1 /*
2 * Management Module Support for MPT (Message Passing Technology) based
3 * controllers
4 *
5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_ctl.c
6 * Copyright (C) 2012-2014 LSI Corporation
7 * Copyright (C) 2013-2014 Avago Technologies
8 * (mailto: MPT-FusionLinux.pdl@avagotech.com)
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version 2
13 * of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * NO WARRANTY
21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25 * solely responsible for determining the appropriateness of using and
26 * distributing the Program and assumes all risks associated with its
27 * exercise of rights under this Agreement, including but not limited to
28 * the risks and costs of program errors, damage to or loss of data,
29 * programs or equipment, and unavailability or interruption of operations.
30
31 * DISCLAIMER OF LIABILITY
32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39
40 * You should have received a copy of the GNU General Public License
41 * along with this program; if not, write to the Free Software
42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
43 * USA.
44 */
45
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/compat.h>
55 #include <linux/poll.h>
56
57 #include <linux/io.h>
58 #include <linux/uaccess.h>
59
60 #include "mpt3sas_base.h"
61 #include "mpt3sas_ctl.h"
62
63
64 static struct fasync_struct *async_queue;
65 static DECLARE_WAIT_QUEUE_HEAD(ctl_poll_wait);
66
67
68 /**
69 * enum block_state - blocking state
70 * @NON_BLOCKING: non blocking
71 * @BLOCKING: blocking
72 *
73 * These states are for ioctls that need to wait for a response
74 * from firmware, so they probably require sleep.
75 */
76 enum block_state {
77 NON_BLOCKING,
78 BLOCKING,
79 };
80
81 /**
82 * _ctl_display_some_debug - debug routine
83 * @ioc: per adapter object
84 * @smid: system request message index
85 * @calling_function_name: string pass from calling function
86 * @mpi_reply: reply message frame
87 * Context: none.
88 *
89 * Function for displaying debug info helpful when debugging issues
90 * in this module.
91 */
92 static void
_ctl_display_some_debug(struct MPT3SAS_ADAPTER * ioc,u16 smid,char * calling_function_name,MPI2DefaultReply_t * mpi_reply)93 _ctl_display_some_debug(struct MPT3SAS_ADAPTER *ioc, u16 smid,
94 char *calling_function_name, MPI2DefaultReply_t *mpi_reply)
95 {
96 Mpi2ConfigRequest_t *mpi_request;
97 char *desc = NULL;
98
99 if (!(ioc->logging_level & MPT_DEBUG_IOCTL))
100 return;
101
102 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
103 switch (mpi_request->Function) {
104 case MPI2_FUNCTION_SCSI_IO_REQUEST:
105 {
106 Mpi2SCSIIORequest_t *scsi_request =
107 (Mpi2SCSIIORequest_t *)mpi_request;
108
109 snprintf(ioc->tmp_string, MPT_STRING_LENGTH,
110 "scsi_io, cmd(0x%02x), cdb_len(%d)",
111 scsi_request->CDB.CDB32[0],
112 le16_to_cpu(scsi_request->IoFlags) & 0xF);
113 desc = ioc->tmp_string;
114 break;
115 }
116 case MPI2_FUNCTION_SCSI_TASK_MGMT:
117 desc = "task_mgmt";
118 break;
119 case MPI2_FUNCTION_IOC_INIT:
120 desc = "ioc_init";
121 break;
122 case MPI2_FUNCTION_IOC_FACTS:
123 desc = "ioc_facts";
124 break;
125 case MPI2_FUNCTION_CONFIG:
126 {
127 Mpi2ConfigRequest_t *config_request =
128 (Mpi2ConfigRequest_t *)mpi_request;
129
130 snprintf(ioc->tmp_string, MPT_STRING_LENGTH,
131 "config, type(0x%02x), ext_type(0x%02x), number(%d)",
132 (config_request->Header.PageType &
133 MPI2_CONFIG_PAGETYPE_MASK), config_request->ExtPageType,
134 config_request->Header.PageNumber);
135 desc = ioc->tmp_string;
136 break;
137 }
138 case MPI2_FUNCTION_PORT_FACTS:
139 desc = "port_facts";
140 break;
141 case MPI2_FUNCTION_PORT_ENABLE:
142 desc = "port_enable";
143 break;
144 case MPI2_FUNCTION_EVENT_NOTIFICATION:
145 desc = "event_notification";
146 break;
147 case MPI2_FUNCTION_FW_DOWNLOAD:
148 desc = "fw_download";
149 break;
150 case MPI2_FUNCTION_FW_UPLOAD:
151 desc = "fw_upload";
152 break;
153 case MPI2_FUNCTION_RAID_ACTION:
154 desc = "raid_action";
155 break;
156 case MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH:
157 {
158 Mpi2SCSIIORequest_t *scsi_request =
159 (Mpi2SCSIIORequest_t *)mpi_request;
160
161 snprintf(ioc->tmp_string, MPT_STRING_LENGTH,
162 "raid_pass, cmd(0x%02x), cdb_len(%d)",
163 scsi_request->CDB.CDB32[0],
164 le16_to_cpu(scsi_request->IoFlags) & 0xF);
165 desc = ioc->tmp_string;
166 break;
167 }
168 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
169 desc = "sas_iounit_cntl";
170 break;
171 case MPI2_FUNCTION_SATA_PASSTHROUGH:
172 desc = "sata_pass";
173 break;
174 case MPI2_FUNCTION_DIAG_BUFFER_POST:
175 desc = "diag_buffer_post";
176 break;
177 case MPI2_FUNCTION_DIAG_RELEASE:
178 desc = "diag_release";
179 break;
180 case MPI2_FUNCTION_SMP_PASSTHROUGH:
181 desc = "smp_passthrough";
182 break;
183 }
184
185 if (!desc)
186 return;
187
188 ioc_info(ioc, "%s: %s, smid(%d)\n", calling_function_name, desc, smid);
189
190 if (!mpi_reply)
191 return;
192
193 if (mpi_reply->IOCStatus || mpi_reply->IOCLogInfo)
194 ioc_info(ioc, "\tiocstatus(0x%04x), loginfo(0x%08x)\n",
195 le16_to_cpu(mpi_reply->IOCStatus),
196 le32_to_cpu(mpi_reply->IOCLogInfo));
197
198 if (mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
199 mpi_request->Function ==
200 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH) {
201 Mpi2SCSIIOReply_t *scsi_reply =
202 (Mpi2SCSIIOReply_t *)mpi_reply;
203 struct _sas_device *sas_device = NULL;
204 struct _pcie_device *pcie_device = NULL;
205
206 sas_device = mpt3sas_get_sdev_by_handle(ioc,
207 le16_to_cpu(scsi_reply->DevHandle));
208 if (sas_device) {
209 ioc_warn(ioc, "\tsas_address(0x%016llx), phy(%d)\n",
210 (u64)sas_device->sas_address,
211 sas_device->phy);
212 ioc_warn(ioc, "\tenclosure_logical_id(0x%016llx), slot(%d)\n",
213 (u64)sas_device->enclosure_logical_id,
214 sas_device->slot);
215 sas_device_put(sas_device);
216 }
217 if (!sas_device) {
218 pcie_device = mpt3sas_get_pdev_by_handle(ioc,
219 le16_to_cpu(scsi_reply->DevHandle));
220 if (pcie_device) {
221 ioc_warn(ioc, "\tWWID(0x%016llx), port(%d)\n",
222 (unsigned long long)pcie_device->wwid,
223 pcie_device->port_num);
224 if (pcie_device->enclosure_handle != 0)
225 ioc_warn(ioc, "\tenclosure_logical_id(0x%016llx), slot(%d)\n",
226 (u64)pcie_device->enclosure_logical_id,
227 pcie_device->slot);
228 pcie_device_put(pcie_device);
229 }
230 }
231 if (scsi_reply->SCSIState || scsi_reply->SCSIStatus)
232 ioc_info(ioc, "\tscsi_state(0x%02x), scsi_status(0x%02x)\n",
233 scsi_reply->SCSIState,
234 scsi_reply->SCSIStatus);
235 }
236 }
237
238 /**
239 * mpt3sas_ctl_done - ctl module completion routine
240 * @ioc: per adapter object
241 * @smid: system request message index
242 * @msix_index: MSIX table index supplied by the OS
243 * @reply: reply message frame(lower 32bit addr)
244 * Context: none.
245 *
246 * The callback handler when using ioc->ctl_cb_idx.
247 *
248 * Return: 1 meaning mf should be freed from _base_interrupt
249 * 0 means the mf is freed from this function.
250 */
251 u8
mpt3sas_ctl_done(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 msix_index,u32 reply)252 mpt3sas_ctl_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
253 u32 reply)
254 {
255 MPI2DefaultReply_t *mpi_reply;
256 Mpi2SCSIIOReply_t *scsiio_reply;
257 Mpi26NVMeEncapsulatedErrorReply_t *nvme_error_reply;
258 const void *sense_data;
259 u32 sz;
260
261 if (ioc->ctl_cmds.status == MPT3_CMD_NOT_USED)
262 return 1;
263 if (ioc->ctl_cmds.smid != smid)
264 return 1;
265 ioc->ctl_cmds.status |= MPT3_CMD_COMPLETE;
266 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
267 if (mpi_reply) {
268 memcpy(ioc->ctl_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
269 ioc->ctl_cmds.status |= MPT3_CMD_REPLY_VALID;
270 /* get sense data */
271 if (mpi_reply->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
272 mpi_reply->Function ==
273 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH) {
274 scsiio_reply = (Mpi2SCSIIOReply_t *)mpi_reply;
275 if (scsiio_reply->SCSIState &
276 MPI2_SCSI_STATE_AUTOSENSE_VALID) {
277 sz = min_t(u32, SCSI_SENSE_BUFFERSIZE,
278 le32_to_cpu(scsiio_reply->SenseCount));
279 sense_data = mpt3sas_base_get_sense_buffer(ioc,
280 smid);
281 memcpy(ioc->ctl_cmds.sense, sense_data, sz);
282 }
283 }
284 /*
285 * Get Error Response data for NVMe device. The ctl_cmds.sense
286 * buffer is used to store the Error Response data.
287 */
288 if (mpi_reply->Function == MPI2_FUNCTION_NVME_ENCAPSULATED) {
289 nvme_error_reply =
290 (Mpi26NVMeEncapsulatedErrorReply_t *)mpi_reply;
291 sz = min_t(u32, NVME_ERROR_RESPONSE_SIZE,
292 le16_to_cpu(nvme_error_reply->ErrorResponseCount));
293 sense_data = mpt3sas_base_get_sense_buffer(ioc, smid);
294 memcpy(ioc->ctl_cmds.sense, sense_data, sz);
295 }
296 }
297
298 _ctl_display_some_debug(ioc, smid, "ctl_done", mpi_reply);
299 ioc->ctl_cmds.status &= ~MPT3_CMD_PENDING;
300 complete(&ioc->ctl_cmds.done);
301 return 1;
302 }
303
304 /**
305 * _ctl_check_event_type - determines when an event needs logging
306 * @ioc: per adapter object
307 * @event: firmware event
308 *
309 * The bitmask in ioc->event_type[] indicates which events should be
310 * be saved in the driver event_log. This bitmask is set by application.
311 *
312 * Return: 1 when event should be captured, or zero means no match.
313 */
314 static int
_ctl_check_event_type(struct MPT3SAS_ADAPTER * ioc,u16 event)315 _ctl_check_event_type(struct MPT3SAS_ADAPTER *ioc, u16 event)
316 {
317 u16 i;
318 u32 desired_event;
319
320 if (event >= 128 || !event || !ioc->event_log)
321 return 0;
322
323 desired_event = (1 << (event % 32));
324 if (!desired_event)
325 desired_event = 1;
326 i = event / 32;
327 return desired_event & ioc->event_type[i];
328 }
329
330 /**
331 * mpt3sas_ctl_add_to_event_log - add event
332 * @ioc: per adapter object
333 * @mpi_reply: reply message frame
334 */
335 void
mpt3sas_ctl_add_to_event_log(struct MPT3SAS_ADAPTER * ioc,Mpi2EventNotificationReply_t * mpi_reply)336 mpt3sas_ctl_add_to_event_log(struct MPT3SAS_ADAPTER *ioc,
337 Mpi2EventNotificationReply_t *mpi_reply)
338 {
339 struct MPT3_IOCTL_EVENTS *event_log;
340 u16 event;
341 int i;
342 u32 sz, event_data_sz;
343 u8 send_aen = 0;
344
345 if (!ioc->event_log)
346 return;
347
348 event = le16_to_cpu(mpi_reply->Event);
349
350 if (_ctl_check_event_type(ioc, event)) {
351
352 /* insert entry into circular event_log */
353 i = ioc->event_context % MPT3SAS_CTL_EVENT_LOG_SIZE;
354 event_log = ioc->event_log;
355 event_log[i].event = event;
356 event_log[i].context = ioc->event_context++;
357
358 event_data_sz = le16_to_cpu(mpi_reply->EventDataLength)*4;
359 sz = min_t(u32, event_data_sz, MPT3_EVENT_DATA_SIZE);
360 memset(event_log[i].data, 0, MPT3_EVENT_DATA_SIZE);
361 memcpy(event_log[i].data, mpi_reply->EventData, sz);
362 send_aen = 1;
363 }
364
365 /* This aen_event_read_flag flag is set until the
366 * application has read the event log.
367 * For MPI2_EVENT_LOG_ENTRY_ADDED, we always notify.
368 */
369 if (event == MPI2_EVENT_LOG_ENTRY_ADDED ||
370 (send_aen && !ioc->aen_event_read_flag)) {
371 ioc->aen_event_read_flag = 1;
372 wake_up_interruptible(&ctl_poll_wait);
373 if (async_queue)
374 kill_fasync(&async_queue, SIGIO, POLL_IN);
375 }
376 }
377
378 /**
379 * mpt3sas_ctl_event_callback - firmware event handler (called at ISR time)
380 * @ioc: per adapter object
381 * @msix_index: MSIX table index supplied by the OS
382 * @reply: reply message frame(lower 32bit addr)
383 * Context: interrupt.
384 *
385 * This function merely adds a new work task into ioc->firmware_event_thread.
386 * The tasks are worked from _firmware_event_work in user context.
387 *
388 * Return: 1 meaning mf should be freed from _base_interrupt
389 * 0 means the mf is freed from this function.
390 */
391 u8
mpt3sas_ctl_event_callback(struct MPT3SAS_ADAPTER * ioc,u8 msix_index,u32 reply)392 mpt3sas_ctl_event_callback(struct MPT3SAS_ADAPTER *ioc, u8 msix_index,
393 u32 reply)
394 {
395 Mpi2EventNotificationReply_t *mpi_reply;
396
397 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
398 if (mpi_reply)
399 mpt3sas_ctl_add_to_event_log(ioc, mpi_reply);
400 return 1;
401 }
402
403 /**
404 * _ctl_verify_adapter - validates ioc_number passed from application
405 * @ioc_number: ?
406 * @iocpp: The ioc pointer is returned in this.
407 * @mpi_version: will be MPI2_VERSION for mpt2ctl ioctl device &
408 * MPI25_VERSION | MPI26_VERSION for mpt3ctl ioctl device.
409 *
410 * Return: (-1) means error, else ioc_number.
411 */
412 static int
_ctl_verify_adapter(int ioc_number,struct MPT3SAS_ADAPTER ** iocpp,int mpi_version)413 _ctl_verify_adapter(int ioc_number, struct MPT3SAS_ADAPTER **iocpp,
414 int mpi_version)
415 {
416 struct MPT3SAS_ADAPTER *ioc;
417 int version = 0;
418 /* global ioc lock to protect controller on list operations */
419 spin_lock(&gioc_lock);
420 list_for_each_entry(ioc, &mpt3sas_ioc_list, list) {
421 if (ioc->id != ioc_number)
422 continue;
423 /* Check whether this ioctl command is from right
424 * ioctl device or not, if not continue the search.
425 */
426 version = ioc->hba_mpi_version_belonged;
427 /* MPI25_VERSION and MPI26_VERSION uses same ioctl
428 * device.
429 */
430 if (mpi_version == (MPI25_VERSION | MPI26_VERSION)) {
431 if ((version == MPI25_VERSION) ||
432 (version == MPI26_VERSION))
433 goto out;
434 else
435 continue;
436 } else {
437 if (version != mpi_version)
438 continue;
439 }
440 out:
441 spin_unlock(&gioc_lock);
442 *iocpp = ioc;
443 return ioc_number;
444 }
445 spin_unlock(&gioc_lock);
446 *iocpp = NULL;
447 return -1;
448 }
449
450 /**
451 * mpt3sas_ctl_reset_handler - reset callback handler (for ctl)
452 * @ioc: per adapter object
453 *
454 * The handler for doing any required cleanup or initialization.
455 */
mpt3sas_ctl_pre_reset_handler(struct MPT3SAS_ADAPTER * ioc)456 void mpt3sas_ctl_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
457 {
458 int i;
459 u8 issue_reset;
460
461 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
462 for (i = 0; i < MPI2_DIAG_BUF_TYPE_COUNT; i++) {
463 if (!(ioc->diag_buffer_status[i] &
464 MPT3_DIAG_BUFFER_IS_REGISTERED))
465 continue;
466 if ((ioc->diag_buffer_status[i] &
467 MPT3_DIAG_BUFFER_IS_RELEASED))
468 continue;
469 mpt3sas_send_diag_release(ioc, i, &issue_reset);
470 }
471 }
472
473 /**
474 * mpt3sas_ctl_reset_handler - reset callback handler (for ctl)
475 * @ioc: per adapter object
476 *
477 * The handler for doing any required cleanup or initialization.
478 */
mpt3sas_ctl_after_reset_handler(struct MPT3SAS_ADAPTER * ioc)479 void mpt3sas_ctl_after_reset_handler(struct MPT3SAS_ADAPTER *ioc)
480 {
481 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_AFTER_RESET\n", __func__));
482 if (ioc->ctl_cmds.status & MPT3_CMD_PENDING) {
483 ioc->ctl_cmds.status |= MPT3_CMD_RESET;
484 mpt3sas_base_free_smid(ioc, ioc->ctl_cmds.smid);
485 complete(&ioc->ctl_cmds.done);
486 }
487 }
488
489 /**
490 * mpt3sas_ctl_reset_handler - reset callback handler (for ctl)
491 * @ioc: per adapter object
492 *
493 * The handler for doing any required cleanup or initialization.
