subpage_sft = parent->subpage_sft;
70 
71 	child->name = name;
72 	child->owner = parent->owner;
73 
74 	/* NOTE: Historically, we didn't arrange MTDs as a tree out of
75 	 * concern for showing the same data in multiple partitions.
76 	 * However, it is very useful to have the master node present,
77 	 * so the MTD_PARTITIONED_MASTER option allows that. The master
78 	 * will have device nodes etc only if this is set, so make the
79 	 * parent conditional on that option. Note, this is a way to
80 	 * distinguish between the parent and its partitions in sysfs.
81 	 */
82 	child->dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) || mtd_is_partition(parent) ?
83 			    &parent->dev : parent->dev.parent;
84 	child->dev.of_node = part->of_node;
85 	child->parent = parent;
86 	child->part.offset = part->offset;
87 	INIT_LIST_HEAD(&child->partitions);
88 
89 	if (child->part.offset == MTDPART_OFS_APPEND)
90 		child->part.offset = cur_offset;
91 	if (child->part.offset == MTDPART_OFS_NXTBLK) {
92 		tmp = cur_offset;
93 		child->part.offset = cur_offset;
94 		remainder = do_div(tmp, wr_alignment);
95 		if (remainder) {
96 			child->part.offset += wr_alignment - remainder;
97 			printk(KERN_NOTICE "Moving partition %d: "
98 			       "0x%012llx -> 0x%012llx\n", partno,
99 			       (unsigned long long)cur_offset,
100 			       child->part.offset);
101 		}
102 	}
103 	if (child->part.offset == MTDPART_OFS_RETAIN) {
104 		child->part.offset = cur_offset;
105 		if (parent_size - child->part.offset >= child->part.size) {
106 			child->part.size = parent_size - child->part.offset -
107 					   child->part.size;
108 		} else {
109 			printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
110 				part->name, parent_size - child->part.offset,
111 				child->part.size);
112 			/* register to preserve ordering */
113 			goto out_register;
114 		}
115 	}
116 	if (child->part.size == MTDPART_SIZ_FULL)
117 		child->part.size = parent_size - child->part.offset;
118 
119 	printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n",
120 	       child->part.offset, child->part.offset + child->part.size,
121 	       child->name);
122 
123 	/* let's do some sanity checks */
124 	if (child->part.offset >= parent_size) {
125 		/* let's register it anyway to preserve ordering */
126 		child->part.offset = 0;
127 		child->part.size = 0;
128 
129 		/* Initialize ->erasesize to make add_mtd_device() happy. */
130 		child->erasesize = parent->erasesize;
131 		printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
132 			part->name);
133 		goto out_register;
134 	}
135 	if (child->part.offset + child->part.size > parent->size) {
136 		child->part.size = parent_size - child->part.offset;
137 		printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
138 			part->name, parent->name, child->part.size);
139 	}
140 
141 	if (parent->numeraseregions > 1) {
142 		/* Deal with variable erase size stuff */
143 		int i, max = parent->numeraseregions;
144 		u64 end = child->part.offset + child->part.size;
145 		struct mtd_erase_region_info *regions = parent->eraseregions;
146 
147 		/* Find the first erase regions which is part of this
148 		 * partition. */
149 		for (i = 0; i < max && regions[i].offset <= child->part.offset;
150 		     i++)
151 			;
152 		/* The loop searched for the region _behind_ the first one */
153 		if (i > 0)
154 			i--;
155 
156 		/* Pick biggest erasesize */
157 		for (; i < max && regions[i].offset < end; i++) {
158 			if (child->erasesize < regions[i].erasesize)
159 				child->erasesize = regions[i].erasesize;
160 		}
161 		BUG_ON(child->erasesize == 0);
162 	} else {
163 		/* Single erase size */
164 		child->erasesize = master->erasesize;
165 	}
166 
167 	/*
168 	 * Child erasesize might differ from the parent one if the parent
169 	 * exposes several regions with different erasesize. Adjust
170 	 * wr_alignment accordingly.
