1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp.h>
19 #include <net/tcp_states.h>
20 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
21 #include <net/transp_v6.h>
22 #endif
23 #include <net/mptcp.h>
24 #include <net/xfrm.h>
25 #include "protocol.h"
26 #include "mib.h"
27 
28 #define CREATE_TRACE_POINTS
29 #include <trace/events/mptcp.h>
30 
31 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
32 struct mptcp6_sock {
33 	struct mptcp_sock msk;
34 	struct ipv6_pinfo np;
35 };
36 #endif
37 
38 struct mptcp_skb_cb {
39 	u64 map_seq;
40 	u64 end_seq;
41 	u32 offset;
42 	u8  has_rxtstamp:1;
43 };
44 
45 #define MPTCP_SKB_CB(__skb)	((struct mptcp_skb_cb *)&((__skb)->cb[0]))
46 
47 enum {
48 	MPTCP_CMSG_TS = BIT(0),
49 };
50 
51 static struct percpu_counter mptcp_sockets_allocated;
52 
53 static void __mptcp_destroy_sock(struct sock *sk);
54 static void __mptcp_check_send_data_fin(struct sock *sk);
55 
56 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
57 static struct net_device mptcp_napi_dev;
58 
59 /* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not
60  * completed yet or has failed, return the subflow socket.
61  * Otherwise return NULL.
62  */
__mptcp_nmpc_socket(const struct mptcp_sock * msk)63 struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk)
64 {
65 	if (!msk->subflow || READ_ONCE(msk->can_ack))
66 		return NULL;
67 
68 	return msk->subflow;
69 }
70 
71 /* Returns end sequence number of the receiver's advertised window */
mptcp_wnd_end(const struct mptcp_sock * msk)72 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
73 {
74 	return READ_ONCE(msk->wnd_end);
75 }
76 
mptcp_is_tcpsk(struct sock * sk)77 static bool mptcp_is_tcpsk(struct sock *sk)
78 {
79 	struct socket *sock = sk->sk_socket;
80 
81 	if (unlikely(sk->sk_prot == &tcp_prot)) {
82 		/* we are being invoked after mptcp_accept() has
83 		 * accepted a non-mp-capable flow: sk is a tcp_sk,
84 		 * not an mptcp one.
85 		 *
86 		 * Hand the socket over to tcp so all further socket ops
87 		 * bypass mptcp.
88 		 */
89 		sock->ops = &inet_stream_ops;
90 		return true;
91 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
92 	} else if (unlikely(sk->sk_prot == &tcpv6_prot)) {
93 		sock->ops = &inet6_stream_ops;
94 		return true;
95 #endif
96 	}
97 
98 	return false;
99 }
100 
__mptcp_socket_create(struct mptcp_sock * msk)101 static int __mptcp_socket_create(struct mptcp_sock *msk)
102 {
103 	struct mptcp_subflow_context *subflow;
104 	struct sock *sk = (struct sock *)msk;
105 	struct socket *ssock;
106 	int err;
107 
108 	err = mptcp_subflow_create_socket(sk, &ssock);
109 	if (err)
110 		return err;
111 
112 	msk->first = ssock->sk;
113 	msk->subflow = ssock;
114 	subflow = mptcp_subflow_ctx(ssock->sk);
115 	list_add(&subflow->node, &msk->conn_list);
116 	sock_hold(ssock->sk);
117 	subflow->request_mptcp = 1;
118 	mptcp_sock_graft(msk->first, sk->sk_socket);
119 
120 	return 0;
121 }
122 
mptcp_drop(struct sock * sk,struct sk_buff * skb)123 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
124 {
125 	sk_drops_add(sk, skb);
126 	__kfree_skb(skb);
127 }
128 
mptcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from)129 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
130 			       struct sk_buff *from)
131 {
132 	bool fragstolen;
133 	int delta;
134 
135 	if (MPTCP_SKB_CB(from)->offset ||
136 	    !skb_try_coalesce(to, from, &fragstolen, &delta))
137 		return false;
138 
139 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx",
140 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
141 		 to->len, MPTCP_SKB_CB(from)->end_seq);
142 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
143 	kfree_skb_partial(from, fragstolen);
144 	atomic_add(delta, &sk->sk_rmem_alloc);
145 	sk_mem_charge(sk, delta);
146 	return true;
147 }
148 
mptcp_ooo_try_coalesce(struct mptcp_sock * msk,struct sk_buff * to,struct sk_buff * from)149 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
150 				   struct sk_buff *from)
151 {
152 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
153 		return false;
154 
155 	return mptcp_try_coalesce((struct sock *)msk, to, from);
156 }
157 
158 /* "inspired" by tcp_data_queue_ofo(), main differences:
159  * - use mptcp seqs
160  * - don't cope with sacks
161  */
mptcp_data_queue_ofo(struct mptcp_sock * msk,struct sk_buff * skb)162 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
163 {
164 	struct sock *sk = (struct sock *)msk;
165 	struct rb_node **p, *parent;
166 	u64 seq, end_seq, max_seq;
167 	struct sk_buff *skb1;
168 
169 	seq = MPTCP_SKB_CB(skb)->map_seq;
170 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
171 	max_seq = READ_ONCE(msk->rcv_wnd_sent);
172 
173 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq,
174 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
175 	if (after64(end_seq, max_seq)) {
176 		/* out of window */
177 		mptcp_drop(sk, skb);
178 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
179 			 (unsigned long long)end_seq - (unsigned long)max_seq,
180 			 (unsigned long long)msk->rcv_wnd_sent);
181 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
182 		return;
183 	}
184 
185 	p = &msk->out_of_order_queue.rb_node;
186 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
187 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
188 		rb_link_node(&skb->rbnode, NULL, p);
189 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
190 		msk->ooo_last_skb = skb;
191 		goto end;
192 	}
193 
194 	/* with 2 subflows, adding at end of ooo queue is quite likely
195 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
196 	 */
197 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
198 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
199 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
200 		return;
201 	}
202 
203 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
204 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
205 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
206 		parent = &msk->ooo_last_skb->rbnode;
207 		p = &parent->rb_right;
208 		goto insert;
209 	}
210 
211 	/* Find place to insert this segment. Handle overlaps on the way. */
212 	parent = NULL;
213 	while (*p) {
214 		parent = *p;
215 		skb1 = rb_to_skb(parent);
216 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
217 			p = &parent->rb_left;
218 			continue;
219 		}
220 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
221 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
222 				/* All the bits are present. Drop. */
223 				mptcp_drop(sk, skb);
224 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
225 				return;
226 			}
227 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
228 				/* partial overlap:
229 				 *     |     skb      |
230 				 *  |     skb1    |
231 				 * continue traversing
232 				 */
233 			} else {
234 				/* skb's seq == skb1's seq and skb covers skb1.
235 				 * Replace skb1 with skb.
236 				 */
237 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
238 						&msk->out_of_order_queue);
239 				mptcp_drop(sk, skb1);
240 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
241 				goto merge_right;
242 			}
243 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
244 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
245 			return;
246 		}
247 		p = &parent->rb_right;
248 	}
249 
250 insert:
251 	/* Insert segment into RB tree. */
252 	rb_link_node(&skb->rbnode, parent, p);
253 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
254 
255 merge_right:
256 	/* Remove other segments covered by skb. */
257 	while ((skb1 = skb_rb_next(skb)) != NULL) {
258 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
259 			break;
260 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
261 		mptcp_drop(sk, skb1);
262 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
263 	}
264 	/* If there is no skb after us, we are the last_skb ! */
265 	if (!skb1)
266 		msk->ooo_last_skb = skb;
267 
268 end:
269 	skb_condense(skb);
270 	skb_set_owner_r(skb, sk);
271 }
272 
__mptcp_move_skb(struct mptcp_sock * msk,struct sock * ssk,struct sk_buff * skb,unsigned int offset,size_t copy_len)273 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
274 			     struct sk_buff *skb, unsigned int offset,
275 			     size_t copy_len)
276 {
277 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
278 	struct sock *sk = (struct sock *)msk;
279 	struct sk_buff *tail;
280 	bool has_rxtstamp;
281 
282 	__skb_unlink(skb, &ssk->sk_receive_queue);
283 
284 	skb_ext_reset(skb);
285 	skb_orphan(skb);
286 
287 	/* try to fetch required memory from subflow */
288 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
289 		int amount = sk_mem_pages(skb->truesize) << SK_MEM_QUANTUM_SHIFT;
290 
291 		if (ssk->sk_forward_alloc < amount)
292 			goto drop;
293 
294 		ssk->sk_forward_alloc -= amount;
295 		sk->sk_forward_alloc += amount;
296 	}
297 
298 	has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
299 
300 	/* the skb map_seq accounts for the skb offset:
301 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
302 	 * value
303 	 */
304 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
305 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
306 	MPTCP_SKB_CB(skb)->offset = offset;
307 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
308 
309 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
310 		/* in sequence */
311 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
312 		tail = skb_peek_tail(&sk->sk_receive_queue);
313 		if (tail && mptcp_try_coalesce(sk, tail, skb))
314 			return true;
315 
316 		skb_set_owner_r(skb, sk);
317 		__skb_queue_tail(&sk->sk_receive_queue, skb);
318 		return true;
319 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
320 		mptcp_data_queue_ofo(msk, skb);
321 		return false;
322 	}
323 
324 	/* old data, keep it simple and drop the whole pkt, sender
325 	 * will retransmit as needed, if needed.
326 	 */
327 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
328 drop:
329 	mptcp_drop(sk, skb);
330 	return false;
331 }
332 
mptcp_stop_timer(struct sock * sk)333 static void mptcp_stop_timer(struct sock *sk)
334 {
335 	struct inet_connection_sock *icsk = inet_csk(sk);
336 
337 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
338 	mptcp_sk(sk)->timer_ival = 0;
339 }
340 
mptcp_close_wake_up(struct sock * sk)341 static void mptcp_close_wake_up(struct sock *sk)
342 {
343 	if (sock_flag(sk, SOCK_DEAD))
344 		return;
345 
346 	sk->sk_state_change(sk);
347 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
348 	    sk->sk_state == TCP_CLOSE)
349 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
350 	else
351 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
352 }
353 
mptcp_pending_data_fin_ack(struct sock * sk)354 static bool mptcp_pending_data_fin_ack(struct sock *sk)
355 {
356 	struct mptcp_sock *msk = mptcp_sk(sk);
357 
358 	return !__mptcp_check_fallback(msk) &&
359 	       ((1 << sk->sk_state) &
360 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
361 	       msk->write_seq == READ_ONCE(msk->snd_una);
362 }
363 
mptcp_check_data_fin_ack(struct sock * sk)364 static void mptcp_check_data_fin_ack(struct sock *sk)
365 {
366 	struct mptcp_sock *msk = mptcp_sk(sk);
367 
368 	/* Look for an acknowledged DATA_FIN */
369 	if (mptcp_pending_data_fin_ack(sk)) {
370 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
371 
372 		switch (sk->sk_state) {
373 		case TCP_FIN_WAIT1:
374 			inet_sk_state_store(sk, TCP_FIN_WAIT2);
375 			break;
376 		case TCP_CLOSING:
377 		case TCP_LAST_ACK:
378 			inet_sk_state_store(sk, TCP_CLOSE);
379 			break;
380 		}
381 
382 		mptcp_close_wake_up(sk);
383 	}
384 }
385 
mptcp_pending_data_fin(struct sock * sk,u64 * seq)386 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
387 {
388 	struct mptcp_sock *msk = mptcp_sk(sk);
389 
390 	if (READ_ONCE(msk->rcv_data_fin) &&
391 	    ((1 << sk->sk_state) &
392 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
393 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
394 
395 		if (msk->ack_seq == rcv_data_fin_seq) {
396 			if (seq)
397 				*seq = rcv_data_fin_seq;
398 
399 			return true;
400 		}
401 	}
402 
403 	return false;
404 }
405 
mptcp_set_datafin_timeout(const struct sock * sk)406 static void mptcp_set_datafin_timeout(const struct sock *sk)
407 {
408 	struct inet_connection_sock *icsk = inet_csk(sk);
409 
410 	mptcp_sk(sk)->timer_ival = min(TCP_RTO_MAX,
411 				       TCP_RTO_MIN << icsk->icsk_retransmits);
412 }
413 
__mptcp_set_timeout(struct sock * sk,long tout)414 static void __mptcp_set_timeout(struct sock *sk, long tout)
415 {
416 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
417 }
418 
mptcp_timeout_from_subflow(const struct mptcp_subflow_context * subflow)419 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
420 {
421 	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
422 
423 	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
424 	       inet_csk(ssk)->icsk_timeout - jiffies : 0;
425 }
426 
mptcp_set_timeout(struct sock * sk)427 static void mptcp_set_timeout(struct sock *sk)
428 {
429 	struct mptcp_subflow_context *subflow;
430 	long tout = 0;
431 
432 	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
433 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
434 	__mptcp_set_timeout(sk, tout);
435 }
436 
tcp_can_send_ack(const struct sock * ssk)437 static bool tcp_can_send_ack(const struct sock *ssk)
438 {
439 	return !((1 << inet_sk_state_load(ssk)) &
440 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
441 }
442 
mptcp_subflow_send_ack(struct sock * ssk)443 void mptcp_subflow_send_ack(struct sock *ssk)
444 {
445 	bool slow;
446 
447 	slow = lock_sock_fast(ssk);
448 	if (tcp_can_send_ack(ssk))
449 		tcp_send_ack(ssk);
450 	unlock_sock_fast(ssk, slow);
451 }
452 
mptcp_send_ack(struct mptcp_sock * msk)453 static void mptcp_send_ack(struct mptcp_sock *msk)
454 {
455 	struct mptcp_subflow_context *subflow;
456 
457 	mptcp_for_each_subflow(msk, subflow)
458 		mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
459 }
460 
mptcp_subflow_cleanup_rbuf(struct sock * ssk)461 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk)
462 {
463 	bool slow;
464 
465 	slow = lock_sock_fast(ssk);
466 	if (tcp_can_send_ack(ssk))
467 		tcp_cleanup_rbuf(ssk, 1);
468 	unlock_sock_fast(ssk, slow);
469 }
470 
mptcp_subflow_could_cleanup(const struct sock * ssk,bool rx_empty)471 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
472 {
473 	const struct inet_connection_sock *icsk = inet_csk(ssk);
474 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
475 	const struct tcp_sock *tp = tcp_sk(ssk);
476 
477 	return (ack_pending & ICSK_ACK_SCHED) &&
478 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
479 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
480 		 (rx_empty && ack_pending &
481 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
482 }
483 
mptcp_cleanup_rbuf(struct mptcp_sock * msk)484 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk)
485 {
486 	int old_space = READ_ONCE(msk->old_wspace);
487 	struct mptcp_subflow_context *subflow;
488 	struct sock *sk = (struct sock *)msk;
489 	int space =  __mptcp_space(sk);
490 	bool cleanup, rx_empty;
491 
492 	cleanup = (space > 0) && (space >= (old_space << 1));
493 	rx_empty = !__mptcp_rmem(sk);
494 
495 	mptcp_for_each_subflow(msk, subflow) {
496 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
497 
498 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
499 			mptcp_subflow_cleanup_rbuf(ssk);
500 	}
501 }
502 
mptcp_check_data_fin(struct sock * sk)503 static bool mptcp_check_data_fin(struct sock *sk)
504 {
505 	struct mptcp_sock *msk = mptcp_sk(sk);
506 	u64 rcv_data_fin_seq;
507 	bool ret = false;
508 
509 	if (__mptcp_check_fallback(msk))
510 		return ret;
511 
512 	/* Need to ack a DATA_FIN received from a peer while this side
513 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
514 	 * msk->rcv_data_fin was set when parsing the incoming options
515 	 * at the subflow level and the msk lock was not held, so this
516 	 * is the first opportunity to act on the DATA_FIN and change
517 	 * the msk state.