494 */
mpt3sas_ctl_reset_done_handler(struct MPT3SAS_ADAPTER * ioc)495 void mpt3sas_ctl_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
496 {
497 int i;
498
499 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
500
501 for (i = 0; i < MPI2_DIAG_BUF_TYPE_COUNT; i++) {
502 if (!(ioc->diag_buffer_status[i] &
503 MPT3_DIAG_BUFFER_IS_REGISTERED))
504 continue;
505 if ((ioc->diag_buffer_status[i] &
506 MPT3_DIAG_BUFFER_IS_RELEASED))
507 continue;
508 ioc->diag_buffer_status[i] |=
509 MPT3_DIAG_BUFFER_IS_DIAG_RESET;
510 }
511 }
512
513 /**
514 * _ctl_fasync -
515 * @fd: ?
516 * @filep: ?
517 * @mode: ?
518 *
519 * Called when application request fasyn callback handler.
520 */
521 static int
_ctl_fasync(int fd,struct file * filep,int mode)522 _ctl_fasync(int fd, struct file *filep, int mode)
523 {
524 return fasync_helper(fd, filep, mode, &async_queue);
525 }
526
527 /**
528 * _ctl_poll -
529 * @filep: ?
530 * @wait: ?
531 *
532 */
533 static __poll_t
_ctl_poll(struct file * filep,poll_table * wait)534 _ctl_poll(struct file *filep, poll_table *wait)
535 {
536 struct MPT3SAS_ADAPTER *ioc;
537
538 poll_wait(filep, &ctl_poll_wait, wait);
539
540 /* global ioc lock to protect controller on list operations */
541 spin_lock(&gioc_lock);
542 list_for_each_entry(ioc, &mpt3sas_ioc_list, list) {
543 if (ioc->aen_event_read_flag) {
544 spin_unlock(&gioc_lock);
545 return EPOLLIN | EPOLLRDNORM;
546 }
547 }
548 spin_unlock(&gioc_lock);
549 return 0;
550 }
551
552 /**
553 * _ctl_set_task_mid - assign an active smid to tm request
554 * @ioc: per adapter object
555 * @karg: (struct mpt3_ioctl_command)
556 * @tm_request: pointer to mf from user space
557 *
558 * Return: 0 when an smid if found, else fail.
559 * during failure, the reply frame is filled.
560 */
561 static int
_ctl_set_task_mid(struct MPT3SAS_ADAPTER * ioc,struct mpt3_ioctl_command * karg,Mpi2SCSITaskManagementRequest_t * tm_request)562 _ctl_set_task_mid(struct MPT3SAS_ADAPTER *ioc, struct mpt3_ioctl_command *karg,
563 Mpi2SCSITaskManagementRequest_t *tm_request)
564 {
565 u8 found = 0;
566 u16 smid;
567 u16 handle;
568 struct scsi_cmnd *scmd;
569 struct MPT3SAS_DEVICE *priv_data;
570 Mpi2SCSITaskManagementReply_t *tm_reply;
571 u32 sz;
572 u32 lun;
573 char *desc = NULL;
574
575 if (tm_request->TaskType == MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK)
576 desc = "abort_task";
577 else if (tm_request->TaskType == MPI2_SCSITASKMGMT_TASKTYPE_QUERY_TASK)
578 desc = "query_task";
579 else
580 return 0;
581
582 lun = scsilun_to_int((struct scsi_lun *)tm_request->LUN);
583
584 handle = le16_to_cpu(tm_request->DevHandle);
585 for (smid = ioc->scsiio_depth; smid && !found; smid--) {
586 struct scsiio_tracker *st;
587
588 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
589 if (!scmd)
590 continue;
591 if (lun != scmd->device->lun)
592 continue;
593 priv_data = scmd->device->hostdata;
594 if (priv_data->sas_target == NULL)
595 continue;
596 if (priv_data->sas_target->handle != handle)
597 continue;
598 st = scsi_cmd_priv(scmd);
599
600 /*
601 * If the given TaskMID from the user space is zero, then the
602 * first outstanding smid will be picked up. Otherwise,
603 * targeted smid will be the one.
604 */
605 if (!tm_request->TaskMID || tm_request->TaskMID == st->smid) {
606 tm_request->TaskMID = cpu_to_le16(st->smid);
607 found = 1;
608 }
609 }
610
611 if (!found) {
612 dctlprintk(ioc,
613 ioc_info(ioc, "%s: handle(0x%04x), lun(%d), no active mid!!\n",
614 desc, le16_to_cpu(tm_request->DevHandle),
615 lun));
616 tm_reply = ioc->ctl_cmds.reply;
617 tm_reply->DevHandle = tm_request->DevHandle;
618 tm_reply->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
619 tm_reply->TaskType = tm_request->TaskType;
620 tm_reply->MsgLength = sizeof(Mpi2SCSITaskManagementReply_t)/4;
621 tm_reply->VP_ID = tm_request->VP_ID;
622 tm_reply->VF_ID = tm_request->VF_ID;
623 sz = min_t(u32, karg->max_reply_bytes, ioc->reply_sz);
624 if (copy_to_user(karg->reply_frame_buf_ptr, ioc->ctl_cmds.reply,
625 sz))
626 pr_err("failure at %s:%d/%s()!\n", __FILE__,
627 __LINE__, __func__);
628 return 1;
629 }
630
631 dctlprintk(ioc,
632 ioc_info(ioc, "%s: handle(0x%04x), lun(%d), task_mid(%d)\n",
633 desc, le16_to_cpu(tm_request->DevHandle), lun,
634 le16_to_cpu(tm_request->TaskMID)));
635 return 0;
636 }
637
638 /**
639 * _ctl_do_mpt_command - main handler for MPT3COMMAND opcode
640 * @ioc: per adapter object
641 * @karg: (struct mpt3_ioctl_command)
642 * @mf: pointer to mf in user space
643 */
644 static long
_ctl_do_mpt_command(struct MPT3SAS_ADAPTER * ioc,struct mpt3_ioctl_command karg,void __user * mf)645 _ctl_do_mpt_command(struct MPT3SAS_ADAPTER *ioc, struct mpt3_ioctl_command karg,
646 void __user *mf)
647 {
648 MPI2RequestHeader_t *mpi_request = NULL, *request;
649 MPI2DefaultReply_t *mpi_reply;
650 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request = NULL;
651 struct _pcie_device *pcie_device = NULL;
652 u16 smid;
653 u8 timeout;
654 u8 issue_reset;
655 u32 sz, sz_arg;
656 void *psge;
657 void *data_out = NULL;
658 dma_addr_t data_out_dma = 0;
659 size_t data_out_sz = 0;
660 void *data_in = NULL;
661 dma_addr_t data_in_dma = 0;
662 size_t data_in_sz = 0;
663 long ret;
664 u16 device_handle = MPT3SAS_INVALID_DEVICE_HANDLE;
665
666 issue_reset = 0;
667
668 if (ioc->ctl_cmds.status != MPT3_CMD_NOT_USED) {
669 ioc_err(ioc, "%s: ctl_cmd in use\n", __func__);
670 ret = -EAGAIN;
671 goto out;
672 }
673
674 ret = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
675 if (ret)
676 goto out;
677
678 mpi_request = kzalloc(ioc->request_sz, GFP_KERNEL);
679 if (!mpi_request) {
680 ioc_err(ioc, "%s: failed obtaining a memory for mpi_request\n",
681 __func__);
682 ret = -ENOMEM;
683 goto out;
684 }
685
686 /* Check for overflow and wraparound */
687 if (karg.data_sge_offset * 4 > ioc->request_sz ||
688 karg.data_sge_offset > (UINT_MAX / 4)) {
689 ret = -EINVAL;
690 goto out;
691 }
692
693 /* copy in request message frame from user */
694 if (copy_from_user(mpi_request, mf, karg.data_sge_offset*4)) {
695 pr_err("failure at %s:%d/%s()!\n", __FILE__, __LINE__,
696 __func__);
697 ret = -EFAULT;
698 goto out;
699 }
700
701 if (mpi_request->Function == MPI2_FUNCTION_SCSI_TASK_MGMT) {
702 smid = mpt3sas_base_get_smid_hpr(ioc, ioc->ctl_cb_idx);
703 if (!smid) {
704 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
705 ret = -EAGAIN;
706 goto out;
707 }
708 } else {
709 /* Use first reserved smid for passthrough ioctls */
710 smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
711 }
712
713 ret = 0;
714 ioc->ctl_cmds.status = MPT3_CMD_PENDING;
715 memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz);
716 request = mpt3sas_base_get_msg_frame(ioc, smid);
717 memset(request, 0, ioc->request_sz);
718 memcpy(request, mpi_request, karg.data_sge_offset*4);
719 ioc->ctl_cmds.smid = smid;
720 data_out_sz = karg.data_out_size;
721 data_in_sz = karg.data_in_size;
722
723 if (mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
724 mpi_request->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
725 mpi_request->Function == MPI2_FUNCTION_SCSI_TASK_MGMT ||
726 mpi_request->Function == MPI2_FUNCTION_SATA_PASSTHROUGH ||
727 mpi_request->Function == MPI2_FUNCTION_NVME_ENCAPSULATED) {
728
729 device_handle = le16_to_cpu(mpi_request->FunctionDependent1);
730 if (!device_handle || (device_handle >
731 ioc->facts.MaxDevHandle)) {
732 ret = -EINVAL;
733 mpt3sas_base_free_smid(ioc, smid);
734 goto out;
735 }
736 }
737
738 /* obtain dma-able memory for data transfer */
739 if (data_out_sz) /* WRITE */ {
740 data_out = dma_alloc_coherent(&ioc->pdev->dev, data_out_sz,
741 &data_out_dma, GFP_KERNEL);
742 if (!data_out) {
743 pr_err("failure at %s:%d/%s()!\n", __FILE__,
744 __LINE__, __func__);
745 ret = -ENOMEM;
746 mpt3sas_base_free_smid(ioc, smid);
747 goto out;
748 }
749 if (copy_from_user(data_out, karg.data_out_buf_ptr,
750 data_out_sz)) {
751 pr_err("failure at %s:%d/%s()!\n", __FILE__,
752 __LINE__, __func__);
753 ret = -EFAULT;
754 mpt3sas_base_free_smid(ioc, smid);
755 goto out;
756 }
757 }
758
759 if (data_in_sz) /* READ */ {
760 data_in = dma_alloc_coherent(&ioc->pdev->dev, data_in_sz,
761 &data_in_dma, GFP_KERNEL);
762 if (!data_in) {
763 pr_err("failure at %s:%d/%s()!\n", __FILE__,
764 __LINE__, __func__);
765 ret = -ENOMEM;
766 mpt3sas_base_free_smid(ioc, smid);
767 goto out;
768 }
769 }
770
771 psge = (void *)request + (karg.data_sge_offset*4);
772
773 /* send command to firmware */
774 _ctl_display_some_debug(ioc, smid, "ctl_request", NULL);
775
776 init_completion(&ioc->ctl_cmds.done);
777 switch (mpi_request->Function) {
778 case MPI2_FUNCTION_NVME_ENCAPSULATED:
779 {
780 nvme_encap_request = (Mpi26NVMeEncapsulatedRequest_t *)request;
781 /*
782 * Get the Physical Address of the sense buffer.
783 * Use Error Response buffer address field to hold the sense
784 * buffer address.
785 * Clear the internal sense buffer, which will potentially hold
786 * the Completion Queue Entry on return, or 0 if no Entry.
787 * Build the PRPs and set direction bits.
788 * Send the request.
789 */
790 nvme_encap_request->ErrorResponseBaseAddress =
791 cpu_to_le64(ioc->sense_dma & 0xFFFFFFFF00000000UL);
792 nvme_encap_request->ErrorResponseBaseAddress |=
793 cpu_to_le64(le32_to_cpu(
794 mpt3sas_base_get_sense_buffer_dma(ioc, smid)));
795 nvme_encap_request->ErrorResponseAllocationLength =
796 cpu_to_le16(NVME_ERROR_RESPONSE_SIZE);
797 memset(ioc->ctl_cmds.sense, 0, NVME_ERROR_RESPONSE_SIZE);
798 ioc->build_nvme_prp(ioc, smid, nvme_encap_request,
799 data_out_dma, data_out_sz, data_in_dma, data_in_sz);
800 if (test_bit(device_handle, ioc->device_remove_in_progress)) {
801 dtmprintk(ioc,
802 ioc_info(ioc, "handle(0x%04x): ioctl failed due to device removal in progress\n",
803 device_handle));
804 mpt3sas_base_free_smid(ioc, smid);
805 ret = -EINVAL;
806 goto out;
807 }
808 mpt3sas_base_put_smid_nvme_encap(ioc, smid);
809 break;
810 }
811 case MPI2_FUNCTION_SCSI_IO_REQUEST:
812 case MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH:
813 {
814 Mpi2SCSIIORequest_t *scsiio_request =
815 (Mpi2SCSIIORequest_t *)request;
816 scsiio_request->SenseBufferLength = SCSI_SENSE_BUFFERSIZE;
817 scsiio_request->SenseBufferLowAddress =
818 mpt3sas_base_get_sense_buffer_dma(ioc, smid);
819 memset(ioc->ctl_cmds.sense, 0, SCSI_SENSE_BUFFERSIZE);
820 if (test_bit(device_handle, ioc->device_remove_in_progress)) {
821 dtmprintk(ioc,
822 ioc_info(ioc, "handle(0x%04x) :ioctl failed due to device removal in progress\n",
823 device_handle));
824 mpt3sas_base_free_smid(ioc, smid);
825 ret = -EINVAL;
826 goto out;
827 }
828 ioc->build_sg(ioc, psge, data_out_dma, data_out_sz,
829 data_in_dma, data_in_sz);
830 if (mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST)
831 ioc->put_smid_scsi_io(ioc, smid, device_handle);
832 else
833 ioc->put_smid_default(ioc, smid);
834 break;
835 }
836 case MPI2_FUNCTION_SCSI_TASK_MGMT:
837 {
838 Mpi2SCSITaskManagementRequest_t *tm_request =
839 (Mpi2SCSITaskManagementRequest_t *)request;
840
841 dtmprintk(ioc,
842 ioc_info(ioc, "TASK_MGMT: handle(0x%04x), task_type(0x%02x)\n",
843 le16_to_cpu(tm_request->DevHandle),
844 tm_request->TaskType));
845 ioc->got_task_abort_from_ioctl = 1;
846 if (tm_request->TaskType ==
847 MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK ||
848 tm_request->TaskType ==
849 MPI2_SCSITASKMGMT_TASKTYPE_QUERY_TASK) {
850 if (_ctl_set_task_mid(ioc, &karg, tm_request)) {
851 mpt3sas_base_free_smid(ioc, smid);
852 ioc->got_task_abort_from_ioctl = 0;
853 goto out;
854 }
855 }
856 ioc->got_task_abort_from_ioctl = 0;
857
858 if (test_bit(device_handle, ioc->device_remove_in_progress)) {
859 dtmprintk(ioc,
860 ioc_info(ioc, "handle(0x%04x) :ioctl failed due to device removal in progress\n",
861 device_handle));
862 mpt3sas_base_free_smid(ioc, smid);
863 ret = -EINVAL;
864 goto out;
865 }
866 mpt3sas_scsih_set_tm_flag(ioc, le16_to_cpu(
867 tm_request->DevHandle));
868 ioc->build_sg_mpi(ioc, psge, data_out_dma, data_out_sz,
869 data_in_dma, data_in_sz);
870 ioc->put_smid_hi_priority(ioc, smid, 0);
871 break;
872 }
873 case MPI2_FUNCTION_SMP_PASSTHROUGH:
874 {
875 Mpi2SmpPassthroughRequest_t *smp_request =
876 (Mpi2SmpPassthroughRequest_t *)mpi_request;
877 u8 *data;
878
879 /* ioc determines which port to use */
880 smp_request->PhysicalPort = 0xFF;
881 if (smp_request->PassthroughFlags &
882 MPI2_SMP_PT_REQ_PT_FLAGS_IMMEDIATE)
883 data = (u8 *)&smp_request->SGL;
884 else {
885 if (unlikely(data_out == NULL)) {
886 pr_err("failure at %s:%d/%s()!\n",
887 __FILE__, __LINE__, __func__);
888 mpt3sas_base_free_smid(ioc, smid);
889 ret = -EINVAL;
890 goto out;
891 }
892 data = data_out;
893 }
894
