1 /*
2 * This is the Fusion MPT base driver providing common API layer interface
3 * for access to MPT (Message Passing Technology) firmware.
4 *
5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6 * Copyright (C) 2012-2014 LSI Corporation
7 * Copyright (C) 2013-2014 Avago Technologies
8 * (mailto: MPT-FusionLinux.pdl@avagotech.com)
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version 2
13 * of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * NO WARRANTY
21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25 * solely responsible for determining the appropriateness of using and
26 * distributing the Program and assumes all risks associated with its
27 * exercise of rights under this Agreement, including but not limited to
28 * the risks and costs of program errors, damage to or loss of data,
29 * programs or equipment, and unavailability or interruption of operations.
30
31 * DISCLAIMER OF LIABILITY
32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39
40 * You should have received a copy of the GNU General Public License
41 * along with this program; if not, write to the Free Software
42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
43 * USA.
44 */
45
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h> /* To get host page size per arch */
63
64
65 #include "mpt3sas_base.h"
66
67 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS];
68
69
70 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
71
72 /* maximum controller queue depth */
73 #define MAX_HBA_QUEUE_DEPTH 30000
74 #define MAX_CHAIN_DEPTH 100000
75 static int max_queue_depth = -1;
76 module_param(max_queue_depth, int, 0444);
77 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
78
79 static int max_sgl_entries = -1;
80 module_param(max_sgl_entries, int, 0444);
81 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
82
83 static int msix_disable = -1;
84 module_param(msix_disable, int, 0444);
85 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
86
87 static int smp_affinity_enable = 1;
88 module_param(smp_affinity_enable, int, 0444);
89 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
90
91 static int max_msix_vectors = -1;
92 module_param(max_msix_vectors, int, 0444);
93 MODULE_PARM_DESC(max_msix_vectors,
94 " max msix vectors");
95
96 static int irqpoll_weight = -1;
97 module_param(irqpoll_weight, int, 0444);
98 MODULE_PARM_DESC(irqpoll_weight,
99 "irq poll weight (default= one fourth of HBA queue depth)");
100
101 static int mpt3sas_fwfault_debug;
102 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
103 " enable detection of firmware fault and halt firmware - (default=0)");
104
105 static int perf_mode = -1;
106 module_param(perf_mode, int, 0444);
107 MODULE_PARM_DESC(perf_mode,
108 "Performance mode (only for Aero/Sea Generation), options:\n\t\t"
109 "0 - balanced: high iops mode is enabled &\n\t\t"
110 "interrupt coalescing is enabled only on high iops queues,\n\t\t"
111 "1 - iops: high iops mode is disabled &\n\t\t"
112 "interrupt coalescing is enabled on all queues,\n\t\t"
113 "2 - latency: high iops mode is disabled &\n\t\t"
114 "interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
115 "\t\tdefault - default perf_mode is 'balanced'"
116 );
117
118 static int poll_queues;
119 module_param(poll_queues, int, 0444);
120 MODULE_PARM_DESC(poll_queues, "Number of queues to be use for io_uring poll mode.\n\t\t"
121 "This parameter is effective only if host_tagset_enable=1. &\n\t\t"
122 "when poll_queues are enabled then &\n\t\t"
123 "perf_mode is set to latency mode. &\n\t\t"
124 );
125
126 enum mpt3sas_perf_mode {
127 MPT_PERF_MODE_DEFAULT = -1,
128 MPT_PERF_MODE_BALANCED = 0,
129 MPT_PERF_MODE_IOPS = 1,
130 MPT_PERF_MODE_LATENCY = 2,
131 };
132
133 static int
134 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc,
135 u32 ioc_state, int timeout);
136 static int
137 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
138 static void
139 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc);
140
141 static u32
142 _base_readl_ext_retry(const void __iomem *addr);
143
144 /**
145 * mpt3sas_base_check_cmd_timeout - Function
146 * to check timeout and command termination due
147 * to Host reset.
148 *
149 * @ioc: per adapter object.
150 * @status: Status of issued command.
151 * @mpi_request:mf request pointer.
152 * @sz: size of buffer.
153 *
154 * Return: 1/0 Reset to be done or Not
155 */
156 u8
mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER * ioc,u8 status,void * mpi_request,int sz)157 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
158 u8 status, void *mpi_request, int sz)
159 {
160 u8 issue_reset = 0;
161
162 if (!(status & MPT3_CMD_RESET))
163 issue_reset = 1;
164
165 ioc_err(ioc, "Command %s\n",
166 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout");
167 _debug_dump_mf(mpi_request, sz);
168
169 return issue_reset;
170 }
171
172 /**
173 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
174 * @val: ?
175 * @kp: ?
176 *
177 * Return: ?
178 */
179 static int
_scsih_set_fwfault_debug(const char * val,const struct kernel_param * kp)180 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
181 {
182 int ret = param_set_int(val, kp);
183 struct MPT3SAS_ADAPTER *ioc;
184
185 if (ret)
186 return ret;
187
188 /* global ioc spinlock to protect controller list on list operations */
189 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
190 spin_lock(&gioc_lock);
191 list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
192 ioc->fwfault_debug = mpt3sas_fwfault_debug;
193 spin_unlock(&gioc_lock);
194 return 0;
195 }
196 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
197 param_get_int, &mpt3sas_fwfault_debug, 0644);
198
199 /**
200 * _base_readl_aero - retry readl for max three times.
201 * @addr: MPT Fusion system interface register address
202 *
203 * Retry the readl() for max three times if it gets zero value
204 * while reading the system interface register.
205 */
206 static inline u32
_base_readl_aero(const void __iomem * addr)207 _base_readl_aero(const void __iomem *addr)
208 {
209 u32 i = 0, ret_val;
210
211 do {
212 ret_val = readl(addr);
213 i++;
214 } while (ret_val == 0 && i < 3);
215
216 return ret_val;
217 }
218
219 static u32
_base_readl_ext_retry(const void __iomem * addr)220 _base_readl_ext_retry(const void __iomem *addr)
221 {
222 u32 i, ret_val;
223
224 for (i = 0 ; i < 30 ; i++) {
225 ret_val = readl(addr);
226 if (ret_val == 0)
227 continue;
228 }
229
230 return ret_val;
231 }
232
233 static inline u32
_base_readl(const void __iomem * addr)234 _base_readl(const void __iomem *addr)
235 {
236 return readl(addr);
237 }
238
239 /**
240 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
241 * in BAR0 space.
242 *
243 * @ioc: per adapter object
244 * @reply: reply message frame(lower 32bit addr)
245 * @index: System request message index.
246 */
247 static void
_base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER * ioc,u32 reply,u32 index)248 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
249 u32 index)
250 {
251 /*
252 * 256 is offset within sys register.
253 * 256 offset MPI frame starts. Max MPI frame supported is 32.
254 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
255 */
256 u16 cmd_credit = ioc->facts.RequestCredit + 1;
257 void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
258 MPI_FRAME_START_OFFSET +
259 (cmd_credit * ioc->request_sz) + (index * sizeof(u32));
260
261 writel(reply, reply_free_iomem);
262 }
263
264 /**
265 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
266 * to system/BAR0 region.
267 *
268 * @dst_iomem: Pointer to the destination location in BAR0 space.
269 * @src: Pointer to the Source data.
270 * @size: Size of data to be copied.
271 */
272 static void
_base_clone_mpi_to_sys_mem(void * dst_iomem,void * src,u32 size)273 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
274 {
275 int i;
276 u32 *src_virt_mem = (u32 *)src;
277
278 for (i = 0; i < size/4; i++)
279 writel((u32)src_virt_mem[i],
280 (void __iomem *)dst_iomem + (i * 4));
281 }
282
283 /**
284 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
285 *
286 * @dst_iomem: Pointer to the destination location in BAR0 space.
287 * @src: Pointer to the Source data.
288 * @size: Size of data to be copied.
289 */
290 static void
_base_clone_to_sys_mem(void __iomem * dst_iomem,void * src,u32 size)291 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
292 {
293 int i;
294 u32 *src_virt_mem = (u32 *)(src);
295
296 for (i = 0; i < size/4; i++)
297 writel((u32)src_virt_mem[i],
298 (void __iomem *)dst_iomem + (i * 4));
299 }
300
301 /**
302 * _base_get_chain - Calculates and Returns virtual chain address
303 * for the provided smid in BAR0 space.
304 *
305 * @ioc: per adapter object
306 * @smid: system request message index
307 * @sge_chain_count: Scatter gather chain count.
308 *
309 * Return: the chain address.
310 */
311 static inline void __iomem*
_base_get_chain(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 sge_chain_count)312 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
313 u8 sge_chain_count)
314 {
315 void __iomem *base_chain, *chain_virt;
316 u16 cmd_credit = ioc->facts.RequestCredit + 1;
317
318 base_chain = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
319 (cmd_credit * ioc->request_sz) +
320 REPLY_FREE_POOL_SIZE;
321 chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
322 ioc->request_sz) + (sge_chain_count * ioc->request_sz);
323 return chain_virt;
324 }
325
326 /**
327 * _base_get_chain_phys - Calculates and Returns physical address
328 * in BAR0 for scatter gather chains, for
329 * the provided smid.
330 *
331 * @ioc: per adapter object
332 * @smid: system request message index
333 * @sge_chain_count: Scatter gather chain count.
334 *
335 * Return: Physical chain address.
336 */
337 static inline phys_addr_t
_base_get_chain_phys(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 sge_chain_count)338 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
339 u8 sge_chain_count)
340 {
341 phys_addr_t base_chain_phys, chain_phys;
342 u16 cmd_credit = ioc->facts.RequestCredit + 1;
343
344 base_chain_phys = ioc->chip_phys + MPI_FRAME_START_OFFSET +
345 (cmd_credit * ioc->request_sz) +
346 REPLY_FREE_POOL_SIZE;
347 chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
348 ioc->request_sz) + (sge_chain_count * ioc->request_sz);
349 return chain_phys;
350 }
351
352 /**
353 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
354 * buffer address for the provided smid.
355 * (Each smid can have 64K starts from 17024)
356 *
357 * @ioc: per adapter object
358 * @smid: system request message index
359 *
360 * Return: Pointer to buffer location in BAR0.
361 */
362
363 static void __iomem *
_base_get_buffer_bar0(struct MPT3SAS_ADAPTER * ioc,u16 smid)364 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
365 {
366 u16 cmd_credit = ioc->facts.RequestCredit + 1;
367 // Added extra 1 to reach end of chain.
368 void __iomem *chain_end = _base_get_chain(ioc,
369 cmd_credit + 1,
370 ioc->facts.MaxChainDepth);
371 return chain_end + (smid * 64 * 1024);
372 }
373
374 /**
375 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
376 * Host buffer Physical address for the provided smid.
377 * (Each smid can have 64K starts from 17024)
378 *
379 * @ioc: per adapter object
380 * @smid: system request message index
381 *
382 * Return: Pointer to buffer location in BAR0.
383 */
384 static phys_addr_t
_base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER * ioc,u16 smid)385 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
386 {
387 u16 cmd_credit = ioc->facts.RequestCredit + 1;
388 phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
389 cmd_credit + 1,
390 ioc->facts.MaxChainDepth);
391 return chain_end_phys + (smid * 64 * 1024);
392 }
393
394 /**
395 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
396 * lookup list and Provides chain_buffer
397 * address for the matching dma address.
398 * (Each smid can have 64K starts from 17024)
399 *
400 * @ioc: per adapter object
401 * @chain_buffer_dma: Chain buffer dma address.
402 *
403 * Return: Pointer to chain buffer. Or Null on Failure.
404 */
405 static void *
_base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER * ioc,dma_addr_t chain_buffer_dma)406 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
407 dma_addr_t chain_buffer_dma)
408 {
409 u16 index, j;
410 struct chain_tracker *ct;
411
412 for (index = 0; index < ioc->scsiio_depth; index++) {
413 for (j = 0; j < ioc->chains_needed_per_io; j++) {
414 ct = &ioc->chain_lookup[index].chains_per_smid[j];
415 if (ct && ct->chain_buffer_dma == chain_buffer_dma)
416 return ct->chain_buffer;
417 }
418 }
419 ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n");
420 return NULL;
421 }
422
423 /**
424 * _clone_sg_entries - MPI EP's scsiio and config requests
425 * are handled here. Base function for
426 * double buffering, before submitting
427 * the requests.
428 *
429 * @ioc: per adapter object.
430 * @mpi_request: mf request pointer.
431 * @smid: system request message index.
432 */
_clone_sg_entries(struct MPT3SAS_ADAPTER * ioc,void * mpi_request,u16 smid)433 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
434 void *mpi_request, u16 smid)
435 {
436 Mpi2SGESimple32_t *sgel, *sgel_next;
437 u32 sgl_flags, sge_chain_count = 0;
438 bool is_write = false;
439 u16 i = 0;
440 void __iomem *buffer_iomem;
441 phys_addr_t buffer_iomem_phys;
442 void __iomem *buff_ptr;
443 phys_addr_t buff_ptr_phys;
444 void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
445 void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
446 phys_addr_t dst_addr_phys;
447 MPI2RequestHeader_t *request_hdr;
448 struct scsi_cmnd *scmd;
449 struct scatterlist *sg_scmd = NULL;
450 int is_scsiio_req = 0;
451
452 request_hdr = (MPI2RequestHeader_t *) mpi_request;
453
454 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
455 Mpi25SCSIIORequest_t *scsiio_request =
456 (Mpi25SCSIIORequest_t *)mpi_request;
457 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
458 is_scsiio_req = 1;
459 } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
460 Mpi2ConfigRequest_t *config_req =
461 (Mpi2ConfigRequest_t *)mpi_request;
462 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
463 } else
464 return;
465
466 /* From smid we can get scsi_cmd, once we have sg_scmd,
467 * we just need to get sg_virt and sg_next to get virtual
468 * address associated with sgel->Address.
469 */
470
471 if (is_scsiio_req) {
472 /* Get scsi_cmd using smid */
473 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
474 if (scmd == NULL) {
475 ioc_err(ioc, "scmd is NULL\n");
476 return;
477 }
478
479 /* Get sg_scmd from scmd provided */
480 sg_scmd = scsi_sglist(scmd);
481 }
482
483 /*
484 * 0 - 255 System register
485 * 256 - 4352 MPI Frame. (This is based on maxCredit 32)
486 * 4352 - 4864 Reply_free pool (512 byte is reserved
487 * considering maxCredit 32. Reply need extra
488 * room, for mCPU case kept four times of
489 * maxCredit).
490 * 4864 - 17152 SGE chain element. (32cmd * 3 chain of
491 * 128 byte size = 12288)
492 * 17152 - x Host buffer mapped with smid.
493 * (Each smid can have 64K Max IO.)
494 * BAR0+Last 1K MSIX Addr and Data
495 * Total size in use 2113664 bytes of 4MB BAR0
496 */
497
498 buffer_iomem = _base_get_buffer_bar0(ioc, smid);
499 buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
500
501 buff_ptr = buffer_iomem;
502 buff_ptr_phys = buffer_iomem_phys;
503 WARN_ON(buff_ptr_phys > U32_MAX);
504
505 if (le32_to_cpu(sgel->FlagsLength) &
506 (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
507 is_write = true;
508
509 for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
510
511 sgl_flags =
512 (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
513
514 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
515 case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
516 /*
517 * Helper function which on passing
518 * chain_buffer_dma returns chain_buffer. Get
519 * the virtual address for sgel->Address
520 */
521 sgel_next =
522 _base_get_chain_buffer_dma_to_chain_buffer(ioc,
523 le32_to_cpu(sgel->Address));
524 if (sgel_next == NULL)
525 return;
526 /*
527 * This is coping 128 byte chain
528 * frame (not a host buffer)
529 */
530 dst_chain_addr[sge_chain_count] =
531 _base_get_chain(ioc,
532 smid, sge_chain_count);
533 src_chain_addr[sge_chain_count] =
534 (void *) sgel_next;
535 dst_addr_phys = _base_get_chain_phys(ioc,
536 smid, sge_chain_count);
537 WARN_ON(dst_addr_phys > U32_MAX);
538 sgel->Address =
539 cpu_to_le32(lower_32_bits(dst_addr_phys));
540 sgel = sgel_next;
541 sge_chain_count++;
542 break;
543 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
544 if (is_write) {
545 if (is_scsiio_req) {
546 _base_clone_to_sys_mem(buff_ptr,
547 sg_virt(sg_scmd),
548 (le32_to_cpu(sgel->FlagsLength) &
549 0x00ffffff));
550 /*
551 * FIXME: this relies on a a zero
552 * PCI mem_offset.
