1 /*
2 * This is the Fusion MPT base driver providing common API layer interface
3 * for access to MPT (Message Passing Technology) firmware.
4 *
5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6 * Copyright (C) 2012-2014 LSI Corporation
7 * Copyright (C) 2013-2014 Avago Technologies
8 * (mailto: MPT-FusionLinux.pdl@avagotech.com)
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version 2
13 * of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * NO WARRANTY
21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25 * solely responsible for determining the appropriateness of using and
26 * distributing the Program and assumes all risks associated with its
27 * exercise of rights under this Agreement, including but not limited to
28 * the risks and costs of program errors, damage to or loss of data,
29 * programs or equipment, and unavailability or interruption of operations.
30
31 * DISCLAIMER OF LIABILITY
32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39
40 * You should have received a copy of the GNU General Public License
41 * along with this program; if not, write to the Free Software
42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
43 * USA.
44 */
45
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h> /* To get host page size per arch */
63 #include <linux/aer.h>
64
65
66 #include "mpt3sas_base.h"
67
68 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS];
69
70
71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
72
73 /* maximum controller queue depth */
74 #define MAX_HBA_QUEUE_DEPTH 30000
75 #define MAX_CHAIN_DEPTH 100000
76 static int max_queue_depth = -1;
77 module_param(max_queue_depth, int, 0444);
78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
79
80 static int max_sgl_entries = -1;
81 module_param(max_sgl_entries, int, 0444);
82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
83
84 static int msix_disable = -1;
85 module_param(msix_disable, int, 0444);
86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
87
88 static int smp_affinity_enable = 1;
89 module_param(smp_affinity_enable, int, 0444);
90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
91
92 static int max_msix_vectors = -1;
93 module_param(max_msix_vectors, int, 0444);
94 MODULE_PARM_DESC(max_msix_vectors,
95 " max msix vectors");
96
97 static int irqpoll_weight = -1;
98 module_param(irqpoll_weight, int, 0444);
99 MODULE_PARM_DESC(irqpoll_weight,
100 "irq poll weight (default= one fourth of HBA queue depth)");
101
102 static int mpt3sas_fwfault_debug;
103 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
104 " enable detection of firmware fault and halt firmware - (default=0)");
105
106 static int perf_mode = -1;
107 module_param(perf_mode, int, 0444);
108 MODULE_PARM_DESC(perf_mode,
109 "Performance mode (only for Aero/Sea Generation), options:\n\t\t"
110 "0 - balanced: high iops mode is enabled &\n\t\t"
111 "interrupt coalescing is enabled only on high iops queues,\n\t\t"
112 "1 - iops: high iops mode is disabled &\n\t\t"
113 "interrupt coalescing is enabled on all queues,\n\t\t"
114 "2 - latency: high iops mode is disabled &\n\t\t"
115 "interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
116 "\t\tdefault - default perf_mode is 'balanced'"
117 );
118
119 enum mpt3sas_perf_mode {
120 MPT_PERF_MODE_DEFAULT = -1,
121 MPT_PERF_MODE_BALANCED = 0,
122 MPT_PERF_MODE_IOPS = 1,
123 MPT_PERF_MODE_LATENCY = 2,
124 };
125
126 static int
127 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc,
128 u32 ioc_state, int timeout);
129 static int
130 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
131 static void
132 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc);
133
134 /**
135 * mpt3sas_base_check_cmd_timeout - Function
136 * to check timeout and command termination due
137 * to Host reset.
138 *
139 * @ioc: per adapter object.
140 * @status: Status of issued command.
141 * @mpi_request:mf request pointer.
142 * @sz: size of buffer.
143 *
144 * @Returns - 1/0 Reset to be done or Not
145 */
146 u8
mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER * ioc,u8 status,void * mpi_request,int sz)147 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
148 u8 status, void *mpi_request, int sz)
149 {
150 u8 issue_reset = 0;
151
152 if (!(status & MPT3_CMD_RESET))
153 issue_reset = 1;
154
155 ioc_err(ioc, "Command %s\n",
156 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout");
157 _debug_dump_mf(mpi_request, sz);
158
159 return issue_reset;
160 }
161
162 /**
163 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
164 * @val: ?
165 * @kp: ?
166 *
167 * Return: ?
168 */
169 static int
_scsih_set_fwfault_debug(const char * val,const struct kernel_param * kp)170 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
171 {
172 int ret = param_set_int(val, kp);
173 struct MPT3SAS_ADAPTER *ioc;
174
175 if (ret)
176 return ret;
177
178 /* global ioc spinlock to protect controller list on list operations */
179 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
180 spin_lock(&gioc_lock);
181 list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
182 ioc->fwfault_debug = mpt3sas_fwfault_debug;
183 spin_unlock(&gioc_lock);
184 return 0;
185 }
186 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
187 param_get_int, &mpt3sas_fwfault_debug, 0644);
188
189 /**
190 * _base_readl_aero - retry readl for max three times.
191 * @addr: MPT Fusion system interface register address
192 *
193 * Retry the readl() for max three times if it gets zero value
194 * while reading the system interface register.
195 */
196 static inline u32
_base_readl_aero(const volatile void __iomem * addr)197 _base_readl_aero(const volatile void __iomem *addr)
198 {
199 u32 i = 0, ret_val;
200
201 do {
202 ret_val = readl(addr);
203 i++;
204 } while (ret_val == 0 && i < 3);
205
206 return ret_val;
207 }
208
209 static inline u32
_base_readl(const volatile void __iomem * addr)210 _base_readl(const volatile void __iomem *addr)
211 {
212 return readl(addr);
213 }
214
215 /**
216 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
217 * in BAR0 space.
218 *
219 * @ioc: per adapter object
220 * @reply: reply message frame(lower 32bit addr)
221 * @index: System request message index.
222 */
223 static void
_base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER * ioc,u32 reply,u32 index)224 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
225 u32 index)
226 {
227 /*
228 * 256 is offset within sys register.
229 * 256 offset MPI frame starts. Max MPI frame supported is 32.
230 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
231 */
232 u16 cmd_credit = ioc->facts.RequestCredit + 1;
233 void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
234 MPI_FRAME_START_OFFSET +
235 (cmd_credit * ioc->request_sz) + (index * sizeof(u32));
236
237 writel(reply, reply_free_iomem);
238 }
239
240 /**
241 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
242 * to system/BAR0 region.
243 *
244 * @dst_iomem: Pointer to the destination location in BAR0 space.
245 * @src: Pointer to the Source data.
246 * @size: Size of data to be copied.
247 */
248 static void
_base_clone_mpi_to_sys_mem(void * dst_iomem,void * src,u32 size)249 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
250 {
251 int i;
252 u32 *src_virt_mem = (u32 *)src;
253
254 for (i = 0; i < size/4; i++)
255 writel((u32)src_virt_mem[i],
256 (void __iomem *)dst_iomem + (i * 4));
257 }
258
259 /**
260 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
261 *
262 * @dst_iomem: Pointer to the destination location in BAR0 space.
263 * @src: Pointer to the Source data.
264 * @size: Size of data to be copied.
265 */
266 static void
_base_clone_to_sys_mem(void __iomem * dst_iomem,void * src,u32 size)267 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
268 {
269 int i;
270 u32 *src_virt_mem = (u32 *)(src);
271
272 for (i = 0; i < size/4; i++)
273 writel((u32)src_virt_mem[i],
274 (void __iomem *)dst_iomem + (i * 4));
275 }
276
277 /**
278 * _base_get_chain - Calculates and Returns virtual chain address
279 * for the provided smid in BAR0 space.
280 *
281 * @ioc: per adapter object
282 * @smid: system request message index
283 * @sge_chain_count: Scatter gather chain count.
284 *
285 * Return: the chain address.
286 */
287 static inline void __iomem*
_base_get_chain(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 sge_chain_count)288 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
289 u8 sge_chain_count)
290 {
291 void __iomem *base_chain, *chain_virt;
292 u16 cmd_credit = ioc->facts.RequestCredit + 1;
293
294 base_chain = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
295 (cmd_credit * ioc->request_sz) +
296 REPLY_FREE_POOL_SIZE;
297 chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
298 ioc->request_sz) + (sge_chain_count * ioc->request_sz);
299 return chain_virt;
300 }
301
302 /**
303 * _base_get_chain_phys - Calculates and Returns physical address
304 * in BAR0 for scatter gather chains, for
305 * the provided smid.
306 *
307 * @ioc: per adapter object
308 * @smid: system request message index
309 * @sge_chain_count: Scatter gather chain count.
310 *
311 * Return: Physical chain address.
312 */
313 static inline phys_addr_t
_base_get_chain_phys(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 sge_chain_count)314 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
315 u8 sge_chain_count)
316 {
317 phys_addr_t base_chain_phys, chain_phys;
318 u16 cmd_credit = ioc->facts.RequestCredit + 1;
319
320 base_chain_phys = ioc->chip_phys + MPI_FRAME_START_OFFSET +
321 (cmd_credit * ioc->request_sz) +
322 REPLY_FREE_POOL_SIZE;
323 chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
324 ioc->request_sz) + (sge_chain_count * ioc->request_sz);
325 return chain_phys;
326 }
327
328 /**
329 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
330 * buffer address for the provided smid.
331 * (Each smid can have 64K starts from 17024)
332 *
333 * @ioc: per adapter object
334 * @smid: system request message index
335 *
336 * Return: Pointer to buffer location in BAR0.
337 */
338
339 static void __iomem *
_base_get_buffer_bar0(struct MPT3SAS_ADAPTER * ioc,u16 smid)340 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
341 {
342 u16 cmd_credit = ioc->facts.RequestCredit + 1;
343 // Added extra 1 to reach end of chain.
344 void __iomem *chain_end = _base_get_chain(ioc,
345 cmd_credit + 1,
346 ioc->facts.MaxChainDepth);
347 return chain_end + (smid * 64 * 1024);
348 }
349
350 /**
351 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
352 * Host buffer Physical address for the provided smid.
353 * (Each smid can have 64K starts from 17024)
354 *
355 * @ioc: per adapter object
356 * @smid: system request message index
357 *
358 * Return: Pointer to buffer location in BAR0.
359 */
360 static phys_addr_t
_base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER * ioc,u16 smid)361 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
362 {
363 u16 cmd_credit = ioc->facts.RequestCredit + 1;
364 phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
365 cmd_credit + 1,
366 ioc->facts.MaxChainDepth);
367 return chain_end_phys + (smid * 64 * 1024);
368 }
369
370 /**
371 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
372 * lookup list and Provides chain_buffer
373 * address for the matching dma address.
374 * (Each smid can have 64K starts from 17024)
375 *
376 * @ioc: per adapter object
377 * @chain_buffer_dma: Chain buffer dma address.
378 *
379 * Return: Pointer to chain buffer. Or Null on Failure.
380 */
381 static void *
_base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER * ioc,dma_addr_t chain_buffer_dma)382 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
383 dma_addr_t chain_buffer_dma)
384 {
385 u16 index, j;
386 struct chain_tracker *ct;
387
388 for (index = 0; index < ioc->scsiio_depth; index++) {
389 for (j = 0; j < ioc->chains_needed_per_io; j++) {
390 ct = &ioc->chain_lookup[index].chains_per_smid[j];
391 if (ct && ct->chain_buffer_dma == chain_buffer_dma)
392 return ct->chain_buffer;
393 }
394 }
395 ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n");
396 return NULL;
397 }
398
399 /**
400 * _clone_sg_entries - MPI EP's scsiio and config requests
401 * are handled here. Base function for
402 * double buffering, before submitting
403 * the requests.
404 *
405 * @ioc: per adapter object.
406 * @mpi_request: mf request pointer.
407 * @smid: system request message index.
408 */
_clone_sg_entries(struct MPT3SAS_ADAPTER * ioc,void * mpi_request,u16 smid)409 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
410 void *mpi_request, u16 smid)
411 {
412 Mpi2SGESimple32_t *sgel, *sgel_next;
413 u32 sgl_flags, sge_chain_count = 0;
414 bool is_write = false;
415 u16 i = 0;
416 void __iomem *buffer_iomem;
417 phys_addr_t buffer_iomem_phys;
418 void __iomem *buff_ptr;
419 phys_addr_t buff_ptr_phys;
420 void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
421 void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
422 phys_addr_t dst_addr_phys;
423 MPI2RequestHeader_t *request_hdr;
424 struct scsi_cmnd *scmd;
425 struct scatterlist *sg_scmd = NULL;
426 int is_scsiio_req = 0;
427
428 request_hdr = (MPI2RequestHeader_t *) mpi_request;
429
430 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
431 Mpi25SCSIIORequest_t *scsiio_request =
432 (Mpi25SCSIIORequest_t *)mpi_request;
433 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
434 is_scsiio_req = 1;
435 } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
436 Mpi2ConfigRequest_t *config_req =
437 (Mpi2ConfigRequest_t *)mpi_request;
438 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
439 } else
440 return;
441
442 /* From smid we can get scsi_cmd, once we have sg_scmd,
443 * we just need to get sg_virt and sg_next to get virual
444 * address associated with sgel->Address.
445 */
446
447 if (is_scsiio_req) {
448 /* Get scsi_cmd using smid */
449 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
450 if (scmd == NULL) {
451 ioc_err(ioc, "scmd is NULL\n");
452 return;
453 }
454
455 /* Get sg_scmd from scmd provided */
456 sg_scmd = scsi_sglist(scmd);
457 }
458
459 /*
460 * 0 - 255 System register
461 * 256 - 4352 MPI Frame. (This is based on maxCredit 32)
462 * 4352 - 4864 Reply_free pool (512 byte is reserved
463 * considering maxCredit 32. Reply need extra
464 * room, for mCPU case kept four times of
465 * maxCredit).
466 * 4864 - 17152 SGE chain element. (32cmd * 3 chain of
467 * 128 byte size = 12288)
468 * 17152 - x Host buffer mapped with smid.
469 * (Each smid can have 64K Max IO.)
470 * BAR0+Last 1K MSIX Addr and Data
471 * Total size in use 2113664 bytes of 4MB BAR0
472 */
473
474 buffer_iomem = _base_get_buffer_bar0(ioc, smid);
475 buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
476
477 buff_ptr = buffer_iomem;
478 buff_ptr_phys = buffer_iomem_phys;
479 WARN_ON(buff_ptr_phys > U32_MAX);
480
481 if (le32_to_cpu(sgel->FlagsLength) &
482 (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
483 is_write = true;
484
485 for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
486
487 sgl_flags =
488 (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
489
490 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
491 case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
492 /*
493 * Helper function which on passing
494 * chain_buffer_dma returns chain_buffer. Get
495 * the virtual address for sgel->Address
496 */
497 sgel_next =
498 _base_get_chain_buffer_dma_to_chain_buffer(ioc,
499 le32_to_cpu(sgel->Address));
500 if (sgel_next == NULL)
501 return;
502 /*
503 * This is coping 128 byte chain
504 * frame (not a host buffer)
505 */
506 dst_chain_addr[sge_chain_count] =
507 _base_get_chain(ioc,
508 smid, sge_chain_count);
509 src_chain_addr[sge_chain_count] =
510 (void *) sgel_next;
511 dst_addr_phys = _base_get_chain_phys(ioc,
512 smid, sge_chain_count);
513 WARN_ON(dst_addr_phys > U32_MAX);
514 sgel->Address =
515 cpu_to_le32(lower_32_bits(dst_addr_phys));
516 sgel = sgel_next;
517 sge_chain_count++;
518 break;
519 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
520 if (is_write) {
521 if (is_scsiio_req) {
522 _base_clone_to_sys_mem(buff_ptr,
523 sg_virt(sg_scmd),
524 (le32_to_cpu(sgel->FlagsLength) &
525 0x00ffffff));
526 /*
527 * FIXME: this relies on a a zero
528 * PCI mem_offset.
529 */
530 sgel->Address =
531 cpu_to_le32((u32)buff_ptr_phys);
532 } else {
533 _base_clone_to_sys_mem(buff_ptr,
534 ioc->config_vaddr,
535 (le32_to_cpu(sgel->FlagsLength) &
536 0x00ffffff));
537 sgel->Address =
538 cpu_to_le32((u32)buff_ptr_phys);
539 }
540 }
541 buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
542 0x00ffffff);
543 buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
544 0x00ffffff);
545 if ((le32_to_cpu(sgel->FlagsLength) &
546 (MPI2_SGE_FLAGS_END_OF_BUFFER
547 << MPI2_SGE_FLAGS_SHIFT)))
548 goto eob_clone_chain;
549 else {
550 /*
551 * Every single element in MPT will have
552 * associated sg_next. Better to sanity that
553 * sg_next is not NULL, but it will be a bug
554 * if it is null.
555 */
556 if (is_scsiio_req) {
557 sg_scmd = sg_next(sg_scmd);
558 if (sg_scmd)
559 sgel++;
560 else
561 goto eob_clone_chain;
562 }
563 }
564 break;
565 }
566 }
567
568 eob_clone_chain:
569 for (i = 0; i < sge_chain_count; i++) {
570 if (is_scsiio_req)
571 _base_clone_to_sys_mem(dst_chain_addr[i],
572 src_chain_addr[i], ioc->request_sz);
573 }
574 }
575
576 /**
577 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
578 * @arg: input argument, used to derive ioc
579 *
580 * Return:
581 * 0 if controller is removed from pci subsystem.
582 * -1 for other case.
583 */
mpt3sas_remove_dead_ioc_func(void * arg)584 static int mpt3sas_remove_dead_ioc_func(void *arg)
585 {
586 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
587 struct pci_dev *pdev;
588
589 if (!ioc)
590 return -1;
591
592 pdev = ioc->pdev;
593 if (!pdev)
594 return -1;
595 pci_stop_and_remove_bus_device_locked(pdev);
596 return 0;
597 }
598
599 /**
600 * _base_fault_reset_work - workq handling ioc fault conditions
601 * @work: input argument, used to derive ioc
602 *
603 * Context: sleep.
604 */
605 static void
_base_fault_reset_work(struct work_struct * work)606 _base_fault_reset_work(struct work_struct *work)
607 {
608 struct MPT3SAS_ADAPTER *ioc =
609 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
610 unsigned long flags;
611 u32 doorbell;
612 int rc;
613 struct task_struct *p;
614
615
616 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
617 if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) ||
618 ioc->pci_error_recovery)
619 goto rearm_timer;
620 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
621
622 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
623 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
624 ioc_err(ioc, "SAS host is non-operational !!!!\n");
625
626 /* It may be possible that EEH recovery can resolve some of
627 * pci bus failure issues rather removing the dead ioc function
628 * by considering controller is in a non-operational state. So
629 * here priority is given to the EEH recovery. If it doesn't
630 * not resolve this issue, mpt3sas driver will consider this
631 * controller to non-operational state and remove the dead ioc
632 * function.
633 */
634 if (ioc->non_operational_loop++ < 5) {
635 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
636 flags);
637 goto rearm_timer;
638 }
639
640 /*
641 * Call _scsih_flush_pending_cmds callback so that we flush all
642 * pending commands back to OS. This call is required to aovid
643 * deadlock at block layer. Dead IOC will fail to do diag reset,
644 * and this call is safe since dead ioc will never return any
645 * command back from HW.
646 */
647 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
648 /*
649 * Set remove_host flag early since kernel thread will
650 * take some time to execute.
651 */
652 ioc->remove_host = 1;
653 /*Remove the Dead Host */
654 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
655 "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
656 if (IS_ERR(p))
657 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
658 __func__);
659 else
660 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
661 __func__);
662 return; /* don't rearm timer */
663 }
664
665 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
666 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
667 ioc->manu_pg11.CoreDumpTOSec :
668 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
669
670 timeout /= (FAULT_POLLING_INTERVAL/1000);
671
672 if (ioc->ioc_coredump_loop == 0) {
673 mpt3sas_print_coredump_info(ioc,
674 doorbell & MPI2_DOORBELL_DATA_MASK);
675 /* do not accept any IOs and disable the interrupts */
676 spin_lock_irqsave(
677 &ioc->ioc_reset_in_progress_lock, flags);
678 ioc->shost_recovery = 1;
679 spin_unlock_irqrestore(
680 &ioc->ioc_reset_in_progress_lock, flags);
681 mpt3sas_base_mask_interrupts(ioc);
682 _base_clear_outstanding_commands(ioc);
683 }
684
685 ioc_info(ioc, "%s: CoreDump loop %d.",
686 __func__, ioc->ioc_coredump_loop);
687
688 /* Wait until CoreDump completes or times out */
689 if (ioc->ioc_coredump_loop++ < timeout) {
690 spin_lock_irqsave(
691 &ioc->ioc_reset_in_progress_lock, flags);
692 goto rearm_timer;
693 }
694 }
695
696 if (ioc->ioc_coredump_loop) {
697 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP)
698 ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d",
699 __func__, ioc->ioc_coredump_loop);
700 else
701 ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d",
702 __func__, ioc->ioc_coredump_loop);
703 ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE;
704 }
705 ioc->non_operational_loop = 0;
706 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
707 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
708 ioc_warn(ioc, "%s: hard reset: %s\n",
709 __func__, rc == 0 ? "success" : "failed");
710 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
711 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
712 mpt3sas_print_fault_code(ioc, doorbell &
713 MPI2_DOORBELL_DATA_MASK);
714 } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
715 MPI2_IOC_STATE_COREDUMP)
716 mpt3sas_print_coredump_info(ioc, doorbell &
717 MPI2_DOORBELL_DATA_MASK);
718 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
719 MPI2_IOC_STATE_OPERATIONAL)
720 return; /* don't rearm timer */
721 }
722 ioc->ioc_coredump_loop = 0;
723
724 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
725 rearm_timer:
726 if (ioc->fault_reset_work_q)
727 queue_delayed_work(ioc->fault_reset_work_q,
728 &ioc->fault_reset_work,
729 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
730 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
731 }
732
733 /**
734 * mpt3sas_base_start_watchdog - start the fault_reset_work_q
735 * @ioc: per adapter object
736 *
737 * Context: sleep.
738 */
739 void
mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER * ioc)740 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
741 {
742 unsigned long flags;
743
744 if (ioc->fault_reset_work_q)
745 return;
746
747 /* initialize fault polling */
748
749 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
750 snprintf(ioc->fault_reset_work_q_name,
751 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
752 ioc->driver_name, ioc->id);
753 ioc->fault_reset_work_q =
754 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
755 if (!ioc->fault_reset_work_q) {
756 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__);
757 return;
758 }
759 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
760 if (ioc->fault_reset_work_q)
761 queue_delayed_work(ioc->fault_reset_work_q,
762 &ioc->fault_reset_work,
763 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
764 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
765 }
766
767 /**
768 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
769 * @ioc: per adapter object
770 *
771 * Context: sleep.
772 */
773 void
mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER * ioc)774 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
775 {
776 unsigned long flags;
777 struct workqueue_struct *wq;
778
779 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
780 wq = ioc->fault_reset_work_q;
781 ioc->fault_reset_work_q = NULL;
782 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
783 if (wq) {
784 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
785 flush_workqueue(wq);
786 destroy_workqueue(wq);
787 }
788 }
789
790 /**
791 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
792 * @ioc: per adapter object
793 * @fault_code: fault code
794 */
795 void
mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER * ioc,u16 fault_code)796 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
797 {
798 ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code);
799 }
800
801 /**
802 * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state
803 * @ioc: per adapter object
804 * @fault_code: fault code
805 *
806 * Return nothing.
807 */
808 void
mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER * ioc,u16 fault_code)809 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
810 {
811 ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code);
812 }
813
814 /**
815 * mpt3sas_base_wait_for_coredump_completion - Wait until coredump
816 * completes or times out
817 * @ioc: per adapter object
818 * @caller: caller function name
819 *
820 * Returns 0 for success, non-zero for failure.
821 */
822 int
mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER * ioc,const char * caller)823 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc,
824 const char *caller)
825 {
826 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
827 ioc->manu_pg11.CoreDumpTOSec :
828 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
829
830 int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT,
831 timeout);
832
833 if (ioc_state)
834 ioc_err(ioc,
835 "%s: CoreDump timed out. (ioc_state=0x%x)\n",
836 caller, ioc_state);
837 else
838 ioc_info(ioc,
839 "%s: CoreDump completed. (ioc_state=0x%x)\n",
840 caller, ioc_state);
841
842 return ioc_state;
843 }
844
845 /**
846 * mpt3sas_halt_firmware - halt's mpt controller firmware
847 * @ioc: per adapter object
848 *
849 * For debugging timeout related issues. Writing 0xCOFFEE00
850 * to the doorbell register will halt controller firmware. With
851 * the purpose to stop both driver and firmware, the enduser can
852 * obtain a ring buffer from controller UART.
853 */
854 void
mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER * ioc)855 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
856 {
857 u32 doorbell;
858
859 if (!ioc->fwfault_debug)
860 return;
861
862 dump_stack();
863
864 doorbell = ioc->base_readl(&ioc->chip->Doorbell);
865 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
866 mpt3sas_print_fault_code(ioc, doorbell &
867 MPI2_DOORBELL_DATA_MASK);
868 } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
869 MPI2_IOC_STATE_COREDUMP) {
870 mpt3sas_print_coredump_info(ioc, doorbell &
871 MPI2_DOORBELL_DATA_MASK);
872 } else {
873 writel(0xC0FFEE00, &ioc->chip->Doorbell);
874 ioc_err(ioc, "Firmware is halted due to command timeout\n");
875 }
876
877 if (ioc->fwfault_debug == 2)
878 for (;;)
879 ;
880 else
881 panic("panic in %s\n", __func__);
882 }
883
884 /**
885 * _base_sas_ioc_info - verbose translation of the ioc status
886 * @ioc: per adapter object
887 * @mpi_reply: reply mf payload returned from firmware
888 * @request_hdr: request mf
889 */
890 static void
_base_sas_ioc_info(struct MPT3SAS_ADAPTER * ioc,MPI2DefaultReply_t * mpi_reply,MPI2RequestHeader_t * request_hdr)891 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
892 MPI2RequestHeader_t *request_hdr)
893 {
894 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
895 MPI2_IOCSTATUS_MASK;
896 char *desc = NULL;
897 u16 frame_sz;
898 char *func_str = NULL;
899
900 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
901 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
902 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
903 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
904 return;
905
906 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
907 return;
908
909 switch (ioc_status) {
910
911 /****************************************************************************
912 * Common IOCStatus values for all replies
913 ****************************************************************************/
914
915 case MPI2_IOCSTATUS_INVALID_FUNCTION:
916 desc = "invalid function";
917 break;
918 case MPI2_IOCSTATUS_BUSY:
919 desc = "busy";
920 break;
921 case MPI2_IOCSTATUS_INVALID_SGL:
922 desc = "invalid sgl";
923 break;
924 case MPI2_IOCSTATUS_INTERNAL_ERROR:
925 desc = "internal error";
926 break;
927 case MPI2_IOCSTATUS_INVALID_VPID:
928 desc = "invalid vpid";
929 break;
930 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
931 desc = "insufficient resources";
932 break;
933 case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
934 desc = "insufficient power";
935 break;
936 case MPI2_IOCSTATUS_INVALID_FIELD:
937 desc = "invalid field";
938 break;
939 case MPI2_IOCSTATUS_INVALID_STATE:
940 desc = "invalid state";
941 break;
942 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
943 desc = "op state not supported";
944 break;
945
946 /****************************************************************************
947 * Config IOCStatus values
948 ****************************************************************************/
949
950 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
951 desc = "config invalid action";
952 break;
953 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
954 desc = "config invalid type";
955 break;
956 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
957 desc = "config invalid page";
958 break;
959 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
960 desc = "config invalid data";
961 break;
962 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
963 desc = "config no defaults";
964 break;
965 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
966 desc = "config cant commit";
967 break;
968
969 /****************************************************************************
970 * SCSI IO Reply
971 ****************************************************************************/
972
973 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
974 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
975 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
976 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
977 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
978 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
979 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
980 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
981 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
982 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
983 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
984 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
985 break;
986
987 /****************************************************************************
988 * For use by SCSI Initiator and SCSI Target end-to-end data protection
989 ****************************************************************************/
990
991 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
992 desc = "eedp guard error";
993 break;
994 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
995 desc = "eedp ref tag error";
996 break;
997 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
998 desc = "eedp app tag error";
999 break;
1000
1001 /****************************************************************************
1002 * SCSI Target values
1003 ****************************************************************************/
1004
1005 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
1006 desc = "target invalid io index";
1007 break;
1008 case MPI2_IOCSTATUS_TARGET_ABORTED:
1009 desc = "target aborted";
1010 break;
1011 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
1012 desc = "target no conn retryable";
1013 break;
1014 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
1015 desc = "target no connection";
1016 break;
1017 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
1018 desc = "target xfer count mismatch";
1019 break;
1020 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
1021 desc = "target data offset error";
1022 break;
1023 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
1024 desc = "target too much write data";
1025 break;
1026 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
1027 desc = "target iu too short";
1028 break;
1029 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
1030 desc = "target ack nak timeout";
1031 break;
1032 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
1033 desc = "target nak received";
1034 break;
1035
1036 /****************************************************************************
1037 * Serial Attached SCSI values
1038 ****************************************************************************/
1039
1040 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
1041 desc = "smp request failed";
1042 break;
1043 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
1044 desc = "smp data overrun";
1045 break;
1046
1047 /****************************************************************************
1048 * Diagnostic Buffer Post / Diagnostic Release values
1049 ****************************************************************************/
1050
1051 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
1052 desc = "diagnostic released";
1053 break;
1054 default:
1055 break;
1056 }
1057
1058 if (!desc)
1059 return;
1060
1061 switch (request_hdr->Function) {
1062 case MPI2_FUNCTION_CONFIG:
1063 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
1064 func_str = "config_page";
1065 break;
1066 case MPI2_FUNCTION_SCSI_TASK_MGMT:
1067 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
1068 func_str = "task_mgmt";
1069 break;
1070 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
1071 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
1072 func_str = "sas_iounit_ctl";
1073 break;
1074 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
1075 frame_sz = sizeof(Mpi2SepRequest_t);
1076 func_str = "enclosure";
1077 break;
1078 case MPI2_FUNCTION_IOC_INIT:
1079 frame_sz = sizeof(Mpi2IOCInitRequest_t);
1080 func_str = "ioc_init";
1081 break;
1082 case MPI2_FUNCTION_PORT_ENABLE:
1083 frame_sz = sizeof(Mpi2PortEnableRequest_t);
1084 func_str = "port_enable";
1085 break;
1086 case MPI2_FUNCTION_SMP_PASSTHROUGH:
1087 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
1088 func_str = "smp_passthru";
1089 break;
1090 case MPI2_FUNCTION_NVME_ENCAPSULATED:
1091 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
1092 ioc->sge_size;
1093 func_str = "nvme_encapsulated";
1094 break;
1095 default:
1096 frame_sz = 32;
1097 func_str = "unknown";
1098 break;
1099 }
1100
1101 ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
1102 desc, ioc_status, request_hdr, func_str);
1103
1104 _debug_dump_mf(request_hdr, frame_sz/4);
1105 }
1106
1107 /**
1108 * _base_display_event_data - verbose translation of firmware asyn events
1109 * @ioc: per adapter object
1110 * @mpi_reply: reply mf payload returned from firmware
1111 */
1112 static void
_base_display_event_data(struct MPT3SAS_ADAPTER * ioc,Mpi2EventNotificationReply_t * mpi_reply)1113 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
1114 Mpi2EventNotificationReply_t *mpi_reply)
1115 {
1116 char *desc = NULL;
1117 u16 event;
1118
1119 if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
1120 return;
1121
1122 event = le16_to_cpu(mpi_reply->Event);
1123
1124 switch (event) {
1125 case MPI2_EVENT_LOG_DATA:
1126 desc = "Log Data";
1127 break;
1128 case MPI2_EVENT_STATE_CHANGE:
1129 desc = "Status Change";
1130 break;
1131 case MPI2_EVENT_HARD_RESET_RECEIVED:
1132 desc = "Hard Reset Received";
1133 break;
1134 case MPI2_EVENT_EVENT_CHANGE:
1135 desc = "Event Change";
1136 break;
1137 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
1138 desc = "Device Status Change";
1139 break;
1140 case MPI2_EVENT_IR_OPERATION_STATUS:
1141 if (!ioc->hide_ir_msg)
1142 desc = "IR Operation Status";
1143 break;
1144 case MPI2_EVENT_SAS_DISCOVERY:
1145 {
1146 Mpi2EventDataSasDiscovery_t *event_data =
1147 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1148 ioc_info(ioc, "Discovery: (%s)",
1149 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ?
