1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Core registration and callback routines for MTD
4 * drivers and users.
5 *
6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7 * Copyright © 2006 Red Hat UK Limited
8 */
9
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/ptrace.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/timer.h>
16 #include <linux/major.h>
17 #include <linux/fs.h>
18 #include <linux/err.h>
19 #include <linux/ioctl.h>
20 #include <linux/init.h>
21 #include <linux/of.h>
22 #include <linux/proc_fs.h>
23 #include <linux/idr.h>
24 #include <linux/backing-dev.h>
25 #include <linux/gfp.h>
26 #include <linux/slab.h>
27 #include <linux/reboot.h>
28 #include <linux/leds.h>
29 #include <linux/debugfs.h>
30 #include <linux/nvmem-provider.h>
31
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/partitions.h>
34
35 #include "mtdcore.h"
36
37 struct backing_dev_info *mtd_bdi;
38
39 #ifdef CONFIG_PM_SLEEP
40
mtd_cls_suspend(struct device * dev)41 static int mtd_cls_suspend(struct device *dev)
42 {
43 struct mtd_info *mtd = dev_get_drvdata(dev);
44
45 return mtd ? mtd_suspend(mtd) : 0;
46 }
47
mtd_cls_resume(struct device * dev)48 static int mtd_cls_resume(struct device *dev)
49 {
50 struct mtd_info *mtd = dev_get_drvdata(dev);
51
52 if (mtd)
53 mtd_resume(mtd);
54 return 0;
55 }
56
57 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
58 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
59 #else
60 #define MTD_CLS_PM_OPS NULL
61 #endif
62
63 static struct class mtd_class = {
64 .name = "mtd",
65 .owner = THIS_MODULE,
66 .pm = MTD_CLS_PM_OPS,
67 };
68
69 static DEFINE_IDR(mtd_idr);
70
71 /* These are exported solely for the purpose of mtd_blkdevs.c. You
72 should not use them for _anything_ else */
73 DEFINE_MUTEX(mtd_table_mutex);
74 EXPORT_SYMBOL_GPL(mtd_table_mutex);
75
__mtd_next_device(int i)76 struct mtd_info *__mtd_next_device(int i)
77 {
78 return idr_get_next(&mtd_idr, &i);
79 }
80 EXPORT_SYMBOL_GPL(__mtd_next_device);
81
82 static LIST_HEAD(mtd_notifiers);
83
84
85 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
86
87 /* REVISIT once MTD uses the driver model better, whoever allocates
88 * the mtd_info will probably want to use the release() hook...
89 */
mtd_release(struct device * dev)90 static void mtd_release(struct device *dev)
91 {
92 struct mtd_info *mtd = dev_get_drvdata(dev);
93 dev_t index = MTD_DEVT(mtd->index);
94
95 /* remove /dev/mtdXro node */
96 device_destroy(&mtd_class, index + 1);
97 }
98
99 #define MTD_DEVICE_ATTR_RO(name) \
100 static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL)
101
102 #define MTD_DEVICE_ATTR_RW(name) \
103 static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store)
104
mtd_type_show(struct device * dev,struct device_attribute * attr,char * buf)105 static ssize_t mtd_type_show(struct device *dev,
106 struct device_attribute *attr, char *buf)
107 {
108 struct mtd_info *mtd = dev_get_drvdata(dev);
109 char *type;
110
111 switch (mtd->type) {
112 case MTD_ABSENT:
113 type = "absent";
114 break;
115 case MTD_RAM:
116 type = "ram";
117 break;
118 case MTD_ROM:
119 type = "rom";
120 break;
121 case MTD_NORFLASH:
122 type = "nor";
123 break;
124 case MTD_NANDFLASH:
125 type = "nand";
126 break;
127 case MTD_DATAFLASH:
128 type = "dataflash";
129 break;
130 case MTD_UBIVOLUME:
131 type = "ubi";
132 break;
133 case MTD_MLCNANDFLASH:
134 type = "mlc-nand";
135 break;
136 default:
137 type = "unknown";
138 }
139
140 return sysfs_emit(buf, "%s\n", type);
141 }
142 MTD_DEVICE_ATTR_RO(type);
143
mtd_flags_show(struct device * dev,struct device_attribute * attr,char * buf)144 static ssize_t mtd_flags_show(struct device *dev,
145 struct device_attribute *attr, char *buf)
146 {
147 struct mtd_info *mtd = dev_get_drvdata(dev);
148
149 return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags);
150 }
151 MTD_DEVICE_ATTR_RO(flags);
152
mtd_size_show(struct device * dev,struct device_attribute * attr,char * buf)153 static ssize_t mtd_size_show(struct device *dev,
154 struct device_attribute *attr, char *buf)
155 {
156 struct mtd_info *mtd = dev_get_drvdata(dev);
157
158 return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size);
159 }
160 MTD_DEVICE_ATTR_RO(size);
161
mtd_erasesize_show(struct device * dev,struct device_attribute * attr,char * buf)162 static ssize_t mtd_erasesize_show(struct device *dev,
163 struct device_attribute *attr, char *buf)
164 {
165 struct mtd_info *mtd = dev_get_drvdata(dev);
166
167 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize);
168 }
169 MTD_DEVICE_ATTR_RO(erasesize);
170
mtd_writesize_show(struct device * dev,struct device_attribute * attr,char * buf)171 static ssize_t mtd_writesize_show(struct device *dev,
172 struct device_attribute *attr, char *buf)
173 {
174 struct mtd_info *mtd = dev_get_drvdata(dev);
175
176 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize);
177 }
178 MTD_DEVICE_ATTR_RO(writesize);
179
mtd_subpagesize_show(struct device * dev,struct device_attribute * attr,char * buf)180 static ssize_t mtd_subpagesize_show(struct device *dev,
181 struct device_attribute *attr, char *buf)
182 {
183 struct mtd_info *mtd = dev_get_drvdata(dev);
184 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
185
186 return sysfs_emit(buf, "%u\n", subpagesize);
187 }
188 MTD_DEVICE_ATTR_RO(subpagesize);
189
mtd_oobsize_show(struct device * dev,struct device_attribute * attr,char * buf)190 static ssize_t mtd_oobsize_show(struct device *dev,
191 struct device_attribute *attr, char *buf)
192 {
193 struct mtd_info *mtd = dev_get_drvdata(dev);
194
195 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize);
196 }
197 MTD_DEVICE_ATTR_RO(oobsize);
198
mtd_oobavail_show(struct device * dev,struct device_attribute * attr,char * buf)199 static ssize_t mtd_oobavail_show(struct device *dev,
200 struct device_attribute *attr, char *buf)
201 {
202 struct mtd_info *mtd = dev_get_drvdata(dev);
203
204 return sysfs_emit(buf, "%u\n", mtd->oobavail);
205 }
206 MTD_DEVICE_ATTR_RO(oobavail);
207
mtd_numeraseregions_show(struct device * dev,struct device_attribute * attr,char * buf)208 static ssize_t mtd_numeraseregions_show(struct device *dev,
209 struct device_attribute *attr, char *buf)
210 {
211 struct mtd_info *mtd = dev_get_drvdata(dev);
212
213 return sysfs_emit(buf, "%u\n", mtd->numeraseregions);
214 }
215 MTD_DEVICE_ATTR_RO(numeraseregions);
216
mtd_name_show(struct device * dev,struct device_attribute * attr,char * buf)217 static ssize_t mtd_name_show(struct device *dev,
218 struct device_attribute *attr, char *buf)
219 {
220 struct mtd_info *mtd = dev_get_drvdata(dev);
221
222 return sysfs_emit(buf, "%s\n", mtd->name);
223 }
224 MTD_DEVICE_ATTR_RO(name);
225
mtd_ecc_strength_show(struct device * dev,struct device_attribute * attr,char * buf)226 static ssize_t mtd_ecc_strength_show(struct device *dev,
227 struct device_attribute *attr, char *buf)
228 {
229 struct mtd_info *mtd = dev_get_drvdata(dev);
230
231 return sysfs_emit(buf, "%u\n", mtd->ecc_strength);
232 }
233 MTD_DEVICE_ATTR_RO(ecc_strength);
234
mtd_bitflip_threshold_show(struct device * dev,struct device_attribute * attr,char * buf)235 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
236 struct device_attribute *attr,
237 char *buf)
238 {
239 struct mtd_info *mtd = dev_get_drvdata(dev);
240
241 return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold);
242 }
243
mtd_bitflip_threshold_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)244 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
245 struct device_attribute *attr,
246 const char *buf, size_t count)
247 {
248 struct mtd_info *mtd = dev_get_drvdata(dev);
249 unsigned int bitflip_threshold;
250 int retval;
251
252 retval = kstrtouint(buf, 0, &bitflip_threshold);
253 if (retval)
254 return retval;
255
256 mtd->bitflip_threshold = bitflip_threshold;
257 return count;
258 }
259 MTD_DEVICE_ATTR_RW(bitflip_threshold);
260
mtd_ecc_step_size_show(struct device * dev,struct device_attribute * attr,char * buf)261 static ssize_t mtd_ecc_step_size_show(struct device *dev,
262 struct device_attribute *attr, char *buf)
263 {
264 struct mtd_info *mtd = dev_get_drvdata(dev);
265
266 return sysfs_emit(buf, "%u\n", mtd->ecc_step_size);
267
268 }
269 MTD_DEVICE_ATTR_RO(ecc_step_size);
270
mtd_corrected_bits_show(struct device * dev,struct device_attribute * attr,char * buf)271 static ssize_t mtd_corrected_bits_show(struct device *dev,
272 struct device_attribute *attr, char *buf)
273 {
274 struct mtd_info *mtd = dev_get_drvdata(dev);
275 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
276
277 return sysfs_emit(buf, "%u\n", ecc_stats->corrected);
278 }
279 MTD_DEVICE_ATTR_RO(corrected_bits); /* ecc stats corrected */
280
mtd_ecc_failures_show(struct device * dev,struct device_attribute * attr,char * buf)281 static ssize_t mtd_ecc_failures_show(struct device *dev,
282 struct device_attribute *attr, char *buf)
283 {
284 struct mtd_info *mtd = dev_get_drvdata(dev);
285 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
286
287 return sysfs_emit(buf, "%u\n", ecc_stats->failed);
288 }
289 MTD_DEVICE_ATTR_RO(ecc_failures); /* ecc stats errors */
290
mtd_bad_blocks_show(struct device * dev,struct device_attribute * attr,char * buf)291 static ssize_t mtd_bad_blocks_show(struct device *dev,
292 struct device_attribute *attr, char *buf)
293 {
294 struct mtd_info *mtd = dev_get_drvdata(dev);
295 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
296
297 return sysfs_emit(buf, "%u\n", ecc_stats->badblocks);
298 }
299 MTD_DEVICE_ATTR_RO(bad_blocks);
300
mtd_bbt_blocks_show(struct device * dev,struct device_attribute * attr,char * buf)301 static ssize_t mtd_bbt_blocks_show(struct device *dev,
302 struct device_attribute *attr, char *buf)
303 {
304 struct mtd_info *mtd = dev_get_drvdata(dev);
305 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