553 */
554 sgel->Address =
555 cpu_to_le32((u32)buff_ptr_phys);
556 } else {
557 _base_clone_to_sys_mem(buff_ptr,
558 ioc->config_vaddr,
559 (le32_to_cpu(sgel->FlagsLength) &
560 0x00ffffff));
561 sgel->Address =
562 cpu_to_le32((u32)buff_ptr_phys);
563 }
564 }
565 buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
566 0x00ffffff);
567 buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
568 0x00ffffff);
569 if ((le32_to_cpu(sgel->FlagsLength) &
570 (MPI2_SGE_FLAGS_END_OF_BUFFER
571 << MPI2_SGE_FLAGS_SHIFT)))
572 goto eob_clone_chain;
573 else {
574 /*
575 * Every single element in MPT will have
576 * associated sg_next. Better to sanity that
577 * sg_next is not NULL, but it will be a bug
578 * if it is null.
579 */
580 if (is_scsiio_req) {
581 sg_scmd = sg_next(sg_scmd);
582 if (sg_scmd)
583 sgel++;
584 else
585 goto eob_clone_chain;
586 }
587 }
588 break;
589 }
590 }
591
592 eob_clone_chain:
593 for (i = 0; i < sge_chain_count; i++) {
594 if (is_scsiio_req)
595 _base_clone_to_sys_mem(dst_chain_addr[i],
596 src_chain_addr[i], ioc->request_sz);
597 }
598 }
599
600 /**
601 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
602 * @arg: input argument, used to derive ioc
603 *
604 * Return:
605 * 0 if controller is removed from pci subsystem.
606 * -1 for other case.
607 */
mpt3sas_remove_dead_ioc_func(void * arg)608 static int mpt3sas_remove_dead_ioc_func(void *arg)
609 {
610 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
611 struct pci_dev *pdev;
612
613 if (!ioc)
614 return -1;
615
616 pdev = ioc->pdev;
617 if (!pdev)
618 return -1;
619 pci_stop_and_remove_bus_device_locked(pdev);
620 return 0;
621 }
622
623 /**
624 * _base_sync_drv_fw_timestamp - Sync Drive-Fw TimeStamp.
625 * @ioc: Per Adapter Object
626 *
627 * Return: nothing.
628 */
_base_sync_drv_fw_timestamp(struct MPT3SAS_ADAPTER * ioc)629 static void _base_sync_drv_fw_timestamp(struct MPT3SAS_ADAPTER *ioc)
630 {
631 Mpi26IoUnitControlRequest_t *mpi_request;
632 Mpi26IoUnitControlReply_t *mpi_reply;
633 u16 smid;
634 ktime_t current_time;
635 u64 TimeStamp = 0;
636 u8 issue_reset = 0;
637
638 mutex_lock(&ioc->scsih_cmds.mutex);
639 if (ioc->scsih_cmds.status != MPT3_CMD_NOT_USED) {
640 ioc_err(ioc, "scsih_cmd in use %s\n", __func__);
641 goto out;
642 }
643 ioc->scsih_cmds.status = MPT3_CMD_PENDING;
644 smid = mpt3sas_base_get_smid(ioc, ioc->scsih_cb_idx);
645 if (!smid) {
646 ioc_err(ioc, "Failed obtaining a smid %s\n", __func__);
647 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
648 goto out;
649 }
650 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
651 ioc->scsih_cmds.smid = smid;
652 memset(mpi_request, 0, sizeof(Mpi26IoUnitControlRequest_t));
653 mpi_request->Function = MPI2_FUNCTION_IO_UNIT_CONTROL;
654 mpi_request->Operation = MPI26_CTRL_OP_SET_IOC_PARAMETER;
655 mpi_request->IOCParameter = MPI26_SET_IOC_PARAMETER_SYNC_TIMESTAMP;
656 current_time = ktime_get_real();
657 TimeStamp = ktime_to_ms(current_time);
658 mpi_request->Reserved7 = cpu_to_le32(TimeStamp >> 32);
659 mpi_request->IOCParameterValue = cpu_to_le32(TimeStamp & 0xFFFFFFFF);
660 init_completion(&ioc->scsih_cmds.done);
661 ioc->put_smid_default(ioc, smid);
662 dinitprintk(ioc, ioc_info(ioc,
663 "Io Unit Control Sync TimeStamp (sending), @time %lld ms\n",
664 TimeStamp));
665 wait_for_completion_timeout(&ioc->scsih_cmds.done,
666 MPT3SAS_TIMESYNC_TIMEOUT_SECONDS*HZ);
667 if (!(ioc->scsih_cmds.status & MPT3_CMD_COMPLETE)) {
668 mpt3sas_check_cmd_timeout(ioc,
669 ioc->scsih_cmds.status, mpi_request,
670 sizeof(Mpi2SasIoUnitControlRequest_t)/4, issue_reset);
671 goto issue_host_reset;
672 }
673 if (ioc->scsih_cmds.status & MPT3_CMD_REPLY_VALID) {
674 mpi_reply = ioc->scsih_cmds.reply;
675 dinitprintk(ioc, ioc_info(ioc,
676 "Io Unit Control sync timestamp (complete): ioc_status(0x%04x), loginfo(0x%08x)\n",
677 le16_to_cpu(mpi_reply->IOCStatus),
678 le32_to_cpu(mpi_reply->IOCLogInfo)));
679 }
680 issue_host_reset:
681 if (issue_reset)
682 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
683 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
684 out:
685 mutex_unlock(&ioc->scsih_cmds.mutex);
686 }
687
688 /**
689 * _base_fault_reset_work - workq handling ioc fault conditions
690 * @work: input argument, used to derive ioc
691 *
692 * Context: sleep.
693 */
694 static void
_base_fault_reset_work(struct work_struct * work)695 _base_fault_reset_work(struct work_struct *work)
696 {
697 struct MPT3SAS_ADAPTER *ioc =
698 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
699 unsigned long flags;
700 u32 doorbell;
701 int rc;
702 struct task_struct *p;
703
704
705 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
706 if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) ||
707 ioc->pci_error_recovery)
708 goto rearm_timer;
709 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
710
711 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
712 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
713 ioc_err(ioc, "SAS host is non-operational !!!!\n");
714
715 /* It may be possible that EEH recovery can resolve some of
716 * pci bus failure issues rather removing the dead ioc function
717 * by considering controller is in a non-operational state. So
718 * here priority is given to the EEH recovery. If it doesn't
719 * not resolve this issue, mpt3sas driver will consider this
720 * controller to non-operational state and remove the dead ioc
721 * function.
722 */
723 if (ioc->non_operational_loop++ < 5) {
724 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
725 flags);
726 goto rearm_timer;
727 }
728
729 /*
730 * Call _scsih_flush_pending_cmds callback so that we flush all
731 * pending commands back to OS. This call is required to avoid
732 * deadlock at block layer. Dead IOC will fail to do diag reset,
733 * and this call is safe since dead ioc will never return any
734 * command back from HW.
735 */
736 mpt3sas_base_pause_mq_polling(ioc);
737 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
738 /*
739 * Set remove_host flag early since kernel thread will
740 * take some time to execute.
741 */
742 ioc->remove_host = 1;
743 /*Remove the Dead Host */
744 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
745 "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
746 if (IS_ERR(p))
747 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
748 __func__);
749 else
750 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
751 __func__);
752 return; /* don't rearm timer */
753 }
754
755 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
756 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
757 ioc->manu_pg11.CoreDumpTOSec :
758 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
759
760 timeout /= (FAULT_POLLING_INTERVAL/1000);
761
762 if (ioc->ioc_coredump_loop == 0) {
763 mpt3sas_print_coredump_info(ioc,
764 doorbell & MPI2_DOORBELL_DATA_MASK);
765 /* do not accept any IOs and disable the interrupts */
766 spin_lock_irqsave(
767 &ioc->ioc_reset_in_progress_lock, flags);
768 ioc->shost_recovery = 1;
769 spin_unlock_irqrestore(
770 &ioc->ioc_reset_in_progress_lock, flags);
771 mpt3sas_base_mask_interrupts(ioc);
772 mpt3sas_base_pause_mq_polling(ioc);
773 _base_clear_outstanding_commands(ioc);
774 }
775
776 ioc_info(ioc, "%s: CoreDump loop %d.",
777 __func__, ioc->ioc_coredump_loop);
778
779 /* Wait until CoreDump completes or times out */
780 if (ioc->ioc_coredump_loop++ < timeout) {
781 spin_lock_irqsave(
782 &ioc->ioc_reset_in_progress_lock, flags);
783 goto rearm_timer;
784 }
785 }
786
787 if (ioc->ioc_coredump_loop) {
788 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP)
789 ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d",
790 __func__, ioc->ioc_coredump_loop);
791 else
792 ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d",
793 __func__, ioc->ioc_coredump_loop);
794 ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE;
795 }
796 ioc->non_operational_loop = 0;
797 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
798 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
799 ioc_warn(ioc, "%s: hard reset: %s\n",
800 __func__, rc == 0 ? "success" : "failed");
801 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
802 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
803 mpt3sas_print_fault_code(ioc, doorbell &
804 MPI2_DOORBELL_DATA_MASK);
805 } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
806 MPI2_IOC_STATE_COREDUMP)
807 mpt3sas_print_coredump_info(ioc, doorbell &
808 MPI2_DOORBELL_DATA_MASK);
809 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
810 MPI2_IOC_STATE_OPERATIONAL)
811 return; /* don't rearm timer */
812 }
813 ioc->ioc_coredump_loop = 0;
814 if (ioc->time_sync_interval &&
815 ++ioc->timestamp_update_count >= ioc->time_sync_interval) {
816 ioc->timestamp_update_count = 0;
817 _base_sync_drv_fw_timestamp(ioc);
818 }
819 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
820 rearm_timer:
821 if (ioc->fault_reset_work_q)
822 queue_delayed_work(ioc->fault_reset_work_q,
823 &ioc->fault_reset_work,
824 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
825 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
826 }
827
828 /**
829 * mpt3sas_base_start_watchdog - start the fault_reset_work_q
830 * @ioc: per adapter object
831 *
832 * Context: sleep.
833 */
834 void
mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER * ioc)835 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
836 {
837 unsigned long flags;
838
839 if (ioc->fault_reset_work_q)
840 return;
841
842 ioc->timestamp_update_count = 0;
843 /* initialize fault polling */
844
845 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
846 snprintf(ioc->fault_reset_work_q_name,
847 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
848 ioc->driver_name, ioc->id);
849 ioc->fault_reset_work_q =
850 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
851 if (!ioc->fault_reset_work_q) {
852 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__);
853 return;
854 }
855 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
856 if (ioc->fault_reset_work_q)
857 queue_delayed_work(ioc->fault_reset_work_q,
858 &ioc->fault_reset_work,
859 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
860 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
861 }
862
863 /**
864 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
865 * @ioc: per adapter object
866 *
867 * Context: sleep.
868 */
869 void
mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER * ioc)870 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
871 {
872 unsigned long flags;
873 struct workqueue_struct *wq;
874
875 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
876 wq = ioc->fault_reset_work_q;
877 ioc->fault_reset_work_q = NULL;
878 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
879 if (wq) {
880 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
881 flush_workqueue(wq);
882 destroy_workqueue(wq);
883 }
884 }
885
886 /**
887 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
888 * @ioc: per adapter object
889 * @fault_code: fault code
890 */
891 void
mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER * ioc,u16 fault_code)892 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
893 {
894 ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code);
895 }
896
897 /**
898 * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state
899 * @ioc: per adapter object
900 * @fault_code: fault code
901 *
902 * Return: nothing.
903 */
904 void
mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER * ioc,u16 fault_code)905 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
906 {
907 ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code);
908 }
909
910 /**
911 * mpt3sas_base_wait_for_coredump_completion - Wait until coredump
912 * completes or times out
913 * @ioc: per adapter object
914 * @caller: caller function name
915 *
916 * Return: 0 for success, non-zero for failure.
917 */
918 int
mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER * ioc,const char * caller)919 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc,
920 const char *caller)
921 {
922 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
923 ioc->manu_pg11.CoreDumpTOSec :
924 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
925
926 int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT,
927 timeout);
928
929 if (ioc_state)
930 ioc_err(ioc,
931 "%s: CoreDump timed out. (ioc_state=0x%x)\n",
932 caller, ioc_state);
933 else
934 ioc_info(ioc,
935 "%s: CoreDump completed. (ioc_state=0x%x)\n",
936 caller, ioc_state);
937
938 return ioc_state;
939 }
940
941 /**
942 * mpt3sas_halt_firmware - halt's mpt controller firmware
943 * @ioc: per adapter object
944 *
945 * For debugging timeout related issues. Writing 0xCOFFEE00
946 * to the doorbell register will halt controller firmware. With
947 * the purpose to stop both driver and firmware, the enduser can
948 * obtain a ring buffer from controller UART.
949 */
950 void
mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER * ioc)951 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
952 {
953 u32 doorbell;
954
955 if (!ioc->fwfault_debug)
956 return;
957
958 dump_stack();
959
960 doorbell = ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
961 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
962 mpt3sas_print_fault_code(ioc, doorbell &
963 MPI2_DOORBELL_DATA_MASK);
964 } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
965 MPI2_IOC_STATE_COREDUMP) {
966 mpt3sas_print_coredump_info(ioc, doorbell &
967 MPI2_DOORBELL_DATA_MASK);
968 } else {
969 writel(0xC0FFEE00, &ioc->chip->Doorbell);
970 ioc_err(ioc, "Firmware is halted due to command timeout\n");
971 }
972
973 if (ioc->fwfault_debug == 2)
974 for (;;)
975 ;
976 else
977 panic("panic in %s\n", __func__);
978 }
979
980 /**
981 * _base_sas_ioc_info - verbose translation of the ioc status
982 * @ioc: per adapter object
983 * @mpi_reply: reply mf payload returned from firmware
984 * @request_hdr: request mf
985 */
986 static void
_base_sas_ioc_info(struct MPT3SAS_ADAPTER * ioc,MPI2DefaultReply_t * mpi_reply,MPI2RequestHeader_t * request_hdr)987 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
988 MPI2RequestHeader_t *request_hdr)
989 {
990 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
991 MPI2_IOCSTATUS_MASK;
992 char *desc = NULL;
993 u16 frame_sz;
994 char *func_str = NULL;
995
996 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
997 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
998 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
999 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
1000 return;
1001
1002 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
1003 return;
1004 /*
1005 * Older Firmware version doesn't support driver trigger pages.
1006 * So, skip displaying 'config invalid type' type
1007 * of error message.