1150 "start" : "stop");
1151 if (event_data->DiscoveryStatus)
1152 pr_cont(" discovery_status(0x%08x)",
1153 le32_to_cpu(event_data->DiscoveryStatus));
1154 pr_cont("\n");
1155 return;
1156 }
1157 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1158 desc = "SAS Broadcast Primitive";
1159 break;
1160 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1161 desc = "SAS Init Device Status Change";
1162 break;
1163 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1164 desc = "SAS Init Table Overflow";
1165 break;
1166 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1167 desc = "SAS Topology Change List";
1168 break;
1169 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1170 desc = "SAS Enclosure Device Status Change";
1171 break;
1172 case MPI2_EVENT_IR_VOLUME:
1173 if (!ioc->hide_ir_msg)
1174 desc = "IR Volume";
1175 break;
1176 case MPI2_EVENT_IR_PHYSICAL_DISK:
1177 if (!ioc->hide_ir_msg)
1178 desc = "IR Physical Disk";
1179 break;
1180 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1181 if (!ioc->hide_ir_msg)
1182 desc = "IR Configuration Change List";
1183 break;
1184 case MPI2_EVENT_LOG_ENTRY_ADDED:
1185 if (!ioc->hide_ir_msg)
1186 desc = "Log Entry Added";
1187 break;
1188 case MPI2_EVENT_TEMP_THRESHOLD:
1189 desc = "Temperature Threshold";
1190 break;
1191 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1192 desc = "Cable Event";
1193 break;
1194 case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1195 desc = "SAS Device Discovery Error";
1196 break;
1197 case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1198 desc = "PCIE Device Status Change";
1199 break;
1200 case MPI2_EVENT_PCIE_ENUMERATION:
1201 {
1202 Mpi26EventDataPCIeEnumeration_t *event_data =
1203 (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1204 ioc_info(ioc, "PCIE Enumeration: (%s)",
1205 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ?
1206 "start" : "stop");
1207 if (event_data->EnumerationStatus)
1208 pr_cont("enumeration_status(0x%08x)",
1209 le32_to_cpu(event_data->EnumerationStatus));
1210 pr_cont("\n");
1211 return;
1212 }
1213 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1214 desc = "PCIE Topology Change List";
1215 break;
1216 }
1217
1218 if (!desc)
1219 return;
1220
1221 ioc_info(ioc, "%s\n", desc);
1222 }
1223
1224 /**
1225 * _base_sas_log_info - verbose translation of firmware log info
1226 * @ioc: per adapter object
1227 * @log_info: log info
1228 */
1229 static void
_base_sas_log_info(struct MPT3SAS_ADAPTER * ioc,u32 log_info)1230 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
1231 {
1232 union loginfo_type {
1233 u32 loginfo;
1234 struct {
1235 u32 subcode:16;
1236 u32 code:8;
1237 u32 originator:4;
1238 u32 bus_type:4;
1239 } dw;
1240 };
1241 union loginfo_type sas_loginfo;
1242 char *originator_str = NULL;
1243
1244 sas_loginfo.loginfo = log_info;
1245 if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1246 return;
1247
1248 /* each nexus loss loginfo */
1249 if (log_info == 0x31170000)
1250 return;
1251
1252 /* eat the loginfos associated with task aborts */
1253 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1254 0x31140000 || log_info == 0x31130000))
1255 return;
1256
1257 switch (sas_loginfo.dw.originator) {
1258 case 0:
1259 originator_str = "IOP";
1260 break;
1261 case 1:
1262 originator_str = "PL";
1263 break;
1264 case 2:
1265 if (!ioc->hide_ir_msg)
1266 originator_str = "IR";
1267 else
1268 originator_str = "WarpDrive";
1269 break;
1270 }
1271
1272 ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1273 log_info,
1274 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1275 }
1276
1277 /**
1278 * _base_display_reply_info -
1279 * @ioc: per adapter object
1280 * @smid: system request message index
1281 * @msix_index: MSIX table index supplied by the OS
1282 * @reply: reply message frame(lower 32bit addr)
1283 */
1284 static void
_base_display_reply_info(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 msix_index,u32 reply)1285 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1286 u32 reply)
1287 {
1288 MPI2DefaultReply_t *mpi_reply;
1289 u16 ioc_status;
1290 u32 loginfo = 0;
1291
1292 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1293 if (unlikely(!mpi_reply)) {
1294 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n",
1295 __FILE__, __LINE__, __func__);
1296 return;
1297 }
1298 ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1299
1300 if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1301 (ioc->logging_level & MPT_DEBUG_REPLY)) {
1302 _base_sas_ioc_info(ioc , mpi_reply,
1303 mpt3sas_base_get_msg_frame(ioc, smid));
1304 }
1305
1306 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1307 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1308 _base_sas_log_info(ioc, loginfo);
1309 }
1310
1311 if (ioc_status || loginfo) {
1312 ioc_status &= MPI2_IOCSTATUS_MASK;
1313 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1314 }
1315 }
1316
1317 /**
1318 * mpt3sas_base_done - base internal command completion routine
1319 * @ioc: per adapter object
1320 * @smid: system request message index
1321 * @msix_index: MSIX table index supplied by the OS
1322 * @reply: reply message frame(lower 32bit addr)
1323 *
1324 * Return:
1325 * 1 meaning mf should be freed from _base_interrupt
1326 * 0 means the mf is freed from this function.
1327 */
1328 u8
mpt3sas_base_done(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 msix_index,u32 reply)1329 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1330 u32 reply)
1331 {
1332 MPI2DefaultReply_t *mpi_reply;
1333
1334 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1335 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1336 return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1337
1338 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1339 return 1;
1340
1341 ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1342 if (mpi_reply) {
1343 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1344 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1345 }
1346 ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1347
1348 complete(&ioc->base_cmds.done);
1349 return 1;
1350 }
1351
1352 /**
1353 * _base_async_event - main callback handler for firmware asyn events
1354 * @ioc: per adapter object
1355 * @msix_index: MSIX table index supplied by the OS
1356 * @reply: reply message frame(lower 32bit addr)
1357 *
1358 * Return:
1359 * 1 meaning mf should be freed from _base_interrupt
1360 * 0 means the mf is freed from this function.
1361 */
1362 static u8
_base_async_event(struct MPT3SAS_ADAPTER * ioc,u8 msix_index,u32 reply)1363 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1364 {
1365 Mpi2EventNotificationReply_t *mpi_reply;
1366 Mpi2EventAckRequest_t *ack_request;
1367 u16 smid;
1368 struct _event_ack_list *delayed_event_ack;
1369
1370 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1371 if (!mpi_reply)
1372 return 1;
1373 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1374 return 1;
1375
1376 _base_display_event_data(ioc, mpi_reply);
1377
1378 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1379 goto out;
1380 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1381 if (!smid) {
1382 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1383 GFP_ATOMIC);
1384 if (!delayed_event_ack)
1385 goto out;
1386 INIT_LIST_HEAD(&delayed_event_ack->list);
1387 delayed_event_ack->Event = mpi_reply->Event;
1388 delayed_event_ack->EventContext = mpi_reply->EventContext;
1389 list_add_tail(&delayed_event_ack->list,
1390 &ioc->delayed_event_ack_list);
1391 dewtprintk(ioc,
1392 ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n",
1393 le16_to_cpu(mpi_reply->Event)));
1394 goto out;
1395 }
1396
1397 ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1398 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1399 ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1400 ack_request->Event = mpi_reply->Event;
1401 ack_request->EventContext = mpi_reply->EventContext;
1402 ack_request->VF_ID = 0; /* TODO */
1403 ack_request->VP_ID = 0;
1404 ioc->put_smid_default(ioc, smid);
1405
1406 out:
1407
1408 /* scsih callback handler */
1409 mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1410
1411 /* ctl callback handler */
1412 mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1413
1414 return 1;
1415 }
1416
1417 static struct scsiio_tracker *
_get_st_from_smid(struct MPT3SAS_ADAPTER * ioc,u16 smid)1418 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1419 {
1420 struct scsi_cmnd *cmd;
1421
1422 if (WARN_ON(!smid) ||
1423 WARN_ON(smid >= ioc->hi_priority_smid))
1424 return NULL;
1425
1426 cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1427 if (cmd)
1428 return scsi_cmd_priv(cmd);
1429
1430 return NULL;
1431 }
1432
1433 /**
1434 * _base_get_cb_idx - obtain the callback index
1435 * @ioc: per adapter object
1436 * @smid: system request message index
1437 *
1438 * Return: callback index.
1439 */
1440 static u8
_base_get_cb_idx(struct MPT3SAS_ADAPTER * ioc,u16 smid)1441 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1442 {
1443 int i;
1444 u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1445 u8 cb_idx = 0xFF;
1446
1447 if (smid < ioc->hi_priority_smid) {
1448 struct scsiio_tracker *st;
1449
1450 if (smid < ctl_smid) {
1451 st = _get_st_from_smid(ioc, smid);
1452 if (st)
1453 cb_idx = st->cb_idx;
1454 } else if (smid == ctl_smid)
1455 cb_idx = ioc->ctl_cb_idx;
1456 } else if (smid < ioc->internal_smid) {
1457 i = smid - ioc->hi_priority_smid;
1458 cb_idx = ioc->hpr_lookup[i].cb_idx;
1459 } else if (smid <= ioc->hba_queue_depth) {
1460 i = smid - ioc->internal_smid;
1461 cb_idx = ioc->internal_lookup[i].cb_idx;
1462 }
1463 return cb_idx;
1464 }
1465
1466 /**
1467 * mpt3sas_base_mask_interrupts - disable interrupts
1468 * @ioc: per adapter object
1469 *
1470 * Disabling ResetIRQ, Reply and Doorbell Interrupts
1471 */
1472 void
mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER * ioc)1473 mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1474 {
1475 u32 him_register;
1476
1477 ioc->mask_interrupts = 1;
1478 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1479 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1480 writel(him_register, &ioc->chip->HostInterruptMask);
1481 ioc->base_readl(&ioc->chip->HostInterruptMask);
1482 }
1483
1484 /**
1485 * mpt3sas_base_unmask_interrupts - enable interrupts
1486 * @ioc: per adapter object
1487 *
1488 * Enabling only Reply Interrupts
1489 */
1490 void
mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER * ioc)1491 mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1492 {
1493 u32 him_register;
1494
1495 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1496 him_register &= ~MPI2_HIM_RIM;
1497 writel(him_register, &ioc->chip->HostInterruptMask);
1498 ioc->mask_interrupts = 0;
1499 }
1500
1501 union reply_descriptor {
1502 u64 word;
1503 struct {
1504 u32 low;
1505 u32 high;
1506 } u;
1507 };
1508
base_mod64(u64 dividend,u32 divisor)1509 static u32 base_mod64(u64 dividend, u32 divisor)
1510 {
1511 u32 remainder;
1512
1513 if (!divisor)
1514 pr_err("mpt3sas: DIVISOR is zero, in div fn\n");
1515 remainder = do_div(dividend, divisor);
1516 return remainder;
1517 }
1518
1519 /**
1520 * _base_process_reply_queue - Process reply descriptors from reply
1521 * descriptor post queue.
1522 * @reply_q: per IRQ's reply queue object.
1523 *
1524 * Return: number of reply descriptors processed from reply
1525 * descriptor queue.
1526 */
1527 static int
_base_process_reply_queue(struct adapter_reply_queue * reply_q)1528 _base_process_reply_queue(struct adapter_reply_queue *reply_q)
1529 {
1530 union reply_descriptor rd;
1531 u64 completed_cmds;
1532 u8 request_descript_type;
1533 u16 smid;
1534 u8 cb_idx;
1535 u32 reply;
1536 u8 msix_index = reply_q->msix_index;
1537 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1538 Mpi2ReplyDescriptorsUnion_t *rpf;
1539 u8 rc;
1540
1541 completed_cmds = 0;
1542 if (!atomic_add_unless(&reply_q->busy, 1, 1))
1543 return completed_cmds;
1544
1545 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1546 request_descript_type = rpf->Default.ReplyFlags
1547 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1548 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1549 atomic_dec(&reply_q->busy);
1550 return completed_cmds;
1551 }
1552
1553 cb_idx = 0xFF;
1554 do {
1555 rd.word = le64_to_cpu(rpf->Words);
1556 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1557 goto out;
1558 reply = 0;
1559 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1560 if (request_descript_type ==
1561 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1562 request_descript_type ==
1563 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1564 request_descript_type ==
1565 MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1566 cb_idx = _base_get_cb_idx(ioc, smid);
1567 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1568 (likely(mpt_callbacks[cb_idx] != NULL))) {
1569 rc = mpt_callbacks[cb_idx](ioc, smid,
1570 msix_index, 0);
1571 if (rc)
1572 mpt3sas_base_free_smid(ioc, smid);
1573 }
1574 } else if (request_descript_type ==
1575 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1576 reply = le32_to_cpu(
1577 rpf->AddressReply.ReplyFrameAddress);
1578 if (reply > ioc->reply_dma_max_address ||
1579 reply < ioc->reply_dma_min_address)
1580 reply = 0;
1581 if (smid) {
1582 cb_idx = _base_get_cb_idx(ioc, smid);
1583 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1584 (likely(mpt_callbacks[cb_idx] != NULL))) {
1585 rc = mpt_callbacks[cb_idx](ioc, smid,
1586 msix_index, reply);
1587 if (reply)
1588 _base_display_reply_info(ioc,
1589 smid, msix_index, reply);
1590 if (rc)
1591 mpt3sas_base_free_smid(ioc,
1592 smid);
1593 }
1594 } else {
1595 _base_async_event(ioc, msix_index, reply);
1596 }
1597
1598 /* reply free queue handling */
1599 if (reply) {
1600 ioc->reply_free_host_index =
1601 (ioc->reply_free_host_index ==
1602 (ioc->reply_free_queue_depth - 1)) ?
1603 0 : ioc->reply_free_host_index + 1;
1604 ioc->reply_free[ioc->reply_free_host_index] =
1605 cpu_to_le32(reply);
1606 if (ioc->is_mcpu_endpoint)
1607 _base_clone_reply_to_sys_mem(ioc,
1608 reply,
1609 ioc->reply_free_host_index);
1610 writel(ioc->reply_free_host_index,
1611 &ioc->chip->ReplyFreeHostIndex);
1612 }
1613 }
1614
1615 rpf->Words = cpu_to_le64(ULLONG_MAX);
1616 reply_q->reply_post_host_index =
1617 (reply_q->reply_post_host_index ==
1618 (ioc->reply_post_queue_depth - 1)) ? 0 :
1619 reply_q->reply_post_host_index + 1;
1620 request_descript_type =
1621 reply_q->reply_post_free[reply_q->reply_post_host_index].
1622 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1623 completed_cmds++;
1624 /* Update the reply post host index after continuously
1625 * processing the threshold number of Reply Descriptors.
1626 * So that FW can find enough entries to post the Reply
1627 * Descriptors in the reply descriptor post queue.
1628 */
1629 if (completed_cmds >= ioc->thresh_hold) {
1630 if (ioc->combined_reply_queue) {
1631 writel(reply_q->reply_post_host_index |
1632 ((msix_index & 7) <<
1633 MPI2_RPHI_MSIX_INDEX_SHIFT),
1634 ioc->replyPostRegisterIndex[msix_index/8]);
1635 } else {
1636 writel(reply_q->reply_post_host_index |
1637 (msix_index <<
1638 MPI2_RPHI_MSIX_INDEX_SHIFT),
1639 &ioc->chip->ReplyPostHostIndex);
1640 }
1641 if (!reply_q->irq_poll_scheduled) {
1642 reply_q->irq_poll_scheduled = true;
1643 irq_poll_sched(&reply_q->irqpoll);
1644 }
1645 atomic_dec(&reply_q->busy);
1646 return completed_cmds;
1647 }
1648 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1649 goto out;
1650 if (!reply_q->reply_post_host_index)
1651 rpf = reply_q->reply_post_free;
1652 else
1653 rpf++;
1654 } while (1);
1655
1656 out:
1657
1658 if (!completed_cmds) {
1659 atomic_dec(&reply_q->busy);
1660 return completed_cmds;
1661 }
1662
1663 if (ioc->is_warpdrive) {
1664 writel(reply_q->reply_post_host_index,
1665 ioc->reply_post_host_index[msix_index]);
1666 atomic_dec(&reply_q->busy);
1667 return completed_cmds;
1668 }
1669
1670 /* Update Reply Post Host Index.
1671 * For those HBA's which support combined reply queue feature
1672 * 1. Get the correct Supplemental Reply Post Host Index Register.
1673 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1674 * Index Register address bank i.e replyPostRegisterIndex[],
1675 * 2. Then update this register with new reply host index value
1676 * in ReplyPostIndex field and the MSIxIndex field with
1677 * msix_index value reduced to a value between 0 and 7,
1678 * using a modulo 8 operation. Since each Supplemental Reply Post
1679 * Host Index Register supports 8 MSI-X vectors.
1680 *
1681 * For other HBA's just update the Reply Post Host Index register with
1682 * new reply host index value in ReplyPostIndex Field and msix_index
1683 * value in MSIxIndex field.
1684 */
1685 if (ioc->combined_reply_queue)
1686 writel(reply_q->reply_post_host_index | ((msix_index & 7) <<
1687 MPI2_RPHI_MSIX_INDEX_SHIFT),
1688 ioc->replyPostRegisterIndex[msix_index/8]);
1689 else
1690 writel(reply_q->reply_post_host_index | (msix_index <<
1691 MPI2_RPHI_MSIX_INDEX_SHIFT),
1692 &ioc->chip->ReplyPostHostIndex);
1693 atomic_dec(&reply_q->busy);
1694 return completed_cmds;
1695 }
1696
1697 /**
1698 * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1699 * @irq: irq number (not used)
1700 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1701 *
1702 * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1703 */
1704 static irqreturn_t
_base_interrupt(int irq,void * bus_id)1705 _base_interrupt(int irq, void *bus_id)
1706 {
1707 struct adapter_reply_queue *reply_q = bus_id;
1708 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1709
1710 if (ioc->mask_interrupts)
1711 return IRQ_NONE;
1712 if (reply_q->irq_poll_scheduled)
1713 return IRQ_HANDLED;
1714 return ((_base_process_reply_queue(reply_q) > 0) ?
1715 IRQ_HANDLED : IRQ_NONE);
1716 }
1717
1718 /**
1719 * _base_irqpoll - IRQ poll callback handler
1720 * @irqpoll: irq_poll object
1721 * @budget: irq poll weight
1722 *
1723 * returns number of reply descriptors processed
1724 */
1725 static int
_base_irqpoll(struct irq_poll * irqpoll,int budget)1726 _base_irqpoll(struct irq_poll *irqpoll, int budget)
1727 {
1728 struct adapter_reply_queue *reply_q;
1729 int num_entries = 0;
1730
1731 reply_q = container_of(irqpoll, struct adapter_reply_queue,
1732 irqpoll);
1733 if (reply_q->irq_line_enable) {
1734 disable_irq_nosync(reply_q->os_irq);
1735 reply_q->irq_line_enable = false;
1736 }
1737 num_entries = _base_process_reply_queue(reply_q);
1738 if (num_entries < budget) {
1739 irq_poll_complete(irqpoll);
1740 reply_q->irq_poll_scheduled = false;
1741 reply_q->irq_line_enable = true;
1742 enable_irq(reply_q->os_irq);
1743 /*
1744 * Go for one more round of processing the
1745 * reply descriptor post queue incase if HBA
1746 * Firmware has posted some reply descriptors
1747 * while reenabling the IRQ.
1748 */
1749 _base_process_reply_queue(reply_q);
1750 }
1751
1752 return num_entries;
1753 }
1754
1755 /**
1756 * _base_init_irqpolls - initliaze IRQ polls
1757 * @ioc: per adapter object
1758 *
1759 * returns nothing
1760 */
1761 static void
_base_init_irqpolls(struct MPT3SAS_ADAPTER * ioc)1762 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc)
1763 {
1764 struct adapter_reply_queue *reply_q, *next;
1765
1766 if (list_empty(&ioc->reply_queue_list))
1767 return;
1768
1769 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1770 irq_poll_init(&reply_q->irqpoll,
1771 ioc->hba_queue_depth/4, _base_irqpoll);
1772 reply_q->irq_poll_scheduled = false;
1773 reply_q->irq_line_enable = true;
1774 reply_q->os_irq = pci_irq_vector(ioc->pdev,
1775 reply_q->msix_index);
1776 }
1777 }
1778
1779 /**
1780 * _base_is_controller_msix_enabled - is controller support muli-reply queues
1781 * @ioc: per adapter object
1782 *
1783 * Return: Whether or not MSI/X is enabled.
1784 */
1785 static inline int
_base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER * ioc)1786 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1787 {
1788 return (ioc->facts.IOCCapabilities &
1789 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1790 }
1791
1792 /**
1793 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1794 * @ioc: per adapter object
1795 * @poll: poll over reply descriptor pools incase interrupt for
1796 * timed-out SCSI command got delayed
1797 * Context: non ISR conext
1798 *
1799 * Called when a Task Management request has completed.
1800 */
1801 void
mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER * ioc,u8 poll)1802 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll)
1803 {
1804 struct adapter_reply_queue *reply_q;
1805
1806 /* If MSIX capability is turned off
1807 * then multi-queues are not enabled
1808 */
1809 if (!_base_is_controller_msix_enabled(ioc))
1810 return;
1811
1812 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1813 if (ioc->shost_recovery || ioc->remove_host ||
1814 ioc->pci_error_recovery)
1815 return;
1816 /* TMs are on msix_index == 0 */
1817 if (reply_q->msix_index == 0)
1818 continue;
1819 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1820 if (reply_q->irq_poll_scheduled) {
1821 /* Calling irq_poll_disable will wait for any pending
1822 * callbacks to have completed.
1823 */
1824 irq_poll_disable(&reply_q->irqpoll);
1825 irq_poll_enable(&reply_q->irqpoll);
1826 /* check how the scheduled poll has ended,
1827 * clean up only if necessary
1828 */
1829 if (reply_q->irq_poll_scheduled) {
1830 reply_q->irq_poll_scheduled = false;
1831 reply_q->irq_line_enable = true;
1832 enable_irq(reply_q->os_irq);
1833 }
1834 }
1835 }
1836 if (poll)
1837 _base_process_reply_queue(reply_q);
1838 }
1839
1840 /**
1841 * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1842 * @cb_idx: callback index
1843 */
1844 void
mpt3sas_base_release_callback_handler(u8 cb_idx)1845 mpt3sas_base_release_callback_handler(u8 cb_idx)
1846 {
1847 mpt_callbacks[cb_idx] = NULL;
1848 }
1849
1850 /**
1851 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1852 * @cb_func: callback function
1853 *
1854 * Return: Index of @cb_func.
1855 */
1856 u8
mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)1857 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1858 {
1859 u8 cb_idx;
1860
1861 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1862 if (mpt_callbacks[cb_idx] == NULL)
1863 break;
1864
1865 mpt_callbacks[cb_idx] = cb_func;
1866 return cb_idx;
1867 }
1868
1869 /**
1870 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1871 */
1872 void
mpt3sas_base_initialize_callback_handler(void)1873 mpt3sas_base_initialize_callback_handler(void)
1874 {
1875 u8 cb_idx;
1876
1877 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1878 mpt3sas_base_release_callback_handler(cb_idx);
1879 }
1880
1881
1882 /**
1883 * _base_build_zero_len_sge - build zero length sg entry
1884 * @ioc: per adapter object
1885 * @paddr: virtual address for SGE
1886 *
1887 * Create a zero length scatter gather entry to insure the IOCs hardware has
1888 * something to use if the target device goes brain dead and tries
1889 * to send data even when none is asked for.
1890 */
1891 static void
_base_build_zero_len_sge(struct MPT3SAS_ADAPTER * ioc,void * paddr)1892 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1893 {
1894 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1895 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1896 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1897 MPI2_SGE_FLAGS_SHIFT);
1898 ioc->base_add_sg_single(paddr, flags_length, -1);
1899 }
1900
1901 /**
1902 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1903 * @paddr: virtual address for SGE
1904 * @flags_length: SGE flags and data transfer length
1905 * @dma_addr: Physical address
1906 */
1907 static void
_base_add_sg_single_32(void * paddr,u32 flags_length,dma_addr_t dma_addr)1908 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1909 {
1910 Mpi2SGESimple32_t *sgel = paddr;
1911
1912 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1913 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1914 sgel->FlagsLength = cpu_to_le32(flags_length);
1915 sgel->Address = cpu_to_le32(dma_addr);
1916 }
1917
1918
1919 /**
1920 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1921 * @paddr: virtual address for SGE
1922 * @flags_length: SGE flags and data transfer length
1923 * @dma_addr: Physical address
1924 */
1925 static void
_base_add_sg_single_64(void * paddr,u32 flags_length,dma_addr_t dma_addr)1926 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1927 {
1928 Mpi2SGESimple64_t *sgel = paddr;
1929
1930 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1931 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1932 sgel->FlagsLength = cpu_to_le32(flags_length);
1933 sgel->Address = cpu_to_le64(dma_addr);
1934 }
1935
1936 /**
1937 * _base_get_chain_buffer_tracker - obtain chain tracker
1938 * @ioc: per adapter object
1939 * @scmd: SCSI commands of the IO request
1940 *
1941 * Return: chain tracker from chain_lookup table using key as
1942 * smid and smid's chain_offset.
1943 */
1944 static struct chain_tracker *
_base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd)1945 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
1946 struct scsi_cmnd *scmd)
1947 {
1948 struct chain_tracker *chain_req;
1949 struct scsiio_tracker *st = scsi_cmd_priv(scmd);
1950 u16 smid = st->smid;
1951 u8 chain_offset =
1952 atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
1953
1954 if (chain_offset == ioc->chains_needed_per_io)
1955 return NULL;
1956
1957 chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
1958 atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
1959 return chain_req;
1960 }
1961
1962
1963 /**
1964 * _base_build_sg - build generic sg
1965 * @ioc: per adapter object
1966 * @psge: virtual address for SGE
1967 * @data_out_dma: physical address for WRITES
1968 * @data_out_sz: data xfer size for WRITES
1969 * @data_in_dma: physical address for READS
1970 * @data_in_sz: data xfer size for READS
1971 */
1972 static void
_base_build_sg(struct MPT3SAS_ADAPTER * ioc,void * psge,dma_addr_t data_out_dma,size_t data_out_sz,dma_addr_t data_in_dma,size_t data_in_sz)1973 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1974 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1975 size_t data_in_sz)
1976 {
1977 u32 sgl_flags;
1978
1979 if (!data_out_sz && !data_in_sz) {
1980 _base_build_zero_len_sge(ioc, psge);
1981 return;
1982 }
1983
1984 if (data_out_sz && data_in_sz) {
1985 /* WRITE sgel first */
1986 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1987 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1988 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1989 ioc->base_add_sg_single(psge, sgl_flags |
1990 data_out_sz, data_out_dma);
1991
1992 /* incr sgel */
1993 psge += ioc->sge_size;
1994
1995 /* READ sgel last */
1996 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1997 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1998 MPI2_SGE_FLAGS_END_OF_LIST);
1999 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2000 ioc->base_add_sg_single(psge, sgl_flags |
2001 data_in_sz, data_in_dma);
2002 } else if (data_out_sz) /* WRITE */ {
2003 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2004 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2005 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
2006 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2007 ioc->base_add_sg_single(psge, sgl_flags |
2008 data_out_sz, data_out_dma);
2009 } else if (data_in_sz) /* READ */ {
2010 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2011 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2012 MPI2_SGE_FLAGS_END_OF_LIST);
2013 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2014 ioc->base_add_sg_single(psge, sgl_flags |
2015 data_in_sz, data_in_dma);
2016 }
2017 }
2018
2019 /* IEEE format sgls */
2020
2021 /**
2022 * _base_build_nvme_prp - This function is called for NVMe end devices to build
2023 * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP
2024 * entry of the NVMe message (PRP1). If the data buffer is small enough to be
2025 * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is
2026 * used to describe a larger data buffer. If the data buffer is too large to
2027 * describe using the two PRP entriess inside the NVMe message, then PRP1
2028 * describes the first data memory segment, and PRP2 contains a pointer to a PRP
2029 * list located elsewhere in memory to describe the remaining data memory
2030 * segments. The PRP list will be contiguous.
2031 *
2032 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP
2033 * consists of a list of PRP entries to describe a number of noncontigous
2034 * physical memory segments as a single memory buffer, just as a SGL does. Note
2035 * however, that this function is only used by the IOCTL call, so the memory
2036 * given will be guaranteed to be contiguous. There is no need to translate
2037 * non-contiguous SGL into a PRP in this case. All PRPs will describe
2038 * contiguous space that is one page size each.