518 	 *
519 	 * If we are caught up to the sequence number of the incoming
520 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
521 	 * not caught up, do nothing and let the recv code send DATA_ACK
522 	 * when catching up.
523 	 */
524 
525 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
526 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
527 		WRITE_ONCE(msk->rcv_data_fin, 0);
528 
529 		sk->sk_shutdown |= RCV_SHUTDOWN;
530 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
531 
532 		switch (sk->sk_state) {
533 		case TCP_ESTABLISHED:
534 			inet_sk_state_store(sk, TCP_CLOSE_WAIT);
535 			break;
536 		case TCP_FIN_WAIT1:
537 			inet_sk_state_store(sk, TCP_CLOSING);
538 			break;
539 		case TCP_FIN_WAIT2:
540 			inet_sk_state_store(sk, TCP_CLOSE);
541 			break;
542 		default:
543 			/* Other states not expected */
544 			WARN_ON_ONCE(1);
545 			break;
546 		}
547 
548 		ret = true;
549 		mptcp_send_ack(msk);
550 		mptcp_close_wake_up(sk);
551 	}
552 	return ret;
553 }
554 
__mptcp_move_skbs_from_subflow(struct mptcp_sock * msk,struct sock * ssk,unsigned int * bytes)555 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
556 					   struct sock *ssk,
557 					   unsigned int *bytes)
558 {
559 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
560 	struct sock *sk = (struct sock *)msk;
561 	unsigned int moved = 0;
562 	bool more_data_avail;
563 	struct tcp_sock *tp;
564 	bool done = false;
565 	int sk_rbuf;
566 
567 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
568 
569 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
570 		int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
571 
572 		if (unlikely(ssk_rbuf > sk_rbuf)) {
573 			WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
574 			sk_rbuf = ssk_rbuf;
575 		}
576 	}
577 
578 	pr_debug("msk=%p ssk=%p", msk, ssk);
579 	tp = tcp_sk(ssk);
580 	do {
581 		u32 map_remaining, offset;
582 		u32 seq = tp->copied_seq;
583 		struct sk_buff *skb;
584 		bool fin;
585 
586 		/* try to move as much data as available */
587 		map_remaining = subflow->map_data_len -
588 				mptcp_subflow_get_map_offset(subflow);
589 
590 		skb = skb_peek(&ssk->sk_receive_queue);
591 		if (!skb) {
592 			/* if no data is found, a racing workqueue/recvmsg
593 			 * already processed the new data, stop here or we
594 			 * can enter an infinite loop
595 			 */
596 			if (!moved)
597 				done = true;
598 			break;
599 		}
600 
601 		if (__mptcp_check_fallback(msk)) {
602 			/* if we are running under the workqueue, TCP could have
603 			 * collapsed skbs between dummy map creation and now
604 			 * be sure to adjust the size
605 			 */
606 			map_remaining = skb->len;
607 			subflow->map_data_len = skb->len;
608 		}
609 
610 		offset = seq - TCP_SKB_CB(skb)->seq;
611 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
612 		if (fin) {
613 			done = true;
614 			seq++;
615 		}
616 
617 		if (offset < skb->len) {
618 			size_t len = skb->len - offset;
619 
620 			if (tp->urg_data)
621 				done = true;
622 
623 			if (__mptcp_move_skb(msk, ssk, skb, offset, len))
624 				moved += len;
625 			seq += len;
626 
627 			if (WARN_ON_ONCE(map_remaining < len))
628 				break;
629 		} else {
630 			WARN_ON_ONCE(!fin);
631 			sk_eat_skb(ssk, skb);
632 			done = true;
633 		}
634 
635 		WRITE_ONCE(tp->copied_seq, seq);
636 		more_data_avail = mptcp_subflow_data_available(ssk);
637 
638 		if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
639 			done = true;
640 			break;
641 		}
642 	} while (more_data_avail);
643 
644 	*bytes += moved;
645 	return done;
646 }
647 
__mptcp_ofo_queue(struct mptcp_sock * msk)648 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
649 {
650 	struct sock *sk = (struct sock *)msk;
651 	struct sk_buff *skb, *tail;
652 	bool moved = false;
653 	struct rb_node *p;
654 	u64 end_seq;
655 
656 	p = rb_first(&msk->out_of_order_queue);
657 	pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
658 	while (p) {
659 		skb = rb_to_skb(p);
660 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
661 			break;
662 
663 		p = rb_next(p);
664 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
665 
666 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
667 				      msk->ack_seq))) {
668 			mptcp_drop(sk, skb);
669 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
670 			continue;
671 		}
672 
673 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
674 		tail = skb_peek_tail(&sk->sk_receive_queue);
675 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
676 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
677 
678 			/* skip overlapping data, if any */
679 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d",
680 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
681 				 delta);
682 			MPTCP_SKB_CB(skb)->offset += delta;
683 			__skb_queue_tail(&sk->sk_receive_queue, skb);
684 		}
685 		msk->ack_seq = end_seq;
686 		moved = true;
687 	}
688 	return moved;
689 }
690 
691 /* In most cases we will be able to lock the mptcp socket.  If its already
692  * owned, we need to defer to the work queue to avoid ABBA deadlock.
693  */
move_skbs_to_msk(struct mptcp_sock * msk,struct sock * ssk)694 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
695 {
696 	struct sock *sk = (struct sock *)msk;
697 	unsigned int moved = 0;
698 
699 	__mptcp_move_skbs_from_subflow(msk, ssk, &moved);
700 	__mptcp_ofo_queue(msk);
701 	if (unlikely(ssk->sk_err)) {
702 		if (!sock_owned_by_user(sk))
703 			__mptcp_error_report(sk);
704 		else
705 			set_bit(MPTCP_ERROR_REPORT,  &msk->flags);
706 	}
707 
708 	/* If the moves have caught up with the DATA_FIN sequence number
709 	 * it's time to ack the DATA_FIN and change socket state, but
710 	 * this is not a good place to change state. Let the workqueue
711 	 * do it.
712 	 */
713 	if (mptcp_pending_data_fin(sk, NULL))
714 		mptcp_schedule_work(sk);
715 	return moved > 0;
716 }
717 
mptcp_data_ready(struct sock * sk,struct sock * ssk)718 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
719 {
720 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
721 	struct mptcp_sock *msk = mptcp_sk(sk);
722 	int sk_rbuf, ssk_rbuf;
723 
724 	/* The peer can send data while we are shutting down this
725 	 * subflow at msk destruction time, but we must avoid enqueuing
726 	 * more data to the msk receive queue
727 	 */
728 	if (unlikely(subflow->disposable))
729 		return;
730 
731 	ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
732 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
733 	if (unlikely(ssk_rbuf > sk_rbuf))
734 		sk_rbuf = ssk_rbuf;
735 
736 	/* over limit? can't append more skbs to msk, Also, no need to wake-up*/
737 	if (__mptcp_rmem(sk) > sk_rbuf) {
738 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
739 		return;
740 	}
741 
742 	/* Wake-up the reader only for in-sequence data */
743 	mptcp_data_lock(sk);
744 	if (move_skbs_to_msk(msk, ssk))
745 		sk->sk_data_ready(sk);
746 
747 	mptcp_data_unlock(sk);
748 }
749 
mptcp_do_flush_join_list(struct mptcp_sock * msk)750 static bool mptcp_do_flush_join_list(struct mptcp_sock *msk)
751 {
752 	struct mptcp_subflow_context *subflow;
753 	bool ret = false;
754 
755 	if (likely(list_empty(&msk->join_list)))
756 		return false;
757 
758 	spin_lock_bh(&msk->join_list_lock);
759 	list_for_each_entry(subflow, &msk->join_list, node) {
760 		u32 sseq = READ_ONCE(subflow->setsockopt_seq);
761 
762 		mptcp_propagate_sndbuf((struct sock *)msk, mptcp_subflow_tcp_sock(subflow));
763 		if (READ_ONCE(msk->setsockopt_seq) != sseq)
764 			ret = true;
765 	}
766 	list_splice_tail_init(&msk->join_list, &msk->conn_list);
767 	spin_unlock_bh(&msk->join_list_lock);
768 
769 	return ret;
770 }
771 
__mptcp_flush_join_list(struct mptcp_sock * msk)772 void __mptcp_flush_join_list(struct mptcp_sock *msk)
773 {
774 	if (likely(!mptcp_do_flush_join_list(msk)))
775 		return;
776 
777 	if (!test_and_set_bit(MPTCP_WORK_SYNC_SETSOCKOPT, &msk->flags))
778 		mptcp_schedule_work((struct sock *)msk);
779 }
780 
mptcp_flush_join_list(struct mptcp_sock * msk)781 static void mptcp_flush_join_list(struct mptcp_sock *msk)
782 {
783 	bool sync_needed = test_and_clear_bit(MPTCP_WORK_SYNC_SETSOCKOPT, &msk->flags);
784 
785 	might_sleep();
786 
787 	if (!mptcp_do_flush_join_list(msk) && !sync_needed)
788 		return;
789 
790 	mptcp_sockopt_sync_all(msk);
791 }
792 
mptcp_timer_pending(struct sock * sk)793 static bool mptcp_timer_pending(struct sock *sk)
794 {
795 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
796 }
797 
mptcp_reset_timer(struct sock * sk)798 static void mptcp_reset_timer(struct sock *sk)
799 {
800 	struct inet_connection_sock *icsk = inet_csk(sk);
801 	unsigned long tout;
802 
803 	/* prevent rescheduling on close */
804 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
805 		return;
806 
807 	tout = mptcp_sk(sk)->timer_ival;
808 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
809 }
810 
mptcp_schedule_work(struct sock * sk)811 bool mptcp_schedule_work(struct sock *sk)
812 {
813 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
814 	    schedule_work(&mptcp_sk(sk)->work)) {
815 		/* each subflow already holds a reference to the sk, and the
816 		 * workqueue is invoked by a subflow, so sk can't go away here.
817 		 */
818 		sock_hold(sk);
819 		return true;
820 	}
821 	return false;
822 }
823 
mptcp_subflow_eof(struct sock * sk)824 void mptcp_subflow_eof(struct sock *sk)
825 {
826 	if (!test_and_set_bit(MPTCP_WORK_EOF, &mptcp_sk(sk)->flags))
827 		mptcp_schedule_work(sk);
828 }
829 
mptcp_check_for_eof(struct mptcp_sock * msk)830 static void mptcp_check_for_eof(struct mptcp_sock *msk)
831 {
832 	struct mptcp_subflow_context *subflow;
833 	struct sock *sk = (struct sock *)msk;
834 	int receivers = 0;
835 
836 	mptcp_for_each_subflow(msk, subflow)
837 		receivers += !subflow->rx_eof;
838 	if (receivers)
839 		return;
840 
841 	if (!(sk->sk_shutdown & RCV_SHUTDOWN)) {
842 		/* hopefully temporary hack: propagate shutdown status
843 		 * to msk, when all subflows agree on it
844 		 */
845 		sk->sk_shutdown |= RCV_SHUTDOWN;
846 
847 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
848 		sk->sk_data_ready(sk);
849 	}
850 
851 	switch (sk->sk_state) {
852 	case TCP_ESTABLISHED:
853 		inet_sk_state_store(sk, TCP_CLOSE_WAIT);
854 		break;
855 	case TCP_FIN_WAIT1:
856 		inet_sk_state_store(sk, TCP_CLOSING);
857 		break;
858 	case TCP_FIN_WAIT2:
859 		inet_sk_state_store(sk, TCP_CLOSE);
860 		break;
861 	default:
862 		return;
863 	}
864 	mptcp_close_wake_up(sk);
865 }
866 
mptcp_subflow_recv_lookup(const struct mptcp_sock * msk)867 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
868 {
869 	struct mptcp_subflow_context *subflow;
870 	struct sock *sk = (struct sock *)msk;
871 
872 	sock_owned_by_me(sk);
873 
874 	mptcp_for_each_subflow(msk, subflow) {
875 		if (READ_ONCE(subflow->data_avail))
876 			return mptcp_subflow_tcp_sock(subflow);
877 	}
878 
879 	return NULL;
880 }
881 
mptcp_skb_can_collapse_to(u64 write_seq,const struct sk_buff * skb,const struct mptcp_ext * mpext)882 static bool mptcp_skb_can_collapse_to(u64 write_seq,
883 				      const struct sk_buff *skb,
884 				      const struct mptcp_ext *mpext)
885 {
886 	if (!tcp_skb_can_collapse_to(skb))
887 		return false;
888 
889 	/* can collapse only if MPTCP level sequence is in order and this
890 	 * mapping has not been xmitted yet
891 	 */
892 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
893 	       !mpext->frozen;
894 }
895 
896 /* we can append data to the given data frag if:
897  * - there is space available in the backing page_frag
898  * - the data frag tail matches the current page_frag free offset
899  * - the data frag end sequence number matches the current write seq
900  */
mptcp_frag_can_collapse_to(const struct mptcp_sock * msk,const struct page_frag * pfrag,const struct mptcp_data_frag * df)901 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
902 				       const struct page_frag *pfrag,
903 				       const struct mptcp_data_frag *df)
904 {
905 	return df && pfrag->page == df->page &&
906 		pfrag->size - pfrag->offset > 0 &&
907 		pfrag->offset == (df->offset + df->data_len) &&
908 		df->data_seq + df->data_len == msk->write_seq;
909 }
910 
mptcp_wmem_with_overhead(int size)911 static int mptcp_wmem_with_overhead(int size)
912 {
913 	return size + ((sizeof(struct mptcp_data_frag) * size) >> PAGE_SHIFT);
914 }
915 
__mptcp_wmem_reserve(struct sock * sk,int size)916 static void __mptcp_wmem_reserve(struct sock *sk, int size)
917 {
918 	int amount = mptcp_wmem_with_overhead(size);
919 	struct mptcp_sock *msk = mptcp_sk(sk);
920 
921 	WARN_ON_ONCE(msk->wmem_reserved);
922 	if (WARN_ON_ONCE(amount < 0))
923 		amount = 0;
924 
925 	if (amount <= sk->sk_forward_alloc)
926 		goto reserve;
927 
928 	/* under memory pressure try to reserve at most a single page
929 	 * otherwise try to reserve the full estimate and fallback
930 	 * to a single page before entering the error path
931 	 */
932 	if ((tcp_under_memory_pressure(sk) && amount > PAGE_SIZE) ||