1008 */
1009 if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
1010 Mpi2ConfigRequest_t *rqst = (Mpi2ConfigRequest_t *)request_hdr;
1011
1012 if ((rqst->ExtPageType ==
1013 MPI2_CONFIG_EXTPAGETYPE_DRIVER_PERSISTENT_TRIGGER) &&
1014 !(ioc->logging_level & MPT_DEBUG_CONFIG)) {
1015 return;
1016 }
1017 }
1018
1019 switch (ioc_status) {
1020
1021 /****************************************************************************
1022 * Common IOCStatus values for all replies
1023 ****************************************************************************/
1024
1025 case MPI2_IOCSTATUS_INVALID_FUNCTION:
1026 desc = "invalid function";
1027 break;
1028 case MPI2_IOCSTATUS_BUSY:
1029 desc = "busy";
1030 break;
1031 case MPI2_IOCSTATUS_INVALID_SGL:
1032 desc = "invalid sgl";
1033 break;
1034 case MPI2_IOCSTATUS_INTERNAL_ERROR:
1035 desc = "internal error";
1036 break;
1037 case MPI2_IOCSTATUS_INVALID_VPID:
1038 desc = "invalid vpid";
1039 break;
1040 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
1041 desc = "insufficient resources";
1042 break;
1043 case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
1044 desc = "insufficient power";
1045 break;
1046 case MPI2_IOCSTATUS_INVALID_FIELD:
1047 desc = "invalid field";
1048 break;
1049 case MPI2_IOCSTATUS_INVALID_STATE:
1050 desc = "invalid state";
1051 break;
1052 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
1053 desc = "op state not supported";
1054 break;
1055
1056 /****************************************************************************
1057 * Config IOCStatus values
1058 ****************************************************************************/
1059
1060 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
1061 desc = "config invalid action";
1062 break;
1063 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
1064 desc = "config invalid type";
1065 break;
1066 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
1067 desc = "config invalid page";
1068 break;
1069 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
1070 desc = "config invalid data";
1071 break;
1072 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
1073 desc = "config no defaults";
1074 break;
1075 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
1076 desc = "config can't commit";
1077 break;
1078
1079 /****************************************************************************
1080 * SCSI IO Reply
1081 ****************************************************************************/
1082
1083 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
1084 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
1085 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
1086 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
1087 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
1088 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
1089 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
1090 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
1091 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
1092 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
1093 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
1094 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
1095 break;
1096
1097 /****************************************************************************
1098 * For use by SCSI Initiator and SCSI Target end-to-end data protection
1099 ****************************************************************************/
1100
1101 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
1102 desc = "eedp guard error";
1103 break;
1104 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
1105 desc = "eedp ref tag error";
1106 break;
1107 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
1108 desc = "eedp app tag error";
1109 break;
1110
1111 /****************************************************************************
1112 * SCSI Target values
1113 ****************************************************************************/
1114
1115 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
1116 desc = "target invalid io index";
1117 break;
1118 case MPI2_IOCSTATUS_TARGET_ABORTED:
1119 desc = "target aborted";
1120 break;
1121 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
1122 desc = "target no conn retryable";
1123 break;
1124 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
1125 desc = "target no connection";
1126 break;
1127 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
1128 desc = "target xfer count mismatch";
1129 break;
1130 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
1131 desc = "target data offset error";
1132 break;
1133 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
1134 desc = "target too much write data";
1135 break;
1136 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
1137 desc = "target iu too short";
1138 break;
1139 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
1140 desc = "target ack nak timeout";
1141 break;
1142 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
1143 desc = "target nak received";
1144 break;
1145
1146 /****************************************************************************
1147 * Serial Attached SCSI values
1148 ****************************************************************************/
1149
1150 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
1151 desc = "smp request failed";
1152 break;
1153 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
1154 desc = "smp data overrun";
1155 break;
1156
1157 /****************************************************************************
1158 * Diagnostic Buffer Post / Diagnostic Release values
1159 ****************************************************************************/
1160
1161 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
1162 desc = "diagnostic released";
1163 break;
1164 default:
1165 break;
1166 }
1167
1168 if (!desc)
1169 return;
1170
1171 switch (request_hdr->Function) {
1172 case MPI2_FUNCTION_CONFIG:
1173 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
1174 func_str = "config_page";
1175 break;
1176 case MPI2_FUNCTION_SCSI_TASK_MGMT:
1177 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
1178 func_str = "task_mgmt";
1179 break;
1180 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
1181 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
1182 func_str = "sas_iounit_ctl";
1183 break;
1184 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
1185 frame_sz = sizeof(Mpi2SepRequest_t);
1186 func_str = "enclosure";
1187 break;
1188 case MPI2_FUNCTION_IOC_INIT:
1189 frame_sz = sizeof(Mpi2IOCInitRequest_t);
1190 func_str = "ioc_init";
1191 break;
1192 case MPI2_FUNCTION_PORT_ENABLE:
1193 frame_sz = sizeof(Mpi2PortEnableRequest_t);
1194 func_str = "port_enable";
1195 break;
1196 case MPI2_FUNCTION_SMP_PASSTHROUGH:
1197 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
1198 func_str = "smp_passthru";
1199 break;
1200 case MPI2_FUNCTION_NVME_ENCAPSULATED:
1201 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
1202 ioc->sge_size;
1203 func_str = "nvme_encapsulated";
1204 break;
1205 default:
1206 frame_sz = 32;
1207 func_str = "unknown";
1208 break;
1209 }
1210
1211 ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
1212 desc, ioc_status, request_hdr, func_str);
1213
1214 _debug_dump_mf(request_hdr, frame_sz/4);
1215 }
1216
1217 /**
1218 * _base_display_event_data - verbose translation of firmware asyn events
1219 * @ioc: per adapter object
1220 * @mpi_reply: reply mf payload returned from firmware
1221 */
1222 static void
_base_display_event_data(struct MPT3SAS_ADAPTER * ioc,Mpi2EventNotificationReply_t * mpi_reply)1223 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
1224 Mpi2EventNotificationReply_t *mpi_reply)
1225 {
1226 char *desc = NULL;
1227 u16 event;
1228
1229 if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
1230 return;
1231
1232 event = le16_to_cpu(mpi_reply->Event);
1233
1234 switch (event) {
1235 case MPI2_EVENT_LOG_DATA:
1236 desc = "Log Data";
1237 break;
1238 case MPI2_EVENT_STATE_CHANGE:
1239 desc = "Status Change";
1240 break;
1241 case MPI2_EVENT_HARD_RESET_RECEIVED:
1242 desc = "Hard Reset Received";
1243 break;
1244 case MPI2_EVENT_EVENT_CHANGE:
1245 desc = "Event Change";
1246 break;
1247 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
1248 desc = "Device Status Change";
1249 break;
1250 case MPI2_EVENT_IR_OPERATION_STATUS:
1251 if (!ioc->hide_ir_msg)
1252 desc = "IR Operation Status";
1253 break;
1254 case MPI2_EVENT_SAS_DISCOVERY:
1255 {
1256 Mpi2EventDataSasDiscovery_t *event_data =
1257 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1258 ioc_info(ioc, "Discovery: (%s)",
1259 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ?
1260 "start" : "stop");
1261 if (event_data->DiscoveryStatus)
1262 pr_cont(" discovery_status(0x%08x)",
1263 le32_to_cpu(event_data->DiscoveryStatus));
1264 pr_cont("\n");
1265 return;
1266 }
1267 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1268 desc = "SAS Broadcast Primitive";
1269 break;
1270 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1271 desc = "SAS Init Device Status Change";
1272 break;
1273 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1274 desc = "SAS Init Table Overflow";
1275 break;
1276 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1277 desc = "SAS Topology Change List";
1278 break;
1279 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1280 desc = "SAS Enclosure Device Status Change";
1281 break;
1282 case MPI2_EVENT_IR_VOLUME:
1283 if (!ioc->hide_ir_msg)
1284 desc = "IR Volume";
1285 break;
1286 case MPI2_EVENT_IR_PHYSICAL_DISK:
1287 if (!ioc->hide_ir_msg)
1288 desc = "IR Physical Disk";
1289 break;
1290 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1291 if (!ioc->hide_ir_msg)
1292 desc = "IR Configuration Change List";
1293 break;
1294 case MPI2_EVENT_LOG_ENTRY_ADDED:
1295 if (!ioc->hide_ir_msg)
1296 desc = "Log Entry Added";
1297 break;
1298 case MPI2_EVENT_TEMP_THRESHOLD:
1299 desc = "Temperature Threshold";
1300 break;
1301 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1302 desc = "Cable Event";
1303 break;
1304 case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1305 desc = "SAS Device Discovery Error";
1306 break;
1307 case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1308 desc = "PCIE Device Status Change";
1309 break;
1310 case MPI2_EVENT_PCIE_ENUMERATION:
1311 {
1312 Mpi26EventDataPCIeEnumeration_t *event_data =
1313 (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1314 ioc_info(ioc, "PCIE Enumeration: (%s)",
1315 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ?
1316 "start" : "stop");
1317 if (event_data->EnumerationStatus)
1318 pr_cont("enumeration_status(0x%08x)",
1319 le32_to_cpu(event_data->EnumerationStatus));
1320 pr_cont("\n");
1321 return;
1322 }
1323 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1324 desc = "PCIE Topology Change List";
1325 break;
1326 }
1327
1328 if (!desc)
1329 return;
1330
1331 ioc_info(ioc, "%s\n", desc);
1332 }
1333
1334 /**
1335 * _base_sas_log_info - verbose translation of firmware log info
1336 * @ioc: per adapter object
1337 * @log_info: log info
1338 */
1339 static void
_base_sas_log_info(struct MPT3SAS_ADAPTER * ioc,u32 log_info)1340 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc, u32 log_info)
1341 {
1342 union loginfo_type {
1343 u32 loginfo;
1344 struct {
1345 u32 subcode:16;
1346 u32 code:8;
1347 u32 originator:4;
1348 u32 bus_type:4;
1349 } dw;
1350 };
1351 union loginfo_type sas_loginfo;
1352 char *originator_str = NULL;
1353
1354 sas_loginfo.loginfo = log_info;
1355 if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1356 return;
1357
1358 /* each nexus loss loginfo */
1359 if (log_info == 0x31170000)
1360 return;
1361
1362 /* eat the loginfos associated with task aborts */
1363 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1364 0x31140000 || log_info == 0x31130000))
1365 return;
1366
1367 switch (sas_loginfo.dw.originator) {
1368 case 0:
1369 originator_str = "IOP";
1370 break;
1371 case 1:
1372 originator_str = "PL";
1373 break;
1374 case 2:
1375 if (!ioc->hide_ir_msg)
1376 originator_str = "IR";
1377 else
1378 originator_str = "WarpDrive";
1379 break;
1380 }
1381
1382 ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1383 log_info,
1384 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1385 }
1386
1387 /**
1388 * _base_display_reply_info - handle reply descriptors depending on IOC Status
1389 * @ioc: per adapter object
1390 * @smid: system request message index
1391 * @msix_index: MSIX table index supplied by the OS
1392 * @reply: reply message frame (lower 32bit addr)
1393 */
1394 static void
_base_display_reply_info(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 msix_index,u32 reply)1395 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1396 u32 reply)
1397 {
1398 MPI2DefaultReply_t *mpi_reply;
1399 u16 ioc_status;
1400 u32 loginfo = 0;
1401
1402 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1403 if (unlikely(!mpi_reply)) {
1404 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n",
1405 __FILE__, __LINE__, __func__);
1406 return;
1407 }
1408 ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1409
1410 if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1411 (ioc->logging_level & MPT_DEBUG_REPLY)) {
1412 _base_sas_ioc_info(ioc, mpi_reply,
1413 mpt3sas_base_get_msg_frame(ioc, smid));
1414 }
1415
1416 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1417 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1418 _base_sas_log_info(ioc, loginfo);
1419 }
1420
1421 if (ioc_status || loginfo) {
1422 ioc_status &= MPI2_IOCSTATUS_MASK;
1423 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1424 }
1425 }
1426
1427 /**
1428 * mpt3sas_base_done - base internal command completion routine
1429 * @ioc: per adapter object
1430 * @smid: system request message index
1431 * @msix_index: MSIX table index supplied by the OS
1432 * @reply: reply message frame(lower 32bit addr)
1433 *
1434 * Return:
1435 * 1 meaning mf should be freed from _base_interrupt
1436 * 0 means the mf is freed from this function.
1437 */
1438 u8
mpt3sas_base_done(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 msix_index,u32 reply)1439 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1440 u32 reply)
1441 {
1442 MPI2DefaultReply_t *mpi_reply;
1443
1444 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1445 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1446 return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1447
1448 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1449 return 1;
1450
1451 ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1452 if (mpi_reply) {
1453 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1454 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1455 }
1456 ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1457
1458 complete(&ioc->base_cmds.done);
1459 return 1;
1460 }
1461
1462 /**
1463 * _base_async_event - main callback handler for firmware asyn events
1464 * @ioc: per adapter object
1465 * @msix_index: MSIX table index supplied by the OS
1466 * @reply: reply message frame(lower 32bit addr)
1467 *
1468 * Return:
1469 * 1 meaning mf should be freed from _base_interrupt
1470 * 0 means the mf is freed from this function.
1471 */
1472 static u8
_base_async_event(struct MPT3SAS_ADAPTER * ioc,u8 msix_index,u32 reply)1473 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1474 {
1475 Mpi2EventNotificationReply_t *mpi_reply;
1476 Mpi2EventAckRequest_t *ack_request;
1477 u16 smid;
1478 struct _event_ack_list *delayed_event_ack;
1479
1480 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1481 if (!mpi_reply)
1482 return 1;
1483 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1484 return 1;
1485
1486 _base_display_event_data(ioc, mpi_reply);
1487
1488 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1489 goto out;
1490 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1491 if (!smid) {
1492 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1493 GFP_ATOMIC);
1494 if (!delayed_event_ack)
1495 goto out;
1496 INIT_LIST_HEAD(&delayed_event_ack->list);
1497 delayed_event_ack->Event = mpi_reply->Event;
1498 delayed_event_ack->EventContext = mpi_reply->EventContext;
1499 list_add_tail(&delayed_event_ack->list,
1500 &ioc->delayed_event_ack_list);
1501 dewtprintk(ioc,
1502 ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n",
1503 le16_to_cpu(mpi_reply->Event)));
1504 goto out;
1505 }
1506
1507 ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1508 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1509 ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1510 ack_request->Event = mpi_reply->Event;
1511 ack_request->EventContext = mpi_reply->EventContext;
1512 ack_request->VF_ID = 0; /* TODO */
1513 ack_request->VP_ID = 0;
1514 ioc->put_smid_default(ioc, smid);
1515
1516 out:
1517
1518 /* scsih callback handler */
1519 mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1520
1521 /* ctl callback handler */
1522 mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1523
1524 return 1;
1525 }
1526
1527 static struct scsiio_tracker *
_get_st_from_smid(struct MPT3SAS_ADAPTER * ioc,u16 smid)1528 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1529 {
1530 struct scsi_cmnd *cmd;
1531
1532 if (WARN_ON(!smid) ||
1533 WARN_ON(smid >= ioc->hi_priority_smid))
1534 return NULL;
1535
1536 cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1537 if (cmd)
1538 return scsi_cmd_priv(cmd);
1539
1540 return NULL;
1541 }
1542
1543 /**
1544 * _base_get_cb_idx - obtain the callback index
1545 * @ioc: per adapter object
1546 * @smid: system request message index
1547 *
1548 * Return: callback index.
1549 */
1550 static u8
_base_get_cb_idx(struct MPT3SAS_ADAPTER * ioc,u16 smid)1551 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1552 {
1553 int i;
1554 u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1555 u8 cb_idx = 0xFF;
1556
1557 if (smid < ioc->hi_priority_smid) {
1558 struct scsiio_tracker *st;
1559
1560 if (smid < ctl_smid) {
1561 st = _get_st_from_smid(ioc, smid);
1562 if (st)
1563 cb_idx = st->cb_idx;
1564 } else if (smid == ctl_smid)
1565 cb_idx = ioc->ctl_cb_idx;
1566 } else if (smid < ioc->internal_smid) {
1567 i = smid - ioc->hi_priority_smid;
1568 cb_idx = ioc->hpr_lookup[i].cb_idx;
1569 } else if (smid <= ioc->hba_queue_depth) {
1570 i = smid - ioc->internal_smid;
1571 cb_idx = ioc->internal_lookup[i].cb_idx;
1572 }
1573 return cb_idx;
1574 }
1575
1576 /**
1577 * mpt3sas_base_pause_mq_polling - pause polling on the mq poll queues
1578 * when driver is flushing out the IOs.
1579 * @ioc: per adapter object
1580 *
1581 * Pause polling on the mq poll (io uring) queues when driver is flushing
1582 * out the IOs. Otherwise we may see the race condition of completing the same
1583 * IO from two paths.
1584 *
1585 * Returns nothing.