2039 *
2040 * Each NVMe message contains two PRP entries. The first (PRP1) either contains
2041 * a PRP list pointer or a PRP element, depending upon the command. PRP2
2042 * contains the second PRP element if the memory being described fits within 2
2043 * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
2044 *
2045 * A PRP list pointer contains the address of a PRP list, structured as a linear
2046 * array of PRP entries. Each PRP entry in this list describes a segment of
2047 * physical memory.
2048 *
2049 * Each 64-bit PRP entry comprises an address and an offset field. The address
2050 * always points at the beginning of a 4KB physical memory page, and the offset
2051 * describes where within that 4KB page the memory segment begins. Only the
2052 * first element in a PRP list may contain a non-zero offest, implying that all
2053 * memory segments following the first begin at the start of a 4KB page.
2054 *
2055 * Each PRP element normally describes 4KB of physical memory, with exceptions
2056 * for the first and last elements in the list. If the memory being described
2057 * by the list begins at a non-zero offset within the first 4KB page, then the
2058 * first PRP element will contain a non-zero offset indicating where the region
2059 * begins within the 4KB page. The last memory segment may end before the end
2060 * of the 4KB segment, depending upon the overall size of the memory being
2061 * described by the PRP list.
2062 *
2063 * Since PRP entries lack any indication of size, the overall data buffer length
2064 * is used to determine where the end of the data memory buffer is located, and
2065 * how many PRP entries are required to describe it.
2066 *
2067 * @ioc: per adapter object
2068 * @smid: system request message index for getting asscociated SGL
2069 * @nvme_encap_request: the NVMe request msg frame pointer
2070 * @data_out_dma: physical address for WRITES
2071 * @data_out_sz: data xfer size for WRITES
2072 * @data_in_dma: physical address for READS
2073 * @data_in_sz: data xfer size for READS
2074 */
2075 static void
_base_build_nvme_prp(struct MPT3SAS_ADAPTER * ioc,u16 smid,Mpi26NVMeEncapsulatedRequest_t * nvme_encap_request,dma_addr_t data_out_dma,size_t data_out_sz,dma_addr_t data_in_dma,size_t data_in_sz)2076 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2077 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
2078 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2079 size_t data_in_sz)
2080 {
2081 int prp_size = NVME_PRP_SIZE;
2082 __le64 *prp_entry, *prp1_entry, *prp2_entry;
2083 __le64 *prp_page;
2084 dma_addr_t prp_entry_dma, prp_page_dma, dma_addr;
2085 u32 offset, entry_len;
2086 u32 page_mask_result, page_mask;
2087 size_t length;
2088 struct mpt3sas_nvme_cmd *nvme_cmd =
2089 (void *)nvme_encap_request->NVMe_Command;
2090
2091 /*
2092 * Not all commands require a data transfer. If no data, just return
2093 * without constructing any PRP.
2094 */
2095 if (!data_in_sz && !data_out_sz)
2096 return;
2097 prp1_entry = &nvme_cmd->prp1;
2098 prp2_entry = &nvme_cmd->prp2;
2099 prp_entry = prp1_entry;
2100 /*
2101 * For the PRP entries, use the specially allocated buffer of
2102 * contiguous memory.
2103 */
2104 prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
2105 prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2106
2107 /*
2108 * Check if we are within 1 entry of a page boundary we don't
2109 * want our first entry to be a PRP List entry.
2110 */
2111 page_mask = ioc->page_size - 1;
2112 page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
2113 if (!page_mask_result) {
2114 /* Bump up to next page boundary. */
2115 prp_page = (__le64 *)((u8 *)prp_page + prp_size);
2116 prp_page_dma = prp_page_dma + prp_size;
2117 }
2118
2119 /*
2120 * Set PRP physical pointer, which initially points to the current PRP
2121 * DMA memory page.
2122 */
2123 prp_entry_dma = prp_page_dma;
2124
2125 /* Get physical address and length of the data buffer. */
2126 if (data_in_sz) {
2127 dma_addr = data_in_dma;
2128 length = data_in_sz;
2129 } else {
2130 dma_addr = data_out_dma;
2131 length = data_out_sz;
2132 }
2133
2134 /* Loop while the length is not zero. */
2135 while (length) {
2136 /*
2137 * Check if we need to put a list pointer here if we are at
2138 * page boundary - prp_size (8 bytes).
2139 */
2140 page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2141 if (!page_mask_result) {
2142 /*
2143 * This is the last entry in a PRP List, so we need to
2144 * put a PRP list pointer here. What this does is:
2145 * - bump the current memory pointer to the next
2146 * address, which will be the next full page.
2147 * - set the PRP Entry to point to that page. This
2148 * is now the PRP List pointer.
2149 * - bump the PRP Entry pointer the start of the
2150 * next page. Since all of this PRP memory is
2151 * contiguous, no need to get a new page - it's
2152 * just the next address.
2153 */
2154 prp_entry_dma++;
2155 *prp_entry = cpu_to_le64(prp_entry_dma);
2156 prp_entry++;
2157 }
2158
2159 /* Need to handle if entry will be part of a page. */
2160 offset = dma_addr & page_mask;
2161 entry_len = ioc->page_size - offset;
2162
2163 if (prp_entry == prp1_entry) {
2164 /*
2165 * Must fill in the first PRP pointer (PRP1) before
2166 * moving on.
2167 */
2168 *prp1_entry = cpu_to_le64(dma_addr);
2169
2170 /*
2171 * Now point to the second PRP entry within the
2172 * command (PRP2).
2173 */
2174 prp_entry = prp2_entry;
2175 } else if (prp_entry == prp2_entry) {
2176 /*
2177 * Should the PRP2 entry be a PRP List pointer or just
2178 * a regular PRP pointer? If there is more than one
2179 * more page of data, must use a PRP List pointer.
2180 */
2181 if (length > ioc->page_size) {
2182 /*
2183 * PRP2 will contain a PRP List pointer because
2184 * more PRP's are needed with this command. The
2185 * list will start at the beginning of the
2186 * contiguous buffer.
2187 */
2188 *prp2_entry = cpu_to_le64(prp_entry_dma);
2189
2190 /*
2191 * The next PRP Entry will be the start of the
2192 * first PRP List.
2193 */
2194 prp_entry = prp_page;
2195 } else {
2196 /*
2197 * After this, the PRP Entries are complete.
2198 * This command uses 2 PRP's and no PRP list.
2199 */
2200 *prp2_entry = cpu_to_le64(dma_addr);
2201 }
2202 } else {
2203 /*
2204 * Put entry in list and bump the addresses.
2205 *
2206 * After PRP1 and PRP2 are filled in, this will fill in
2207 * all remaining PRP entries in a PRP List, one per
2208 * each time through the loop.
2209 */
2210 *prp_entry = cpu_to_le64(dma_addr);
2211 prp_entry++;
2212 prp_entry_dma++;
2213 }
2214
2215 /*
2216 * Bump the phys address of the command's data buffer by the
2217 * entry_len.
2218 */
2219 dma_addr += entry_len;
2220
2221 /* Decrement length accounting for last partial page. */
2222 if (entry_len > length)
2223 length = 0;
2224 else
2225 length -= entry_len;
2226 }
2227 }
2228
2229 /**
2230 * base_make_prp_nvme -
2231 * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only
2232 *
2233 * @ioc: per adapter object
2234 * @scmd: SCSI command from the mid-layer
2235 * @mpi_request: mpi request
2236 * @smid: msg Index
2237 * @sge_count: scatter gather element count.
2238 *
2239 * Return: true: PRPs are built
2240 * false: IEEE SGLs needs to be built
2241 */
2242 static void
base_make_prp_nvme(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd,Mpi25SCSIIORequest_t * mpi_request,u16 smid,int sge_count)2243 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2244 struct scsi_cmnd *scmd,
2245 Mpi25SCSIIORequest_t *mpi_request,
2246 u16 smid, int sge_count)
2247 {
2248 int sge_len, num_prp_in_chain = 0;
2249 Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2250 __le64 *curr_buff;
2251 dma_addr_t msg_dma, sge_addr, offset;
2252 u32 page_mask, page_mask_result;
2253 struct scatterlist *sg_scmd;
2254 u32 first_prp_len;
2255 int data_len = scsi_bufflen(scmd);
2256 u32 nvme_pg_size;
2257
2258 nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2259 /*
2260 * Nvme has a very convoluted prp format. One prp is required
2261 * for each page or partial page. Driver need to split up OS sg_list
2262 * entries if it is longer than one page or cross a page
2263 * boundary. Driver also have to insert a PRP list pointer entry as
2264 * the last entry in each physical page of the PRP list.
2265 *
2266 * NOTE: The first PRP "entry" is actually placed in the first
2267 * SGL entry in the main message as IEEE 64 format. The 2nd
2268 * entry in the main message is the chain element, and the rest
2269 * of the PRP entries are built in the contiguous pcie buffer.
2270 */
2271 page_mask = nvme_pg_size - 1;
2272
2273 /*
2274 * Native SGL is needed.
2275 * Put a chain element in main message frame that points to the first
2276 * chain buffer.
2277 *
2278 * NOTE: The ChainOffset field must be 0 when using a chain pointer to
2279 * a native SGL.
2280 */
2281
2282 /* Set main message chain element pointer */
2283 main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2284 /*
2285 * For NVMe the chain element needs to be the 2nd SG entry in the main
2286 * message.
2287 */
2288 main_chain_element = (Mpi25IeeeSgeChain64_t *)
2289 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2290
2291 /*
2292 * For the PRP entries, use the specially allocated buffer of
2293 * contiguous memory. Normal chain buffers can't be used
2294 * because each chain buffer would need to be the size of an OS
2295 * page (4k).
2296 */
2297 curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2298 msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2299
2300 main_chain_element->Address = cpu_to_le64(msg_dma);
2301 main_chain_element->NextChainOffset = 0;
2302 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2303 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2304 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2305
2306 /* Build first prp, sge need not to be page aligned*/
2307 ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2308 sg_scmd = scsi_sglist(scmd);
2309 sge_addr = sg_dma_address(sg_scmd);
2310 sge_len = sg_dma_len(sg_scmd);
2311
2312 offset = sge_addr & page_mask;
2313 first_prp_len = nvme_pg_size - offset;
2314
2315 ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2316 ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2317
2318 data_len -= first_prp_len;
2319
2320 if (sge_len > first_prp_len) {
2321 sge_addr += first_prp_len;
2322 sge_len -= first_prp_len;
2323 } else if (data_len && (sge_len == first_prp_len)) {
2324 sg_scmd = sg_next(sg_scmd);
2325 sge_addr = sg_dma_address(sg_scmd);
2326 sge_len = sg_dma_len(sg_scmd);
2327 }
2328
2329 for (;;) {
2330 offset = sge_addr & page_mask;
2331
2332 /* Put PRP pointer due to page boundary*/
2333 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2334 if (unlikely(!page_mask_result)) {
2335 scmd_printk(KERN_NOTICE,
2336 scmd, "page boundary curr_buff: 0x%p\n",
2337 curr_buff);
2338 msg_dma += 8;
2339 *curr_buff = cpu_to_le64(msg_dma);
2340 curr_buff++;
2341 num_prp_in_chain++;
2342 }
2343
2344 *curr_buff = cpu_to_le64(sge_addr);
2345 curr_buff++;
2346 msg_dma += 8;
2347 num_prp_in_chain++;
2348
2349 sge_addr += nvme_pg_size;
2350 sge_len -= nvme_pg_size;
2351 data_len -= nvme_pg_size;
2352
2353 if (data_len <= 0)
2354 break;
2355
2356 if (sge_len > 0)
2357 continue;
2358
2359 sg_scmd = sg_next(sg_scmd);
2360 sge_addr = sg_dma_address(sg_scmd);
2361 sge_len = sg_dma_len(sg_scmd);
2362 }
2363
2364 main_chain_element->Length =
2365 cpu_to_le32(num_prp_in_chain * sizeof(u64));
2366 return;
2367 }
2368
2369 static bool
base_is_prp_possible(struct MPT3SAS_ADAPTER * ioc,struct _pcie_device * pcie_device,struct scsi_cmnd * scmd,int sge_count)2370 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2371 struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2372 {
2373 u32 data_length = 0;
2374 bool build_prp = true;
2375
2376 data_length = scsi_bufflen(scmd);
2377 if (pcie_device &&
2378 (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) {
2379 build_prp = false;
2380 return build_prp;
2381 }
2382
2383 /* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2384 * we built IEEE SGL
2385 */
2386 if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2387 build_prp = false;
2388
2389 return build_prp;
2390 }
2391
2392 /**
2393 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2394 * determine if the driver needs to build a native SGL. If so, that native
2395 * SGL is built in the special contiguous buffers allocated especially for
2396 * PCIe SGL creation. If the driver will not build a native SGL, return
2397 * TRUE and a normal IEEE SGL will be built. Currently this routine
2398 * supports NVMe.
2399 * @ioc: per adapter object
2400 * @mpi_request: mf request pointer
2401 * @smid: system request message index
2402 * @scmd: scsi command
2403 * @pcie_device: points to the PCIe device's info
2404 *
2405 * Return: 0 if native SGL was built, 1 if no SGL was built
2406 */
2407 static int
_base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER * ioc,Mpi25SCSIIORequest_t * mpi_request,u16 smid,struct scsi_cmnd * scmd,struct _pcie_device * pcie_device)2408 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2409 Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2410 struct _pcie_device *pcie_device)
2411 {
2412 int sges_left;
2413
2414 /* Get the SG list pointer and info. */
2415 sges_left = scsi_dma_map(scmd);
2416 if (sges_left < 0) {
2417 sdev_printk(KERN_ERR, scmd->device,
2418 "scsi_dma_map failed: request for %d bytes!\n",
2419 scsi_bufflen(scmd));
2420 return 1;
2421 }
2422
2423 /* Check if we need to build a native SG list. */
2424 if (base_is_prp_possible(ioc, pcie_device,
2425 scmd, sges_left) == 0) {
2426 /* We built a native SG list, just return. */
2427 goto out;
2428 }
2429
2430 /*
2431 * Build native NVMe PRP.
2432 */
2433 base_make_prp_nvme(ioc, scmd, mpi_request,
2434 smid, sges_left);
2435
2436 return 0;
2437 out:
2438 scsi_dma_unmap(scmd);
2439 return 1;
2440 }
2441
2442 /**
2443 * _base_add_sg_single_ieee - add sg element for IEEE format
2444 * @paddr: virtual address for SGE
2445 * @flags: SGE flags
2446 * @chain_offset: number of 128 byte elements from start of segment
2447 * @length: data transfer length
2448 * @dma_addr: Physical address
2449 */
2450 static void
_base_add_sg_single_ieee(void * paddr,u8 flags,u8 chain_offset,u32 length,dma_addr_t dma_addr)2451 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2452 dma_addr_t dma_addr)
2453 {
2454 Mpi25IeeeSgeChain64_t *sgel = paddr;
2455
2456 sgel->Flags = flags;
2457 sgel->NextChainOffset = chain_offset;
2458 sgel->Length = cpu_to_le32(length);
2459 sgel->Address = cpu_to_le64(dma_addr);
2460 }
2461
2462 /**
2463 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2464 * @ioc: per adapter object
2465 * @paddr: virtual address for SGE
2466 *
2467 * Create a zero length scatter gather entry to insure the IOCs hardware has
2468 * something to use if the target device goes brain dead and tries
2469 * to send data even when none is asked for.
2470 */
2471 static void
_base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER * ioc,void * paddr)2472 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2473 {
2474 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2475 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2476 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2477
2478 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2479 }
2480
2481 /**
2482 * _base_build_sg_scmd - main sg creation routine
2483 * pcie_device is unused here!
2484 * @ioc: per adapter object
2485 * @scmd: scsi command
2486 * @smid: system request message index
2487 * @unused: unused pcie_device pointer
2488 * Context: none.
2489 *
2490 * The main routine that builds scatter gather table from a given
2491 * scsi request sent via the .queuecommand main handler.
2492 *
2493 * Return: 0 success, anything else error
2494 */
2495 static int
_base_build_sg_scmd(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd,u16 smid,struct _pcie_device * unused)2496 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2497 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2498 {
2499 Mpi2SCSIIORequest_t *mpi_request;
2500 dma_addr_t chain_dma;
2501 struct scatterlist *sg_scmd;
2502 void *sg_local, *chain;
2503 u32 chain_offset;
2504 u32 chain_length;
2505 u32 chain_flags;
2506 int sges_left;
2507 u32 sges_in_segment;
2508 u32 sgl_flags;
2509 u32 sgl_flags_last_element;
2510 u32 sgl_flags_end_buffer;
2511 struct chain_tracker *chain_req;
2512
2513 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2514
2515 /* init scatter gather flags */
2516 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2517 if (scmd->sc_data_direction == DMA_TO_DEVICE)
2518 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2519 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2520 << MPI2_SGE_FLAGS_SHIFT;
2521 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2522 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2523 << MPI2_SGE_FLAGS_SHIFT;
2524 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2525
2526 sg_scmd = scsi_sglist(scmd);
2527 sges_left = scsi_dma_map(scmd);
2528 if (sges_left < 0) {
2529 sdev_printk(KERN_ERR, scmd->device,
2530 "scsi_dma_map failed: request for %d bytes!\n",
2531 scsi_bufflen(scmd));
2532 return -ENOMEM;
2533 }
2534
2535 sg_local = &mpi_request->SGL;
2536 sges_in_segment = ioc->max_sges_in_main_message;
2537 if (sges_left <= sges_in_segment)
2538 goto fill_in_last_segment;
2539
2540 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2541 (sges_in_segment * ioc->sge_size))/4;
2542
2543 /* fill in main message segment when there is a chain following */
2544 while (sges_in_segment) {
2545 if (sges_in_segment == 1)
2546 ioc->base_add_sg_single(sg_local,
2547 sgl_flags_last_element | sg_dma_len(sg_scmd),
2548 sg_dma_address(sg_scmd));
2549 else
2550 ioc->base_add_sg_single(sg_local, sgl_flags |
2551 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2552 sg_scmd = sg_next(sg_scmd);
2553 sg_local += ioc->sge_size;
2554 sges_left--;
2555 sges_in_segment--;
2556 }
2557
2558 /* initializing the chain flags and pointers */
2559 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2560 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2561 if (!chain_req)
2562 return -1;
2563 chain = chain_req->chain_buffer;
2564 chain_dma = chain_req->chain_buffer_dma;
2565 do {
2566 sges_in_segment = (sges_left <=
2567 ioc->max_sges_in_chain_message) ? sges_left :
2568 ioc->max_sges_in_chain_message;
2569 chain_offset = (sges_left == sges_in_segment) ?
2570 0 : (sges_in_segment * ioc->sge_size)/4;
2571 chain_length = sges_in_segment * ioc->sge_size;
2572 if (chain_offset) {
2573 chain_offset = chain_offset <<
2574 MPI2_SGE_CHAIN_OFFSET_SHIFT;
2575 chain_length += ioc->sge_size;
2576 }
2577 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2578 chain_length, chain_dma);
2579 sg_local = chain;
2580 if (!chain_offset)
2581 goto fill_in_last_segment;
2582
2583 /* fill in chain segments */
2584 while (sges_in_segment) {
2585 if (sges_in_segment == 1)
2586 ioc->base_add_sg_single(sg_local,
2587 sgl_flags_last_element |
2588 sg_dma_len(sg_scmd),
2589 sg_dma_address(sg_scmd));
2590 else
2591 ioc->base_add_sg_single(sg_local, sgl_flags |
2592 sg_dma_len(sg_scmd),
2593 sg_dma_address(sg_scmd));
2594 sg_scmd = sg_next(sg_scmd);
2595 sg_local += ioc->sge_size;
2596 sges_left--;
2597 sges_in_segment--;
2598 }
2599
2600 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2601 if (!chain_req)
2602 return -1;
2603 chain = chain_req->chain_buffer;
2604 chain_dma = chain_req->chain_buffer_dma;
2605 } while (1);
2606
2607
2608 fill_in_last_segment:
2609
2610 /* fill the last segment */
2611 while (sges_left) {
2612 if (sges_left == 1)
2613 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2614 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2615 else
2616 ioc->base_add_sg_single(sg_local, sgl_flags |
2617 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2618 sg_scmd = sg_next(sg_scmd);
2619 sg_local += ioc->sge_size;
2620 sges_left--;
2621 }
2622
2623 return 0;
2624 }
2625
2626 /**
2627 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2628 * @ioc: per adapter object
2629 * @scmd: scsi command
2630 * @smid: system request message index
2631 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2632 * constructed on need.
2633 * Context: none.
2634 *
2635 * The main routine that builds scatter gather table from a given
2636 * scsi request sent via the .queuecommand main handler.
2637 *
2638 * Return: 0 success, anything else error
2639 */
2640 static int
_base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd,u16 smid,struct _pcie_device * pcie_device)2641 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2642 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2643 {
2644 Mpi25SCSIIORequest_t *mpi_request;
2645 dma_addr_t chain_dma;
2646 struct scatterlist *sg_scmd;
2647 void *sg_local, *chain;
2648 u32 chain_offset;
2649 u32 chain_length;
2650 int sges_left;
2651 u32 sges_in_segment;
2652 u8 simple_sgl_flags;
2653 u8 simple_sgl_flags_last;
2654 u8 chain_sgl_flags;
2655 struct chain_tracker *chain_req;
2656
2657 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2658
2659 /* init scatter gather flags */
2660 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2661 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2662 simple_sgl_flags_last = simple_sgl_flags |
2663 MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2664 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2665 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2666
2667 /* Check if we need to build a native SG list. */
2668 if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2669 smid, scmd, pcie_device) == 0)) {
2670 /* We built a native SG list, just return. */
2671 return 0;
2672 }
2673
2674 sg_scmd = scsi_sglist(scmd);
2675 sges_left = scsi_dma_map(scmd);
2676 if (sges_left < 0) {
2677 sdev_printk(KERN_ERR, scmd->device,
2678 "scsi_dma_map failed: request for %d bytes!\n",
2679 scsi_bufflen(scmd));
2680 return -ENOMEM;
2681 }
2682
2683 sg_local = &mpi_request->SGL;
2684 sges_in_segment = (ioc->request_sz -
2685 offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2686 if (sges_left <= sges_in_segment)
2687 goto fill_in_last_segment;
2688
2689 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2690 (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2691
2692 /* fill in main message segment when there is a chain following */
2693 while (sges_in_segment > 1) {
2694 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2695 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2696 sg_scmd = sg_next(sg_scmd);
2697 sg_local += ioc->sge_size_ieee;
2698 sges_left--;
2699 sges_in_segment--;
2700 }
2701
2702 /* initializing the pointers */
2703 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2704 if (!chain_req)
2705 return -1;
2706 chain = chain_req->chain_buffer;
2707 chain_dma = chain_req->chain_buffer_dma;
2708 do {
2709 sges_in_segment = (sges_left <=
2710 ioc->max_sges_in_chain_message) ? sges_left :
2711 ioc->max_sges_in_chain_message;
2712 chain_offset = (sges_left == sges_in_segment) ?
2713 0 : sges_in_segment;
2714 chain_length = sges_in_segment * ioc->sge_size_ieee;
2715 if (chain_offset)
2716 chain_length += ioc->sge_size_ieee;
2717 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2718 chain_offset, chain_length, chain_dma);
2719
2720 sg_local = chain;
2721 if (!chain_offset)
2722 goto fill_in_last_segment;
2723
2724 /* fill in chain segments */
2725 while (sges_in_segment) {
2726 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2727 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2728 sg_scmd = sg_next(sg_scmd);
2729 sg_local += ioc->sge_size_ieee;
2730 sges_left--;
2731 sges_in_segment--;
2732 }
2733
2734 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2735 if (!chain_req)
2736 return -1;
2737 chain = chain_req->chain_buffer;
2738 chain_dma = chain_req->chain_buffer_dma;
2739 } while (1);
2740
2741
2742 fill_in_last_segment:
2743
2744 /* fill the last segment */
2745 while (sges_left > 0) {
2746 if (sges_left == 1)
2747 _base_add_sg_single_ieee(sg_local,
2748 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2749 sg_dma_address(sg_scmd));
2750 else
2751 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2752 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2753 sg_scmd = sg_next(sg_scmd);
2754 sg_local += ioc->sge_size_ieee;
2755 sges_left--;
2756 }
2757
2758 return 0;
2759 }
2760
2761 /**
2762 * _base_build_sg_ieee - build generic sg for IEEE format
2763 * @ioc: per adapter object
2764 * @psge: virtual address for SGE
2765 * @data_out_dma: physical address for WRITES
2766 * @data_out_sz: data xfer size for WRITES
2767 * @data_in_dma: physical address for READS
2768 * @data_in_sz: data xfer size for READS
2769 */
2770 static void
_base_build_sg_ieee(struct MPT3SAS_ADAPTER * ioc,void * psge,dma_addr_t data_out_dma,size_t data_out_sz,dma_addr_t data_in_dma,size_t data_in_sz)2771 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2772 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2773 size_t data_in_sz)
2774 {
2775 u8 sgl_flags;
2776
2777 if (!data_out_sz && !data_in_sz) {
2778 _base_build_zero_len_sge_ieee(ioc, psge);
2779 return;
2780 }
2781
2782 if (data_out_sz && data_in_sz) {
2783 /* WRITE sgel first */
2784 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2785 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2786 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2787 data_out_dma);
2788
2789 /* incr sgel */
2790 psge += ioc->sge_size_ieee;
2791
2792 /* READ sgel last */
2793 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2794 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2795 data_in_dma);
2796 } else if (data_out_sz) /* WRITE */ {
2797 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2798 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2799 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2800 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2801 data_out_dma);
2802 } else if (data_in_sz) /* READ */ {
2803 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2804 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2805 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2806 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2807 data_in_dma);
2808 }
2809 }
2810
2811 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2812
2813 /**
2814 * _base_config_dma_addressing - set dma addressing
2815 * @ioc: per adapter object
2816 * @pdev: PCI device struct
2817 *
2818 * Return: 0 for success, non-zero for failure.
2819 */
2820 static int
_base_config_dma_addressing(struct MPT3SAS_ADAPTER * ioc,struct pci_dev * pdev)2821 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
2822 {
2823 struct sysinfo s;
2824 int dma_mask;
2825
2826 if (ioc->is_mcpu_endpoint ||
2827 sizeof(dma_addr_t) == 4 || ioc->use_32bit_dma ||
2828 dma_get_required_mask(&pdev->dev) <= 32)
2829 dma_mask = 32;
2830 /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
2831 else if (ioc->hba_mpi_version_belonged > MPI2_VERSION)
2832 dma_mask = 63;
2833 else
2834 dma_mask = 64;
2835
2836 if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(dma_mask)) ||
2837 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(dma_mask)))
2838 return -ENODEV;
2839
2840 if (dma_mask > 32) {
2841 ioc->base_add_sg_single = &_base_add_sg_single_64;
2842 ioc->sge_size = sizeof(Mpi2SGESimple64_t);
2843 } else {
2844 ioc->base_add_sg_single = &_base_add_sg_single_32;
2845 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
2846 }
2847
2848 si_meminfo(&s);
2849 ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
2850 dma_mask, convert_to_kb(s.totalram));
2851
2852 return 0;
2853 }
2854
2855 /**
2856 * _base_check_enable_msix - checks MSIX capabable.
2857 * @ioc: per adapter object
2858 *
2859 * Check to see if card is capable of MSIX, and set number
2860 * of available msix vectors
2861 */
2862 static int
_base_check_enable_msix(struct MPT3SAS_ADAPTER * ioc)2863 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
2864 {
2865 int base;
2866 u16 message_control;
2867
2868 /* Check whether controller SAS2008 B0 controller,
2869 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
2870 */
2871 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
2872 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
2873 return -EINVAL;
2874 }
2875
2876 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
2877 if (!base) {
2878 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n"));
2879 return -EINVAL;
2880 }
2881
2882 /* get msix vector count */
2883 /* NUMA_IO not supported for older controllers */
2884 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
2885 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
2886 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
2887 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
2888 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
2889 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
2890 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
2891 ioc->msix_vector_count = 1;
2892 else {
2893 pci_read_config_word(ioc->pdev, base + 2, &message_control);
2894 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
2895 }
2896 dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n",
2897 ioc->msix_vector_count));
2898 return 0;
2899 }
2900
2901 /**
2902 * _base_free_irq - free irq
2903 * @ioc: per adapter object
2904 *
2905 * Freeing respective reply_queue from the list.
2906 */
2907 static void
_base_free_irq(struct MPT3SAS_ADAPTER * ioc)2908 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
2909 {
2910 struct adapter_reply_queue *reply_q, *next;
2911
2912 if (list_empty(&ioc->reply_queue_list))
2913 return;
2914
2915 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
2916 list_del(&reply_q->list);
2917 if (ioc->smp_affinity_enable)
2918 irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
2919 reply_q->msix_index), NULL);
2920 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
2921 reply_q);
2922 kfree(reply_q);
2923 }
2924 }
2925
2926 /**
2927 * _base_request_irq - request irq
2928 * @ioc: per adapter object
2929 * @index: msix index into vector table
2930 *
2931 * Inserting respective reply_queue into the list.
2932 */
2933 static int
_base_request_irq(struct MPT3SAS_ADAPTER * ioc,u8 index)2934 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
2935 {
2936 struct pci_dev *pdev = ioc->pdev;
2937 struct adapter_reply_queue *reply_q;
2938 int r;
2939
2940 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
2941 if (!reply_q) {
2942 ioc_err(ioc, "unable to allocate memory %zu!\n",
2943 sizeof(struct adapter_reply_queue));
2944 return -ENOMEM;
2945 }
2946 reply_q->ioc = ioc;
2947 reply_q->msix_index = index;
2948
2949 atomic_set(&reply_q->busy, 0);
2950 if (ioc->msix_enable)
2951 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
2952 ioc->driver_name, ioc->id, index);
2953 else
2954 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
2955 ioc->driver_name, ioc->id);
2956 r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
2957 IRQF_SHARED, reply_q->name, reply_q);
2958 if (r) {
2959 pr_err("%s: unable to allocate interrupt %d!\n",
2960 reply_q->name, pci_irq_vector(pdev, index));
2961 kfree(reply_q);
2962 return -EBUSY;
2963 }
2964
2965 INIT_LIST_HEAD(&reply_q->list);
2966 list_add_tail(&reply_q->list, &ioc->reply_queue_list);
2967 return 0;
2968 }
2969
2970 /**
2971 * _base_assign_reply_queues - assigning msix index for each cpu
2972 * @ioc: per adapter object
2973 *
2974 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
2975 *
2976 * It would nice if we could call irq_set_affinity, however it is not
2977 * an exported symbol
2978 */
2979 static void
_base_assign_reply_queues(struct MPT3SAS_ADAPTER * ioc)2980 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
2981 {
2982 unsigned int cpu, nr_cpus, nr_msix, index = 0;
2983 struct adapter_reply_queue *reply_q;
2984 int local_numa_node;
2985
2986 if (!_base_is_controller_msix_enabled(ioc))
2987 return;
2988
2989 if (ioc->msix_load_balance)
2990 return;
2991
2992 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
2993
2994 nr_cpus = num_online_cpus();
2995 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
2996 ioc->facts.MaxMSIxVectors);
2997 if (!nr_msix)
2998 return;
2999
3000 if (ioc->smp_affinity_enable) {
3001
3002 /*
3003 * set irq affinity to local numa node for those irqs
3004 * corresponding to high iops queues.