171 	 */
172 	if (!(child->flags & MTD_NO_ERASE))
173 		wr_alignment = child->erasesize;
174 
175 	tmp = mtd_get_master_ofs(child, 0);
176 	remainder = do_div(tmp, wr_alignment);
177 	if ((child->flags & MTD_WRITEABLE) && remainder) {
178 		/* Doesn't start on a boundary of major erase size */
179 		/* FIXME: Let it be writable if it is on a boundary of
180 		 * _minor_ erase size though */
181 		child->flags &= ~MTD_WRITEABLE;
182 		printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase/write block boundary -- force read-only\n",
183 			part->name);
184 	}
185 
186 	tmp = mtd_get_master_ofs(child, 0) + child->part.size;
187 	remainder = do_div(tmp, wr_alignment);
188 	if ((child->flags & MTD_WRITEABLE) && remainder) {
189 		child->flags &= ~MTD_WRITEABLE;
190 		printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase/write block -- force read-only\n",
191 			part->name);
192 	}
193 
194 	child->size = child->part.size;
195 	child->ecc_step_size = parent->ecc_step_size;
196 	child->ecc_strength = parent->ecc_strength;
197 	child->bitflip_threshold = parent->bitflip_threshold;
198 
199 	if (master->_block_isbad) {
200 		uint64_t offs = 0;
201 
202 		while (offs < child->part.size) {
203 			if (mtd_block_isreserved(child, offs))
204 				child->ecc_stats.bbtblocks++;
205 			else if (mtd_block_isbad(child, offs))
206 				child->ecc_stats.badblocks++;
207 			offs += child->erasesize;
208 		}
209 	}
210 
211 out_register:
212 	return child;
213 }
214 
mtd_partition_offset_show(struct device * dev,struct device_attribute * attr,char * buf)215 static ssize_t mtd_partition_offset_show(struct device *dev,
216 		struct device_attribute *attr, char *buf)
217 {
218 	struct mtd_info *mtd = dev_get_drvdata(dev);
219 
220 	return snprintf(buf, PAGE_SIZE, "%lld\n", mtd->part.offset);
221 }
222 
223 static DEVICE_ATTR(offset, S_IRUGO, mtd_partition_offset_show, NULL);
224 
225 static const struct attribute *mtd_partition_attrs[] = {
226 	&dev_attr_offset.attr,
227 	NULL
228 };
229 
mtd_add_partition_attrs(struct mtd_info * new)230 static int mtd_add_partition_attrs(struct mtd_info *new)
231 {
232 	int ret = sysfs_create_files(&new->dev.kobj, mtd_partition_attrs);
233 	if (ret)
234 		printk(KERN_WARNING
235 		       "mtd: failed to create partition attrs, err=%d\n", ret);
236 	return ret;
237 }
238 
mtd_add_partition(struct mtd_info * parent,const char * name,long long offset,long long length)239 int mtd_add_partition(struct mtd_info *parent, const char *name,
240 		      long long offset, long long length)
241 {
242 	struct mtd_info *master = mtd_get_master(parent);
243 	u64 parent_size = mtd_is_partition(parent) ?