1586 */
1587 void
mpt3sas_base_pause_mq_polling(struct MPT3SAS_ADAPTER * ioc)1588 mpt3sas_base_pause_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1589 {
1590 int iopoll_q_count =
1591 ioc->reply_queue_count - ioc->iopoll_q_start_index;
1592 int qid;
1593
1594 for (qid = 0; qid < iopoll_q_count; qid++)
1595 atomic_set(&ioc->io_uring_poll_queues[qid].pause, 1);
1596
1597 /*
1598 * wait for current poll to complete.
1599 */
1600 for (qid = 0; qid < iopoll_q_count; qid++) {
1601 while (atomic_read(&ioc->io_uring_poll_queues[qid].busy)) {
1602 cpu_relax();
1603 udelay(500);
1604 }
1605 }
1606 }
1607
1608 /**
1609 * mpt3sas_base_resume_mq_polling - Resume polling on mq poll queues.
1610 * @ioc: per adapter object
1611 *
1612 * Returns nothing.
1613 */
1614 void
mpt3sas_base_resume_mq_polling(struct MPT3SAS_ADAPTER * ioc)1615 mpt3sas_base_resume_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1616 {
1617 int iopoll_q_count =
1618 ioc->reply_queue_count - ioc->iopoll_q_start_index;
1619 int qid;
1620
1621 for (qid = 0; qid < iopoll_q_count; qid++)
1622 atomic_set(&ioc->io_uring_poll_queues[qid].pause, 0);
1623 }
1624
1625 /**
1626 * mpt3sas_base_mask_interrupts - disable interrupts
1627 * @ioc: per adapter object
1628 *
1629 * Disabling ResetIRQ, Reply and Doorbell Interrupts
1630 */
1631 void
mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER * ioc)1632 mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1633 {
1634 u32 him_register;
1635
1636 ioc->mask_interrupts = 1;
1637 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1638 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1639 writel(him_register, &ioc->chip->HostInterruptMask);
1640 ioc->base_readl(&ioc->chip->HostInterruptMask);
1641 }
1642
1643 /**
1644 * mpt3sas_base_unmask_interrupts - enable interrupts
1645 * @ioc: per adapter object
1646 *
1647 * Enabling only Reply Interrupts
1648 */
1649 void
mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER * ioc)1650 mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1651 {
1652 u32 him_register;
1653
1654 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1655 him_register &= ~MPI2_HIM_RIM;
1656 writel(him_register, &ioc->chip->HostInterruptMask);
1657 ioc->mask_interrupts = 0;
1658 }
1659
1660 union reply_descriptor {
1661 u64 word;
1662 struct {
1663 u32 low;
1664 u32 high;
1665 } u;
1666 };
1667
base_mod64(u64 dividend,u32 divisor)1668 static u32 base_mod64(u64 dividend, u32 divisor)
1669 {
1670 u32 remainder;
1671
1672 if (!divisor)
1673 pr_err("mpt3sas: DIVISOR is zero, in div fn\n");
1674 remainder = do_div(dividend, divisor);
1675 return remainder;
1676 }
1677
1678 /**
1679 * _base_process_reply_queue - Process reply descriptors from reply
1680 * descriptor post queue.
1681 * @reply_q: per IRQ's reply queue object.
1682 *
1683 * Return: number of reply descriptors processed from reply
1684 * descriptor queue.
1685 */
1686 static int
_base_process_reply_queue(struct adapter_reply_queue * reply_q)1687 _base_process_reply_queue(struct adapter_reply_queue *reply_q)
1688 {
1689 union reply_descriptor rd;
1690 u64 completed_cmds;
1691 u8 request_descript_type;
1692 u16 smid;
1693 u8 cb_idx;
1694 u32 reply;
1695 u8 msix_index = reply_q->msix_index;
1696 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1697 Mpi2ReplyDescriptorsUnion_t *rpf;
1698 u8 rc;
1699
1700 completed_cmds = 0;
1701 if (!atomic_add_unless(&reply_q->busy, 1, 1))
1702 return completed_cmds;
1703
1704 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1705 request_descript_type = rpf->Default.ReplyFlags
1706 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1707 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1708 atomic_dec(&reply_q->busy);
1709 return completed_cmds;
1710 }
1711
1712 cb_idx = 0xFF;
1713 do {
1714 rd.word = le64_to_cpu(rpf->Words);
1715 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1716 goto out;
1717 reply = 0;
1718 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1719 if (request_descript_type ==
1720 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1721 request_descript_type ==
1722 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1723 request_descript_type ==
1724 MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1725 cb_idx = _base_get_cb_idx(ioc, smid);
1726 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1727 (likely(mpt_callbacks[cb_idx] != NULL))) {
1728 rc = mpt_callbacks[cb_idx](ioc, smid,
1729 msix_index, 0);
1730 if (rc)
1731 mpt3sas_base_free_smid(ioc, smid);
1732 }
1733 } else if (request_descript_type ==
1734 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1735 reply = le32_to_cpu(
1736 rpf->AddressReply.ReplyFrameAddress);
1737 if (reply > ioc->reply_dma_max_address ||
1738 reply < ioc->reply_dma_min_address)
1739 reply = 0;
1740 if (smid) {
1741 cb_idx = _base_get_cb_idx(ioc, smid);
1742 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1743 (likely(mpt_callbacks[cb_idx] != NULL))) {
1744 rc = mpt_callbacks[cb_idx](ioc, smid,
1745 msix_index, reply);
1746 if (reply)
1747 _base_display_reply_info(ioc,
1748 smid, msix_index, reply);
1749 if (rc)
1750 mpt3sas_base_free_smid(ioc,
1751 smid);
1752 }
1753 } else {
1754 _base_async_event(ioc, msix_index, reply);
1755 }
1756
1757 /* reply free queue handling */
1758 if (reply) {
1759 ioc->reply_free_host_index =
1760 (ioc->reply_free_host_index ==
1761 (ioc->reply_free_queue_depth - 1)) ?
1762 0 : ioc->reply_free_host_index + 1;
1763 ioc->reply_free[ioc->reply_free_host_index] =
1764 cpu_to_le32(reply);
1765 if (ioc->is_mcpu_endpoint)
1766 _base_clone_reply_to_sys_mem(ioc,
1767 reply,
1768 ioc->reply_free_host_index);
1769 writel(ioc->reply_free_host_index,
1770 &ioc->chip->ReplyFreeHostIndex);
1771 }
1772 }
1773
1774 rpf->Words = cpu_to_le64(ULLONG_MAX);
1775 reply_q->reply_post_host_index =
1776 (reply_q->reply_post_host_index ==
1777 (ioc->reply_post_queue_depth - 1)) ? 0 :
1778 reply_q->reply_post_host_index + 1;
1779 request_descript_type =
1780 reply_q->reply_post_free[reply_q->reply_post_host_index].
1781 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1782 completed_cmds++;
1783 /* Update the reply post host index after continuously
1784 * processing the threshold number of Reply Descriptors.
1785 * So that FW can find enough entries to post the Reply
1786 * Descriptors in the reply descriptor post queue.
1787 */
1788 if (completed_cmds >= ioc->thresh_hold) {
1789 if (ioc->combined_reply_queue) {
1790 writel(reply_q->reply_post_host_index |
1791 ((msix_index & 7) <<
1792 MPI2_RPHI_MSIX_INDEX_SHIFT),
1793 ioc->replyPostRegisterIndex[msix_index/8]);
1794 } else {
1795 writel(reply_q->reply_post_host_index |
1796 (msix_index <<
1797 MPI2_RPHI_MSIX_INDEX_SHIFT),
1798 &ioc->chip->ReplyPostHostIndex);
1799 }
1800 if (!reply_q->is_iouring_poll_q &&
1801 !reply_q->irq_poll_scheduled) {
1802 reply_q->irq_poll_scheduled = true;
1803 irq_poll_sched(&reply_q->irqpoll);
1804 }
1805 atomic_dec(&reply_q->busy);
1806 return completed_cmds;
1807 }
1808 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1809 goto out;
1810 if (!reply_q->reply_post_host_index)
1811 rpf = reply_q->reply_post_free;
1812 else
1813 rpf++;
1814 } while (1);
1815
1816 out:
1817
1818 if (!completed_cmds) {
1819 atomic_dec(&reply_q->busy);
1820 return completed_cmds;
1821 }
1822
1823 if (ioc->is_warpdrive) {
1824 writel(reply_q->reply_post_host_index,
1825 ioc->reply_post_host_index[msix_index]);
1826 atomic_dec(&reply_q->busy);
1827 return completed_cmds;
1828 }
1829
1830 /* Update Reply Post Host Index.
1831 * For those HBA's which support combined reply queue feature
1832 * 1. Get the correct Supplemental Reply Post Host Index Register.
1833 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1834 * Index Register address bank i.e replyPostRegisterIndex[],
1835 * 2. Then update this register with new reply host index value
1836 * in ReplyPostIndex field and the MSIxIndex field with
1837 * msix_index value reduced to a value between 0 and 7,
1838 * using a modulo 8 operation. Since each Supplemental Reply Post
1839 * Host Index Register supports 8 MSI-X vectors.
1840 *
1841 * For other HBA's just update the Reply Post Host Index register with
1842 * new reply host index value in ReplyPostIndex Field and msix_index
1843 * value in MSIxIndex field.
1844 */
1845 if (ioc->combined_reply_queue)
1846 writel(reply_q->reply_post_host_index | ((msix_index & 7) <<
1847 MPI2_RPHI_MSIX_INDEX_SHIFT),
1848 ioc->replyPostRegisterIndex[msix_index/8]);
1849 else
1850 writel(reply_q->reply_post_host_index | (msix_index <<
1851 MPI2_RPHI_MSIX_INDEX_SHIFT),
1852 &ioc->chip->ReplyPostHostIndex);
1853 atomic_dec(&reply_q->busy);
1854 return completed_cmds;
1855 }
1856
1857 /**
1858 * mpt3sas_blk_mq_poll - poll the blk mq poll queue
1859 * @shost: Scsi_Host object
1860 * @queue_num: hw ctx queue number
1861 *
1862 * Return number of entries that has been processed from poll queue.
1863 */
mpt3sas_blk_mq_poll(struct Scsi_Host * shost,unsigned int queue_num)1864 int mpt3sas_blk_mq_poll(struct Scsi_Host *shost, unsigned int queue_num)
1865 {
1866 struct MPT3SAS_ADAPTER *ioc =
1867 (struct MPT3SAS_ADAPTER *)shost->hostdata;
1868 struct adapter_reply_queue *reply_q;
1869 int num_entries = 0;
1870 int qid = queue_num - ioc->iopoll_q_start_index;
1871
1872 if (atomic_read(&ioc->io_uring_poll_queues[qid].pause) ||
1873 !atomic_add_unless(&ioc->io_uring_poll_queues[qid].busy, 1, 1))
1874 return 0;
1875
1876 reply_q = ioc->io_uring_poll_queues[qid].reply_q;
1877
1878 num_entries = _base_process_reply_queue(reply_q);
1879 atomic_dec(&ioc->io_uring_poll_queues[qid].busy);
1880
1881 return num_entries;
1882 }
1883
1884 /**
1885 * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1886 * @irq: irq number (not used)
1887 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1888 *
1889 * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1890 */
1891 static irqreturn_t
_base_interrupt(int irq,void * bus_id)1892 _base_interrupt(int irq, void *bus_id)
1893 {
1894 struct adapter_reply_queue *reply_q = bus_id;
1895 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1896
1897 if (ioc->mask_interrupts)
1898 return IRQ_NONE;
1899 if (reply_q->irq_poll_scheduled)
1900 return IRQ_HANDLED;
1901 return ((_base_process_reply_queue(reply_q) > 0) ?
1902 IRQ_HANDLED : IRQ_NONE);
1903 }
1904
1905 /**
1906 * _base_irqpoll - IRQ poll callback handler
1907 * @irqpoll: irq_poll object
1908 * @budget: irq poll weight
1909 *
1910 * Return: number of reply descriptors processed
1911 */
1912 static int
_base_irqpoll(struct irq_poll * irqpoll,int budget)1913 _base_irqpoll(struct irq_poll *irqpoll, int budget)
1914 {
1915 struct adapter_reply_queue *reply_q;
1916 int num_entries = 0;
1917
1918 reply_q = container_of(irqpoll, struct adapter_reply_queue,
1919 irqpoll);
1920 if (reply_q->irq_line_enable) {
1921 disable_irq_nosync(reply_q->os_irq);
1922 reply_q->irq_line_enable = false;
1923 }
1924 num_entries = _base_process_reply_queue(reply_q);
1925 if (num_entries < budget) {
1926 irq_poll_complete(irqpoll);
1927 reply_q->irq_poll_scheduled = false;
1928 reply_q->irq_line_enable = true;
1929 enable_irq(reply_q->os_irq);
1930 /*
1931 * Go for one more round of processing the
1932 * reply descriptor post queue in case the HBA
1933 * Firmware has posted some reply descriptors
1934 * while reenabling the IRQ.
1935 */
1936 _base_process_reply_queue(reply_q);
1937 }
1938
1939 return num_entries;
1940 }
1941
1942 /**
1943 * _base_init_irqpolls - initliaze IRQ polls
1944 * @ioc: per adapter object
1945 *
1946 * Return: nothing
1947 */
1948 static void
_base_init_irqpolls(struct MPT3SAS_ADAPTER * ioc)1949 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc)
1950 {
1951 struct adapter_reply_queue *reply_q, *next;
1952
1953 if (list_empty(&ioc->reply_queue_list))
1954 return;
1955
1956 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1957 if (reply_q->is_iouring_poll_q)
1958 continue;
1959 irq_poll_init(&reply_q->irqpoll,
1960 ioc->hba_queue_depth/4, _base_irqpoll);
1961 reply_q->irq_poll_scheduled = false;
1962 reply_q->irq_line_enable = true;
1963 reply_q->os_irq = pci_irq_vector(ioc->pdev,
1964 reply_q->msix_index);
1965 }
1966 }
1967
1968 /**
1969 * _base_is_controller_msix_enabled - is controller support muli-reply queues
1970 * @ioc: per adapter object
1971 *
1972 * Return: Whether or not MSI/X is enabled.
1973 */
1974 static inline int
_base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER * ioc)1975 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1976 {
1977 return (ioc->facts.IOCCapabilities &
1978 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1979 }
1980
1981 /**
1982 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1983 * @ioc: per adapter object
1984 * @poll: poll over reply descriptor pools incase interrupt for
1985 * timed-out SCSI command got delayed
1986 * Context: non-ISR context
1987 *
1988 * Called when a Task Management request has completed.
1989 */
1990 void
mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER * ioc,u8 poll)1991 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll)
1992 {
1993 struct adapter_reply_queue *reply_q;
1994
1995 /* If MSIX capability is turned off
1996 * then multi-queues are not enabled
1997 */
1998 if (!_base_is_controller_msix_enabled(ioc))
1999 return;
2000
2001 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
2002 if (ioc->shost_recovery || ioc->remove_host ||
2003 ioc->pci_error_recovery)
2004 return;
2005 /* TMs are on msix_index == 0 */
2006 if (reply_q->msix_index == 0)
2007 continue;
2008
2009 if (reply_q->is_iouring_poll_q) {
2010 _base_process_reply_queue(reply_q);
2011 continue;
2012 }
2013
2014 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
2015 if (reply_q->irq_poll_scheduled) {
2016 /* Calling irq_poll_disable will wait for any pending
2017 * callbacks to have completed.
2018 */
2019 irq_poll_disable(&reply_q->irqpoll);
2020 irq_poll_enable(&reply_q->irqpoll);
2021 /* check how the scheduled poll has ended,
2022 * clean up only if necessary
2023 */
2024 if (reply_q->irq_poll_scheduled) {
2025 reply_q->irq_poll_scheduled = false;
2026 reply_q->irq_line_enable = true;
2027 enable_irq(reply_q->os_irq);
2028 }
2029 }
2030
2031 if (poll)
2032 _base_process_reply_queue(reply_q);
2033 }
2034 }
2035
2036 /**
2037 * mpt3sas_base_release_callback_handler - clear interrupt callback handler
2038 * @cb_idx: callback index
2039 */
2040 void
mpt3sas_base_release_callback_handler(u8 cb_idx)2041 mpt3sas_base_release_callback_handler(u8 cb_idx)
2042 {
2043 mpt_callbacks[cb_idx] = NULL;
2044 }
2045
2046 /**
2047 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
2048 * @cb_func: callback function
2049 *
2050 * Return: Index of @cb_func.