3005 */
3006 if (ioc->high_iops_queues) {
3007 local_numa_node = dev_to_node(&ioc->pdev->dev);
3008 for (index = 0; index < ioc->high_iops_queues;
3009 index++) {
3010 irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
3011 index), cpumask_of_node(local_numa_node));
3012 }
3013 }
3014
3015 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3016 const cpumask_t *mask;
3017
3018 if (reply_q->msix_index < ioc->high_iops_queues)
3019 continue;
3020
3021 mask = pci_irq_get_affinity(ioc->pdev,
3022 reply_q->msix_index);
3023 if (!mask) {
3024 ioc_warn(ioc, "no affinity for msi %x\n",
3025 reply_q->msix_index);
3026 goto fall_back;
3027 }
3028
3029 for_each_cpu_and(cpu, mask, cpu_online_mask) {
3030 if (cpu >= ioc->cpu_msix_table_sz)
3031 break;
3032 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3033 }
3034 }
3035 return;
3036 }
3037
3038 fall_back:
3039 cpu = cpumask_first(cpu_online_mask);
3040 nr_msix -= ioc->high_iops_queues;
3041 index = 0;
3042
3043 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3044 unsigned int i, group = nr_cpus / nr_msix;
3045
3046 if (reply_q->msix_index < ioc->high_iops_queues)
3047 continue;
3048
3049 if (cpu >= nr_cpus)
3050 break;
3051
3052 if (index < nr_cpus % nr_msix)
3053 group++;
3054
3055 for (i = 0 ; i < group ; i++) {
3056 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3057 cpu = cpumask_next(cpu, cpu_online_mask);
3058 }
3059 index++;
3060 }
3061 }
3062
3063 /**
3064 * _base_check_and_enable_high_iops_queues - enable high iops mode
3065 * @ioc: per adapter object
3066 * @hba_msix_vector_count: msix vectors supported by HBA
3067 *
3068 * Enable high iops queues only if
3069 * - HBA is a SEA/AERO controller and
3070 * - MSI-Xs vector supported by the HBA is 128 and
3071 * - total CPU count in the system >=16 and
3072 * - loaded driver with default max_msix_vectors module parameter and
3073 * - system booted in non kdump mode
3074 *
3075 * returns nothing.
3076 */
3077 static void
_base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER * ioc,int hba_msix_vector_count)3078 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc,
3079 int hba_msix_vector_count)
3080 {
3081 u16 lnksta, speed;
3082
3083 if (perf_mode == MPT_PERF_MODE_IOPS ||
3084 perf_mode == MPT_PERF_MODE_LATENCY) {
3085 ioc->high_iops_queues = 0;
3086 return;
3087 }
3088
3089 if (perf_mode == MPT_PERF_MODE_DEFAULT) {
3090
3091 pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta);
3092 speed = lnksta & PCI_EXP_LNKSTA_CLS;
3093
3094 if (speed < 0x4) {
3095 ioc->high_iops_queues = 0;
3096 return;
3097 }
3098 }
3099
3100 if (!reset_devices && ioc->is_aero_ioc &&
3101 hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES &&
3102 num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES &&
3103 max_msix_vectors == -1)
3104 ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES;
3105 else
3106 ioc->high_iops_queues = 0;
3107 }
3108
3109 /**
3110 * _base_disable_msix - disables msix
3111 * @ioc: per adapter object
3112 *
3113 */
3114 static void
_base_disable_msix(struct MPT3SAS_ADAPTER * ioc)3115 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
3116 {
3117 if (!ioc->msix_enable)
3118 return;
3119 pci_free_irq_vectors(ioc->pdev);
3120 ioc->msix_enable = 0;
3121 }
3122
3123 /**
3124 * _base_alloc_irq_vectors - allocate msix vectors
3125 * @ioc: per adapter object
3126 *
3127 */
3128 static int
_base_alloc_irq_vectors(struct MPT3SAS_ADAPTER * ioc)3129 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc)
3130 {
3131 int i, irq_flags = PCI_IRQ_MSIX;
3132 struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues };
3133 struct irq_affinity *descp = &desc;
3134
3135 if (ioc->smp_affinity_enable)
3136 irq_flags |= PCI_IRQ_AFFINITY;
3137 else
3138 descp = NULL;
3139
3140 ioc_info(ioc, " %d %d\n", ioc->high_iops_queues,
3141 ioc->reply_queue_count);
3142
3143 i = pci_alloc_irq_vectors_affinity(ioc->pdev,
3144 ioc->high_iops_queues,
3145 ioc->reply_queue_count, irq_flags, descp);
3146
3147 return i;
3148 }
3149
3150 /**
3151 * _base_enable_msix - enables msix, failback to io_apic
3152 * @ioc: per adapter object
3153 *
3154 */
3155 static int
_base_enable_msix(struct MPT3SAS_ADAPTER * ioc)3156 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3157 {
3158 int r;
3159 int i, local_max_msix_vectors;
3160 u8 try_msix = 0;
3161
3162 ioc->msix_load_balance = false;
3163
3164 if (msix_disable == -1 || msix_disable == 0)
3165 try_msix = 1;
3166
3167 if (!try_msix)
3168 goto try_ioapic;
3169
3170 if (_base_check_enable_msix(ioc) != 0)
3171 goto try_ioapic;
3172
3173 ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count);
3174 pr_info("\t no of cores: %d, max_msix_vectors: %d\n",
3175 ioc->cpu_count, max_msix_vectors);
3176 if (ioc->is_aero_ioc)
3177 _base_check_and_enable_high_iops_queues(ioc,
3178 ioc->msix_vector_count);
3179 ioc->reply_queue_count =
3180 min_t(int, ioc->cpu_count + ioc->high_iops_queues,
3181 ioc->msix_vector_count);
3182
3183 if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
3184 local_max_msix_vectors = (reset_devices) ? 1 : 8;
3185 else
3186 local_max_msix_vectors = max_msix_vectors;
3187
3188 if (local_max_msix_vectors > 0)
3189 ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
3190 ioc->reply_queue_count);
3191 else if (local_max_msix_vectors == 0)
3192 goto try_ioapic;
3193
3194 /*
3195 * Enable msix_load_balance only if combined reply queue mode is
3196 * disabled on SAS3 & above generation HBA devices.
3197 */
3198 if (!ioc->combined_reply_queue &&
3199 ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3200 ioc_info(ioc,
3201 "combined ReplyQueue is off, Enabling msix load balance\n");
3202 ioc->msix_load_balance = true;
3203 }
3204
3205 /*
3206 * smp affinity setting is not need when msix load balance
3207 * is enabled.
3208 */
3209 if (ioc->msix_load_balance)
3210 ioc->smp_affinity_enable = 0;
3211
3212 r = _base_alloc_irq_vectors(ioc);
3213 if (r < 0) {
3214 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r);
3215 goto try_ioapic;
3216 }
3217
3218 ioc->msix_enable = 1;
3219 ioc->reply_queue_count = r;
3220 for (i = 0; i < ioc->reply_queue_count; i++) {
3221 r = _base_request_irq(ioc, i);
3222 if (r) {
3223 _base_free_irq(ioc);
3224 _base_disable_msix(ioc);
3225 goto try_ioapic;
3226 }
3227 }
3228
3229 ioc_info(ioc, "High IOPs queues : %s\n",
3230 ioc->high_iops_queues ? "enabled" : "disabled");
3231
3232 return 0;
3233
3234 /* failback to io_apic interrupt routing */
3235 try_ioapic:
3236 ioc->high_iops_queues = 0;
3237 ioc_info(ioc, "High IOPs queues : disabled\n");
3238 ioc->reply_queue_count = 1;
3239 r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
3240 if (r < 0) {
3241 dfailprintk(ioc,
3242 ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
3243 r));
3244 } else
3245 r = _base_request_irq(ioc, 0);
3246
3247 return r;
3248 }
3249
3250 /**
3251 * mpt3sas_base_unmap_resources - free controller resources
3252 * @ioc: per adapter object
3253 */
3254 static void
mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER * ioc)3255 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
3256 {
3257 struct pci_dev *pdev = ioc->pdev;
3258
3259 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3260
3261 _base_free_irq(ioc);
3262 _base_disable_msix(ioc);
3263
3264 kfree(ioc->replyPostRegisterIndex);
3265 ioc->replyPostRegisterIndex = NULL;
3266
3267
3268 if (ioc->chip_phys) {
3269 iounmap(ioc->chip);
3270 ioc->chip_phys = 0;
3271 }
3272
3273 if (pci_is_enabled(pdev)) {
3274 pci_release_selected_regions(ioc->pdev, ioc->bars);
3275 pci_disable_pcie_error_reporting(pdev);
3276 pci_disable_device(pdev);
3277 }
3278 }
3279
3280 static int
3281 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3282
3283 /**
3284 * _base_check_for_fault_and_issue_reset - check if IOC is in fault state
3285 * and if it is in fault state then issue diag reset.
3286 * @ioc: per adapter object
3287 *
3288 * Returns: 0 for success, non-zero for failure.
3289 */
3290 static int
_base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER * ioc)3291 _base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc)
3292 {
3293 u32 ioc_state;
3294 int rc = -EFAULT;
3295
3296 dinitprintk(ioc, pr_info("%s\n", __func__));
3297 if (ioc->pci_error_recovery)
3298 return 0;
3299 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
3300 dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state));
3301
3302 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
3303 mpt3sas_print_fault_code(ioc, ioc_state &
3304 MPI2_DOORBELL_DATA_MASK);
3305 rc = _base_diag_reset(ioc);
3306 } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
3307 MPI2_IOC_STATE_COREDUMP) {
3308 mpt3sas_print_coredump_info(ioc, ioc_state &
3309 MPI2_DOORBELL_DATA_MASK);
3310 mpt3sas_base_wait_for_coredump_completion(ioc, __func__);
3311 rc = _base_diag_reset(ioc);
3312 }
3313
3314 return rc;
3315 }
3316
3317 /**
3318 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
3319 * @ioc: per adapter object
3320 *
3321 * Return: 0 for success, non-zero for failure.
3322 */
3323 int
mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER * ioc)3324 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
3325 {
3326 struct pci_dev *pdev = ioc->pdev;
3327 u32 memap_sz;
3328 u32 pio_sz;
3329 int i, r = 0, rc;
3330 u64 pio_chip = 0;
3331 phys_addr_t chip_phys = 0;
3332 struct adapter_reply_queue *reply_q;
3333
3334 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3335
3336 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
3337 if (pci_enable_device_mem(pdev)) {
3338 ioc_warn(ioc, "pci_enable_device_mem: failed\n");
3339 ioc->bars = 0;
3340 return -ENODEV;
3341 }
3342
3343
3344 if (pci_request_selected_regions(pdev, ioc->bars,
3345 ioc->driver_name)) {
3346 ioc_warn(ioc, "pci_request_selected_regions: failed\n");
3347 ioc->bars = 0;
3348 r = -ENODEV;
3349 goto out_fail;
3350 }
3351
3352 /* AER (Advanced Error Reporting) hooks */
3353 pci_enable_pcie_error_reporting(pdev);
3354
3355 pci_set_master(pdev);
3356
3357
3358 if (_base_config_dma_addressing(ioc, pdev) != 0) {
3359 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev));
3360 r = -ENODEV;
3361 goto out_fail;
3362 }
3363
3364 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
3365 (!memap_sz || !pio_sz); i++) {
3366 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
3367 if (pio_sz)
3368 continue;
3369 pio_chip = (u64)pci_resource_start(pdev, i);
3370 pio_sz = pci_resource_len(pdev, i);
3371 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3372 if (memap_sz)
3373 continue;
3374 ioc->chip_phys = pci_resource_start(pdev, i);
3375 chip_phys = ioc->chip_phys;
3376 memap_sz = pci_resource_len(pdev, i);
3377 ioc->chip = ioremap(ioc->chip_phys, memap_sz);
3378 }
3379 }
3380
3381 if (ioc->chip == NULL) {
3382 ioc_err(ioc,
3383 "unable to map adapter memory! or resource not found\n");
3384 r = -EINVAL;
3385 goto out_fail;
3386 }
3387
3388 mpt3sas_base_mask_interrupts(ioc);
3389
3390 r = _base_get_ioc_facts(ioc);
3391 if (r) {
3392 rc = _base_check_for_fault_and_issue_reset(ioc);
3393 if (rc || (_base_get_ioc_facts(ioc)))
3394 goto out_fail;
3395 }
3396
3397 if (!ioc->rdpq_array_enable_assigned) {
3398 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3399 ioc->rdpq_array_enable_assigned = 1;
3400 }
3401
3402 r = _base_enable_msix(ioc);
3403 if (r)
3404 goto out_fail;
3405
3406 if (!ioc->is_driver_loading)
3407 _base_init_irqpolls(ioc);
3408 /* Use the Combined reply queue feature only for SAS3 C0 & higher
3409 * revision HBAs and also only when reply queue count is greater than 8
3410 */
3411 if (ioc->combined_reply_queue) {
3412 /* Determine the Supplemental Reply Post Host Index Registers
3413 * Addresse. Supplemental Reply Post Host Index Registers
3414 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3415 * each register is at offset bytes of
3416 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3417 */
3418 ioc->replyPostRegisterIndex = kcalloc(
3419 ioc->combined_reply_index_count,
3420 sizeof(resource_size_t *), GFP_KERNEL);
3421 if (!ioc->replyPostRegisterIndex) {
3422 ioc_err(ioc,
3423 "allocation for replyPostRegisterIndex failed!\n");
3424 r = -ENOMEM;
3425 goto out_fail;
3426 }
3427
3428 for (i = 0; i < ioc->combined_reply_index_count; i++) {
3429 ioc->replyPostRegisterIndex[i] = (resource_size_t *)
3430 ((u8 __force *)&ioc->chip->Doorbell +
3431 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3432 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3433 }
3434 }
3435
3436 if (ioc->is_warpdrive) {
3437 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3438 &ioc->chip->ReplyPostHostIndex;
3439
3440 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3441 ioc->reply_post_host_index[i] =
3442 (resource_size_t __iomem *)
3443 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3444 * 4)));
3445 }
3446
3447 list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
3448 pr_info("%s: %s enabled: IRQ %d\n",
3449 reply_q->name,
3450 ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC",
3451 pci_irq_vector(ioc->pdev, reply_q->msix_index));
3452
3453 ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n",
3454 &chip_phys, ioc->chip, memap_sz);
3455 ioc_info(ioc, "ioport(0x%016llx), size(%d)\n",
3456 (unsigned long long)pio_chip, pio_sz);
3457
3458 /* Save PCI configuration state for recovery from PCI AER/EEH errors */
3459 pci_save_state(pdev);
3460 return 0;
3461
3462 out_fail:
3463 mpt3sas_base_unmap_resources(ioc);
3464 return r;
3465 }
3466
3467 /**
3468 * mpt3sas_base_get_msg_frame - obtain request mf pointer
3469 * @ioc: per adapter object
3470 * @smid: system request message index(smid zero is invalid)
3471 *
3472 * Return: virt pointer to message frame.
3473 */
3474 void *
mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER * ioc,u16 smid)3475 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3476 {
3477 return (void *)(ioc->request + (smid * ioc->request_sz));
3478 }
3479
3480 /**
3481 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3482 * @ioc: per adapter object
3483 * @smid: system request message index
3484 *
3485 * Return: virt pointer to sense buffer.
3486 */
3487 void *
mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER * ioc,u16 smid)3488 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3489 {
3490 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3491 }
3492
3493 /**
3494 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3495 * @ioc: per adapter object
3496 * @smid: system request message index
3497 *
3498 * Return: phys pointer to the low 32bit address of the sense buffer.
3499 */
3500 __le32
mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER * ioc,u16 smid)3501 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3502 {
3503 return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3504 SCSI_SENSE_BUFFERSIZE));
3505 }
3506
3507 /**
3508 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3509 * @ioc: per adapter object
3510 * @smid: system request message index
3511 *
3512 * Return: virt pointer to a PCIe SGL.
3513 */
3514 void *
mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER * ioc,u16 smid)3515 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3516 {
3517 return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3518 }
3519
3520 /**
3521 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3522 * @ioc: per adapter object
3523 * @smid: system request message index
3524 *
3525 * Return: phys pointer to the address of the PCIe buffer.
3526 */
3527 dma_addr_t
mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER * ioc,u16 smid)3528 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3529 {
3530 return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3531 }
3532
3533 /**
3534 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3535 * @ioc: per adapter object
3536 * @phys_addr: lower 32 physical addr of the reply
3537 *
3538 * Converts 32bit lower physical addr into a virt address.
3539 */
3540 void *
mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER * ioc,u32 phys_addr)3541 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3542 {
3543 if (!phys_addr)
3544 return NULL;
3545 return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3546 }
3547
3548 /**
3549 * _base_get_msix_index - get the msix index
3550 * @ioc: per adapter object
3551 * @scmd: scsi_cmnd object
3552 *
3553 * returns msix index of general reply queues,
3554 * i.e. reply queue on which IO request's reply
3555 * should be posted by the HBA firmware.
3556 */
3557 static inline u8
_base_get_msix_index(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd)3558 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc,
3559 struct scsi_cmnd *scmd)
3560 {
3561 /* Enables reply_queue load balancing */
3562 if (ioc->msix_load_balance)
3563 return ioc->reply_queue_count ?
3564 base_mod64(atomic64_add_return(1,
3565 &ioc->total_io_cnt), ioc->reply_queue_count) : 0;
3566
3567 return ioc->cpu_msix_table[raw_smp_processor_id()];
3568 }
3569
3570 /**
3571 * _base_sdev_nr_inflight_request -get number of inflight requests
3572 * of a request queue.
3573 * @q: request_queue object
3574 *
3575 * returns number of inflight request of a request queue.
3576 */
3577 inline unsigned long
_base_sdev_nr_inflight_request(struct request_queue * q)3578 _base_sdev_nr_inflight_request(struct request_queue *q)
3579 {
3580 struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[0];
3581
3582 return atomic_read(&hctx->nr_active);
3583 }
3584
3585
3586 /**
3587 * _base_get_high_iops_msix_index - get the msix index of
3588 * high iops queues
3589 * @ioc: per adapter object
3590 * @scmd: scsi_cmnd object
3591 *
3592 * Returns: msix index of high iops reply queues.
3593 * i.e. high iops reply queue on which IO request's
3594 * reply should be posted by the HBA firmware.
3595 */
3596 static inline u8
_base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd)3597 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc,
3598 struct scsi_cmnd *scmd)
3599 {
3600 /**
3601 * Round robin the IO interrupts among the high iops
3602 * reply queues in terms of batch count 16 when outstanding
3603 * IOs on the target device is >=8.
3604 */
3605 if (_base_sdev_nr_inflight_request(scmd->device->request_queue) >
3606 MPT3SAS_DEVICE_HIGH_IOPS_DEPTH)
3607 return base_mod64((
3608 atomic64_add_return(1, &ioc->high_iops_outstanding) /
3609 MPT3SAS_HIGH_IOPS_BATCH_COUNT),
3610 MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
3611
3612 return _base_get_msix_index(ioc, scmd);
3613 }
3614
3615 /**
3616 * mpt3sas_base_get_smid - obtain a free smid from internal queue
3617 * @ioc: per adapter object
3618 * @cb_idx: callback index
3619 *
3620 * Return: smid (zero is invalid)
3621 */
3622 u16
mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER * ioc,u8 cb_idx)3623 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3624 {
3625 unsigned long flags;
3626 struct request_tracker *request;
3627 u16 smid;
3628
3629 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3630 if (list_empty(&ioc->internal_free_list)) {
3631 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3632 ioc_err(ioc, "%s: smid not available\n", __func__);
3633 return 0;
3634 }
3635
3636 request = list_entry(ioc->internal_free_list.next,
3637 struct request_tracker, tracker_list);
3638 request->cb_idx = cb_idx;
3639 smid = request->smid;
3640 list_del(&request->tracker_list);
3641 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3642 return smid;
3643 }
3644
3645 /**
3646 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3647 * @ioc: per adapter object
3648 * @cb_idx: callback index
3649 * @scmd: pointer to scsi command object
3650 *
3651 * Return: smid (zero is invalid)
3652 */
3653 u16
mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER * ioc,u8 cb_idx,struct scsi_cmnd * scmd)3654 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3655 struct scsi_cmnd *scmd)
3656 {
3657 struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3658 unsigned int tag = scmd->request->tag;
3659 u16 smid;
3660
3661 smid = tag + 1;
3662 request->cb_idx = cb_idx;
3663 request->smid = smid;
3664 request->scmd = scmd;
3665 INIT_LIST_HEAD(&request->chain_list);
3666 return smid;
3667 }
3668
3669 /**
3670 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3671 * @ioc: per adapter object
3672 * @cb_idx: callback index
3673 *
3674 * Return: smid (zero is invalid)
3675 */
3676 u16
mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER * ioc,u8 cb_idx)3677 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3678 {
3679 unsigned long flags;
3680 struct request_tracker *request;
3681 u16 smid;
3682
3683 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3684 if (list_empty(&ioc->hpr_free_list)) {
3685 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3686 return 0;
3687 }
3688
3689 request = list_entry(ioc->hpr_free_list.next,
3690 struct request_tracker, tracker_list);
3691 request->cb_idx = cb_idx;
3692 smid = request->smid;
3693 list_del(&request->tracker_list);
3694 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3695 return smid;
3696 }
3697
3698 static void
_base_recovery_check(struct MPT3SAS_ADAPTER * ioc)3699 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3700 {
3701 /*
3702 * See _wait_for_commands_to_complete() call with regards to this code.
3703 */
3704 if (ioc->shost_recovery && ioc->pending_io_count) {
3705 ioc->pending_io_count = scsi_host_busy(ioc->shost);
3706 if (ioc->pending_io_count == 0)
3707 wake_up(&ioc->reset_wq);
3708 }
3709 }
3710
mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER * ioc,struct scsiio_tracker * st)3711 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
3712 struct scsiio_tracker *st)
3713 {
3714 if (WARN_ON(st->smid == 0))
3715 return;
3716 st->cb_idx = 0xFF;
3717 st->direct_io = 0;
3718 st->scmd = NULL;
3719 atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
3720 st->smid = 0;
3721 }
3722
3723 /**
3724 * mpt3sas_base_free_smid - put smid back on free_list
3725 * @ioc: per adapter object
3726 * @smid: system request message index
3727 */
3728 void
mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER * ioc,u16 smid)3729 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3730 {
3731 unsigned long flags;
3732 int i;
3733
3734 if (smid < ioc->hi_priority_smid) {
3735 struct scsiio_tracker *st;
3736 void *request;
3737
3738 st = _get_st_from_smid(ioc, smid);
3739 if (!st) {
3740 _base_recovery_check(ioc);
3741 return;
3742 }
3743
3744 /* Clear MPI request frame */
3745 request = mpt3sas_base_get_msg_frame(ioc, smid);
3746 memset(request, 0, ioc->request_sz);
3747
3748 mpt3sas_base_clear_st(ioc, st);
3749 _base_recovery_check(ioc);
3750 return;
3751 }
3752
3753 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3754 if (smid < ioc->internal_smid) {
3755 /* hi-priority */
3756 i = smid - ioc->hi_priority_smid;
3757 ioc->hpr_lookup[i].cb_idx = 0xFF;
3758 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
3759 } else if (smid <= ioc->hba_queue_depth) {
3760 /* internal queue */
3761 i = smid - ioc->internal_smid;
3762 ioc->internal_lookup[i].cb_idx = 0xFF;
3763 list_add(&ioc->internal_lookup[i].tracker_list,
3764 &ioc->internal_free_list);
3765 }
3766 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3767 }
3768
3769 /**
3770 * _base_mpi_ep_writeq - 32 bit write to MMIO
3771 * @b: data payload
3772 * @addr: address in MMIO space
3773 * @writeq_lock: spin lock
3774 *
3775 * This special handling for MPI EP to take care of 32 bit
3776 * environment where its not quarenteed to send the entire word
3777 * in one transfer.
3778 */
3779 static inline void
_base_mpi_ep_writeq(__u64 b,volatile void __iomem * addr,spinlock_t * writeq_lock)3780 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
3781 spinlock_t *writeq_lock)
3782 {
3783 unsigned long flags;
3784
3785 spin_lock_irqsave(writeq_lock, flags);
3786 __raw_writel((u32)(b), addr);
3787 __raw_writel((u32)(b >> 32), (addr + 4));
3788 spin_unlock_irqrestore(writeq_lock, flags);
3789 }
3790
3791 /**
3792 * _base_writeq - 64 bit write to MMIO
3793 * @b: data payload
3794 * @addr: address in MMIO space
3795 * @writeq_lock: spin lock
3796 *
3797 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
3798 * care of 32 bit environment where its not quarenteed to send the entire word
3799 * in one transfer.
3800 */
3801 #if defined(writeq) && defined(CONFIG_64BIT)
3802 static inline void
_base_writeq(__u64 b,volatile void __iomem * addr,spinlock_t * writeq_lock)3803 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3804 {
3805 wmb();
3806 __raw_writeq(b, addr);
3807 barrier();
3808 }
3809 #else
3810 static inline void
_base_writeq(__u64 b,volatile void __iomem * addr,spinlock_t * writeq_lock)3811 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3812 {
3813 _base_mpi_ep_writeq(b, addr, writeq_lock);
3814 }
3815 #endif
3816
3817 /**
3818 * _base_set_and_get_msix_index - get the msix index and assign to msix_io
3819 * variable of scsi tracker
3820 * @ioc: per adapter object
3821 * @smid: system request message index
3822 *
3823 * returns msix index.
3824 */
3825 static u8
_base_set_and_get_msix_index(struct MPT3SAS_ADAPTER * ioc,u16 smid)3826 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3827 {
3828 struct scsiio_tracker *st = NULL;
3829
3830 if (smid < ioc->hi_priority_smid)
3831 st = _get_st_from_smid(ioc, smid);
3832
3833 if (st == NULL)
3834 return _base_get_msix_index(ioc, NULL);
3835
3836 st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd);
3837 return st->msix_io;
3838 }
3839
3840 /**
3841 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
3842 * @ioc: per adapter object
3843 * @smid: system request message index
3844 * @handle: device handle
3845 */
3846 static void
_base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)3847 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc,
3848 u16 smid, u16 handle)
3849 {
3850 Mpi2RequestDescriptorUnion_t descriptor;
3851 u64 *request = (u64 *)&descriptor;
3852 void *mpi_req_iomem;
3853 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3854
3855 _clone_sg_entries(ioc, (void *) mfp, smid);
3856 mpi_req_iomem = (void __force *)ioc->chip +
3857 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3858 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3859 ioc->request_sz);
3860 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3861 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3862 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3863 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3864 descriptor.SCSIIO.LMID = 0;
3865 _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3866 &ioc->scsi_lookup_lock);
3867 }
3868
3869 /**
3870 * _base_put_smid_scsi_io - send SCSI_IO request to firmware
3871 * @ioc: per adapter object
3872 * @smid: system request message index
3873 * @handle: device handle
3874 */
3875 static void
_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)3876 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
3877 {
3878 Mpi2RequestDescriptorUnion_t descriptor;
3879 u64 *request = (u64 *)&descriptor;
3880
3881
3882 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3883 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3884 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3885 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3886 descriptor.SCSIIO.LMID = 0;
3887 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3888 &ioc->scsi_lookup_lock);
3889 }
3890
3891 /**
3892 * _base_put_smid_fast_path - send fast path request to firmware
3893 * @ioc: per adapter object
3894 * @smid: system request message index
3895 * @handle: device handle
3896 */
3897 static void
_base_put_smid_fast_path(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)3898 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3899 u16 handle)
3900 {
3901 Mpi2RequestDescriptorUnion_t descriptor;
3902 u64 *request = (u64 *)&descriptor;
3903
3904 descriptor.SCSIIO.RequestFlags =
3905 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
3906 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3907 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3908 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3909 descriptor.SCSIIO.LMID = 0;
3910 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3911 &ioc->scsi_lookup_lock);
3912 }
3913
3914 /**
3915 * _base_put_smid_hi_priority - send Task Management request to firmware
3916 * @ioc: per adapter object
3917 * @smid: system request message index
3918 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
3919 */
3920 static void
_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 msix_task)3921 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3922 u16 msix_task)
3923 {
3924 Mpi2RequestDescriptorUnion_t descriptor;
3925 void *mpi_req_iomem;
3926 u64 *request;
3927
3928 if (ioc->is_mcpu_endpoint) {
3929 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3930
3931 /* TBD 256 is offset within sys register. */
3932 mpi_req_iomem = (void __force *)ioc->chip
3933 + MPI_FRAME_START_OFFSET
3934 + (smid * ioc->request_sz);
3935 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3936 ioc->request_sz);
3937 }
3938
3939 request = (u64 *)&descriptor;
3940
3941 descriptor.HighPriority.RequestFlags =
3942 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
3943 descriptor.HighPriority.MSIxIndex = msix_task;
3944 descriptor.HighPriority.SMID = cpu_to_le16(smid);
3945 descriptor.HighPriority.LMID = 0;
3946 descriptor.HighPriority.Reserved1 = 0;
3947 if (ioc->is_mcpu_endpoint)
3948 _base_mpi_ep_writeq(*request,
3949 &ioc->chip->RequestDescriptorPostLow,
3950 &ioc->scsi_lookup_lock);
3951 else
3952 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3953 &ioc->scsi_lookup_lock);
3954 }
3955
3956 /**
3957 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
3958 * firmware
3959 * @ioc: per adapter object
3960 * @smid: system request message index
3961 */
3962 void
mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER * ioc,u16 smid)3963 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3964 {
3965 Mpi2RequestDescriptorUnion_t descriptor;
3966 u64 *request = (u64 *)&descriptor;
3967
3968 descriptor.Default.RequestFlags =
3969 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
3970 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3971 descriptor.Default.SMID = cpu_to_le16(smid);
3972 descriptor.Default.LMID = 0;
3973 descriptor.Default.DescriptorTypeDependent = 0;
3974 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3975 &ioc->scsi_lookup_lock);
3976 }
3977
3978 /**
3979 * _base_put_smid_default - Default, primarily used for config pages
3980 * @ioc: per adapter object
3981 * @smid: system request message index
3982 */
3983 static void
_base_put_smid_default(struct MPT3SAS_ADAPTER * ioc,u16 smid)3984 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3985 {
3986 Mpi2RequestDescriptorUnion_t descriptor;
3987 void *mpi_req_iomem;
3988 u64 *request;
3989
3990 if (ioc->is_mcpu_endpoint) {
3991 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3992
3993 _clone_sg_entries(ioc, (void *) mfp, smid);
3994 /* TBD 256 is offset within sys register */
3995 mpi_req_iomem = (void __force *)ioc->chip +
3996 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3997 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3998 ioc->request_sz);
3999 }
4000 request = (u64 *)&descriptor;
4001 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4002 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4003 descriptor.Default.SMID = cpu_to_le16(smid);
4004 descriptor.Default.LMID = 0;
4005 descriptor.Default.DescriptorTypeDependent = 0;
4006 if (ioc->is_mcpu_endpoint)
4007 _base_mpi_ep_writeq(*request,
4008 &ioc->chip->RequestDescriptorPostLow,
4009 &ioc->scsi_lookup_lock);
4010 else
4011 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4012 &ioc->scsi_lookup_lock);
4013 }
4014
4015 /**
4016 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
4017 * Atomic Request Descriptor
4018 * @ioc: per adapter object
4019 * @smid: system request message index
4020 * @handle: device handle, unused in this function, for function type match
4021 *
4022 * Return nothing.