306
307 return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks);
308 }
309 MTD_DEVICE_ATTR_RO(bbt_blocks);
310
311 static struct attribute *mtd_attrs[] = {
312 &dev_attr_type.attr,
313 &dev_attr_flags.attr,
314 &dev_attr_size.attr,
315 &dev_attr_erasesize.attr,
316 &dev_attr_writesize.attr,
317 &dev_attr_subpagesize.attr,
318 &dev_attr_oobsize.attr,
319 &dev_attr_oobavail.attr,
320 &dev_attr_numeraseregions.attr,
321 &dev_attr_name.attr,
322 &dev_attr_ecc_strength.attr,
323 &dev_attr_ecc_step_size.attr,
324 &dev_attr_corrected_bits.attr,
325 &dev_attr_ecc_failures.attr,
326 &dev_attr_bad_blocks.attr,
327 &dev_attr_bbt_blocks.attr,
328 &dev_attr_bitflip_threshold.attr,
329 NULL,
330 };
331 ATTRIBUTE_GROUPS(mtd);
332
333 static const struct device_type mtd_devtype = {
334 .name = "mtd",
335 .groups = mtd_groups,
336 .release = mtd_release,
337 };
338
339 static bool mtd_expert_analysis_mode;
340
341 #ifdef CONFIG_DEBUG_FS
mtd_check_expert_analysis_mode(void)342 bool mtd_check_expert_analysis_mode(void)
343 {
344 const char *mtd_expert_analysis_warning =
345 "Bad block checks have been entirely disabled.\n"
346 "This is only reserved for post-mortem forensics and debug purposes.\n"
347 "Never enable this mode if you do not know what you are doing!\n";
348
349 return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning);
350 }
351 EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode);
352 #endif
353
354 static struct dentry *dfs_dir_mtd;
355
mtd_debugfs_populate(struct mtd_info * mtd)356 static void mtd_debugfs_populate(struct mtd_info *mtd)
357 {
358 struct device *dev = &mtd->dev;
359
360 if (IS_ERR_OR_NULL(dfs_dir_mtd))
361 return;
362
363 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
364 }
365
366 #ifndef CONFIG_MMU
mtd_mmap_capabilities(struct mtd_info * mtd)367 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
368 {
369 switch (mtd->type) {
370 case MTD_RAM:
371 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
372 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
373 case MTD_ROM:
374 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
375 NOMMU_MAP_READ;
376 default:
377 return NOMMU_MAP_COPY;
378 }
379 }
380 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
381 #endif
382
mtd_reboot_notifier(struct notifier_block * n,unsigned long state,void * cmd)383 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
384 void *cmd)
385 {
386 struct mtd_info *mtd;
387
388 mtd = container_of(n, struct mtd_info, reboot_notifier);
389 mtd->_reboot(mtd);
390
391 return NOTIFY_DONE;
392 }
393
394 /**
395 * mtd_wunit_to_pairing_info - get pairing information of a wunit
396 * @mtd: pointer to new MTD device info structure
397 * @wunit: write unit we are interested in
398 * @info: returned pairing information
399 *
400 * Retrieve pairing information associated to the wunit.
401 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
402 * paired together, and where programming a page may influence the page it is
403 * paired with.
404 * The notion of page is replaced by the term wunit (write-unit) to stay
405 * consistent with the ->writesize field.
406 *
407 * The @wunit argument can be extracted from an absolute offset using
408 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
409 * to @wunit.
410 *
411 * From the pairing info the MTD user can find all the wunits paired with
412 * @wunit using the following loop:
413 *
414 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
415 * info.pair = i;
416 * mtd_pairing_info_to_wunit(mtd, &info);
417 * ...
418 * }
419 */
mtd_wunit_to_pairing_info(struct mtd_info * mtd,int wunit,struct mtd_pairing_info * info)420 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
421 struct mtd_pairing_info *info)
422 {
423 struct mtd_info *master = mtd_get_master(mtd);
424 int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
425
426 if (wunit < 0 || wunit >= npairs)
427 return -EINVAL;
428
429 if (master->pairing && master->pairing->get_info)
430 return master->pairing->get_info(master, wunit, info);
431
432 info->group = 0;
433 info->pair = wunit;
434
435 return 0;
436 }
437 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
438
439 /**
440 * mtd_pairing_info_to_wunit - get wunit from pairing information
441 * @mtd: pointer to new MTD device info structure
442 * @info: pairing information struct
443 *
444 * Returns a positive number representing the wunit associated to the info
445 * struct, or a negative error code.
446 *
447 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
448 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
449 * doc).
450 *
451 * It can also be used to only program the first page of each pair (i.e.
452 * page attached to group 0), which allows one to use an MLC NAND in
453 * software-emulated SLC mode:
454 *
455 * info.group = 0;
456 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
457 * for (info.pair = 0; info.pair < npairs; info.pair++) {
458 * wunit = mtd_pairing_info_to_wunit(mtd, &info);
459 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
460 * mtd->writesize, &retlen, buf + (i * mtd->writesize));
461 * }
462 */
mtd_pairing_info_to_wunit(struct mtd_info * mtd,const struct mtd_pairing_info * info)463 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
464 const struct mtd_pairing_info *info)
465 {
466 struct mtd_info *master = mtd_get_master(mtd);
467 int ngroups = mtd_pairing_groups(master);
468 int npairs = mtd_wunit_per_eb(master) / ngroups;
469
470 if (!info || info->pair < 0 || info->pair >= npairs ||
471 info->group < 0 || info->group >= ngroups)
472 return -EINVAL;
473
474 if (master->pairing && master->pairing->get_wunit)
475 return mtd->pairing->get_wunit(master, info);
476
477 return info->pair;
478 }
479 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
480
481 /**
482 * mtd_pairing_groups - get the number of pairing groups
483 * @mtd: pointer to new MTD device info structure
484 *
485 * Returns the number of pairing groups.
486 *
487 * This number is usually equal to the number of bits exposed by a single
488 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
489 * to iterate over all pages of a given pair.
490 */
mtd_pairing_groups(struct mtd_info * mtd)491 int mtd_pairing_groups(struct mtd_info *mtd)
492 {
493 struct mtd_info *master = mtd_get_master(mtd);
494
495 if (!master->pairing || !master->pairing->ngroups)
496 return 1;
497
498 return master->pairing->ngroups;
499 }
500 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
501
mtd_nvmem_reg_read(void * priv,unsigned int offset,void * val,size_t bytes)502 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
503 void *val, size_t bytes)
504 {
505 struct mtd_info *mtd = priv;
506 size_t retlen;
507 int err;
508
509 err = mtd_read(mtd, offset, bytes, &retlen, val);
510 if (err && err != -EUCLEAN)
511 return err;
512
513 return retlen == bytes ? 0 : -EIO;
514 }
515
mtd_nvmem_add(struct mtd_info * mtd)516 static int mtd_nvmem_add(struct mtd_info *mtd)
517 {
518 struct device_node *node = mtd_get_of_node(mtd);
519 struct nvmem_config config = {};
520
521 config.id = -1;
522 config.dev = &mtd->dev;
523 config.name = dev_name(&mtd->dev);
524 config.owner = THIS_MODULE;
525 config.reg_read = mtd_nvmem_reg_read;
526 config.size = mtd->size;
527 config.word_size = 1;
528 config.stride = 1;
529 config.read_only = true;
530 config.root_only = true;
531 config.ignore_wp = true;
532 config.no_of_node = !of_device_is_compatible(node, "nvmem-cells");
533 config.priv = mtd;
534
535 mtd->nvmem = nvmem_register(&config);
536 if (IS_ERR(mtd->nvmem)) {
537 /* Just ignore if there is no NVMEM support in the kernel */
538 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
539 mtd->nvmem = NULL;
540 } else {
541 dev_err(&mtd->dev, "Failed to register NVMEM device\n");
542 return PTR_ERR(mtd->nvmem);
543 }
544 }
545
546 return 0;
547 }
548
mtd_check_of_node(struct mtd_info * mtd)549 static void mtd_check_of_node(struct mtd_info *mtd)
550 {
551 struct device_node *partitions, *parent_dn, *mtd_dn = NULL;
552 const char *pname, *prefix = "partition-";
553 int plen, mtd_name_len, offset, prefix_len;
554 struct mtd_info *parent;
555 bool found = false;
556
557 /* Check if MTD already has a device node */
558 if (dev_of_node(&mtd->dev))
559 return;
560
561 /* Check if a partitions node exist */
562 if (!mtd_is_partition(mtd))
563 return;
564 parent = mtd->parent;
565 parent_dn = of_node_get(dev_of_node(&parent->dev));
566 if (!parent_dn)
567 return;
568
569 partitions = of_get_child_by_name(parent_dn, "partitions");
570 if (!partitions)
571 goto exit_parent;
572
573 prefix_len = strlen(prefix);
574 mtd_name_len = strlen(mtd->name);
575
576 /* Search if a partition is defined with the same name */
577 for_each_child_of_node(partitions, mtd_dn) {
578 offset = 0;
579
580 /* Skip partition with no/wrong prefix */
581 if (!of_node_name_prefix(mtd_dn, "partition-"))
582 continue;
583
584 /* Label have priority. Check that first */
585 if (of_property_read_string(mtd_dn, "label", &pname)) {
586 of_property_read_string(mtd_dn, "name", &pname);
587 offset = prefix_len;
588 }
589
590 plen = strlen(pname) - offset;
591 if (plen == mtd_name_len &&
592 !strncmp(mtd->name, pname + offset, plen)) {
593 found = true;
594 break;
595 }
596 }
597
598 if (!found)
599 goto exit_partitions;
600
601 /* Set of_node only for nvmem */
602 if (of_device_is_compatible(mtd_dn, "nvmem-cells"))
603 mtd_set_of_node(mtd, mtd_dn);
604
605 exit_partitions:
606 of_node_put(partitions);
607 exit_parent:
608 of_node_put(parent_dn);
609 }
610
611 /**
612 * add_mtd_device - register an MTD device
613 * @mtd: pointer to new MTD device info structure
614 *
615 * Add a device to the list of MTD devices present in the system, and
616 * notify each currently active MTD 'user' of its arrival. Returns
617 * zero on success or non-zero on failure.