244 			  parent->part.size : parent->size;
245 	struct mtd_partition part;
246 	struct mtd_info *child;
247 	int ret = 0;
248 
249 	/* the direct offset is expected */
250 	if (offset == MTDPART_OFS_APPEND ||
251 	    offset == MTDPART_OFS_NXTBLK)
252 		return -EINVAL;
253 
254 	if (length == MTDPART_SIZ_FULL)
255 		length = parent_size - offset;
256 
257 	if (length <= 0)
258 		return -EINVAL;
259 
260 	memset(&part, 0, sizeof(part));
261 	part.name = name;
262 	part.size = length;
263 	part.offset = offset;
264 
265 	child = allocate_partition(parent, &part, -1, offset);
266 	if (IS_ERR(child))
267 		return PTR_ERR(child);
268 
269 	mutex_lock(&master->master.partitions_lock);
270 	list_add_tail(&child->part.node, &parent->partitions);
271 	mutex_unlock(&master->master.partitions_lock);
272 
273 	ret = add_mtd_device(child);
274 	if (ret)
275 		goto err_remove_part;
276 
277 	mtd_add_partition_attrs(child);
278 
279 	return 0;
280 
281 err_remove_part:
282 	mutex_lock(&master->master.partitions_lock);
283 	list_del(&child->part.node);
284 	mutex_unlock(&master->master.partitions_lock);
285 
286 	free_partition(child);
287 
288 	return ret;
289 }
290 EXPORT_SYMBOL_GPL(mtd_add_partition);
291 
292 /**
293  * __mtd_del_partition - delete MTD partition
294  *
295  * @priv: MTD structure to be deleted
296  *
297  * This function must be called with the partitions mutex locked.
298  */
__mtd_del_partition(struct mtd_info * mtd)299 static int __mtd_del_partition(struct mtd_info *mtd)
300 {
301 	struct mtd_info *child, *next;
302 	int err;
303 
304 	list_for_each_entry_safe(child, next, &mtd->partitions, part.node) {
305 		err = __mtd_del_partition(child);
306 		if (err)
307 			return err;
308 	}
309 
310 	sysfs_remove_files(&mtd->dev.kobj, mtd_partition_attrs);
311 
312 	err = del_mtd_device(mtd);
313 	if (err)
314 		return err;
315 
316 	list_del(&child->part.node);
317 	free_partition(mtd);
318 
319 	return 0;
320 }
321 
322 /*
323  * This function unregisters and destroy all slave MTD objects which are
324  * attached to the given MTD object, recursively.
325  */
__del_mtd_partitions(struct mtd_info * mtd)326 static int __del_mtd_partitions(struct mtd_info *mtd)
327 {
328 	struct mtd_info *child, *next;
329 	LIST_HEAD(tmp_list);
330 	int ret, err = 0;
331 
332 	list_for_each_entry_safe(child, next, &mtd->partitions, part.node) {
333 		if (mtd_has_partitions(child))
334 			del_mtd_partitions(child);
335 
336 		pr_info("Deleting %s MTD partition\n", child->name);
337 		ret = del_mtd_device(child);
338 		if (ret < 0) {
339 			pr_err("Error when deleting partition \"%s\" (%d)\n",
340 			       child->name, ret);
341 			err = ret;
342 			continue;
343 		}
344 
345 		list_del(&child->part.node);
346 		free_partition(child);
347 	}
348 
349 	return err;
350 }
351 
del_mtd_partitions(struct mtd_info * mtd)352 int del_mtd_partitions(struct mtd_info *mtd)
353 {
354 	struct mtd_info *master = mtd_get_master(mtd);
355 	int ret;
356 
357 	pr_info("Deleting MTD partitions on \"%s\":\n", mtd->name);
358 
359 	mutex_lock(&master->master.partitions_lock);
360 	ret = __del_mtd_partitions(mtd);
361 	mutex_unlock(&master->master.partitions_lock);
362 
363 	return ret;
364 }
365 
mtd_del_partition(struct mtd_info * mtd,int partno)366 int mtd_del_partition(struct mtd_info *mtd, int partno)
367 {
368 	struct mtd_info *child, *master = mtd_get_master(mtd);
369 	int ret = -EINVAL;
370 
371 	mutex_lock(&master->master.partitions_lock);
372 	list_for_each_entry(child, &mtd->partitions, part.node) {
373 		if (child->index == partno) {
374 			ret = __mtd_del_partition(child);
375 			break;
376 		}
377 	}
378 	mutex_unlock(&master->master.partitions_lock);
379 
380 	return ret;
381 }
382 EXPORT_SYMBOL_GPL(mtd_del_partition);
383 
384 /*
385  * This function, given a parent MTD object and a partition table, creates
386  * and registers the child MTD objects which are bound to the parent according
387  * to the partition definitions.