895 if (data[1] == 0x91 && (data[10] == 1 || data[10] == 2)) {
896 ioc->ioc_link_reset_in_progress = 1;
897 ioc->ignore_loginfos = 1;
898 }
899 ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, data_in_dma,
900 data_in_sz);
901 ioc->put_smid_default(ioc, smid);
902 break;
903 }
904 case MPI2_FUNCTION_SATA_PASSTHROUGH:
905 {
906 if (test_bit(device_handle, ioc->device_remove_in_progress)) {
907 dtmprintk(ioc,
908 ioc_info(ioc, "handle(0x%04x) :ioctl failed due to device removal in progress\n",
909 device_handle));
910 mpt3sas_base_free_smid(ioc, smid);
911 ret = -EINVAL;
912 goto out;
913 }
914 ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, data_in_dma,
915 data_in_sz);
916 ioc->put_smid_default(ioc, smid);
917 break;
918 }
919 case MPI2_FUNCTION_FW_DOWNLOAD:
920 case MPI2_FUNCTION_FW_UPLOAD:
921 {
922 ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, data_in_dma,
923 data_in_sz);
924 ioc->put_smid_default(ioc, smid);
925 break;
926 }
927 case MPI2_FUNCTION_TOOLBOX:
928 {
929 Mpi2ToolboxCleanRequest_t *toolbox_request =
930 (Mpi2ToolboxCleanRequest_t *)mpi_request;
931
932 if ((toolbox_request->Tool == MPI2_TOOLBOX_DIAGNOSTIC_CLI_TOOL)
933 || (toolbox_request->Tool ==
934 MPI26_TOOLBOX_BACKEND_PCIE_LANE_MARGIN))
935 ioc->build_sg(ioc, psge, data_out_dma, data_out_sz,
936 data_in_dma, data_in_sz);
937 else if (toolbox_request->Tool ==
938 MPI2_TOOLBOX_MEMORY_MOVE_TOOL) {
939 Mpi2ToolboxMemMoveRequest_t *mem_move_request =
940 (Mpi2ToolboxMemMoveRequest_t *)request;
941 Mpi2SGESimple64_t tmp, *src = NULL, *dst = NULL;
942
943 ioc->build_sg_mpi(ioc, psge, data_out_dma,
944 data_out_sz, data_in_dma, data_in_sz);
945 if (data_out_sz && !data_in_sz) {
946 dst =
947 (Mpi2SGESimple64_t *)&mem_move_request->SGL;
948 src = (void *)dst + ioc->sge_size;
949
950 memcpy(&tmp, src, ioc->sge_size);
951 memcpy(src, dst, ioc->sge_size);
952 memcpy(dst, &tmp, ioc->sge_size);
953 }
954 if (ioc->logging_level & MPT_DEBUG_TM) {
955 ioc_info(ioc,
956 "Mpi2ToolboxMemMoveRequest_t request msg\n");
957 _debug_dump_mf(mem_move_request,
958 ioc->request_sz/4);
959 }
960 } else
961 ioc->build_sg_mpi(ioc, psge, data_out_dma, data_out_sz,
962 data_in_dma, data_in_sz);
963 ioc->put_smid_default(ioc, smid);
964 break;
965 }
966 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
967 {
968 Mpi2SasIoUnitControlRequest_t *sasiounit_request =
969 (Mpi2SasIoUnitControlRequest_t *)mpi_request;
970
971 if (sasiounit_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET
972 || sasiounit_request->Operation ==
973 MPI2_SAS_OP_PHY_LINK_RESET) {
974 ioc->ioc_link_reset_in_progress = 1;
975 ioc->ignore_loginfos = 1;
976 }
977 /* drop to default case for posting the request */
978 }
979 /* fall through */
980 default:
981 ioc->build_sg_mpi(ioc, psge, data_out_dma, data_out_sz,
982 data_in_dma, data_in_sz);
983 ioc->put_smid_default(ioc, smid);
984 break;
985 }
986
987 if (karg.timeout < MPT3_IOCTL_DEFAULT_TIMEOUT)
988 timeout = MPT3_IOCTL_DEFAULT_TIMEOUT;
989 else
990 timeout = karg.timeout;
991 wait_for_completion_timeout(&ioc->ctl_cmds.done, timeout*HZ);
992 if (mpi_request->Function == MPI2_FUNCTION_SCSI_TASK_MGMT) {
993 Mpi2SCSITaskManagementRequest_t *tm_request =
994 (Mpi2SCSITaskManagementRequest_t *)mpi_request;
995 mpt3sas_scsih_clear_tm_flag(ioc, le16_to_cpu(
996 tm_request->DevHandle));
997 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_TASK_MANAGMENT);
998 } else if ((mpi_request->Function == MPI2_FUNCTION_SMP_PASSTHROUGH ||
999 mpi_request->Function == MPI2_FUNCTION_SAS_IO_UNIT_CONTROL) &&
1000 ioc->ioc_link_reset_in_progress) {
1001 ioc->ioc_link_reset_in_progress = 0;
1002 ioc->ignore_loginfos = 0;
1003 }
1004 if (!(ioc->ctl_cmds.status & MPT3_CMD_COMPLETE)) {
1005 issue_reset =
1006 mpt3sas_base_check_cmd_timeout(ioc,
1007 ioc->ctl_cmds.status, mpi_request,
1008 karg.data_sge_offset);
1009 goto issue_host_reset;
1010 }
1011
1012 mpi_reply = ioc->ctl_cmds.reply;
1013
1014 if (mpi_reply->Function == MPI2_FUNCTION_SCSI_TASK_MGMT &&
1015 (ioc->logging_level & MPT_DEBUG_TM)) {
1016 Mpi2SCSITaskManagementReply_t *tm_reply =
1017 (Mpi2SCSITaskManagementReply_t *)mpi_reply;
1018
1019 ioc_info(ioc, "TASK_MGMT: IOCStatus(0x%04x), IOCLogInfo(0x%08x), TerminationCount(0x%08x)\n",
1020 le16_to_cpu(tm_reply->IOCStatus),
1021 le32_to_cpu(tm_reply->IOCLogInfo),
1022 le32_to_cpu(tm_reply->TerminationCount));
1023 }
1024
1025 /* copy out xdata to user */
1026 if (data_in_sz) {
1027 if (copy_to_user(karg.data_in_buf_ptr, data_in,
1028 data_in_sz)) {
1029 pr_err("failure at %s:%d/%s()!\n", __FILE__,
1030 __LINE__, __func__);
1031 ret = -ENODATA;
1032 goto out;
1033 }
1034 }
1035
1036 /* copy out reply message frame to user */
1037 if (karg.max_reply_bytes) {
1038 sz = min_t(u32, karg.max_reply_bytes, ioc->reply_sz);
1039 if (copy_to_user(karg.reply_frame_buf_ptr, ioc->ctl_cmds.reply,
1040 sz)) {
1041 pr_err("failure at %s:%d/%s()!\n", __FILE__,
1042 __LINE__, __func__);
1043 ret = -ENODATA;
1044 goto out;
1045 }
1046 }
1047
1048 /* copy out sense/NVMe Error Response to user */
1049 if (karg.max_sense_bytes && (mpi_request->Function ==
1050 MPI2_FUNCTION_SCSI_IO_REQUEST || mpi_request->Function ==
1051 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || mpi_request->Function ==
1052 MPI2_FUNCTION_NVME_ENCAPSULATED)) {
1053 if (karg.sense_data_ptr == NULL) {
1054 ioc_info(ioc, "Response buffer provided by application is NULL; Response data will not be returned\n");
1055 goto out;
1056 }
1057 sz_arg = (mpi_request->Function ==
1058 MPI2_FUNCTION_NVME_ENCAPSULATED) ? NVME_ERROR_RESPONSE_SIZE :
1059 SCSI_SENSE_BUFFERSIZE;
1060 sz = min_t(u32, karg.max_sense_bytes, sz_arg);
1061 if (copy_to_user(karg.sense_data_ptr, ioc->ctl_cmds.sense,
1062 sz)) {
1063 pr_err("failure at %s:%d/%s()!\n", __FILE__,
1064 __LINE__, __func__);
1065 ret = -ENODATA;
1066 goto out;
1067 }
1068 }
1069
1070 issue_host_reset:
1071 if (issue_reset) {
1072 ret = -ENODATA;
1073 if ((mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
1074 mpi_request->Function ==
1075 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
1076 mpi_request->Function == MPI2_FUNCTION_SATA_PASSTHROUGH)) {
1077 ioc_info(ioc, "issue target reset: handle = (0x%04x)\n",
1078 le16_to_cpu(mpi_request->FunctionDependent1));
1079 mpt3sas_halt_firmware(ioc);
1080 pcie_device = mpt3sas_get_pdev_by_handle(ioc,
1081 le16_to_cpu(mpi_request->FunctionDependent1));
1082 if (pcie_device && (!ioc->tm_custom_handling) &&
1083 (!(mpt3sas_scsih_is_pcie_scsi_device(
1084 pcie_device->device_info))))
1085 mpt3sas_scsih_issue_locked_tm(ioc,
1086 le16_to_cpu(mpi_request->FunctionDependent1),
1087 0, MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET, 0,
1088 0, pcie_device->reset_timeout,
1089 MPI26_SCSITASKMGMT_MSGFLAGS_PROTOCOL_LVL_RST_PCIE);
1090 else
1091 mpt3sas_scsih_issue_locked_tm(ioc,
1092 le16_to_cpu(mpi_request->FunctionDependent1),
1093 0, MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET, 0,
1094 0, 30, MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET);
1095 } else
1096 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
1097 }
1098
1099 out:
1100 if (pcie_device)
1101 pcie_device_put(pcie_device);
1102
1103 /* free memory associated with sg buffers */
1104 if (data_in)
1105 dma_free_coherent(&ioc->pdev->dev, data_in_sz, data_in,
1106 data_in_dma);
1107
1108 if (data_out)
1109 dma_free_coherent(&ioc->pdev->dev, data_out_sz, data_out,
1110 data_out_dma);
1111
1112 kfree(mpi_request);
1113 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
1114 return ret;
1115 }
1116
1117 /**
1118 * _ctl_getiocinfo - main handler for MPT3IOCINFO opcode
1119 * @ioc: per adapter object
1120 * @arg: user space buffer containing ioctl content
1121 */
1122 static long
_ctl_getiocinfo(struct MPT3SAS_ADAPTER * ioc,void __user * arg)1123 _ctl_getiocinfo(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
1124 {
1125 struct mpt3_ioctl_iocinfo karg;
1126
1127 dctlprintk(ioc, ioc_info(ioc, "%s: enter\n",
1128 __func__));
1129
1130 memset(&karg, 0 , sizeof(karg));
1131 if (ioc->pfacts)
1132 karg.port_number = ioc->pfacts[0].PortNumber;
1133 karg.hw_rev = ioc->pdev->revision;
1134 karg.pci_id = ioc->pdev->device;
1135 karg.subsystem_device = ioc->pdev->subsystem_device;
1136 karg.subsystem_vendor = ioc->pdev->subsystem_vendor;
1137 karg.pci_information.u.bits.bus = ioc->pdev->bus->number;
1138 karg.pci_information.u.bits.device = PCI_SLOT(ioc->pdev->devfn);
1139 karg.pci_information.u.bits.function = PCI_FUNC(ioc->pdev->devfn);
1140 karg.pci_information.segment_id = pci_domain_nr(ioc->pdev->bus);
1141 karg.firmware_version = ioc->facts.FWVersion.Word;
1142 strcpy(karg.driver_version, ioc->driver_name);
1143 strcat(karg.driver_version, "-");
1144 switch (ioc->hba_mpi_version_belonged) {
1145 case MPI2_VERSION:
1146 if (ioc->is_warpdrive)
1147 karg.adapter_type = MPT2_IOCTL_INTERFACE_SAS2_SSS6200;
1148 else
1149 karg.adapter_type = MPT2_IOCTL_INTERFACE_SAS2;
1150 strcat(karg.driver_version, MPT2SAS_DRIVER_VERSION);
1151 break;
1152 case MPI25_VERSION:
1153 case MPI26_VERSION:
1154 if (ioc->is_gen35_ioc)
1155 karg.adapter_type = MPT3_IOCTL_INTERFACE_SAS35;
1156 else
1157 karg.adapter_type = MPT3_IOCTL_INTERFACE_SAS3;
1158 strcat(karg.driver_version, MPT3SAS_DRIVER_VERSION);
1159 break;
1160 }
1161 karg.bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
1162
1163 if (copy_to_user(arg, &karg, sizeof(karg))) {
1164 pr_err("failure at %s:%d/%s()!\n",
1165 __FILE__, __LINE__, __func__);
1166 return -EFAULT;
1167 }
1168 return 0;
1169 }
1170
1171 /**
1172 * _ctl_eventquery - main handler for MPT3EVENTQUERY opcode
1173 * @ioc: per adapter object
1174 * @arg: user space buffer containing ioctl content
1175 */
1176 static long
_ctl_eventquery(struct MPT3SAS_ADAPTER * ioc,void __user * arg)1177 _ctl_eventquery(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
1178 {
1179 struct mpt3_ioctl_eventquery karg;
1180
1181 if (copy_from_user(&karg, arg, sizeof(karg))) {
1182 pr_err("failure at %s:%d/%s()!\n",
1183 __FILE__, __LINE__, __func__);
1184 return -EFAULT;
1185 }
1186
1187 dctlprintk(ioc, ioc_info(ioc, "%s: enter\n",
1188 __func__));
1189
1190 karg.event_entries = MPT3SAS_CTL_EVENT_LOG_SIZE;
1191 memcpy(karg.event_types, ioc->event_type,
1192 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS * sizeof(u32));
1193
1194 if (copy_to_user(arg, &karg, sizeof(karg))) {
1195 pr_err("failure at %s:%d/%s()!\n",
1196 __FILE__, __LINE__, __func__);
1197 return -EFAULT;
1198 }
1199 return 0;
1200 }
1201
1202 /**
1203 * _ctl_eventenable - main handler for MPT3EVENTENABLE opcode
1204 * @ioc: per adapter object
1205 * @arg: user space buffer containing ioctl content
1206 */
1207 static long
_ctl_eventenable(struct MPT3SAS_ADAPTER * ioc,void __user * arg)1208 _ctl_eventenable(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
1209 {
1210 struct mpt3_ioctl_eventenable karg;
1211
1212 if (copy_from_user(&karg, arg, sizeof(karg))) {
1213 pr_err("failure at %s:%d/%s()!\n",
1214 __FILE__, __LINE__, __func__);
1215 return -EFAULT;
1216 }
1217
1218 dctlprintk(ioc, ioc_info(ioc, "%s: enter\n",
1219 __func__));
1220
1221 memcpy(ioc->event_type, karg.event_types,
1222 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS * sizeof(u32));
1223 mpt3sas_base_validate_event_type(ioc, ioc->event_type);
1224
1225 if (ioc->event_log)
1226 return 0;
1227 /* initialize event_log */
1228 ioc->event_context = 0;
1229 ioc->aen_event_read_flag = 0;
1230 ioc->event_log = kcalloc(MPT3SAS_CTL_EVENT_LOG_SIZE,
1231 sizeof(struct MPT3_IOCTL_EVENTS), GFP_KERNEL);
1232 if (!ioc->event_log) {
1233 pr_err("failure at %s:%d/%s()!\n",
1234 __FILE__, __LINE__, __func__);
1235 return -ENOMEM;
1236 }
1237 return 0;
1238 }
1239
1240 /**
1241 * _ctl_eventreport - main handler for MPT3EVENTREPORT opcode
1242 * @ioc: per adapter object
1243 * @arg: user space buffer containing ioctl content
1244 */
1245 static long
_ctl_eventreport(struct MPT3SAS_ADAPTER * ioc,void __user * arg)1246 _ctl_eventreport(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
1247 {
1248 struct mpt3_ioctl_eventreport karg;
1249 u32 number_bytes, max_events, max;
1250 struct mpt3_ioctl_eventreport __user *uarg = arg;
1251
1252 if (copy_from_user(&karg, arg, sizeof(karg))) {
1253 pr_err("failure at %s:%d/%s()!\n",
1254 __FILE__, __LINE__, __func__);
1255 return -EFAULT;
1256 }
1257
1258 dctlprintk(ioc, ioc_info(ioc, "%s: enter\n",
1259 __func__));
1260
1261 number_bytes = karg.hdr.max_data_size -
1262 sizeof(struct mpt3_ioctl_header);
1263 max_events = number_bytes/sizeof(struct MPT3_IOCTL_EVENTS);
1264 max = min_t(u32, MPT3SAS_CTL_EVENT_LOG_SIZE, max_events);
1265
1266 /* If fewer than 1 event is requested, there must have
1267 * been some type of error.