4023 */
4024 static void
_base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)4025 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4026 u16 handle)
4027 {
4028 Mpi26AtomicRequestDescriptor_t descriptor;
4029 u32 *request = (u32 *)&descriptor;
4030
4031 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4032 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4033 descriptor.SMID = cpu_to_le16(smid);
4034
4035 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4036 }
4037
4038 /**
4039 * _base_put_smid_fast_path_atomic - send fast path request to firmware
4040 * using Atomic Request Descriptor
4041 * @ioc: per adapter object
4042 * @smid: system request message index
4043 * @handle: device handle, unused in this function, for function type match
4044 * Return nothing
4045 */
4046 static void
_base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)4047 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4048 u16 handle)
4049 {
4050 Mpi26AtomicRequestDescriptor_t descriptor;
4051 u32 *request = (u32 *)&descriptor;
4052
4053 descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4054 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4055 descriptor.SMID = cpu_to_le16(smid);
4056
4057 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4058 }
4059
4060 /**
4061 * _base_put_smid_hi_priority_atomic - send Task Management request to
4062 * firmware using Atomic Request Descriptor
4063 * @ioc: per adapter object
4064 * @smid: system request message index
4065 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0
4066 *
4067 * Return nothing.
4068 */
4069 static void
_base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 msix_task)4070 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4071 u16 msix_task)
4072 {
4073 Mpi26AtomicRequestDescriptor_t descriptor;
4074 u32 *request = (u32 *)&descriptor;
4075
4076 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4077 descriptor.MSIxIndex = msix_task;
4078 descriptor.SMID = cpu_to_le16(smid);
4079
4080 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4081 }
4082
4083 /**
4084 * _base_put_smid_default - Default, primarily used for config pages
4085 * use Atomic Request Descriptor
4086 * @ioc: per adapter object
4087 * @smid: system request message index
4088 *
4089 * Return nothing.
4090 */
4091 static void
_base_put_smid_default_atomic(struct MPT3SAS_ADAPTER * ioc,u16 smid)4092 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4093 {
4094 Mpi26AtomicRequestDescriptor_t descriptor;
4095 u32 *request = (u32 *)&descriptor;
4096
4097 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4098 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4099 descriptor.SMID = cpu_to_le16(smid);
4100
4101 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4102 }
4103
4104 /**
4105 * _base_display_OEMs_branding - Display branding string
4106 * @ioc: per adapter object
4107 */
4108 static void
_base_display_OEMs_branding(struct MPT3SAS_ADAPTER * ioc)4109 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
4110 {
4111 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
4112 return;
4113
4114 switch (ioc->pdev->subsystem_vendor) {
4115 case PCI_VENDOR_ID_INTEL:
4116 switch (ioc->pdev->device) {
4117 case MPI2_MFGPAGE_DEVID_SAS2008:
4118 switch (ioc->pdev->subsystem_device) {
4119 case MPT2SAS_INTEL_RMS2LL080_SSDID:
4120 ioc_info(ioc, "%s\n",
4121 MPT2SAS_INTEL_RMS2LL080_BRANDING);
4122 break;
4123 case MPT2SAS_INTEL_RMS2LL040_SSDID:
4124 ioc_info(ioc, "%s\n",
4125 MPT2SAS_INTEL_RMS2LL040_BRANDING);
4126 break;
4127 case MPT2SAS_INTEL_SSD910_SSDID:
4128 ioc_info(ioc, "%s\n",
4129 MPT2SAS_INTEL_SSD910_BRANDING);
4130 break;
4131 default:
4132 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4133 ioc->pdev->subsystem_device);
4134 break;
4135 }
4136 break;
4137 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4138 switch (ioc->pdev->subsystem_device) {
4139 case MPT2SAS_INTEL_RS25GB008_SSDID:
4140 ioc_info(ioc, "%s\n",
4141 MPT2SAS_INTEL_RS25GB008_BRANDING);
4142 break;
4143 case MPT2SAS_INTEL_RMS25JB080_SSDID:
4144 ioc_info(ioc, "%s\n",
4145 MPT2SAS_INTEL_RMS25JB080_BRANDING);
4146 break;
4147 case MPT2SAS_INTEL_RMS25JB040_SSDID:
4148 ioc_info(ioc, "%s\n",
4149 MPT2SAS_INTEL_RMS25JB040_BRANDING);
4150 break;
4151 case MPT2SAS_INTEL_RMS25KB080_SSDID:
4152 ioc_info(ioc, "%s\n",
4153 MPT2SAS_INTEL_RMS25KB080_BRANDING);
4154 break;
4155 case MPT2SAS_INTEL_RMS25KB040_SSDID:
4156 ioc_info(ioc, "%s\n",
4157 MPT2SAS_INTEL_RMS25KB040_BRANDING);
4158 break;
4159 case MPT2SAS_INTEL_RMS25LB040_SSDID:
4160 ioc_info(ioc, "%s\n",
4161 MPT2SAS_INTEL_RMS25LB040_BRANDING);
4162 break;
4163 case MPT2SAS_INTEL_RMS25LB080_SSDID:
4164 ioc_info(ioc, "%s\n",
4165 MPT2SAS_INTEL_RMS25LB080_BRANDING);
4166 break;
4167 default:
4168 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4169 ioc->pdev->subsystem_device);
4170 break;
4171 }
4172 break;
4173 case MPI25_MFGPAGE_DEVID_SAS3008:
4174 switch (ioc->pdev->subsystem_device) {
4175 case MPT3SAS_INTEL_RMS3JC080_SSDID:
4176 ioc_info(ioc, "%s\n",
4177 MPT3SAS_INTEL_RMS3JC080_BRANDING);
4178 break;
4179
4180 case MPT3SAS_INTEL_RS3GC008_SSDID:
4181 ioc_info(ioc, "%s\n",
4182 MPT3SAS_INTEL_RS3GC008_BRANDING);
4183 break;
4184 case MPT3SAS_INTEL_RS3FC044_SSDID:
4185 ioc_info(ioc, "%s\n",
4186 MPT3SAS_INTEL_RS3FC044_BRANDING);
4187 break;
4188 case MPT3SAS_INTEL_RS3UC080_SSDID:
4189 ioc_info(ioc, "%s\n",
4190 MPT3SAS_INTEL_RS3UC080_BRANDING);
4191 break;
4192 default:
4193 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4194 ioc->pdev->subsystem_device);
4195 break;
4196 }
4197 break;
4198 default:
4199 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4200 ioc->pdev->subsystem_device);
4201 break;
4202 }
4203 break;
4204 case PCI_VENDOR_ID_DELL:
4205 switch (ioc->pdev->device) {
4206 case MPI2_MFGPAGE_DEVID_SAS2008:
4207 switch (ioc->pdev->subsystem_device) {
4208 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
4209 ioc_info(ioc, "%s\n",
4210 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
4211 break;
4212 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
4213 ioc_info(ioc, "%s\n",
4214 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
4215 break;
4216 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
4217 ioc_info(ioc, "%s\n",
4218 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
4219 break;
4220 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
4221 ioc_info(ioc, "%s\n",
4222 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
4223 break;
4224 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
4225 ioc_info(ioc, "%s\n",
4226 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
4227 break;
4228 case MPT2SAS_DELL_PERC_H200_SSDID:
4229 ioc_info(ioc, "%s\n",
4230 MPT2SAS_DELL_PERC_H200_BRANDING);
4231 break;
4232 case MPT2SAS_DELL_6GBPS_SAS_SSDID:
4233 ioc_info(ioc, "%s\n",
4234 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
4235 break;
4236 default:
4237 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
4238 ioc->pdev->subsystem_device);
4239 break;
4240 }
4241 break;
4242 case MPI25_MFGPAGE_DEVID_SAS3008:
4243 switch (ioc->pdev->subsystem_device) {
4244 case MPT3SAS_DELL_12G_HBA_SSDID:
4245 ioc_info(ioc, "%s\n",
4246 MPT3SAS_DELL_12G_HBA_BRANDING);
4247 break;
4248 default:
4249 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
4250 ioc->pdev->subsystem_device);
4251 break;
4252 }
4253 break;
4254 default:
4255 ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n",
4256 ioc->pdev->subsystem_device);
4257 break;
4258 }
4259 break;
4260 case PCI_VENDOR_ID_CISCO:
4261 switch (ioc->pdev->device) {
4262 case MPI25_MFGPAGE_DEVID_SAS3008:
4263 switch (ioc->pdev->subsystem_device) {
4264 case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
4265 ioc_info(ioc, "%s\n",
4266 MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
4267 break;
4268 case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
4269 ioc_info(ioc, "%s\n",
4270 MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
4271 break;
4272 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4273 ioc_info(ioc, "%s\n",
4274 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4275 break;
4276 default:
4277 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4278 ioc->pdev->subsystem_device);
4279 break;
4280 }
4281 break;
4282 case MPI25_MFGPAGE_DEVID_SAS3108_1:
4283 switch (ioc->pdev->subsystem_device) {
4284 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4285 ioc_info(ioc, "%s\n",
4286 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4287 break;
4288 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
4289 ioc_info(ioc, "%s\n",
4290 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
4291 break;
4292 default:
4293 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4294 ioc->pdev->subsystem_device);
4295 break;
4296 }
4297 break;
4298 default:
4299 ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
4300 ioc->pdev->subsystem_device);
4301 break;
4302 }
4303 break;
4304 case MPT2SAS_HP_3PAR_SSVID:
4305 switch (ioc->pdev->device) {
4306 case MPI2_MFGPAGE_DEVID_SAS2004:
4307 switch (ioc->pdev->subsystem_device) {
4308 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
4309 ioc_info(ioc, "%s\n",
4310 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
4311 break;
4312 default:
4313 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4314 ioc->pdev->subsystem_device);
4315 break;
4316 }
4317 break;
4318 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4319 switch (ioc->pdev->subsystem_device) {
4320 case MPT2SAS_HP_2_4_INTERNAL_SSDID:
4321 ioc_info(ioc, "%s\n",
4322 MPT2SAS_HP_2_4_INTERNAL_BRANDING);
4323 break;
4324 case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
4325 ioc_info(ioc, "%s\n",
4326 MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
4327 break;
4328 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
4329 ioc_info(ioc, "%s\n",
4330 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
4331 break;
4332 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
4333 ioc_info(ioc, "%s\n",
4334 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
4335 break;
4336 default:
4337 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4338 ioc->pdev->subsystem_device);
4339 break;
4340 }
4341 break;
4342 default:
4343 ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n",
4344 ioc->pdev->subsystem_device);
4345 break;
4346 }
4347 default:
4348 break;
4349 }
4350 }
4351
4352 /**
4353 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
4354 * version from FW Image Header.
4355 * @ioc: per adapter object
4356 *
4357 * Return: 0 for success, non-zero for failure.
4358 */
4359 static int
_base_display_fwpkg_version(struct MPT3SAS_ADAPTER * ioc)4360 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
4361 {
4362 Mpi2FWImageHeader_t *fw_img_hdr;
4363 Mpi26ComponentImageHeader_t *cmp_img_hdr;
4364 Mpi25FWUploadRequest_t *mpi_request;
4365 Mpi2FWUploadReply_t mpi_reply;
4366 int r = 0;
4367 u32 package_version = 0;
4368 void *fwpkg_data = NULL;
4369 dma_addr_t fwpkg_data_dma;
4370 u16 smid, ioc_status;
4371 size_t data_length;
4372
4373 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4374
4375 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4376 ioc_err(ioc, "%s: internal command already in use\n", __func__);
4377 return -EAGAIN;
4378 }
4379
4380 data_length = sizeof(Mpi2FWImageHeader_t);
4381 fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length,
4382 &fwpkg_data_dma, GFP_KERNEL);
4383 if (!fwpkg_data) {
4384 ioc_err(ioc,
4385 "Memory allocation for fwpkg data failed at %s:%d/%s()!\n",
4386 __FILE__, __LINE__, __func__);
4387 return -ENOMEM;
4388 }
4389
4390 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4391 if (!smid) {
4392 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
4393 r = -EAGAIN;
4394 goto out;
4395 }
4396
4397 ioc->base_cmds.status = MPT3_CMD_PENDING;
4398 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4399 ioc->base_cmds.smid = smid;
4400 memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
4401 mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
4402 mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
4403 mpi_request->ImageSize = cpu_to_le32(data_length);
4404 ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
4405 data_length);
4406 init_completion(&ioc->base_cmds.done);
4407 ioc->put_smid_default(ioc, smid);
4408 /* Wait for 15 seconds */
4409 wait_for_completion_timeout(&ioc->base_cmds.done,
4410 FW_IMG_HDR_READ_TIMEOUT*HZ);
4411 ioc_info(ioc, "%s: complete\n", __func__);
4412 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4413 ioc_err(ioc, "%s: timeout\n", __func__);
4414 _debug_dump_mf(mpi_request,
4415 sizeof(Mpi25FWUploadRequest_t)/4);
4416 r = -ETIME;
4417 } else {
4418 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
4419 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
4420 memcpy(&mpi_reply, ioc->base_cmds.reply,
4421 sizeof(Mpi2FWUploadReply_t));
4422 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4423 MPI2_IOCSTATUS_MASK;
4424 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4425 fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data;
4426 if (le32_to_cpu(fw_img_hdr->Signature) ==
4427 MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) {
4428 cmp_img_hdr =
4429 (Mpi26ComponentImageHeader_t *)
4430 (fwpkg_data);
4431 package_version =
4432 le32_to_cpu(
4433 cmp_img_hdr->ApplicationSpecific);
4434 } else
4435 package_version =
4436 le32_to_cpu(
4437 fw_img_hdr->PackageVersion.Word);
4438 if (package_version)
4439 ioc_info(ioc,
4440 "FW Package Ver(%02d.%02d.%02d.%02d)\n",
4441 ((package_version) & 0xFF000000) >> 24,
4442 ((package_version) & 0x00FF0000) >> 16,
4443 ((package_version) & 0x0000FF00) >> 8,
4444 (package_version) & 0x000000FF);
4445 } else {
4446 _debug_dump_mf(&mpi_reply,
4447 sizeof(Mpi2FWUploadReply_t)/4);
4448 }
4449 }
4450 }
4451 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4452 out:
4453 if (fwpkg_data)
4454 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data,
4455 fwpkg_data_dma);
4456 return r;
4457 }
4458
4459 /**
4460 * _base_display_ioc_capabilities - Disply IOC's capabilities.
4461 * @ioc: per adapter object
4462 */
4463 static void
_base_display_ioc_capabilities(struct MPT3SAS_ADAPTER * ioc)4464 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
4465 {
4466 int i = 0;
4467 char desc[16];
4468 u32 iounit_pg1_flags;
4469 u32 bios_version;
4470
4471 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
4472 strncpy(desc, ioc->manu_pg0.ChipName, 16);
4473 ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
4474 desc,
4475 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
4476 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
4477 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
4478 ioc->facts.FWVersion.Word & 0x000000FF,
4479 ioc->pdev->revision,
4480 (bios_version & 0xFF000000) >> 24,
4481 (bios_version & 0x00FF0000) >> 16,
4482 (bios_version & 0x0000FF00) >> 8,
4483 bios_version & 0x000000FF);
4484
4485 _base_display_OEMs_branding(ioc);
4486
4487 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4488 pr_info("%sNVMe", i ? "," : "");
4489 i++;
4490 }
4491
4492 ioc_info(ioc, "Protocol=(");
4493
4494 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
4495 pr_cont("Initiator");
4496 i++;
4497 }
4498
4499 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
4500 pr_cont("%sTarget", i ? "," : "");
4501 i++;
4502 }
4503
4504 i = 0;
4505 pr_cont("), Capabilities=(");
4506
4507 if (!ioc->hide_ir_msg) {
4508 if (ioc->facts.IOCCapabilities &
4509 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
4510 pr_cont("Raid");
4511 i++;
4512 }
4513 }
4514
4515 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
4516 pr_cont("%sTLR", i ? "," : "");
4517 i++;
4518 }
4519
4520 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
4521 pr_cont("%sMulticast", i ? "," : "");
4522 i++;
4523 }
4524
4525 if (ioc->facts.IOCCapabilities &
4526 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
4527 pr_cont("%sBIDI Target", i ? "," : "");
4528 i++;
4529 }
4530
4531 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
4532 pr_cont("%sEEDP", i ? "," : "");
4533 i++;
4534 }
4535
4536 if (ioc->facts.IOCCapabilities &
4537 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
4538 pr_cont("%sSnapshot Buffer", i ? "," : "");
4539 i++;
4540 }
4541
4542 if (ioc->facts.IOCCapabilities &
4543 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
4544 pr_cont("%sDiag Trace Buffer", i ? "," : "");
4545 i++;
4546 }
4547
4548 if (ioc->facts.IOCCapabilities &
4549 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
4550 pr_cont("%sDiag Extended Buffer", i ? "," : "");
4551 i++;
4552 }
4553
4554 if (ioc->facts.IOCCapabilities &
4555 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
4556 pr_cont("%sTask Set Full", i ? "," : "");
4557 i++;
4558 }
4559
4560 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4561 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
4562 pr_cont("%sNCQ", i ? "," : "");
4563 i++;
4564 }
4565
4566 pr_cont(")\n");
4567 }
4568
4569 /**
4570 * mpt3sas_base_update_missing_delay - change the missing delay timers
4571 * @ioc: per adapter object
4572 * @device_missing_delay: amount of time till device is reported missing
4573 * @io_missing_delay: interval IO is returned when there is a missing device
4574 *
4575 * Passed on the command line, this function will modify the device missing
4576 * delay, as well as the io missing delay. This should be called at driver
4577 * load time.
4578 */
4579 void
mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER * ioc,u16 device_missing_delay,u8 io_missing_delay)4580 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4581 u16 device_missing_delay, u8 io_missing_delay)
4582 {
4583 u16 dmd, dmd_new, dmd_orignal;
4584 u8 io_missing_delay_original;
4585 u16 sz;
4586 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4587 Mpi2ConfigReply_t mpi_reply;
4588 u8 num_phys = 0;
4589 u16 ioc_status;
4590
4591 mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4592 if (!num_phys)
4593 return;
4594
4595 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
4596 sizeof(Mpi2SasIOUnit1PhyData_t));
4597 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4598 if (!sas_iounit_pg1) {
4599 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4600 __FILE__, __LINE__, __func__);
4601 goto out;
4602 }
4603 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4604 sas_iounit_pg1, sz))) {
4605 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4606 __FILE__, __LINE__, __func__);
4607 goto out;
4608 }
4609 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4610 MPI2_IOCSTATUS_MASK;
4611 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4612 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4613 __FILE__, __LINE__, __func__);
4614 goto out;
4615 }
4616
4617 /* device missing delay */
4618 dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4619 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4620 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4621 else
4622 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4623 dmd_orignal = dmd;
4624 if (device_missing_delay > 0x7F) {
4625 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4626 device_missing_delay;
4627 dmd = dmd / 16;
4628 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4629 } else
4630 dmd = device_missing_delay;
4631 sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4632
4633 /* io missing delay */
4634 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4635 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4636
4637 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4638 sz)) {
4639 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4640 dmd_new = (dmd &
4641 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4642 else
4643 dmd_new =
4644 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4645 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n",
4646 dmd_orignal, dmd_new);
4647 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n",
4648 io_missing_delay_original,
4649 io_missing_delay);
4650 ioc->device_missing_delay = dmd_new;
4651 ioc->io_missing_delay = io_missing_delay;
4652 }
4653
4654 out:
4655 kfree(sas_iounit_pg1);
4656 }
4657
4658 /**
4659 * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
4660 * according to performance mode.
4661 * @ioc : per adapter object
4662 *
4663 * Return nothing.
4664 */
4665 static void
_base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER * ioc)4666 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc)
4667 {
4668 Mpi2IOCPage1_t ioc_pg1;
4669 Mpi2ConfigReply_t mpi_reply;
4670
4671 mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy);
4672 memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t));
4673
4674 switch (perf_mode) {
4675 case MPT_PERF_MODE_DEFAULT:
4676 case MPT_PERF_MODE_BALANCED:
4677 if (ioc->high_iops_queues) {
4678 ioc_info(ioc,
4679 "Enable interrupt coalescing only for first\t"
4680 "%d reply queues\n",
4681 MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
4682 /*
4683 * If 31st bit is zero then interrupt coalescing is
4684 * enabled for all reply descriptor post queues.
4685 * If 31st bit is set to one then user can
4686 * enable/disable interrupt coalescing on per reply
4687 * descriptor post queue group(8) basis. So to enable
4688 * interrupt coalescing only on first reply descriptor
4689 * post queue group 31st bit and zero th bit is enabled.
4690 */
4691 ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 |
4692 ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1));
4693 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4694 ioc_info(ioc, "performance mode: balanced\n");
4695 return;
4696 }
4697 fallthrough;
4698 case MPT_PERF_MODE_LATENCY:
4699 /*
4700 * Enable interrupt coalescing on all reply queues
4701 * with timeout value 0xA
4702 */
4703 ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa);
4704 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
4705 ioc_pg1.ProductSpecific = 0;
4706 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4707 ioc_info(ioc, "performance mode: latency\n");
4708 break;
4709 case MPT_PERF_MODE_IOPS:
4710 /*
4711 * Enable interrupt coalescing on all reply queues.
4712 */
4713 ioc_info(ioc,
4714 "performance mode: iops with coalescing timeout: 0x%x\n",
4715 le32_to_cpu(ioc_pg1.CoalescingTimeout));
4716 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
4717 ioc_pg1.ProductSpecific = 0;
4718 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4719 break;
4720 }
4721 }
4722
4723 /**
4724 * _base_static_config_pages - static start of day config pages
4725 * @ioc: per adapter object
4726 */
4727 static void
_base_static_config_pages(struct MPT3SAS_ADAPTER * ioc)4728 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
4729 {
4730 Mpi2ConfigReply_t mpi_reply;
4731 u32 iounit_pg1_flags;
4732
4733 ioc->nvme_abort_timeout = 30;
4734 mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
4735 if (ioc->ir_firmware)
4736 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
4737 &ioc->manu_pg10);
4738
4739 /*
4740 * Ensure correct T10 PI operation if vendor left EEDPTagMode
4741 * flag unset in NVDATA.
4742 */
4743 mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
4744 if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) {
4745 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
4746 ioc->name);
4747 ioc->manu_pg11.EEDPTagMode &= ~0x3;
4748 ioc->manu_pg11.EEDPTagMode |= 0x1;
4749 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
4750 &ioc->manu_pg11);
4751 }
4752 if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
4753 ioc->tm_custom_handling = 1;
4754 else {
4755 ioc->tm_custom_handling = 0;
4756 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
4757 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
4758 else if (ioc->manu_pg11.NVMeAbortTO >
4759 NVME_TASK_ABORT_MAX_TIMEOUT)
4760 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
4761 else
4762 ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
4763 }
4764
4765 mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
4766 mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
4767 mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
4768 mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
4769 mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4770 mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
4771 _base_display_ioc_capabilities(ioc);
4772
4773 /*
4774 * Enable task_set_full handling in iounit_pg1 when the
4775 * facts capabilities indicate that its supported.
4776 */
4777 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4778 if ((ioc->facts.IOCCapabilities &
4779 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
4780 iounit_pg1_flags &=
4781 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4782 else
4783 iounit_pg1_flags |=
4784 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4785 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
4786 mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4787
4788 if (ioc->iounit_pg8.NumSensors)
4789 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
4790 if (ioc->is_aero_ioc)
4791 _base_update_ioc_page1_inlinewith_perf_mode(ioc);
4792 }
4793
4794 /**
4795 * mpt3sas_free_enclosure_list - release memory
4796 * @ioc: per adapter object
4797 *
4798 * Free memory allocated during encloure add.
4799 */
4800 void
mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER * ioc)4801 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
4802 {
4803 struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
4804
4805 /* Free enclosure list */
4806 list_for_each_entry_safe(enclosure_dev,
4807 enclosure_dev_next, &ioc->enclosure_list, list) {
4808 list_del(&enclosure_dev->list);
4809 kfree(enclosure_dev);
4810 }
4811 }
4812
4813 /**
4814 * _base_release_memory_pools - release memory
4815 * @ioc: per adapter object
4816 *
4817 * Free memory allocated from _base_allocate_memory_pools.
4818 */
4819 static void
_base_release_memory_pools(struct MPT3SAS_ADAPTER * ioc)4820 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
4821 {
4822 int i = 0;
4823 int j = 0;
4824 int dma_alloc_count = 0;
4825 struct chain_tracker *ct;
4826 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
4827
4828 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4829
4830 if (ioc->request) {
4831 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz,
4832 ioc->request, ioc->request_dma);
4833 dexitprintk(ioc,
4834 ioc_info(ioc, "request_pool(0x%p): free\n",
4835 ioc->request));
4836 ioc->request = NULL;
4837 }
4838
4839 if (ioc->sense) {
4840 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
4841 dma_pool_destroy(ioc->sense_dma_pool);
4842 dexitprintk(ioc,
4843 ioc_info(ioc, "sense_pool(0x%p): free\n",
4844 ioc->sense));
4845 ioc->sense = NULL;
4846 }
4847
4848 if (ioc->reply) {
4849 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
4850 dma_pool_destroy(ioc->reply_dma_pool);
4851 dexitprintk(ioc,
4852 ioc_info(ioc, "reply_pool(0x%p): free\n",
4853 ioc->reply));
4854 ioc->reply = NULL;
4855 }
4856
4857 if (ioc->reply_free) {
4858 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
4859 ioc->reply_free_dma);
4860 dma_pool_destroy(ioc->reply_free_dma_pool);
4861 dexitprintk(ioc,
4862 ioc_info(ioc, "reply_free_pool(0x%p): free\n",
4863 ioc->reply_free));
4864 ioc->reply_free = NULL;
4865 }
4866
4867 if (ioc->reply_post) {
4868 dma_alloc_count = DIV_ROUND_UP(count,
4869 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
4870 for (i = 0; i < count; i++) {
4871 if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0
4872 && dma_alloc_count) {
4873 if (ioc->reply_post[i].reply_post_free) {
4874 dma_pool_free(
4875 ioc->reply_post_free_dma_pool,
4876 ioc->reply_post[i].reply_post_free,
4877 ioc->reply_post[i].reply_post_free_dma);
4878 dexitprintk(ioc, ioc_info(ioc,
4879 "reply_post_free_pool(0x%p): free\n",
4880 ioc->reply_post[i].reply_post_free));
4881 ioc->reply_post[i].reply_post_free =
4882 NULL;
4883 }
4884 --dma_alloc_count;
4885 }
4886 }
4887 dma_pool_destroy(ioc->reply_post_free_dma_pool);
4888 if (ioc->reply_post_free_array &&
4889 ioc->rdpq_array_enable) {
4890 dma_pool_free(ioc->reply_post_free_array_dma_pool,
4891 ioc->reply_post_free_array,
4892 ioc->reply_post_free_array_dma);
4893 ioc->reply_post_free_array = NULL;
4894 }
4895 dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
4896 kfree(ioc->reply_post);
4897 }
4898
4899 if (ioc->pcie_sgl_dma_pool) {
4900 for (i = 0; i < ioc->scsiio_depth; i++) {
4901 dma_pool_free(ioc->pcie_sgl_dma_pool,
4902 ioc->pcie_sg_lookup[i].pcie_sgl,
4903 ioc->pcie_sg_lookup[i].pcie_sgl_dma);
4904 }
4905 dma_pool_destroy(ioc->pcie_sgl_dma_pool);
4906 }
4907
4908 if (ioc->config_page) {
4909 dexitprintk(ioc,
4910 ioc_info(ioc, "config_page(0x%p): free\n",
4911 ioc->config_page));
4912 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz,
4913 ioc->config_page, ioc->config_page_dma);
4914 }
4915
4916 kfree(ioc->hpr_lookup);
4917 ioc->hpr_lookup = NULL;
4918 kfree(ioc->internal_lookup);
4919 ioc->internal_lookup = NULL;
4920 if (ioc->chain_lookup) {
4921 for (i = 0; i < ioc->scsiio_depth; i++) {
4922 for (j = ioc->chains_per_prp_buffer;
4923 j < ioc->chains_needed_per_io; j++) {
4924 ct = &ioc->chain_lookup[i].chains_per_smid[j];
4925 if (ct && ct->chain_buffer)
4926 dma_pool_free(ioc->chain_dma_pool,
4927 ct->chain_buffer,
4928 ct->chain_buffer_dma);
4929 }
4930 kfree(ioc->chain_lookup[i].chains_per_smid);
4931 }
4932 dma_pool_destroy(ioc->chain_dma_pool);
4933 kfree(ioc->chain_lookup);
4934 ioc->chain_lookup = NULL;
4935 }
4936 }
4937
4938 /**
4939 * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are
4940 * having same upper 32bits in their base memory address.
4941 * @reply_pool_start_address: Base address of a reply queue set
4942 * @pool_sz: Size of single Reply Descriptor Post Queues pool size
4943 *
4944 * Return: 1 if reply queues in a set have a same upper 32bits in their base
4945 * memory address, else 0.