388  *
389  * For historical reasons, this function's caller only registers the parent
390  * if the MTD_PARTITIONED_MASTER config option is set.
391  */
392 
add_mtd_partitions(struct mtd_info * parent,const struct mtd_partition * parts,int nbparts)393 int add_mtd_partitions(struct mtd_info *parent,
394 		       const struct mtd_partition *parts,
395 		       int nbparts)
396 {
397 	struct mtd_info *child, *master = mtd_get_master(parent);
398 	uint64_t cur_offset = 0;
399 	int i, ret;
400 
401 	printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n",
402 	       nbparts, parent->name);
403 
404 	for (i = 0; i < nbparts; i++) {
405 		child = allocate_partition(parent, parts + i, i, cur_offset);
406 		if (IS_ERR(child)) {
407 			ret = PTR_ERR(child);
408 			goto err_del_partitions;
409 		}
410 
411 		mutex_lock(&master->master.partitions_lock);
412 		list_add_tail(&child->part.node, &parent->partitions);
413 		mutex_unlock(&master->master.partitions_lock);
414 
415 		ret = add_mtd_device(child);
416 		if (ret) {
417 			mutex_lock(&master->master.partitions_lock);
418 			list_del(&child->part.node);
419 			mutex_unlock(&master->master.partitions_lock);
420 
421 			free_partition(child);
422 			goto err_del_partitions;
423 		}
424 
425 		mtd_add_partition_attrs(child);
426 
427 		/* Look for subpartitions */
428 		parse_mtd_partitions(child, parts[i].types, NULL);
429 
430 		cur_offset = child->part.offset + child->part.size;
431 	}
432 
433 	return 0;
434 
435 err_del_partitions:
436 	del_mtd_partitions(master);
437 
438 	return ret;
439 }
440 
441 static DEFINE_SPINLOCK(part_parser_lock);
442 static LIST_HEAD(part_parsers);
443 
mtd_part_parser_get(const char * name)444 static struct mtd_part_parser *mtd_part_parser_get(const char *name)
445 {
446 	struct mtd_part_parser *p, *ret = NULL;
447 
448 	spin_lock(&part_parser_lock);
449 
450 	list_for_each_entry(p, &part_parsers, list)
451 		if (!strcmp(p->name, name) && try_module_get(p->owner)) {
452 			ret = p;
453 			break;
454 		}
455 
456 	spin_unlock(&part_parser_lock);
457 
458 	return ret;
459 }
460 
mtd_part_parser_put(const struct mtd_part_parser * p)461 static inline void mtd_part_parser_put(const struct mtd_part_parser *p)
462 {
463 	module_put(p->owner);
464 }
465 
466 /*
467  * Many partition parsers just expected the core to kfree() all their data in
468  * one chunk. Do that by default.
469  */
mtd_part_parser_cleanup_default(const struct mtd_partition * pparts,int nr_parts)470 static void mtd_part_parser_cleanup_default(const struct mtd_partition *pparts,
471 					    int nr_parts)
472 {
473 	kfree(pparts);
474 }
475 
__register_mtd_parser(struct mtd_part_parser * p,struct module * owner)476 int __register_mtd_parser(struct mtd_part_parser *p, struct module *owner)
477 {
478 	p->owner = owner;
479 
480 	if (!p->cleanup)
481 		p->cleanup = &mtd_part_parser_cleanup_default;
482 
483 	spin_lock(&part_parser_lock);
484 	list_add(&p->list, &part_parsers);
485 	spin_unlock(&part_parser_lock);
486 
487 	return 0;
488 }
489 EXPORT_SYMBOL_GPL(__register_mtd_parser);
490 
deregister_mtd_parser(struct mtd_part_parser * p)491 void deregister_mtd_parser(struct mtd_part_parser *p)
492 {
493 	spin_lock(&part_parser_lock);
494 	list_del(&p->list);
495 	spin_unlock(&part_parser_lock);
496 }
497 EXPORT_SYMBOL_GPL(deregister_mtd_parser);
498 
499 /*
500  * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
501  * are changing this array!