2051 */
2052 u8
mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)2053 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
2054 {
2055 u8 cb_idx;
2056
2057 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
2058 if (mpt_callbacks[cb_idx] == NULL)
2059 break;
2060
2061 mpt_callbacks[cb_idx] = cb_func;
2062 return cb_idx;
2063 }
2064
2065 /**
2066 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
2067 */
2068 void
mpt3sas_base_initialize_callback_handler(void)2069 mpt3sas_base_initialize_callback_handler(void)
2070 {
2071 u8 cb_idx;
2072
2073 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
2074 mpt3sas_base_release_callback_handler(cb_idx);
2075 }
2076
2077
2078 /**
2079 * _base_build_zero_len_sge - build zero length sg entry
2080 * @ioc: per adapter object
2081 * @paddr: virtual address for SGE
2082 *
2083 * Create a zero length scatter gather entry to insure the IOCs hardware has
2084 * something to use if the target device goes brain dead and tries
2085 * to send data even when none is asked for.
2086 */
2087 static void
_base_build_zero_len_sge(struct MPT3SAS_ADAPTER * ioc,void * paddr)2088 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2089 {
2090 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
2091 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
2092 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
2093 MPI2_SGE_FLAGS_SHIFT);
2094 ioc->base_add_sg_single(paddr, flags_length, -1);
2095 }
2096
2097 /**
2098 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
2099 * @paddr: virtual address for SGE
2100 * @flags_length: SGE flags and data transfer length
2101 * @dma_addr: Physical address
2102 */
2103 static void
_base_add_sg_single_32(void * paddr,u32 flags_length,dma_addr_t dma_addr)2104 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2105 {
2106 Mpi2SGESimple32_t *sgel = paddr;
2107
2108 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
2109 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2110 sgel->FlagsLength = cpu_to_le32(flags_length);
2111 sgel->Address = cpu_to_le32(dma_addr);
2112 }
2113
2114
2115 /**
2116 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
2117 * @paddr: virtual address for SGE
2118 * @flags_length: SGE flags and data transfer length
2119 * @dma_addr: Physical address
2120 */
2121 static void
_base_add_sg_single_64(void * paddr,u32 flags_length,dma_addr_t dma_addr)2122 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2123 {
2124 Mpi2SGESimple64_t *sgel = paddr;
2125
2126 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
2127 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2128 sgel->FlagsLength = cpu_to_le32(flags_length);
2129 sgel->Address = cpu_to_le64(dma_addr);
2130 }
2131
2132 /**
2133 * _base_get_chain_buffer_tracker - obtain chain tracker
2134 * @ioc: per adapter object
2135 * @scmd: SCSI commands of the IO request
2136 *
2137 * Return: chain tracker from chain_lookup table using key as
2138 * smid and smid's chain_offset.
2139 */
2140 static struct chain_tracker *
_base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd)2141 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
2142 struct scsi_cmnd *scmd)
2143 {
2144 struct chain_tracker *chain_req;
2145 struct scsiio_tracker *st = scsi_cmd_priv(scmd);
2146 u16 smid = st->smid;
2147 u8 chain_offset =
2148 atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
2149
2150 if (chain_offset == ioc->chains_needed_per_io)
2151 return NULL;
2152
2153 chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
2154 atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
2155 return chain_req;
2156 }
2157
2158
2159 /**
2160 * _base_build_sg - build generic sg
2161 * @ioc: per adapter object
2162 * @psge: virtual address for SGE
2163 * @data_out_dma: physical address for WRITES
2164 * @data_out_sz: data xfer size for WRITES
2165 * @data_in_dma: physical address for READS
2166 * @data_in_sz: data xfer size for READS
2167 */
2168 static void
_base_build_sg(struct MPT3SAS_ADAPTER * ioc,void * psge,dma_addr_t data_out_dma,size_t data_out_sz,dma_addr_t data_in_dma,size_t data_in_sz)2169 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
2170 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2171 size_t data_in_sz)
2172 {
2173 u32 sgl_flags;
2174
2175 if (!data_out_sz && !data_in_sz) {
2176 _base_build_zero_len_sge(ioc, psge);
2177 return;
2178 }
2179
2180 if (data_out_sz && data_in_sz) {
2181 /* WRITE sgel first */
2182 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2183 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
2184 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2185 ioc->base_add_sg_single(psge, sgl_flags |
2186 data_out_sz, data_out_dma);
2187
2188 /* incr sgel */
2189 psge += ioc->sge_size;
2190
2191 /* READ sgel last */
2192 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2193 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2194 MPI2_SGE_FLAGS_END_OF_LIST);
2195 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2196 ioc->base_add_sg_single(psge, sgl_flags |
2197 data_in_sz, data_in_dma);
2198 } else if (data_out_sz) /* WRITE */ {
2199 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2200 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2201 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
2202 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2203 ioc->base_add_sg_single(psge, sgl_flags |
2204 data_out_sz, data_out_dma);
2205 } else if (data_in_sz) /* READ */ {
2206 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2207 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2208 MPI2_SGE_FLAGS_END_OF_LIST);
2209 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2210 ioc->base_add_sg_single(psge, sgl_flags |
2211 data_in_sz, data_in_dma);
2212 }
2213 }
2214
2215 /* IEEE format sgls */
2216
2217 /**
2218 * _base_build_nvme_prp - This function is called for NVMe end devices to build
2219 * a native SGL (NVMe PRP).
2220 * @ioc: per adapter object
2221 * @smid: system request message index for getting asscociated SGL
2222 * @nvme_encap_request: the NVMe request msg frame pointer
2223 * @data_out_dma: physical address for WRITES
2224 * @data_out_sz: data xfer size for WRITES
2225 * @data_in_dma: physical address for READS
2226 * @data_in_sz: data xfer size for READS
2227 *
2228 * The native SGL is built starting in the first PRP
2229 * entry of the NVMe message (PRP1). If the data buffer is small enough to be
2230 * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is
2231 * used to describe a larger data buffer. If the data buffer is too large to
2232 * describe using the two PRP entriess inside the NVMe message, then PRP1
2233 * describes the first data memory segment, and PRP2 contains a pointer to a PRP
2234 * list located elsewhere in memory to describe the remaining data memory
2235 * segments. The PRP list will be contiguous.
2236 *
2237 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP
2238 * consists of a list of PRP entries to describe a number of noncontigous
2239 * physical memory segments as a single memory buffer, just as a SGL does. Note
2240 * however, that this function is only used by the IOCTL call, so the memory
2241 * given will be guaranteed to be contiguous. There is no need to translate
2242 * non-contiguous SGL into a PRP in this case. All PRPs will describe
2243 * contiguous space that is one page size each.
2244 *
2245 * Each NVMe message contains two PRP entries. The first (PRP1) either contains
2246 * a PRP list pointer or a PRP element, depending upon the command. PRP2
2247 * contains the second PRP element if the memory being described fits within 2
2248 * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
2249 *
2250 * A PRP list pointer contains the address of a PRP list, structured as a linear
2251 * array of PRP entries. Each PRP entry in this list describes a segment of
2252 * physical memory.
2253 *
2254 * Each 64-bit PRP entry comprises an address and an offset field. The address
2255 * always points at the beginning of a 4KB physical memory page, and the offset
2256 * describes where within that 4KB page the memory segment begins. Only the
2257 * first element in a PRP list may contain a non-zero offset, implying that all
2258 * memory segments following the first begin at the start of a 4KB page.
2259 *
2260 * Each PRP element normally describes 4KB of physical memory, with exceptions
2261 * for the first and last elements in the list. If the memory being described
2262 * by the list begins at a non-zero offset within the first 4KB page, then the
2263 * first PRP element will contain a non-zero offset indicating where the region
2264 * begins within the 4KB page. The last memory segment may end before the end
2265 * of the 4KB segment, depending upon the overall size of the memory being
2266 * described by the PRP list.
2267 *
2268 * Since PRP entries lack any indication of size, the overall data buffer length
2269 * is used to determine where the end of the data memory buffer is located, and
2270 * how many PRP entries are required to describe it.
2271 */
2272 static void
_base_build_nvme_prp(struct MPT3SAS_ADAPTER * ioc,u16 smid,Mpi26NVMeEncapsulatedRequest_t * nvme_encap_request,dma_addr_t data_out_dma,size_t data_out_sz,dma_addr_t data_in_dma,size_t data_in_sz)2273 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2274 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
2275 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2276 size_t data_in_sz)
2277 {
2278 int prp_size = NVME_PRP_SIZE;
2279 __le64 *prp_entry, *prp1_entry, *prp2_entry;
2280 __le64 *prp_page;
2281 dma_addr_t prp_entry_dma, prp_page_dma, dma_addr;
2282 u32 offset, entry_len;
2283 u32 page_mask_result, page_mask;
2284 size_t length;
2285 struct mpt3sas_nvme_cmd *nvme_cmd =
2286 (void *)nvme_encap_request->NVMe_Command;
2287
2288 /*
2289 * Not all commands require a data transfer. If no data, just return
2290 * without constructing any PRP.
2291 */
2292 if (!data_in_sz && !data_out_sz)
2293 return;
2294 prp1_entry = &nvme_cmd->prp1;
2295 prp2_entry = &nvme_cmd->prp2;
2296 prp_entry = prp1_entry;
2297 /*
2298 * For the PRP entries, use the specially allocated buffer of
2299 * contiguous memory.
2300 */
2301 prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
2302 prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2303
2304 /*
2305 * Check if we are within 1 entry of a page boundary we don't
2306 * want our first entry to be a PRP List entry.
2307 */
2308 page_mask = ioc->page_size - 1;
2309 page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
2310 if (!page_mask_result) {
2311 /* Bump up to next page boundary. */
2312 prp_page = (__le64 *)((u8 *)prp_page + prp_size);
2313 prp_page_dma = prp_page_dma + prp_size;
2314 }
2315
2316 /*
2317 * Set PRP physical pointer, which initially points to the current PRP
2318 * DMA memory page.
2319 */
2320 prp_entry_dma = prp_page_dma;
2321
2322 /* Get physical address and length of the data buffer. */
2323 if (data_in_sz) {
2324 dma_addr = data_in_dma;
2325 length = data_in_sz;
2326 } else {
2327 dma_addr = data_out_dma;
2328 length = data_out_sz;
2329 }
2330
2331 /* Loop while the length is not zero. */
2332 while (length) {
2333 /*
2334 * Check if we need to put a list pointer here if we are at
2335 * page boundary - prp_size (8 bytes).
2336 */
2337 page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2338 if (!page_mask_result) {
2339 /*
2340 * This is the last entry in a PRP List, so we need to
2341 * put a PRP list pointer here. What this does is:
2342 * - bump the current memory pointer to the next
2343 * address, which will be the next full page.
2344 * - set the PRP Entry to point to that page. This
2345 * is now the PRP List pointer.
2346 * - bump the PRP Entry pointer the start of the
2347 * next page. Since all of this PRP memory is
2348 * contiguous, no need to get a new page - it's
2349 * just the next address.
2350 */
2351 prp_entry_dma++;
2352 *prp_entry = cpu_to_le64(prp_entry_dma);
2353 prp_entry++;
2354 }
2355
2356 /* Need to handle if entry will be part of a page. */
2357 offset = dma_addr & page_mask;
2358 entry_len = ioc->page_size - offset;
2359
2360 if (prp_entry == prp1_entry) {
2361 /*
2362 * Must fill in the first PRP pointer (PRP1) before
2363 * moving on.
2364 */
2365 *prp1_entry = cpu_to_le64(dma_addr);
2366
2367 /*
2368 * Now point to the second PRP entry within the
2369 * command (PRP2).
2370 */
2371 prp_entry = prp2_entry;
2372 } else if (prp_entry == prp2_entry) {
2373 /*
2374 * Should the PRP2 entry be a PRP List pointer or just
2375 * a regular PRP pointer? If there is more than one
2376 * more page of data, must use a PRP List pointer.
2377 */
2378 if (length > ioc->page_size) {
2379 /*
2380 * PRP2 will contain a PRP List pointer because
2381 * more PRP's are needed with this command. The
2382 * list will start at the beginning of the
2383 * contiguous buffer.
2384 */
2385 *prp2_entry = cpu_to_le64(prp_entry_dma);
2386
2387 /*
2388 * The next PRP Entry will be the start of the
2389 * first PRP List.
2390 */
2391 prp_entry = prp_page;
2392 } else {
2393 /*
2394 * After this, the PRP Entries are complete.
2395 * This command uses 2 PRP's and no PRP list.
2396 */
2397 *prp2_entry = cpu_to_le64(dma_addr);
2398 }
2399 } else {
2400 /*
2401 * Put entry in list and bump the addresses.
2402 *
2403 * After PRP1 and PRP2 are filled in, this will fill in
2404 * all remaining PRP entries in a PRP List, one per
2405 * each time through the loop.
2406 */
2407 *prp_entry = cpu_to_le64(dma_addr);
2408 prp_entry++;
2409 prp_entry_dma++;
2410 }
2411
2412 /*
2413 * Bump the phys address of the command's data buffer by the
2414 * entry_len.
2415 */
2416 dma_addr += entry_len;
2417
2418 /* Decrement length accounting for last partial page. */
2419 if (entry_len > length)
2420 length = 0;
2421 else
2422 length -= entry_len;
2423 }
2424 }
2425
2426 /**
2427 * base_make_prp_nvme - Prepare PRPs (Physical Region Page) -
2428 * SGLs specific to NVMe drives only
2429 *
2430 * @ioc: per adapter object
2431 * @scmd: SCSI command from the mid-layer
2432 * @mpi_request: mpi request
2433 * @smid: msg Index
2434 * @sge_count: scatter gather element count.
2435 *
2436 * Return: true: PRPs are built
2437 * false: IEEE SGLs needs to be built
2438 */
2439 static void
base_make_prp_nvme(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd,Mpi25SCSIIORequest_t * mpi_request,u16 smid,int sge_count)2440 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2441 struct scsi_cmnd *scmd,
2442 Mpi25SCSIIORequest_t *mpi_request,
2443 u16 smid, int sge_count)
2444 {
2445 int sge_len, num_prp_in_chain = 0;
2446 Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2447 __le64 *curr_buff;
2448 dma_addr_t msg_dma, sge_addr, offset;
2449 u32 page_mask, page_mask_result;
2450 struct scatterlist *sg_scmd;
2451 u32 first_prp_len;
2452 int data_len = scsi_bufflen(scmd);
2453 u32 nvme_pg_size;
2454
2455 nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2456 /*
2457 * Nvme has a very convoluted prp format. One prp is required
2458 * for each page or partial page. Driver need to split up OS sg_list
2459 * entries if it is longer than one page or cross a page
2460 * boundary. Driver also have to insert a PRP list pointer entry as
2461 * the last entry in each physical page of the PRP list.
2462 *
2463 * NOTE: The first PRP "entry" is actually placed in the first
2464 * SGL entry in the main message as IEEE 64 format. The 2nd
2465 * entry in the main message is the chain element, and the rest
2466 * of the PRP entries are built in the contiguous pcie buffer.
2467 */
2468 page_mask = nvme_pg_size - 1;
2469
2470 /*
2471 * Native SGL is needed.
2472 * Put a chain element in main message frame that points to the first
2473 * chain buffer.
2474 *
2475 * NOTE: The ChainOffset field must be 0 when using a chain pointer to
2476 * a native SGL.
2477 */
2478
2479 /* Set main message chain element pointer */
2480 main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2481 /*
2482 * For NVMe the chain element needs to be the 2nd SG entry in the main
2483 * message.