933 	    !sk_wmem_schedule(sk, amount)) {
934 		if (amount <= PAGE_SIZE)
935 			goto nomem;
936 
937 		amount = PAGE_SIZE;
938 		if (!sk_wmem_schedule(sk, amount))
939 			goto nomem;
940 	}
941 
942 reserve:
943 	msk->wmem_reserved = amount;
944 	sk->sk_forward_alloc -= amount;
945 	return;
946 
947 nomem:
948 	/* we will wait for memory on next allocation */
949 	msk->wmem_reserved = -1;
950 }
951 
__mptcp_update_wmem(struct sock * sk)952 static void __mptcp_update_wmem(struct sock *sk)
953 {
954 	struct mptcp_sock *msk = mptcp_sk(sk);
955 
956 #ifdef CONFIG_LOCKDEP
957 	WARN_ON_ONCE(!lockdep_is_held(&sk->sk_lock.slock));
958 #endif
959 
960 	if (!msk->wmem_reserved)
961 		return;
962 
963 	if (msk->wmem_reserved < 0)
964 		msk->wmem_reserved = 0;
965 	if (msk->wmem_reserved > 0) {
966 		sk->sk_forward_alloc += msk->wmem_reserved;
967 		msk->wmem_reserved = 0;
968 	}
969 }
970 
mptcp_wmem_alloc(struct sock * sk,int size)971 static bool mptcp_wmem_alloc(struct sock *sk, int size)
972 {
973 	struct mptcp_sock *msk = mptcp_sk(sk);
974 
975 	/* check for pre-existing error condition */
976 	if (msk->wmem_reserved < 0)
977 		return false;
978 
979 	if (msk->wmem_reserved >= size)
980 		goto account;
981 
982 	mptcp_data_lock(sk);
983 	if (!sk_wmem_schedule(sk, size)) {
984 		mptcp_data_unlock(sk);
985 		return false;
986 	}
987 
988 	sk->sk_forward_alloc -= size;
989 	msk->wmem_reserved += size;
990 	mptcp_data_unlock(sk);
991 
992 account:
993 	msk->wmem_reserved -= size;
994 	return true;
995 }
996 
mptcp_wmem_uncharge(struct sock * sk,int size)997 static void mptcp_wmem_uncharge(struct sock *sk, int size)
998 {
999 	struct mptcp_sock *msk = mptcp_sk(sk);
1000 
1001 	if (msk->wmem_reserved < 0)
1002 		msk->wmem_reserved = 0;
1003 	msk->wmem_reserved += size;
1004 }
1005 
__mptcp_mem_reclaim_partial(struct sock * sk)1006 static void __mptcp_mem_reclaim_partial(struct sock *sk)
1007 {
1008 	lockdep_assert_held_once(&sk->sk_lock.slock);
1009 	__mptcp_update_wmem(sk);
1010 	sk_mem_reclaim_partial(sk);
1011 }
1012 
mptcp_mem_reclaim_partial(struct sock * sk)1013 static void mptcp_mem_reclaim_partial(struct sock *sk)
1014 {
1015 	struct mptcp_sock *msk = mptcp_sk(sk);
1016 
1017 	/* if we are experiencing a transint allocation error,
1018 	 * the forward allocation memory has been already
1019 	 * released
1020 	 */
1021 	if (msk->wmem_reserved < 0)
1022 		return;
1023 
1024 	mptcp_data_lock(sk);
1025 	sk->sk_forward_alloc += msk->wmem_reserved;
1026 	sk_mem_reclaim_partial(sk);
1027 	msk->wmem_reserved = sk->sk_forward_alloc;
1028 	sk->sk_forward_alloc = 0;
1029 	mptcp_data_unlock(sk);
1030 }
1031 
dfrag_uncharge(struct sock * sk,int len)1032 static void dfrag_uncharge(struct sock *sk, int len)
1033 {
1034 	sk_mem_uncharge(sk, len);
1035 	sk_wmem_queued_add(sk, -len);
1036 }
1037 
dfrag_clear(struct sock * sk,struct mptcp_data_frag * dfrag)1038 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
1039 {
1040 	int len = dfrag->data_len + dfrag->overhead;
1041 
1042 	list_del(&dfrag->list);
1043 	dfrag_uncharge(sk, len);
1044 	put_page(dfrag->page);
1045 }
1046 
__mptcp_clean_una(struct sock * sk)1047 static void __mptcp_clean_una(struct sock *sk)
1048 {
1049 	struct mptcp_sock *msk = mptcp_sk(sk);
1050 	struct mptcp_data_frag *dtmp, *dfrag;
1051 	bool cleaned = false;
1052 	u64 snd_una;
1053 
1054 	/* on fallback we just need to ignore snd_una, as this is really
1055 	 * plain TCP
1056 	 */
1057 	if (__mptcp_check_fallback(msk))
1058 		msk->snd_una = READ_ONCE(msk->snd_nxt);
1059 
1060 	snd_una = msk->snd_una;
1061 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
1062 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1063 			break;
1064 
1065 		if (unlikely(dfrag == msk->first_pending)) {
1066 			/* in recovery mode can see ack after the current snd head */
1067 			if (WARN_ON_ONCE(!msk->recovery))
1068 				break;
1069 
1070 			WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1071 		}
1072 
1073 		dfrag_clear(sk, dfrag);
1074 		cleaned = true;
1075 	}
1076 
1077 	dfrag = mptcp_rtx_head(sk);
1078 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
1079 		u64 delta = snd_una - dfrag->data_seq;
1080 
1081 		/* prevent wrap around in recovery mode */
1082 		if (unlikely(delta > dfrag->already_sent)) {
1083 			if (WARN_ON_ONCE(!msk->recovery))
1084 				goto out;
1085 			if (WARN_ON_ONCE(delta > dfrag->data_len))
1086 				goto out;
1087 			dfrag->already_sent += delta - dfrag->already_sent;
1088 		}
1089 
1090 		dfrag->data_seq += delta;
1091 		dfrag->offset += delta;
1092 		dfrag->data_len -= delta;
1093 		dfrag->already_sent -= delta;
1094 
1095 		dfrag_uncharge(sk, delta);
1096 		cleaned = true;
1097 	}
1098 
1099 	/* all retransmitted data acked, recovery completed */
1100 	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1101 		msk->recovery = false;
1102 
1103 out:
1104 	if (cleaned && tcp_under_memory_pressure(sk))
1105 		__mptcp_mem_reclaim_partial(sk);
1106 
1107 	if (snd_una == READ_ONCE(msk->snd_nxt) && !msk->recovery) {
1108 		if (mptcp_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1109 			mptcp_stop_timer(sk);
1110 	} else {
1111 		mptcp_reset_timer(sk);
1112 	}
1113 }
1114 
__mptcp_clean_una_wakeup(struct sock * sk)1115 static void __mptcp_clean_una_wakeup(struct sock *sk)
1116 {
1117 #ifdef CONFIG_LOCKDEP
1118 	WARN_ON_ONCE(!lockdep_is_held(&sk->sk_lock.slock));
1119 #endif
1120 	__mptcp_clean_una(sk);
1121 	mptcp_write_space(sk);
1122 }
1123 
mptcp_clean_una_wakeup(struct sock * sk)1124 static void mptcp_clean_una_wakeup(struct sock *sk)
1125 {
1126 	mptcp_data_lock(sk);
1127 	__mptcp_clean_una_wakeup(sk);
1128 	mptcp_data_unlock(sk);
1129 }
1130 
mptcp_enter_memory_pressure(struct sock * sk)1131 static void mptcp_enter_memory_pressure(struct sock *sk)
1132 {
1133 	struct mptcp_subflow_context *subflow;
1134 	struct mptcp_sock *msk = mptcp_sk(sk);
1135 	bool first = true;
1136 
1137 	sk_stream_moderate_sndbuf(sk);
1138 	mptcp_for_each_subflow(msk, subflow) {
1139 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1140 
1141 		if (first)
1142 			tcp_enter_memory_pressure(ssk);
1143 		sk_stream_moderate_sndbuf(ssk);
1144 		first = false;
1145 	}
1146 }
1147 
1148 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1149  * data
1150  */
mptcp_page_frag_refill(struct sock * sk,struct page_frag * pfrag)1151 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1152 {
1153 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1154 					pfrag, sk->sk_allocation)))
1155 		return true;
1156 
1157 	mptcp_enter_memory_pressure(sk);
1158 	return false;
1159 }
1160 
1161 static struct mptcp_data_frag *
mptcp_carve_data_frag(const struct mptcp_sock * msk,struct page_frag * pfrag,int orig_offset)1162 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1163 		      int orig_offset)
1164 {
1165 	int offset = ALIGN(orig_offset, sizeof(long));
1166 	struct mptcp_data_frag *dfrag;
1167 
1168 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1169 	dfrag->data_len = 0;
1170 	dfrag->data_seq = msk->write_seq;
1171 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1172 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1173 	dfrag->already_sent = 0;
1174 	dfrag->page = pfrag->page;
1175 
1176 	return dfrag;
1177 }
1178 
1179 struct mptcp_sendmsg_info {
1180 	int mss_now;
1181 	int size_goal;
1182 	u16 limit;
1183 	u16 sent;
1184 	unsigned int flags;
1185 	bool data_lock_held;
1186 };
1187 
mptcp_check_allowed_size(struct mptcp_sock * msk,u64 data_seq,int avail_size)1188 static int mptcp_check_allowed_size(struct mptcp_sock *msk, u64 data_seq,
1189 				    int avail_size)
1190 {
1191 	u64 window_end = mptcp_wnd_end(msk);
1192 
1193 	if (__mptcp_check_fallback(msk))
1194 		return avail_size;
1195 
1196 	if (!before64(data_seq + avail_size, window_end)) {
1197 		u64 allowed_size = window_end - data_seq;
1198 
1199 		return min_t(unsigned int, allowed_size, avail_size);
1200 	}
1201 
1202 	return avail_size;
1203 }
1204 
__mptcp_add_ext(struct sk_buff * skb,gfp_t gfp)1205 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1206 {
1207 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1208 
1209 	if (!mpext)
1210 		return false;
1211 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1212 	return true;
1213 }
1214 
__mptcp_do_alloc_tx_skb(struct sock * sk,gfp_t gfp)1215 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1216 {
1217 	struct sk_buff *skb;
1218 
1219 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1220 	if (likely(skb)) {
1221 		if (likely(__mptcp_add_ext(skb, gfp))) {
1222 			skb_reserve(skb, MAX_TCP_HEADER);
1223 			skb->reserved_tailroom = skb->end - skb->tail;
1224 			return skb;
1225 		}
1226 		__kfree_skb(skb);
1227 	} else {
1228 		mptcp_enter_memory_pressure(sk);
1229 	}
1230 	return NULL;
1231 }
1232 
__mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,gfp_t gfp)1233 static bool __mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1234 {
1235 	struct sk_buff *skb;
1236 
1237 	if (ssk->sk_tx_skb_cache) {
1238 		skb = ssk->sk_tx_skb_cache;
1239 		if (unlikely(!skb_ext_find(skb, SKB_EXT_MPTCP) &&
1240 			     !__mptcp_add_ext(skb, gfp)))
1241 			return false;
1242 		return true;
1243 	}
1244 
1245 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1246 	if (!skb)
1247 		return false;
1248 
1249 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1250 		ssk->sk_tx_skb_cache = skb;
1251 		return true;
1252 	}
1253 	kfree_skb(skb);
1254 	return false;
1255 }
1256 
mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,bool data_lock_held)1257 static bool mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1258 {
1259 	gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1260 
1261 	if (unlikely(tcp_under_memory_pressure(sk))) {
1262 		if (data_lock_held)
1263 			__mptcp_mem_reclaim_partial(sk);
1264 		else
1265 			mptcp_mem_reclaim_partial(sk);
1266 	}
1267 	return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1268 }
1269 
1270 /* note: this always recompute the csum on the whole skb, even
1271  * if we just appended a single frag. More status info needed
1272  */
mptcp_update_data_checksum(struct sk_buff * skb,int added)1273 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1274 {
1275 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1276 	__wsum csum = ~csum_unfold(mpext->csum);
1277 	int offset = skb->len - added;
1278 
1279 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1280 }
1281 
mptcp_sendmsg_frag(struct sock * sk,struct sock * ssk,struct mptcp_data_frag * dfrag,struct mptcp_sendmsg_info * info)1282 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1283 			      struct mptcp_data_frag *dfrag,
1284 			      struct mptcp_sendmsg_info *info)
1285 {
1286 	u64 data_seq = dfrag->data_seq + info->sent;
1287 	struct mptcp_sock *msk = mptcp_sk(sk);
1288 	bool zero_window_probe = false;
1289 	struct mptcp_ext *mpext = NULL;
1290 	struct sk_buff *skb, *tail;
1291 	bool must_collapse = false;
1292 	int size_bias = 0;
1293 	int avail_size;
1294 	size_t ret = 0;
1295 
1296 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u",
1297 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1298 
1299 	/* compute send limit */
1300 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1301 	avail_size = info->size_goal;
1302 	skb = tcp_write_queue_tail(ssk);
1303 	if (skb) {
1304 		/* Limit the write to the size available in the
1305 		 * current skb, if any, so that we create at most a new skb.
1306 		 * Explicitly tells TCP internals to avoid collapsing on later
1307 		 * queue management operation, to avoid breaking the ext <->
1308 		 * SSN association set here
1309 		 */
1310 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1311 		if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1312 			TCP_SKB_CB(skb)->eor = 1;
1313 			goto alloc_skb;
1314 		}
1315 
1316 		must_collapse = (info->size_goal > skb->len) &&
1317 				(skb_shinfo(skb)->nr_frags < sysctl_max_skb_frags);
1318 		if (must_collapse) {
1319 			size_bias = skb->len;
1320 			avail_size = info->size_goal - skb->len;
1321 		}
1322 	}
1323 
1324 alloc_skb:
1325 	if (!must_collapse &&
1326 	    !mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held))
1327 		return 0;
1328 
1329 	/* Zero window and all data acked? Probe. */
1330 	avail_size = mptcp_check_allowed_size(msk, data_seq, avail_size);
1331 	if (avail_size == 0) {
1332 		u64 snd_una = READ_ONCE(msk->snd_una);
1333 
1334 		if (skb || snd_una != msk->snd_nxt)
1335 			return 0;
1336 		zero_window_probe = true;
1337 		data_seq = snd_una - 1;
1338 		avail_size = 1;
1339 	}
1340 
1341 	if (WARN_ON_ONCE(info->sent > info->limit ||
1342 			 info->limit > dfrag->data_len))
1343 		return 0;
1344 
1345 	ret = info->limit - info->sent;
1346 	tail = tcp_build_frag(ssk, avail_size + size_bias, info->flags,
1347 			      dfrag->page, dfrag->offset + info->sent, &ret);
1348 	if (!tail) {
1349 		tcp_remove_empty_skb(sk, tcp_write_queue_tail(ssk));
1350 		return -ENOMEM;
1351 	}
1352 
1353 	/* if the tail skb is still the cached one, collapsing really happened.