1268 */
1269 if (!max || !ioc->event_log)
1270 return -ENODATA;
1271
1272 number_bytes = max * sizeof(struct MPT3_IOCTL_EVENTS);
1273 if (copy_to_user(uarg->event_data, ioc->event_log, number_bytes)) {
1274 pr_err("failure at %s:%d/%s()!\n",
1275 __FILE__, __LINE__, __func__);
1276 return -EFAULT;
1277 }
1278
1279 /* reset flag so SIGIO can restart */
1280 ioc->aen_event_read_flag = 0;
1281 return 0;
1282 }
1283
1284 /**
1285 * _ctl_do_reset - main handler for MPT3HARDRESET opcode
1286 * @ioc: per adapter object
1287 * @arg: user space buffer containing ioctl content
1288 */
1289 static long
_ctl_do_reset(struct MPT3SAS_ADAPTER * ioc,void __user * arg)1290 _ctl_do_reset(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
1291 {
1292 struct mpt3_ioctl_diag_reset karg;
1293 int retval;
1294
1295 if (copy_from_user(&karg, arg, sizeof(karg))) {
1296 pr_err("failure at %s:%d/%s()!\n",
1297 __FILE__, __LINE__, __func__);
1298 return -EFAULT;
1299 }
1300
1301 if (ioc->shost_recovery || ioc->pci_error_recovery ||
1302 ioc->is_driver_loading)
1303 return -EAGAIN;
1304
1305 dctlprintk(ioc, ioc_info(ioc, "%s: enter\n",
1306 __func__));
1307
1308 retval = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
1309 ioc_info(ioc, "host reset: %s\n", ((!retval) ? "SUCCESS" : "FAILED"));
1310 return 0;
1311 }
1312
1313 /**
1314 * _ctl_btdh_search_sas_device - searching for sas device
1315 * @ioc: per adapter object
1316 * @btdh: btdh ioctl payload
1317 */
1318 static int
_ctl_btdh_search_sas_device(struct MPT3SAS_ADAPTER * ioc,struct mpt3_ioctl_btdh_mapping * btdh)1319 _ctl_btdh_search_sas_device(struct MPT3SAS_ADAPTER *ioc,
1320 struct mpt3_ioctl_btdh_mapping *btdh)
1321 {
1322 struct _sas_device *sas_device;
1323 unsigned long flags;
1324 int rc = 0;
1325
1326 if (list_empty(&ioc->sas_device_list))
1327 return rc;
1328
1329 spin_lock_irqsave(&ioc->sas_device_lock, flags);
1330 list_for_each_entry(sas_device, &ioc->sas_device_list, list) {
1331 if (btdh->bus == 0xFFFFFFFF && btdh->id == 0xFFFFFFFF &&
1332 btdh->handle == sas_device->handle) {
1333 btdh->bus = sas_device->channel;
1334 btdh->id = sas_device->id;
1335 rc = 1;
1336 goto out;
1337 } else if (btdh->bus == sas_device->channel && btdh->id ==
1338 sas_device->id && btdh->handle == 0xFFFF) {
1339 btdh->handle = sas_device->handle;
1340 rc = 1;
1341 goto out;
1342 }
1343 }
1344 out:
1345 spin_unlock_irqrestore(&ioc->sas_device_lock, flags);
1346 return rc;
1347 }
1348
1349 /**
1350 * _ctl_btdh_search_pcie_device - searching for pcie device
1351 * @ioc: per adapter object
1352 * @btdh: btdh ioctl payload
1353 */
1354 static int
_ctl_btdh_search_pcie_device(struct MPT3SAS_ADAPTER * ioc,struct mpt3_ioctl_btdh_mapping * btdh)1355 _ctl_btdh_search_pcie_device(struct MPT3SAS_ADAPTER *ioc,
1356 struct mpt3_ioctl_btdh_mapping *btdh)
1357 {
1358 struct _pcie_device *pcie_device;
1359 unsigned long flags;
1360 int rc = 0;
1361
1362 if (list_empty(&ioc->pcie_device_list))
1363 return rc;
1364
1365 spin_lock_irqsave(&ioc->pcie_device_lock, flags);
1366 list_for_each_entry(pcie_device, &ioc->pcie_device_list, list) {
1367 if (btdh->bus == 0xFFFFFFFF && btdh->id == 0xFFFFFFFF &&
1368 btdh->handle == pcie_device->handle) {
1369 btdh->bus = pcie_device->channel;
1370 btdh->id = pcie_device->id;
1371 rc = 1;
1372 goto out;
1373 } else if (btdh->bus == pcie_device->channel && btdh->id ==
1374 pcie_device->id && btdh->handle == 0xFFFF) {
1375 btdh->handle = pcie_device->handle;
1376 rc = 1;
1377 goto out;
1378 }
1379 }
1380 out:
1381 spin_unlock_irqrestore(&ioc->pcie_device_lock, flags);
1382 return rc;
1383 }
1384
1385 /**
1386 * _ctl_btdh_search_raid_device - searching for raid device
1387 * @ioc: per adapter object
1388 * @btdh: btdh ioctl payload
1389 */
1390 static int
_ctl_btdh_search_raid_device(struct MPT3SAS_ADAPTER * ioc,struct mpt3_ioctl_btdh_mapping * btdh)1391 _ctl_btdh_search_raid_device(struct MPT3SAS_ADAPTER *ioc,
1392 struct mpt3_ioctl_btdh_mapping *btdh)
1393 {
1394 struct _raid_device *raid_device;
1395 unsigned long flags;
1396 int rc = 0;
1397
1398 if (list_empty(&ioc->raid_device_list))
1399 return rc;
1400
1401 spin_lock_irqsave(&ioc->raid_device_lock, flags);
1402 list_for_each_entry(raid_device, &ioc->raid_device_list, list) {
1403 if (btdh->bus == 0xFFFFFFFF && btdh->id == 0xFFFFFFFF &&
1404 btdh->handle == raid_device->handle) {
1405 btdh->bus = raid_device->channel;
1406 btdh->id = raid_device->id;
1407 rc = 1;
1408 goto out;
1409 } else if (btdh->bus == raid_device->channel && btdh->id ==
1410 raid_device->id && btdh->handle == 0xFFFF) {
1411 btdh->handle = raid_device->handle;
1412 rc = 1;
1413 goto out;
1414 }
1415 }
1416 out:
1417 spin_unlock_irqrestore(&ioc->raid_device_lock, flags);
1418 return rc;
1419 }
1420
1421 /**
1422 * _ctl_btdh_mapping - main handler for MPT3BTDHMAPPING opcode
1423 * @ioc: per adapter object
1424 * @arg: user space buffer containing ioctl content
1425 */
1426 static long
_ctl_btdh_mapping(struct MPT3SAS_ADAPTER * ioc,void __user * arg)1427 _ctl_btdh_mapping(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
1428 {
1429 struct mpt3_ioctl_btdh_mapping karg;
1430 int rc;
1431
1432 if (copy_from_user(&karg, arg, sizeof(karg))) {
1433 pr_err("failure at %s:%d/%s()!\n",
1434 __FILE__, __LINE__, __func__);
1435 return -EFAULT;
1436 }
1437
1438 dctlprintk(ioc, ioc_info(ioc, "%s\n",
1439 __func__));
1440
1441 rc = _ctl_btdh_search_sas_device(ioc, &karg);
1442 if (!rc)
1443 rc = _ctl_btdh_search_pcie_device(ioc, &karg);
1444 if (!rc)
1445 _ctl_btdh_search_raid_device(ioc, &karg);
1446
1447 if (copy_to_user(arg, &karg, sizeof(karg))) {
1448 pr_err("failure at %s:%d/%s()!\n",
1449 __FILE__, __LINE__, __func__);
1450 return -EFAULT;
1451 }
1452 return 0;
1453 }
1454
1455 /**
1456 * _ctl_diag_capability - return diag buffer capability
1457 * @ioc: per adapter object
1458 * @buffer_type: specifies either TRACE, SNAPSHOT, or EXTENDED
1459 *
1460 * returns 1 when diag buffer support is enabled in firmware
1461 */
1462 static u8
_ctl_diag_capability(struct MPT3SAS_ADAPTER * ioc,u8 buffer_type)1463 _ctl_diag_capability(struct MPT3SAS_ADAPTER *ioc, u8 buffer_type)
1464 {
1465 u8 rc = 0;
1466
1467 switch (buffer_type) {
1468 case MPI2_DIAG_BUF_TYPE_TRACE:
1469 if (ioc->facts.IOCCapabilities &
1470 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER)
1471 rc = 1;
1472 break;
1473 case MPI2_DIAG_BUF_TYPE_SNAPSHOT:
1474 if (ioc->facts.IOCCapabilities &
1475 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER)
1476 rc = 1;
1477 break;
1478 case MPI2_DIAG_BUF_TYPE_EXTENDED:
1479 if (ioc->facts.IOCCapabilities &
1480 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER)
1481 rc = 1;
1482 }
1483
1484 return rc;
1485 }
1486
1487
1488 /**
1489 * _ctl_diag_register_2 - wrapper for registering diag buffer support
1490 * @ioc: per adapter object
1491 * @diag_register: the diag_register struct passed in from user space
1492 *
1493 */
1494 static long
_ctl_diag_register_2(struct MPT3SAS_ADAPTER * ioc,struct mpt3_diag_register * diag_register)1495 _ctl_diag_register_2(struct MPT3SAS_ADAPTER *ioc,
1496 struct mpt3_diag_register *diag_register)
1497 {
1498 int rc, i;
1499 void *request_data = NULL;
1500 dma_addr_t request_data_dma;
1501 u32 request_data_sz = 0;
1502 Mpi2DiagBufferPostRequest_t *mpi_request;
1503 Mpi2DiagBufferPostReply_t *mpi_reply;
1504 u8 buffer_type;
1505 u16 smid;
1506 u16 ioc_status;
1507 u32 ioc_state;
1508 u8 issue_reset = 0;
1509
1510 dctlprintk(ioc, ioc_info(ioc, "%s\n",
1511 __func__));
1512
1513 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
1514 if (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
1515 ioc_err(ioc, "%s: failed due to ioc not operational\n",
1516 __func__);
1517 rc = -EAGAIN;
1518 goto out;
1519 }
1520
1521 if (ioc->ctl_cmds.status != MPT3_CMD_NOT_USED) {
1522 ioc_err(ioc, "%s: ctl_cmd in use\n", __func__);
1523 rc = -EAGAIN;
1524 goto out;
1525 }
1526
1527 buffer_type = diag_register->buffer_type;
1528 if (!_ctl_diag_capability(ioc, buffer_type)) {
1529 ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n",
1530 __func__, buffer_type);
1531 return -EPERM;
1532 }
1533
1534 if (ioc->diag_buffer_status[buffer_type] &
1535 MPT3_DIAG_BUFFER_IS_REGISTERED) {
1536 ioc_err(ioc, "%s: already has a registered buffer for buffer_type(0x%02x)\n",
1537 __func__, buffer_type);
1538 return -EINVAL;
1539 }
1540
1541 if (diag_register->requested_buffer_size % 4) {
1542 ioc_err(ioc, "%s: the requested_buffer_size is not 4 byte aligned\n",
1543 __func__);
1544 return -EINVAL;
1545 }
1546
1547 smid = mpt3sas_base_get_smid(ioc, ioc->ctl_cb_idx);
1548 if (!smid) {
1549 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
1550 rc = -EAGAIN;
1551 goto out;
1552 }
1553
1554 rc = 0;
1555 ioc->ctl_cmds.status = MPT3_CMD_PENDING;
1556 memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz);
1557 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1558 ioc->ctl_cmds.smid = smid;
1559
1560 request_data = ioc->diag_buffer[buffer_type];
1561 request_data_sz = diag_register->requested_buffer_size;
1562 ioc->unique_id[buffer_type] = diag_register->unique_id;
1563 ioc->diag_buffer_status[buffer_type] = 0;
1564 memcpy(ioc->product_specific[buffer_type],
1565 diag_register->product_specific, MPT3_PRODUCT_SPECIFIC_DWORDS);
1566 ioc->diagnostic_flags[buffer_type] = diag_register->diagnostic_flags;
1567
1568 if (request_data) {
1569 request_data_dma = ioc->diag_buffer_dma[buffer_type];
1570 if (request_data_sz != ioc->diag_buffer_sz[buffer_type]) {
1571 dma_free_coherent(&ioc->pdev->dev,
1572 ioc->diag_buffer_sz[buffer_type],
1573 request_data, request_data_dma);
1574 request_data = NULL;
1575 }
1576 }
1577
1578 if (request_data == NULL) {
1579 ioc->diag_buffer_sz[buffer_type] = 0;
1580 ioc->diag_buffer_dma[buffer_type] = 0;
1581 request_data = dma_alloc_coherent(&ioc->pdev->dev,
1582 request_data_sz, &request_data_dma, GFP_KERNEL);
1583 if (request_data == NULL) {
1584 ioc_err(ioc, "%s: failed allocating memory for diag buffers, requested size(%d)\n",
1585 __func__, request_data_sz);
1586 mpt3sas_base_free_smid(ioc, smid);
1587 return -ENOMEM;
1588 }
1589 ioc->diag_buffer[buffer_type] = request_data;
1590 ioc->diag_buffer_sz[buffer_type] = request_data_sz;
1591 ioc->diag_buffer_dma[buffer_type] = request_data_dma;
1592 }
1593
1594 mpi_request->Function = MPI2_FUNCTION_DIAG_BUFFER_POST;
1595 mpi_request->BufferType = diag_register->buffer_type;
1596 mpi_request->Flags = cpu_to_le32(diag_register->diagnostic_flags);
1597 mpi_request->BufferAddress = cpu_to_le64(request_data_dma);
1598 mpi_request->BufferLength = cpu_to_le32(request_data_sz);
1599 mpi_request->VF_ID = 0; /* TODO */
1600 mpi_request->VP_ID = 0;
1601
1602 dctlprintk(ioc,
1603 ioc_info(ioc, "%s: diag_buffer(0x%p), dma(0x%llx), sz(%d)\n",
1604 __func__, request_data,
1605 (unsigned long long)request_data_dma,
1606 le32_to_cpu(mpi_request->BufferLength)));
1607
1608 for (i = 0; i < MPT3_PRODUCT_SPECIFIC_DWORDS; i++)
1609 mpi_request->ProductSpecific[i] =
1610 cpu_to_le32(ioc->product_specific[buffer_type][i]);
1611
1612 init_completion(&ioc->ctl_cmds.done);
1613 ioc->put_smid_default(ioc, smid);
1614 wait_for_completion_timeout(&ioc->ctl_cmds.done,
1615 MPT3_IOCTL_DEFAULT_TIMEOUT*HZ);
1616
1617 if (!(ioc->ctl_cmds.status & MPT3_CMD_COMPLETE)) {
1618 issue_reset =
1619 mpt3sas_base_check_cmd_timeout(ioc,
1620 ioc->ctl_cmds.status, mpi_request,
1621 sizeof(Mpi2DiagBufferPostRequest_t)/4);
1622 goto issue_host_reset;
1623 }
1624
1625 /* process the completed Reply Message Frame */
1626 if ((ioc->ctl_cmds.status & MPT3_CMD_REPLY_VALID) == 0) {
1627 ioc_err(ioc, "%s: no reply message\n", __func__);
1628 rc = -EFAULT;
1629 goto out;
1630 }
1631
1632 mpi_reply = ioc->ctl_cmds.reply;
1633 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
1634
1635 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
1636 ioc->diag_buffer_status[buffer_type] |=
1637 MPT3_DIAG_BUFFER_IS_REGISTERED;
1638 dctlprintk(ioc, ioc_info(ioc, "%s: success\n", __func__));
1639 } else {
1640 ioc_info(ioc, "%s: ioc_status(0x%04x) log_info(0x%08x)\n",
1641 __func__,
1642 ioc_status, le32_to_cpu(mpi_reply->IOCLogInfo));
1643 rc = -EFAULT;
1644 }
1645
1646 issue_host_reset:
1647 if (issue_reset)
1648 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
1649
1650 out:
1651
1652 if (rc && request_data)
1653 dma_free_coherent(&ioc->pdev->dev, request_data_sz,
1654 request_data, request_data_dma);
1655
1656 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
1657 return rc;
1658 }
1659
1660 /**
1661 * mpt3sas_enable_diag_buffer - enabling diag_buffers support driver load time
1662 * @ioc: per adapter object
1663 * @bits_to_register: bitwise field where trace is bit 0, and snapshot is bit 1
1664 *
1665 * This is called when command line option diag_buffer_enable is enabled
1666 * at driver load time.
1667 */
1668 void
mpt3sas_enable_diag_buffer(struct MPT3SAS_ADAPTER * ioc,u8 bits_to_register)1669 mpt3sas_enable_diag_buffer(struct MPT3SAS_ADAPTER *ioc, u8 bits_to_register)
1670 {
1671 struct mpt3_diag_register diag_register;
1672
1673 memset(&diag_register, 0, sizeof(struct mpt3_diag_register));
1674
1675 if (bits_to_register & 1) {
1676 ioc_info(ioc, "registering trace buffer support\n");
1677 ioc->diag_trigger_master.MasterData =
1678 (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET);
1679 diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_TRACE;
1680 /* register for 2MB buffers */
1681 diag_register.requested_buffer_size = 2 * (1024 * 1024);
1682 diag_register.unique_id = 0x7075900;
1683 _ctl_diag_register_2(ioc, &diag_register);
1684 }
1685
1686 if (bits_to_register & 2) {
1687 ioc_info(ioc, "registering snapshot buffer support\n");
1688 diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_SNAPSHOT;
1689 /* register for 2MB buffers */
1690 diag_register.requested_buffer_size = 2 * (1024 * 1024);
1691 diag_register.unique_id = 0x7075901;
1692 _ctl_diag_register_2(ioc, &diag_register);
1693 }
1694
1695 if (bits_to_register & 4) {
1696 ioc_info(ioc, "registering extended buffer support\n");
1697 diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_EXTENDED;
1698 /* register for 2MB buffers */
1699 diag_register.requested_buffer_size = 2 * (1024 * 1024);
1700 diag_register.unique_id = 0x7075901;
1701 _ctl_diag_register_2(ioc, &diag_register);
1702 }
1703 }
1704
1705 /**
1706 * _ctl_diag_register - application register with driver
1707 * @ioc: per adapter object
1708 * @arg: user space buffer containing ioctl content
1709 *
1710 * This will allow the driver to setup any required buffers that will be
1711 * needed by firmware to communicate with the driver.
1712 */
1713 static long
_ctl_diag_register(struct MPT3SAS_ADAPTER * ioc,void __user * arg)1714 _ctl_diag_register(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
1715 {
1716 struct mpt3_diag_register karg;
1717 long rc;
1718
1719 if (copy_from_user(&karg, arg, sizeof(karg))) {
1720 pr_err("failure at %s:%d/%s()!\n",
1721 __FILE__, __LINE__, __func__);
1722 return -EFAULT;
1723 }
1724
1725 rc = _ctl_diag_register_2(ioc, &karg);
1726 return rc;
1727 }
1728
1729 /**
1730 * _ctl_diag_unregister - application unregister with driver
1731 * @ioc: per adapter object
1732 * @arg: user space buffer containing ioctl content
1733 *
1734 * This will allow the driver to cleanup any memory allocated for diag
1735 * messages and to free up any resources.
1736 */
1737 static long
_ctl_diag_unregister(struct MPT3SAS_ADAPTER * ioc,void __user * arg)1738 _ctl_diag_unregister(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
1739 {
1740 struct mpt3_diag_unregister karg;
1741 void *request_data;
1742 dma_addr_t request_data_dma;
1743 u32 request_data_sz;
1744 u8 buffer_type;
1745
1746 if (copy_from_user(&karg, arg, sizeof(karg))) {
1747 pr_err("failure at %s:%d/%s()!\n",
1748 __FILE__, __LINE__, __func__);
1749 return -EFAULT;
1750 }
1751
1752 dctlprintk(ioc, ioc_info(ioc, "%s\n",
1753 __func__));
1754
1755 buffer_type = karg.unique_id & 0x000000ff;
1756 if (!_ctl_diag_capability(ioc, buffer_type)) {
1757 ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n",
1758 __func__, buffer_type);
1759 return -EPERM;
1760 }
1761
1762 if ((ioc->diag_buffer_status[buffer_type] &
1763 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) {
1764 ioc_err(ioc, "%s: buffer_type(0x%02x) is not registered\n",
1765 __func__, buffer_type);
1766 return -EINVAL;
1767 }
1768 if ((ioc->diag_buffer_status[buffer_type] &
1769 MPT3_DIAG_BUFFER_IS_RELEASED) == 0) {
1770 ioc_err(ioc, "%s: buffer_type(0x%02x) has not been released\n",
1771 __func__, buffer_type);
1772 return -EINVAL;
1773 }
1774
1775 if (karg.unique_id != ioc->unique_id[buffer_type]) {
1776 ioc_err(ioc, "%s: unique_id(0x%08x) is not registered\n",
1777 __func__, karg.unique_id);
1778 return -EINVAL;
1779 }
1780
1781 request_data = ioc->diag_buffer[buffer_type];
1782 if (!request_data) {
1783 ioc_err(ioc, "%s: doesn't have memory allocated for buffer_type(0x%02x)\n",
1784 __func__, buffer_type);
1785 return -ENOMEM;
1786 }
1787
1788 request_data_sz = ioc->diag_buffer_sz[buffer_type];
1789 request_data_dma = ioc->diag_buffer_dma[buffer_type];
1790 dma_free_coherent(&ioc->pdev->dev, request_data_sz,
1791 request_data, request_data_dma);
1792 ioc->diag_buffer[buffer_type] = NULL;
1793 ioc->diag_buffer_status[buffer_type] = 0;
1794 return 0;
1795 }
1796
1797 /**
1798 * _ctl_diag_query - query relevant info associated with diag buffers
1799 * @ioc: per adapter object
1800 * @arg: user space buffer containing ioctl content
1801 *
1802 * The application will send only buffer_type and unique_id. Driver will
1803 * inspect unique_id first, if valid, fill in all the info. If unique_id is
1804 * 0x00, the driver will return info specified by Buffer Type.