2484 */
2485 main_chain_element = (Mpi25IeeeSgeChain64_t *)
2486 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2487
2488 /*
2489 * For the PRP entries, use the specially allocated buffer of
2490 * contiguous memory. Normal chain buffers can't be used
2491 * because each chain buffer would need to be the size of an OS
2492 * page (4k).
2493 */
2494 curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2495 msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2496
2497 main_chain_element->Address = cpu_to_le64(msg_dma);
2498 main_chain_element->NextChainOffset = 0;
2499 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2500 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2501 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2502
2503 /* Build first prp, sge need not to be page aligned*/
2504 ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2505 sg_scmd = scsi_sglist(scmd);
2506 sge_addr = sg_dma_address(sg_scmd);
2507 sge_len = sg_dma_len(sg_scmd);
2508
2509 offset = sge_addr & page_mask;
2510 first_prp_len = nvme_pg_size - offset;
2511
2512 ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2513 ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2514
2515 data_len -= first_prp_len;
2516
2517 if (sge_len > first_prp_len) {
2518 sge_addr += first_prp_len;
2519 sge_len -= first_prp_len;
2520 } else if (data_len && (sge_len == first_prp_len)) {
2521 sg_scmd = sg_next(sg_scmd);
2522 sge_addr = sg_dma_address(sg_scmd);
2523 sge_len = sg_dma_len(sg_scmd);
2524 }
2525
2526 for (;;) {
2527 offset = sge_addr & page_mask;
2528
2529 /* Put PRP pointer due to page boundary*/
2530 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2531 if (unlikely(!page_mask_result)) {
2532 scmd_printk(KERN_NOTICE,
2533 scmd, "page boundary curr_buff: 0x%p\n",
2534 curr_buff);
2535 msg_dma += 8;
2536 *curr_buff = cpu_to_le64(msg_dma);
2537 curr_buff++;
2538 num_prp_in_chain++;
2539 }
2540
2541 *curr_buff = cpu_to_le64(sge_addr);
2542 curr_buff++;
2543 msg_dma += 8;
2544 num_prp_in_chain++;
2545
2546 sge_addr += nvme_pg_size;
2547 sge_len -= nvme_pg_size;
2548 data_len -= nvme_pg_size;
2549
2550 if (data_len <= 0)
2551 break;
2552
2553 if (sge_len > 0)
2554 continue;
2555
2556 sg_scmd = sg_next(sg_scmd);
2557 sge_addr = sg_dma_address(sg_scmd);
2558 sge_len = sg_dma_len(sg_scmd);
2559 }
2560
2561 main_chain_element->Length =
2562 cpu_to_le32(num_prp_in_chain * sizeof(u64));
2563 return;
2564 }
2565
2566 static bool
base_is_prp_possible(struct MPT3SAS_ADAPTER * ioc,struct _pcie_device * pcie_device,struct scsi_cmnd * scmd,int sge_count)2567 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2568 struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2569 {
2570 u32 data_length = 0;
2571 bool build_prp = true;
2572
2573 data_length = scsi_bufflen(scmd);
2574 if (pcie_device &&
2575 (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) {
2576 build_prp = false;
2577 return build_prp;
2578 }
2579
2580 /* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2581 * we built IEEE SGL
2582 */
2583 if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2584 build_prp = false;
2585
2586 return build_prp;
2587 }
2588
2589 /**
2590 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2591 * determine if the driver needs to build a native SGL. If so, that native
2592 * SGL is built in the special contiguous buffers allocated especially for
2593 * PCIe SGL creation. If the driver will not build a native SGL, return
2594 * TRUE and a normal IEEE SGL will be built. Currently this routine
2595 * supports NVMe.
2596 * @ioc: per adapter object
2597 * @mpi_request: mf request pointer
2598 * @smid: system request message index
2599 * @scmd: scsi command
2600 * @pcie_device: points to the PCIe device's info
2601 *
2602 * Return: 0 if native SGL was built, 1 if no SGL was built
2603 */
2604 static int
_base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER * ioc,Mpi25SCSIIORequest_t * mpi_request,u16 smid,struct scsi_cmnd * scmd,struct _pcie_device * pcie_device)2605 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2606 Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2607 struct _pcie_device *pcie_device)
2608 {
2609 int sges_left;
2610
2611 /* Get the SG list pointer and info. */
2612 sges_left = scsi_dma_map(scmd);
2613 if (sges_left < 0)
2614 return 1;
2615
2616 /* Check if we need to build a native SG list. */
2617 if (!base_is_prp_possible(ioc, pcie_device,
2618 scmd, sges_left)) {
2619 /* We built a native SG list, just return. */
2620 goto out;
2621 }
2622
2623 /*
2624 * Build native NVMe PRP.
2625 */
2626 base_make_prp_nvme(ioc, scmd, mpi_request,
2627 smid, sges_left);
2628
2629 return 0;
2630 out:
2631 scsi_dma_unmap(scmd);
2632 return 1;
2633 }
2634
2635 /**
2636 * _base_add_sg_single_ieee - add sg element for IEEE format
2637 * @paddr: virtual address for SGE
2638 * @flags: SGE flags
2639 * @chain_offset: number of 128 byte elements from start of segment
2640 * @length: data transfer length
2641 * @dma_addr: Physical address
2642 */
2643 static void
_base_add_sg_single_ieee(void * paddr,u8 flags,u8 chain_offset,u32 length,dma_addr_t dma_addr)2644 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2645 dma_addr_t dma_addr)
2646 {
2647 Mpi25IeeeSgeChain64_t *sgel = paddr;
2648
2649 sgel->Flags = flags;
2650 sgel->NextChainOffset = chain_offset;
2651 sgel->Length = cpu_to_le32(length);
2652 sgel->Address = cpu_to_le64(dma_addr);
2653 }
2654
2655 /**
2656 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2657 * @ioc: per adapter object
2658 * @paddr: virtual address for SGE
2659 *
2660 * Create a zero length scatter gather entry to insure the IOCs hardware has
2661 * something to use if the target device goes brain dead and tries
2662 * to send data even when none is asked for.
2663 */
2664 static void
_base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER * ioc,void * paddr)2665 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2666 {
2667 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2668 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2669 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2670
2671 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2672 }
2673
2674 /**
2675 * _base_build_sg_scmd - main sg creation routine
2676 * pcie_device is unused here!
2677 * @ioc: per adapter object
2678 * @scmd: scsi command
2679 * @smid: system request message index
2680 * @unused: unused pcie_device pointer
2681 * Context: none.
2682 *
2683 * The main routine that builds scatter gather table from a given
2684 * scsi request sent via the .queuecommand main handler.
2685 *
2686 * Return: 0 success, anything else error
2687 */
2688 static int
_base_build_sg_scmd(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd,u16 smid,struct _pcie_device * unused)2689 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2690 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2691 {
2692 Mpi2SCSIIORequest_t *mpi_request;
2693 dma_addr_t chain_dma;
2694 struct scatterlist *sg_scmd;
2695 void *sg_local, *chain;
2696 u32 chain_offset;
2697 u32 chain_length;
2698 u32 chain_flags;
2699 int sges_left;
2700 u32 sges_in_segment;
2701 u32 sgl_flags;
2702 u32 sgl_flags_last_element;
2703 u32 sgl_flags_end_buffer;
2704 struct chain_tracker *chain_req;
2705
2706 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2707
2708 /* init scatter gather flags */
2709 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2710 if (scmd->sc_data_direction == DMA_TO_DEVICE)
2711 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2712 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2713 << MPI2_SGE_FLAGS_SHIFT;
2714 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2715 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2716 << MPI2_SGE_FLAGS_SHIFT;
2717 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2718
2719 sg_scmd = scsi_sglist(scmd);
2720 sges_left = scsi_dma_map(scmd);
2721 if (sges_left < 0)
2722 return -ENOMEM;
2723
2724 sg_local = &mpi_request->SGL;
2725 sges_in_segment = ioc->max_sges_in_main_message;
2726 if (sges_left <= sges_in_segment)
2727 goto fill_in_last_segment;
2728
2729 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2730 (sges_in_segment * ioc->sge_size))/4;
2731
2732 /* fill in main message segment when there is a chain following */
2733 while (sges_in_segment) {
2734 if (sges_in_segment == 1)
2735 ioc->base_add_sg_single(sg_local,
2736 sgl_flags_last_element | sg_dma_len(sg_scmd),
2737 sg_dma_address(sg_scmd));
2738 else
2739 ioc->base_add_sg_single(sg_local, sgl_flags |
2740 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2741 sg_scmd = sg_next(sg_scmd);
2742 sg_local += ioc->sge_size;
2743 sges_left--;
2744 sges_in_segment--;
2745 }
2746
2747 /* initializing the chain flags and pointers */
2748 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2749 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2750 if (!chain_req)
2751 return -1;
2752 chain = chain_req->chain_buffer;
2753 chain_dma = chain_req->chain_buffer_dma;
2754 do {
2755 sges_in_segment = (sges_left <=
2756 ioc->max_sges_in_chain_message) ? sges_left :
2757 ioc->max_sges_in_chain_message;
2758 chain_offset = (sges_left == sges_in_segment) ?
2759 0 : (sges_in_segment * ioc->sge_size)/4;
2760 chain_length = sges_in_segment * ioc->sge_size;
2761 if (chain_offset) {
2762 chain_offset = chain_offset <<
2763 MPI2_SGE_CHAIN_OFFSET_SHIFT;
2764 chain_length += ioc->sge_size;
2765 }
2766 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2767 chain_length, chain_dma);
2768 sg_local = chain;
2769 if (!chain_offset)
2770 goto fill_in_last_segment;
2771
2772 /* fill in chain segments */
2773 while (sges_in_segment) {
2774 if (sges_in_segment == 1)
2775 ioc->base_add_sg_single(sg_local,
2776 sgl_flags_last_element |
2777 sg_dma_len(sg_scmd),
2778 sg_dma_address(sg_scmd));
2779 else
2780 ioc->base_add_sg_single(sg_local, sgl_flags |
2781 sg_dma_len(sg_scmd),
2782 sg_dma_address(sg_scmd));
2783 sg_scmd = sg_next(sg_scmd);
2784 sg_local += ioc->sge_size;
2785 sges_left--;
2786 sges_in_segment--;
2787 }
2788
2789 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2790 if (!chain_req)
2791 return -1;
2792 chain = chain_req->chain_buffer;
2793 chain_dma = chain_req->chain_buffer_dma;
2794 } while (1);
2795
2796
2797 fill_in_last_segment:
2798
2799 /* fill the last segment */
2800 while (sges_left) {
2801 if (sges_left == 1)
2802 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2803 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2804 else
2805 ioc->base_add_sg_single(sg_local, sgl_flags |
2806 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2807 sg_scmd = sg_next(sg_scmd);
2808 sg_local += ioc->sge_size;
2809 sges_left--;
2810 }
2811
2812 return 0;
2813 }
2814
2815 /**
2816 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2817 * @ioc: per adapter object
2818 * @scmd: scsi command
2819 * @smid: system request message index
2820 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2821 * constructed on need.
2822 * Context: none.
2823 *
2824 * The main routine that builds scatter gather table from a given
2825 * scsi request sent via the .queuecommand main handler.
2826 *
2827 * Return: 0 success, anything else error
2828 */
2829 static int
_base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd,u16 smid,struct _pcie_device * pcie_device)2830 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2831 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2832 {
2833 Mpi25SCSIIORequest_t *mpi_request;
2834 dma_addr_t chain_dma;
2835 struct scatterlist *sg_scmd;
2836 void *sg_local, *chain;
2837 u32 chain_offset;
2838 u32 chain_length;
2839 int sges_left;
2840 u32 sges_in_segment;
2841 u8 simple_sgl_flags;
2842 u8 simple_sgl_flags_last;
2843 u8 chain_sgl_flags;
2844 struct chain_tracker *chain_req;
2845
2846 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2847
2848 /* init scatter gather flags */
2849 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2850 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2851 simple_sgl_flags_last = simple_sgl_flags |
2852 MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2853 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2854 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2855
2856 /* Check if we need to build a native SG list. */
2857 if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2858 smid, scmd, pcie_device) == 0)) {
2859 /* We built a native SG list, just return. */
2860 return 0;
2861 }
2862
2863 sg_scmd = scsi_sglist(scmd);
2864 sges_left = scsi_dma_map(scmd);
2865 if (sges_left < 0)
2866 return -ENOMEM;
2867
2868 sg_local = &mpi_request->SGL;
2869 sges_in_segment = (ioc->request_sz -
2870 offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2871 if (sges_left <= sges_in_segment)
2872 goto fill_in_last_segment;
2873
2874 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2875 (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2876
2877 /* fill in main message segment when there is a chain following */
2878 while (sges_in_segment > 1) {
2879 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2880 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2881 sg_scmd = sg_next(sg_scmd);
2882 sg_local += ioc->sge_size_ieee;
2883 sges_left--;
2884 sges_in_segment--;
2885 }
2886
2887 /* initializing the pointers */
2888 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2889 if (!chain_req)
2890 return -1;
2891 chain = chain_req->chain_buffer;
2892 chain_dma = chain_req->chain_buffer_dma;
2893 do {
2894 sges_in_segment = (sges_left <=
2895 ioc->max_sges_in_chain_message) ? sges_left :
2896 ioc->max_sges_in_chain_message;
2897 chain_offset = (sges_left == sges_in_segment) ?
2898 0 : sges_in_segment;
2899 chain_length = sges_in_segment * ioc->sge_size_ieee;
2900 if (chain_offset)
2901 chain_length += ioc->sge_size_ieee;
2902 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2903 chain_offset, chain_length, chain_dma);
2904
2905 sg_local = chain;
2906 if (!chain_offset)
2907 goto fill_in_last_segment;
2908
2909 /* fill in chain segments */
2910 while (sges_in_segment) {
2911 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2912 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2913 sg_scmd = sg_next(sg_scmd);
2914 sg_local += ioc->sge_size_ieee;
2915 sges_left--;
2916 sges_in_segment--;
2917 }
2918
2919 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2920 if (!chain_req)
2921 return -1;
2922 chain = chain_req->chain_buffer;
2923 chain_dma = chain_req->chain_buffer_dma;
2924 } while (1);
2925
2926
2927 fill_in_last_segment:
2928
2929 /* fill the last segment */
2930 while (sges_left > 0) {
2931 if (sges_left == 1)
2932 _base_add_sg_single_ieee(sg_local,
2933 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2934 sg_dma_address(sg_scmd));
2935 else
2936 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2937 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2938 sg_scmd = sg_next(sg_scmd);
2939 sg_local += ioc->sge_size_ieee;
2940 sges_left--;
2941 }
2942
2943 return 0;
2944 }
2945
2946 /**
2947 * _base_build_sg_ieee - build generic sg for IEEE format
2948 * @ioc: per adapter object
2949 * @psge: virtual address for SGE
2950 * @data_out_dma: physical address for WRITES
2951 * @data_out_sz: data xfer size for WRITES
2952 * @data_in_dma: physical address for READS
2953 * @data_in_sz: data xfer size for READS
2954 */
2955 static void
_base_build_sg_ieee(struct MPT3SAS_ADAPTER * ioc,void * psge,dma_addr_t data_out_dma,size_t data_out_sz,dma_addr_t data_in_dma,size_t data_in_sz)2956 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2957 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2958 size_t data_in_sz)
2959 {
2960 u8 sgl_flags;
2961
2962 if (!data_out_sz && !data_in_sz) {
2963 _base_build_zero_len_sge_ieee(ioc, psge);
2964 return;
2965 }
2966
2967 if (data_out_sz && data_in_sz) {
2968 /* WRITE sgel first */
2969 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2970 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2971 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2972 data_out_dma);
2973
2974 /* incr sgel */
2975 psge += ioc->sge_size_ieee;
2976
2977 /* READ sgel last */
2978 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2979 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2980 data_in_dma);
2981 } else if (data_out_sz) /* WRITE */ {
2982 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2983 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2984 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2985 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2986 data_out_dma);
2987 } else if (data_in_sz) /* READ */ {
2988 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2989 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2990 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2991 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2992 data_in_dma);
2993 }
2994 }
2995
2996 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2997
2998 /**
2999 * _base_config_dma_addressing - set dma addressing
3000 * @ioc: per adapter object
3001 * @pdev: PCI device struct
3002 *
3003 * Return: 0 for success, non-zero for failure.