618 */
619
add_mtd_device(struct mtd_info * mtd)620 int add_mtd_device(struct mtd_info *mtd)
621 {
622 struct device_node *np = mtd_get_of_node(mtd);
623 struct mtd_info *master = mtd_get_master(mtd);
624 struct mtd_notifier *not;
625 int i, error, ofidx;
626
627 /*
628 * May occur, for instance, on buggy drivers which call
629 * mtd_device_parse_register() multiple times on the same master MTD,
630 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
631 */
632 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
633 return -EEXIST;
634
635 BUG_ON(mtd->writesize == 0);
636
637 /*
638 * MTD drivers should implement ->_{write,read}() or
639 * ->_{write,read}_oob(), but not both.
640 */
641 if (WARN_ON((mtd->_write && mtd->_write_oob) ||
642 (mtd->_read && mtd->_read_oob)))
643 return -EINVAL;
644
645 if (WARN_ON((!mtd->erasesize || !master->_erase) &&
646 !(mtd->flags & MTD_NO_ERASE)))
647 return -EINVAL;
648
649 /*
650 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
651 * master is an MLC NAND and has a proper pairing scheme defined.
652 * We also reject masters that implement ->_writev() for now, because
653 * NAND controller drivers don't implement this hook, and adding the
654 * SLC -> MLC address/length conversion to this path is useless if we
655 * don't have a user.
656 */
657 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
658 (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
659 !master->pairing || master->_writev))
660 return -EINVAL;
661
662 mutex_lock(&mtd_table_mutex);
663
664 ofidx = -1;
665 if (np)
666 ofidx = of_alias_get_id(np, "mtd");
667 if (ofidx >= 0)
668 i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL);
669 else
670 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
671 if (i < 0) {
672 error = i;
673 goto fail_locked;
674 }
675
676 mtd->index = i;
677 mtd->usecount = 0;
678
679 /* default value if not set by driver */
680 if (mtd->bitflip_threshold == 0)
681 mtd->bitflip_threshold = mtd->ecc_strength;
682
683 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
684 int ngroups = mtd_pairing_groups(master);
685
686 mtd->erasesize /= ngroups;
687 mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
688 mtd->erasesize;
689 }
690
691 if (is_power_of_2(mtd->erasesize))
692 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
693 else
694 mtd->erasesize_shift = 0;
695
696 if (is_power_of_2(mtd->writesize))
697 mtd->writesize_shift = ffs(mtd->writesize) - 1;
698 else
699 mtd->writesize_shift = 0;
700
701 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
702 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
703
704 /* Some chips always power up locked. Unlock them now */
705 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
706 error = mtd_unlock(mtd, 0, mtd->size);
707 if (error && error != -EOPNOTSUPP)
708 printk(KERN_WARNING
709 "%s: unlock failed, writes may not work\n",
710 mtd->name);
711 /* Ignore unlock failures? */
712 error = 0;
713 }
714
715 /* Caller should have set dev.parent to match the
716 * physical device, if appropriate.
717 */
718 mtd->dev.type = &mtd_devtype;
719 mtd->dev.class = &mtd_class;
720 mtd->dev.devt = MTD_DEVT(i);
721 dev_set_name(&mtd->dev, "mtd%d", i);
722 dev_set_drvdata(&mtd->dev, mtd);
723 mtd_check_of_node(mtd);
724 of_node_get(mtd_get_of_node(mtd));
725 error = device_register(&mtd->dev);
726 if (error)
727 goto fail_added;
728
729 /* Add the nvmem provider */
730 error = mtd_nvmem_add(mtd);
731 if (error)
732 goto fail_nvmem_add;
733
734 mtd_debugfs_populate(mtd);
735
736 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
737 "mtd%dro", i);
738
739 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
740 /* No need to get a refcount on the module containing
741 the notifier, since we hold the mtd_table_mutex */
742 list_for_each_entry(not, &mtd_notifiers, list)
743 not->add(mtd);
744
745 mutex_unlock(&mtd_table_mutex);
746 /* We _know_ we aren't being removed, because
747 our caller is still holding us here. So none
748 of this try_ nonsense, and no bitching about it
749 either. :) */
750 __module_get(THIS_MODULE);
751 return 0;
752
753 fail_nvmem_add:
754 device_unregister(&mtd->dev);
755 fail_added:
756 of_node_put(mtd_get_of_node(mtd));
757 idr_remove(&mtd_idr, i);
758 fail_locked:
759 mutex_unlock(&mtd_table_mutex);
760 return error;
761 }
762
763 /**
764 * del_mtd_device - unregister an MTD device
765 * @mtd: pointer to MTD device info structure
766 *
767 * Remove a device from the list of MTD devices present in the system,
768 * and notify each currently active MTD 'user' of its departure.
769 * Returns zero on success or 1 on failure, which currently will happen
770 * if the requested device does not appear to be present in the list.
771 */
772
del_mtd_device(struct mtd_info * mtd)773 int del_mtd_device(struct mtd_info *mtd)
774 {
775 int ret;
776 struct mtd_notifier *not;
777
778 mutex_lock(&mtd_table_mutex);
779
780 if (idr_find(&mtd_idr, mtd->index) != mtd) {
781 ret = -ENODEV;
782 goto out_error;
783 }
784
785 /* No need to get a refcount on the module containing
786 the notifier, since we hold the mtd_table_mutex */
787 list_for_each_entry(not, &mtd_notifiers, list)
788 not->remove(mtd);
789
790 if (mtd->usecount) {
791 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
792 mtd->index, mtd->name, mtd->usecount);
793 ret = -EBUSY;
794 } else {
795 debugfs_remove_recursive(mtd->dbg.dfs_dir);
796
797 /* Try to remove the NVMEM provider */
798 nvmem_unregister(mtd->nvmem);
799
800 device_unregister(&mtd->dev);
801
802 /* Clear dev so mtd can be safely re-registered later if desired */
803 memset(&mtd->dev, 0, sizeof(mtd->dev));
804
805 idr_remove(&mtd_idr, mtd->index);
806 of_node_put(mtd_get_of_node(mtd));
807
808 module_put(THIS_MODULE);
809 ret = 0;
810 }
811
812 out_error:
813 mutex_unlock(&mtd_table_mutex);
814 return ret;
815 }
816
817 /*
818 * Set a few defaults based on the parent devices, if not provided by the
819 * driver
820 */
mtd_set_dev_defaults(struct mtd_info * mtd)821 static void mtd_set_dev_defaults(struct mtd_info *mtd)
822 {
823 if (mtd->dev.parent) {
824 if (!mtd->owner && mtd->dev.parent->driver)
825 mtd->owner = mtd->dev.parent->driver->owner;
826 if (!mtd->name)
827 mtd->name = dev_name(mtd->dev.parent);
828 } else {
829 pr_debug("mtd device won't show a device symlink in sysfs\n");
830 }
831
832 INIT_LIST_HEAD(&mtd->partitions);
833 mutex_init(&mtd->master.partitions_lock);
834 mutex_init(&mtd->master.chrdev_lock);
835 }
836
mtd_otp_size(struct mtd_info * mtd,bool is_user)837 static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user)
838 {
839 struct otp_info *info;
840 ssize_t size = 0;
841 unsigned int i;
842 size_t retlen;
843 int ret;
844
845 info = kmalloc(PAGE_SIZE, GFP_KERNEL);
846 if (!info)
847 return -ENOMEM;
848
849 if (is_user)
850 ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info);
851 else
852 ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info);
853 if (ret)
854 goto err;
855
856 for (i = 0; i < retlen / sizeof(*info); i++)
857 size += info[i].length;
858
859 kfree(info);
860 return size;
861
862 err:
863 kfree(info);
864
865 /* ENODATA means there is no OTP region. */
866 return ret == -ENODATA ? 0 : ret;
867 }
868
mtd_otp_nvmem_register(struct mtd_info * mtd,const char * compatible,int size,nvmem_reg_read_t reg_read)869 static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd,
870 const char *compatible,
871 int size,
872 nvmem_reg_read_t reg_read)
873 {
874 struct nvmem_device *nvmem = NULL;
875 struct nvmem_config config = {};
876 struct device_node *np;
877
878 /* DT binding is optional */
879 np = of_get_compatible_child(mtd->dev.of_node, compatible);
880
881 /* OTP nvmem will be registered on the physical device */
882 config.dev = mtd->dev.parent;
883 config.name = kasprintf(GFP_KERNEL, "%s-%s", dev_name(&mtd->dev), compatible);
884 config.id = NVMEM_DEVID_NONE;
885 config.owner = THIS_MODULE;
886 config.type = NVMEM_TYPE_OTP;
887 config.root_only = true;
888 config.ignore_wp = true;
889 config.reg_read = reg_read;
890 config.size = size;
891 config.of_node = np;
892 config.priv = mtd;
893
894 nvmem = nvmem_register(&config);
895 /* Just ignore if there is no NVMEM support in the kernel */
896 if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP)
897 nvmem = NULL;
898
899 of_node_put(np);
900 kfree(config.name);
901
902 return nvmem;
903 }
904
mtd_nvmem_user_otp_reg_read(void * priv,unsigned int offset,void * val,size_t bytes)905 static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset,
906 void *val, size_t bytes)
907 {
908 struct mtd_info *mtd = priv;
909 size_t retlen;
910 int ret;
911
912 ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val);
913 if (ret)
914 return ret;
915
916 return retlen == bytes ? 0 : -EIO;
917 }
918
mtd_nvmem_fact_otp_reg_read(void * priv,unsigned int offset,void * val,size_t bytes)919 static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset,
920 void *val, size_t bytes)
921 {
922 struct mtd_info *mtd = priv;
923 size_t retlen;
924 int ret;
925
926 ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val);
927 if (ret)
928 return ret;
929
930 return retlen == bytes ? 0 : -EIO;
931 }
932
mtd_otp_nvmem_add(struct mtd_info * mtd)933 static int mtd_otp_nvmem_add(struct mtd_info *mtd)
934 {
935 struct nvmem_device *nvmem;
936 ssize_t size;
937 int err;
938
939 if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) {
940 size = mtd_otp_size(mtd, true);
941 if (size < 0)
942 return size;
943
944 if (size > 0) {
945 nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size,
946 mtd_nvmem_user_otp_reg_read);
947 if (IS_ERR(nvmem)) {
948 dev_err(&mtd->dev, "Failed to register OTP NVMEM device\n");
949 return PTR_ERR(nvmem);
950 }
951 mtd->otp_user_nvmem = nvmem;
952 }
953 }
954
955 if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) {
956 size = mtd_otp_size(mtd, false);
957 if (size < 0) {
958 err = size;
959 goto err;
960 }
961
962 if (size > 0) {
963 nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size,
964 mtd_nvmem_fact_otp_reg_read);
965 if (IS_ERR(nvmem)) {
966 dev_err(&mtd->dev, "Failed to register OTP NVMEM device\n");
967 err = PTR_ERR(nvmem);
968 goto err;
969 }
970 mtd->otp_factory_nvmem = nvmem;
971 }
972 }
973
974 return 0;
975
976 err:
977 nvmem_unregister(mtd->otp_user_nvmem);
978 return err;
979 }
980
981 /**
982 * mtd_device_parse_register - parse partitions and register an MTD device.
