1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef BLK_INTERNAL_H
3 #define BLK_INTERNAL_H
4
5 #include <linux/idr.h>
6 #include <linux/blk-mq.h>
7 #include <linux/part_stat.h>
8 #include <linux/blk-crypto.h>
9 #include <xen/xen.h>
10 #include "blk-crypto-internal.h"
11 #include "blk-mq.h"
12 #include "blk-mq-sched.h"
13
14 /* Max future timer expiry for timeouts */
15 #define BLK_MAX_TIMEOUT (5 * HZ)
16
17 extern struct dentry *blk_debugfs_root;
18
19 struct blk_flush_queue {
20 unsigned int flush_pending_idx:1;
21 unsigned int flush_running_idx:1;
22 blk_status_t rq_status;
23 unsigned long flush_pending_since;
24 struct list_head flush_queue[2];
25 struct list_head flush_data_in_flight;
26 struct request *flush_rq;
27
28 struct lock_class_key key;
29 spinlock_t mq_flush_lock;
30 };
31
32 extern struct kmem_cache *blk_requestq_cachep;
33 extern struct kobj_type blk_queue_ktype;
34 extern struct ida blk_queue_ida;
35
36 static inline struct blk_flush_queue *
blk_get_flush_queue(struct request_queue * q,struct blk_mq_ctx * ctx)37 blk_get_flush_queue(struct request_queue *q, struct blk_mq_ctx *ctx)
38 {
39 return blk_mq_map_queue(q, REQ_OP_FLUSH, ctx)->fq;
40 }
41
__blk_get_queue(struct request_queue * q)42 static inline void __blk_get_queue(struct request_queue *q)
43 {
44 kobject_get(&q->kobj);
45 }
46
47 static inline bool
is_flush_rq(struct request * req,struct blk_mq_hw_ctx * hctx)48 is_flush_rq(struct request *req, struct blk_mq_hw_ctx *hctx)
49 {
50 return hctx->fq->flush_rq == req;
51 }
52
53 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
54 gfp_t flags);
55 void blk_free_flush_queue(struct blk_flush_queue *q);
56
57 void blk_freeze_queue(struct request_queue *q);
58
biovec_phys_mergeable(struct request_queue * q,struct bio_vec * vec1,struct bio_vec * vec2)59 static inline bool biovec_phys_mergeable(struct request_queue *q,
60 struct bio_vec *vec1, struct bio_vec *vec2)
61 {
62 unsigned long mask = queue_segment_boundary(q);
63 phys_addr_t addr1 = page_to_phys(vec1->bv_page) + vec1->bv_offset;
64 phys_addr_t addr2 = page_to_phys(vec2->bv_page) + vec2->bv_offset;
65
66 if (addr1 + vec1->bv_len != addr2)
67 return false;
68 if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page))
69 return false;
70 if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask))
71 return false;
72 return true;
73 }
74
__bvec_gap_to_prev(struct request_queue * q,struct bio_vec * bprv,unsigned int offset)75 static inline bool __bvec_gap_to_prev(struct request_queue *q,
76 struct bio_vec *bprv, unsigned int offset)
77 {
78 return (offset & queue_virt_boundary(q)) ||
79 ((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q));
80 }
81
82 /*
83 * Check if adding a bio_vec after bprv with offset would create a gap in
84 * the SG list. Most drivers don't care about this, but some do.