4946 */
4947
4948 static int
mpt3sas_check_same_4gb_region(long reply_pool_start_address,u32 pool_sz)4949 mpt3sas_check_same_4gb_region(long reply_pool_start_address, u32 pool_sz)
4950 {
4951 long reply_pool_end_address;
4952
4953 reply_pool_end_address = reply_pool_start_address + pool_sz;
4954
4955 if (upper_32_bits(reply_pool_start_address) ==
4956 upper_32_bits(reply_pool_end_address))
4957 return 1;
4958 else
4959 return 0;
4960 }
4961
4962 /**
4963 * base_alloc_rdpq_dma_pool - Allocating DMA'able memory
4964 * for reply queues.
4965 * @ioc: per adapter object
4966 * @sz: DMA Pool size
4967 * Return: 0 for success, non-zero for failure.
4968 */
4969 static int
base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER * ioc,int sz)4970 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz)
4971 {
4972 int i = 0;
4973 u32 dma_alloc_count = 0;
4974 int reply_post_free_sz = ioc->reply_post_queue_depth *
4975 sizeof(Mpi2DefaultReplyDescriptor_t);
4976 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
4977
4978 ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct),
4979 GFP_KERNEL);
4980 if (!ioc->reply_post)
4981 return -ENOMEM;
4982 /*
4983 * For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and
4984 * VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should
4985 * be within 4GB boundary i.e reply queues in a set must have same
4986 * upper 32-bits in their memory address. so here driver is allocating
4987 * the DMA'able memory for reply queues according.
4988 * Driver uses limitation of
4989 * VENTURA_SERIES to manage INVADER_SERIES as well.
4990 */
4991 dma_alloc_count = DIV_ROUND_UP(count,
4992 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
4993 ioc->reply_post_free_dma_pool =
4994 dma_pool_create("reply_post_free pool",
4995 &ioc->pdev->dev, sz, 16, 0);
4996 if (!ioc->reply_post_free_dma_pool)
4997 return -ENOMEM;
4998 for (i = 0; i < count; i++) {
4999 if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) {
5000 ioc->reply_post[i].reply_post_free =
5001 dma_pool_zalloc(ioc->reply_post_free_dma_pool,
5002 GFP_KERNEL,
5003 &ioc->reply_post[i].reply_post_free_dma);
5004 if (!ioc->reply_post[i].reply_post_free)
5005 return -ENOMEM;
5006 /*
5007 * Each set of RDPQ pool must satisfy 4gb boundary
5008 * restriction.
5009 * 1) Check if allocated resources for RDPQ pool are in
5010 * the same 4GB range.
5011 * 2) If #1 is true, continue with 64 bit DMA.
5012 * 3) If #1 is false, return 1. which means free all the
5013 * resources and set DMA mask to 32 and allocate.
5014 */
5015 if (!mpt3sas_check_same_4gb_region(
5016 (long)ioc->reply_post[i].reply_post_free, sz)) {
5017 dinitprintk(ioc,
5018 ioc_err(ioc, "bad Replypost free pool(0x%p)"
5019 "reply_post_free_dma = (0x%llx)\n",
5020 ioc->reply_post[i].reply_post_free,
5021 (unsigned long long)
5022 ioc->reply_post[i].reply_post_free_dma));
5023 return -EAGAIN;
5024 }
5025 dma_alloc_count--;
5026
5027 } else {
5028 ioc->reply_post[i].reply_post_free =
5029 (Mpi2ReplyDescriptorsUnion_t *)
5030 ((long)ioc->reply_post[i-1].reply_post_free
5031 + reply_post_free_sz);
5032 ioc->reply_post[i].reply_post_free_dma =
5033 (dma_addr_t)
5034 (ioc->reply_post[i-1].reply_post_free_dma +
5035 reply_post_free_sz);
5036 }
5037 }
5038 return 0;
5039 }
5040
5041 /**
5042 * _base_allocate_memory_pools - allocate start of day memory pools
5043 * @ioc: per adapter object
5044 *
5045 * Return: 0 success, anything else error.
5046 */
5047 static int
_base_allocate_memory_pools(struct MPT3SAS_ADAPTER * ioc)5048 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
5049 {
5050 struct mpt3sas_facts *facts;
5051 u16 max_sge_elements;
5052 u16 chains_needed_per_io;
5053 u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
5054 u32 retry_sz;
5055 u32 rdpq_sz = 0;
5056 u16 max_request_credit, nvme_blocks_needed;
5057 unsigned short sg_tablesize;
5058 u16 sge_size;
5059 int i, j;
5060 int ret = 0;
5061 struct chain_tracker *ct;
5062
5063 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5064
5065
5066 retry_sz = 0;
5067 facts = &ioc->facts;
5068
5069 /* command line tunables for max sgl entries */
5070 if (max_sgl_entries != -1)
5071 sg_tablesize = max_sgl_entries;
5072 else {
5073 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
5074 sg_tablesize = MPT2SAS_SG_DEPTH;
5075 else
5076 sg_tablesize = MPT3SAS_SG_DEPTH;
5077 }
5078
5079 /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
5080 if (reset_devices)
5081 sg_tablesize = min_t(unsigned short, sg_tablesize,
5082 MPT_KDUMP_MIN_PHYS_SEGMENTS);
5083
5084 if (ioc->is_mcpu_endpoint)
5085 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
5086 else {
5087 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
5088 sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
5089 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
5090 sg_tablesize = min_t(unsigned short, sg_tablesize,
5091 SG_MAX_SEGMENTS);
5092 ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
5093 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
5094 }
5095 ioc->shost->sg_tablesize = sg_tablesize;
5096 }
5097
5098 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
5099 (facts->RequestCredit / 4));
5100 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
5101 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
5102 INTERNAL_SCSIIO_CMDS_COUNT)) {
5103 ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
5104 facts->RequestCredit);
5105 return -ENOMEM;
5106 }
5107 ioc->internal_depth = 10;
5108 }
5109
5110 ioc->hi_priority_depth = ioc->internal_depth - (5);
5111 /* command line tunables for max controller queue depth */
5112 if (max_queue_depth != -1 && max_queue_depth != 0) {
5113 max_request_credit = min_t(u16, max_queue_depth +
5114 ioc->internal_depth, facts->RequestCredit);
5115 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
5116 max_request_credit = MAX_HBA_QUEUE_DEPTH;
5117 } else if (reset_devices)
5118 max_request_credit = min_t(u16, facts->RequestCredit,
5119 (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
5120 else
5121 max_request_credit = min_t(u16, facts->RequestCredit,
5122 MAX_HBA_QUEUE_DEPTH);
5123
5124 /* Firmware maintains additional facts->HighPriorityCredit number of
5125 * credits for HiPriprity Request messages, so hba queue depth will be
5126 * sum of max_request_credit and high priority queue depth.
5127 */
5128 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
5129
5130 /* request frame size */
5131 ioc->request_sz = facts->IOCRequestFrameSize * 4;
5132
5133 /* reply frame size */
5134 ioc->reply_sz = facts->ReplyFrameSize * 4;
5135
5136 /* chain segment size */
5137 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
5138 if (facts->IOCMaxChainSegmentSize)
5139 ioc->chain_segment_sz =
5140 facts->IOCMaxChainSegmentSize *
5141 MAX_CHAIN_ELEMT_SZ;
5142 else
5143 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
5144 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
5145 MAX_CHAIN_ELEMT_SZ;
5146 } else
5147 ioc->chain_segment_sz = ioc->request_sz;
5148
5149 /* calculate the max scatter element size */
5150 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
5151
5152 retry_allocation:
5153 total_sz = 0;
5154 /* calculate number of sg elements left over in the 1st frame */
5155 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
5156 sizeof(Mpi2SGEIOUnion_t)) + sge_size);
5157 ioc->max_sges_in_main_message = max_sge_elements/sge_size;
5158
5159 /* now do the same for a chain buffer */
5160 max_sge_elements = ioc->chain_segment_sz - sge_size;
5161 ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
5162
5163 /*
5164 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
5165 */
5166 chains_needed_per_io = ((ioc->shost->sg_tablesize -
5167 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
5168 + 1;
5169 if (chains_needed_per_io > facts->MaxChainDepth) {
5170 chains_needed_per_io = facts->MaxChainDepth;
5171 ioc->shost->sg_tablesize = min_t(u16,
5172 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
5173 * chains_needed_per_io), ioc->shost->sg_tablesize);
5174 }
5175 ioc->chains_needed_per_io = chains_needed_per_io;
5176
5177 /* reply free queue sizing - taking into account for 64 FW events */
5178 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
5179
5180 /* mCPU manage single counters for simplicity */
5181 if (ioc->is_mcpu_endpoint)
5182 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
5183 else {
5184 /* calculate reply descriptor post queue depth */
5185 ioc->reply_post_queue_depth = ioc->hba_queue_depth +
5186 ioc->reply_free_queue_depth + 1;
5187 /* align the reply post queue on the next 16 count boundary */
5188 if (ioc->reply_post_queue_depth % 16)
5189 ioc->reply_post_queue_depth += 16 -
5190 (ioc->reply_post_queue_depth % 16);
5191 }
5192
5193 if (ioc->reply_post_queue_depth >
5194 facts->MaxReplyDescriptorPostQueueDepth) {
5195 ioc->reply_post_queue_depth =
5196 facts->MaxReplyDescriptorPostQueueDepth -
5197 (facts->MaxReplyDescriptorPostQueueDepth % 16);
5198 ioc->hba_queue_depth =
5199 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
5200 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
5201 }
5202
5203 ioc_info(ioc,
5204 "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), "
5205 "sge_per_io(%d), chains_per_io(%d)\n",
5206 ioc->max_sges_in_main_message,
5207 ioc->max_sges_in_chain_message,
5208 ioc->shost->sg_tablesize,
5209 ioc->chains_needed_per_io);
5210
5211 /* reply post queue, 16 byte align */
5212 reply_post_free_sz = ioc->reply_post_queue_depth *
5213 sizeof(Mpi2DefaultReplyDescriptor_t);
5214 rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK;
5215 if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
5216 rdpq_sz = reply_post_free_sz * ioc->reply_queue_count;
5217 ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz);
5218 if (ret == -EAGAIN) {
5219 /*
5220 * Free allocated bad RDPQ memory pools.
5221 * Change dma coherent mask to 32 bit and reallocate RDPQ
5222 */
5223 _base_release_memory_pools(ioc);
5224 ioc->use_32bit_dma = true;
5225 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
5226 ioc_err(ioc,
5227 "32 DMA mask failed %s\n", pci_name(ioc->pdev));
5228 return -ENODEV;
5229 }
5230 if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz))
5231 return -ENOMEM;
5232 } else if (ret == -ENOMEM)
5233 return -ENOMEM;
5234 total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 :
5235 DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK));
5236 ioc->scsiio_depth = ioc->hba_queue_depth -
5237 ioc->hi_priority_depth - ioc->internal_depth;
5238
5239 /* set the scsi host can_queue depth
5240 * with some internal commands that could be outstanding
5241 */
5242 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
5243 dinitprintk(ioc,
5244 ioc_info(ioc, "scsi host: can_queue depth (%d)\n",
5245 ioc->shost->can_queue));
5246
5247 /* contiguous pool for request and chains, 16 byte align, one extra "
5248 * "frame for smid=0
5249 */
5250 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
5251 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
5252
5253 /* hi-priority queue */
5254 sz += (ioc->hi_priority_depth * ioc->request_sz);
5255
5256 /* internal queue */
5257 sz += (ioc->internal_depth * ioc->request_sz);
5258
5259 ioc->request_dma_sz = sz;
5260 ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz,
5261 &ioc->request_dma, GFP_KERNEL);
5262 if (!ioc->request) {
5263 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
5264 ioc->hba_queue_depth, ioc->chains_needed_per_io,
5265 ioc->request_sz, sz / 1024);
5266 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
5267 goto out;
5268 retry_sz = 64;
5269 ioc->hba_queue_depth -= retry_sz;
5270 _base_release_memory_pools(ioc);
5271 goto retry_allocation;
5272 }
5273
5274 if (retry_sz)
5275 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
5276 ioc->hba_queue_depth, ioc->chains_needed_per_io,
5277 ioc->request_sz, sz / 1024);
5278
5279 /* hi-priority queue */
5280 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
5281 ioc->request_sz);
5282 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
5283 ioc->request_sz);
5284
5285 /* internal queue */
5286 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
5287 ioc->request_sz);
5288 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
5289 ioc->request_sz);
5290
5291 ioc_info(ioc,
5292 "request pool(0x%p) - dma(0x%llx): "
5293 "depth(%d), frame_size(%d), pool_size(%d kB)\n",
5294 ioc->request, (unsigned long long) ioc->request_dma,
5295 ioc->hba_queue_depth, ioc->request_sz,
5296 (ioc->hba_queue_depth * ioc->request_sz) / 1024);
5297
5298 total_sz += sz;
5299
5300 dinitprintk(ioc,
5301 ioc_info(ioc, "scsiio(0x%p): depth(%d)\n",
5302 ioc->request, ioc->scsiio_depth));
5303
5304 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
5305 sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
5306 ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
5307 if (!ioc->chain_lookup) {
5308 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n");
5309 goto out;
5310 }
5311
5312 sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
5313 for (i = 0; i < ioc->scsiio_depth; i++) {
5314 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
5315 if (!ioc->chain_lookup[i].chains_per_smid) {
5316 ioc_err(ioc, "chain_lookup: kzalloc failed\n");
5317 goto out;
5318 }
5319 }
5320
5321 /* initialize hi-priority queue smid's */
5322 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
5323 sizeof(struct request_tracker), GFP_KERNEL);
5324 if (!ioc->hpr_lookup) {
5325 ioc_err(ioc, "hpr_lookup: kcalloc failed\n");
5326 goto out;
5327 }
5328 ioc->hi_priority_smid = ioc->scsiio_depth + 1;
5329 dinitprintk(ioc,
5330 ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
5331 ioc->hi_priority,
5332 ioc->hi_priority_depth, ioc->hi_priority_smid));
5333
5334 /* initialize internal queue smid's */
5335 ioc->internal_lookup = kcalloc(ioc->internal_depth,
5336 sizeof(struct request_tracker), GFP_KERNEL);
5337 if (!ioc->internal_lookup) {
5338 ioc_err(ioc, "internal_lookup: kcalloc failed\n");
5339 goto out;
5340 }
5341 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
5342 dinitprintk(ioc,
5343 ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n",
5344 ioc->internal,
5345 ioc->internal_depth, ioc->internal_smid));
5346 /*
5347 * The number of NVMe page sized blocks needed is:
5348 * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
5349 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
5350 * that is placed in the main message frame. 8 is the size of each PRP
5351 * entry or PRP list pointer entry. 8 is subtracted from page_size
5352 * because of the PRP list pointer entry at the end of a page, so this
5353 * is not counted as a PRP entry. The 1 added page is a round up.
5354 *
5355 * To avoid allocation failures due to the amount of memory that could
5356 * be required for NVMe PRP's, only each set of NVMe blocks will be
5357 * contiguous, so a new set is allocated for each possible I/O.
5358 */
5359 ioc->chains_per_prp_buffer = 0;
5360 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
5361 nvme_blocks_needed =
5362 (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
5363 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
5364 nvme_blocks_needed++;
5365
5366 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
5367 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
5368 if (!ioc->pcie_sg_lookup) {
5369 ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n");
5370 goto out;
5371 }
5372 sz = nvme_blocks_needed * ioc->page_size;
5373 ioc->pcie_sgl_dma_pool =
5374 dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 16, 0);
5375 if (!ioc->pcie_sgl_dma_pool) {
5376 ioc_info(ioc, "PCIe SGL pool: dma_pool_create failed\n");
5377 goto out;
5378 }
5379
5380 ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
5381 ioc->chains_per_prp_buffer = min(ioc->chains_per_prp_buffer,
5382 ioc->chains_needed_per_io);
5383
5384 for (i = 0; i < ioc->scsiio_depth; i++) {
5385 ioc->pcie_sg_lookup[i].pcie_sgl = dma_pool_alloc(
5386 ioc->pcie_sgl_dma_pool, GFP_KERNEL,
5387 &ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5388 if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
5389 ioc_info(ioc, "PCIe SGL pool: dma_pool_alloc failed\n");
5390 goto out;
5391 }
5392 for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
5393 ct = &ioc->chain_lookup[i].chains_per_smid[j];
5394 ct->chain_buffer =
5395 ioc->pcie_sg_lookup[i].pcie_sgl +
5396 (j * ioc->chain_segment_sz);
5397 ct->chain_buffer_dma =
5398 ioc->pcie_sg_lookup[i].pcie_sgl_dma +
5399 (j * ioc->chain_segment_sz);
5400 }
5401 }
5402
5403 dinitprintk(ioc,
5404 ioc_info(ioc, "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
5405 ioc->scsiio_depth, sz,
5406 (sz * ioc->scsiio_depth) / 1024));
5407 dinitprintk(ioc,
5408 ioc_info(ioc, "Number of chains can fit in a PRP page(%d)\n",
5409 ioc->chains_per_prp_buffer));
5410 total_sz += sz * ioc->scsiio_depth;
5411 }
5412
5413 ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
5414 ioc->chain_segment_sz, 16, 0);
5415 if (!ioc->chain_dma_pool) {
5416 ioc_err(ioc, "chain_dma_pool: dma_pool_create failed\n");
5417 goto out;
5418 }
5419 for (i = 0; i < ioc->scsiio_depth; i++) {
5420 for (j = ioc->chains_per_prp_buffer;
5421 j < ioc->chains_needed_per_io; j++) {
5422 ct = &ioc->chain_lookup[i].chains_per_smid[j];
5423 ct->chain_buffer = dma_pool_alloc(
5424 ioc->chain_dma_pool, GFP_KERNEL,
5425 &ct->chain_buffer_dma);
5426 if (!ct->chain_buffer) {
5427 ioc_err(ioc, "chain_lookup: pci_pool_alloc failed\n");
5428 goto out;
5429 }
5430 }
5431 total_sz += ioc->chain_segment_sz;
5432 }
5433
5434 dinitprintk(ioc,
5435 ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
5436 ioc->chain_depth, ioc->chain_segment_sz,
5437 (ioc->chain_depth * ioc->chain_segment_sz) / 1024));
5438
5439 /* sense buffers, 4 byte align */
5440 sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
5441 ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz,
5442 4, 0);
5443 if (!ioc->sense_dma_pool) {
5444 ioc_err(ioc, "sense pool: dma_pool_create failed\n");
5445 goto out;
5446 }
5447 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
5448 &ioc->sense_dma);
5449 if (!ioc->sense) {
5450 ioc_err(ioc, "sense pool: dma_pool_alloc failed\n");
5451 goto out;
5452 }
5453 /* sense buffer requires to be in same 4 gb region.
5454 * Below function will check the same.
5455 * In case of failure, new pci pool will be created with updated
5456 * alignment. Older allocation and pool will be destroyed.
5457 * Alignment will be used such a way that next allocation if
5458 * success, will always meet same 4gb region requirement.
5459 * Actual requirement is not alignment, but we need start and end of
5460 * DMA address must have same upper 32 bit address.
5461 */
5462 if (!mpt3sas_check_same_4gb_region((long)ioc->sense, sz)) {
5463 //Release Sense pool & Reallocate
5464 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
5465 dma_pool_destroy(ioc->sense_dma_pool);
5466 ioc->sense = NULL;
5467
5468 ioc->sense_dma_pool =
5469 dma_pool_create("sense pool", &ioc->pdev->dev, sz,
5470 roundup_pow_of_two(sz), 0);
5471 if (!ioc->sense_dma_pool) {
5472 ioc_err(ioc, "sense pool: pci_pool_create failed\n");
5473 goto out;
5474 }
5475 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
5476 &ioc->sense_dma);
5477 if (!ioc->sense) {
5478 ioc_err(ioc, "sense pool: pci_pool_alloc failed\n");
5479 goto out;
5480 }
5481 }
5482 ioc_info(ioc,
5483 "sense pool(0x%p)- dma(0x%llx): depth(%d),"
5484 "element_size(%d), pool_size(%d kB)\n",
5485 ioc->sense, (unsigned long long)ioc->sense_dma, ioc->scsiio_depth,
5486 SCSI_SENSE_BUFFERSIZE, sz / 1024);
5487
5488 total_sz += sz;
5489
5490 /* reply pool, 4 byte align */
5491 sz = ioc->reply_free_queue_depth * ioc->reply_sz;
5492 ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz,
5493 4, 0);
5494 if (!ioc->reply_dma_pool) {
5495 ioc_err(ioc, "reply pool: dma_pool_create failed\n");
5496 goto out;
5497 }
5498 ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
5499 &ioc->reply_dma);
5500 if (!ioc->reply) {
5501 ioc_err(ioc, "reply pool: dma_pool_alloc failed\n");
5502 goto out;
5503 }
5504 ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
5505 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
5506 dinitprintk(ioc,
5507 ioc_info(ioc, "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
5508 ioc->reply, ioc->reply_free_queue_depth,
5509 ioc->reply_sz, sz / 1024));
5510 dinitprintk(ioc,
5511 ioc_info(ioc, "reply_dma(0x%llx)\n",
5512 (unsigned long long)ioc->reply_dma));
5513 total_sz += sz;
5514
5515 /* reply free queue, 16 byte align */
5516 sz = ioc->reply_free_queue_depth * 4;
5517 ioc->reply_free_dma_pool = dma_pool_create("reply_free pool",
5518 &ioc->pdev->dev, sz, 16, 0);
5519 if (!ioc->reply_free_dma_pool) {
5520 ioc_err(ioc, "reply_free pool: dma_pool_create failed\n");
5521 goto out;
5522 }
5523 ioc->reply_free = dma_pool_zalloc(ioc->reply_free_dma_pool, GFP_KERNEL,
5524 &ioc->reply_free_dma);
5525 if (!ioc->reply_free) {
5526 ioc_err(ioc, "reply_free pool: dma_pool_alloc failed\n");
5527 goto out;
5528 }
5529 dinitprintk(ioc,
5530 ioc_info(ioc, "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
5531 ioc->reply_free, ioc->reply_free_queue_depth,
5532 4, sz / 1024));
5533 dinitprintk(ioc,
5534 ioc_info(ioc, "reply_free_dma (0x%llx)\n",
5535 (unsigned long long)ioc->reply_free_dma));
5536 total_sz += sz;
5537
5538 if (ioc->rdpq_array_enable) {
5539 reply_post_free_array_sz = ioc->reply_queue_count *
5540 sizeof(Mpi2IOCInitRDPQArrayEntry);
5541 ioc->reply_post_free_array_dma_pool =
5542 dma_pool_create("reply_post_free_array pool",
5543 &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
5544 if (!ioc->reply_post_free_array_dma_pool) {
5545 dinitprintk(ioc,
5546 ioc_info(ioc, "reply_post_free_array pool: dma_pool_create failed\n"));
5547 goto out;
5548 }
5549 ioc->reply_post_free_array =
5550 dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
5551 GFP_KERNEL, &ioc->reply_post_free_array_dma);
5552 if (!ioc->reply_post_free_array) {
5553 dinitprintk(ioc,
5554 ioc_info(ioc, "reply_post_free_array pool: dma_pool_alloc failed\n"));
5555 goto out;
5556 }
5557 }
5558 ioc->config_page_sz = 512;
5559 ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev,
5560 ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL);
5561 if (!ioc->config_page) {
5562 ioc_err(ioc, "config page: dma_pool_alloc failed\n");
5563 goto out;
5564 }
5565
5566 ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n",
5567 ioc->config_page, (unsigned long long)ioc->config_page_dma,
5568 ioc->config_page_sz);
5569 total_sz += ioc->config_page_sz;
5570
5571 ioc_info(ioc, "Allocated physical memory: size(%d kB)\n",
5572 total_sz / 1024);
5573 ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
5574 ioc->shost->can_queue, facts->RequestCredit);
5575 ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n",
5576 ioc->shost->sg_tablesize);
5577 return 0;
5578
5579 out:
5580 return -ENOMEM;
5581 }
5582
5583 /**
5584 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
5585 * @ioc: Pointer to MPT_ADAPTER structure
5586 * @cooked: Request raw or cooked IOC state
5587 *
5588 * Return: all IOC Doorbell register bits if cooked==0, else just the
5589 * Doorbell bits in MPI_IOC_STATE_MASK.
5590 */
5591 u32
mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER * ioc,int cooked)5592 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
5593 {
5594 u32 s, sc;
5595
5596 s = ioc->base_readl(&ioc->chip->Doorbell);
5597 sc = s & MPI2_IOC_STATE_MASK;
5598 return cooked ? sc : s;
5599 }
5600
5601 /**
5602 * _base_wait_on_iocstate - waiting on a particular ioc state
5603 * @ioc: ?
5604 * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
5605 * @timeout: timeout in second
5606 *
5607 * Return: 0 for success, non-zero for failure.
5608 */
5609 static int
_base_wait_on_iocstate(struct MPT3SAS_ADAPTER * ioc,u32 ioc_state,int timeout)5610 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
5611 {
5612 u32 count, cntdn;
5613 u32 current_state;
5614
5615 count = 0;
5616 cntdn = 1000 * timeout;
5617 do {
5618 current_state = mpt3sas_base_get_iocstate(ioc, 1);
5619 if (current_state == ioc_state)
5620 return 0;
5621 if (count && current_state == MPI2_IOC_STATE_FAULT)
5622 break;
5623 if (count && current_state == MPI2_IOC_STATE_COREDUMP)
5624 break;
5625
5626 usleep_range(1000, 1500);
5627 count++;
5628 } while (--cntdn);
5629
5630 return current_state;
5631 }
5632
5633 /**
5634 * _base_dump_reg_set - This function will print hexdump of register set.
5635 * @ioc: per adapter object
5636 *
5637 * Returns nothing.
5638 */
5639 static inline void
_base_dump_reg_set(struct MPT3SAS_ADAPTER * ioc)5640 _base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc)
5641 {
5642 unsigned int i, sz = 256;
5643 u32 __iomem *reg = (u32 __iomem *)ioc->chip;
5644
5645 ioc_info(ioc, "System Register set:\n");
5646 for (i = 0; i < (sz / sizeof(u32)); i++)
5647 pr_info("%08x: %08x\n", (i * 4), readl(®[i]));
5648 }
5649
5650 /**
5651 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
5652 * a write to the doorbell)
5653 * @ioc: per adapter object
5654 * @timeout: timeout in seconds
5655 *
5656 * Return: 0 for success, non-zero for failure.
5657 *
5658 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
5659 */
5660
5661 static int
_base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER * ioc,int timeout)5662 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
5663 {
5664 u32 cntdn, count;
5665 u32 int_status;
5666
5667 count = 0;
5668 cntdn = 1000 * timeout;
5669 do {
5670 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5671 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5672 dhsprintk(ioc,
5673 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5674 __func__, count, timeout));
5675 return 0;
5676 }
5677
5678 usleep_range(1000, 1500);
5679 count++;
5680 } while (--cntdn);
5681
5682 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5683 __func__, count, int_status);
5684 return -EFAULT;
5685 }
5686
5687 static int
_base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER * ioc,int timeout)5688 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
5689 {
5690 u32 cntdn, count;
5691 u32 int_status;
5692
5693 count = 0;
5694 cntdn = 2000 * timeout;
5695 do {
5696 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5697 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5698 dhsprintk(ioc,
5699 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5700 __func__, count, timeout));
5701 return 0;
5702 }
5703
5704 udelay(500);
5705 count++;
5706 } while (--cntdn);
5707
5708 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5709 __func__, count, int_status);
5710 return -EFAULT;
5711
5712 }
5713
5714 /**
5715 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
5716 * @ioc: per adapter object
5717 * @timeout: timeout in second
5718 *
5719 * Return: 0 for success, non-zero for failure.
5720 *
5721 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
5722 * doorbell.
5723 */
5724 static int
_base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER * ioc,int timeout)5725 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
5726 {
5727 u32 cntdn, count;
5728 u32 int_status;
5729 u32 doorbell;
5730
5731 count = 0;
5732 cntdn = 1000 * timeout;
5733 do {
5734 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5735 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
5736 dhsprintk(ioc,
5737 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5738 __func__, count, timeout));
5739 return 0;
5740 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5741 doorbell = ioc->base_readl(&ioc->chip->Doorbell);
5742 if ((doorbell & MPI2_IOC_STATE_MASK) ==
5743 MPI2_IOC_STATE_FAULT) {
5744 mpt3sas_print_fault_code(ioc, doorbell);
5745 return -EFAULT;
5746 }
5747 if ((doorbell & MPI2_IOC_STATE_MASK) ==
5748 MPI2_IOC_STATE_COREDUMP) {
5749 mpt3sas_print_coredump_info(ioc, doorbell);
5750 return -EFAULT;
5751 }
5752 } else if (int_status == 0xFFFFFFFF)
5753 goto out;
5754
5755 usleep_range(1000, 1500);
5756 count++;
5757 } while (--cntdn);
5758
5759 out:
5760 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5761 __func__, count, int_status);
5762 return -EFAULT;
5763 }
5764
5765 /**
5766 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
5767 * @ioc: per adapter object
5768 * @timeout: timeout in second
5769 *
5770 * Return: 0 for success, non-zero for failure.
5771 */
5772 static int
_base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER * ioc,int timeout)5773 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
5774 {
5775 u32 cntdn, count;
5776 u32 doorbell_reg;
5777
5778 count = 0;
5779 cntdn = 1000 * timeout;
5780 do {
5781 doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell);
5782 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
5783 dhsprintk(ioc,
5784 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5785 __func__, count, timeout));
5786 return 0;
5787 }
5788
5789 usleep_range(1000, 1500);
5790 count++;
5791 } while (--cntdn);
5792
5793 ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
5794 __func__, count, doorbell_reg);
5795 return -EFAULT;
5796 }
5797
5798 /**
5799 * _base_send_ioc_reset - send doorbell reset
5800 * @ioc: per adapter object
5801 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
5802 * @timeout: timeout in second
5803 *
5804 * Return: 0 for success, non-zero for failure.
5805 */
5806 static int
_base_send_ioc_reset(struct MPT3SAS_ADAPTER * ioc,u8 reset_type,int timeout)5807 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
5808 {
5809 u32 ioc_state;
5810 int r = 0;
5811 unsigned long flags;
5812
5813 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
5814 ioc_err(ioc, "%s: unknown reset_type\n", __func__);
5815 return -EFAULT;
5816 }
5817
5818 if (!(ioc->facts.IOCCapabilities &
5819 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
5820 return -EFAULT;
5821
5822 ioc_info(ioc, "sending message unit reset !!\n");
5823
5824 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
5825 &ioc->chip->Doorbell);
5826 if ((_base_wait_for_doorbell_ack(ioc, 15))) {
5827 r = -EFAULT;
5828 goto out;
5829 }
5830
5831 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
5832 if (ioc_state) {
5833 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
5834 __func__, ioc_state);
5835 r = -EFAULT;
5836 goto out;
5837 }
5838 out:
5839 if (r != 0) {
5840 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5841 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5842 /*
5843 * Wait for IOC state CoreDump to clear only during
5844 * HBA initialization & release time.