983 *
984 * @mtd: the MTD device to register
985 * @types: the list of MTD partition probes to try, see
986 * 'parse_mtd_partitions()' for more information
987 * @parser_data: MTD partition parser-specific data
988 * @parts: fallback partition information to register, if parsing fails;
989 * only valid if %nr_parts > %0
990 * @nr_parts: the number of partitions in parts, if zero then the full
991 * MTD device is registered if no partition info is found
992 *
993 * This function aggregates MTD partitions parsing (done by
994 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
995 * basically follows the most common pattern found in many MTD drivers:
996 *
997 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
998 * registered first.
999 * * Then It tries to probe partitions on MTD device @mtd using parsers
1000 * specified in @types (if @types is %NULL, then the default list of parsers
1001 * is used, see 'parse_mtd_partitions()' for more information). If none are
1002 * found this functions tries to fallback to information specified in
1003 * @parts/@nr_parts.
1004 * * If no partitions were found this function just registers the MTD device
1005 * @mtd and exits.
1006 *
1007 * Returns zero in case of success and a negative error code in case of failure.
1008 */
mtd_device_parse_register(struct mtd_info * mtd,const char * const * types,struct mtd_part_parser_data * parser_data,const struct mtd_partition * parts,int nr_parts)1009 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
1010 struct mtd_part_parser_data *parser_data,
1011 const struct mtd_partition *parts,
1012 int nr_parts)
1013 {
1014 int ret;
1015
1016 mtd_set_dev_defaults(mtd);
1017
1018 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
1019 ret = add_mtd_device(mtd);
1020 if (ret)
1021 return ret;
1022 }
1023
1024 /* Prefer parsed partitions over driver-provided fallback */
1025 ret = parse_mtd_partitions(mtd, types, parser_data);
1026 if (ret == -EPROBE_DEFER)
1027 goto out;
1028
1029 if (ret > 0)
1030 ret = 0;
1031 else if (nr_parts)
1032 ret = add_mtd_partitions(mtd, parts, nr_parts);
1033 else if (!device_is_registered(&mtd->dev))
1034 ret = add_mtd_device(mtd);
1035 else
1036 ret = 0;
1037
1038 if (ret)
1039 goto out;
1040
1041 /*
1042 * FIXME: some drivers unfortunately call this function more than once.
1043 * So we have to check if we've already assigned the reboot notifier.
1044 *
1045 * Generally, we can make multiple calls work for most cases, but it
1046 * does cause problems with parse_mtd_partitions() above (e.g.,
1047 * cmdlineparts will register partitions more than once).
1048 */
1049 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
1050 "MTD already registered\n");
1051 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
1052 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
1053 register_reboot_notifier(&mtd->reboot_notifier);
1054 }
1055
1056 ret = mtd_otp_nvmem_add(mtd);
1057
1058 out:
1059 if (ret && device_is_registered(&mtd->dev))
1060 del_mtd_device(mtd);
1061
1062 return ret;
1063 }
1064 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
1065
1066 /**
1067 * mtd_device_unregister - unregister an existing MTD device.
1068 *
1069 * @master: the MTD device to unregister. This will unregister both the master
1070 * and any partitions if registered.
1071 */
mtd_device_unregister(struct mtd_info * master)1072 int mtd_device_unregister(struct mtd_info *master)
1073 {
1074 int err;
1075
1076 if (master->_reboot) {
1077 unregister_reboot_notifier(&master->reboot_notifier);
1078 memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier));
1079 }
1080
1081 nvmem_unregister(master->otp_user_nvmem);
1082 nvmem_unregister(master->otp_factory_nvmem);
1083
1084 err = del_mtd_partitions(master);
1085 if (err)
1086 return err;
1087
1088 if (!device_is_registered(&master->dev))
1089 return 0;
1090
1091 return del_mtd_device(master);
1092 }
1093 EXPORT_SYMBOL_GPL(mtd_device_unregister);
1094
1095 /**
1096 * register_mtd_user - register a 'user' of MTD devices.
1097 * @new: pointer to notifier info structure
1098 *
1099 * Registers a pair of callbacks function to be called upon addition
1100 * or removal of MTD devices. Causes the 'add' callback to be immediately
1101 * invoked for each MTD device currently present in the system.
1102 */
register_mtd_user(struct mtd_notifier * new)1103 void register_mtd_user (struct mtd_notifier *new)
1104 {
1105 struct mtd_info *mtd;
1106
1107 mutex_lock(&mtd_table_mutex);
1108
1109 list_add(&new->list, &mtd_notifiers);
1110
1111 __module_get(THIS_MODULE);
1112
1113 mtd_for_each_device(mtd)
1114 new->add(mtd);
1115
1116 mutex_unlock(&mtd_table_mutex);
1117 }
1118 EXPORT_SYMBOL_GPL(register_mtd_user);
1119
1120 /**
1121 * unregister_mtd_user - unregister a 'user' of MTD devices.
1122 * @old: pointer to notifier info structure
1123 *
1124 * Removes a callback function pair from the list of 'users' to be
1125 * notified upon addition or removal of MTD devices. Causes the
1126 * 'remove' callback to be immediately invoked for each MTD device
1127 * currently present in the system.
1128 */
unregister_mtd_user(struct mtd_notifier * old)1129 int unregister_mtd_user (struct mtd_notifier *old)
1130 {
1131 struct mtd_info *mtd;
1132
1133 mutex_lock(&mtd_table_mutex);
1134
1135 module_put(THIS_MODULE);
1136
1137 mtd_for_each_device(mtd)
1138 old->remove(mtd);
1139
1140 list_del(&old->list);
1141 mutex_unlock(&mtd_table_mutex);
1142 return 0;
1143 }
1144 EXPORT_SYMBOL_GPL(unregister_mtd_user);
1145
1146 /**
1147 * get_mtd_device - obtain a validated handle for an MTD device
1148 * @mtd: last known address of the required MTD device
1149 * @num: internal device number of the required MTD device
1150 *
1151 * Given a number and NULL address, return the num'th entry in the device
1152 * table, if any. Given an address and num == -1, search the device table
1153 * for a device with that address and return if it's still present. Given
1154 * both, return the num'th driver only if its address matches. Return
1155 * error code if not.
1156 */
get_mtd_device(struct mtd_info * mtd,int num)1157 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
1158 {
1159 struct mtd_info *ret = NULL, *other;
1160 int err = -ENODEV;
1161
1162 mutex_lock(&mtd_table_mutex);
1163
1164 if (num == -1) {
1165 mtd_for_each_device(other) {
1166 if (other == mtd) {
1167 ret = mtd;
1168 break;
1169 }
1170 }
1171 } else if (num >= 0) {
1172 ret = idr_find(&mtd_idr, num);
1173 if (mtd && mtd != ret)
1174 ret = NULL;
1175 }
1176
1177 if (!ret) {
1178 ret = ERR_PTR(err);
1179 goto out;
1180 }
1181
1182 err = __get_mtd_device(ret);
1183 if (err)
1184 ret = ERR_PTR(err);
1185 out:
1186 mutex_unlock(&mtd_table_mutex);
1187 return ret;
1188 }
1189 EXPORT_SYMBOL_GPL(get_mtd_device);
1190
1191
__get_mtd_device(struct mtd_info * mtd)1192 int __get_mtd_device(struct mtd_info *mtd)
1193 {
1194 struct mtd_info *master = mtd_get_master(mtd);
1195 int err;
1196
1197 if (!try_module_get(master->owner))
1198 return -ENODEV;
1199
1200 if (master->_get_device) {
1201 err = master->_get_device(mtd);
1202
1203 if (err) {
1204 module_put(master->owner);
1205 return err;
1206 }
1207 }
1208
1209 master->usecount++;
1210
1211 while (mtd->parent) {
1212 mtd->usecount++;
1213 mtd = mtd->parent;
1214 }
1215
1216 return 0;
1217 }
1218 EXPORT_SYMBOL_GPL(__get_mtd_device);
1219
1220 /**
1221 * of_get_mtd_device_by_node - obtain an MTD device associated with a given node
1222 *
1223 * @np: device tree node
1224 */
of_get_mtd_device_by_node(struct device_node * np)1225 struct mtd_info *of_get_mtd_device_by_node(struct device_node *np)
1226 {
1227 struct mtd_info *mtd = NULL;
1228 struct mtd_info *tmp;
1229 int err;
1230
1231 mutex_lock(&mtd_table_mutex);
1232
1233 err = -EPROBE_DEFER;
1234 mtd_for_each_device(tmp) {
1235 if (mtd_get_of_node(tmp) == np) {
1236 mtd = tmp;
1237 err = __get_mtd_device(mtd);
1238 break;
1239 }
1240 }
1241
1242 mutex_unlock(&mtd_table_mutex);
1243
1244 return err ? ERR_PTR(err) : mtd;
1245 }
1246 EXPORT_SYMBOL_GPL(of_get_mtd_device_by_node);
1247
1248 /**
1249 * get_mtd_device_nm - obtain a validated handle for an MTD device by
1250 * device name
1251 * @name: MTD device name to open
1252 *
1253 * This function returns MTD device description structure in case of
1254 * success and an error code in case of failure.