85 */
bvec_gap_to_prev(struct request_queue * q,struct bio_vec * bprv,unsigned int offset)86 static inline bool bvec_gap_to_prev(struct request_queue *q,
87 struct bio_vec *bprv, unsigned int offset)
88 {
89 if (!queue_virt_boundary(q))
90 return false;
91 return __bvec_gap_to_prev(q, bprv, offset);
92 }
93
blk_rq_bio_prep(struct request * rq,struct bio * bio,unsigned int nr_segs)94 static inline void blk_rq_bio_prep(struct request *rq, struct bio *bio,
95 unsigned int nr_segs)
96 {
97 rq->nr_phys_segments = nr_segs;
98 rq->__data_len = bio->bi_iter.bi_size;
99 rq->bio = rq->biotail = bio;
100 rq->ioprio = bio_prio(bio);
101
102 if (bio->bi_disk)
103 rq->rq_disk = bio->bi_disk;
104 }
105
106 #ifdef CONFIG_BLK_DEV_INTEGRITY
107 void blk_flush_integrity(void);
108 bool __bio_integrity_endio(struct bio *);
109 void bio_integrity_free(struct bio *bio);
bio_integrity_endio(struct bio * bio)110 static inline bool bio_integrity_endio(struct bio *bio)
111 {
112 if (bio_integrity(bio))
113 return __bio_integrity_endio(bio);
114 return true;
115 }
116
117 bool blk_integrity_merge_rq(struct request_queue *, struct request *,
118 struct request *);
119 bool blk_integrity_merge_bio(struct request_queue *, struct request *,
120 struct bio *);
121
integrity_req_gap_back_merge(struct request * req,struct bio * next)122 static inline bool integrity_req_gap_back_merge(struct request *req,
123 struct bio *next)
124 {
125 struct bio_integrity_payload *bip = bio_integrity(req->bio);
126 struct bio_integrity_payload *bip_next = bio_integrity(next);
127
128 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
129 bip_next->bip_vec[0].bv_offset);
130 }
131
integrity_req_gap_front_merge(struct request * req,struct bio * bio)132 static inline bool integrity_req_gap_front_merge(struct request *req,
133 struct bio *bio)
134 {
135 struct bio_integrity_payload *bip = bio_integrity(bio);
136 struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
137
138 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
139 bip_next->bip_vec[0].bv_offset);
140 }
141
142 void blk_integrity_add(struct gendisk *);
143 void blk_integrity_del(struct gendisk *);
144 #else /* CONFIG_BLK_DEV_INTEGRITY */
blk_integrity_merge_rq(struct request_queue * rq,struct request * r1,struct request * r2)145 static inline bool blk_integrity_merge_rq(struct request_queue *rq,
146 struct request *r1, struct request *r2)
147 {
148 return true;
149 }
blk_integrity_merge_bio(struct request_queue * rq,struct request * r,struct bio * b)150 static inline bool blk_integrity_merge_bio(struct request_queue *rq,
151 struct request *r, struct bio *b)
152 {
153 return true;
154 }
integrity_req_gap_back_merge(struct request * req,struct bio * next)155 static inline bool integrity_req_gap_back_merge(struct request *req,
156 struct bio *next)
157 {
158 return false;
159 }
integrity_req_gap_front_merge(struct request * req,struct bio * bio)160 static inline bool integrity_req_gap_front_merge(struct request *req,
161 struct bio *bio)
162 {
163 return false;
164 }
165
blk_flush_integrity(void)166 static inline void blk_flush_integrity(void)
167 {
168 }
bio_integrity_endio(struct bio * bio)169 static inline bool bio_integrity_endio(struct bio *bio)
170 {
171 return true;
172 }
bio_integrity_free(struct bio * bio)173 static inline void bio_integrity_free(struct bio *bio)
174 {
175 }
blk_integrity_add(struct gendisk * disk)176 static inline void blk_integrity_add(struct gendisk *disk)
177 {
178 }
blk_integrity_del(struct gendisk * disk)179 static inline void blk_integrity_del(struct gendisk *disk)
180 {
181 }
182 #endif /* CONFIG_BLK_DEV_INTEGRITY */
183
184 unsigned long blk_rq_timeout(unsigned long timeout);
185 void blk_add_timer(struct request *req);
186
187 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
188 unsigned int nr_segs, struct request **same_queue_rq);
189 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
190 struct bio *bio, unsigned int nr_segs);
191
192 void blk_account_io_start(struct request *req);
193 void blk_account_io_done(struct request *req, u64 now);
194
195 /*
196 * Internal elevator interface
197 */
198 #define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED)
199
200 void blk_insert_flush(struct request *rq);
201
202 void elevator_init_mq(struct request_queue *q);
203 int elevator_switch_mq(struct request_queue *q,
204 struct elevator_type *new_e);
205 void __elevator_exit(struct request_queue *, struct elevator_queue *);
206 int elv_register_queue(struct request_queue *q, bool uevent);
207 void elv_unregister_queue(struct request_queue *q);
208
elevator_exit(struct request_queue * q,struct elevator_queue * e)209 static inline void elevator_exit(struct request_queue *q,