1805 */
1806 static long
_ctl_diag_query(struct MPT3SAS_ADAPTER * ioc,void __user * arg)1807 _ctl_diag_query(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
1808 {
1809 struct mpt3_diag_query karg;
1810 void *request_data;
1811 int i;
1812 u8 buffer_type;
1813
1814 if (copy_from_user(&karg, arg, sizeof(karg))) {
1815 pr_err("failure at %s:%d/%s()!\n",
1816 __FILE__, __LINE__, __func__);
1817 return -EFAULT;
1818 }
1819
1820 dctlprintk(ioc, ioc_info(ioc, "%s\n",
1821 __func__));
1822
1823 karg.application_flags = 0;
1824 buffer_type = karg.buffer_type;
1825
1826 if (!_ctl_diag_capability(ioc, buffer_type)) {
1827 ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n",
1828 __func__, buffer_type);
1829 return -EPERM;
1830 }
1831
1832 if ((ioc->diag_buffer_status[buffer_type] &
1833 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) {
1834 ioc_err(ioc, "%s: buffer_type(0x%02x) is not registered\n",
1835 __func__, buffer_type);
1836 return -EINVAL;
1837 }
1838
1839 if (karg.unique_id & 0xffffff00) {
1840 if (karg.unique_id != ioc->unique_id[buffer_type]) {
1841 ioc_err(ioc, "%s: unique_id(0x%08x) is not registered\n",
1842 __func__, karg.unique_id);
1843 return -EINVAL;
1844 }
1845 }
1846
1847 request_data = ioc->diag_buffer[buffer_type];
1848 if (!request_data) {
1849 ioc_err(ioc, "%s: doesn't have buffer for buffer_type(0x%02x)\n",
1850 __func__, buffer_type);
1851 return -ENOMEM;
1852 }
1853
1854 if (ioc->diag_buffer_status[buffer_type] & MPT3_DIAG_BUFFER_IS_RELEASED)
1855 karg.application_flags = (MPT3_APP_FLAGS_APP_OWNED |
1856 MPT3_APP_FLAGS_BUFFER_VALID);
1857 else
1858 karg.application_flags = (MPT3_APP_FLAGS_APP_OWNED |
1859 MPT3_APP_FLAGS_BUFFER_VALID |
1860 MPT3_APP_FLAGS_FW_BUFFER_ACCESS);
1861
1862 for (i = 0; i < MPT3_PRODUCT_SPECIFIC_DWORDS; i++)
1863 karg.product_specific[i] =
1864 ioc->product_specific[buffer_type][i];
1865
1866 karg.total_buffer_size = ioc->diag_buffer_sz[buffer_type];
1867 karg.driver_added_buffer_size = 0;
1868 karg.unique_id = ioc->unique_id[buffer_type];
1869 karg.diagnostic_flags = ioc->diagnostic_flags[buffer_type];
1870
1871 if (copy_to_user(arg, &karg, sizeof(struct mpt3_diag_query))) {
1872 ioc_err(ioc, "%s: unable to write mpt3_diag_query data @ %p\n",
1873 __func__, arg);
1874 return -EFAULT;
1875 }
1876 return 0;
1877 }
1878
1879 /**
1880 * mpt3sas_send_diag_release - Diag Release Message
1881 * @ioc: per adapter object
1882 * @buffer_type: specifies either TRACE, SNAPSHOT, or EXTENDED
1883 * @issue_reset: specifies whether host reset is required.
1884 *
1885 */
1886 int
mpt3sas_send_diag_release(struct MPT3SAS_ADAPTER * ioc,u8 buffer_type,u8 * issue_reset)1887 mpt3sas_send_diag_release(struct MPT3SAS_ADAPTER *ioc, u8 buffer_type,
1888 u8 *issue_reset)
1889 {
1890 Mpi2DiagReleaseRequest_t *mpi_request;
1891 Mpi2DiagReleaseReply_t *mpi_reply;
1892 u16 smid;
1893 u16 ioc_status;
1894 u32 ioc_state;
1895 int rc;
1896
1897 dctlprintk(ioc, ioc_info(ioc, "%s\n",
1898 __func__));
1899
1900 rc = 0;
1901 *issue_reset = 0;
1902
1903 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
1904 if (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
1905 if (ioc->diag_buffer_status[buffer_type] &
1906 MPT3_DIAG_BUFFER_IS_REGISTERED)
1907 ioc->diag_buffer_status[buffer_type] |=
1908 MPT3_DIAG_BUFFER_IS_RELEASED;
1909 dctlprintk(ioc,
1910 ioc_info(ioc, "%s: skipping due to FAULT state\n",
1911 __func__));
1912 rc = -EAGAIN;
1913 goto out;
1914 }
1915
1916 if (ioc->ctl_cmds.status != MPT3_CMD_NOT_USED) {
1917 ioc_err(ioc, "%s: ctl_cmd in use\n", __func__);
1918 rc = -EAGAIN;
1919 goto out;
1920 }
1921
1922 smid = mpt3sas_base_get_smid(ioc, ioc->ctl_cb_idx);
1923 if (!smid) {
1924 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
1925 rc = -EAGAIN;
1926 goto out;
1927 }
1928
1929 ioc->ctl_cmds.status = MPT3_CMD_PENDING;
1930 memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz);
1931 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1932 ioc->ctl_cmds.smid = smid;
1933
1934 mpi_request->Function = MPI2_FUNCTION_DIAG_RELEASE;
1935 mpi_request->BufferType = buffer_type;
1936 mpi_request->VF_ID = 0; /* TODO */
1937 mpi_request->VP_ID = 0;
1938
1939 init_completion(&ioc->ctl_cmds.done);
1940 ioc->put_smid_default(ioc, smid);
1941 wait_for_completion_timeout(&ioc->ctl_cmds.done,
1942 MPT3_IOCTL_DEFAULT_TIMEOUT*HZ);
1943
1944 if (!(ioc->ctl_cmds.status & MPT3_CMD_COMPLETE)) {
1945 *issue_reset = mpt3sas_base_check_cmd_timeout(ioc,
1946 ioc->ctl_cmds.status, mpi_request,
1947 sizeof(Mpi2DiagReleaseRequest_t)/4);
1948 rc = -EFAULT;
1949 goto out;
1950 }
1951
1952 /* process the completed Reply Message Frame */
1953 if ((ioc->ctl_cmds.status & MPT3_CMD_REPLY_VALID) == 0) {
1954 ioc_err(ioc, "%s: no reply message\n", __func__);
1955 rc = -EFAULT;
1956 goto out;
1957 }
1958
1959 mpi_reply = ioc->ctl_cmds.reply;
1960 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
1961
1962 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
1963 ioc->diag_buffer_status[buffer_type] |=
1964 MPT3_DIAG_BUFFER_IS_RELEASED;
1965 dctlprintk(ioc, ioc_info(ioc, "%s: success\n", __func__));
1966 } else {
1967 ioc_info(ioc, "%s: ioc_status(0x%04x) log_info(0x%08x)\n",
1968 __func__,
1969 ioc_status, le32_to_cpu(mpi_reply->IOCLogInfo));
1970 rc = -EFAULT;
1971 }
1972
1973 out:
1974 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
1975 return rc;
1976 }
1977
1978 /**
1979 * _ctl_diag_release - request to send Diag Release Message to firmware
1980 * @ioc: ?
1981 * @arg: user space buffer containing ioctl content
1982 *
1983 * This allows ownership of the specified buffer to returned to the driver,
1984 * allowing an application to read the buffer without fear that firmware is
1985 * overwriting information in the buffer.
1986 */
1987 static long
_ctl_diag_release(struct MPT3SAS_ADAPTER * ioc,void __user * arg)1988 _ctl_diag_release(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
1989 {
1990 struct mpt3_diag_release karg;
1991 void *request_data;
1992 int rc;
1993 u8 buffer_type;
1994 u8 issue_reset = 0;
1995
1996 if (copy_from_user(&karg, arg, sizeof(karg))) {
1997 pr_err("failure at %s:%d/%s()!\n",
1998 __FILE__, __LINE__, __func__);
1999 return -EFAULT;
2000 }
2001
2002 dctlprintk(ioc, ioc_info(ioc, "%s\n",
2003 __func__));
2004
2005 buffer_type = karg.unique_id & 0x000000ff;
2006 if (!_ctl_diag_capability(ioc, buffer_type)) {
2007 ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n",
2008 __func__, buffer_type);
2009 return -EPERM;
2010 }
2011
2012 if ((ioc->diag_buffer_status[buffer_type] &
2013 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) {
2014 ioc_err(ioc, "%s: buffer_type(0x%02x) is not registered\n",
2015 __func__, buffer_type);
2016 return -EINVAL;
2017 }
2018
2019 if (karg.unique_id != ioc->unique_id[buffer_type]) {
2020 ioc_err(ioc, "%s: unique_id(0x%08x) is not registered\n",
2021 __func__, karg.unique_id);
2022 return -EINVAL;
2023 }
2024
2025 if (ioc->diag_buffer_status[buffer_type] &
2026 MPT3_DIAG_BUFFER_IS_RELEASED) {
2027 ioc_err(ioc, "%s: buffer_type(0x%02x) is already released\n",
2028 __func__, buffer_type);
2029 return 0;
2030 }
2031
2032 request_data = ioc->diag_buffer[buffer_type];
2033
2034 if (!request_data) {
2035 ioc_err(ioc, "%s: doesn't have memory allocated for buffer_type(0x%02x)\n",
2036 __func__, buffer_type);
2037 return -ENOMEM;
2038 }
2039
2040 /* buffers were released by due to host reset */
2041 if ((ioc->diag_buffer_status[buffer_type] &
2042 MPT3_DIAG_BUFFER_IS_DIAG_RESET)) {
2043 ioc->diag_buffer_status[buffer_type] |=
2044 MPT3_DIAG_BUFFER_IS_RELEASED;
2045 ioc->diag_buffer_status[buffer_type] &=
2046 ~MPT3_DIAG_BUFFER_IS_DIAG_RESET;
2047 ioc_err(ioc, "%s: buffer_type(0x%02x) was released due to host reset\n",
2048 __func__, buffer_type);
2049 return 0;
2050 }
2051
2052 rc = mpt3sas_send_diag_release(ioc, buffer_type, &issue_reset);
2053
2054 if (issue_reset)
2055 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
2056
2057 return rc;
2058 }
2059
2060 /**
2061 * _ctl_diag_read_buffer - request for copy of the diag buffer
2062 * @ioc: per adapter object
2063 * @arg: user space buffer containing ioctl content
2064 */
2065 static long
_ctl_diag_read_buffer(struct MPT3SAS_ADAPTER * ioc,void __user * arg)2066 _ctl_diag_read_buffer(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
2067 {
2068 struct mpt3_diag_read_buffer karg;
2069 struct mpt3_diag_read_buffer __user *uarg = arg;
2070 void *request_data, *diag_data;
2071 Mpi2DiagBufferPostRequest_t *mpi_request;
2072 Mpi2DiagBufferPostReply_t *mpi_reply;
2073 int rc, i;
2074 u8 buffer_type;
2075 unsigned long request_size, copy_size;
2076 u16 smid;
2077 u16 ioc_status;
2078 u8 issue_reset = 0;
2079
2080 if (copy_from_user(&karg, arg, sizeof(karg))) {
2081 pr_err("failure at %s:%d/%s()!\n",
2082 __FILE__, __LINE__, __func__);
2083 return -EFAULT;
2084 }
2085
2086 dctlprintk(ioc, ioc_info(ioc, "%s\n",
2087 __func__));
2088
2089 buffer_type = karg.unique_id & 0x000000ff;
2090 if (!_ctl_diag_capability(ioc, buffer_type)) {
2091 ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n",
2092 __func__, buffer_type);
2093 return -EPERM;
2094 }
2095
2096 if (karg.unique_id != ioc->unique_id[buffer_type]) {
2097 ioc_err(ioc, "%s: unique_id(0x%08x) is not registered\n",
2098 __func__, karg.unique_id);
2099 return -EINVAL;
2100 }
2101
2102 request_data = ioc->diag_buffer[buffer_type];
2103 if (!request_data) {
2104 ioc_err(ioc, "%s: doesn't have buffer for buffer_type(0x%02x)\n",
2105 __func__, buffer_type);
2106 return -ENOMEM;
2107 }
2108
2109 request_size = ioc->diag_buffer_sz[buffer_type];
2110
2111 if ((karg.starting_offset % 4) || (karg.bytes_to_read % 4)) {
2112 ioc_err(ioc, "%s: either the starting_offset or bytes_to_read are not 4 byte aligned\n",
2113 __func__);
2114 return -EINVAL;
2115 }
2116
2117 if (karg.starting_offset > request_size)
2118 return -EINVAL;
2119
2120 diag_data = (void *)(request_data + karg.starting_offset);
2121 dctlprintk(ioc,
2122 ioc_info(ioc, "%s: diag_buffer(%p), offset(%d), sz(%d)\n",
2123 __func__, diag_data, karg.starting_offset,
2124 karg.bytes_to_read));
2125
2126 /* Truncate data on requests that are too large */
2127 if ((diag_data + karg.bytes_to_read < diag_data) ||
2128 (diag_data + karg.bytes_to_read > request_data + request_size))
2129 copy_size = request_size - karg.starting_offset;
2130 else
2131 copy_size = karg.bytes_to_read;
2132
2133 if (copy_to_user((void __user *)uarg->diagnostic_data,
2134 diag_data, copy_size)) {
2135 ioc_err(ioc, "%s: Unable to write mpt_diag_read_buffer_t data @ %p\n",
2136 __func__, diag_data);
2137 return -EFAULT;
2138 }
2139
2140 if ((karg.flags & MPT3_FLAGS_REREGISTER) == 0)
2141 return 0;
2142
2143 dctlprintk(ioc,
2144 ioc_info(ioc, "%s: Reregister buffer_type(0x%02x)\n",
2145 __func__, buffer_type));
2146 if ((ioc->diag_buffer_status[buffer_type] &
2147 MPT3_DIAG_BUFFER_IS_RELEASED) == 0) {
2148 dctlprintk(ioc,
2149 ioc_info(ioc, "%s: buffer_type(0x%02x) is still registered\n",
2150 __func__, buffer_type));
2151 return 0;
2152 }
2153 /* Get a free request frame and save the message context.
2154 */
2155
2156 if (ioc->ctl_cmds.status != MPT3_CMD_NOT_USED) {
2157 ioc_err(ioc, "%s: ctl_cmd in use\n", __func__);
2158 rc = -EAGAIN;
2159 goto out;
2160 }
2161
2162 smid = mpt3sas_base_get_smid(ioc, ioc->ctl_cb_idx);
2163 if (!smid) {
2164 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
2165 rc = -EAGAIN;
2166 goto out;
2167 }
2168
2169 rc = 0;
2170 ioc->ctl_cmds.status = MPT3_CMD_PENDING;
2171 memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz);
2172 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2173 ioc->ctl_cmds.smid = smid;
2174
2175 mpi_request->Function = MPI2_FUNCTION_DIAG_BUFFER_POST;
2176 mpi_request->BufferType = buffer_type;
2177 mpi_request->BufferLength =
2178 cpu_to_le32(ioc->diag_buffer_sz[buffer_type]);
2179 mpi_request->BufferAddress =
2180 cpu_to_le64(ioc->diag_buffer_dma[buffer_type]);
2181 for (i = 0; i < MPT3_PRODUCT_SPECIFIC_DWORDS; i++)
2182 mpi_request->ProductSpecific[i] =
2183 cpu_to_le32(ioc->product_specific[buffer_type][i]);
2184 mpi_request->VF_ID = 0; /* TODO */
2185 mpi_request->VP_ID = 0;
2186
2187 init_completion(&ioc->ctl_cmds.done);
2188 ioc->put_smid_default(ioc, smid);
2189 wait_for_completion_timeout(&ioc->ctl_cmds.done,
2190 MPT3_IOCTL_DEFAULT_TIMEOUT*HZ);
2191
2192 if (!(ioc->ctl_cmds.status & MPT3_CMD_COMPLETE)) {
2193 issue_reset =
2194 mpt3sas_base_check_cmd_timeout(ioc,
2195 ioc->ctl_cmds.status, mpi_request,
2196 sizeof(Mpi2DiagBufferPostRequest_t)/4);
2197 goto issue_host_reset;
2198 }
2199
2200 /* process the completed Reply Message Frame */
2201 if ((ioc->ctl_cmds.status & MPT3_CMD_REPLY_VALID) == 0) {
2202 ioc_err(ioc, "%s: no reply message\n", __func__);
2203 rc = -EFAULT;
2204 goto out;
2205 }
2206
2207 mpi_reply = ioc->ctl_cmds.reply;
2208 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
2209
2210 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
2211 ioc->diag_buffer_status[buffer_type] |=
2212 MPT3_DIAG_BUFFER_IS_REGISTERED;
2213 dctlprintk(ioc, ioc_info(ioc, "%s: success\n", __func__));
2214 } else {
2215 ioc_info(ioc, "%s: ioc_status(0x%04x) log_info(0x%08x)\n",
2216 __func__, ioc_status,
2217 le32_to_cpu(mpi_reply->IOCLogInfo));
2218 rc = -EFAULT;
2219 }
2220
2221 issue_host_reset:
2222 if (issue_reset)
2223 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
2224
2225 out:
2226
2227 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
2228 return rc;
2229 }
2230
2231
2232
2233 #ifdef CONFIG_COMPAT
2234 /**
2235 * _ctl_compat_mpt_command - convert 32bit pointers to 64bit.
2236 * @ioc: per adapter object
2237 * @cmd: ioctl opcode
2238 * @arg: (struct mpt3_ioctl_command32)
2239 *
2240 * MPT3COMMAND32 - Handle 32bit applications running on 64bit os.
2241 */
2242 static long
_ctl_compat_mpt_command(struct MPT3SAS_ADAPTER * ioc,unsigned cmd,void __user * arg)2243 _ctl_compat_mpt_command(struct MPT3SAS_ADAPTER *ioc, unsigned cmd,
2244 void __user *arg)
2245 {
2246 struct mpt3_ioctl_command32 karg32;
2247 struct mpt3_ioctl_command32 __user *uarg;
2248 struct mpt3_ioctl_command karg;
2249
2250 if (_IOC_SIZE(cmd) != sizeof(struct mpt3_ioctl_command32))
2251 return -EINVAL;
2252
2253 uarg = (struct mpt3_ioctl_command32 __user *) arg;
2254
2255 if (copy_from_user(&karg32, (char __user *)arg, sizeof(karg32))) {
2256 pr_err("failure at %s:%d/%s()!\n",
2257 __FILE__, __LINE__, __func__);
2258 return -EFAULT;
2259 }
2260
2261 memset(&karg, 0, sizeof(struct mpt3_ioctl_command));
2262 karg.hdr.ioc_number = karg32.hdr.ioc_number;
2263 karg.hdr.port_number = karg32.hdr.port_number;
2264 karg.hdr.max_data_size = karg32.hdr.max_data_size;
2265 karg.timeout = karg32.timeout;
2266 karg.max_reply_bytes = karg32.max_reply_bytes;
2267 karg.data_in_size = karg32.data_in_size;
2268 karg.data_out_size = karg32.data_out_size;
2269 karg.max_sense_bytes = karg32.max_sense_bytes;
2270 karg.data_sge_offset = karg32.data_sge_offset;
2271 karg.reply_frame_buf_ptr = compat_ptr(karg32.reply_frame_buf_ptr);
2272 karg.data_in_buf_ptr = compat_ptr(karg32.data_in_buf_ptr);
2273 karg.data_out_buf_ptr = compat_ptr(karg32.data_out_buf_ptr);
2274 karg.sense_data_ptr = compat_ptr(karg32.sense_data_ptr);
2275 return _ctl_do_mpt_command(ioc, karg, &uarg->mf);
2276 }
2277 #endif
2278
2279 /**
2280 * _ctl_ioctl_main - main ioctl entry point
2281 * @file: (struct file)
2282 * @cmd: ioctl opcode
2283 * @arg: user space data buffer
2284 * @compat: handles 32 bit applications in 64bit os
2285 * @mpi_version: will be MPI2_VERSION for mpt2ctl ioctl device &
2286 * MPI25_VERSION | MPI26_VERSION for mpt3ctl ioctl device.