1255 */
get_mtd_device_nm(const char * name)1256 struct mtd_info *get_mtd_device_nm(const char *name)
1257 {
1258 int err = -ENODEV;
1259 struct mtd_info *mtd = NULL, *other;
1260
1261 mutex_lock(&mtd_table_mutex);
1262
1263 mtd_for_each_device(other) {
1264 if (!strcmp(name, other->name)) {
1265 mtd = other;
1266 break;
1267 }
1268 }
1269
1270 if (!mtd)
1271 goto out_unlock;
1272
1273 err = __get_mtd_device(mtd);
1274 if (err)
1275 goto out_unlock;
1276
1277 mutex_unlock(&mtd_table_mutex);
1278 return mtd;
1279
1280 out_unlock:
1281 mutex_unlock(&mtd_table_mutex);
1282 return ERR_PTR(err);
1283 }
1284 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1285
put_mtd_device(struct mtd_info * mtd)1286 void put_mtd_device(struct mtd_info *mtd)
1287 {
1288 mutex_lock(&mtd_table_mutex);
1289 __put_mtd_device(mtd);
1290 mutex_unlock(&mtd_table_mutex);
1291
1292 }
1293 EXPORT_SYMBOL_GPL(put_mtd_device);
1294
__put_mtd_device(struct mtd_info * mtd)1295 void __put_mtd_device(struct mtd_info *mtd)
1296 {
1297 struct mtd_info *master = mtd_get_master(mtd);
1298
1299 while (mtd->parent) {
1300 --mtd->usecount;
1301 BUG_ON(mtd->usecount < 0);
1302 mtd = mtd->parent;
1303 }
1304
1305 master->usecount--;
1306
1307 if (master->_put_device)
1308 master->_put_device(master);
1309
1310 module_put(master->owner);
1311 }
1312 EXPORT_SYMBOL_GPL(__put_mtd_device);
1313
1314 /*
1315 * Erase is an synchronous operation. Device drivers are epected to return a
1316 * negative error code if the operation failed and update instr->fail_addr
1317 * to point the portion that was not properly erased.
1318 */
mtd_erase(struct mtd_info * mtd,struct erase_info * instr)1319 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1320 {
1321 struct mtd_info *master = mtd_get_master(mtd);
1322 u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1323 struct erase_info adjinstr;
1324 int ret;
1325
1326 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1327 adjinstr = *instr;
1328
1329 if (!mtd->erasesize || !master->_erase)
1330 return -ENOTSUPP;
1331
1332 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1333 return -EINVAL;
1334 if (!(mtd->flags & MTD_WRITEABLE))
1335 return -EROFS;
1336
1337 if (!instr->len)
1338 return 0;
1339
1340 ledtrig_mtd_activity();
1341
1342 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1343 adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1344 master->erasesize;
1345 adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1346 master->erasesize) -
1347 adjinstr.addr;
1348 }
1349
1350 adjinstr.addr += mst_ofs;
1351
1352 ret = master->_erase(master, &adjinstr);
1353
1354 if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1355 instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1356 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1357 instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1358 master);
1359 instr->fail_addr *= mtd->erasesize;
1360 }
1361 }
1362
1363 return ret;
1364 }
1365 EXPORT_SYMBOL_GPL(mtd_erase);
1366
1367 /*
1368 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1369 */
mtd_point(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,void ** virt,resource_size_t * phys)1370 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1371 void **virt, resource_size_t *phys)
1372 {
1373 struct mtd_info *master = mtd_get_master(mtd);
1374
1375 *retlen = 0;
1376 *virt = NULL;
1377 if (phys)
1378 *phys = 0;
1379 if (!master->_point)
1380 return -EOPNOTSUPP;
1381 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1382 return -EINVAL;
1383 if (!len)
1384 return 0;
1385
1386 from = mtd_get_master_ofs(mtd, from);
1387 return master->_point(master, from, len, retlen, virt, phys);
1388 }
1389 EXPORT_SYMBOL_GPL(mtd_point);
1390
1391 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
mtd_unpoint(struct mtd_info * mtd,loff_t from,size_t len)1392 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1393 {
1394 struct mtd_info *master = mtd_get_master(mtd);
1395
1396 if (!master->_unpoint)
1397 return -EOPNOTSUPP;
1398 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1399 return -EINVAL;
1400 if (!len)
1401 return 0;
1402 return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1403 }
1404 EXPORT_SYMBOL_GPL(mtd_unpoint);
1405
1406 /*
1407 * Allow NOMMU mmap() to directly map the device (if not NULL)
1408 * - return the address to which the offset maps
1409 * - return -ENOSYS to indicate refusal to do the mapping
1410 */
mtd_get_unmapped_area(struct mtd_info * mtd,unsigned long len,unsigned long offset,unsigned long flags)1411 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1412 unsigned long offset, unsigned long flags)
1413 {
1414 size_t retlen;
1415 void *virt;
1416 int ret;
1417
1418 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1419 if (ret)
1420 return ret;
1421 if (retlen != len) {
1422 mtd_unpoint(mtd, offset, retlen);
1423 return -ENOSYS;
1424 }
1425 return (unsigned long)virt;
1426 }
1427 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1428
mtd_update_ecc_stats(struct mtd_info * mtd,struct mtd_info * master,const struct mtd_ecc_stats * old_stats)1429 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1430 const struct mtd_ecc_stats *old_stats)
1431 {
1432 struct mtd_ecc_stats diff;
1433
1434 if (master == mtd)
1435 return;
1436
1437 diff = master->ecc_stats;
1438 diff.failed -= old_stats->failed;
1439 diff.corrected -= old_stats->corrected;
1440
1441 while (mtd->parent) {
1442 mtd->ecc_stats.failed += diff.failed;
1443 mtd->ecc_stats.corrected += diff.corrected;
1444 mtd = mtd->parent;
1445 }
1446 }
1447
mtd_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1448 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1449 u_char *buf)
1450 {
1451 struct mtd_oob_ops ops = {
1452 .len = len,
1453 .datbuf = buf,
1454 };
1455 int ret;
1456
1457 ret = mtd_read_oob(mtd, from, &ops);
1458 *retlen = ops.retlen;
1459
1460 return ret;
1461 }
1462 EXPORT_SYMBOL_GPL(mtd_read);
1463
mtd_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1464 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1465 const u_char *buf)
1466 {
1467 struct mtd_oob_ops ops = {
1468 .len = len,
1469 .datbuf = (u8 *)buf,
1470 };
1471 int ret;
1472
1473 ret = mtd_write_oob(mtd, to, &ops);
1474 *retlen = ops.retlen;
1475
1476 return ret;
1477 }
1478 EXPORT_SYMBOL_GPL(mtd_write);
1479
1480 /*
1481 * In blackbox flight recorder like scenarios we want to make successful writes
1482 * in interrupt context. panic_write() is only intended to be called when its
1483 * known the kernel is about to panic and we need the write to succeed. Since
1484 * the kernel is not going to be running for much longer, this function can
1485 * break locks and delay to ensure the write succeeds (but not sleep).
1486 */
mtd_panic_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1487 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1488 const u_char *buf)
1489 {
1490 struct mtd_info *master = mtd_get_master(mtd);
1491
1492 *retlen = 0;
1493 if (!master->_panic_write)
1494 return -EOPNOTSUPP;
1495 if (to < 0 || to >= mtd->size || len > mtd->size - to)
1496 return -EINVAL;
1497 if (!(mtd->flags & MTD_WRITEABLE))
1498 return -EROFS;
1499 if (!len)
1500 return 0;
1501 if (!master->oops_panic_write)
1502 master->oops_panic_write = true;
1503
1504 return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1505 retlen, buf);
1506 }
1507 EXPORT_SYMBOL_GPL(mtd_panic_write);
1508
mtd_check_oob_ops(struct mtd_info * mtd,loff_t offs,struct mtd_oob_ops * ops)1509 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1510 struct mtd_oob_ops *ops)
1511 {
1512 /*
1513 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1514 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1515 * this case.