502  */
503 static const char * const default_mtd_part_types[] = {
504 	"cmdlinepart",
505 	"ofpart",
506 	NULL
507 };
508 
509 /* Check DT only when looking for subpartitions. */
510 static const char * const default_subpartition_types[] = {
511 	"ofpart",
512 	NULL
513 };
514 
mtd_part_do_parse(struct mtd_part_parser * parser,struct mtd_info * master,struct mtd_partitions * pparts,struct mtd_part_parser_data * data)515 static int mtd_part_do_parse(struct mtd_part_parser *parser,
516 			     struct mtd_info *master,
517 			     struct mtd_partitions *pparts,
518 			     struct mtd_part_parser_data *data)
519 {
520 	int ret;
521 
522 	ret = (*parser->parse_fn)(master, &pparts->parts, data);
523 	pr_debug("%s: parser %s: %i\n", master->name, parser->name, ret);
524 	if (ret <= 0)
525 		return ret;
526 
527 	pr_notice("%d %s partitions found on MTD device %s\n", ret,
528 		  parser->name, master->name);
529 
530 	pparts->nr_parts = ret;
531 	pparts->parser = parser;
532 
533 	return ret;
534 }
535 
536 /**
537  * mtd_part_get_compatible_parser - find MTD parser by a compatible string
538  *
539  * @compat: compatible string describing partitions in a device tree
540  *
541  * MTD parsers can specify supported partitions by providing a table of
542  * compatibility strings. This function finds a parser that advertises support
543  * for a passed value of "compatible".
544  */
mtd_part_get_compatible_parser(const char * compat)545 static struct mtd_part_parser *mtd_part_get_compatible_parser(const char *compat)
546 {
547 	struct mtd_part_parser *p, *ret = NULL;
548 
549 	spin_lock(&part_parser_lock);
550 
551 	list_for_each_entry(p, &part_parsers, list) {
552 		const struct of_device_id *matches;
553 
554 		matches = p->of_match_table;
555 		if (!matches)
556 			continue;
557 
558 		for (; matches->compatible[0]; matches++) {
559 			if (!strcmp(matches->compatible, compat) &&
560 			    try_module_get(p->owner)) {
561 				ret = p;
562 				break;
563 			}
564 		}
565 
566 		if (ret)
567 			break;
568 	}
569 
570 	spin_unlock(&part_parser_lock);
571 
572 	return ret;
573 }
574 
mtd_part_of_parse(struct mtd_info * master,struct mtd_partitions * pparts)575 static int mtd_part_of_parse(struct mtd_info *master,
576 			     struct mtd_partitions *pparts)
577 {
578 	struct mtd_part_parser *parser;
579 	struct device_node *np;
580 	struct property *prop;
581 	const char *compat;
582 	const char *fixed = "fixed-partitions";
583 	int ret, err = 0;
584 
585 	np = mtd_get_of_node(master);
586 	if (mtd_is_partition(master))
587 		of_node_get(np);
588 	else
589 		np = of_get_child_by_name(np, "partitions");
590 
591 	of_property_for_each_string(np, "compatible", prop, compat) {
592 		parser = mtd_part_get_compatible_parser(compat);
593 		if (!parser)
594 			continue;
595 		ret = mtd_part_do_parse(parser, master, pparts, NULL);
596 		if (ret > 0) {
597 			of_node_put(np);
598 			return ret;
599 		}
600 		mtd_part_parser_put(parser);
601 		if (ret < 0 && !err)
602 			err = ret;
603 	}
604 	of_node_put(np);
605 
606 	/*
607 	 * For backward compatibility we have to try the "fixed-partitions"
608 	 * parser. It supports old DT format with partitions specified as a
609 	 * direct subnodes of a flash device DT node without any compatibility
610 	 * specified we could match.