2287 */
2288 static long
_ctl_ioctl_main(struct file * file,unsigned int cmd,void __user * arg,u8 compat,u16 mpi_version)2289 _ctl_ioctl_main(struct file *file, unsigned int cmd, void __user *arg,
2290 u8 compat, u16 mpi_version)
2291 {
2292 struct MPT3SAS_ADAPTER *ioc;
2293 struct mpt3_ioctl_header ioctl_header;
2294 enum block_state state;
2295 long ret = -EINVAL;
2296
2297 /* get IOCTL header */
2298 if (copy_from_user(&ioctl_header, (char __user *)arg,
2299 sizeof(struct mpt3_ioctl_header))) {
2300 pr_err("failure at %s:%d/%s()!\n",
2301 __FILE__, __LINE__, __func__);
2302 return -EFAULT;
2303 }
2304
2305 if (_ctl_verify_adapter(ioctl_header.ioc_number,
2306 &ioc, mpi_version) == -1 || !ioc)
2307 return -ENODEV;
2308
2309 /* pci_access_mutex lock acquired by ioctl path */
2310 mutex_lock(&ioc->pci_access_mutex);
2311
2312 if (ioc->shost_recovery || ioc->pci_error_recovery ||
2313 ioc->is_driver_loading || ioc->remove_host) {
2314 ret = -EAGAIN;
2315 goto out_unlock_pciaccess;
2316 }
2317
2318 state = (file->f_flags & O_NONBLOCK) ? NON_BLOCKING : BLOCKING;
2319 if (state == NON_BLOCKING) {
2320 if (!mutex_trylock(&ioc->ctl_cmds.mutex)) {
2321 ret = -EAGAIN;
2322 goto out_unlock_pciaccess;
2323 }
2324 } else if (mutex_lock_interruptible(&ioc->ctl_cmds.mutex)) {
2325 ret = -ERESTARTSYS;
2326 goto out_unlock_pciaccess;
2327 }
2328
2329
2330 switch (cmd) {
2331 case MPT3IOCINFO:
2332 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_iocinfo))
2333 ret = _ctl_getiocinfo(ioc, arg);
2334 break;
2335 #ifdef CONFIG_COMPAT
2336 case MPT3COMMAND32:
2337 #endif
2338 case MPT3COMMAND:
2339 {
2340 struct mpt3_ioctl_command __user *uarg;
2341 struct mpt3_ioctl_command karg;
2342
2343 #ifdef CONFIG_COMPAT
2344 if (compat) {
2345 ret = _ctl_compat_mpt_command(ioc, cmd, arg);
2346 break;
2347 }
2348 #endif
2349 if (copy_from_user(&karg, arg, sizeof(karg))) {
2350 pr_err("failure at %s:%d/%s()!\n",
2351 __FILE__, __LINE__, __func__);
2352 ret = -EFAULT;
2353 break;
2354 }
2355
2356 if (karg.hdr.ioc_number != ioctl_header.ioc_number) {
2357 ret = -EINVAL;
2358 break;
2359 }
2360 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_command)) {
2361 uarg = arg;
2362 ret = _ctl_do_mpt_command(ioc, karg, &uarg->mf);
2363 }
2364 break;
2365 }
2366 case MPT3EVENTQUERY:
2367 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_eventquery))
2368 ret = _ctl_eventquery(ioc, arg);
2369 break;
2370 case MPT3EVENTENABLE:
2371 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_eventenable))
2372 ret = _ctl_eventenable(ioc, arg);
2373 break;
2374 case MPT3EVENTREPORT:
2375 ret = _ctl_eventreport(ioc, arg);
2376 break;
2377 case MPT3HARDRESET:
2378 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_diag_reset))
2379 ret = _ctl_do_reset(ioc, arg);
2380 break;
2381 case MPT3BTDHMAPPING:
2382 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_btdh_mapping))
2383 ret = _ctl_btdh_mapping(ioc, arg);
2384 break;
2385 case MPT3DIAGREGISTER:
2386 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_register))
2387 ret = _ctl_diag_register(ioc, arg);
2388 break;
2389 case MPT3DIAGUNREGISTER:
2390 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_unregister))
2391 ret = _ctl_diag_unregister(ioc, arg);
2392 break;
2393 case MPT3DIAGQUERY:
2394 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_query))
2395 ret = _ctl_diag_query(ioc, arg);
2396 break;
2397 case MPT3DIAGRELEASE:
2398 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_release))
2399 ret = _ctl_diag_release(ioc, arg);
2400 break;
2401 case MPT3DIAGREADBUFFER:
2402 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_read_buffer))
2403 ret = _ctl_diag_read_buffer(ioc, arg);
2404 break;
2405 default:
2406 dctlprintk(ioc,
2407 ioc_info(ioc, "unsupported ioctl opcode(0x%08x)\n",
2408 cmd));
2409 break;
2410 }
2411
2412 mutex_unlock(&ioc->ctl_cmds.mutex);
2413 out_unlock_pciaccess:
2414 mutex_unlock(&ioc->pci_access_mutex);
2415 return ret;
2416 }
2417
2418 /**
2419 * _ctl_ioctl - mpt3ctl main ioctl entry point (unlocked)
2420 * @file: (struct file)
2421 * @cmd: ioctl opcode
2422 * @arg: ?
2423 */
2424 static long
_ctl_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2425 _ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2426 {
2427 long ret;
2428
2429 /* pass MPI25_VERSION | MPI26_VERSION value,
2430 * to indicate that this ioctl cmd
2431 * came from mpt3ctl ioctl device.
2432 */
2433 ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 0,
2434 MPI25_VERSION | MPI26_VERSION);
2435 return ret;
2436 }
2437
2438 /**
2439 * _ctl_mpt2_ioctl - mpt2ctl main ioctl entry point (unlocked)
2440 * @file: (struct file)
2441 * @cmd: ioctl opcode
2442 * @arg: ?
2443 */
2444 static long
_ctl_mpt2_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2445 _ctl_mpt2_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2446 {
2447 long ret;
2448
2449 /* pass MPI2_VERSION value, to indicate that this ioctl cmd
2450 * came from mpt2ctl ioctl device.
2451 */
2452 ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 0, MPI2_VERSION);
2453 return ret;
2454 }
2455 #ifdef CONFIG_COMPAT
2456 /**
2457 *_ ctl_ioctl_compat - main ioctl entry point (compat)
2458 * @file: ?
2459 * @cmd: ?
2460 * @arg: ?
2461 *
2462 * This routine handles 32 bit applications in 64bit os.
2463 */
2464 static long
_ctl_ioctl_compat(struct file * file,unsigned cmd,unsigned long arg)2465 _ctl_ioctl_compat(struct file *file, unsigned cmd, unsigned long arg)
2466 {
2467 long ret;
2468
2469 ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 1,
2470 MPI25_VERSION | MPI26_VERSION);
2471 return ret;
2472 }
2473
2474 /**
2475 *_ ctl_mpt2_ioctl_compat - main ioctl entry point (compat)
2476 * @file: ?
2477 * @cmd: ?
2478 * @arg: ?
2479 *
2480 * This routine handles 32 bit applications in 64bit os.
2481 */
2482 static long
_ctl_mpt2_ioctl_compat(struct file * file,unsigned cmd,unsigned long arg)2483 _ctl_mpt2_ioctl_compat(struct file *file, unsigned cmd, unsigned long arg)
2484 {
2485 long ret;
2486
2487 ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 1, MPI2_VERSION);
2488 return ret;
2489 }
2490 #endif
2491
2492 /* scsi host attributes */
2493 /**
2494 * version_fw_show - firmware version
2495 * @cdev: pointer to embedded class device
2496 * @attr: ?
2497 * @buf: the buffer returned
2498 *
2499 * A sysfs 'read-only' shost attribute.
2500 */
2501 static ssize_t
version_fw_show(struct device * cdev,struct device_attribute * attr,char * buf)2502 version_fw_show(struct device *cdev, struct device_attribute *attr,
2503 char *buf)
2504 {
2505 struct Scsi_Host *shost = class_to_shost(cdev);
2506 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2507
2508 return snprintf(buf, PAGE_SIZE, "%02d.%02d.%02d.%02d\n",
2509 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
2510 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
2511 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
2512 ioc->facts.FWVersion.Word & 0x000000FF);
2513 }
2514 static DEVICE_ATTR_RO(version_fw);
2515
2516 /**
2517 * version_bios_show - bios version
2518 * @cdev: pointer to embedded class device
2519 * @attr: ?
2520 * @buf: the buffer returned
2521 *
2522 * A sysfs 'read-only' shost attribute.
2523 */
2524 static ssize_t
version_bios_show(struct device * cdev,struct device_attribute * attr,char * buf)2525 version_bios_show(struct device *cdev, struct device_attribute *attr,
2526 char *buf)
2527 {
2528 struct Scsi_Host *shost = class_to_shost(cdev);
2529 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2530
2531 u32 version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
2532
2533 return snprintf(buf, PAGE_SIZE, "%02d.%02d.%02d.%02d\n",
2534 (version & 0xFF000000) >> 24,
2535 (version & 0x00FF0000) >> 16,
2536 (version & 0x0000FF00) >> 8,
2537 version & 0x000000FF);
2538 }
2539 static DEVICE_ATTR_RO(version_bios);
2540
2541 /**
2542 * version_mpi_show - MPI (message passing interface) version
2543 * @cdev: pointer to embedded class device
2544 * @attr: ?
2545 * @buf: the buffer returned
2546 *
2547 * A sysfs 'read-only' shost attribute.
2548 */
2549 static ssize_t
version_mpi_show(struct device * cdev,struct device_attribute * attr,char * buf)2550 version_mpi_show(struct device *cdev, struct device_attribute *attr,
2551 char *buf)
2552 {
2553 struct Scsi_Host *shost = class_to_shost(cdev);
2554 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2555
2556 return snprintf(buf, PAGE_SIZE, "%03x.%02x\n",
2557 ioc->facts.MsgVersion, ioc->facts.HeaderVersion >> 8);
2558 }
2559 static DEVICE_ATTR_RO(version_mpi);
2560
2561 /**
2562 * version_product_show - product name
2563 * @cdev: pointer to embedded class device
2564 * @attr: ?
2565 * @buf: the buffer returned
2566 *
2567 * A sysfs 'read-only' shost attribute.
2568 */
2569 static ssize_t
version_product_show(struct device * cdev,struct device_attribute * attr,char * buf)2570 version_product_show(struct device *cdev, struct device_attribute *attr,
2571 char *buf)
2572 {
2573 struct Scsi_Host *shost = class_to_shost(cdev);
2574 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2575
2576 return snprintf(buf, 16, "%s\n", ioc->manu_pg0.ChipName);
2577 }
2578 static DEVICE_ATTR_RO(version_product);
2579
2580 /**
2581 * version_nvdata_persistent_show - ndvata persistent version
2582 * @cdev: pointer to embedded class device
2583 * @attr: ?
2584 * @buf: the buffer returned
2585 *
2586 * A sysfs 'read-only' shost attribute.
2587 */
2588 static ssize_t
version_nvdata_persistent_show(struct device * cdev,struct device_attribute * attr,char * buf)2589 version_nvdata_persistent_show(struct device *cdev,
2590 struct device_attribute *attr, char *buf)
2591 {
2592 struct Scsi_Host *shost = class_to_shost(cdev);
2593 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2594
2595 return snprintf(buf, PAGE_SIZE, "%08xh\n",
2596 le32_to_cpu(ioc->iounit_pg0.NvdataVersionPersistent.Word));
2597 }
2598 static DEVICE_ATTR_RO(version_nvdata_persistent);
2599
2600 /**
2601 * version_nvdata_default_show - nvdata default version
2602 * @cdev: pointer to embedded class device
2603 * @attr: ?
2604 * @buf: the buffer returned
2605 *
2606 * A sysfs 'read-only' shost attribute.
2607 */
2608 static ssize_t
version_nvdata_default_show(struct device * cdev,struct device_attribute * attr,char * buf)2609 version_nvdata_default_show(struct device *cdev, struct device_attribute
2610 *attr, char *buf)
2611 {
2612 struct Scsi_Host *shost = class_to_shost(cdev);
2613 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2614
2615 return snprintf(buf, PAGE_SIZE, "%08xh\n",
2616 le32_to_cpu(ioc->iounit_pg0.NvdataVersionDefault.Word));
2617 }
2618 static DEVICE_ATTR_RO(version_nvdata_default);
2619
2620 /**
2621 * board_name_show - board name
2622 * @cdev: pointer to embedded class device
2623 * @attr: ?
2624 * @buf: the buffer returned
2625 *
2626 * A sysfs 'read-only' shost attribute.
2627 */
2628 static ssize_t
board_name_show(struct device * cdev,struct device_attribute * attr,char * buf)2629 board_name_show(struct device *cdev, struct device_attribute *attr,
2630 char *buf)
2631 {
2632 struct Scsi_Host *shost = class_to_shost(cdev);
2633 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2634
2635 return snprintf(buf, 16, "%s\n", ioc->manu_pg0.BoardName);
2636 }
2637 static DEVICE_ATTR_RO(board_name);
2638
2639 /**
2640 * board_assembly_show - board assembly name
2641 * @cdev: pointer to embedded class device
2642 * @attr: ?
2643 * @buf: the buffer returned
2644 *
2645 * A sysfs 'read-only' shost attribute.
2646 */
2647 static ssize_t
board_assembly_show(struct device * cdev,struct device_attribute * attr,char * buf)2648 board_assembly_show(struct device *cdev, struct device_attribute *attr,
2649 char *buf)
2650 {
2651 struct Scsi_Host *shost = class_to_shost(cdev);
2652 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2653
2654 return snprintf(buf, 16, "%s\n", ioc->manu_pg0.BoardAssembly);
2655 }
2656 static DEVICE_ATTR_RO(board_assembly);
2657
2658 /**
2659 * board_tracer_show - board tracer number
2660 * @cdev: pointer to embedded class device
2661 * @attr: ?
2662 * @buf: the buffer returned
2663 *
2664 * A sysfs 'read-only' shost attribute.
2665 */
2666 static ssize_t
board_tracer_show(struct device * cdev,struct device_attribute * attr,char * buf)2667 board_tracer_show(struct device *cdev, struct device_attribute *attr,
2668 char *buf)
2669 {
2670 struct Scsi_Host *shost = class_to_shost(cdev);
2671 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2672
2673 return snprintf(buf, 16, "%s\n", ioc->manu_pg0.BoardTracerNumber);
2674 }
2675 static DEVICE_ATTR_RO(board_tracer);
2676
2677 /**
2678 * io_delay_show - io missing delay
2679 * @cdev: pointer to embedded class device
2680 * @attr: ?
2681 * @buf: the buffer returned
2682 *
2683 * This is for firmware implemention for deboucing device
2684 * removal events.
2685 *
2686 * A sysfs 'read-only' shost attribute.
2687 */
2688 static ssize_t
io_delay_show(struct device * cdev,struct device_attribute * attr,char * buf)2689 io_delay_show(struct device *cdev, struct device_attribute *attr,
2690 char *buf)
2691 {
2692 struct Scsi_Host *shost = class_to_shost(cdev);
2693 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2694
2695 return snprintf(buf, PAGE_SIZE, "%02d\n", ioc->io_missing_delay);
2696 }
2697 static DEVICE_ATTR_RO(io_delay);
2698
2699 /**
2700 * device_delay_show - device missing delay
2701 * @cdev: pointer to embedded class device
2702 * @attr: ?
2703 * @buf: the buffer returned
2704 *
2705 * This is for firmware implemention for deboucing device
2706 * removal events.
2707 *
2708 * A sysfs 'read-only' shost attribute.
2709 */
2710 static ssize_t
device_delay_show(struct device * cdev,struct device_attribute * attr,char * buf)2711 device_delay_show(struct device *cdev, struct device_attribute *attr,
2712 char *buf)
2713 {
2714 struct Scsi_Host *shost = class_to_shost(cdev);
2715 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2716
2717 return snprintf(buf, PAGE_SIZE, "%02d\n", ioc->device_missing_delay);
2718 }
2719 static DEVICE_ATTR_RO(device_delay);
2720
2721 /**
2722 * fw_queue_depth_show - global credits
2723 * @cdev: pointer to embedded class device
2724 * @attr: ?
2725 * @buf: the buffer returned
2726 *
2727 * This is firmware queue depth limit
2728 *
2729 * A sysfs 'read-only' shost attribute.
2730 */
2731 static ssize_t
fw_queue_depth_show(struct device * cdev,struct device_attribute * attr,char * buf)2732 fw_queue_depth_show(struct device *cdev, struct device_attribute *attr,
2733 char *buf)
2734 {
2735 struct Scsi_Host *shost = class_to_shost(cdev);
2736 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2737
2738 return snprintf(buf, PAGE_SIZE, "%02d\n", ioc->facts.RequestCredit);
2739 }
2740 static DEVICE_ATTR_RO(fw_queue_depth);
2741
2742 /**
2743 * sas_address_show - sas address
2744 * @cdev: pointer to embedded class device
2745 * @attr: ?
2746 * @buf: the buffer returned
2747 *
2748 * This is the controller sas address
2749 *
2750 * A sysfs 'read-only' shost attribute.
2751 */
2752 static ssize_t
host_sas_address_show(struct device * cdev,struct device_attribute * attr,char * buf)2753 host_sas_address_show(struct device *cdev, struct device_attribute *attr,
2754 char *buf)
2755
2756 {
2757 struct Scsi_Host *shost = class_to_shost(cdev);
2758 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2759
2760 return snprintf(buf, PAGE_SIZE, "0x%016llx\n",
2761 (unsigned long long)ioc->sas_hba.sas_address);
2762 }
2763 static DEVICE_ATTR_RO(host_sas_address);
2764
2765 /**
2766 * logging_level_show - logging level
2767 * @cdev: pointer to embedded class device
2768 * @attr: ?
2769 * @buf: the buffer returned
2770 *
2771 * A sysfs 'read/write' shost attribute.