1516 */
1517 if (!ops->datbuf)
1518 ops->len = 0;
1519
1520 if (!ops->oobbuf)
1521 ops->ooblen = 0;
1522
1523 if (offs < 0 || offs + ops->len > mtd->size)
1524 return -EINVAL;
1525
1526 if (ops->ooblen) {
1527 size_t maxooblen;
1528
1529 if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1530 return -EINVAL;
1531
1532 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1533 mtd_div_by_ws(offs, mtd)) *
1534 mtd_oobavail(mtd, ops)) - ops->ooboffs;
1535 if (ops->ooblen > maxooblen)
1536 return -EINVAL;
1537 }
1538
1539 return 0;
1540 }
1541
mtd_read_oob_std(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1542 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1543 struct mtd_oob_ops *ops)
1544 {
1545 struct mtd_info *master = mtd_get_master(mtd);
1546 int ret;
1547
1548 from = mtd_get_master_ofs(mtd, from);
1549 if (master->_read_oob)
1550 ret = master->_read_oob(master, from, ops);
1551 else
1552 ret = master->_read(master, from, ops->len, &ops->retlen,
1553 ops->datbuf);
1554
1555 return ret;
1556 }
1557
mtd_write_oob_std(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)1558 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1559 struct mtd_oob_ops *ops)
1560 {
1561 struct mtd_info *master = mtd_get_master(mtd);
1562 int ret;
1563
1564 to = mtd_get_master_ofs(mtd, to);
1565 if (master->_write_oob)
1566 ret = master->_write_oob(master, to, ops);
1567 else
1568 ret = master->_write(master, to, ops->len, &ops->retlen,
1569 ops->datbuf);
1570
1571 return ret;
1572 }
1573
mtd_io_emulated_slc(struct mtd_info * mtd,loff_t start,bool read,struct mtd_oob_ops * ops)1574 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1575 struct mtd_oob_ops *ops)
1576 {
1577 struct mtd_info *master = mtd_get_master(mtd);
1578 int ngroups = mtd_pairing_groups(master);
1579 int npairs = mtd_wunit_per_eb(master) / ngroups;
1580 struct mtd_oob_ops adjops = *ops;
1581 unsigned int wunit, oobavail;
1582 struct mtd_pairing_info info;
1583 int max_bitflips = 0;
1584 u32 ebofs, pageofs;
1585 loff_t base, pos;
1586
1587 ebofs = mtd_mod_by_eb(start, mtd);
1588 base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1589 info.group = 0;
1590 info.pair = mtd_div_by_ws(ebofs, mtd);
1591 pageofs = mtd_mod_by_ws(ebofs, mtd);
1592 oobavail = mtd_oobavail(mtd, ops);
1593
1594 while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1595 int ret;
1596
1597 if (info.pair >= npairs) {
1598 info.pair = 0;
1599 base += master->erasesize;
1600 }
1601
1602 wunit = mtd_pairing_info_to_wunit(master, &info);
1603 pos = mtd_wunit_to_offset(mtd, base, wunit);
1604
1605 adjops.len = ops->len - ops->retlen;
1606 if (adjops.len > mtd->writesize - pageofs)
1607 adjops.len = mtd->writesize - pageofs;
1608
1609 adjops.ooblen = ops->ooblen - ops->oobretlen;
1610 if (adjops.ooblen > oobavail - adjops.ooboffs)
1611 adjops.ooblen = oobavail - adjops.ooboffs;
1612
1613 if (read) {
1614 ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1615 if (ret > 0)
1616 max_bitflips = max(max_bitflips, ret);
1617 } else {
1618 ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1619 }
1620
1621 if (ret < 0)
1622 return ret;
1623
1624 max_bitflips = max(max_bitflips, ret);
1625 ops->retlen += adjops.retlen;
1626 ops->oobretlen += adjops.oobretlen;
1627 adjops.datbuf += adjops.retlen;
1628 adjops.oobbuf += adjops.oobretlen;
1629 adjops.ooboffs = 0;
1630 pageofs = 0;
1631 info.pair++;
1632 }
1633
1634 return max_bitflips;
1635 }
1636
mtd_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1637 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1638 {
1639 struct mtd_info *master = mtd_get_master(mtd);
1640 struct mtd_ecc_stats old_stats = master->ecc_stats;
1641 int ret_code;
1642
1643 ops->retlen = ops->oobretlen = 0;
1644
1645 ret_code = mtd_check_oob_ops(mtd, from, ops);
1646 if (ret_code)
1647 return ret_code;
1648
1649 ledtrig_mtd_activity();
1650
1651 /* Check the validity of a potential fallback on mtd->_read */
1652 if (!master->_read_oob && (!master->_read || ops->oobbuf))
1653 return -EOPNOTSUPP;
1654
1655 if (ops->stats)
1656 memset(ops->stats, 0, sizeof(*ops->stats));
1657
1658 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1659 ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1660 else
1661 ret_code = mtd_read_oob_std(mtd, from, ops);
1662
1663 mtd_update_ecc_stats(mtd, master, &old_stats);
1664
1665 /*
1666 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1667 * similar to mtd->_read(), returning a non-negative integer
1668 * representing max bitflips. In other cases, mtd->_read_oob() may
1669 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1670 */
1671 if (unlikely(ret_code < 0))
1672 return ret_code;
1673 if (mtd->ecc_strength == 0)
1674 return 0; /* device lacks ecc */
1675 if (ops->stats)
1676 ops->stats->max_bitflips = ret_code;
1677 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1678 }
1679 EXPORT_SYMBOL_GPL(mtd_read_oob);
1680
mtd_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)1681 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1682 struct mtd_oob_ops *ops)
1683 {
1684 struct mtd_info *master = mtd_get_master(mtd);
1685 int ret;
1686
1687 ops->retlen = ops->oobretlen = 0;
1688
1689 if (!(mtd->flags & MTD_WRITEABLE))
1690 return -EROFS;
1691
1692 ret = mtd_check_oob_ops(mtd, to, ops);
1693 if (ret)
1694 return ret;
1695
1696 ledtrig_mtd_activity();
1697
1698 /* Check the validity of a potential fallback on mtd->_write */
1699 if (!master->_write_oob && (!master->_write || ops->oobbuf))
1700 return -EOPNOTSUPP;
1701
1702 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1703 return mtd_io_emulated_slc(mtd, to, false, ops);
1704
1705 return mtd_write_oob_std(mtd, to, ops);
1706 }
1707 EXPORT_SYMBOL_GPL(mtd_write_oob);
1708
1709 /**
1710 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1711 * @mtd: MTD device structure
1712 * @section: ECC section. Depending on the layout you may have all the ECC
1713 * bytes stored in a single contiguous section, or one section
1714 * per ECC chunk (and sometime several sections for a single ECC
1715 * ECC chunk)
1716 * @oobecc: OOB region struct filled with the appropriate ECC position
1717 * information
1718 *
1719 * This function returns ECC section information in the OOB area. If you want
1720 * to get all the ECC bytes information, then you should call
1721 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1722 *
1723 * Returns zero on success, a negative error code otherwise.
1724 */
mtd_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobecc)1725 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1726 struct mtd_oob_region *oobecc)
1727 {
1728 struct mtd_info *master = mtd_get_master(mtd);
1729
1730 memset(oobecc, 0, sizeof(*oobecc));
1731
1732 if (!master || section < 0)
1733 return -EINVAL;
1734
1735 if (!master->ooblayout || !master->ooblayout->ecc)
1736 return -ENOTSUPP;
1737
1738 return master->ooblayout->ecc(master, section, oobecc);
1739 }
1740 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1741
1742 /**
1743 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1744 * section
1745 * @mtd: MTD device structure
1746 * @section: Free section you are interested in. Depending on the layout
1747 * you may have all the free bytes stored in a single contiguous
1748 * section, or one section per ECC chunk plus an extra section
1749 * for the remaining bytes (or other funky layout).
1750 * @oobfree: OOB region struct filled with the appropriate free position
1751 * information
1752 *
1753 * This function returns free bytes position in the OOB area. If you want
1754 * to get all the free bytes information, then you should call
1755 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1756 *
1757 * Returns zero on success, a negative error code otherwise.
1758 */
mtd_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobfree)1759 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1760 struct mtd_oob_region *oobfree)
1761 {
1762 struct mtd_info *master = mtd_get_master(mtd);
1763
1764 memset(oobfree, 0, sizeof(*oobfree));
1765
1766 if (!master || section < 0)
1767 return -EINVAL;
1768
1769 if (!master->ooblayout || !master->ooblayout->free)
1770 return -ENOTSUPP;
1771
1772 return master->ooblayout->free(master, section, oobfree);
1773 }
1774 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1775
1776 /**
1777 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1778 * @mtd: mtd info structure
1779 * @byte: the byte we are searching for
1780 * @sectionp: pointer where the section id will be stored
1781 * @oobregion: used to retrieve the ECC position
1782 * @iter: iterator function. Should be either mtd_ooblayout_free or
1783 * mtd_ooblayout_ecc depending on the region type you're searching for
1784 *
1785 * This function returns the section id and oobregion information of a
1786 * specific byte. For example, say you want to know where the 4th ECC byte is
1787 * stored, you'll use:
1788 *
1789 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc);
1790 *
1791 * Returns zero on success, a negative error code otherwise.
1792 */
mtd_ooblayout_find_region(struct mtd_info * mtd,int byte,int * sectionp,struct mtd_oob_region * oobregion,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1793 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1794 int *sectionp, struct mtd_oob_region *oobregion,
1795 int (*iter)(struct mtd_info *,
1796 int section,
1797 struct mtd_oob_region *oobregion))
1798 {
1799 int pos = 0, ret, section = 0;
1800
1801 memset(oobregion, 0, sizeof(*oobregion));
1802
1803 while (1) {
1804 ret = iter(mtd, section, oobregion);
1805 if (ret)
1806 return ret;
1807
1808 if (pos + oobregion->length > byte)
1809 break;
1810
1811 pos += oobregion->length;
1812 section++;
1813 }
1814
1815 /*
1816 * Adjust region info to make it start at the beginning at the
1817 * 'start' ECC byte.
1818 */
1819 oobregion->offset += byte - pos;
1820 oobregion->length -= byte - pos;
1821 *sectionp = section;
1822
1823 return 0;
1824 }
1825
1826 /**
1827 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1828 * ECC byte
1829 * @mtd: mtd info structure
1830 * @eccbyte: the byte we are searching for
1831 * @section: pointer where the section id will be stored
1832 * @oobregion: OOB region information
1833 *
1834 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1835 * byte.
1836 *
1837 * Returns zero on success, a negative error code otherwise.