3004 */
3005 static int
_base_config_dma_addressing(struct MPT3SAS_ADAPTER * ioc,struct pci_dev * pdev)3006 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
3007 {
3008 struct sysinfo s;
3009 u64 coherent_dma_mask, dma_mask;
3010
3011 if (ioc->is_mcpu_endpoint || sizeof(dma_addr_t) == 4) {
3012 ioc->dma_mask = 32;
3013 coherent_dma_mask = dma_mask = DMA_BIT_MASK(32);
3014 /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
3015 } else if (ioc->hba_mpi_version_belonged > MPI2_VERSION) {
3016 ioc->dma_mask = 63;
3017 coherent_dma_mask = dma_mask = DMA_BIT_MASK(63);
3018 } else {
3019 ioc->dma_mask = 64;
3020 coherent_dma_mask = dma_mask = DMA_BIT_MASK(64);
3021 }
3022
3023 if (ioc->use_32bit_dma)
3024 coherent_dma_mask = DMA_BIT_MASK(32);
3025
3026 if (dma_set_mask(&pdev->dev, dma_mask) ||
3027 dma_set_coherent_mask(&pdev->dev, coherent_dma_mask))
3028 return -ENODEV;
3029
3030 if (ioc->dma_mask > 32) {
3031 ioc->base_add_sg_single = &_base_add_sg_single_64;
3032 ioc->sge_size = sizeof(Mpi2SGESimple64_t);
3033 } else {
3034 ioc->base_add_sg_single = &_base_add_sg_single_32;
3035 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
3036 }
3037
3038 si_meminfo(&s);
3039 ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
3040 ioc->dma_mask, convert_to_kb(s.totalram));
3041
3042 return 0;
3043 }
3044
3045 /**
3046 * _base_check_enable_msix - checks MSIX capabable.
3047 * @ioc: per adapter object
3048 *
3049 * Check to see if card is capable of MSIX, and set number
3050 * of available msix vectors
3051 */
3052 static int
_base_check_enable_msix(struct MPT3SAS_ADAPTER * ioc)3053 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3054 {
3055 int base;
3056 u16 message_control;
3057
3058 /* Check whether controller SAS2008 B0 controller,
3059 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
3060 */
3061 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
3062 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
3063 return -EINVAL;
3064 }
3065
3066 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
3067 if (!base) {
3068 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n"));
3069 return -EINVAL;
3070 }
3071
3072 /* get msix vector count */
3073 /* NUMA_IO not supported for older controllers */
3074 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
3075 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
3076 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
3077 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
3078 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
3079 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
3080 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
3081 ioc->msix_vector_count = 1;
3082 else {
3083 pci_read_config_word(ioc->pdev, base + 2, &message_control);
3084 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
3085 }
3086 dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n",
3087 ioc->msix_vector_count));
3088 return 0;
3089 }
3090
3091 /**
3092 * mpt3sas_base_free_irq - free irq
3093 * @ioc: per adapter object
3094 *
3095 * Freeing respective reply_queue from the list.
3096 */
3097 void
mpt3sas_base_free_irq(struct MPT3SAS_ADAPTER * ioc)3098 mpt3sas_base_free_irq(struct MPT3SAS_ADAPTER *ioc)
3099 {
3100 unsigned int irq;
3101 struct adapter_reply_queue *reply_q, *next;
3102
3103 if (list_empty(&ioc->reply_queue_list))
3104 return;
3105
3106 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
3107 list_del(&reply_q->list);
3108 if (reply_q->is_iouring_poll_q) {
3109 kfree(reply_q);
3110 continue;
3111 }
3112
3113 if (ioc->smp_affinity_enable) {
3114 irq = pci_irq_vector(ioc->pdev, reply_q->msix_index);
3115 irq_update_affinity_hint(irq, NULL);
3116 }
3117 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
3118 reply_q);
3119 kfree(reply_q);
3120 }
3121 }
3122
3123 /**
3124 * _base_request_irq - request irq
3125 * @ioc: per adapter object
3126 * @index: msix index into vector table
3127 *
3128 * Inserting respective reply_queue into the list.
3129 */
3130 static int
_base_request_irq(struct MPT3SAS_ADAPTER * ioc,u8 index)3131 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
3132 {
3133 struct pci_dev *pdev = ioc->pdev;
3134 struct adapter_reply_queue *reply_q;
3135 int r, qid;
3136
3137 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
3138 if (!reply_q) {
3139 ioc_err(ioc, "unable to allocate memory %zu!\n",
3140 sizeof(struct adapter_reply_queue));
3141 return -ENOMEM;
3142 }
3143 reply_q->ioc = ioc;
3144 reply_q->msix_index = index;
3145
3146 atomic_set(&reply_q->busy, 0);
3147
3148 if (index >= ioc->iopoll_q_start_index) {
3149 qid = index - ioc->iopoll_q_start_index;
3150 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-mq-poll%d",
3151 ioc->driver_name, ioc->id, qid);
3152 reply_q->is_iouring_poll_q = 1;
3153 ioc->io_uring_poll_queues[qid].reply_q = reply_q;
3154 goto out;
3155 }
3156
3157
3158 if (ioc->msix_enable)
3159 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
3160 ioc->driver_name, ioc->id, index);
3161 else
3162 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
3163 ioc->driver_name, ioc->id);
3164 r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
3165 IRQF_SHARED, reply_q->name, reply_q);
3166 if (r) {
3167 pr_err("%s: unable to allocate interrupt %d!\n",
3168 reply_q->name, pci_irq_vector(pdev, index));
3169 kfree(reply_q);
3170 return -EBUSY;
3171 }
3172 out:
3173 INIT_LIST_HEAD(&reply_q->list);
3174 list_add_tail(&reply_q->list, &ioc->reply_queue_list);
3175 return 0;
3176 }
3177
3178 /**
3179 * _base_assign_reply_queues - assigning msix index for each cpu
3180 * @ioc: per adapter object
3181 *
3182 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
3183 */
3184 static void
_base_assign_reply_queues(struct MPT3SAS_ADAPTER * ioc)3185 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
3186 {
3187 unsigned int cpu, nr_cpus, nr_msix, index = 0, irq;
3188 struct adapter_reply_queue *reply_q;
3189 int iopoll_q_count = ioc->reply_queue_count -
3190 ioc->iopoll_q_start_index;
3191 const struct cpumask *mask;
3192
3193 if (!_base_is_controller_msix_enabled(ioc))
3194 return;
3195
3196 if (ioc->msix_load_balance)
3197 return;
3198
3199 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
3200
3201 nr_cpus = num_online_cpus();
3202 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
3203 ioc->facts.MaxMSIxVectors);
3204 if (!nr_msix)
3205 return;
3206
3207 if (ioc->smp_affinity_enable) {
3208
3209 /*
3210 * set irq affinity to local numa node for those irqs
3211 * corresponding to high iops queues.
3212 */
3213 if (ioc->high_iops_queues) {
3214 mask = cpumask_of_node(dev_to_node(&ioc->pdev->dev));
3215 for (index = 0; index < ioc->high_iops_queues;
3216 index++) {
3217 irq = pci_irq_vector(ioc->pdev, index);
3218 irq_set_affinity_and_hint(irq, mask);
3219 }
3220 }
3221
3222 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3223 const cpumask_t *mask;
3224
3225 if (reply_q->msix_index < ioc->high_iops_queues ||
3226 reply_q->msix_index >= ioc->iopoll_q_start_index)
3227 continue;
3228
3229 mask = pci_irq_get_affinity(ioc->pdev,
3230 reply_q->msix_index);
3231 if (!mask) {
3232 ioc_warn(ioc, "no affinity for msi %x\n",
3233 reply_q->msix_index);
3234 goto fall_back;
3235 }
3236
3237 for_each_cpu_and(cpu, mask, cpu_online_mask) {
3238 if (cpu >= ioc->cpu_msix_table_sz)
3239 break;
3240 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3241 }
3242 }
3243 return;
3244 }
3245
3246 fall_back:
3247 cpu = cpumask_first(cpu_online_mask);
3248 nr_msix -= (ioc->high_iops_queues - iopoll_q_count);
3249 index = 0;
3250
3251 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3252 unsigned int i, group = nr_cpus / nr_msix;
3253
3254 if (reply_q->msix_index < ioc->high_iops_queues ||
3255 reply_q->msix_index >= ioc->iopoll_q_start_index)
3256 continue;
3257
3258 if (cpu >= nr_cpus)
3259 break;
3260
3261 if (index < nr_cpus % nr_msix)
3262 group++;
3263
3264 for (i = 0 ; i < group ; i++) {
3265 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3266 cpu = cpumask_next(cpu, cpu_online_mask);
3267 }
3268 index++;
3269 }
3270 }
3271
3272 /**
3273 * _base_check_and_enable_high_iops_queues - enable high iops mode
3274 * @ioc: per adapter object
3275 * @hba_msix_vector_count: msix vectors supported by HBA
3276 *
3277 * Enable high iops queues only if
3278 * - HBA is a SEA/AERO controller and
3279 * - MSI-Xs vector supported by the HBA is 128 and
3280 * - total CPU count in the system >=16 and
3281 * - loaded driver with default max_msix_vectors module parameter and
3282 * - system booted in non kdump mode
3283 *
3284 * Return: nothing.
3285 */
3286 static void
_base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER * ioc,int hba_msix_vector_count)3287 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc,
3288 int hba_msix_vector_count)
3289 {
3290 u16 lnksta, speed;
3291
3292 /*
3293 * Disable high iops queues if io uring poll queues are enabled.
3294 */
3295 if (perf_mode == MPT_PERF_MODE_IOPS ||
3296 perf_mode == MPT_PERF_MODE_LATENCY ||
3297 ioc->io_uring_poll_queues) {
3298 ioc->high_iops_queues = 0;
3299 return;
3300 }
3301
3302 if (perf_mode == MPT_PERF_MODE_DEFAULT) {
3303
3304 pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta);
3305 speed = lnksta & PCI_EXP_LNKSTA_CLS;
3306
3307 if (speed < 0x4) {
3308 ioc->high_iops_queues = 0;
3309 return;
3310 }
3311 }
3312
3313 if (!reset_devices && ioc->is_aero_ioc &&
3314 hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES &&
3315 num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES &&
3316 max_msix_vectors == -1)
3317 ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES;
3318 else
3319 ioc->high_iops_queues = 0;
3320 }
3321
3322 /**
3323 * mpt3sas_base_disable_msix - disables msix
3324 * @ioc: per adapter object
3325 *
3326 */
3327 void
mpt3sas_base_disable_msix(struct MPT3SAS_ADAPTER * ioc)3328 mpt3sas_base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
3329 {
3330 if (!ioc->msix_enable)
3331 return;
3332 pci_free_irq_vectors(ioc->pdev);
3333 ioc->msix_enable = 0;
3334 kfree(ioc->io_uring_poll_queues);
3335 }
3336
3337 /**
3338 * _base_alloc_irq_vectors - allocate msix vectors
3339 * @ioc: per adapter object
3340 *
3341 */
3342 static int
_base_alloc_irq_vectors(struct MPT3SAS_ADAPTER * ioc)3343 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc)
3344 {
3345 int i, irq_flags = PCI_IRQ_MSIX;
3346 struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues };
3347 struct irq_affinity *descp = &desc;
3348 /*
3349 * Don't allocate msix vectors for poll_queues.
3350 * msix_vectors is always within a range of FW supported reply queue.
3351 */
3352 int nr_msix_vectors = ioc->iopoll_q_start_index;
3353
3354
3355 if (ioc->smp_affinity_enable)
3356 irq_flags |= PCI_IRQ_AFFINITY | PCI_IRQ_ALL_TYPES;
3357 else
3358 descp = NULL;
3359
3360 ioc_info(ioc, " %d %d %d\n", ioc->high_iops_queues,
3361 ioc->reply_queue_count, nr_msix_vectors);
3362
3363 i = pci_alloc_irq_vectors_affinity(ioc->pdev,
3364 ioc->high_iops_queues,
3365 nr_msix_vectors, irq_flags, descp);
3366
3367 return i;
3368 }
3369
3370 /**
3371 * _base_enable_msix - enables msix, failback to io_apic
3372 * @ioc: per adapter object
3373 *
3374 */
3375 static int
_base_enable_msix(struct MPT3SAS_ADAPTER * ioc)3376 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3377 {
3378 int r;
3379 int i, local_max_msix_vectors;
3380 u8 try_msix = 0;
3381 int iopoll_q_count = 0;
3382
3383 ioc->msix_load_balance = false;
3384
3385 if (msix_disable == -1 || msix_disable == 0)
3386 try_msix = 1;
3387
3388 if (!try_msix)
3389 goto try_ioapic;
3390
3391 if (_base_check_enable_msix(ioc) != 0)
3392 goto try_ioapic;
3393
3394 ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count);
3395 pr_info("\t no of cores: %d, max_msix_vectors: %d\n",
3396 ioc->cpu_count, max_msix_vectors);
3397
3398 ioc->reply_queue_count =
3399 min_t(int, ioc->cpu_count, ioc->msix_vector_count);
3400
3401 if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
3402 local_max_msix_vectors = (reset_devices) ? 1 : 8;
3403 else
3404 local_max_msix_vectors = max_msix_vectors;
3405
3406 if (local_max_msix_vectors == 0)
3407 goto try_ioapic;
3408
3409 /*
3410 * Enable msix_load_balance only if combined reply queue mode is
3411 * disabled on SAS3 & above generation HBA devices.
3412 */
3413 if (!ioc->combined_reply_queue &&
3414 ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3415 ioc_info(ioc,
3416 "combined ReplyQueue is off, Enabling msix load balance\n");
3417 ioc->msix_load_balance = true;
3418 }
3419
3420 /*
3421 * smp affinity setting is not need when msix load balance
3422 * is enabled.
3423 */
3424 if (ioc->msix_load_balance)
3425 ioc->smp_affinity_enable = 0;
3426
3427 if (!ioc->smp_affinity_enable || ioc->reply_queue_count <= 1)
3428 ioc->shost->host_tagset = 0;
3429
3430 /*
3431 * Enable io uring poll queues only if host_tagset is enabled.
3432 */
3433 if (ioc->shost->host_tagset)
3434 iopoll_q_count = poll_queues;
3435
3436 if (iopoll_q_count) {
3437 ioc->io_uring_poll_queues = kcalloc(iopoll_q_count,
3438 sizeof(struct io_uring_poll_queue), GFP_KERNEL);
3439 if (!ioc->io_uring_poll_queues)
3440 iopoll_q_count = 0;
3441 }
3442
3443 if (ioc->is_aero_ioc)
3444 _base_check_and_enable_high_iops_queues(ioc,
3445 ioc->msix_vector_count);
3446
3447 /*
3448 * Add high iops queues count to reply queue count if high iops queues
3449 * are enabled.
3450 */
3451 ioc->reply_queue_count = min_t(int,
3452 ioc->reply_queue_count + ioc->high_iops_queues,
3453 ioc->msix_vector_count);
3454
3455 /*
3456 * Adjust the reply queue count incase reply queue count
3457 * exceeds the user provided MSIx vectors count.
3458 */
3459 if (local_max_msix_vectors > 0)
3460 ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
3461 ioc->reply_queue_count);
3462 /*
3463 * Add io uring poll queues count to reply queues count
3464 * if io uring is enabled in driver.
3465 */
3466 if (iopoll_q_count) {
3467 if (ioc->reply_queue_count < (iopoll_q_count + MPT3_MIN_IRQS))
3468 iopoll_q_count = 0;
3469 ioc->reply_queue_count = min_t(int,
3470 ioc->reply_queue_count + iopoll_q_count,
3471 ioc->msix_vector_count);
3472 }
3473
3474 /*
3475 * Starting index of io uring poll queues in reply queue list.