5845 */
5846 if ((ioc_state & MPI2_IOC_STATE_MASK) ==
5847 MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 ||
5848 ioc->fault_reset_work_q == NULL)) {
5849 spin_unlock_irqrestore(
5850 &ioc->ioc_reset_in_progress_lock, flags);
5851 mpt3sas_print_coredump_info(ioc, ioc_state);
5852 mpt3sas_base_wait_for_coredump_completion(ioc,
5853 __func__);
5854 spin_lock_irqsave(
5855 &ioc->ioc_reset_in_progress_lock, flags);
5856 }
5857 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5858 }
5859 ioc_info(ioc, "message unit reset: %s\n",
5860 r == 0 ? "SUCCESS" : "FAILED");
5861 return r;
5862 }
5863
5864 /**
5865 * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
5866 * @ioc: per adapter object
5867 * @timeout: timeout in seconds
5868 *
5869 * Return: Waits up to timeout seconds for the IOC to
5870 * become operational. Returns 0 if IOC is present
5871 * and operational; otherwise returns -EFAULT.
5872 */
5873
5874 int
mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER * ioc,int timeout)5875 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout)
5876 {
5877 int wait_state_count = 0;
5878 u32 ioc_state;
5879
5880 do {
5881 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5882 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL)
5883 break;
5884 ssleep(1);
5885 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
5886 __func__, ++wait_state_count);
5887 } while (--timeout);
5888 if (!timeout) {
5889 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__);
5890 return -EFAULT;
5891 }
5892 if (wait_state_count)
5893 ioc_info(ioc, "ioc is operational\n");
5894 return 0;
5895 }
5896
5897 /**
5898 * _base_handshake_req_reply_wait - send request thru doorbell interface
5899 * @ioc: per adapter object
5900 * @request_bytes: request length
5901 * @request: pointer having request payload
5902 * @reply_bytes: reply length
5903 * @reply: pointer to reply payload
5904 * @timeout: timeout in second
5905 *
5906 * Return: 0 for success, non-zero for failure.
5907 */
5908 static int
_base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER * ioc,int request_bytes,u32 * request,int reply_bytes,u16 * reply,int timeout)5909 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
5910 u32 *request, int reply_bytes, u16 *reply, int timeout)
5911 {
5912 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
5913 int i;
5914 u8 failed;
5915 __le32 *mfp;
5916
5917 /* make sure doorbell is not in use */
5918 if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
5919 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__);
5920 return -EFAULT;
5921 }
5922
5923 /* clear pending doorbell interrupts from previous state changes */
5924 if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
5925 MPI2_HIS_IOC2SYS_DB_STATUS)
5926 writel(0, &ioc->chip->HostInterruptStatus);
5927
5928 /* send message to ioc */
5929 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
5930 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
5931 &ioc->chip->Doorbell);
5932
5933 if ((_base_spin_on_doorbell_int(ioc, 5))) {
5934 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5935 __LINE__);
5936 return -EFAULT;
5937 }
5938 writel(0, &ioc->chip->HostInterruptStatus);
5939
5940 if ((_base_wait_for_doorbell_ack(ioc, 5))) {
5941 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n",
5942 __LINE__);
5943 return -EFAULT;
5944 }
5945
5946 /* send message 32-bits at a time */
5947 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
5948 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
5949 if ((_base_wait_for_doorbell_ack(ioc, 5)))
5950 failed = 1;
5951 }
5952
5953 if (failed) {
5954 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n",
5955 __LINE__);
5956 return -EFAULT;
5957 }
5958
5959 /* now wait for the reply */
5960 if ((_base_wait_for_doorbell_int(ioc, timeout))) {
5961 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5962 __LINE__);
5963 return -EFAULT;
5964 }
5965
5966 /* read the first two 16-bits, it gives the total length of the reply */
5967 reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
5968 & MPI2_DOORBELL_DATA_MASK);
5969 writel(0, &ioc->chip->HostInterruptStatus);
5970 if ((_base_wait_for_doorbell_int(ioc, 5))) {
5971 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5972 __LINE__);
5973 return -EFAULT;
5974 }
5975 reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
5976 & MPI2_DOORBELL_DATA_MASK);
5977 writel(0, &ioc->chip->HostInterruptStatus);
5978
5979 for (i = 2; i < default_reply->MsgLength * 2; i++) {
5980 if ((_base_wait_for_doorbell_int(ioc, 5))) {
5981 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5982 __LINE__);
5983 return -EFAULT;
5984 }
5985 if (i >= reply_bytes/2) /* overflow case */
5986 ioc->base_readl(&ioc->chip->Doorbell);
5987 else
5988 reply[i] = le16_to_cpu(
5989 ioc->base_readl(&ioc->chip->Doorbell)
5990 & MPI2_DOORBELL_DATA_MASK);
5991 writel(0, &ioc->chip->HostInterruptStatus);
5992 }
5993
5994 _base_wait_for_doorbell_int(ioc, 5);
5995 if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
5996 dhsprintk(ioc,
5997 ioc_info(ioc, "doorbell is in use (line=%d)\n",
5998 __LINE__));
5999 }
6000 writel(0, &ioc->chip->HostInterruptStatus);
6001
6002 if (ioc->logging_level & MPT_DEBUG_INIT) {
6003 mfp = (__le32 *)reply;
6004 pr_info("\toffset:data\n");
6005 for (i = 0; i < reply_bytes/4; i++)
6006 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
6007 le32_to_cpu(mfp[i]));
6008 }
6009 return 0;
6010 }
6011
6012 /**
6013 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
6014 * @ioc: per adapter object
6015 * @mpi_reply: the reply payload from FW
6016 * @mpi_request: the request payload sent to FW
6017 *
6018 * The SAS IO Unit Control Request message allows the host to perform low-level
6019 * operations, such as resets on the PHYs of the IO Unit, also allows the host
6020 * to obtain the IOC assigned device handles for a device if it has other
6021 * identifying information about the device, in addition allows the host to
6022 * remove IOC resources associated with the device.
6023 *
6024 * Return: 0 for success, non-zero for failure.
6025 */
6026 int
mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER * ioc,Mpi2SasIoUnitControlReply_t * mpi_reply,Mpi2SasIoUnitControlRequest_t * mpi_request)6027 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
6028 Mpi2SasIoUnitControlReply_t *mpi_reply,
6029 Mpi2SasIoUnitControlRequest_t *mpi_request)
6030 {
6031 u16 smid;
6032 u8 issue_reset = 0;
6033 int rc;
6034 void *request;
6035
6036 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6037
6038 mutex_lock(&ioc->base_cmds.mutex);
6039
6040 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
6041 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
6042 rc = -EAGAIN;
6043 goto out;
6044 }
6045
6046 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
6047 if (rc)
6048 goto out;
6049
6050 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6051 if (!smid) {
6052 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6053 rc = -EAGAIN;
6054 goto out;
6055 }
6056
6057 rc = 0;
6058 ioc->base_cmds.status = MPT3_CMD_PENDING;
6059 request = mpt3sas_base_get_msg_frame(ioc, smid);
6060 ioc->base_cmds.smid = smid;
6061 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
6062 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
6063 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
6064 ioc->ioc_link_reset_in_progress = 1;
6065 init_completion(&ioc->base_cmds.done);
6066 ioc->put_smid_default(ioc, smid);
6067 wait_for_completion_timeout(&ioc->base_cmds.done,
6068 msecs_to_jiffies(10000));
6069 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
6070 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
6071 ioc->ioc_link_reset_in_progress)
6072 ioc->ioc_link_reset_in_progress = 0;
6073 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6074 mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status,
6075 mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4,
6076 issue_reset);
6077 goto issue_host_reset;
6078 }
6079 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
6080 memcpy(mpi_reply, ioc->base_cmds.reply,
6081 sizeof(Mpi2SasIoUnitControlReply_t));
6082 else
6083 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
6084 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6085 goto out;
6086
6087 issue_host_reset:
6088 if (issue_reset)
6089 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
6090 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6091 rc = -EFAULT;
6092 out:
6093 mutex_unlock(&ioc->base_cmds.mutex);
6094 return rc;
6095 }
6096
6097 /**
6098 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
6099 * @ioc: per adapter object
6100 * @mpi_reply: the reply payload from FW
6101 * @mpi_request: the request payload sent to FW
6102 *
6103 * The SCSI Enclosure Processor request message causes the IOC to
6104 * communicate with SES devices to control LED status signals.
6105 *
6106 * Return: 0 for success, non-zero for failure.
6107 */
6108 int
mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER * ioc,Mpi2SepReply_t * mpi_reply,Mpi2SepRequest_t * mpi_request)6109 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
6110 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
6111 {
6112 u16 smid;
6113 u8 issue_reset = 0;
6114 int rc;
6115 void *request;
6116
6117 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6118
6119 mutex_lock(&ioc->base_cmds.mutex);
6120
6121 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
6122 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
6123 rc = -EAGAIN;
6124 goto out;
6125 }
6126
6127 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
6128 if (rc)
6129 goto out;
6130
6131 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6132 if (!smid) {
6133 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6134 rc = -EAGAIN;
6135 goto out;
6136 }
6137
6138 rc = 0;
6139 ioc->base_cmds.status = MPT3_CMD_PENDING;
6140 request = mpt3sas_base_get_msg_frame(ioc, smid);
6141 ioc->base_cmds.smid = smid;
6142 memset(request, 0, ioc->request_sz);
6143 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
6144 init_completion(&ioc->base_cmds.done);
6145 ioc->put_smid_default(ioc, smid);
6146 wait_for_completion_timeout(&ioc->base_cmds.done,
6147 msecs_to_jiffies(10000));
6148 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6149 mpt3sas_check_cmd_timeout(ioc,
6150 ioc->base_cmds.status, mpi_request,
6151 sizeof(Mpi2SepRequest_t)/4, issue_reset);
6152 goto issue_host_reset;
6153 }
6154 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
6155 memcpy(mpi_reply, ioc->base_cmds.reply,
6156 sizeof(Mpi2SepReply_t));
6157 else
6158 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
6159 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6160 goto out;
6161
6162 issue_host_reset:
6163 if (issue_reset)
6164 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
6165 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6166 rc = -EFAULT;
6167 out:
6168 mutex_unlock(&ioc->base_cmds.mutex);
6169 return rc;
6170 }
6171
6172 /**
6173 * _base_get_port_facts - obtain port facts reply and save in ioc
6174 * @ioc: per adapter object
6175 * @port: ?
6176 *
6177 * Return: 0 for success, non-zero for failure.
6178 */
6179 static int
_base_get_port_facts(struct MPT3SAS_ADAPTER * ioc,int port)6180 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
6181 {
6182 Mpi2PortFactsRequest_t mpi_request;
6183 Mpi2PortFactsReply_t mpi_reply;
6184 struct mpt3sas_port_facts *pfacts;
6185 int mpi_reply_sz, mpi_request_sz, r;
6186
6187 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6188
6189 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
6190 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
6191 memset(&mpi_request, 0, mpi_request_sz);
6192 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
6193 mpi_request.PortNumber = port;
6194 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
6195 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
6196
6197 if (r != 0) {
6198 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6199 return r;
6200 }
6201
6202 pfacts = &ioc->pfacts[port];
6203 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
6204 pfacts->PortNumber = mpi_reply.PortNumber;
6205 pfacts->VP_ID = mpi_reply.VP_ID;
6206 pfacts->VF_ID = mpi_reply.VF_ID;
6207 pfacts->MaxPostedCmdBuffers =
6208 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
6209
6210 return 0;
6211 }
6212
6213 /**
6214 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
6215 * @ioc: per adapter object
6216 * @timeout:
6217 *
6218 * Return: 0 for success, non-zero for failure.
6219 */
6220 static int
_base_wait_for_iocstate(struct MPT3SAS_ADAPTER * ioc,int timeout)6221 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
6222 {
6223 u32 ioc_state;
6224 int rc;
6225
6226 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6227
6228 if (ioc->pci_error_recovery) {
6229 dfailprintk(ioc,
6230 ioc_info(ioc, "%s: host in pci error recovery\n",
6231 __func__));
6232 return -EFAULT;
6233 }
6234
6235 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6236 dhsprintk(ioc,
6237 ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
6238 __func__, ioc_state));
6239
6240 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
6241 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
6242 return 0;
6243
6244 if (ioc_state & MPI2_DOORBELL_USED) {
6245 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
6246 goto issue_diag_reset;
6247 }
6248
6249 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
6250 mpt3sas_print_fault_code(ioc, ioc_state &
6251 MPI2_DOORBELL_DATA_MASK);
6252 goto issue_diag_reset;
6253 } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
6254 MPI2_IOC_STATE_COREDUMP) {
6255 ioc_info(ioc,
6256 "%s: Skipping the diag reset here. (ioc_state=0x%x)\n",
6257 __func__, ioc_state);
6258 return -EFAULT;
6259 }
6260
6261 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
6262 if (ioc_state) {
6263 dfailprintk(ioc,
6264 ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6265 __func__, ioc_state));
6266 return -EFAULT;
6267 }
6268
6269 issue_diag_reset:
6270 rc = _base_diag_reset(ioc);
6271 return rc;
6272 }
6273
6274 /**
6275 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
6276 * @ioc: per adapter object
6277 *
6278 * Return: 0 for success, non-zero for failure.
6279 */
6280 static int
_base_get_ioc_facts(struct MPT3SAS_ADAPTER * ioc)6281 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
6282 {
6283 Mpi2IOCFactsRequest_t mpi_request;
6284 Mpi2IOCFactsReply_t mpi_reply;
6285 struct mpt3sas_facts *facts;
6286 int mpi_reply_sz, mpi_request_sz, r;
6287
6288 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6289
6290 r = _base_wait_for_iocstate(ioc, 10);
6291 if (r) {
6292 dfailprintk(ioc,
6293 ioc_info(ioc, "%s: failed getting to correct state\n",
6294 __func__));
6295 return r;
6296 }
6297 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
6298 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
6299 memset(&mpi_request, 0, mpi_request_sz);
6300 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
6301 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
6302 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
6303
6304 if (r != 0) {
6305 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6306 return r;
6307 }
6308
6309 facts = &ioc->facts;
6310 memset(facts, 0, sizeof(struct mpt3sas_facts));
6311 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
6312 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
6313 facts->VP_ID = mpi_reply.VP_ID;
6314 facts->VF_ID = mpi_reply.VF_ID;
6315 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
6316 facts->MaxChainDepth = mpi_reply.MaxChainDepth;
6317 facts->WhoInit = mpi_reply.WhoInit;
6318 facts->NumberOfPorts = mpi_reply.NumberOfPorts;
6319 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
6320 if (ioc->msix_enable && (facts->MaxMSIxVectors <=
6321 MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
6322 ioc->combined_reply_queue = 0;
6323 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
6324 facts->MaxReplyDescriptorPostQueueDepth =
6325 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
6326 facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
6327 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
6328 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
6329 ioc->ir_firmware = 1;
6330 if ((facts->IOCCapabilities &
6331 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
6332 ioc->rdpq_array_capable = 1;
6333 if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
6334 && ioc->is_aero_ioc)
6335 ioc->atomic_desc_capable = 1;
6336 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
6337 facts->IOCRequestFrameSize =
6338 le16_to_cpu(mpi_reply.IOCRequestFrameSize);
6339 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6340 facts->IOCMaxChainSegmentSize =
6341 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
6342 }
6343 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
6344 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
6345 ioc->shost->max_id = -1;
6346 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
6347 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
6348 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
6349 facts->HighPriorityCredit =
6350 le16_to_cpu(mpi_reply.HighPriorityCredit);
6351 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
6352 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
6353 facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
6354
6355 /*
6356 * Get the Page Size from IOC Facts. If it's 0, default to 4k.
6357 */
6358 ioc->page_size = 1 << facts->CurrentHostPageSize;
6359 if (ioc->page_size == 1) {
6360 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
6361 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
6362 }
6363 dinitprintk(ioc,
6364 ioc_info(ioc, "CurrentHostPageSize(%d)\n",
6365 facts->CurrentHostPageSize));
6366
6367 dinitprintk(ioc,
6368 ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n",
6369 facts->RequestCredit, facts->MaxChainDepth));
6370 dinitprintk(ioc,
6371 ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n",
6372 facts->IOCRequestFrameSize * 4,
6373 facts->ReplyFrameSize * 4));
6374 return 0;
6375 }
6376
6377 /**
6378 * _base_send_ioc_init - send ioc_init to firmware
6379 * @ioc: per adapter object
6380 *
6381 * Return: 0 for success, non-zero for failure.
6382 */
6383 static int
_base_send_ioc_init(struct MPT3SAS_ADAPTER * ioc)6384 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
6385 {
6386 Mpi2IOCInitRequest_t mpi_request;
6387 Mpi2IOCInitReply_t mpi_reply;
6388 int i, r = 0;
6389 ktime_t current_time;
6390 u16 ioc_status;
6391 u32 reply_post_free_array_sz = 0;
6392
6393 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6394
6395 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
6396 mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
6397 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
6398 mpi_request.VF_ID = 0; /* TODO */
6399 mpi_request.VP_ID = 0;
6400 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
6401 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
6402 mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
6403
6404 if (_base_is_controller_msix_enabled(ioc))
6405 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
6406 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
6407 mpi_request.ReplyDescriptorPostQueueDepth =
6408 cpu_to_le16(ioc->reply_post_queue_depth);
6409 mpi_request.ReplyFreeQueueDepth =
6410 cpu_to_le16(ioc->reply_free_queue_depth);
6411
6412 mpi_request.SenseBufferAddressHigh =
6413 cpu_to_le32((u64)ioc->sense_dma >> 32);
6414 mpi_request.SystemReplyAddressHigh =
6415 cpu_to_le32((u64)ioc->reply_dma >> 32);
6416 mpi_request.SystemRequestFrameBaseAddress =
6417 cpu_to_le64((u64)ioc->request_dma);
6418 mpi_request.ReplyFreeQueueAddress =
6419 cpu_to_le64((u64)ioc->reply_free_dma);
6420
6421 if (ioc->rdpq_array_enable) {
6422 reply_post_free_array_sz = ioc->reply_queue_count *
6423 sizeof(Mpi2IOCInitRDPQArrayEntry);
6424 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
6425 for (i = 0; i < ioc->reply_queue_count; i++)
6426 ioc->reply_post_free_array[i].RDPQBaseAddress =
6427 cpu_to_le64(
6428 (u64)ioc->reply_post[i].reply_post_free_dma);
6429 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
6430 mpi_request.ReplyDescriptorPostQueueAddress =
6431 cpu_to_le64((u64)ioc->reply_post_free_array_dma);
6432 } else {
6433 mpi_request.ReplyDescriptorPostQueueAddress =
6434 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
6435 }
6436
6437 /*
6438 * Set the flag to enable CoreDump state feature in IOC firmware.
6439 */
6440 mpi_request.ConfigurationFlags |=
6441 cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE);
6442
6443 /* This time stamp specifies number of milliseconds
6444 * since epoch ~ midnight January 1, 1970.
6445 */
6446 current_time = ktime_get_real();
6447 mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
6448
6449 if (ioc->logging_level & MPT_DEBUG_INIT) {
6450 __le32 *mfp;
6451 int i;
6452
6453 mfp = (__le32 *)&mpi_request;
6454 ioc_info(ioc, "\toffset:data\n");
6455 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
6456 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
6457 le32_to_cpu(mfp[i]));
6458 }
6459
6460 r = _base_handshake_req_reply_wait(ioc,
6461 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
6462 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 30);
6463
6464 if (r != 0) {
6465 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6466 return r;
6467 }
6468
6469 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
6470 if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
6471 mpi_reply.IOCLogInfo) {
6472 ioc_err(ioc, "%s: failed\n", __func__);
6473 r = -EIO;
6474 }
6475
6476 return r;
6477 }
6478
6479 /**
6480 * mpt3sas_port_enable_done - command completion routine for port enable
6481 * @ioc: per adapter object
6482 * @smid: system request message index
6483 * @msix_index: MSIX table index supplied by the OS
6484 * @reply: reply message frame(lower 32bit addr)
6485 *
6486 * Return: 1 meaning mf should be freed from _base_interrupt
6487 * 0 means the mf is freed from this function.
6488 */
6489 u8
mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 msix_index,u32 reply)6490 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
6491 u32 reply)
6492 {
6493 MPI2DefaultReply_t *mpi_reply;
6494 u16 ioc_status;
6495
6496 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
6497 return 1;
6498
6499 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
6500 if (!mpi_reply)
6501 return 1;
6502
6503 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
6504 return 1;
6505
6506 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
6507 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
6508 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
6509 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
6510 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
6511 if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
6512 ioc->port_enable_failed = 1;
6513
6514 if (ioc->is_driver_loading) {
6515 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
6516 mpt3sas_port_enable_complete(ioc);
6517 return 1;
6518 } else {
6519 ioc->start_scan_failed = ioc_status;
6520 ioc->start_scan = 0;
6521 return 1;
6522 }
6523 }
6524 complete(&ioc->port_enable_cmds.done);
6525 return 1;
6526 }
6527
6528 /**
6529 * _base_send_port_enable - send port_enable(discovery stuff) to firmware
6530 * @ioc: per adapter object
6531 *
6532 * Return: 0 for success, non-zero for failure.
6533 */
6534 static int
_base_send_port_enable(struct MPT3SAS_ADAPTER * ioc)6535 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
6536 {
6537 Mpi2PortEnableRequest_t *mpi_request;
6538 Mpi2PortEnableReply_t *mpi_reply;
6539 int r = 0;
6540 u16 smid;
6541 u16 ioc_status;
6542
6543 ioc_info(ioc, "sending port enable !!\n");
6544
6545 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
6546 ioc_err(ioc, "%s: internal command already in use\n", __func__);
6547 return -EAGAIN;
6548 }
6549
6550 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
6551 if (!smid) {
6552 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6553 return -EAGAIN;
6554 }
6555
6556 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
6557 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6558 ioc->port_enable_cmds.smid = smid;
6559 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
6560 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
6561
6562 init_completion(&ioc->port_enable_cmds.done);
6563 ioc->put_smid_default(ioc, smid);
6564 wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
6565 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
6566 ioc_err(ioc, "%s: timeout\n", __func__);
6567 _debug_dump_mf(mpi_request,
6568 sizeof(Mpi2PortEnableRequest_t)/4);
6569 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
6570 r = -EFAULT;
6571 else
6572 r = -ETIME;
6573 goto out;
6574 }
6575
6576 mpi_reply = ioc->port_enable_cmds.reply;
6577 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
6578 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
6579 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n",
6580 __func__, ioc_status);
6581 r = -EFAULT;
6582 goto out;
6583 }
6584
6585 out:
6586 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
6587 ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED");
6588 return r;
6589 }
6590
6591 /**
6592 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
6593 * @ioc: per adapter object
6594 *
6595 * Return: 0 for success, non-zero for failure.
6596 */
6597 int
mpt3sas_port_enable(struct MPT3SAS_ADAPTER * ioc)6598 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
6599 {
6600 Mpi2PortEnableRequest_t *mpi_request;
6601 u16 smid;
6602
6603 ioc_info(ioc, "sending port enable !!\n");
6604
6605 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
6606 ioc_err(ioc, "%s: internal command already in use\n", __func__);
6607 return -EAGAIN;
6608 }
6609
6610 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
6611 if (!smid) {
6612 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6613 return -EAGAIN;
6614 }
6615
6616 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
6617 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6618 ioc->port_enable_cmds.smid = smid;
6619 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
6620 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
6621
6622 ioc->put_smid_default(ioc, smid);
6623 return 0;
6624 }
6625
6626 /**
6627 * _base_determine_wait_on_discovery - desposition
6628 * @ioc: per adapter object
6629 *
6630 * Decide whether to wait on discovery to complete. Used to either
6631 * locate boot device, or report volumes ahead of physical devices.
6632 *
6633 * Return: 1 for wait, 0 for don't wait.
6634 */
6635 static int
_base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER * ioc)6636 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
6637 {
6638 /* We wait for discovery to complete if IR firmware is loaded.
6639 * The sas topology events arrive before PD events, so we need time to
6640 * turn on the bit in ioc->pd_handles to indicate PD
6641 * Also, it maybe required to report Volumes ahead of physical
6642 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
6643 */
6644 if (ioc->ir_firmware)
6645 return 1;
6646
6647 /* if no Bios, then we don't need to wait */
6648 if (!ioc->bios_pg3.BiosVersion)
6649 return 0;
6650
6651 /* Bios is present, then we drop down here.
6652 *
6653 * If there any entries in the Bios Page 2, then we wait
6654 * for discovery to complete.
6655 */
6656
6657 /* Current Boot Device */
6658 if ((ioc->bios_pg2.CurrentBootDeviceForm &
6659 MPI2_BIOSPAGE2_FORM_MASK) ==
6660 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
6661 /* Request Boot Device */
6662 (ioc->bios_pg2.ReqBootDeviceForm &
6663 MPI2_BIOSPAGE2_FORM_MASK) ==
6664 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
6665 /* Alternate Request Boot Device */
6666 (ioc->bios_pg2.ReqAltBootDeviceForm &
6667 MPI2_BIOSPAGE2_FORM_MASK) ==
6668 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
6669 return 0;
6670
6671 return 1;
6672 }
6673
6674 /**
6675 * _base_unmask_events - turn on notification for this event
6676 * @ioc: per adapter object
6677 * @event: firmware event
6678 *
6679 * The mask is stored in ioc->event_masks.
6680 */
6681 static void
_base_unmask_events(struct MPT3SAS_ADAPTER * ioc,u16 event)6682 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
6683 {
6684 u32 desired_event;
6685
6686 if (event >= 128)
6687 return;
6688
6689 desired_event = (1 << (event % 32));
6690
6691 if (event < 32)
6692 ioc->event_masks[0] &= ~desired_event;
6693 else if (event < 64)
6694 ioc->event_masks[1] &= ~desired_event;
6695 else if (event < 96)
6696 ioc->event_masks[2] &= ~desired_event;
6697 else if (event < 128)
6698 ioc->event_masks[3] &= ~desired_event;
6699 }
6700
6701 /**
6702 * _base_event_notification - send event notification
6703 * @ioc: per adapter object
6704 *
6705 * Return: 0 for success, non-zero for failure.
6706 */
6707 static int
_base_event_notification(struct MPT3SAS_ADAPTER * ioc)6708 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
6709 {
6710 Mpi2EventNotificationRequest_t *mpi_request;
6711 u16 smid;
6712 int r = 0;
6713 int i;
6714
6715 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6716
6717 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
6718 ioc_err(ioc, "%s: internal command already in use\n", __func__);
6719 return -EAGAIN;
6720 }
6721
6722 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6723 if (!smid) {
6724 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6725 return -EAGAIN;
6726 }
6727 ioc->base_cmds.status = MPT3_CMD_PENDING;
6728 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6729 ioc->base_cmds.smid = smid;
6730 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
6731 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
6732 mpi_request->VF_ID = 0; /* TODO */
6733 mpi_request->VP_ID = 0;
6734 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
6735 mpi_request->EventMasks[i] =
6736 cpu_to_le32(ioc->event_masks[i]);
6737 init_completion(&ioc->base_cmds.done);
6738 ioc->put_smid_default(ioc, smid);
6739 wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
6740 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6741 ioc_err(ioc, "%s: timeout\n", __func__);
6742 _debug_dump_mf(mpi_request,
6743 sizeof(Mpi2EventNotificationRequest_t)/4);
6744 if (ioc->base_cmds.status & MPT3_CMD_RESET)
6745 r = -EFAULT;
6746 else
6747 r = -ETIME;
6748 } else
6749 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__));
6750 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6751 return r;
6752 }
6753
6754 /**
6755 * mpt3sas_base_validate_event_type - validating event types
6756 * @ioc: per adapter object
6757 * @event_type: firmware event
6758 *
6759 * This will turn on firmware event notification when application
6760 * ask for that event. We don't mask events that are already enabled.
6761 */
6762 void
mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER * ioc,u32 * event_type)6763 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
6764 {
6765 int i, j;
6766 u32 event_mask, desired_event;
6767 u8 send_update_to_fw;
6768
6769 for (i = 0, send_update_to_fw = 0; i <
6770 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
6771 event_mask = ~event_type[i];
6772 desired_event = 1;
6773 for (j = 0; j < 32; j++) {
6774 if (!(event_mask & desired_event) &&
6775 (ioc->event_masks[i] & desired_event)) {
6776 ioc->event_masks[i] &= ~desired_event;
6777 send_update_to_fw = 1;
6778 }
6779 desired_event = (desired_event << 1);
6780 }
6781 }
6782
6783 if (!send_update_to_fw)
6784 return;
6785
6786 mutex_lock(&ioc->base_cmds.mutex);
6787 _base_event_notification(ioc);
6788 mutex_unlock(&ioc->base_cmds.mutex);
6789 }
6790
6791 /**
6792 * _base_diag_reset - the "big hammer" start of day reset
6793 * @ioc: per adapter object
6794 *
6795 * Return: 0 for success, non-zero for failure.
6796 */
6797 static int
_base_diag_reset(struct MPT3SAS_ADAPTER * ioc)6798 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
6799 {
6800 u32 host_diagnostic;
6801 u32 ioc_state;
6802 u32 count;
6803 u32 hcb_size;
6804
6805 ioc_info(ioc, "sending diag reset !!\n");
6806
6807 drsprintk(ioc, ioc_info(ioc, "clear interrupts\n"));
6808
6809 count = 0;
6810 do {
6811 /* Write magic sequence to WriteSequence register
6812 * Loop until in diagnostic mode
6813 */
6814 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n"));
6815 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6816 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
6817 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
6818 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
6819 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
6820 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
6821 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
6822
6823 /* wait 100 msec */
6824 msleep(100);
6825
6826 if (count++ > 20) {
6827 ioc_info(ioc,
6828 "Stop writing magic sequence after 20 retries\n");
6829 _base_dump_reg_set(ioc);
6830 goto out;
6831 }
6832
6833 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
6834 drsprintk(ioc,
6835 ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
6836 count, host_diagnostic));
6837
6838 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
6839
6840 hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
6841
6842 drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n"));
6843 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
6844 &ioc->chip->HostDiagnostic);
6845
6846 /*This delay allows the chip PCIe hardware time to finish reset tasks*/
6847 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
6848
6849 /* Approximately 300 second max wait */
6850 for (count = 0; count < (300000000 /
6851 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
6852
6853 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
6854
6855 if (host_diagnostic == 0xFFFFFFFF) {
6856 ioc_info(ioc,
6857 "Invalid host diagnostic register value\n");
6858 _base_dump_reg_set(ioc);
6859 goto out;
6860 }
6861 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
6862 break;
6863
6864 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
6865 }
6866
6867 if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
6868
6869 drsprintk(ioc,
6870 ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n"));
6871 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
6872 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
6873 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
6874
6875 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n"));
6876 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
6877 &ioc->chip->HCBSize);
6878 }
6879
6880 drsprintk(ioc, ioc_info(ioc, "restart the adapter\n"));
6881 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
6882 &ioc->chip->HostDiagnostic);
6883
6884 drsprintk(ioc,
6885 ioc_info(ioc, "disable writes to the diagnostic register\n"));
6886 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6887
6888 drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n"));
6889 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
6890 if (ioc_state) {
6891 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6892 __func__, ioc_state);
6893 _base_dump_reg_set(ioc);
6894 goto out;
6895 }
6896
6897 ioc_info(ioc, "diag reset: SUCCESS\n");
6898 return 0;
6899
6900 out:
6901 ioc_err(ioc, "diag reset: FAILED\n");
6902 return -EFAULT;
6903 }
6904
6905 /**
6906 * _base_make_ioc_ready - put controller in READY state
6907 * @ioc: per adapter object
6908 * @type: FORCE_BIG_HAMMER or SOFT_RESET
6909 *
6910 * Return: 0 for success, non-zero for failure.