2772 */
2773 static ssize_t
logging_level_show(struct device * cdev,struct device_attribute * attr,char * buf)2774 logging_level_show(struct device *cdev, struct device_attribute *attr,
2775 char *buf)
2776 {
2777 struct Scsi_Host *shost = class_to_shost(cdev);
2778 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2779
2780 return snprintf(buf, PAGE_SIZE, "%08xh\n", ioc->logging_level);
2781 }
2782 static ssize_t
logging_level_store(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)2783 logging_level_store(struct device *cdev, struct device_attribute *attr,
2784 const char *buf, size_t count)
2785 {
2786 struct Scsi_Host *shost = class_to_shost(cdev);
2787 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2788 int val = 0;
2789
2790 if (sscanf(buf, "%x", &val) != 1)
2791 return -EINVAL;
2792
2793 ioc->logging_level = val;
2794 ioc_info(ioc, "logging_level=%08xh\n",
2795 ioc->logging_level);
2796 return strlen(buf);
2797 }
2798 static DEVICE_ATTR_RW(logging_level);
2799
2800 /**
2801 * fwfault_debug_show - show/store fwfault_debug
2802 * @cdev: pointer to embedded class device
2803 * @attr: ?
2804 * @buf: the buffer returned
2805 *
2806 * mpt3sas_fwfault_debug is command line option
2807 * A sysfs 'read/write' shost attribute.
2808 */
2809 static ssize_t
fwfault_debug_show(struct device * cdev,struct device_attribute * attr,char * buf)2810 fwfault_debug_show(struct device *cdev, struct device_attribute *attr,
2811 char *buf)
2812 {
2813 struct Scsi_Host *shost = class_to_shost(cdev);
2814 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2815
2816 return snprintf(buf, PAGE_SIZE, "%d\n", ioc->fwfault_debug);
2817 }
2818 static ssize_t
fwfault_debug_store(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)2819 fwfault_debug_store(struct device *cdev, struct device_attribute *attr,
2820 const char *buf, size_t count)
2821 {
2822 struct Scsi_Host *shost = class_to_shost(cdev);
2823 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2824 int val = 0;
2825
2826 if (sscanf(buf, "%d", &val) != 1)
2827 return -EINVAL;
2828
2829 ioc->fwfault_debug = val;
2830 ioc_info(ioc, "fwfault_debug=%d\n",
2831 ioc->fwfault_debug);
2832 return strlen(buf);
2833 }
2834 static DEVICE_ATTR_RW(fwfault_debug);
2835
2836 /**
2837 * ioc_reset_count_show - ioc reset count
2838 * @cdev: pointer to embedded class device
2839 * @attr: ?
2840 * @buf: the buffer returned
2841 *
2842 * This is firmware queue depth limit
2843 *
2844 * A sysfs 'read-only' shost attribute.
2845 */
2846 static ssize_t
ioc_reset_count_show(struct device * cdev,struct device_attribute * attr,char * buf)2847 ioc_reset_count_show(struct device *cdev, struct device_attribute *attr,
2848 char *buf)
2849 {
2850 struct Scsi_Host *shost = class_to_shost(cdev);
2851 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2852
2853 return snprintf(buf, PAGE_SIZE, "%d\n", ioc->ioc_reset_count);
2854 }
2855 static DEVICE_ATTR_RO(ioc_reset_count);
2856
2857 /**
2858 * reply_queue_count_show - number of reply queues
2859 * @cdev: pointer to embedded class device
2860 * @attr: ?
2861 * @buf: the buffer returned
2862 *
2863 * This is number of reply queues
2864 *
2865 * A sysfs 'read-only' shost attribute.
2866 */
2867 static ssize_t
reply_queue_count_show(struct device * cdev,struct device_attribute * attr,char * buf)2868 reply_queue_count_show(struct device *cdev,
2869 struct device_attribute *attr, char *buf)
2870 {
2871 u8 reply_queue_count;
2872 struct Scsi_Host *shost = class_to_shost(cdev);
2873 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2874
2875 if ((ioc->facts.IOCCapabilities &
2876 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable)
2877 reply_queue_count = ioc->reply_queue_count;
2878 else
2879 reply_queue_count = 1;
2880
2881 return snprintf(buf, PAGE_SIZE, "%d\n", reply_queue_count);
2882 }
2883 static DEVICE_ATTR_RO(reply_queue_count);
2884
2885 /**
2886 * BRM_status_show - Backup Rail Monitor Status
2887 * @cdev: pointer to embedded class device
2888 * @attr: ?
2889 * @buf: the buffer returned
2890 *
2891 * This is number of reply queues
2892 *
2893 * A sysfs 'read-only' shost attribute.
2894 */
2895 static ssize_t
BRM_status_show(struct device * cdev,struct device_attribute * attr,char * buf)2896 BRM_status_show(struct device *cdev, struct device_attribute *attr,
2897 char *buf)
2898 {
2899 struct Scsi_Host *shost = class_to_shost(cdev);
2900 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2901 Mpi2IOUnitPage3_t *io_unit_pg3 = NULL;
2902 Mpi2ConfigReply_t mpi_reply;
2903 u16 backup_rail_monitor_status = 0;
2904 u16 ioc_status;
2905 int sz;
2906 ssize_t rc = 0;
2907
2908 if (!ioc->is_warpdrive) {
2909 ioc_err(ioc, "%s: BRM attribute is only for warpdrive\n",
2910 __func__);
2911 goto out;
2912 }
2913 /* pci_access_mutex lock acquired by sysfs show path */
2914 mutex_lock(&ioc->pci_access_mutex);
2915 if (ioc->pci_error_recovery || ioc->remove_host) {
2916 mutex_unlock(&ioc->pci_access_mutex);
2917 return 0;
2918 }
2919
2920 /* allocate upto GPIOVal 36 entries */
2921 sz = offsetof(Mpi2IOUnitPage3_t, GPIOVal) + (sizeof(u16) * 36);
2922 io_unit_pg3 = kzalloc(sz, GFP_KERNEL);
2923 if (!io_unit_pg3) {
2924 ioc_err(ioc, "%s: failed allocating memory for iounit_pg3: (%d) bytes\n",
2925 __func__, sz);
2926 goto out;
2927 }
2928
2929 if (mpt3sas_config_get_iounit_pg3(ioc, &mpi_reply, io_unit_pg3, sz) !=
2930 0) {
2931 ioc_err(ioc, "%s: failed reading iounit_pg3\n",
2932 __func__);
2933 goto out;
2934 }
2935
2936 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
2937 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
2938 ioc_err(ioc, "%s: iounit_pg3 failed with ioc_status(0x%04x)\n",
2939 __func__, ioc_status);
2940 goto out;
2941 }
2942
2943 if (io_unit_pg3->GPIOCount < 25) {
2944 ioc_err(ioc, "%s: iounit_pg3->GPIOCount less than 25 entries, detected (%d) entries\n",
2945 __func__, io_unit_pg3->GPIOCount);
2946 goto out;
2947 }
2948
2949 /* BRM status is in bit zero of GPIOVal[24] */
2950 backup_rail_monitor_status = le16_to_cpu(io_unit_pg3->GPIOVal[24]);
2951 rc = snprintf(buf, PAGE_SIZE, "%d\n", (backup_rail_monitor_status & 1));
2952
2953 out:
2954 kfree(io_unit_pg3);
2955 mutex_unlock(&ioc->pci_access_mutex);
2956 return rc;
2957 }
2958 static DEVICE_ATTR_RO(BRM_status);
2959
2960 struct DIAG_BUFFER_START {
2961 __le32 Size;
2962 __le32 DiagVersion;
2963 u8 BufferType;
2964 u8 Reserved[3];
2965 __le32 Reserved1;
2966 __le32 Reserved2;
2967 __le32 Reserved3;
2968 };
2969
2970 /**
2971 * host_trace_buffer_size_show - host buffer size (trace only)
2972 * @cdev: pointer to embedded class device
2973 * @attr: ?
2974 * @buf: the buffer returned
2975 *
2976 * A sysfs 'read-only' shost attribute.
2977 */
2978 static ssize_t
host_trace_buffer_size_show(struct device * cdev,struct device_attribute * attr,char * buf)2979 host_trace_buffer_size_show(struct device *cdev,
2980 struct device_attribute *attr, char *buf)
2981 {
2982 struct Scsi_Host *shost = class_to_shost(cdev);
2983 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2984 u32 size = 0;
2985 struct DIAG_BUFFER_START *request_data;
2986
2987 if (!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) {
2988 ioc_err(ioc, "%s: host_trace_buffer is not registered\n",
2989 __func__);
2990 return 0;
2991 }
2992
2993 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
2994 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) {
2995 ioc_err(ioc, "%s: host_trace_buffer is not registered\n",
2996 __func__);
2997 return 0;
2998 }
2999
3000 request_data = (struct DIAG_BUFFER_START *)
3001 ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE];
3002 if ((le32_to_cpu(request_data->DiagVersion) == 0x00000000 ||
3003 le32_to_cpu(request_data->DiagVersion) == 0x01000000 ||
3004 le32_to_cpu(request_data->DiagVersion) == 0x01010000) &&
3005 le32_to_cpu(request_data->Reserved3) == 0x4742444c)
3006 size = le32_to_cpu(request_data->Size);
3007
3008 ioc->ring_buffer_sz = size;
3009 return snprintf(buf, PAGE_SIZE, "%d\n", size);
3010 }
3011 static DEVICE_ATTR_RO(host_trace_buffer_size);
3012
3013 /**
3014 * host_trace_buffer_show - firmware ring buffer (trace only)
3015 * @cdev: pointer to embedded class device
3016 * @attr: ?
3017 * @buf: the buffer returned
3018 *
3019 * A sysfs 'read/write' shost attribute.
3020 *
3021 * You will only be able to read 4k bytes of ring buffer at a time.
3022 * In order to read beyond 4k bytes, you will have to write out the
3023 * offset to the same attribute, it will move the pointer.
3024 */
3025 static ssize_t
host_trace_buffer_show(struct device * cdev,struct device_attribute * attr,char * buf)3026 host_trace_buffer_show(struct device *cdev, struct device_attribute *attr,
3027 char *buf)
3028 {
3029 struct Scsi_Host *shost = class_to_shost(cdev);
3030 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3031 void *request_data;
3032 u32 size;
3033
3034 if (!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) {
3035 ioc_err(ioc, "%s: host_trace_buffer is not registered\n",
3036 __func__);
3037 return 0;
3038 }
3039
3040 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
3041 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) {
3042 ioc_err(ioc, "%s: host_trace_buffer is not registered\n",
3043 __func__);
3044 return 0;
3045 }
3046
3047 if (ioc->ring_buffer_offset > ioc->ring_buffer_sz)
3048 return 0;
3049
3050 size = ioc->ring_buffer_sz - ioc->ring_buffer_offset;
3051 size = (size >= PAGE_SIZE) ? (PAGE_SIZE - 1) : size;
3052 request_data = ioc->diag_buffer[0] + ioc->ring_buffer_offset;
3053 memcpy(buf, request_data, size);
3054 return size;
3055 }
3056
3057 static ssize_t
host_trace_buffer_store(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)3058 host_trace_buffer_store(struct device *cdev, struct device_attribute *attr,
3059 const char *buf, size_t count)
3060 {
3061 struct Scsi_Host *shost = class_to_shost(cdev);
3062 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3063 int val = 0;
3064
3065 if (sscanf(buf, "%d", &val) != 1)
3066 return -EINVAL;
3067
3068 ioc->ring_buffer_offset = val;
3069 return strlen(buf);
3070 }
3071 static DEVICE_ATTR_RW(host_trace_buffer);
3072
3073
3074 /*****************************************/
3075
3076 /**
3077 * host_trace_buffer_enable_show - firmware ring buffer (trace only)
3078 * @cdev: pointer to embedded class device
3079 * @attr: ?
3080 * @buf: the buffer returned
3081 *
3082 * A sysfs 'read/write' shost attribute.
3083 *
3084 * This is a mechnism to post/release host_trace_buffers
3085 */
3086 static ssize_t
host_trace_buffer_enable_show(struct device * cdev,struct device_attribute * attr,char * buf)3087 host_trace_buffer_enable_show(struct device *cdev,
3088 struct device_attribute *attr, char *buf)
3089 {
3090 struct Scsi_Host *shost = class_to_shost(cdev);
3091 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3092
3093 if ((!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) ||
3094 ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
3095 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0))
3096 return snprintf(buf, PAGE_SIZE, "off\n");
3097 else if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
3098 MPT3_DIAG_BUFFER_IS_RELEASED))
3099 return snprintf(buf, PAGE_SIZE, "release\n");
3100 else
3101 return snprintf(buf, PAGE_SIZE, "post\n");
3102 }
3103
3104 static ssize_t
host_trace_buffer_enable_store(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)3105 host_trace_buffer_enable_store(struct device *cdev,
3106 struct device_attribute *attr, const char *buf, size_t count)
3107 {
3108 struct Scsi_Host *shost = class_to_shost(cdev);
3109 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3110 char str[10] = "";
3111 struct mpt3_diag_register diag_register;
3112 u8 issue_reset = 0;
3113
3114 /* don't allow post/release occurr while recovery is active */
3115 if (ioc->shost_recovery || ioc->remove_host ||
3116 ioc->pci_error_recovery || ioc->is_driver_loading)
3117 return -EBUSY;
3118
3119 if (sscanf(buf, "%9s", str) != 1)
3120 return -EINVAL;
3121
3122 if (!strcmp(str, "post")) {
3123 /* exit out if host buffers are already posted */
3124 if ((ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) &&
3125 (ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
3126 MPT3_DIAG_BUFFER_IS_REGISTERED) &&
3127 ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
3128 MPT3_DIAG_BUFFER_IS_RELEASED) == 0))
3129 goto out;
3130 memset(&diag_register, 0, sizeof(struct mpt3_diag_register));
3131 ioc_info(ioc, "posting host trace buffers\n");
3132 diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_TRACE;
3133 diag_register.requested_buffer_size = (1024 * 1024);
3134 diag_register.unique_id = 0x7075900;
3135 ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] = 0;
3136 _ctl_diag_register_2(ioc, &diag_register);
3137 } else if (!strcmp(str, "release")) {
3138 /* exit out if host buffers are already released */
3139 if (!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE])
3140 goto out;
3141 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
3142 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0)
3143 goto out;
3144 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
3145 MPT3_DIAG_BUFFER_IS_RELEASED))
3146 goto out;
3147 ioc_info(ioc, "releasing host trace buffer\n");
3148 mpt3sas_send_diag_release(ioc, MPI2_DIAG_BUF_TYPE_TRACE,
3149 &issue_reset);
3150 }
3151
3152 out:
3153 return strlen(buf);
3154 }
3155 static DEVICE_ATTR_RW(host_trace_buffer_enable);
3156
3157 /*********** diagnostic trigger suppport *********************************/
3158
3159 /**
3160 * diag_trigger_master_show - show the diag_trigger_master attribute
3161 * @cdev: pointer to embedded class device
3162 * @attr: ?
3163 * @buf: the buffer returned
3164 *
3165 * A sysfs 'read/write' shost attribute.
3166 */
3167 static ssize_t
diag_trigger_master_show(struct device * cdev,struct device_attribute * attr,char * buf)3168 diag_trigger_master_show(struct device *cdev,
3169 struct device_attribute *attr, char *buf)
3170
3171 {
3172 struct Scsi_Host *shost = class_to_shost(cdev);
3173 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3174 unsigned long flags;
3175 ssize_t rc;
3176
3177 spin_lock_irqsave(&ioc->diag_trigger_lock, flags);
3178 rc = sizeof(struct SL_WH_MASTER_TRIGGER_T);
3179 memcpy(buf, &ioc->diag_trigger_master, rc);
3180 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags);
3181 return rc;
3182 }
3183
3184 /**
3185 * diag_trigger_master_store - store the diag_trigger_master attribute
3186 * @cdev: pointer to embedded class device
3187 * @attr: ?
3188 * @buf: the buffer returned
3189 * @count: ?
3190 *
3191 * A sysfs 'read/write' shost attribute.
3192 */
3193 static ssize_t
diag_trigger_master_store(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)3194 diag_trigger_master_store(struct device *cdev,
3195 struct device_attribute *attr, const char *buf, size_t count)
3196
3197 {
3198 struct Scsi_Host *shost = class_to_shost(cdev);
3199 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3200 unsigned long flags;
3201 ssize_t rc;
3202
3203 spin_lock_irqsave(&ioc->diag_trigger_lock, flags);
3204 rc = min(sizeof(struct SL_WH_MASTER_TRIGGER_T), count);
3205 memset(&ioc->diag_trigger_master, 0,
3206 sizeof(struct SL_WH_MASTER_TRIGGER_T));
3207 memcpy(&ioc->diag_trigger_master, buf, rc);
3208 ioc->diag_trigger_master.MasterData |=
3209 (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET);
3210 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags);
3211 return rc;
3212 }
3213 static DEVICE_ATTR_RW(diag_trigger_master);
3214
3215
3216 /**
3217 * diag_trigger_event_show - show the diag_trigger_event attribute
3218 * @cdev: pointer to embedded class device
3219 * @attr: ?
3220 * @buf: the buffer returned
3221 *
3222 * A sysfs 'read/write' shost attribute.
3223 */
3224 static ssize_t
diag_trigger_event_show(struct device * cdev,struct device_attribute * attr,char * buf)3225 diag_trigger_event_show(struct device *cdev,
3226 struct device_attribute *attr, char *buf)
3227 {
3228 struct Scsi_Host *shost = class_to_shost(cdev);
3229 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3230 unsigned long flags;
3231 ssize_t rc;
3232
3233 spin_lock_irqsave(&ioc->diag_trigger_lock, flags);
3234 rc = sizeof(struct SL_WH_EVENT_TRIGGERS_T);
3235 memcpy(buf, &ioc->diag_trigger_event, rc);
3236 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags);
3237 return rc;
3238 }
3239
3240 /**
3241 * diag_trigger_event_store - store the diag_trigger_event attribute
3242 * @cdev: pointer to embedded class device
3243 * @attr: ?
3244 * @buf: the buffer returned
3245 * @count: ?
3246 *
3247 * A sysfs 'read/write' shost attribute.
3248 */
3249 static ssize_t
diag_trigger_event_store(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)3250 diag_trigger_event_store(struct device *cdev,
3251 struct device_attribute *attr, const char *buf, size_t count)
3252
3253 {
3254 struct Scsi_Host *shost = class_to_shost(cdev);
3255 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3256 unsigned long flags;
3257 ssize_t sz;
3258
3259 spin_lock_irqsave(&ioc->diag_trigger_lock, flags);
3260 sz = min(sizeof(struct SL_WH_EVENT_TRIGGERS_T), count);
3261 memset(&ioc->diag_trigger_event, 0,
3262 sizeof(struct SL_WH_EVENT_TRIGGERS_T));
3263 memcpy(&ioc->diag_trigger_event, buf, sz);
3264 if (ioc->diag_trigger_event.ValidEntries > NUM_VALID_ENTRIES)
3265 ioc->diag_trigger_event.ValidEntries = NUM_VALID_ENTRIES;
3266 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags);
3267 return sz;
3268 }
3269 static DEVICE_ATTR_RW(diag_trigger_event);
3270
3271
3272 /**
3273 * diag_trigger_scsi_show - show the diag_trigger_scsi attribute
3274 * @cdev: pointer to embedded class device
3275 * @attr: ?