210 struct elevator_queue *e)
211 {
212 lockdep_assert_held(&q->sysfs_lock);
213
214 blk_mq_sched_free_requests(q);
215 __elevator_exit(q, e);
216 }
217
218 struct hd_struct *__disk_get_part(struct gendisk *disk, int partno);
219
220 ssize_t part_size_show(struct device *dev, struct device_attribute *attr,
221 char *buf);
222 ssize_t part_stat_show(struct device *dev, struct device_attribute *attr,
223 char *buf);
224 ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr,
225 char *buf);
226 ssize_t part_fail_show(struct device *dev, struct device_attribute *attr,
227 char *buf);
228 ssize_t part_fail_store(struct device *dev, struct device_attribute *attr,
229 const char *buf, size_t count);
230 ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
231 ssize_t part_timeout_store(struct device *, struct device_attribute *,
232 const char *, size_t);
233
234 void __blk_queue_split(struct bio **bio, unsigned int *nr_segs);
235 int ll_back_merge_fn(struct request *req, struct bio *bio,
236 unsigned int nr_segs);
237 int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
238 struct request *next);
239 unsigned int blk_recalc_rq_segments(struct request *rq);
240 void blk_rq_set_mixed_merge(struct request *rq);
241 bool blk_rq_merge_ok(struct request *rq, struct bio *bio);
242 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio);
243
244 int blk_dev_init(void);
245
246 /*
247 * Contribute to IO statistics IFF:
248 *
249 * a) it's attached to a gendisk, and
250 * b) the queue had IO stats enabled when this request was started
251 */
blk_do_io_stat(struct request * rq)252 static inline bool blk_do_io_stat(struct request *rq)
253 {
254 return rq->rq_disk && (rq->rq_flags & RQF_IO_STAT);
255 }
256
req_set_nomerge(struct request_queue * q,struct request * req)257 static inline void req_set_nomerge(struct request_queue *q, struct request *req)
258 {
259 req->cmd_flags |= REQ_NOMERGE;
260 if (req == q->last_merge)
261 q->last_merge = NULL;
262 }
263
264 /*
265 * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size
266 * is defined as 'unsigned int', meantime it has to aligned to with logical
267 * block size which is the minimum accepted unit by hardware.
268 */
bio_allowed_max_sectors(struct request_queue * q)269 static inline unsigned int bio_allowed_max_sectors(struct request_queue *q)
270 {
271 return round_down(UINT_MAX, queue_logical_block_size(q)) >> 9;
272 }
273
274 /*
275 * The max bio size which is aligned to q->limits.discard_granularity. This
276 * is a hint to split large discard bio in generic block layer, then if device
277 * driver needs to split the discard bio into smaller ones, their bi_size can
278 * be very probably and easily aligned to discard_granularity of the device's
279 * queue.
280 */
bio_aligned_discard_max_sectors(struct request_queue * q)281 static inline unsigned int bio_aligned_discard_max_sectors(
282 struct request_queue *q)
283 {
284 return round_down(UINT_MAX, q->limits.discard_granularity) >>
285 SECTOR_SHIFT;
286 }
287
288 /*
289 * Internal io_context interface
290 */
291 void get_io_context(struct io_context *ioc);
292 struct io_cq *ioc_lookup_icq(struct io_context *ioc, struct request_queue *q);
293 struct io_cq *ioc_create_icq(struct io_context *ioc, struct request_queue *q,
294 gfp_t gfp_mask);
295 void ioc_clear_queue(struct request_queue *q);
296
297 int create_task_io_context(struct task_struct *task, gfp_t gfp_mask, int node);
298
299 /*
300 * Internal throttling interface
301 */
302 #ifdef CONFIG_BLK_DEV_THROTTLING
303 extern int blk_throtl_init(struct request_queue *q);
304 extern void blk_throtl_exit(struct request_queue *q);
305 extern void blk_throtl_register_queue(struct request_queue *q);
306 bool blk_throtl_bio(struct bio *bio);
307 #else /* CONFIG_BLK_DEV_THROTTLING */
blk_throtl_init(struct request_queue * q)308 static inline int blk_throtl_init(struct request_queue *q) { return 0; }
blk_throtl_exit(struct request_queue * q)309 static inline void blk_throtl_exit(struct request_queue *q) { }
blk_throtl_register_queue(struct request_queue * q)310 static inline void blk_throtl_register_queue(struct request_queue *q) { }
blk_throtl_bio(struct bio * bio)311 static inline bool blk_throtl_bio(struct bio *bio) { return false; }
312 #endif /* CONFIG_BLK_DEV_THROTTLING */
313 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
314 extern ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page);
315 extern ssize_t blk_throtl_sample_time_store(struct request_queue *q,
316 const char *page, size_t count);
317 extern void blk_throtl_bio_endio(struct bio *bio);
318 extern void blk_throtl_stat_add(struct request *rq, u64 time);
319 #else