1354 	 */
1355 	if (skb == tail) {
1356 		TCP_SKB_CB(tail)->tcp_flags &= ~TCPHDR_PSH;
1357 		mpext->data_len += ret;
1358 		WARN_ON_ONCE(zero_window_probe);
1359 		goto out;
1360 	}
1361 
1362 	mpext = skb_ext_find(tail, SKB_EXT_MPTCP);
1363 	if (WARN_ON_ONCE(!mpext)) {
1364 		/* should never reach here, stream corrupted */
1365 		return -EINVAL;
1366 	}
1367 
1368 	memset(mpext, 0, sizeof(*mpext));
1369 	mpext->data_seq = data_seq;
1370 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1371 	mpext->data_len = ret;
1372 	mpext->use_map = 1;
1373 	mpext->dsn64 = 1;
1374 
1375 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d",
1376 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1377 		 mpext->dsn64);
1378 
1379 	if (zero_window_probe) {
1380 		mptcp_subflow_ctx(ssk)->rel_write_seq += ret;
1381 		mpext->frozen = 1;
1382 		if (READ_ONCE(msk->csum_enabled))
1383 			mptcp_update_data_checksum(tail, ret);
1384 		tcp_push_pending_frames(ssk);
1385 		return 0;
1386 	}
1387 out:
1388 	if (READ_ONCE(msk->csum_enabled))
1389 		mptcp_update_data_checksum(tail, ret);
1390 	mptcp_subflow_ctx(ssk)->rel_write_seq += ret;
1391 	return ret;
1392 }
1393 
1394 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1395 					 sizeof(struct tcphdr) - \
1396 					 MAX_TCP_OPTION_SPACE - \
1397 					 sizeof(struct ipv6hdr) - \
1398 					 sizeof(struct frag_hdr))
1399 
1400 struct subflow_send_info {
1401 	struct sock *ssk;
1402 	u64 ratio;
1403 };
1404 
mptcp_subflow_set_active(struct mptcp_subflow_context * subflow)1405 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1406 {
1407 	if (!subflow->stale)
1408 		return;
1409 
1410 	subflow->stale = 0;
1411 	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1412 }
1413 
mptcp_subflow_active(struct mptcp_subflow_context * subflow)1414 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1415 {
1416 	if (unlikely(subflow->stale)) {
1417 		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1418 
1419 		if (subflow->stale_rcv_tstamp == rcv_tstamp)
1420 			return false;
1421 
1422 		mptcp_subflow_set_active(subflow);
1423 	}
1424 	return __mptcp_subflow_active(subflow);
1425 }
1426 
1427 /* implement the mptcp packet scheduler;
1428  * returns the subflow that will transmit the next DSS
1429  * additionally updates the rtx timeout
1430  */
mptcp_subflow_get_send(struct mptcp_sock * msk)1431 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1432 {
1433 	struct subflow_send_info send_info[2];
1434 	struct mptcp_subflow_context *subflow;
1435 	struct sock *sk = (struct sock *)msk;
1436 	int i, nr_active = 0;
1437 	struct sock *ssk;
1438 	long tout = 0;
1439 	u64 ratio;
1440 	u32 pace;
1441 
1442 	sock_owned_by_me(sk);
1443 
1444 	if (__mptcp_check_fallback(msk)) {
1445 		if (!msk->first)
1446 			return NULL;
1447 		return sk_stream_memory_free(msk->first) ? msk->first : NULL;
1448 	}
1449 
1450 	/* re-use last subflow, if the burst allow that */
1451 	if (msk->last_snd && msk->snd_burst > 0 &&
1452 	    sk_stream_memory_free(msk->last_snd) &&
1453 	    mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd))) {
1454 		mptcp_set_timeout(sk);
1455 		return msk->last_snd;
1456 	}
1457 
1458 	/* pick the subflow with the lower wmem/wspace ratio */
1459 	for (i = 0; i < 2; ++i) {
1460 		send_info[i].ssk = NULL;
1461 		send_info[i].ratio = -1;
1462 	}
1463 	mptcp_for_each_subflow(msk, subflow) {
1464 		trace_mptcp_subflow_get_send(subflow);
1465 		ssk =  mptcp_subflow_tcp_sock(subflow);
1466 		if (!mptcp_subflow_active(subflow))
1467 			continue;
1468 
1469 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
1470 		nr_active += !subflow->backup;
1471 		if (!sk_stream_memory_free(subflow->tcp_sock) || !tcp_sk(ssk)->snd_wnd)
1472 			continue;
1473 
1474 		pace = READ_ONCE(ssk->sk_pacing_rate);
1475 		if (!pace)
1476 			continue;
1477 
1478 		ratio = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32,
1479 				pace);
1480 		if (ratio < send_info[subflow->backup].ratio) {
1481 			send_info[subflow->backup].ssk = ssk;
1482 			send_info[subflow->backup].ratio = ratio;
1483 		}
1484 	}
1485 	__mptcp_set_timeout(sk, tout);
1486 
1487 	/* pick the best backup if no other subflow is active */
1488 	if (!nr_active)
1489 		send_info[0].ssk = send_info[1].ssk;
1490 
1491 	if (send_info[0].ssk) {
1492 		msk->last_snd = send_info[0].ssk;
1493 		msk->snd_burst = min_t(int, MPTCP_SEND_BURST_SIZE,
1494 				       tcp_sk(msk->last_snd)->snd_wnd);
1495 		return msk->last_snd;
1496 	}
1497 
1498 	return NULL;
1499 }
1500 
mptcp_push_release(struct sock * sk,struct sock * ssk,struct mptcp_sendmsg_info * info)1501 static void mptcp_push_release(struct sock *sk, struct sock *ssk,
1502 			       struct mptcp_sendmsg_info *info)
1503 {
1504 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1505 	release_sock(ssk);
1506 }
1507 
__mptcp_push_pending(struct sock * sk,unsigned int flags)1508 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1509 {
1510 	struct sock *prev_ssk = NULL, *ssk = NULL;
1511 	struct mptcp_sock *msk = mptcp_sk(sk);
1512 	struct mptcp_sendmsg_info info = {
1513 				.flags = flags,
1514 	};
1515 	struct mptcp_data_frag *dfrag;
1516 	int len, copied = 0;
1517 
1518 	while ((dfrag = mptcp_send_head(sk))) {
1519 		info.sent = dfrag->already_sent;
1520 		info.limit = dfrag->data_len;
1521 		len = dfrag->data_len - dfrag->already_sent;
1522 		while (len > 0) {
1523 			int ret = 0;
1524 
1525 			prev_ssk = ssk;
1526 			mptcp_flush_join_list(msk);
1527 			ssk = mptcp_subflow_get_send(msk);
1528 
1529 			/* First check. If the ssk has changed since
1530 			 * the last round, release prev_ssk
1531 			 */
1532 			if (ssk != prev_ssk && prev_ssk)
1533 				mptcp_push_release(sk, prev_ssk, &info);
1534 			if (!ssk)
1535 				goto out;
1536 
1537 			/* Need to lock the new subflow only if different
1538 			 * from the previous one, otherwise we are still
1539 			 * helding the relevant lock
1540 			 */
1541 			if (ssk != prev_ssk)
1542 				lock_sock(ssk);
1543 
1544 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1545 			if (ret <= 0) {
1546 				mptcp_push_release(sk, ssk, &info);
1547 				goto out;
1548 			}
1549 
1550 			info.sent += ret;
1551 			dfrag->already_sent += ret;
1552 			msk->snd_nxt += ret;
1553 			msk->snd_burst -= ret;
1554 			msk->tx_pending_data -= ret;
1555 			copied += ret;
1556 			len -= ret;
1557 		}
1558 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1559 	}
1560 
1561 	/* at this point we held the socket lock for the last subflow we used */
1562 	if (ssk)
1563 		mptcp_push_release(sk, ssk, &info);
1564 
1565 out:
1566 	/* ensure the rtx timer is running */
1567 	if (!mptcp_timer_pending(sk))
1568 		mptcp_reset_timer(sk);
1569 	if (copied)
1570 		__mptcp_check_send_data_fin(sk);
1571 }
1572 
__mptcp_subflow_push_pending(struct sock * sk,struct sock * ssk)1573 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk)
1574 {
1575 	struct mptcp_sock *msk = mptcp_sk(sk);
1576 	struct mptcp_sendmsg_info info = {
1577 		.data_lock_held = true,
1578 	};
1579 	struct mptcp_data_frag *dfrag;
1580 	struct sock *xmit_ssk;
1581 	int len, copied = 0;
1582 	bool first = true;
1583 
1584 	info.flags = 0;
1585 	while ((dfrag = mptcp_send_head(sk))) {
1586 		info.sent = dfrag->already_sent;
1587 		info.limit = dfrag->data_len;
1588 		len = dfrag->data_len - dfrag->already_sent;
1589 		while (len > 0) {
1590 			int ret = 0;
1591 
1592 			/* the caller already invoked the packet scheduler,
1593 			 * check for a different subflow usage only after
1594 			 * spooling the first chunk of data
1595 			 */
1596 			xmit_ssk = first ? ssk : mptcp_subflow_get_send(mptcp_sk(sk));
1597 			if (!xmit_ssk)
1598 				goto out;
1599 			if (xmit_ssk != ssk) {
1600 				mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk));
1601 				goto out;
1602 			}
1603 
1604 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1605 			if (ret <= 0)
1606 				goto out;
1607 
1608 			info.sent += ret;
1609 			dfrag->already_sent += ret;
1610 			msk->snd_nxt += ret;
1611 			msk->snd_burst -= ret;
1612 			msk->tx_pending_data -= ret;
1613 			copied += ret;
1614 			len -= ret;
1615 			first = false;
1616 		}
1617 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1618 	}
1619 
1620 out:
1621 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1622 	 * not going to flush it via release_sock()
1623 	 */
1624 	__mptcp_update_wmem(sk);
1625 	if (copied) {
1626 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1627 			 info.size_goal);
1628 		if (!mptcp_timer_pending(sk))
1629 			mptcp_reset_timer(sk);
1630 
1631 		if (msk->snd_data_fin_enable &&
1632 		    msk->snd_nxt + 1 == msk->write_seq)
1633 			mptcp_schedule_work(sk);
1634 	}
1635 }
1636 
mptcp_set_nospace(struct sock * sk)1637 static void mptcp_set_nospace(struct sock *sk)
1638 {
1639 	/* enable autotune */
1640 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1641 
1642 	/* will be cleared on avail space */
1643 	set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags);
1644 }
1645 
mptcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1646 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1647 {
1648 	struct mptcp_sock *msk = mptcp_sk(sk);
1649 	struct page_frag *pfrag;
1650 	size_t copied = 0;
1651 	int ret = 0;
1652 	long timeo;
1653 
1654 	/* we don't support FASTOPEN yet */
1655 	if (msg->msg_flags & MSG_FASTOPEN)
1656 		return -EOPNOTSUPP;
1657 
1658 	/* silently ignore everything else */
1659 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL;
1660 
1661 	mptcp_lock_sock(sk, __mptcp_wmem_reserve(sk, min_t(size_t, 1 << 20, len)));
1662 
1663 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1664 
1665 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1666 		ret = sk_stream_wait_connect(sk, &timeo);
1667 		if (ret)
1668 			goto out;
1669 	}
1670 
1671 	pfrag = sk_page_frag(sk);
1672 
1673 	while (msg_data_left(msg)) {
1674 		int total_ts, frag_truesize = 0;
1675 		struct mptcp_data_frag *dfrag;
1676 		bool dfrag_collapsed;
1677 		size_t psize, offset;
1678 
1679 		if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) {
1680 			ret = -EPIPE;
1681 			goto out;
1682 		}
1683 
1684 		/* reuse tail pfrag, if possible, or carve a new one from the
1685 		 * page allocator
1686 		 */
1687 		dfrag = mptcp_pending_tail(sk);
1688 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1689 		if (!dfrag_collapsed) {
1690 			if (!sk_stream_memory_free(sk))
1691 				goto wait_for_memory;
1692 
1693 			if (!mptcp_page_frag_refill(sk, pfrag))
1694 				goto wait_for_memory;
1695 
1696 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1697 			frag_truesize = dfrag->overhead;
1698 		}
1699 
1700 		/* we do not bound vs wspace, to allow a single packet.
1701 		 * memory accounting will prevent execessive memory usage
1702 		 * anyway
1703 		 */
1704 		offset = dfrag->offset + dfrag->data_len;
1705 		psize = pfrag->size - offset;
1706 		psize = min_t(size_t, psize, msg_data_left(msg));
1707 		total_ts = psize + frag_truesize;
1708 
1709 		if (!mptcp_wmem_alloc(sk, total_ts))
1710 			goto wait_for_memory;
1711 
1712 		if (copy_page_from_iter(dfrag->page, offset, psize,
1713 					&msg->msg_iter) != psize) {
1714 			mptcp_wmem_uncharge(sk, psize + frag_truesize);
1715 			ret = -EFAULT;
1716 			goto out;
1717 		}
1718 
1719 		/* data successfully copied into the write queue */
1720 		copied += psize;
1721 		dfrag->data_len += psize;
1722 		frag_truesize += psize;
1723 		pfrag->offset += frag_truesize;
1724 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1725 		msk->tx_pending_data += psize;
1726 
1727 		/* charge data on mptcp pending queue to the msk socket
1728 		 * Note: we charge such data both to sk and ssk
1729 		 */
1730 		sk_wmem_queued_add(sk, frag_truesize);
1731 		if (!dfrag_collapsed) {
1732 			get_page(dfrag->page);
1733 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1734 			if (!msk->first_pending)
1735 				WRITE_ONCE(msk->first_pending, dfrag);
1736 		}
1737 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk,
1738 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1739 			 !dfrag_collapsed);
1740 
1741 		continue;
1742 
1743 wait_for_memory:
1744 		mptcp_set_nospace(sk);
1745 		__mptcp_push_pending(sk, msg->msg_flags);
1746 		ret = sk_stream_wait_memory(sk, &timeo);
1747 		if (ret)
1748 			goto out;
1749 	}
1750 
1751 	if (copied)
1752 		__mptcp_push_pending(sk, msg->msg_flags);
1753 
1754 out:
1755 	release_sock(sk);
1756 	return copied ? : ret;
1757 }
1758 
__mptcp_recvmsg_mskq(struct mptcp_sock * msk,struct msghdr * msg,size_t len,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)1759 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1760 				struct msghdr *msg,
1761 				size_t len, int flags,
1762 				struct scm_timestamping_internal *tss,
1763 				int *cmsg_flags)
1764 {
1765 	struct sk_buff *skb, *tmp;
1766 	int copied = 0;
1767 
1768 	skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
1769 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1770 		u32 data_len = skb->len - offset;
1771 		u32 count = min_t(size_t, len - copied, data_len);
1772 		int err;
1773 
1774 		if (!(flags & MSG_TRUNC)) {
1775 			err = skb_copy_datagram_msg(skb, offset, msg, count);
1776 			if (unlikely(err < 0)) {
1777 				if (!copied)
1778 					return err;
1779 				break;
1780 			}
1781 		}
1782 
1783 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1784 			tcp_update_recv_tstamps(skb, tss);
1785 			*cmsg_flags |= MPTCP_CMSG_TS;
1786 		}
1787 
1788 		copied += count;
1789 
1790 		if (count < data_len) {
1791 			if (!(flags & MSG_PEEK))
1792 				MPTCP_SKB_CB(skb)->offset += count;
1793 			break;
1794 		}
1795 
1796 		if (!(flags & MSG_PEEK)) {
1797 			/* we will bulk release the skb memory later */
1798 			skb->destructor = NULL;
1799 			WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize);
1800 			__skb_unlink(skb, &msk->receive_queue);
1801 			__kfree_skb(skb);
1802 		}
1803 
1804 		if (copied >= len)
1805 			break;
1806 	}
1807 
1808 	return copied;
1809 }
1810 
1811 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
1812  *
1813  * Only difference: Use highest rtt estimate of the subflows in use.
1814  */
mptcp_rcv_space_adjust(struct mptcp_sock * msk,int copied)1815 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1816 {
1817 	struct mptcp_subflow_context *subflow;
1818 	struct sock *sk = (struct sock *)msk;
1819 	u32 time, advmss = 1;
1820 	u64 rtt_us, mstamp;
1821 
1822 	sock_owned_by_me(sk);
1823 
1824 	if (copied <= 0)
1825 		return;
1826 
1827 	msk->rcvq_space.copied += copied;
1828 
1829 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1830 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1831 
1832 	rtt_us = msk->rcvq_space.rtt_us;
1833 	if (rtt_us && time < (rtt_us >> 3))
1834 		return;
1835 
1836 	rtt_us = 0;
1837 	mptcp_for_each_subflow(msk, subflow) {
1838 		const struct tcp_sock *tp;
1839 		u64 sf_rtt_us;
1840 		u32 sf_advmss;
1841 
1842 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1843 
1844 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1845 		sf_advmss = READ_ONCE(tp->advmss);
1846 
1847 		rtt_us = max(sf_rtt_us, rtt_us);
1848 		advmss = max(sf_advmss, advmss);
1849 	}
1850 
1851 	msk->rcvq_space.rtt_us = rtt_us;
1852 	if (time < (rtt_us >> 3) || rtt_us == 0)
1853 		return;
1854 
1855 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
1856 		goto new_measure;
1857 
1858 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
1859 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1860 		int rcvmem, rcvbuf;
1861 		u64 rcvwin, grow;
1862 
1863 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
1864 
1865 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
1866 
1867 		do_div(grow, msk->rcvq_space.space);
1868 		rcvwin += (grow << 1);
1869 
1870 		rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER);
1871 		while (tcp_win_from_space(sk, rcvmem) < advmss)
1872 			rcvmem += 128;
1873 
1874 		do_div(rcvwin, advmss);
1875 		rcvbuf = min_t(u64, rcvwin * rcvmem,
1876 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
1877 
1878 		if (rcvbuf > sk->sk_rcvbuf) {
1879 			u32 window_clamp;
1880 
1881 			window_clamp = tcp_win_from_space(sk, rcvbuf);
1882 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
1883 
1884 			/* Make subflows follow along.  If we do not do this, we
1885 			 * get drops at subflow level if skbs can't be moved to
1886 			 * the mptcp rx queue fast enough (announced rcv_win can
1887 			 * exceed ssk->sk_rcvbuf).