611 	 */
612 	parser = mtd_part_parser_get(fixed);
613 	if (!parser && !request_module("%s", fixed))
614 		parser = mtd_part_parser_get(fixed);
615 	if (parser) {
616 		ret = mtd_part_do_parse(parser, master, pparts, NULL);
617 		if (ret > 0)
618 			return ret;
619 		mtd_part_parser_put(parser);
620 		if (ret < 0 && !err)
621 			err = ret;
622 	}
623 
624 	return err;
625 }
626 
627 /**
628  * parse_mtd_partitions - parse and register MTD partitions
629  *
630  * @master: the master partition (describes whole MTD device)
631  * @types: names of partition parsers to try or %NULL
632  * @data: MTD partition parser-specific data
633  *
634  * This function tries to find & register partitions on MTD device @master. It
635  * uses MTD partition parsers, specified in @types. However, if @types is %NULL,
636  * then the default list of parsers is used. The default list contains only the
637  * "cmdlinepart" and "ofpart" parsers ATM.
638  * Note: If there are more then one parser in @types, the kernel only takes the
639  * partitions parsed out by the first parser.
640  *
641  * This function may return:
642  * o a negative error code in case of failure
643  * o number of found partitions otherwise
644  */
parse_mtd_partitions(struct mtd_info * master,const char * const * types,struct mtd_part_parser_data * data)645 int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
646 			 struct mtd_part_parser_data *data)
647 {
648 	struct mtd_partitions pparts = { };
649 	struct mtd_part_parser *parser;
650 	int ret, err = 0;
651 
652 	if (!types)
653 		types = mtd_is_partition(master) ? default_subpartition_types :
654 			default_mtd_part_types;
655 
656 	for ( ; *types; types++) {
657 		/*
658 		 * ofpart is a special type that means OF partitioning info
659 		 * should be used. It requires a bit different logic so it is
660 		 * handled in a separated function.
661 		 */
662 		if (!strcmp(*types, "ofpart")) {
663 			ret = mtd_part_of_parse(master, &pparts);
664 		} else {
665 			pr_debug("%s: parsing partitions %s\n", master->name,
666 				 *types);
667 			parser = mtd_part_parser_get(*types);
668 			if (!parser && !request_module("%s", *types))
669 				parser = mtd_part_parser_get(*types);
670 			pr_debug("%s: got parser %s\n", master->name,
671 				parser ? parser->name : NULL);
672 			if (!parser)
673 				continue;
674 			ret = mtd_part_do_parse(parser, master, &pparts, data);
675 			if (ret <= 0)
676 				mtd_part_parser_put(parser);
677 		}
678 		/* Found partitions! */
679 		if (ret > 0) {
680 			err = add_mtd_partitions(master, pparts.parts,
681 						 pparts.nr_parts);
682 			mtd_part_parser_cleanup(&pparts);
683 			return err ? err : pparts.nr_parts;
684 		}
685 		/*
686 		 * Stash the first error we see; only report it if no parser
687 		 * succeeds
688 		 */
689 		if (ret < 0 && !err)
690 			err = ret;
691 	}
692 	return err;
693 }
694 
mtd_part_parser_cleanup(struct mtd_partitions * parts)695 void mtd_part_parser_cleanup(struct mtd_partitions *parts)
696 {
697 	const struct mtd_part_parser *parser;
698 
699 	if (!parts)
700 		return;
701 
702 	parser = parts->parser;
703 	if (parser) {
704 		if (parser->cleanup)
705 			parser->cleanup(parts->parts, parts->nr_parts);
706 
707 		mtd_part_parser_put(parser);
708 	}
709 }
710 
711 /* Returns the size of the entire flash chip */
mtd_get_device_size(const struct mtd_info * mtd)712 uint64_t mtd_get_device_size(const struct mtd_info *mtd)
713 {
714 	struct mtd_info *master = mtd_get_master((struct mtd_info *)mtd);
715 
716 	return master->size;
717 }
718 EXPORT_SYMBOL_GPL(mtd_get_device_size);
719