3276 * @buf: the buffer returned
3277 *
3278 * A sysfs 'read/write' shost attribute.
3279 */
3280 static ssize_t
diag_trigger_scsi_show(struct device * cdev,struct device_attribute * attr,char * buf)3281 diag_trigger_scsi_show(struct device *cdev,
3282 struct device_attribute *attr, char *buf)
3283 {
3284 struct Scsi_Host *shost = class_to_shost(cdev);
3285 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3286 unsigned long flags;
3287 ssize_t rc;
3288
3289 spin_lock_irqsave(&ioc->diag_trigger_lock, flags);
3290 rc = sizeof(struct SL_WH_SCSI_TRIGGERS_T);
3291 memcpy(buf, &ioc->diag_trigger_scsi, rc);
3292 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags);
3293 return rc;
3294 }
3295
3296 /**
3297 * diag_trigger_scsi_store - store the diag_trigger_scsi attribute
3298 * @cdev: pointer to embedded class device
3299 * @attr: ?
3300 * @buf: the buffer returned
3301 * @count: ?
3302 *
3303 * A sysfs 'read/write' shost attribute.
3304 */
3305 static ssize_t
diag_trigger_scsi_store(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)3306 diag_trigger_scsi_store(struct device *cdev,
3307 struct device_attribute *attr, const char *buf, size_t count)
3308 {
3309 struct Scsi_Host *shost = class_to_shost(cdev);
3310 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3311 unsigned long flags;
3312 ssize_t sz;
3313
3314 spin_lock_irqsave(&ioc->diag_trigger_lock, flags);
3315 sz = min(sizeof(ioc->diag_trigger_scsi), count);
3316 memset(&ioc->diag_trigger_scsi, 0, sizeof(ioc->diag_trigger_scsi));
3317 memcpy(&ioc->diag_trigger_scsi, buf, sz);
3318 if (ioc->diag_trigger_scsi.ValidEntries > NUM_VALID_ENTRIES)
3319 ioc->diag_trigger_scsi.ValidEntries = NUM_VALID_ENTRIES;
3320 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags);
3321 return sz;
3322 }
3323 static DEVICE_ATTR_RW(diag_trigger_scsi);
3324
3325
3326 /**
3327 * diag_trigger_scsi_show - show the diag_trigger_mpi attribute
3328 * @cdev: pointer to embedded class device
3329 * @attr: ?
3330 * @buf: the buffer returned
3331 *
3332 * A sysfs 'read/write' shost attribute.
3333 */
3334 static ssize_t
diag_trigger_mpi_show(struct device * cdev,struct device_attribute * attr,char * buf)3335 diag_trigger_mpi_show(struct device *cdev,
3336 struct device_attribute *attr, char *buf)
3337 {
3338 struct Scsi_Host *shost = class_to_shost(cdev);
3339 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3340 unsigned long flags;
3341 ssize_t rc;
3342
3343 spin_lock_irqsave(&ioc->diag_trigger_lock, flags);
3344 rc = sizeof(struct SL_WH_MPI_TRIGGERS_T);
3345 memcpy(buf, &ioc->diag_trigger_mpi, rc);
3346 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags);
3347 return rc;
3348 }
3349
3350 /**
3351 * diag_trigger_mpi_store - store the diag_trigger_mpi attribute
3352 * @cdev: pointer to embedded class device
3353 * @attr: ?
3354 * @buf: the buffer returned
3355 * @count: ?
3356 *
3357 * A sysfs 'read/write' shost attribute.
3358 */
3359 static ssize_t
diag_trigger_mpi_store(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)3360 diag_trigger_mpi_store(struct device *cdev,
3361 struct device_attribute *attr, const char *buf, size_t count)
3362 {
3363 struct Scsi_Host *shost = class_to_shost(cdev);
3364 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3365 unsigned long flags;
3366 ssize_t sz;
3367
3368 spin_lock_irqsave(&ioc->diag_trigger_lock, flags);
3369 sz = min(sizeof(struct SL_WH_MPI_TRIGGERS_T), count);
3370 memset(&ioc->diag_trigger_mpi, 0,
3371 sizeof(ioc->diag_trigger_mpi));
3372 memcpy(&ioc->diag_trigger_mpi, buf, sz);
3373 if (ioc->diag_trigger_mpi.ValidEntries > NUM_VALID_ENTRIES)
3374 ioc->diag_trigger_mpi.ValidEntries = NUM_VALID_ENTRIES;
3375 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags);
3376 return sz;
3377 }
3378
3379 static DEVICE_ATTR_RW(diag_trigger_mpi);
3380
3381 /*********** diagnostic trigger suppport *** END ****************************/
3382
3383 /*****************************************/
3384
3385 /**
3386 * drv_support_bitmap_show - driver supported feature bitmap
3387 * @cdev - pointer to embedded class device
3388 * @buf - the buffer returned
3389 *
3390 * A sysfs 'read-only' shost attribute.
3391 */
3392 static ssize_t
drv_support_bitmap_show(struct device * cdev,struct device_attribute * attr,char * buf)3393 drv_support_bitmap_show(struct device *cdev,
3394 struct device_attribute *attr, char *buf)
3395 {
3396 struct Scsi_Host *shost = class_to_shost(cdev);
3397 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3398
3399 return snprintf(buf, PAGE_SIZE, "0x%08x\n", ioc->drv_support_bitmap);
3400 }
3401 static DEVICE_ATTR_RO(drv_support_bitmap);
3402
3403 /**
3404 * enable_sdev_max_qd_show - display whether sdev max qd is enabled/disabled
3405 * @cdev - pointer to embedded class device
3406 * @buf - the buffer returned
3407 *
3408 * A sysfs read/write shost attribute. This attribute is used to set the
3409 * targets queue depth to HBA IO queue depth if this attribute is enabled.
3410 */
3411 static ssize_t
enable_sdev_max_qd_show(struct device * cdev,struct device_attribute * attr,char * buf)3412 enable_sdev_max_qd_show(struct device *cdev,
3413 struct device_attribute *attr, char *buf)
3414 {
3415 struct Scsi_Host *shost = class_to_shost(cdev);
3416 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3417
3418 return snprintf(buf, PAGE_SIZE, "%d\n", ioc->enable_sdev_max_qd);
3419 }
3420
3421 /**
3422 * enable_sdev_max_qd_store - Enable/disable sdev max qd
3423 * @cdev - pointer to embedded class device
3424 * @buf - the buffer returned
3425 *
3426 * A sysfs read/write shost attribute. This attribute is used to set the
3427 * targets queue depth to HBA IO queue depth if this attribute is enabled.
3428 * If this attribute is disabled then targets will have corresponding default
3429 * queue depth.
3430 */
3431 static ssize_t
enable_sdev_max_qd_store(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)3432 enable_sdev_max_qd_store(struct device *cdev,
3433 struct device_attribute *attr, const char *buf, size_t count)
3434 {
3435 struct Scsi_Host *shost = class_to_shost(cdev);
3436 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3437 struct MPT3SAS_DEVICE *sas_device_priv_data;
3438 struct MPT3SAS_TARGET *sas_target_priv_data;
3439 int val = 0;
3440 struct scsi_device *sdev;
3441 struct _raid_device *raid_device;
3442 int qdepth;
3443
3444 if (kstrtoint(buf, 0, &val) != 0)
3445 return -EINVAL;
3446
3447 switch (val) {
3448 case 0:
3449 ioc->enable_sdev_max_qd = 0;
3450 shost_for_each_device(sdev, ioc->shost) {
3451 sas_device_priv_data = sdev->hostdata;
3452 if (!sas_device_priv_data)
3453 continue;
3454 sas_target_priv_data = sas_device_priv_data->sas_target;
3455 if (!sas_target_priv_data)
3456 continue;
3457
3458 if (sas_target_priv_data->flags &
3459 MPT_TARGET_FLAGS_VOLUME) {
3460 raid_device =
3461 mpt3sas_raid_device_find_by_handle(ioc,
3462 sas_target_priv_data->handle);
3463
3464 switch (raid_device->volume_type) {
3465 case MPI2_RAID_VOL_TYPE_RAID0:
3466 if (raid_device->device_info &
3467 MPI2_SAS_DEVICE_INFO_SSP_TARGET)
3468 qdepth =
3469 MPT3SAS_SAS_QUEUE_DEPTH;
3470 else
3471 qdepth =
3472 MPT3SAS_SATA_QUEUE_DEPTH;
3473 break;
3474 case MPI2_RAID_VOL_TYPE_RAID1E:
3475 case MPI2_RAID_VOL_TYPE_RAID1:
3476 case MPI2_RAID_VOL_TYPE_RAID10:
3477 case MPI2_RAID_VOL_TYPE_UNKNOWN:
3478 default:
3479 qdepth = MPT3SAS_RAID_QUEUE_DEPTH;
3480 }
3481 } else if (sas_target_priv_data->flags &
3482 MPT_TARGET_FLAGS_PCIE_DEVICE)
3483 qdepth = MPT3SAS_NVME_QUEUE_DEPTH;
3484 else
3485 qdepth = MPT3SAS_SAS_QUEUE_DEPTH;
3486
3487 mpt3sas_scsih_change_queue_depth(sdev, qdepth);
3488 }
3489 break;
3490 case 1:
3491 ioc->enable_sdev_max_qd = 1;
3492 shost_for_each_device(sdev, ioc->shost)
3493 mpt3sas_scsih_change_queue_depth(sdev,
3494 shost->can_queue);
3495 break;
3496 default:
3497 return -EINVAL;
3498 }
3499
3500 return strlen(buf);
3501 }
3502 static DEVICE_ATTR_RW(enable_sdev_max_qd);
3503
3504 struct device_attribute *mpt3sas_host_attrs[] = {
3505 &dev_attr_version_fw,
3506 &dev_attr_version_bios,
3507 &dev_attr_version_mpi,
3508 &dev_attr_version_product,
3509 &dev_attr_version_nvdata_persistent,
3510 &dev_attr_version_nvdata_default,
3511 &dev_attr_board_name,
3512 &dev_attr_board_assembly,
3513 &dev_attr_board_tracer,
3514 &dev_attr_io_delay,
3515 &dev_attr_device_delay,
3516 &dev_attr_logging_level,
3517 &dev_attr_fwfault_debug,
3518 &dev_attr_fw_queue_depth,
3519 &dev_attr_host_sas_address,
3520 &dev_attr_ioc_reset_count,
3521 &dev_attr_host_trace_buffer_size,
3522 &dev_attr_host_trace_buffer,
3523 &dev_attr_host_trace_buffer_enable,
3524 &dev_attr_reply_queue_count,
3525 &dev_attr_diag_trigger_master,
3526 &dev_attr_diag_trigger_event,
3527 &dev_attr_diag_trigger_scsi,
3528 &dev_attr_diag_trigger_mpi,
3529 &dev_attr_drv_support_bitmap,
3530 &dev_attr_BRM_status,
3531 &dev_attr_enable_sdev_max_qd,
3532 NULL,
3533 };
3534
3535 /* device attributes */
3536
3537 /**
3538 * sas_address_show - sas address
3539 * @dev: pointer to embedded class device
3540 * @attr: ?
3541 * @buf: the buffer returned
3542 *
3543 * This is the sas address for the target
3544 *
3545 * A sysfs 'read-only' shost attribute.
3546 */
3547 static ssize_t
sas_address_show(struct device * dev,struct device_attribute * attr,char * buf)3548 sas_address_show(struct device *dev, struct device_attribute *attr,
3549 char *buf)
3550 {
3551 struct scsi_device *sdev = to_scsi_device(dev);
3552 struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata;
3553
3554 return snprintf(buf, PAGE_SIZE, "0x%016llx\n",
3555 (unsigned long long)sas_device_priv_data->sas_target->sas_address);
3556 }
3557 static DEVICE_ATTR_RO(sas_address);
3558
3559 /**
3560 * sas_device_handle_show - device handle
3561 * @dev: pointer to embedded class device
3562 * @attr: ?
3563 * @buf: the buffer returned
3564 *
3565 * This is the firmware assigned device handle
3566 *
3567 * A sysfs 'read-only' shost attribute.
3568 */
3569 static ssize_t
sas_device_handle_show(struct device * dev,struct device_attribute * attr,char * buf)3570 sas_device_handle_show(struct device *dev, struct device_attribute *attr,
3571 char *buf)
3572 {
3573 struct scsi_device *sdev = to_scsi_device(dev);
3574 struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata;
3575
3576 return snprintf(buf, PAGE_SIZE, "0x%04x\n",
3577 sas_device_priv_data->sas_target->handle);
3578 }
3579 static DEVICE_ATTR_RO(sas_device_handle);
3580
3581 /**
3582 * sas_ncq_io_prio_show - send prioritized io commands to device
3583 * @dev: pointer to embedded device
3584 * @attr: ?
3585 * @buf: the buffer returned
3586 *
3587 * A sysfs 'read/write' sdev attribute, only works with SATA
3588 */
3589 static ssize_t
sas_ncq_prio_enable_show(struct device * dev,struct device_attribute * attr,char * buf)3590 sas_ncq_prio_enable_show(struct device *dev,
3591 struct device_attribute *attr, char *buf)
3592 {
3593 struct scsi_device *sdev = to_scsi_device(dev);
3594 struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata;
3595
3596 return snprintf(buf, PAGE_SIZE, "%d\n",
3597 sas_device_priv_data->ncq_prio_enable);
3598 }
3599
3600 static ssize_t
sas_ncq_prio_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3601 sas_ncq_prio_enable_store(struct device *dev,
3602 struct device_attribute *attr,
3603 const char *buf, size_t count)
3604 {
3605 struct scsi_device *sdev = to_scsi_device(dev);
3606 struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata;
3607 bool ncq_prio_enable = 0;
3608
3609 if (kstrtobool(buf, &ncq_prio_enable))
3610 return -EINVAL;
3611
3612 if (!scsih_ncq_prio_supp(sdev))
3613 return -EINVAL;
3614
3615 sas_device_priv_data->ncq_prio_enable = ncq_prio_enable;
3616 return strlen(buf);
3617 }
3618 static DEVICE_ATTR_RW(sas_ncq_prio_enable);
3619
3620 struct device_attribute *mpt3sas_dev_attrs[] = {
3621 &dev_attr_sas_address,
3622 &dev_attr_sas_device_handle,
3623 &dev_attr_sas_ncq_prio_enable,
3624 NULL,
3625 };
3626
3627 /* file operations table for mpt3ctl device */
3628 static const struct file_operations ctl_fops = {
3629 .owner = THIS_MODULE,
3630 .unlocked_ioctl = _ctl_ioctl,
3631 .poll = _ctl_poll,
3632 .fasync = _ctl_fasync,
3633 #ifdef CONFIG_COMPAT
3634 .compat_ioctl = _ctl_ioctl_compat,
3635 #endif
3636 };
3637
3638 /* file operations table for mpt2ctl device */
3639 static const struct file_operations ctl_gen2_fops = {
3640 .owner = THIS_MODULE,
3641 .unlocked_ioctl = _ctl_mpt2_ioctl,
3642 .poll = _ctl_poll,
3643 .fasync = _ctl_fasync,
3644 #ifdef CONFIG_COMPAT
3645 .compat_ioctl = _ctl_mpt2_ioctl_compat,
3646 #endif
3647 };
3648
3649 static struct miscdevice ctl_dev = {
3650 .minor = MPT3SAS_MINOR,
3651 .name = MPT3SAS_DEV_NAME,
3652 .fops = &ctl_fops,
3653 };
3654
3655 static struct miscdevice gen2_ctl_dev = {
3656 .minor = MPT2SAS_MINOR,
3657 .name = MPT2SAS_DEV_NAME,
3658 .fops = &ctl_gen2_fops,
3659 };
3660
3661 /**
3662 * mpt3sas_ctl_init - main entry point for ctl.
3663 * @hbas_to_enumerate: ?
3664 */
3665 void
mpt3sas_ctl_init(ushort hbas_to_enumerate)3666 mpt3sas_ctl_init(ushort hbas_to_enumerate)
3667 {
3668 async_queue = NULL;
3669
3670 /* Don't register mpt3ctl ioctl device if
3671 * hbas_to_enumarate is one.
3672 */
3673 if (hbas_to_enumerate != 1)
3674 if (misc_register(&ctl_dev) < 0)
3675 pr_err("%s can't register misc device [minor=%d]\n",
3676 MPT3SAS_DRIVER_NAME, MPT3SAS_MINOR);
3677
3678 /* Don't register mpt3ctl ioctl device if
3679 * hbas_to_enumarate is two.
3680 */
3681 if (hbas_to_enumerate != 2)
3682 if (misc_register(&gen2_ctl_dev) < 0)
3683 pr_err("%s can't register misc device [minor=%d]\n",
3684 MPT2SAS_DRIVER_NAME, MPT2SAS_MINOR);
3685
3686 init_waitqueue_head(&ctl_poll_wait);
3687 }
3688
3689 /**
3690 * mpt3sas_ctl_exit - exit point for ctl
3691 * @hbas_to_enumerate: ?
3692 */
3693 void
mpt3sas_ctl_exit(ushort hbas_to_enumerate)3694 mpt3sas_ctl_exit(ushort hbas_to_enumerate)
3695 {
3696 struct MPT3SAS_ADAPTER *ioc;
3697 int i;
3698
3699 list_for_each_entry(ioc, &mpt3sas_ioc_list, list) {
3700
3701 /* free memory associated to diag buffers */
3702 for (i = 0; i < MPI2_DIAG_BUF_TYPE_COUNT; i++) {
3703 if (!ioc->diag_buffer[i])
3704 continue;
3705 if (!(ioc->diag_buffer_status[i] &
3706 MPT3_DIAG_BUFFER_IS_REGISTERED))
3707 continue;
3708 if ((ioc->diag_buffer_status[i] &
3709 MPT3_DIAG_BUFFER_IS_RELEASED))
3710 continue;
3711 dma_free_coherent(&ioc->pdev->dev,
3712 ioc->diag_buffer_sz[i],
3713 ioc->diag_buffer[i],
3714 ioc->diag_buffer_dma[i]);
3715 ioc->diag_buffer[i] = NULL;
3716 ioc->diag_buffer_status[i] = 0;
3717 }
3718
3719 kfree(ioc->event_log);
3720 }
3721 if (hbas_to_enumerate != 1)
3722 misc_deregister(&ctl_dev);
3723 if (hbas_to_enumerate != 2)
3724 misc_deregister(&gen2_ctl_dev);
3725 }
3726