1888 			 */
1889 			mptcp_for_each_subflow(msk, subflow) {
1890 				struct sock *ssk;
1891 				bool slow;
1892 
1893 				ssk = mptcp_subflow_tcp_sock(subflow);
1894 				slow = lock_sock_fast(ssk);
1895 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
1896 				tcp_sk(ssk)->window_clamp = window_clamp;
1897 				tcp_cleanup_rbuf(ssk, 1);
1898 				unlock_sock_fast(ssk, slow);
1899 			}
1900 		}
1901 	}
1902 
1903 	msk->rcvq_space.space = msk->rcvq_space.copied;
1904 new_measure:
1905 	msk->rcvq_space.copied = 0;
1906 	msk->rcvq_space.time = mstamp;
1907 }
1908 
__mptcp_update_rmem(struct sock * sk)1909 static void __mptcp_update_rmem(struct sock *sk)
1910 {
1911 	struct mptcp_sock *msk = mptcp_sk(sk);
1912 
1913 	if (!msk->rmem_released)
1914 		return;
1915 
1916 	atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
1917 	sk_mem_uncharge(sk, msk->rmem_released);
1918 	WRITE_ONCE(msk->rmem_released, 0);
1919 }
1920 
__mptcp_splice_receive_queue(struct sock * sk)1921 static void __mptcp_splice_receive_queue(struct sock *sk)
1922 {
1923 	struct mptcp_sock *msk = mptcp_sk(sk);
1924 
1925 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
1926 }
1927 
__mptcp_move_skbs(struct mptcp_sock * msk)1928 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
1929 {
1930 	struct sock *sk = (struct sock *)msk;
1931 	unsigned int moved = 0;
1932 	bool ret, done;
1933 
1934 	mptcp_flush_join_list(msk);
1935 	do {
1936 		struct sock *ssk = mptcp_subflow_recv_lookup(msk);
1937 		bool slowpath;
1938 
1939 		/* we can have data pending in the subflows only if the msk
1940 		 * receive buffer was full at subflow_data_ready() time,
1941 		 * that is an unlikely slow path.
1942 		 */
1943 		if (likely(!ssk))
1944 			break;
1945 
1946 		slowpath = lock_sock_fast(ssk);
1947 		mptcp_data_lock(sk);
1948 		__mptcp_update_rmem(sk);
1949 		done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
1950 		mptcp_data_unlock(sk);
1951 
1952 		if (unlikely(ssk->sk_err))
1953 			__mptcp_error_report(sk);
1954 		unlock_sock_fast(ssk, slowpath);
1955 	} while (!done);
1956 
1957 	/* acquire the data lock only if some input data is pending */
1958 	ret = moved > 0;
1959 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
1960 	    !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
1961 		mptcp_data_lock(sk);
1962 		__mptcp_update_rmem(sk);
1963 		ret |= __mptcp_ofo_queue(msk);
1964 		__mptcp_splice_receive_queue(sk);
1965 		mptcp_data_unlock(sk);
1966 	}
1967 	if (ret)
1968 		mptcp_check_data_fin((struct sock *)msk);
1969 	return !skb_queue_empty(&msk->receive_queue);
1970 }
1971 
mptcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,int * addr_len)1972 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
1973 			 int nonblock, int flags, int *addr_len)
1974 {
1975 	struct mptcp_sock *msk = mptcp_sk(sk);
1976 	struct scm_timestamping_internal tss;
1977 	int copied = 0, cmsg_flags = 0;
1978 	int target;
1979 	long timeo;
1980 
1981 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
1982 	if (unlikely(flags & MSG_ERRQUEUE))
1983 		return inet_recv_error(sk, msg, len, addr_len);
1984 
1985 	mptcp_lock_sock(sk, __mptcp_splice_receive_queue(sk));
1986 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
1987 		copied = -ENOTCONN;
1988 		goto out_err;
1989 	}
1990 
1991 	timeo = sock_rcvtimeo(sk, nonblock);
1992 
1993 	len = min_t(size_t, len, INT_MAX);
1994 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1995 
1996 	while (copied < len) {
1997 		int bytes_read;
1998 
1999 		bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags);
2000 		if (unlikely(bytes_read < 0)) {
2001 			if (!copied)
2002 				copied = bytes_read;
2003 			goto out_err;
2004 		}
2005 
2006 		copied += bytes_read;
2007 
2008 		/* be sure to advertise window change */
2009 		mptcp_cleanup_rbuf(msk);
2010 
2011 		if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
2012 			continue;
2013 
2014 		/* only the master socket status is relevant here. The exit
2015 		 * conditions mirror closely tcp_recvmsg()
2016 		 */
2017 		if (copied >= target)
2018 			break;
2019 
2020 		if (copied) {
2021 			if (sk->sk_err ||
2022 			    sk->sk_state == TCP_CLOSE ||
2023 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2024 			    !timeo ||
2025 			    signal_pending(current))
2026 				break;
2027 		} else {
2028 			if (sk->sk_err) {
2029 				copied = sock_error(sk);
2030 				break;
2031 			}
2032 
2033 			if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
2034 				mptcp_check_for_eof(msk);
2035 
2036 			if (sk->sk_shutdown & RCV_SHUTDOWN) {
2037 				/* race breaker: the shutdown could be after the
2038 				 * previous receive queue check
2039 				 */
2040 				if (__mptcp_move_skbs(msk))
2041 					continue;
2042 				break;
2043 			}
2044 
2045 			if (sk->sk_state == TCP_CLOSE) {
2046 				copied = -ENOTCONN;
2047 				break;
2048 			}
2049 
2050 			if (!timeo) {
2051 				copied = -EAGAIN;
2052 				break;
2053 			}
2054 
2055 			if (signal_pending(current)) {
2056 				copied = sock_intr_errno(timeo);
2057 				break;
2058 			}
2059 		}
2060 
2061 		pr_debug("block timeout %ld", timeo);
2062 		sk_wait_data(sk, &timeo, NULL);
2063 	}
2064 
2065 out_err:
2066 	if (cmsg_flags && copied >= 0) {
2067 		if (cmsg_flags & MPTCP_CMSG_TS)
2068 			tcp_recv_timestamp(msg, sk, &tss);
2069 	}
2070 
2071 	pr_debug("msk=%p rx queue empty=%d:%d copied=%d",
2072 		 msk, skb_queue_empty_lockless(&sk->sk_receive_queue),
2073 		 skb_queue_empty(&msk->receive_queue), copied);
2074 	if (!(flags & MSG_PEEK))
2075 		mptcp_rcv_space_adjust(msk, copied);
2076 
2077 	release_sock(sk);
2078 	return copied;
2079 }
2080 
mptcp_retransmit_timer(struct timer_list * t)2081 static void mptcp_retransmit_timer(struct timer_list *t)
2082 {
2083 	struct inet_connection_sock *icsk = from_timer(icsk, t,
2084 						       icsk_retransmit_timer);
2085 	struct sock *sk = &icsk->icsk_inet.sk;
2086 	struct mptcp_sock *msk = mptcp_sk(sk);
2087 
2088 	bh_lock_sock(sk);
2089 	if (!sock_owned_by_user(sk)) {
2090 		/* we need a process context to retransmit */
2091 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2092 			mptcp_schedule_work(sk);
2093 	} else {
2094 		/* delegate our work to tcp_release_cb() */
2095 		set_bit(MPTCP_RETRANSMIT, &msk->flags);
2096 	}
2097 	bh_unlock_sock(sk);
2098 	sock_put(sk);
2099 }
2100 
mptcp_timeout_timer(struct timer_list * t)2101 static void mptcp_timeout_timer(struct timer_list *t)
2102 {
2103 	struct sock *sk = from_timer(sk, t, sk_timer);
2104 
2105 	mptcp_schedule_work(sk);
2106 	sock_put(sk);
2107 }
2108 
2109 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2110  * level.
2111  *
2112  * A backup subflow is returned only if that is the only kind available.
2113  */
mptcp_subflow_get_retrans(struct mptcp_sock * msk)2114 static struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2115 {
2116 	struct sock *backup = NULL, *pick = NULL;
2117 	struct mptcp_subflow_context *subflow;
2118 	int min_stale_count = INT_MAX;
2119 
2120 	sock_owned_by_me((const struct sock *)msk);
2121 
2122 	if (__mptcp_check_fallback(msk))
2123 		return NULL;
2124 
2125 	mptcp_for_each_subflow(msk, subflow) {
2126 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2127 
2128 		if (!__mptcp_subflow_active(subflow))
2129 			continue;
2130 
2131 		/* still data outstanding at TCP level? skip this */
2132 		if (!tcp_rtx_and_write_queues_empty(ssk)) {
2133 			mptcp_pm_subflow_chk_stale(msk, ssk);
2134 			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2135 			continue;
2136 		}
2137 
2138 		if (subflow->backup) {
2139 			if (!backup)
2140 				backup = ssk;
2141 			continue;
2142 		}
2143 
2144 		if (!pick)
2145 			pick = ssk;
2146 	}
2147 
2148 	if (pick)
2149 		return pick;
2150 
2151 	/* use backup only if there are no progresses anywhere */
2152 	return min_stale_count > 1 ? backup : NULL;
2153 }
2154 
mptcp_dispose_initial_subflow(struct mptcp_sock * msk)2155 static void mptcp_dispose_initial_subflow(struct mptcp_sock *msk)
2156 {
2157 	if (msk->subflow) {
2158 		iput(SOCK_INODE(msk->subflow));
2159 		msk->subflow = NULL;
2160 	}
2161 }
2162 
__mptcp_retransmit_pending_data(struct sock * sk)2163 bool __mptcp_retransmit_pending_data(struct sock *sk)
2164 {
2165 	struct mptcp_data_frag *cur, *rtx_head;
2166 	struct mptcp_sock *msk = mptcp_sk(sk);
2167 
2168 	if (__mptcp_check_fallback(mptcp_sk(sk)))
2169 		return false;
2170 
2171 	if (tcp_rtx_and_write_queues_empty(sk))
2172 		return false;
2173 
2174 	/* the closing socket has some data untransmitted and/or unacked:
2175 	 * some data in the mptcp rtx queue has not really xmitted yet.
2176 	 * keep it simple and re-inject the whole mptcp level rtx queue
2177 	 */
2178 	mptcp_data_lock(sk);
2179 	__mptcp_clean_una_wakeup(sk);
2180 	rtx_head = mptcp_rtx_head(sk);
2181 	if (!rtx_head) {
2182 		mptcp_data_unlock(sk);
2183 		return false;
2184 	}
2185 
2186 	/* will accept ack for reijected data before re-sending them */
2187 	if (!msk->recovery || after64(msk->snd_nxt, msk->recovery_snd_nxt))
2188 		msk->recovery_snd_nxt = msk->snd_nxt;
2189 	msk->recovery = true;
2190 	mptcp_data_unlock(sk);
2191 
2192 	msk->first_pending = rtx_head;
2193 	msk->tx_pending_data += msk->snd_nxt - rtx_head->data_seq;
2194 	msk->snd_nxt = rtx_head->data_seq;
2195 	msk->snd_burst = 0;
2196 
2197 	/* be sure to clear the "sent status" on all re-injected fragments */
2198 	list_for_each_entry(cur, &msk->rtx_queue, list) {
2199 		if (!cur->already_sent)
2200 			break;
2201 		cur->already_sent = 0;
2202 	}
2203 
2204 	return true;
2205 }
2206 
2207 /* subflow sockets can be either outgoing (connect) or incoming
2208  * (accept).
2209  *
2210  * Outgoing subflows use in-kernel sockets.
2211  * Incoming subflows do not have their own 'struct socket' allocated,
2212  * so we need to use tcp_close() after detaching them from the mptcp
2213  * parent socket.