1838 */
mtd_ooblayout_find_eccregion(struct mtd_info * mtd,int eccbyte,int * section,struct mtd_oob_region * oobregion)1839 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1840 int *section,
1841 struct mtd_oob_region *oobregion)
1842 {
1843 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1844 mtd_ooblayout_ecc);
1845 }
1846 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1847
1848 /**
1849 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1850 * @mtd: mtd info structure
1851 * @buf: destination buffer to store OOB bytes
1852 * @oobbuf: OOB buffer
1853 * @start: first byte to retrieve
1854 * @nbytes: number of bytes to retrieve
1855 * @iter: section iterator
1856 *
1857 * Extract bytes attached to a specific category (ECC or free)
1858 * from the OOB buffer and copy them into buf.
1859 *
1860 * Returns zero on success, a negative error code otherwise.
1861 */
mtd_ooblayout_get_bytes(struct mtd_info * mtd,u8 * buf,const u8 * oobbuf,int start,int nbytes,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1862 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1863 const u8 *oobbuf, int start, int nbytes,
1864 int (*iter)(struct mtd_info *,
1865 int section,
1866 struct mtd_oob_region *oobregion))
1867 {
1868 struct mtd_oob_region oobregion;
1869 int section, ret;
1870
1871 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1872 &oobregion, iter);
1873
1874 while (!ret) {
1875 int cnt;
1876
1877 cnt = min_t(int, nbytes, oobregion.length);
1878 memcpy(buf, oobbuf + oobregion.offset, cnt);
1879 buf += cnt;
1880 nbytes -= cnt;
1881
1882 if (!nbytes)
1883 break;
1884
1885 ret = iter(mtd, ++section, &oobregion);
1886 }
1887
1888 return ret;
1889 }
1890
1891 /**
1892 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1893 * @mtd: mtd info structure
1894 * @buf: source buffer to get OOB bytes from
1895 * @oobbuf: OOB buffer
1896 * @start: first OOB byte to set
1897 * @nbytes: number of OOB bytes to set
1898 * @iter: section iterator
1899 *
1900 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1901 * is selected by passing the appropriate iterator.
1902 *
1903 * Returns zero on success, a negative error code otherwise.
1904 */
mtd_ooblayout_set_bytes(struct mtd_info * mtd,const u8 * buf,u8 * oobbuf,int start,int nbytes,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1905 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1906 u8 *oobbuf, int start, int nbytes,
1907 int (*iter)(struct mtd_info *,
1908 int section,
1909 struct mtd_oob_region *oobregion))
1910 {
1911 struct mtd_oob_region oobregion;
1912 int section, ret;
1913
1914 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1915 &oobregion, iter);
1916
1917 while (!ret) {
1918 int cnt;
1919
1920 cnt = min_t(int, nbytes, oobregion.length);
1921 memcpy(oobbuf + oobregion.offset, buf, cnt);
1922 buf += cnt;
1923 nbytes -= cnt;
1924
1925 if (!nbytes)
1926 break;
1927
1928 ret = iter(mtd, ++section, &oobregion);
1929 }
1930
1931 return ret;
1932 }
1933
1934 /**
1935 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1936 * @mtd: mtd info structure
1937 * @iter: category iterator
1938 *
1939 * Count the number of bytes in a given category.
1940 *
1941 * Returns a positive value on success, a negative error code otherwise.
1942 */
mtd_ooblayout_count_bytes(struct mtd_info * mtd,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1943 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1944 int (*iter)(struct mtd_info *,
1945 int section,
1946 struct mtd_oob_region *oobregion))
1947 {
1948 struct mtd_oob_region oobregion;
1949 int section = 0, ret, nbytes = 0;
1950
1951 while (1) {
1952 ret = iter(mtd, section++, &oobregion);
1953 if (ret) {
1954 if (ret == -ERANGE)
1955 ret = nbytes;
1956 break;
1957 }
1958
1959 nbytes += oobregion.length;
1960 }
1961
1962 return ret;
1963 }
1964
1965 /**
1966 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1967 * @mtd: mtd info structure
1968 * @eccbuf: destination buffer to store ECC bytes
1969 * @oobbuf: OOB buffer
1970 * @start: first ECC byte to retrieve
1971 * @nbytes: number of ECC bytes to retrieve
1972 *
1973 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1974 *
1975 * Returns zero on success, a negative error code otherwise.
1976 */
mtd_ooblayout_get_eccbytes(struct mtd_info * mtd,u8 * eccbuf,const u8 * oobbuf,int start,int nbytes)1977 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1978 const u8 *oobbuf, int start, int nbytes)
1979 {
1980 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1981 mtd_ooblayout_ecc);
1982 }
1983 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1984
1985 /**
1986 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1987 * @mtd: mtd info structure
1988 * @eccbuf: source buffer to get ECC bytes from
1989 * @oobbuf: OOB buffer
1990 * @start: first ECC byte to set
1991 * @nbytes: number of ECC bytes to set
1992 *
1993 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1994 *
1995 * Returns zero on success, a negative error code otherwise.
1996 */
mtd_ooblayout_set_eccbytes(struct mtd_info * mtd,const u8 * eccbuf,u8 * oobbuf,int start,int nbytes)1997 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1998 u8 *oobbuf, int start, int nbytes)
1999 {
2000 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2001 mtd_ooblayout_ecc);
2002 }
2003 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
2004
2005 /**
2006 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
2007 * @mtd: mtd info structure
2008 * @databuf: destination buffer to store ECC bytes
2009 * @oobbuf: OOB buffer
2010 * @start: first ECC byte to retrieve
2011 * @nbytes: number of ECC bytes to retrieve
2012 *
2013 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
2014 *
2015 * Returns zero on success, a negative error code otherwise.
2016 */
mtd_ooblayout_get_databytes(struct mtd_info * mtd,u8 * databuf,const u8 * oobbuf,int start,int nbytes)2017 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
2018 const u8 *oobbuf, int start, int nbytes)
2019 {
2020 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
2021 mtd_ooblayout_free);
2022 }
2023 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
2024
2025 /**
2026 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
2027 * @mtd: mtd info structure
2028 * @databuf: source buffer to get data bytes from
2029 * @oobbuf: OOB buffer
2030 * @start: first ECC byte to set
2031 * @nbytes: number of ECC bytes to set
2032 *
2033 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
2034 *
2035 * Returns zero on success, a negative error code otherwise.
2036 */
mtd_ooblayout_set_databytes(struct mtd_info * mtd,const u8 * databuf,u8 * oobbuf,int start,int nbytes)2037 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
2038 u8 *oobbuf, int start, int nbytes)
2039 {
2040 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
2041 mtd_ooblayout_free);
2042 }
2043 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
2044
2045 /**
2046 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
2047 * @mtd: mtd info structure
2048 *
2049 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
2050 *
2051 * Returns zero on success, a negative error code otherwise.
2052 */
mtd_ooblayout_count_freebytes(struct mtd_info * mtd)2053 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
2054 {
2055 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
2056 }
2057 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
2058
2059 /**
2060 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
2061 * @mtd: mtd info structure
2062 *
2063 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
2064 *
2065 * Returns zero on success, a negative error code otherwise.
2066 */
mtd_ooblayout_count_eccbytes(struct mtd_info * mtd)2067 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
2068 {
2069 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
2070 }
2071 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
2072
2073 /*
2074 * Method to access the protection register area, present in some flash
2075 * devices. The user data is one time programmable but the factory data is read
2076 * only.
2077 */
mtd_get_fact_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)2078 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2079 struct otp_info *buf)
2080 {
2081 struct mtd_info *master = mtd_get_master(mtd);
2082
2083 if (!master->_get_fact_prot_info)
2084 return -EOPNOTSUPP;
2085 if (!len)
2086 return 0;
2087 return master->_get_fact_prot_info(master, len, retlen, buf);
2088 }
2089 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
2090
mtd_read_fact_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)2091 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2092 size_t *retlen, u_char *buf)
2093 {
2094 struct mtd_info *master = mtd_get_master(mtd);
2095
2096 *retlen = 0;
2097 if (!master->_read_fact_prot_reg)
2098 return -EOPNOTSUPP;
2099 if (!len)
2100 return 0;
2101 return master->_read_fact_prot_reg(master, from, len, retlen, buf);
2102 }
2103 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
2104
mtd_get_user_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)2105 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2106 struct otp_info *buf)
2107 {
2108 struct mtd_info *master = mtd_get_master(mtd);
2109
2110 if (!master->_get_user_prot_info)
2111 return -EOPNOTSUPP;
2112 if (!len)
2113 return 0;
2114 return master->_get_user_prot_info(master, len, retlen, buf);
2115 }
2116 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
2117
mtd_read_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)2118 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2119 size_t *retlen, u_char *buf)
2120 {
2121 struct mtd_info *master = mtd_get_master(mtd);
2122
2123 *retlen = 0;
2124 if (!master->_read_user_prot_reg)
2125 return -EOPNOTSUPP;
2126 if (!len)
2127 return 0;
2128 return master->_read_user_prot_reg(master, from, len, retlen, buf);
2129 }
2130 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
2131
mtd_write_user_prot_reg(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)2132 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
2133 size_t *retlen, const u_char *buf)
2134 {
2135 struct mtd_info *master = mtd_get_master(mtd);
2136 int ret;
2137
2138 *retlen = 0;
2139 if (!master->_write_user_prot_reg)
2140 return -EOPNOTSUPP;
2141 if (!len)
2142 return 0;
2143 ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
2144 if (ret)
2145 return ret;
2146
2147 /*
2148 * If no data could be written at all, we are out of memory and
2149 * must return -ENOSPC.