blk_throtl_bio_endio(struct bio * bio)320 static inline void blk_throtl_bio_endio(struct bio *bio) { }
blk_throtl_stat_add(struct request * rq,u64 time)321 static inline void blk_throtl_stat_add(struct request *rq, u64 time) { }
322 #endif
323
324 #ifdef CONFIG_BOUNCE
325 extern int init_emergency_isa_pool(void);
326 extern void blk_queue_bounce(struct request_queue *q, struct bio **bio);
327 #else
init_emergency_isa_pool(void)328 static inline int init_emergency_isa_pool(void)
329 {
330 return 0;
331 }
blk_queue_bounce(struct request_queue * q,struct bio ** bio)332 static inline void blk_queue_bounce(struct request_queue *q, struct bio **bio)
333 {
334 }
335 #endif /* CONFIG_BOUNCE */
336
337 #ifdef CONFIG_BLK_CGROUP_IOLATENCY
338 extern int blk_iolatency_init(struct request_queue *q);
339 #else
blk_iolatency_init(struct request_queue * q)340 static inline int blk_iolatency_init(struct request_queue *q) { return 0; }
341 #endif
342
343 struct bio *blk_next_bio(struct bio *bio, unsigned int nr_pages, gfp_t gfp);
344
345 #ifdef CONFIG_BLK_DEV_ZONED
346 void blk_queue_free_zone_bitmaps(struct request_queue *q);
347 #else
blk_queue_free_zone_bitmaps(struct request_queue * q)348 static inline void blk_queue_free_zone_bitmaps(struct request_queue *q) {}
349 #endif
350
351 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector);
352
353 int blk_alloc_devt(struct hd_struct *part, dev_t *devt);
354 void blk_free_devt(dev_t devt);
355 void blk_invalidate_devt(dev_t devt);
356 char *disk_name(struct gendisk *hd, int partno, char *buf);
357 #define ADDPART_FLAG_NONE 0
358 #define ADDPART_FLAG_RAID 1
359 #define ADDPART_FLAG_WHOLEDISK 2
360 void delete_partition(struct hd_struct *part);
361 int bdev_add_partition(struct block_device *bdev, int partno,
362 sector_t start, sector_t length);
363 int bdev_del_partition(struct block_device *bdev, int partno);
364 int bdev_resize_partition(struct block_device *bdev, int partno,
365 sector_t start, sector_t length);
366 int disk_expand_part_tbl(struct gendisk *disk, int target);
367 int hd_ref_init(struct hd_struct *part);
368
369 /* no need to get/put refcount of part0 */
hd_struct_try_get(struct hd_struct * part)370 static inline int hd_struct_try_get(struct hd_struct *part)
371 {
372 if (part->partno)
373 return percpu_ref_tryget_live(&part->ref);
374 return 1;
375 }
376
hd_struct_put(struct hd_struct * part)377 static inline void hd_struct_put(struct hd_struct *part)
378 {
379 if (part->partno)
380 percpu_ref_put(&part->ref);
381 }
382
hd_free_part(struct hd_struct * part)383 static inline void hd_free_part(struct hd_struct *part)
384 {
385 free_percpu(part->dkstats);
386 kfree(part->info);
387 percpu_ref_exit(&part->ref);
388 }
389
390 /*
391 * Any access of part->nr_sects which is not protected by partition
392 * bd_mutex or gendisk bdev bd_mutex, should be done using this
393 * accessor function.
394 *
395 * Code written along the lines of i_size_read() and i_size_write().
396 * CONFIG_PREEMPTION case optimizes the case of UP kernel with preemption
397 * on.
398 */
part_nr_sects_read(struct hd_struct * part)399 static inline sector_t part_nr_sects_read(struct hd_struct *part)
400 {
401 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
402 sector_t nr_sects;
403 unsigned seq;
404 do {
405 seq = read_seqcount_begin(&part->nr_sects_seq);
406 nr_sects = part->nr_sects;
407 } while (read_seqcount_retry(&part->nr_sects_seq, seq));
408 return nr_sects;
409 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
410 sector_t nr_sects;
411
412 preempt_disable();
413 nr_sects = part->nr_sects;
414 preempt_enable();
415 return nr_sects;
416 #else
417 return part->nr_sects;
418 #endif
419 }
420
421 /*
422 * Should be called with mutex lock held (typically bd_mutex) of partition
423 * to provide mutual exlusion among writers otherwise seqcount might be
424 * left in wrong state leaving the readers spinning infinitely.
425 */
part_nr_sects_write(struct hd_struct * part,sector_t size)426 static inline void part_nr_sects_write(struct hd_struct *part, sector_t size)
427 {
428 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
429 preempt_disable();
430 write_seqcount_begin(&part->nr_sects_seq);
431 part->nr_sects = size;
432 write_seqcount_end(&part->nr_sects_seq);
433 preempt_enable();
434 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
435 preempt_disable();
436 part->nr_sects = size;
437 preempt_enable();
438 #else
439 part->nr_sects = size;
440 #endif
441 }
442
443 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
444 struct page *page, unsigned int len, unsigned int offset,
445 unsigned int max_sectors, bool *same_page);
446
447 #endif /* BLK_INTERNAL_H */
448