2214  */
__mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow)2215 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2216 			      struct mptcp_subflow_context *subflow)
2217 {
2218 	struct mptcp_sock *msk = mptcp_sk(sk);
2219 	bool need_push;
2220 
2221 	list_del(&subflow->node);
2222 
2223 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2224 
2225 	/* if we are invoked by the msk cleanup code, the subflow is
2226 	 * already orphaned
2227 	 */
2228 	if (ssk->sk_socket)
2229 		sock_orphan(ssk);
2230 
2231 	need_push = __mptcp_retransmit_pending_data(sk);
2232 	subflow->disposable = 1;
2233 
2234 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2235 	 * the ssk has been already destroyed, we just need to release the
2236 	 * reference owned by msk;
2237 	 */
2238 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2239 		kfree_rcu(subflow, rcu);
2240 	} else {
2241 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2242 		__tcp_close(ssk, 0);
2243 
2244 		/* close acquired an extra ref */
2245 		__sock_put(ssk);
2246 	}
2247 	release_sock(ssk);
2248 
2249 	sock_put(ssk);
2250 
2251 	if (ssk == msk->last_snd)
2252 		msk->last_snd = NULL;
2253 
2254 	if (ssk == msk->first)
2255 		msk->first = NULL;
2256 
2257 	if (msk->subflow && ssk == msk->subflow->sk)
2258 		mptcp_dispose_initial_subflow(msk);
2259 
2260 	if (need_push)
2261 		__mptcp_push_pending(sk, 0);
2262 }
2263 
mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow)2264 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2265 		     struct mptcp_subflow_context *subflow)
2266 {
2267 	if (sk->sk_state == TCP_ESTABLISHED)
2268 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2269 	__mptcp_close_ssk(sk, ssk, subflow);
2270 }
2271 
mptcp_sync_mss(struct sock * sk,u32 pmtu)2272 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2273 {
2274 	return 0;
2275 }
2276 
__mptcp_close_subflow(struct mptcp_sock * msk)2277 static void __mptcp_close_subflow(struct mptcp_sock *msk)
2278 {
2279 	struct mptcp_subflow_context *subflow, *tmp;
2280 
2281 	might_sleep();
2282 
2283 	list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) {
2284 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2285 
2286 		if (inet_sk_state_load(ssk) != TCP_CLOSE)
2287 			continue;
2288 
2289 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2290 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2291 			continue;
2292 
2293 		mptcp_close_ssk((struct sock *)msk, ssk, subflow);
2294 	}
2295 }
2296 
mptcp_check_close_timeout(const struct sock * sk)2297 static bool mptcp_check_close_timeout(const struct sock *sk)
2298 {
2299 	s32 delta = tcp_jiffies32 - inet_csk(sk)->icsk_mtup.probe_timestamp;
2300 	struct mptcp_subflow_context *subflow;
2301 
2302 	if (delta >= TCP_TIMEWAIT_LEN)
2303 		return true;
2304 
2305 	/* if all subflows are in closed status don't bother with additional
2306 	 * timeout
2307 	 */
2308 	mptcp_for_each_subflow(mptcp_sk(sk), subflow) {
2309 		if (inet_sk_state_load(mptcp_subflow_tcp_sock(subflow)) !=
2310 		    TCP_CLOSE)
2311 			return false;
2312 	}
2313 	return true;
2314 }
2315 
mptcp_check_fastclose(struct mptcp_sock * msk)2316 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2317 {
2318 	struct mptcp_subflow_context *subflow, *tmp;
2319 	struct sock *sk = &msk->sk.icsk_inet.sk;
2320 
2321 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2322 		return;
2323 
2324 	mptcp_token_destroy(msk);
2325 
2326 	list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) {
2327 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2328 		bool slow;
2329 
2330 		slow = lock_sock_fast(tcp_sk);
2331 		if (tcp_sk->sk_state != TCP_CLOSE) {
2332 			tcp_send_active_reset(tcp_sk, GFP_ATOMIC);
2333 			tcp_set_state(tcp_sk, TCP_CLOSE);
2334 		}
2335 		unlock_sock_fast(tcp_sk, slow);
2336 	}
2337 
2338 	inet_sk_state_store(sk, TCP_CLOSE);
2339 	sk->sk_shutdown = SHUTDOWN_MASK;
2340 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2341 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2342 
2343 	mptcp_close_wake_up(sk);
2344 }
2345 
__mptcp_retrans(struct sock * sk)2346 static void __mptcp_retrans(struct sock *sk)
2347 {
2348 	struct mptcp_sock *msk = mptcp_sk(sk);
2349 	struct mptcp_sendmsg_info info = {};
2350 	struct mptcp_data_frag *dfrag;
2351 	size_t copied = 0;
2352 	struct sock *ssk;
2353 	int ret;
2354 
2355 	mptcp_clean_una_wakeup(sk);
2356 	dfrag = mptcp_rtx_head(sk);
2357 	if (!dfrag) {
2358 		if (mptcp_data_fin_enabled(msk)) {
2359 			struct inet_connection_sock *icsk = inet_csk(sk);
2360 
2361 			icsk->icsk_retransmits++;
2362 			mptcp_set_datafin_timeout(sk);
2363 			mptcp_send_ack(msk);
2364 
2365 			goto reset_timer;
2366 		}
2367 
2368 		return;
2369 	}
2370 
2371 	ssk = mptcp_subflow_get_retrans(msk);
2372 	if (!ssk)
2373 		goto reset_timer;
2374 
2375 	lock_sock(ssk);
2376 
2377 	/* limit retransmission to the bytes already sent on some subflows */
2378 	info.sent = 0;
2379 	info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : dfrag->already_sent;
2380 	while (info.sent < info.limit) {
2381 		ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2382 		if (ret <= 0)
2383 			break;
2384 
2385 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2386 		copied += ret;
2387 		info.sent += ret;
2388 	}
2389 	if (copied) {
2390 		dfrag->already_sent = max(dfrag->already_sent, info.sent);
2391 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2392 			 info.size_goal);
2393 	}
2394 
2395 	release_sock(ssk);
2396 
2397 reset_timer:
2398 	if (!mptcp_timer_pending(sk))
2399 		mptcp_reset_timer(sk);
2400 }
2401 
mptcp_worker(struct work_struct * work)2402 static void mptcp_worker(struct work_struct *work)
2403 {
2404 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2405 	struct sock *sk = &msk->sk.icsk_inet.sk;
2406 	int state;
2407 
2408 	lock_sock(sk);
2409 	state = sk->sk_state;
2410 	if (unlikely(state == TCP_CLOSE))
2411 		goto unlock;
2412 
2413 	mptcp_check_data_fin_ack(sk);
2414 	mptcp_flush_join_list(msk);
2415 
2416 	mptcp_check_fastclose(msk);
2417 
2418 	if (msk->pm.status)
2419 		mptcp_pm_nl_work(msk);
2420 
2421 	if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
2422 		mptcp_check_for_eof(msk);
2423 
2424 	__mptcp_check_send_data_fin(sk);
2425 	mptcp_check_data_fin(sk);
2426 
2427 	/* There is no point in keeping around an orphaned sk timedout or
2428 	 * closed, but we need the msk around to reply to incoming DATA_FIN,
2429 	 * even if it is orphaned and in FIN_WAIT2 state
2430 	 */
2431 	if (sock_flag(sk, SOCK_DEAD) &&
2432 	    (mptcp_check_close_timeout(sk) || sk->sk_state == TCP_CLOSE)) {
2433 		inet_sk_state_store(sk, TCP_CLOSE);
2434 		__mptcp_destroy_sock(sk);
2435 		goto unlock;
2436 	}
2437 
2438 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2439 		__mptcp_close_subflow(msk);
2440 
2441 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2442 		__mptcp_retrans(sk);
2443 
2444 unlock:
2445 	release_sock(sk);
2446 	sock_put(sk);
2447 }
2448 
__mptcp_init_sock(struct sock * sk)2449 static int __mptcp_init_sock(struct sock *sk)
2450 {
2451 	struct mptcp_sock *msk = mptcp_sk(sk);
2452 
2453 	spin_lock_init(&msk->join_list_lock);
2454 
2455 	INIT_LIST_HEAD(&msk->conn_list);
2456 	INIT_LIST_HEAD(&msk->join_list);
2457 	INIT_LIST_HEAD(&msk->rtx_queue);
2458 	INIT_WORK(&msk->work, mptcp_worker);
2459 	__skb_queue_head_init(&msk->receive_queue);
2460 	msk->out_of_order_queue = RB_ROOT;
2461 	msk->first_pending = NULL;
2462 	msk->wmem_reserved = 0;
2463 	WRITE_ONCE(msk->rmem_released, 0);
2464 	msk->tx_pending_data = 0;
2465 	msk->timer_ival = TCP_RTO_MIN;
2466 
2467 	msk->first = NULL;
2468 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2469 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2470 	msk->recovery = false;
2471 
2472 	mptcp_pm_data_init(msk);
2473 
2474 	/* re-use the csk retrans timer for MPTCP-level retrans */
2475 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2476 	timer_setup(&sk->sk_timer, mptcp_timeout_timer, 0);
2477 
2478 	return 0;
2479 }
2480 
mptcp_init_sock(struct sock * sk)2481 static int mptcp_init_sock(struct sock *sk)
2482 {
2483 	struct inet_connection_sock *icsk = inet_csk(sk);
2484 	struct net *net = sock_net(sk);
2485 	int ret;
2486 
2487 	ret = __mptcp_init_sock(sk);
2488 	if (ret)
2489 		return ret;
2490 
2491 	if (!mptcp_is_enabled(net))
2492 		return -ENOPROTOOPT;
2493 
2494 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2495 		return -ENOMEM;
2496 
2497 	ret = __mptcp_socket_create(mptcp_sk(sk));
2498 	if (ret)
2499 		return ret;
2500 
2501 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2502 	 * propagate the correct value
2503 	 */
2504 	tcp_assign_congestion_control(sk);
2505 	strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name);
2506 
2507 	/* no need to keep a reference to the ops, the name will suffice */
2508 	tcp_cleanup_congestion_control(sk);
2509 	icsk->icsk_ca_ops = NULL;
2510 
2511 	sk_sockets_allocated_inc(sk);
2512 	sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
2513 	sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1];
2514 
2515 	return 0;
2516 }
2517 
__mptcp_clear_xmit(struct sock * sk)2518 static void __mptcp_clear_xmit(struct sock *sk)
2519 {
2520 	struct mptcp_sock *msk = mptcp_sk(sk);
2521 	struct mptcp_data_frag *dtmp, *dfrag;
2522 
2523 	WRITE_ONCE(msk->first_pending, NULL);
2524 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2525 		dfrag_clear(sk, dfrag);
2526 }
2527 
mptcp_cancel_work(struct sock * sk)2528 static void mptcp_cancel_work(struct sock *sk)
2529 {
2530 	struct mptcp_sock *msk = mptcp_sk(sk);
2531 
2532 	if (cancel_work_sync(&msk->work))
2533 		__sock_put(sk);
2534 }
2535 
mptcp_subflow_shutdown(struct sock * sk,struct sock * ssk,int how)2536 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2537 {
2538 	lock_sock(ssk);
2539 
2540 	switch (ssk->sk_state) {
2541 	case TCP_LISTEN:
2542 		if (!(how & RCV_SHUTDOWN))
2543 			break;
2544 		fallthrough;
2545 	case TCP_SYN_SENT:
2546 		tcp_disconnect(ssk, O_NONBLOCK);
2547 		break;
2548 	default:
2549 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2550 			pr_debug("Fallback");
2551 			ssk->sk_shutdown |= how;
2552 			tcp_shutdown(ssk, how);
2553 		} else {
2554 			pr_debug("Sending DATA_FIN on subflow %p", ssk);
2555 			tcp_send_ack(ssk);
2556 			if (!mptcp_timer_pending(sk))
2557 				mptcp_reset_timer(sk);
2558 		}
2559 		break;
2560 	}
2561 
2562 	release_sock(ssk);
2563 }
2564 
2565 static const unsigned char new_state[16] = {
2566 	/* current state:     new state:      action:	*/
2567 	[0 /* (Invalid) */] = TCP_CLOSE,
2568 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2569 	[TCP_SYN_SENT]      = TCP_CLOSE,
2570 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2571 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2572 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2573 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2574 	[TCP_CLOSE]         = TCP_CLOSE,
2575 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2576 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2577 	[TCP_LISTEN]        = TCP_CLOSE,
2578 	[TCP_CLOSING]       = TCP_CLOSING,
2579 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2580 };
2581 
mptcp_close_state(struct sock * sk)2582 static int mptcp_close_state(struct sock *sk)
2583 {
2584 	int next = (int)new_state[sk->sk_state];
2585 	int ns = next & TCP_STATE_MASK;
2586 
2587 	inet_sk_state_store(sk, ns);
2588 
2589 	return next & TCP_ACTION_FIN;
2590 }
2591 
__mptcp_check_send_data_fin(struct sock * sk)2592 static void __mptcp_check_send_data_fin(struct sock *sk)
2593 {
2594 	struct mptcp_subflow_context *subflow;
2595 	struct mptcp_sock *msk = mptcp_sk(sk);
2596 
2597 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu",
2598 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2599 		 msk->snd_nxt, msk->write_seq);
2600 
2601 	/* we still need to enqueue subflows or not really shutting down,
2602 	 * skip this
2603 	 */
2604 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2605 	    mptcp_send_head(sk))
2606 		return;
2607 
2608 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2609 
2610 	/* fallback socket will not get data_fin/ack, can move to the next
2611 	 * state now
2612 	 */
2613 	if (__mptcp_check_fallback(msk)) {
2614 		if ((1 << sk->sk_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) {
2615 			inet_sk_state_store(sk, TCP_CLOSE);
2616 			mptcp_close_wake_up(sk);
2617 		} else if (sk->sk_state == TCP_FIN_WAIT1) {
2618 			inet_sk_state_store(sk, TCP_FIN_WAIT2);
2619 		}
2620 	}
2621 
2622 	mptcp_flush_join_list(msk);
2623 	mptcp_for_each_subflow(msk, subflow) {
2624 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2625 
2626 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2627 	}
2628 }
2629 
__mptcp_wr_shutdown(struct sock * sk)2630 static void __mptcp_wr_shutdown(struct sock *sk)
2631 {
2632 	struct mptcp_sock *msk = mptcp_sk(sk);
2633 
2634 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d",
2635 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2636 		 !!mptcp_send_head(sk));
2637 
2638 	/* will be ignored by fallback sockets */
2639 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2640 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
2641 
2642 	__mptcp_check_send_data_fin(sk);
2643 }
2644 
__mptcp_destroy_sock(struct sock * sk)2645 static void __mptcp_destroy_sock(struct sock *sk)
2646 {
2647 	struct mptcp_subflow_context *subflow, *tmp;
2648 	struct mptcp_sock *msk = mptcp_sk(sk);
2649 	LIST_HEAD(conn_list);
2650 
2651 	pr_debug("msk=%p", msk);
2652 
2653 	might_sleep();
2654 
2655 	/* be sure to always acquire the join list lock, to sync vs
2656 	 * mptcp_finish_join().