6911 */
6912 static int
_base_make_ioc_ready(struct MPT3SAS_ADAPTER * ioc,enum reset_type type)6913 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
6914 {
6915 u32 ioc_state;
6916 int rc;
6917 int count;
6918
6919 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6920
6921 if (ioc->pci_error_recovery)
6922 return 0;
6923
6924 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6925 dhsprintk(ioc,
6926 ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
6927 __func__, ioc_state));
6928
6929 /* if in RESET state, it should move to READY state shortly */
6930 count = 0;
6931 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
6932 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
6933 MPI2_IOC_STATE_READY) {
6934 if (count++ == 10) {
6935 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6936 __func__, ioc_state);
6937 return -EFAULT;
6938 }
6939 ssleep(1);
6940 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6941 }
6942 }
6943
6944 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
6945 return 0;
6946
6947 if (ioc_state & MPI2_DOORBELL_USED) {
6948 ioc_info(ioc, "unexpected doorbell active!\n");
6949 goto issue_diag_reset;
6950 }
6951
6952 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
6953 mpt3sas_print_fault_code(ioc, ioc_state &
6954 MPI2_DOORBELL_DATA_MASK);
6955 goto issue_diag_reset;
6956 }
6957
6958 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
6959 /*
6960 * if host reset is invoked while watch dog thread is waiting
6961 * for IOC state to be changed to Fault state then driver has
6962 * to wait here for CoreDump state to clear otherwise reset
6963 * will be issued to the FW and FW move the IOC state to
6964 * reset state without copying the FW logs to coredump region.
6965 */
6966 if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) {
6967 mpt3sas_print_coredump_info(ioc, ioc_state &
6968 MPI2_DOORBELL_DATA_MASK);
6969 mpt3sas_base_wait_for_coredump_completion(ioc,
6970 __func__);
6971 }
6972 goto issue_diag_reset;
6973 }
6974
6975 if (type == FORCE_BIG_HAMMER)
6976 goto issue_diag_reset;
6977
6978 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
6979 if (!(_base_send_ioc_reset(ioc,
6980 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
6981 return 0;
6982 }
6983
6984 issue_diag_reset:
6985 rc = _base_diag_reset(ioc);
6986 return rc;
6987 }
6988
6989 /**
6990 * _base_make_ioc_operational - put controller in OPERATIONAL state
6991 * @ioc: per adapter object
6992 *
6993 * Return: 0 for success, non-zero for failure.
6994 */
6995 static int
_base_make_ioc_operational(struct MPT3SAS_ADAPTER * ioc)6996 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
6997 {
6998 int r, i, index, rc;
6999 unsigned long flags;
7000 u32 reply_address;
7001 u16 smid;
7002 struct _tr_list *delayed_tr, *delayed_tr_next;
7003 struct _sc_list *delayed_sc, *delayed_sc_next;
7004 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
7005 u8 hide_flag;
7006 struct adapter_reply_queue *reply_q;
7007 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
7008
7009 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7010
7011 /* clean the delayed target reset list */
7012 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
7013 &ioc->delayed_tr_list, list) {
7014 list_del(&delayed_tr->list);
7015 kfree(delayed_tr);
7016 }
7017
7018
7019 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
7020 &ioc->delayed_tr_volume_list, list) {
7021 list_del(&delayed_tr->list);
7022 kfree(delayed_tr);
7023 }
7024
7025 list_for_each_entry_safe(delayed_sc, delayed_sc_next,
7026 &ioc->delayed_sc_list, list) {
7027 list_del(&delayed_sc->list);
7028 kfree(delayed_sc);
7029 }
7030
7031 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
7032 &ioc->delayed_event_ack_list, list) {
7033 list_del(&delayed_event_ack->list);
7034 kfree(delayed_event_ack);
7035 }
7036
7037 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
7038
7039 /* hi-priority queue */
7040 INIT_LIST_HEAD(&ioc->hpr_free_list);
7041 smid = ioc->hi_priority_smid;
7042 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
7043 ioc->hpr_lookup[i].cb_idx = 0xFF;
7044 ioc->hpr_lookup[i].smid = smid;
7045 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
7046 &ioc->hpr_free_list);
7047 }
7048
7049 /* internal queue */
7050 INIT_LIST_HEAD(&ioc->internal_free_list);
7051 smid = ioc->internal_smid;
7052 for (i = 0; i < ioc->internal_depth; i++, smid++) {
7053 ioc->internal_lookup[i].cb_idx = 0xFF;
7054 ioc->internal_lookup[i].smid = smid;
7055 list_add_tail(&ioc->internal_lookup[i].tracker_list,
7056 &ioc->internal_free_list);
7057 }
7058
7059 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
7060
7061 /* initialize Reply Free Queue */
7062 for (i = 0, reply_address = (u32)ioc->reply_dma ;
7063 i < ioc->reply_free_queue_depth ; i++, reply_address +=
7064 ioc->reply_sz) {
7065 ioc->reply_free[i] = cpu_to_le32(reply_address);
7066 if (ioc->is_mcpu_endpoint)
7067 _base_clone_reply_to_sys_mem(ioc,
7068 reply_address, i);
7069 }
7070
7071 /* initialize reply queues */
7072 if (ioc->is_driver_loading)
7073 _base_assign_reply_queues(ioc);
7074
7075 /* initialize Reply Post Free Queue */
7076 index = 0;
7077 reply_post_free_contig = ioc->reply_post[0].reply_post_free;
7078 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
7079 /*
7080 * If RDPQ is enabled, switch to the next allocation.
7081 * Otherwise advance within the contiguous region.
7082 */
7083 if (ioc->rdpq_array_enable) {
7084 reply_q->reply_post_free =
7085 ioc->reply_post[index++].reply_post_free;
7086 } else {
7087 reply_q->reply_post_free = reply_post_free_contig;
7088 reply_post_free_contig += ioc->reply_post_queue_depth;
7089 }
7090
7091 reply_q->reply_post_host_index = 0;
7092 for (i = 0; i < ioc->reply_post_queue_depth; i++)
7093 reply_q->reply_post_free[i].Words =
7094 cpu_to_le64(ULLONG_MAX);
7095 if (!_base_is_controller_msix_enabled(ioc))
7096 goto skip_init_reply_post_free_queue;
7097 }
7098 skip_init_reply_post_free_queue:
7099
7100 r = _base_send_ioc_init(ioc);
7101 if (r) {
7102 /*
7103 * No need to check IOC state for fault state & issue
7104 * diag reset during host reset. This check is need
7105 * only during driver load time.
7106 */
7107 if (!ioc->is_driver_loading)
7108 return r;
7109
7110 rc = _base_check_for_fault_and_issue_reset(ioc);
7111 if (rc || (_base_send_ioc_init(ioc)))
7112 return r;
7113 }
7114
7115 /* initialize reply free host index */
7116 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
7117 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
7118
7119 /* initialize reply post host index */
7120 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
7121 if (ioc->combined_reply_queue)
7122 writel((reply_q->msix_index & 7)<<
7123 MPI2_RPHI_MSIX_INDEX_SHIFT,
7124 ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
7125 else
7126 writel(reply_q->msix_index <<
7127 MPI2_RPHI_MSIX_INDEX_SHIFT,
7128 &ioc->chip->ReplyPostHostIndex);
7129
7130 if (!_base_is_controller_msix_enabled(ioc))
7131 goto skip_init_reply_post_host_index;
7132 }
7133
7134 skip_init_reply_post_host_index:
7135
7136 mpt3sas_base_unmask_interrupts(ioc);
7137
7138 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
7139 r = _base_display_fwpkg_version(ioc);
7140 if (r)
7141 return r;
7142 }
7143
7144 _base_static_config_pages(ioc);
7145 r = _base_event_notification(ioc);
7146 if (r)
7147 return r;
7148
7149 if (ioc->is_driver_loading) {
7150
7151 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
7152 == 0x80) {
7153 hide_flag = (u8) (
7154 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
7155 MFG_PAGE10_HIDE_SSDS_MASK);
7156 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
7157 ioc->mfg_pg10_hide_flag = hide_flag;
7158 }
7159
7160 ioc->wait_for_discovery_to_complete =
7161 _base_determine_wait_on_discovery(ioc);
7162
7163 return r; /* scan_start and scan_finished support */
7164 }
7165
7166 r = _base_send_port_enable(ioc);
7167 if (r)
7168 return r;
7169
7170 return r;
7171 }
7172
7173 /**
7174 * mpt3sas_base_free_resources - free resources controller resources
7175 * @ioc: per adapter object
7176 */
7177 void
mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER * ioc)7178 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
7179 {
7180 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7181
7182 /* synchronizing freeing resource with pci_access_mutex lock */
7183 mutex_lock(&ioc->pci_access_mutex);
7184 if (ioc->chip_phys && ioc->chip) {
7185 mpt3sas_base_mask_interrupts(ioc);
7186 ioc->shost_recovery = 1;
7187 _base_make_ioc_ready(ioc, SOFT_RESET);
7188 ioc->shost_recovery = 0;
7189 }
7190
7191 mpt3sas_base_unmap_resources(ioc);
7192 mutex_unlock(&ioc->pci_access_mutex);
7193 return;
7194 }
7195
7196 /**
7197 * mpt3sas_base_attach - attach controller instance
7198 * @ioc: per adapter object
7199 *
7200 * Return: 0 for success, non-zero for failure.
7201 */
7202 int
mpt3sas_base_attach(struct MPT3SAS_ADAPTER * ioc)7203 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
7204 {
7205 int r, i, rc;
7206 int cpu_id, last_cpu_id = 0;
7207
7208 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7209
7210 /* setup cpu_msix_table */
7211 ioc->cpu_count = num_online_cpus();
7212 for_each_online_cpu(cpu_id)
7213 last_cpu_id = cpu_id;
7214 ioc->cpu_msix_table_sz = last_cpu_id + 1;
7215 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
7216 ioc->reply_queue_count = 1;
7217 if (!ioc->cpu_msix_table) {
7218 ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n");
7219 r = -ENOMEM;
7220 goto out_free_resources;
7221 }
7222
7223 if (ioc->is_warpdrive) {
7224 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
7225 sizeof(resource_size_t *), GFP_KERNEL);
7226 if (!ioc->reply_post_host_index) {
7227 ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n");
7228 r = -ENOMEM;
7229 goto out_free_resources;
7230 }
7231 }
7232
7233 ioc->smp_affinity_enable = smp_affinity_enable;
7234
7235 ioc->rdpq_array_enable_assigned = 0;
7236 ioc->use_32bit_dma = false;
7237 if (ioc->is_aero_ioc)
7238 ioc->base_readl = &_base_readl_aero;
7239 else
7240 ioc->base_readl = &_base_readl;
7241 r = mpt3sas_base_map_resources(ioc);
7242 if (r)
7243 goto out_free_resources;
7244
7245 pci_set_drvdata(ioc->pdev, ioc->shost);
7246 r = _base_get_ioc_facts(ioc);
7247 if (r) {
7248 rc = _base_check_for_fault_and_issue_reset(ioc);
7249 if (rc || (_base_get_ioc_facts(ioc)))
7250 goto out_free_resources;
7251 }
7252
7253 switch (ioc->hba_mpi_version_belonged) {
7254 case MPI2_VERSION:
7255 ioc->build_sg_scmd = &_base_build_sg_scmd;
7256 ioc->build_sg = &_base_build_sg;
7257 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
7258 ioc->get_msix_index_for_smlio = &_base_get_msix_index;
7259 break;
7260 case MPI25_VERSION:
7261 case MPI26_VERSION:
7262 /*
7263 * In SAS3.0,
7264 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
7265 * Target Status - all require the IEEE formated scatter gather
7266 * elements.
7267 */
7268 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
7269 ioc->build_sg = &_base_build_sg_ieee;
7270 ioc->build_nvme_prp = &_base_build_nvme_prp;
7271 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
7272 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
7273 if (ioc->high_iops_queues)
7274 ioc->get_msix_index_for_smlio =
7275 &_base_get_high_iops_msix_index;
7276 else
7277 ioc->get_msix_index_for_smlio = &_base_get_msix_index;
7278 break;
7279 }
7280 if (ioc->atomic_desc_capable) {
7281 ioc->put_smid_default = &_base_put_smid_default_atomic;
7282 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
7283 ioc->put_smid_fast_path =
7284 &_base_put_smid_fast_path_atomic;
7285 ioc->put_smid_hi_priority =
7286 &_base_put_smid_hi_priority_atomic;
7287 } else {
7288 ioc->put_smid_default = &_base_put_smid_default;
7289 ioc->put_smid_fast_path = &_base_put_smid_fast_path;
7290 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
7291 if (ioc->is_mcpu_endpoint)
7292 ioc->put_smid_scsi_io =
7293 &_base_put_smid_mpi_ep_scsi_io;
7294 else
7295 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
7296 }
7297 /*
7298 * These function pointers for other requests that don't
7299 * the require IEEE scatter gather elements.
7300 *
7301 * For example Configuration Pages and SAS IOUNIT Control don't.
7302 */
7303 ioc->build_sg_mpi = &_base_build_sg;
7304 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
7305
7306 r = _base_make_ioc_ready(ioc, SOFT_RESET);
7307 if (r)
7308 goto out_free_resources;
7309
7310 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
7311 sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
7312 if (!ioc->pfacts) {
7313 r = -ENOMEM;
7314 goto out_free_resources;
7315 }
7316
7317 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
7318 r = _base_get_port_facts(ioc, i);
7319 if (r) {
7320 rc = _base_check_for_fault_and_issue_reset(ioc);
7321 if (rc || (_base_get_port_facts(ioc, i)))
7322 goto out_free_resources;
7323 }
7324 }
7325
7326 r = _base_allocate_memory_pools(ioc);
7327 if (r)
7328 goto out_free_resources;
7329
7330 if (irqpoll_weight > 0)
7331 ioc->thresh_hold = irqpoll_weight;
7332 else
7333 ioc->thresh_hold = ioc->hba_queue_depth/4;
7334
7335 _base_init_irqpolls(ioc);
7336 init_waitqueue_head(&ioc->reset_wq);
7337
7338 /* allocate memory pd handle bitmask list */
7339 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
7340 if (ioc->facts.MaxDevHandle % 8)
7341 ioc->pd_handles_sz++;
7342 ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
7343 GFP_KERNEL);
7344 if (!ioc->pd_handles) {
7345 r = -ENOMEM;
7346 goto out_free_resources;
7347 }
7348 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
7349 GFP_KERNEL);
7350 if (!ioc->blocking_handles) {
7351 r = -ENOMEM;
7352 goto out_free_resources;
7353 }
7354
7355 /* allocate memory for pending OS device add list */
7356 ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
7357 if (ioc->facts.MaxDevHandle % 8)
7358 ioc->pend_os_device_add_sz++;
7359 ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
7360 GFP_KERNEL);
7361 if (!ioc->pend_os_device_add)
7362 goto out_free_resources;
7363
7364 ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
7365 ioc->device_remove_in_progress =
7366 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
7367 if (!ioc->device_remove_in_progress)
7368 goto out_free_resources;
7369
7370 ioc->fwfault_debug = mpt3sas_fwfault_debug;
7371
7372 /* base internal command bits */
7373 mutex_init(&ioc->base_cmds.mutex);
7374 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7375 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7376
7377 /* port_enable command bits */
7378 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7379 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
7380
7381 /* transport internal command bits */
7382 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7383 ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
7384 mutex_init(&ioc->transport_cmds.mutex);
7385
7386 /* scsih internal command bits */
7387 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7388 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
7389 mutex_init(&ioc->scsih_cmds.mutex);
7390
7391 /* task management internal command bits */
7392 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7393 ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
7394 mutex_init(&ioc->tm_cmds.mutex);
7395
7396 /* config page internal command bits */
7397 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7398 ioc->config_cmds.status = MPT3_CMD_NOT_USED;
7399 mutex_init(&ioc->config_cmds.mutex);
7400
7401 /* ctl module internal command bits */
7402 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7403 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
7404 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
7405 mutex_init(&ioc->ctl_cmds.mutex);
7406
7407 if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
7408 !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
7409 !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
7410 !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
7411 r = -ENOMEM;
7412 goto out_free_resources;
7413 }
7414
7415 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
7416 ioc->event_masks[i] = -1;
7417
7418 /* here we enable the events we care about */
7419 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
7420 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
7421 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
7422 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
7423 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
7424 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
7425 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
7426 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
7427 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
7428 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
7429 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
7430 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
7431 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
7432 if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
7433 if (ioc->is_gen35_ioc) {
7434 _base_unmask_events(ioc,
7435 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
7436 _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
7437 _base_unmask_events(ioc,
7438 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
7439 }
7440 }
7441 r = _base_make_ioc_operational(ioc);
7442 if (r)
7443 goto out_free_resources;
7444
7445 /*
7446 * Copy current copy of IOCFacts in prev_fw_facts
7447 * and it will be used during online firmware upgrade.
7448 */
7449 memcpy(&ioc->prev_fw_facts, &ioc->facts,
7450 sizeof(struct mpt3sas_facts));
7451
7452 ioc->non_operational_loop = 0;
7453 ioc->ioc_coredump_loop = 0;
7454 ioc->got_task_abort_from_ioctl = 0;
7455 return 0;
7456
7457 out_free_resources:
7458
7459 ioc->remove_host = 1;
7460
7461 mpt3sas_base_free_resources(ioc);
7462 _base_release_memory_pools(ioc);
7463 pci_set_drvdata(ioc->pdev, NULL);
7464 kfree(ioc->cpu_msix_table);
7465 if (ioc->is_warpdrive)
7466 kfree(ioc->reply_post_host_index);
7467 kfree(ioc->pd_handles);
7468 kfree(ioc->blocking_handles);
7469 kfree(ioc->device_remove_in_progress);
7470 kfree(ioc->pend_os_device_add);
7471 kfree(ioc->tm_cmds.reply);
7472 kfree(ioc->transport_cmds.reply);
7473 kfree(ioc->scsih_cmds.reply);
7474 kfree(ioc->config_cmds.reply);
7475 kfree(ioc->base_cmds.reply);
7476 kfree(ioc->port_enable_cmds.reply);
7477 kfree(ioc->ctl_cmds.reply);
7478 kfree(ioc->ctl_cmds.sense);
7479 kfree(ioc->pfacts);
7480 ioc->ctl_cmds.reply = NULL;
7481 ioc->base_cmds.reply = NULL;
7482 ioc->tm_cmds.reply = NULL;
7483 ioc->scsih_cmds.reply = NULL;
7484 ioc->transport_cmds.reply = NULL;
7485 ioc->config_cmds.reply = NULL;
7486 ioc->pfacts = NULL;
7487 return r;
7488 }
7489
7490
7491 /**
7492 * mpt3sas_base_detach - remove controller instance
7493 * @ioc: per adapter object
7494 */
7495 void
mpt3sas_base_detach(struct MPT3SAS_ADAPTER * ioc)7496 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
7497 {
7498 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7499
7500 mpt3sas_base_stop_watchdog(ioc);
7501 mpt3sas_base_free_resources(ioc);
7502 _base_release_memory_pools(ioc);
7503 mpt3sas_free_enclosure_list(ioc);
7504 pci_set_drvdata(ioc->pdev, NULL);
7505 kfree(ioc->cpu_msix_table);
7506 if (ioc->is_warpdrive)
7507 kfree(ioc->reply_post_host_index);
7508 kfree(ioc->pd_handles);
7509 kfree(ioc->blocking_handles);
7510 kfree(ioc->device_remove_in_progress);
7511 kfree(ioc->pend_os_device_add);
7512 kfree(ioc->pfacts);
7513 kfree(ioc->ctl_cmds.reply);
7514 kfree(ioc->ctl_cmds.sense);
7515 kfree(ioc->base_cmds.reply);
7516 kfree(ioc->port_enable_cmds.reply);
7517 kfree(ioc->tm_cmds.reply);
7518 kfree(ioc->transport_cmds.reply);
7519 kfree(ioc->scsih_cmds.reply);
7520 kfree(ioc->config_cmds.reply);
7521 }
7522
7523 /**
7524 * _base_pre_reset_handler - pre reset handler
7525 * @ioc: per adapter object
7526 */
_base_pre_reset_handler(struct MPT3SAS_ADAPTER * ioc)7527 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
7528 {
7529 mpt3sas_scsih_pre_reset_handler(ioc);
7530 mpt3sas_ctl_pre_reset_handler(ioc);
7531 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
7532 }
7533
7534 /**
7535 * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands
7536 * @ioc: per adapter object
7537 */
7538 static void
_base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER * ioc)7539 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc)
7540 {
7541 dtmprintk(ioc,
7542 ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__));
7543 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
7544 ioc->transport_cmds.status |= MPT3_CMD_RESET;
7545 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
7546 complete(&ioc->transport_cmds.done);
7547 }
7548 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
7549 ioc->base_cmds.status |= MPT3_CMD_RESET;
7550 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
7551 complete(&ioc->base_cmds.done);
7552 }
7553 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7554 ioc->port_enable_failed = 1;
7555 ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
7556 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
7557 if (ioc->is_driver_loading) {
7558 ioc->start_scan_failed =
7559 MPI2_IOCSTATUS_INTERNAL_ERROR;
7560 ioc->start_scan = 0;
7561 ioc->port_enable_cmds.status =
7562 MPT3_CMD_NOT_USED;
7563 } else {
7564 complete(&ioc->port_enable_cmds.done);
7565 }
7566 }
7567 if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
7568 ioc->config_cmds.status |= MPT3_CMD_RESET;
7569 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
7570 ioc->config_cmds.smid = USHRT_MAX;
7571 complete(&ioc->config_cmds.done);
7572 }
7573 }
7574
7575 /**
7576 * _base_clear_outstanding_commands - clear all outstanding commands
7577 * @ioc: per adapter object
7578 */
_base_clear_outstanding_commands(struct MPT3SAS_ADAPTER * ioc)7579 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc)
7580 {
7581 mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc);
7582 mpt3sas_ctl_clear_outstanding_ioctls(ioc);
7583 _base_clear_outstanding_mpt_commands(ioc);
7584 }
7585
7586 /**
7587 * _base_reset_done_handler - reset done handler
7588 * @ioc: per adapter object
7589 */
_base_reset_done_handler(struct MPT3SAS_ADAPTER * ioc)7590 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
7591 {
7592 mpt3sas_scsih_reset_done_handler(ioc);
7593 mpt3sas_ctl_reset_done_handler(ioc);
7594 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
7595 }
7596
7597 /**
7598 * mpt3sas_wait_for_commands_to_complete - reset controller
7599 * @ioc: Pointer to MPT_ADAPTER structure
7600 *
7601 * This function is waiting 10s for all pending commands to complete
7602 * prior to putting controller in reset.
7603 */
7604 void
mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER * ioc)7605 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
7606 {
7607 u32 ioc_state;
7608
7609 ioc->pending_io_count = 0;
7610
7611 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7612 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
7613 return;
7614
7615 /* pending command count */
7616 ioc->pending_io_count = scsi_host_busy(ioc->shost);
7617
7618 if (!ioc->pending_io_count)
7619 return;
7620
7621 /* wait for pending commands to complete */
7622 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
7623 }
7624
7625 /**
7626 * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts
7627 * attributes during online firmware upgrade and update the corresponding
7628 * IOC variables accordingly.
7629 *
7630 * @ioc: Pointer to MPT_ADAPTER structure
7631 */
7632 static int
_base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER * ioc)7633 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc)
7634 {
7635 u16 pd_handles_sz;
7636 void *pd_handles = NULL, *blocking_handles = NULL;
7637 void *pend_os_device_add = NULL, *device_remove_in_progress = NULL;
7638 struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts;
7639
7640 if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) {
7641 pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
7642 if (ioc->facts.MaxDevHandle % 8)
7643 pd_handles_sz++;
7644
7645 pd_handles = krealloc(ioc->pd_handles, pd_handles_sz,
7646 GFP_KERNEL);
7647 if (!pd_handles) {
7648 ioc_info(ioc,
7649 "Unable to allocate the memory for pd_handles of sz: %d\n",
7650 pd_handles_sz);
7651 return -ENOMEM;
7652 }
7653 memset(pd_handles + ioc->pd_handles_sz, 0,
7654 (pd_handles_sz - ioc->pd_handles_sz));
7655 ioc->pd_handles = pd_handles;
7656
7657 blocking_handles = krealloc(ioc->blocking_handles,
7658 pd_handles_sz, GFP_KERNEL);
7659 if (!blocking_handles) {
7660 ioc_info(ioc,
7661 "Unable to allocate the memory for "
7662 "blocking_handles of sz: %d\n",
7663 pd_handles_sz);
7664 return -ENOMEM;
7665 }
7666 memset(blocking_handles + ioc->pd_handles_sz, 0,
7667 (pd_handles_sz - ioc->pd_handles_sz));
7668 ioc->blocking_handles = blocking_handles;
7669 ioc->pd_handles_sz = pd_handles_sz;
7670
7671 pend_os_device_add = krealloc(ioc->pend_os_device_add,
7672 pd_handles_sz, GFP_KERNEL);
7673 if (!pend_os_device_add) {
7674 ioc_info(ioc,
7675 "Unable to allocate the memory for pend_os_device_add of sz: %d\n",
7676 pd_handles_sz);
7677 return -ENOMEM;
7678 }
7679 memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0,
7680 (pd_handles_sz - ioc->pend_os_device_add_sz));
7681 ioc->pend_os_device_add = pend_os_device_add;
7682 ioc->pend_os_device_add_sz = pd_handles_sz;
7683
7684 device_remove_in_progress = krealloc(
7685 ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL);
7686 if (!device_remove_in_progress) {
7687 ioc_info(ioc,
7688 "Unable to allocate the memory for "
7689 "device_remove_in_progress of sz: %d\n "
7690 , pd_handles_sz);
7691 return -ENOMEM;
7692 }
7693 memset(device_remove_in_progress +
7694 ioc->device_remove_in_progress_sz, 0,
7695 (pd_handles_sz - ioc->device_remove_in_progress_sz));
7696 ioc->device_remove_in_progress = device_remove_in_progress;
7697 ioc->device_remove_in_progress_sz = pd_handles_sz;
7698 }
7699
7700 memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts));
7701 return 0;
7702 }
7703
7704 /**
7705 * mpt3sas_base_hard_reset_handler - reset controller
7706 * @ioc: Pointer to MPT_ADAPTER structure
7707 * @type: FORCE_BIG_HAMMER or SOFT_RESET
7708 *
7709 * Return: 0 for success, non-zero for failure.
7710 */
7711 int
mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER * ioc,enum reset_type type)7712 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
7713 enum reset_type type)
7714 {
7715 int r;
7716 unsigned long flags;
7717 u32 ioc_state;
7718 u8 is_fault = 0, is_trigger = 0;
7719
7720 dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__));
7721
7722 if (ioc->pci_error_recovery) {
7723 ioc_err(ioc, "%s: pci error recovery reset\n", __func__);
7724 r = 0;
7725 goto out_unlocked;
7726 }
7727
7728 if (mpt3sas_fwfault_debug)
7729 mpt3sas_halt_firmware(ioc);
7730
7731 /* wait for an active reset in progress to complete */
7732 mutex_lock(&ioc->reset_in_progress_mutex);
7733
7734 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
7735 ioc->shost_recovery = 1;
7736 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
7737
7738 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
7739 MPT3_DIAG_BUFFER_IS_REGISTERED) &&
7740 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
7741 MPT3_DIAG_BUFFER_IS_RELEASED))) {
7742 is_trigger = 1;
7743 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7744 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
7745 (ioc_state & MPI2_IOC_STATE_MASK) ==
7746 MPI2_IOC_STATE_COREDUMP)
7747 is_fault = 1;
7748 }
7749 _base_pre_reset_handler(ioc);
7750 mpt3sas_wait_for_commands_to_complete(ioc);
7751 mpt3sas_base_mask_interrupts(ioc);
7752 r = _base_make_ioc_ready(ioc, type);
7753 if (r)
7754 goto out;
7755 _base_clear_outstanding_commands(ioc);
7756
7757 /* If this hard reset is called while port enable is active, then
7758 * there is no reason to call make_ioc_operational
7759 */
7760 if (ioc->is_driver_loading && ioc->port_enable_failed) {
7761 ioc->remove_host = 1;
7762 r = -EFAULT;
7763 goto out;
7764 }
7765 r = _base_get_ioc_facts(ioc);
7766 if (r)
7767 goto out;
7768
7769 r = _base_check_ioc_facts_changes(ioc);
7770 if (r) {
7771 ioc_info(ioc,
7772 "Some of the parameters got changed in this new firmware"
7773 " image and it requires system reboot\n");
7774 goto out;
7775 }
7776 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
7777 panic("%s: Issue occurred with flashing controller firmware."
7778 "Please reboot the system and ensure that the correct"
7779 " firmware version is running\n", ioc->name);
7780
7781 r = _base_make_ioc_operational(ioc);
7782 if (!r)
7783 _base_reset_done_handler(ioc);
7784
7785 out:
7786 ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED");
7787
7788 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
7789 ioc->shost_recovery = 0;
7790 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
7791 ioc->ioc_reset_count++;
7792 mutex_unlock(&ioc->reset_in_progress_mutex);
7793
7794 out_unlocked:
7795 if ((r == 0) && is_trigger) {
7796 if (is_fault)
7797 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
7798 else
7799 mpt3sas_trigger_master(ioc,
7800 MASTER_TRIGGER_ADAPTER_RESET);
7801 }
7802 dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__));
7803 return r;
7804 }
7805