2150 */
2151 return (*retlen) ? 0 : -ENOSPC;
2152 }
2153 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
2154
mtd_lock_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)2155 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2156 {
2157 struct mtd_info *master = mtd_get_master(mtd);
2158
2159 if (!master->_lock_user_prot_reg)
2160 return -EOPNOTSUPP;
2161 if (!len)
2162 return 0;
2163 return master->_lock_user_prot_reg(master, from, len);
2164 }
2165 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
2166
mtd_erase_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)2167 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2168 {
2169 struct mtd_info *master = mtd_get_master(mtd);
2170
2171 if (!master->_erase_user_prot_reg)
2172 return -EOPNOTSUPP;
2173 if (!len)
2174 return 0;
2175 return master->_erase_user_prot_reg(master, from, len);
2176 }
2177 EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg);
2178
2179 /* Chip-supported device locking */
mtd_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)2180 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2181 {
2182 struct mtd_info *master = mtd_get_master(mtd);
2183
2184 if (!master->_lock)
2185 return -EOPNOTSUPP;
2186 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2187 return -EINVAL;
2188 if (!len)
2189 return 0;
2190
2191 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2192 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2193 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2194 }
2195
2196 return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
2197 }
2198 EXPORT_SYMBOL_GPL(mtd_lock);
2199
mtd_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)2200 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2201 {
2202 struct mtd_info *master = mtd_get_master(mtd);
2203
2204 if (!master->_unlock)
2205 return -EOPNOTSUPP;
2206 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2207 return -EINVAL;
2208 if (!len)
2209 return 0;
2210
2211 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2212 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2213 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2214 }
2215
2216 return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
2217 }
2218 EXPORT_SYMBOL_GPL(mtd_unlock);
2219
mtd_is_locked(struct mtd_info * mtd,loff_t ofs,uint64_t len)2220 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2221 {
2222 struct mtd_info *master = mtd_get_master(mtd);
2223
2224 if (!master->_is_locked)
2225 return -EOPNOTSUPP;
2226 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2227 return -EINVAL;
2228 if (!len)
2229 return 0;
2230
2231 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2232 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2233 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2234 }
2235
2236 return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
2237 }
2238 EXPORT_SYMBOL_GPL(mtd_is_locked);
2239
mtd_block_isreserved(struct mtd_info * mtd,loff_t ofs)2240 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
2241 {
2242 struct mtd_info *master = mtd_get_master(mtd);
2243
2244 if (ofs < 0 || ofs >= mtd->size)
2245 return -EINVAL;
2246 if (!master->_block_isreserved)
2247 return 0;
2248
2249 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2250 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2251
2252 return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2253 }
2254 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2255
mtd_block_isbad(struct mtd_info * mtd,loff_t ofs)2256 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2257 {
2258 struct mtd_info *master = mtd_get_master(mtd);
2259
2260 if (ofs < 0 || ofs >= mtd->size)
2261 return -EINVAL;
2262 if (!master->_block_isbad)
2263 return 0;
2264
2265 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2266 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2267
2268 return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2269 }
2270 EXPORT_SYMBOL_GPL(mtd_block_isbad);
2271
mtd_block_markbad(struct mtd_info * mtd,loff_t ofs)2272 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2273 {
2274 struct mtd_info *master = mtd_get_master(mtd);
2275 int ret;
2276
2277 if (!master->_block_markbad)
2278 return -EOPNOTSUPP;
2279 if (ofs < 0 || ofs >= mtd->size)
2280 return -EINVAL;
2281 if (!(mtd->flags & MTD_WRITEABLE))
2282 return -EROFS;
2283
2284 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2285 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2286
2287 ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2288 if (ret)
2289 return ret;
2290
2291 while (mtd->parent) {
2292 mtd->ecc_stats.badblocks++;
2293 mtd = mtd->parent;
2294 }
2295
2296 return 0;
2297 }
2298 EXPORT_SYMBOL_GPL(mtd_block_markbad);
2299
2300 /*
2301 * default_mtd_writev - the default writev method
2302 * @mtd: mtd device description object pointer
2303 * @vecs: the vectors to write
2304 * @count: count of vectors in @vecs
2305 * @to: the MTD device offset to write to
2306 * @retlen: on exit contains the count of bytes written to the MTD device.
2307 *
2308 * This function returns zero in case of success and a negative error code in
2309 * case of failure.
2310 */
default_mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)2311 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2312 unsigned long count, loff_t to, size_t *retlen)
2313 {
2314 unsigned long i;
2315 size_t totlen = 0, thislen;
2316 int ret = 0;
2317
2318 for (i = 0; i < count; i++) {
2319 if (!vecs[i].iov_len)
2320 continue;
2321 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2322 vecs[i].iov_base);
2323 totlen += thislen;
2324 if (ret || thislen != vecs[i].iov_len)
2325 break;
2326 to += vecs[i].iov_len;
2327 }
2328 *retlen = totlen;
2329 return ret;
2330 }
2331
2332 /*
2333 * mtd_writev - the vector-based MTD write method
2334 * @mtd: mtd device description object pointer
2335 * @vecs: the vectors to write
2336 * @count: count of vectors in @vecs
2337 * @to: the MTD device offset to write to
2338 * @retlen: on exit contains the count of bytes written to the MTD device.
2339 *
2340 * This function returns zero in case of success and a negative error code in
2341 * case of failure.
2342 */
mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)2343 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2344 unsigned long count, loff_t to, size_t *retlen)
2345 {
2346 struct mtd_info *master = mtd_get_master(mtd);
2347
2348 *retlen = 0;
2349 if (!(mtd->flags & MTD_WRITEABLE))
2350 return -EROFS;
2351
2352 if (!master->_writev)
2353 return default_mtd_writev(mtd, vecs, count, to, retlen);
2354
2355 return master->_writev(master, vecs, count,
2356 mtd_get_master_ofs(mtd, to), retlen);
2357 }
2358 EXPORT_SYMBOL_GPL(mtd_writev);
2359
2360 /**
2361 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2362 * @mtd: mtd device description object pointer
2363 * @size: a pointer to the ideal or maximum size of the allocation, points
2364 * to the actual allocation size on success.
2365 *
2366 * This routine attempts to allocate a contiguous kernel buffer up to
2367 * the specified size, backing off the size of the request exponentially
2368 * until the request succeeds or until the allocation size falls below
2369 * the system page size. This attempts to make sure it does not adversely
2370 * impact system performance, so when allocating more than one page, we
2371 * ask the memory allocator to avoid re-trying, swapping, writing back
2372 * or performing I/O.
2373 *
2374 * Note, this function also makes sure that the allocated buffer is aligned to
2375 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2376 *
2377 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2378 * to handle smaller (i.e. degraded) buffer allocations under low- or
2379 * fragmented-memory situations where such reduced allocations, from a
2380 * requested ideal, are allowed.
2381 *
2382 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2383 */
mtd_kmalloc_up_to(const struct mtd_info * mtd,size_t * size)2384 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2385 {
2386 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2387 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2388 void *kbuf;
2389
2390 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2391
2392 while (*size > min_alloc) {
2393 kbuf = kmalloc(*size, flags);
2394 if (kbuf)
2395 return kbuf;
2396
2397 *size >>= 1;
2398 *size = ALIGN(*size, mtd->writesize);
2399 }
2400
2401 /*
2402 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2403 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2404 */
2405 return kmalloc(*size, GFP_KERNEL);
2406 }
2407 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2408
2409 #ifdef CONFIG_PROC_FS
2410
2411 /*====================================================================*/
2412 /* Support for /proc/mtd */
2413
mtd_proc_show(struct seq_file * m,void * v)2414 static int mtd_proc_show(struct seq_file *m, void *v)
2415 {
2416 struct mtd_info *mtd;
2417
2418 seq_puts(m, "dev: size erasesize name\n");
2419 mutex_lock(&mtd_table_mutex);
2420 mtd_for_each_device(mtd) {
2421 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2422 mtd->index, (unsigned long long)mtd->size,
2423 mtd->erasesize, mtd->name);
2424 }
2425 mutex_unlock(&mtd_table_mutex);
2426 return 0;
2427 }
2428 #endif /* CONFIG_PROC_FS */
2429
2430 /*====================================================================*/
2431 /* Init code */
2432
mtd_bdi_init(const char * name)2433 static struct backing_dev_info * __init mtd_bdi_init(const char *name)
2434 {
2435 struct backing_dev_info *bdi;
2436 int ret;
2437
2438 bdi = bdi_alloc(NUMA_NO_NODE);
2439 if (!bdi)
2440 return ERR_PTR(-ENOMEM);
2441 bdi->ra_pages = 0;
2442 bdi->io_pages = 0;
2443
2444 /*
2445 * We put '-0' suffix to the name to get the same name format as we
2446 * used to get. Since this is called only once, we get a unique name.
2447 */
2448 ret = bdi_register(bdi, "%.28s-0", name);
2449 if (ret)
2450 bdi_put(bdi);
2451
2452 return ret ? ERR_PTR(ret) : bdi;
2453 }
2454
2455 static struct proc_dir_entry *proc_mtd;
2456
init_mtd(void)2457 static int __init init_mtd(void)
2458 {
2459 int ret;
2460
2461 ret = class_register(&mtd_class);
2462 if (ret)
2463 goto err_reg;
2464
2465 mtd_bdi = mtd_bdi_init("mtd");
2466 if (IS_ERR(mtd_bdi)) {
2467 ret = PTR_ERR(mtd_bdi);
2468 goto err_bdi;
2469 }
2470
2471 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2472
2473 ret = init_mtdchar();
2474 if (ret)
2475 goto out_procfs;
2476
2477 dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2478 debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd,
2479 &mtd_expert_analysis_mode);
2480
2481 return 0;
2482
2483 out_procfs:
2484 if (proc_mtd)
2485 remove_proc_entry("mtd", NULL);
2486 bdi_put(mtd_bdi);
2487 err_bdi:
2488 class_unregister(&mtd_class);
2489 err_reg:
2490 pr_err("Error registering mtd class or bdi: %d\n", ret);
2491 return ret;
2492 }
2493
cleanup_mtd(void)2494 static void __exit cleanup_mtd(void)
2495 {
2496 debugfs_remove_recursive(dfs_dir_mtd);
2497 cleanup_mtdchar();
2498 if (proc_mtd)
2499 remove_proc_entry("mtd", NULL);
2500 class_unregister(&mtd_class);
2501 bdi_unregister(mtd_bdi);
2502 bdi_put(mtd_bdi);
2503 idr_destroy(&mtd_idr);
2504 }
2505
2506 module_init(init_mtd);
2507 module_exit(cleanup_mtd);
2508
2509 MODULE_LICENSE("GPL");
2510 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2511 MODULE_DESCRIPTION("Core MTD registration and access routines");
2512