2657 	 */
2658 	spin_lock_bh(&msk->join_list_lock);
2659 	list_splice_tail_init(&msk->join_list, &msk->conn_list);
2660 	spin_unlock_bh(&msk->join_list_lock);
2661 	list_splice_init(&msk->conn_list, &conn_list);
2662 
2663 	sk_stop_timer(sk, &msk->sk.icsk_retransmit_timer);
2664 	sk_stop_timer(sk, &sk->sk_timer);
2665 	msk->pm.status = 0;
2666 
2667 	list_for_each_entry_safe(subflow, tmp, &conn_list, node) {
2668 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2669 		__mptcp_close_ssk(sk, ssk, subflow);
2670 	}
2671 
2672 	sk->sk_prot->destroy(sk);
2673 
2674 	WARN_ON_ONCE(msk->wmem_reserved);
2675 	WARN_ON_ONCE(msk->rmem_released);
2676 	sk_stream_kill_queues(sk);
2677 	xfrm_sk_free_policy(sk);
2678 
2679 	sk_refcnt_debug_release(sk);
2680 	mptcp_dispose_initial_subflow(msk);
2681 	sock_put(sk);
2682 }
2683 
mptcp_close(struct sock * sk,long timeout)2684 static void mptcp_close(struct sock *sk, long timeout)
2685 {
2686 	struct mptcp_subflow_context *subflow;
2687 	bool do_cancel_work = false;
2688 
2689 	lock_sock(sk);
2690 	sk->sk_shutdown = SHUTDOWN_MASK;
2691 
2692 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
2693 		inet_sk_state_store(sk, TCP_CLOSE);
2694 		goto cleanup;
2695 	}
2696 
2697 	if (mptcp_close_state(sk))
2698 		__mptcp_wr_shutdown(sk);
2699 
2700 	sk_stream_wait_close(sk, timeout);
2701 
2702 cleanup:
2703 	/* orphan all the subflows */
2704 	inet_csk(sk)->icsk_mtup.probe_timestamp = tcp_jiffies32;
2705 	mptcp_for_each_subflow(mptcp_sk(sk), subflow) {
2706 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2707 		bool slow = lock_sock_fast_nested(ssk);
2708 
2709 		sock_orphan(ssk);
2710 		unlock_sock_fast(ssk, slow);
2711 	}
2712 	sock_orphan(sk);
2713 
2714 	sock_hold(sk);
2715 	pr_debug("msk=%p state=%d", sk, sk->sk_state);
2716 	if (sk->sk_state == TCP_CLOSE) {
2717 		__mptcp_destroy_sock(sk);
2718 		do_cancel_work = true;
2719 	} else {
2720 		sk_reset_timer(sk, &sk->sk_timer, jiffies + TCP_TIMEWAIT_LEN);
2721 	}
2722 	release_sock(sk);
2723 	if (do_cancel_work)
2724 		mptcp_cancel_work(sk);
2725 
2726 	if (mptcp_sk(sk)->token)
2727 		mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL);
2728 
2729 	sock_put(sk);
2730 }
2731 
mptcp_copy_inaddrs(struct sock * msk,const struct sock * ssk)2732 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
2733 {
2734 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2735 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
2736 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
2737 
2738 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
2739 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
2740 
2741 	if (msk6 && ssk6) {
2742 		msk6->saddr = ssk6->saddr;
2743 		msk6->flow_label = ssk6->flow_label;
2744 	}
2745 #endif
2746 
2747 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
2748 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
2749 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
2750 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
2751 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
2752 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
2753 }
2754 
mptcp_disconnect(struct sock * sk,int flags)2755 static int mptcp_disconnect(struct sock *sk, int flags)
2756 {
2757 	struct mptcp_subflow_context *subflow;
2758 	struct mptcp_sock *msk = mptcp_sk(sk);
2759 
2760 	mptcp_do_flush_join_list(msk);
2761 
2762 	mptcp_for_each_subflow(msk, subflow) {
2763 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2764 
2765 		lock_sock(ssk);
2766 		tcp_disconnect(ssk, flags);
2767 		release_sock(ssk);
2768 	}
2769 	return 0;
2770 }
2771 
2772 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
mptcp_inet6_sk(const struct sock * sk)2773 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
2774 {
2775 	unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
2776 
2777 	return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
2778 }
2779 #endif
2780 
mptcp_sk_clone(const struct sock * sk,const struct mptcp_options_received * mp_opt,struct request_sock * req)2781 struct sock *mptcp_sk_clone(const struct sock *sk,
2782 			    const struct mptcp_options_received *mp_opt,
2783 			    struct request_sock *req)
2784 {
2785 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
2786 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
2787 	struct mptcp_sock *msk;
2788 	u64 ack_seq;
2789 
2790 	if (!nsk)
2791 		return NULL;
2792 
2793 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2794 	if (nsk->sk_family == AF_INET6)
2795 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
2796 #endif
2797 
2798 	__mptcp_init_sock(nsk);
2799 
2800 	msk = mptcp_sk(nsk);
2801 	msk->local_key = subflow_req->local_key;
2802 	msk->token = subflow_req->token;
2803 	msk->subflow = NULL;
2804 	WRITE_ONCE(msk->fully_established, false);
2805 	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
2806 		WRITE_ONCE(msk->csum_enabled, true);
2807 
2808 	msk->write_seq = subflow_req->idsn + 1;
2809 	msk->snd_nxt = msk->write_seq;
2810 	msk->snd_una = msk->write_seq;
2811 	msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd;
2812 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
2813 
2814 	if (mp_opt->suboptions & OPTIONS_MPTCP_MPC) {
2815 		msk->can_ack = true;
2816 		msk->remote_key = mp_opt->sndr_key;
2817 		mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq);
2818 		ack_seq++;
2819 		WRITE_ONCE(msk->ack_seq, ack_seq);
2820 		WRITE_ONCE(msk->rcv_wnd_sent, ack_seq);
2821 	}
2822 
2823 	sock_reset_flag(nsk, SOCK_RCU_FREE);
2824 	/* will be fully established after successful MPC subflow creation */
2825 	inet_sk_state_store(nsk, TCP_SYN_RECV);
2826 
2827 	security_inet_csk_clone(nsk, req);
2828 	bh_unlock_sock(nsk);
2829 
2830 	/* keep a single reference */
2831 	__sock_put(nsk);
2832 	return nsk;
2833 }
2834 
mptcp_rcv_space_init(struct mptcp_sock * msk,const struct sock * ssk)2835 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
2836 {
2837 	const struct tcp_sock *tp = tcp_sk(ssk);
2838 
2839 	msk->rcvq_space.copied = 0;
2840 	msk->rcvq_space.rtt_us = 0;
2841 
2842 	msk->rcvq_space.time = tp->tcp_mstamp;
2843 
2844 	/* initial rcv_space offering made to peer */
2845 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
2846 				      TCP_INIT_CWND * tp->advmss);
2847 	if (msk->rcvq_space.space == 0)
2848 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
2849 
2850 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
2851 }
2852 
mptcp_accept(struct sock * sk,int flags,int * err,bool kern)2853 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err,
2854 				 bool kern)
2855 {
2856 	struct mptcp_sock *msk = mptcp_sk(sk);
2857 	struct socket *listener;
2858 	struct sock *newsk;
2859 
2860 	listener = __mptcp_nmpc_socket(msk);
2861 	if (WARN_ON_ONCE(!listener)) {
2862 		*err = -EINVAL;
2863 		return NULL;
2864 	}
2865 
2866 	pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk));
2867 	newsk = inet_csk_accept(listener->sk, flags, err, kern);
2868 	if (!newsk)
2869 		return NULL;
2870 
2871 	pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk));
2872 	if (sk_is_mptcp(newsk)) {
2873 		struct mptcp_subflow_context *subflow;
2874 		struct sock *new_mptcp_sock;
2875 
2876 		subflow = mptcp_subflow_ctx(newsk);
2877 		new_mptcp_sock = subflow->conn;
2878 
2879 		/* is_mptcp should be false if subflow->conn is missing, see
2880 		 * subflow_syn_recv_sock()
2881 		 */
2882 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
2883 			tcp_sk(newsk)->is_mptcp = 0;
2884 			return newsk;
2885 		}
2886 
2887 		/* acquire the 2nd reference for the owning socket */
2888 		sock_hold(new_mptcp_sock);
2889 		newsk = new_mptcp_sock;
2890 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
2891 	} else {
2892 		MPTCP_INC_STATS(sock_net(sk),
2893 				MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK);
2894 	}
2895 
2896 	return newsk;
2897 }
2898 
mptcp_destroy_common(struct mptcp_sock * msk)2899 void mptcp_destroy_common(struct mptcp_sock *msk)
2900 {
2901 	struct sock *sk = (struct sock *)msk;
2902 
2903 	__mptcp_clear_xmit(sk);
2904 
2905 	/* move to sk_receive_queue, sk_stream_kill_queues will purge it */
2906 	skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
2907 
2908 	skb_rbtree_purge(&msk->out_of_order_queue);
2909 	mptcp_token_destroy(msk);
2910 	mptcp_pm_free_anno_list(msk);
2911 }
2912 
mptcp_destroy(struct sock * sk)2913 static void mptcp_destroy(struct sock *sk)
2914 {
2915 	struct mptcp_sock *msk = mptcp_sk(sk);
2916 
2917 	mptcp_destroy_common(msk);
2918 	sk_sockets_allocated_dec(sk);
2919 }
2920 
__mptcp_data_acked(struct sock * sk)2921 void __mptcp_data_acked(struct sock *sk)
2922 {
2923 	if (!sock_owned_by_user(sk))
2924 		__mptcp_clean_una(sk);
2925 	else
2926 		set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->flags);
2927 
2928 	if (mptcp_pending_data_fin_ack(sk))
2929 		mptcp_schedule_work(sk);
2930 }
2931 
__mptcp_check_push(struct sock * sk,struct sock * ssk)2932 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
2933 {
2934 	if (!mptcp_send_head(sk))
2935 		return;
2936 
2937 	if (!sock_owned_by_user(sk)) {
2938 		struct sock *xmit_ssk = mptcp_subflow_get_send(mptcp_sk(sk));
2939 
2940 		if (xmit_ssk == ssk)
2941 			__mptcp_subflow_push_pending(sk, ssk);
2942 		else if (xmit_ssk)
2943 			mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk));
2944 	} else {
2945 		set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags);
2946 	}
2947 }
2948 
2949 /* processes deferred events and flush wmem */
mptcp_release_cb(struct sock * sk)2950 static void mptcp_release_cb(struct sock *sk)
2951 {
2952 	for (;;) {
2953 		unsigned long flags = 0;
2954 
2955 		if (test_and_clear_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags))
2956 			flags |= BIT(MPTCP_PUSH_PENDING);
2957 		if (test_and_clear_bit(MPTCP_RETRANSMIT, &mptcp_sk(sk)->flags))
2958 			flags |= BIT(MPTCP_RETRANSMIT);
2959 		if (!flags)
2960 			break;
2961 
2962 		/* the following actions acquire the subflow socket lock
2963 		 *
2964 		 * 1) can't be invoked in atomic scope
2965 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
2966 		 *    datapath acquires the msk socket spinlock while helding
2967 		 *    the subflow socket lock
2968 		 */
2969 
2970 		spin_unlock_bh(&sk->sk_lock.slock);
2971 		if (flags & BIT(MPTCP_PUSH_PENDING))
2972 			__mptcp_push_pending(sk, 0);
2973 		if (flags & BIT(MPTCP_RETRANSMIT))
2974 			__mptcp_retrans(sk);
2975 
2976 		cond_resched();
2977 		spin_lock_bh(&sk->sk_lock.slock);
2978 	}
2979 
2980 	/* be sure to set the current sk state before tacking actions
2981 	 * depending on sk_state
2982 	 */
2983 	if (test_and_clear_bit(MPTCP_CONNECTED, &mptcp_sk(sk)->flags))
2984 		__mptcp_set_connected(sk);
2985 	if (test_and_clear_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->flags))
2986 		__mptcp_clean_una_wakeup(sk);
2987 	if (test_and_clear_bit(MPTCP_ERROR_REPORT, &mptcp_sk(sk)->flags))
2988 		__mptcp_error_report(sk);
2989 
2990 	/* push_pending may touch wmem_reserved, ensure we do the cleanup
2991 	 * later
2992 	 */
2993 	__mptcp_update_wmem(sk);
2994 	__mptcp_update_rmem(sk);
2995 }
2996 
mptcp_subflow_process_delegated(struct sock * ssk)2997 void mptcp_subflow_process_delegated(struct sock *ssk)
2998 {
2999 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3000 	struct sock *sk = subflow->conn;
3001 
3002 	mptcp_data_lock(sk);
3003 	if (!sock_owned_by_user(sk))
3004 		__mptcp_subflow_push_pending(sk, ssk);
3005 	else
3006 		set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags);
3007 	mptcp_data_unlock(sk);
3008 	mptcp_subflow_delegated_done(subflow);
3009 }
3010 
mptcp_hash(struct sock * sk)3011 static int mptcp_hash(struct sock *sk)
3012 {
3013 	/* should never be called,
3014 	 * we hash the TCP subflows not the master socket
3015 	 */
3016 	WARN_ON_ONCE(1);
3017 	return 0;
3018 }
3019 
mptcp_unhash(struct sock * sk)3020 static void mptcp_unhash(struct sock *sk)
3021 {
3022 	/* called from sk_common_release(), but nothing to do here */
3023 }
3024 
mptcp_get_port(struct sock * sk,unsigned short snum)3025 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3026 {
3027 	struct mptcp_sock *msk = mptcp_sk(sk);
3028 	struct socket *ssock;
3029 
3030 	ssock = __mptcp_nmpc_socket(msk);
3031 	pr_debug("msk=%p, subflow=%p", msk, ssock);
3032 	if (WARN_ON_ONCE(!ssock))
3033 		return -EINVAL;
3034 
3035 	return inet_csk_get_port(ssock->sk, snum);
3036 }
3037 
mptcp_finish_connect(struct sock * ssk)3038 void mptcp_finish_connect(struct sock *ssk)
3039 {
3040 	struct mptcp_subflow_context *subflow;
3041 	struct mptcp_sock *msk;
3042 	struct sock *sk;
3043 	u64 ack_seq;
3044 
3045 	subflow = mptcp_subflow_ctx(ssk);
3046 	sk = subflow->conn;
3047 	msk = mptcp_sk(sk);
3048 
3049 	pr_debug("msk=%p, token=%u", sk, subflow->token);
3050 
3051 	mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq);
3052 	ack_seq++;
3053 	subflow->map_seq = ack_seq;
3054 	subflow->map_subflow_seq = 1;
3055 
3056 	/* the socket is not connected yet, no msk/subflow ops can access/race
3057 	 * accessing the field below
3058 	 */
3059 	WRITE_ONCE(msk->remote_key, subflow->remote_key);
3060 	WRITE_ONCE(msk->local_key, subflow->local_key);
3061 	WRITE_ONCE(msk->write_seq, subflow->idsn + 1);
3062 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3063 	WRITE_ONCE(msk->ack_seq, ack_seq);
3064 	WRITE_ONCE(msk->rcv_wnd_sent, ack_seq);
3065 	WRITE_ONCE(msk->can_ack, 1);
3066 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3067 
3068 	mptcp_pm_new_connection(msk, ssk, 0);
3069 
3070 	mptcp_rcv_space_init(msk, ssk);
3071 }
3072 
mptcp_sock_graft(struct sock * sk,struct socket * parent)3073 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3074 {
3075 	write_lock_bh(&sk->sk_callback_lock);
3076 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3077 	sk_set_socket(sk, parent);
3078 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
3079 	write_unlock_bh(&sk->sk_callback_lock);
3080 }
3081 
mptcp_finish_join(struct sock * ssk)3082 bool mptcp_finish_join(struct sock *ssk)
3083 {
3084 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3085 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3086 	struct sock *parent = (void *)msk;
3087 	struct socket *parent_sock;
3088 	bool ret;
3089 
3090 	pr_debug("msk=%p, subflow=%p", msk, subflow);
3091 
3092 	/* mptcp socket already closing? */
3093 	if (!mptcp_is_fully_established(parent)) {
3094 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3095 		return false;
3096 	}
3097 
3098 	if (!msk->pm.server_side)
3099 		goto out;
3100 
3101 	if (!mptcp_pm_allow_new_subflow(msk)) {
3102 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3103 		return false;
3104 	}
3105 
3106 	/* active connections are already on conn_list, and we can't acquire
3107 	 * msk lock here.
3108 	 * use the join list lock as synchronization point and double-check
3109 	 * msk status to avoid racing with __mptcp_destroy_sock()
3110 	 */
3111 	spin_lock_bh(&msk->join_list_lock);
3112 	ret = inet_sk_state_load(parent) == TCP_ESTABLISHED;
3113 	if (ret && !WARN_ON_ONCE(!list_empty(&subflow->node))) {
3114 		list_add_tail(&subflow->node, &msk->join_list);
3115 		sock_hold(ssk);
3116 	}
3117 	spin_unlock_bh(&msk->join_list_lock);
3118 	if (!ret) {
3119 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3120 		return false;
3121 	}
3122 
3123 	/* attach to msk socket only after we are sure he will deal with us
3124 	 * at close time
3125 	 */
3126 	parent_sock = READ_ONCE(parent->sk_socket);
3127 	if (parent_sock && !ssk->sk_socket)
3128 		mptcp_sock_graft(ssk, parent_sock);
3129 	subflow->map_seq = READ_ONCE(msk->ack_seq);
3130 out:
3131 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
3132 	return true;
3133 }
3134 
mptcp_shutdown(struct sock * sk,int how)3135 static void mptcp_shutdown(struct sock *sk, int how)
3136 {
3137 	pr_debug("sk=%p, how=%d", sk, how);
3138 
3139 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3140 		__mptcp_wr_shutdown(sk);
3141 }
3142 
3143 static struct proto mptcp_prot = {
3144 	.name		= "MPTCP",
3145 	.owner		= THIS_MODULE,
3146 	.init		= mptcp_init_sock,
3147 	.disconnect	= mptcp_disconnect,
3148 	.close		= mptcp_close,
3149 	.accept		= mptcp_accept,
3150 	.setsockopt	= mptcp_setsockopt,
3151 	.getsockopt	= mptcp_getsockopt,
3152 	.shutdown	= mptcp_shutdown,
3153 	.destroy	= mptcp_destroy,
3154 	.sendmsg	= mptcp_sendmsg,
3155 	.recvmsg	= mptcp_recvmsg,
3156 	.release_cb	= mptcp_release_cb,
3157 	.hash		= mptcp_hash,
3158 	.unhash		= mptcp_unhash,
3159 	.get_port	= mptcp_get_port,
3160 	.sockets_allocated	= &mptcp_sockets_allocated,
3161 	.memory_allocated	= &tcp_memory_allocated,
3162 	.memory_pressure	= &tcp_memory_pressure,
3163 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3164 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3165 	.sysctl_mem	= sysctl_tcp_mem,
3166 	.obj_size	= sizeof(struct mptcp_sock),
3167 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3168 	.no_autobind	= true,
3169 };
3170 
mptcp_bind(struct socket * sock,struct sockaddr * uaddr,int addr_len)3171 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3172 {
3173 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3174 	struct socket *ssock;
3175 	int err;
3176 
3177 	lock_sock(sock->sk);
3178 	ssock = __mptcp_nmpc_socket(msk);
3179 	if (!ssock) {
3180 		err = -EINVAL;
3181 		goto unlock;
3182 	}
3183 
3184 	err = ssock->ops->bind(ssock, uaddr, addr_len);
3185 	if (!err)
3186 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3187 
3188 unlock:
3189 	release_sock(sock->sk);
3190 	return err;
3191 }
3192 
mptcp_subflow_early_fallback(struct mptcp_sock * msk,struct mptcp_subflow_context * subflow)3193 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
3194 					 struct mptcp_subflow_context *subflow)
3195 {
3196 	subflow->request_mptcp = 0;
3197 	__mptcp_do_fallback(msk);
3198 }
3199 
mptcp_stream_connect(struct socket * sock,struct sockaddr * uaddr,int addr_len,int flags)3200 static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr,
3201 				int addr_len, int flags)
3202 {
3203 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3204 	struct mptcp_subflow_context *subflow;
3205 	struct socket *ssock;
3206 	int err;
3207 
3208 	lock_sock(sock->sk);
3209 	if (sock->state != SS_UNCONNECTED && msk->subflow) {
3210 		/* pending connection or invalid state, let existing subflow
3211 		 * cope with that
3212 		 */
3213 		ssock = msk->subflow;
3214 		goto do_connect;
3215 	}
3216 
3217 	ssock = __mptcp_nmpc_socket(msk);
3218 	if (!ssock) {
3219 		err = -EINVAL;
3220 		goto unlock;
3221 	}
3222 
3223 	mptcp_token_destroy(msk);
3224 	inet_sk_state_store(sock->sk, TCP_SYN_SENT);
3225 	subflow = mptcp_subflow_ctx(ssock->sk);
3226 #ifdef CONFIG_TCP_MD5SIG
3227 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3228 	 * TCP option space.
3229 	 */
3230 	if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info))
3231 		mptcp_subflow_early_fallback(msk, subflow);
3232 #endif
3233 	if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk)) {
3234 		MPTCP_INC_STATS(sock_net(ssock->sk), MPTCP_MIB_TOKENFALLBACKINIT);
3235 		mptcp_subflow_early_fallback(msk, subflow);
3236 	}
3237 	if (likely(!__mptcp_check_fallback(msk)))
3238 		MPTCP_INC_STATS(sock_net(sock->sk), MPTCP_MIB_MPCAPABLEACTIVE);
3239 
3240 do_connect:
3241 	err = ssock->ops->connect(ssock, uaddr, addr_len, flags);
3242 	sock->state = ssock->state;
3243 
3244 	/* on successful connect, the msk state will be moved to established by
3245 	 * subflow_finish_connect()
3246 	 */
3247 	if (!err || err == -EINPROGRESS)
3248 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3249 	else
3250 		inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
3251 
3252 unlock:
3253 	release_sock(sock->sk);
3254 	return err;
3255 }
3256 
mptcp_listen(struct socket * sock,int backlog)3257 static int mptcp_listen(struct socket *sock, int backlog)
3258 {
3259 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3260 	struct socket *ssock;
3261 	int err;
3262 
3263 	pr_debug("msk=%p", msk);
3264 
3265 	lock_sock(sock->sk);
3266 	ssock = __mptcp_nmpc_socket(msk);
3267 	if (!ssock) {
3268 		err = -EINVAL;
3269 		goto unlock;
3270 	}
3271 
3272 	mptcp_token_destroy(msk);
3273 	inet_sk_state_store(sock->sk, TCP_LISTEN);
3274 	sock_set_flag(sock->sk, SOCK_RCU_FREE);
3275 
3276 	err = ssock->ops->listen(ssock, backlog);
3277 	inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
3278 	if (!err)
3279 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3280 
3281 unlock:
3282 	release_sock(sock->sk);
3283 	return err;
3284 }
3285 
mptcp_stream_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)3286 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3287 			       int flags, bool kern)
3288 {
3289 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3290 	struct socket *ssock;
3291 	int err;
3292 
3293 	pr_debug("msk=%p", msk);
3294 
3295 	lock_sock(sock->sk);
3296 	if (sock->sk->sk_state != TCP_LISTEN)
3297 		goto unlock_fail;
3298 
3299 	ssock = __mptcp_nmpc_socket(msk);
3300 	if (!ssock)
3301 		goto unlock_fail;
3302 
3303 	clear_bit(MPTCP_DATA_READY, &msk->flags);
3304 	sock_hold(ssock->sk);
3305 	release_sock(sock->sk);
3306 
3307 	err = ssock->ops->accept(sock, newsock, flags, kern);
3308 	if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) {
3309 		struct mptcp_sock *msk = mptcp_sk(newsock->sk);
3310 		struct mptcp_subflow_context *subflow;
3311 		struct sock *newsk = newsock->sk;
3312 
3313 		lock_sock(newsk);
3314 
3315 		/* PM/worker can now acquire the first subflow socket
3316 		 * lock without racing with listener queue cleanup,
3317 		 * we can notify it, if needed.
3318 		 *
3319 		 * Even if remote has reset the initial subflow by now
3320 		 * the refcnt is still at least one.
3321 		 */
3322 		subflow = mptcp_subflow_ctx(msk->first);
3323 		list_add(&subflow->node, &msk->conn_list);
3324 		sock_hold(msk->first);
3325 		if (mptcp_is_fully_established(newsk))
3326 			mptcp_pm_fully_established(msk, msk->first, GFP_KERNEL);
3327 
3328 		mptcp_copy_inaddrs(newsk, msk->first);
3329 		mptcp_rcv_space_init(msk, msk->first);
3330 		mptcp_propagate_sndbuf(newsk, msk->first);
3331 
3332 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3333 		 * This is needed so NOSPACE flag can be set from tcp stack.
3334 		 */
3335 		mptcp_flush_join_list(msk);
3336 		mptcp_for_each_subflow(msk, subflow) {
3337 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3338 
3339 			if (!ssk->sk_socket)
3340 				mptcp_sock_graft(ssk, newsock);
3341 		}
3342 		release_sock(newsk);
3343 	}
3344 
3345 	if (inet_csk_listen_poll(ssock->sk))
3346 		set_bit(MPTCP_DATA_READY, &msk->flags);
3347 	sock_put(ssock->sk);
3348 	return err;
3349 
3350 unlock_fail:
3351 	release_sock(sock->sk);
3352 	return -EINVAL;
3353 }
3354 
mptcp_check_readable(struct mptcp_sock * msk)3355 static __poll_t mptcp_check_readable(struct mptcp_sock *msk)
3356 {
3357 	/* Concurrent splices from sk_receive_queue into receive_queue will
3358 	 * always show at least one non-empty queue when checked in this order.
3359 	 */
3360 	if (skb_queue_empty_lockless(&((struct sock *)msk)->sk_receive_queue) &&
3361 	    skb_queue_empty_lockless(&msk->receive_queue))
3362 		return 0;
3363 
3364 	return EPOLLIN | EPOLLRDNORM;
3365 }
3366 
mptcp_check_writeable(struct mptcp_sock * msk)3367 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3368 {
3369 	struct sock *sk = (struct sock *)msk;
3370 
3371 	if (unlikely(sk->sk_shutdown & SEND_SHUTDOWN))
3372 		return EPOLLOUT | EPOLLWRNORM;
3373 
3374 	if (sk_stream_is_writeable(sk))
3375 		return EPOLLOUT | EPOLLWRNORM;
3376 
3377 	mptcp_set_nospace(sk);
3378 	smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
3379 	if (sk_stream_is_writeable(sk))
3380 		return EPOLLOUT | EPOLLWRNORM;
3381 
3382 	return 0;
3383 }
3384 
mptcp_poll(struct file * file,struct socket * sock,struct poll_table_struct * wait)3385 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3386 			   struct poll_table_struct *wait)
3387 {
3388 	struct sock *sk = sock->sk;
3389 	struct mptcp_sock *msk;
3390 	__poll_t mask = 0;
3391 	int state;
3392 
3393 	msk = mptcp_sk(sk);
3394 	sock_poll_wait(file, sock, wait);
3395 
3396 	state = inet_sk_state_load(sk);
3397 	pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags);
3398 	if (state == TCP_LISTEN)
3399 		return test_bit(MPTCP_DATA_READY, &msk->flags) ? EPOLLIN | EPOLLRDNORM : 0;
3400 
3401 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
3402 		mask |= mptcp_check_readable(msk);
3403 		mask |= mptcp_check_writeable(msk);
3404 	}
3405 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
3406 		mask |= EPOLLHUP;
3407 	if (sk->sk_shutdown & RCV_SHUTDOWN)
3408 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
3409 
3410 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
3411 	smp_rmb();
3412 	if (sk->sk_err)
3413 		mask |= EPOLLERR;
3414 
3415 	return mask;
3416 }
3417 
3418 static const struct proto_ops mptcp_stream_ops = {
3419 	.family		   = PF_INET,
3420 	.owner		   = THIS_MODULE,
3421 	.release	   = inet_release,
3422 	.bind		   = mptcp_bind,
3423 	.connect	   = mptcp_stream_connect,
3424 	.socketpair	   = sock_no_socketpair,
3425 	.accept		   = mptcp_stream_accept,
3426 	.getname	   = inet_getname,
3427 	.poll		   = mptcp_poll,
3428 	.ioctl		   = inet_ioctl,
3429 	.gettstamp	   = sock_gettstamp,
3430 	.listen		   = mptcp_listen,
3431 	.shutdown	   = inet_shutdown,
3432 	.setsockopt	   = sock_common_setsockopt,
3433 	.getsockopt	   = sock_common_getsockopt,
3434 	.sendmsg	   = inet_sendmsg,
3435 	.recvmsg	   = inet_recvmsg,
3436 	.mmap		   = sock_no_mmap,
3437 	.sendpage	   = inet_sendpage,
3438 };
3439 
3440 static struct inet_protosw mptcp_protosw = {
3441 	.type		= SOCK_STREAM,
3442 	.protocol	= IPPROTO_MPTCP,
3443 	.prot		= &mptcp_prot,
3444 	.ops		= &mptcp_stream_ops,
3445 	.flags		= INET_PROTOSW_ICSK,
3446 };
3447 
mptcp_napi_poll(struct napi_struct * napi,int budget)3448 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
3449 {
3450 	struct mptcp_delegated_action *delegated;
3451 	struct mptcp_subflow_context *subflow;
3452 	int work_done = 0;
3453 
3454 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
3455 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
3456 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3457 
3458 		bh_lock_sock_nested(ssk);
3459 		if (!sock_owned_by_user(ssk) &&
3460 		    mptcp_subflow_has_delegated_action(subflow))
3461 			mptcp_subflow_process_delegated(ssk);
3462 		/* ... elsewhere tcp_release_cb_override already processed
3463 		 * the action or will do at next release_sock().
3464 		 * In both case must dequeue the subflow here - on the same
3465 		 * CPU that scheduled it.
3466 		 */
3467 		bh_unlock_sock(ssk);
3468 		sock_put(ssk);
3469 
3470 		if (++work_done == budget)
3471 			return budget;
3472 	}
3473 
3474 	/* always provide a 0 'work_done' argument, so that napi_complete_done
3475 	 * will not try accessing the NULL napi->dev ptr
3476 	 */
3477 	napi_complete_done(napi, 0);
3478 	return work_done;
3479 }
3480 
mptcp_proto_init(void)3481 void __init mptcp_proto_init(void)
3482 {
3483 	struct mptcp_delegated_action *delegated;
3484 	int cpu;
3485 
3486 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
3487 
3488 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
3489 		panic("Failed to allocate MPTCP pcpu counter\n");
3490 
3491 	init_dummy_netdev(&mptcp_napi_dev);
3492 	for_each_possible_cpu(cpu) {
3493 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
3494 		INIT_LIST_HEAD(&delegated->head);
3495 		netif_tx_napi_add(&mptcp_napi_dev, &delegated->napi, mptcp_napi_poll,
3496 				  NAPI_POLL_WEIGHT);
3497 		napi_enable(&delegated->napi);
3498 	}
3499 
3500 	mptcp_subflow_init();
3501 	mptcp_pm_init();
3502 	mptcp_token_init();
3503 
3504 	if (proto_register(&mptcp_prot, 1) != 0)
3505 		panic("Failed to register MPTCP proto.\n");
3506 
3507 	inet_register_protosw(&mptcp_protosw);
3508 
3509 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
3510 }
3511 
3512 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3513 static const struct proto_ops mptcp_v6_stream_ops = {
3514 	.family		   = PF_INET6,
3515 	.owner		   = THIS_MODULE,
3516 	.release	   = inet6_release,
3517 	.bind		   = mptcp_bind,
3518 	.connect	   = mptcp_stream_connect,
3519 	.socketpair	   = sock_no_socketpair,
3520 	.accept		   = mptcp_stream_accept,
3521 	.getname	   = inet6_getname,
3522 	.poll		   = mptcp_poll,
3523 	.ioctl		   = inet6_ioctl,
3524 	.gettstamp	   = sock_gettstamp,
3525 	.listen		   = mptcp_listen,
3526 	.shutdown	   = inet_shutdown,
3527 	.setsockopt	   = sock_common_setsockopt,
3528 	.getsockopt	   = sock_common_getsockopt,
3529 	.sendmsg	   = inet6_sendmsg,
3530 	.recvmsg	   = inet6_recvmsg,
3531 	.mmap		   = sock_no_mmap,
3532 	.sendpage	   = inet_sendpage,
3533 #ifdef CONFIG_COMPAT
3534 	.compat_ioctl	   = inet6_compat_ioctl,
3535 #endif
3536 };
3537 
3538 static struct proto mptcp_v6_prot;
3539 
mptcp_v6_destroy(struct sock * sk)3540 static void mptcp_v6_destroy(struct sock *sk)
3541 {
3542 	mptcp_destroy(sk);
3543 	inet6_destroy_sock(sk);
3544 }
3545 
3546 static struct inet_protosw mptcp_v6_protosw = {
3547 	.type		= SOCK_STREAM,
3548 	.protocol	= IPPROTO_MPTCP,
3549 	.prot		= &mptcp_v6_prot,
3550 	.ops		= &mptcp_v6_stream_ops,
3551 	.flags		= INET_PROTOSW_ICSK,
3552 };
3553 
mptcp_proto_v6_init(void)3554 int __init mptcp_proto_v6_init(void)
3555 {
3556 	int err;
3557 
3558 	mptcp_v6_prot = mptcp_prot;
3559 	strcpy(mptcp_v6_prot.name, "MPTCPv6");
3560 	mptcp_v6_prot.slab = NULL;
3561 	mptcp_v6_prot.destroy = mptcp_v6_destroy;
3562 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
3563 
3564 	err = proto_register(&mptcp_v6_prot, 1);
3565 	if (err)
3566 		return err;
3567 
3568 	err = inet6_register_protosw(&mptcp_v6_protosw);
3569 	if (err)
3570 		proto_unregister(&mptcp_v6_prot);
3571 
3572 	return err;
3573 }
3574 #endif
3575