3476 */
3477 ioc->iopoll_q_start_index =
3478 ioc->reply_queue_count - iopoll_q_count;
3479
3480 r = _base_alloc_irq_vectors(ioc);
3481 if (r < 0) {
3482 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r);
3483 goto try_ioapic;
3484 }
3485
3486 /*
3487 * Adjust the reply queue count if the allocated
3488 * MSIx vectors is less then the requested number
3489 * of MSIx vectors.
3490 */
3491 if (r < ioc->iopoll_q_start_index) {
3492 ioc->reply_queue_count = r + iopoll_q_count;
3493 ioc->iopoll_q_start_index =
3494 ioc->reply_queue_count - iopoll_q_count;
3495 }
3496
3497 ioc->msix_enable = 1;
3498 for (i = 0; i < ioc->reply_queue_count; i++) {
3499 r = _base_request_irq(ioc, i);
3500 if (r) {
3501 mpt3sas_base_free_irq(ioc);
3502 mpt3sas_base_disable_msix(ioc);
3503 goto try_ioapic;
3504 }
3505 }
3506
3507 ioc_info(ioc, "High IOPs queues : %s\n",
3508 ioc->high_iops_queues ? "enabled" : "disabled");
3509
3510 return 0;
3511
3512 /* failback to io_apic interrupt routing */
3513 try_ioapic:
3514 ioc->high_iops_queues = 0;
3515 ioc_info(ioc, "High IOPs queues : disabled\n");
3516 ioc->reply_queue_count = 1;
3517 ioc->iopoll_q_start_index = ioc->reply_queue_count - 0;
3518 r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
3519 if (r < 0) {
3520 dfailprintk(ioc,
3521 ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
3522 r));
3523 } else
3524 r = _base_request_irq(ioc, 0);
3525
3526 return r;
3527 }
3528
3529 /**
3530 * mpt3sas_base_unmap_resources - free controller resources
3531 * @ioc: per adapter object
3532 */
3533 static void
mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER * ioc)3534 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
3535 {
3536 struct pci_dev *pdev = ioc->pdev;
3537
3538 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3539
3540 mpt3sas_base_free_irq(ioc);
3541 mpt3sas_base_disable_msix(ioc);
3542
3543 kfree(ioc->replyPostRegisterIndex);
3544 ioc->replyPostRegisterIndex = NULL;
3545
3546
3547 if (ioc->chip_phys) {
3548 iounmap(ioc->chip);
3549 ioc->chip_phys = 0;
3550 }
3551
3552 if (pci_is_enabled(pdev)) {
3553 pci_release_selected_regions(ioc->pdev, ioc->bars);
3554 pci_disable_device(pdev);
3555 }
3556 }
3557
3558 static int
3559 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3560
3561 /**
3562 * mpt3sas_base_check_for_fault_and_issue_reset - check if IOC is in fault state
3563 * and if it is in fault state then issue diag reset.
3564 * @ioc: per adapter object
3565 *
3566 * Return: 0 for success, non-zero for failure.
3567 */
3568 int
mpt3sas_base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER * ioc)3569 mpt3sas_base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc)
3570 {
3571 u32 ioc_state;
3572 int rc = -EFAULT;
3573
3574 dinitprintk(ioc, pr_info("%s\n", __func__));
3575 if (ioc->pci_error_recovery)
3576 return 0;
3577 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
3578 dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state));
3579
3580 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
3581 mpt3sas_print_fault_code(ioc, ioc_state &
3582 MPI2_DOORBELL_DATA_MASK);
3583 mpt3sas_base_mask_interrupts(ioc);
3584 rc = _base_diag_reset(ioc);
3585 } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
3586 MPI2_IOC_STATE_COREDUMP) {
3587 mpt3sas_print_coredump_info(ioc, ioc_state &
3588 MPI2_DOORBELL_DATA_MASK);
3589 mpt3sas_base_wait_for_coredump_completion(ioc, __func__);
3590 mpt3sas_base_mask_interrupts(ioc);
3591 rc = _base_diag_reset(ioc);
3592 }
3593
3594 return rc;
3595 }
3596
3597 /**
3598 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
3599 * @ioc: per adapter object
3600 *
3601 * Return: 0 for success, non-zero for failure.
3602 */
3603 int
mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER * ioc)3604 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
3605 {
3606 struct pci_dev *pdev = ioc->pdev;
3607 u32 memap_sz;
3608 u32 pio_sz;
3609 int i, r = 0, rc;
3610 u64 pio_chip = 0;
3611 phys_addr_t chip_phys = 0;
3612 struct adapter_reply_queue *reply_q;
3613 int iopoll_q_count = 0;
3614
3615 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3616
3617 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
3618 if (pci_enable_device_mem(pdev)) {
3619 ioc_warn(ioc, "pci_enable_device_mem: failed\n");
3620 ioc->bars = 0;
3621 return -ENODEV;
3622 }
3623
3624
3625 if (pci_request_selected_regions(pdev, ioc->bars,
3626 ioc->driver_name)) {
3627 ioc_warn(ioc, "pci_request_selected_regions: failed\n");
3628 ioc->bars = 0;
3629 r = -ENODEV;
3630 goto out_fail;
3631 }
3632
3633 pci_set_master(pdev);
3634
3635
3636 if (_base_config_dma_addressing(ioc, pdev) != 0) {
3637 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev));
3638 r = -ENODEV;
3639 goto out_fail;
3640 }
3641
3642 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
3643 (!memap_sz || !pio_sz); i++) {
3644 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
3645 if (pio_sz)
3646 continue;
3647 pio_chip = (u64)pci_resource_start(pdev, i);
3648 pio_sz = pci_resource_len(pdev, i);
3649 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3650 if (memap_sz)
3651 continue;
3652 ioc->chip_phys = pci_resource_start(pdev, i);
3653 chip_phys = ioc->chip_phys;
3654 memap_sz = pci_resource_len(pdev, i);
3655 ioc->chip = ioremap(ioc->chip_phys, memap_sz);
3656 }
3657 }
3658
3659 if (ioc->chip == NULL) {
3660 ioc_err(ioc,
3661 "unable to map adapter memory! or resource not found\n");
3662 r = -EINVAL;
3663 goto out_fail;
3664 }
3665
3666 mpt3sas_base_mask_interrupts(ioc);
3667
3668 r = _base_get_ioc_facts(ioc);
3669 if (r) {
3670 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
3671 if (rc || (_base_get_ioc_facts(ioc)))
3672 goto out_fail;
3673 }
3674
3675 if (!ioc->rdpq_array_enable_assigned) {
3676 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3677 ioc->rdpq_array_enable_assigned = 1;
3678 }
3679
3680 r = _base_enable_msix(ioc);
3681 if (r)
3682 goto out_fail;
3683
3684 iopoll_q_count = ioc->reply_queue_count - ioc->iopoll_q_start_index;
3685 for (i = 0; i < iopoll_q_count; i++) {
3686 atomic_set(&ioc->io_uring_poll_queues[i].busy, 0);
3687 atomic_set(&ioc->io_uring_poll_queues[i].pause, 0);
3688 }
3689
3690 if (!ioc->is_driver_loading)
3691 _base_init_irqpolls(ioc);
3692 /* Use the Combined reply queue feature only for SAS3 C0 & higher
3693 * revision HBAs and also only when reply queue count is greater than 8
3694 */
3695 if (ioc->combined_reply_queue) {
3696 /* Determine the Supplemental Reply Post Host Index Registers
3697 * Addresse. Supplemental Reply Post Host Index Registers
3698 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3699 * each register is at offset bytes of
3700 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3701 */
3702 ioc->replyPostRegisterIndex = kcalloc(
3703 ioc->combined_reply_index_count,
3704 sizeof(resource_size_t *), GFP_KERNEL);
3705 if (!ioc->replyPostRegisterIndex) {
3706 ioc_err(ioc,
3707 "allocation for replyPostRegisterIndex failed!\n");
3708 r = -ENOMEM;
3709 goto out_fail;
3710 }
3711
3712 for (i = 0; i < ioc->combined_reply_index_count; i++) {
3713 ioc->replyPostRegisterIndex[i] =
3714 (resource_size_t __iomem *)
3715 ((u8 __force *)&ioc->chip->Doorbell +
3716 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3717 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3718 }
3719 }
3720
3721 if (ioc->is_warpdrive) {
3722 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3723 &ioc->chip->ReplyPostHostIndex;
3724
3725 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3726 ioc->reply_post_host_index[i] =
3727 (resource_size_t __iomem *)
3728 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3729 * 4)));
3730 }
3731
3732 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3733 if (reply_q->msix_index >= ioc->iopoll_q_start_index) {
3734 pr_info("%s: enabled: index: %d\n",
3735 reply_q->name, reply_q->msix_index);
3736 continue;
3737 }
3738
3739 pr_info("%s: %s enabled: IRQ %d\n",
3740 reply_q->name,
3741 ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC",
3742 pci_irq_vector(ioc->pdev, reply_q->msix_index));
3743 }
3744
3745 ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n",
3746 &chip_phys, ioc->chip, memap_sz);
3747 ioc_info(ioc, "ioport(0x%016llx), size(%d)\n",
3748 (unsigned long long)pio_chip, pio_sz);
3749
3750 /* Save PCI configuration state for recovery from PCI AER/EEH errors */
3751 pci_save_state(pdev);
3752 return 0;
3753
3754 out_fail:
3755 mpt3sas_base_unmap_resources(ioc);
3756 return r;
3757 }
3758
3759 /**
3760 * mpt3sas_base_get_msg_frame - obtain request mf pointer
3761 * @ioc: per adapter object
3762 * @smid: system request message index(smid zero is invalid)
3763 *
3764 * Return: virt pointer to message frame.
3765 */
3766 void *
mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER * ioc,u16 smid)3767 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3768 {
3769 return (void *)(ioc->request + (smid * ioc->request_sz));
3770 }
3771
3772 /**
3773 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3774 * @ioc: per adapter object
3775 * @smid: system request message index
3776 *
3777 * Return: virt pointer to sense buffer.
3778 */
3779 void *
mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER * ioc,u16 smid)3780 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3781 {
3782 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3783 }
3784
3785 /**
3786 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3787 * @ioc: per adapter object
3788 * @smid: system request message index
3789 *
3790 * Return: phys pointer to the low 32bit address of the sense buffer.
3791 */
3792 __le32
mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER * ioc,u16 smid)3793 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3794 {
3795 return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3796 SCSI_SENSE_BUFFERSIZE));
3797 }
3798
3799 /**
3800 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3801 * @ioc: per adapter object
3802 * @smid: system request message index
3803 *
3804 * Return: virt pointer to a PCIe SGL.
3805 */
3806 void *
mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER * ioc,u16 smid)3807 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3808 {
3809 return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3810 }
3811
3812 /**
3813 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3814 * @ioc: per adapter object
3815 * @smid: system request message index
3816 *
3817 * Return: phys pointer to the address of the PCIe buffer.
3818 */
3819 dma_addr_t
mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER * ioc,u16 smid)3820 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3821 {
3822 return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3823 }
3824
3825 /**
3826 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3827 * @ioc: per adapter object
3828 * @phys_addr: lower 32 physical addr of the reply
3829 *
3830 * Converts 32bit lower physical addr into a virt address.
3831 */
3832 void *
mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER * ioc,u32 phys_addr)3833 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3834 {
3835 if (!phys_addr)
3836 return NULL;
3837 return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3838 }
3839
3840 /**
3841 * _base_get_msix_index - get the msix index
3842 * @ioc: per adapter object
3843 * @scmd: scsi_cmnd object
3844 *
3845 * Return: msix index of general reply queues,
3846 * i.e. reply queue on which IO request's reply
3847 * should be posted by the HBA firmware.
3848 */
3849 static inline u8
_base_get_msix_index(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd)3850 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc,
3851 struct scsi_cmnd *scmd)
3852 {
3853 /* Enables reply_queue load balancing */
3854 if (ioc->msix_load_balance)
3855 return ioc->reply_queue_count ?
3856 base_mod64(atomic64_add_return(1,
3857 &ioc->total_io_cnt), ioc->reply_queue_count) : 0;
3858
3859 if (scmd && ioc->shost->nr_hw_queues > 1) {
3860 u32 tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
3861
3862 return blk_mq_unique_tag_to_hwq(tag) +
3863 ioc->high_iops_queues;
3864 }
3865
3866 return ioc->cpu_msix_table[raw_smp_processor_id()];
3867 }
3868
3869 /**
3870 * _base_get_high_iops_msix_index - get the msix index of
3871 * high iops queues
3872 * @ioc: per adapter object
3873 * @scmd: scsi_cmnd object
3874 *
3875 * Return: msix index of high iops reply queues.
3876 * i.e. high iops reply queue on which IO request's
3877 * reply should be posted by the HBA firmware.
3878 */
3879 static inline u8
_base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd)3880 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc,
3881 struct scsi_cmnd *scmd)
3882 {
3883 /**
3884 * Round robin the IO interrupts among the high iops
3885 * reply queues in terms of batch count 16 when outstanding
3886 * IOs on the target device is >=8.
3887 */
3888
3889 if (scsi_device_busy(scmd->device) > MPT3SAS_DEVICE_HIGH_IOPS_DEPTH)
3890 return base_mod64((
3891 atomic64_add_return(1, &ioc->high_iops_outstanding) /
3892 MPT3SAS_HIGH_IOPS_BATCH_COUNT),
3893 MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
3894
3895 return _base_get_msix_index(ioc, scmd);
3896 }
3897
3898 /**
3899 * mpt3sas_base_get_smid - obtain a free smid from internal queue
3900 * @ioc: per adapter object
3901 * @cb_idx: callback index
3902 *
3903 * Return: smid (zero is invalid)
3904 */
3905 u16
mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER * ioc,u8 cb_idx)3906 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3907 {
3908 unsigned long flags;
3909 struct request_tracker *request;
3910 u16 smid;
3911
3912 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3913 if (list_empty(&ioc->internal_free_list)) {
3914 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3915 ioc_err(ioc, "%s: smid not available\n", __func__);
3916 return 0;
3917 }
3918
3919 request = list_entry(ioc->internal_free_list.next,
3920 struct request_tracker, tracker_list);
3921 request->cb_idx = cb_idx;
3922 smid = request->smid;
3923 list_del(&request->tracker_list);
3924 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3925 return smid;
3926 }
3927
3928 /**
3929 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3930 * @ioc: per adapter object
3931 * @cb_idx: callback index
3932 * @scmd: pointer to scsi command object
3933 *
3934 * Return: smid (zero is invalid)
3935 */
3936 u16
mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER * ioc,u8 cb_idx,struct scsi_cmnd * scmd)3937 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3938 struct scsi_cmnd *scmd)
3939 {
3940 struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3941 u16 smid;
3942 u32 tag, unique_tag;
3943
3944 unique_tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
3945 tag = blk_mq_unique_tag_to_tag(unique_tag);
3946
3947 /*
3948 * Store hw queue number corresponding to the tag.
3949 * This hw queue number is used later to determine
3950 * the unique_tag using the logic below. This unique_tag
3951 * is used to retrieve the scmd pointer corresponding
3952 * to tag using scsi_host_find_tag() API.
3953 *
3954 * tag = smid - 1;
3955 * unique_tag = ioc->io_queue_num[tag] << BLK_MQ_UNIQUE_TAG_BITS | tag;
3956 */
3957 ioc->io_queue_num[tag] = blk_mq_unique_tag_to_hwq(unique_tag);
3958
3959 smid = tag + 1;
3960 request->cb_idx = cb_idx;
3961 request->smid = smid;
3962 request->scmd = scmd;
3963 INIT_LIST_HEAD(&request->chain_list);
3964 return smid;
3965 }
3966
3967 /**
3968 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3969 * @ioc: per adapter object
3970 * @cb_idx: callback index
3971 *
3972 * Return: smid (zero is invalid)
3973 */
3974 u16
mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER * ioc,u8 cb_idx)3975 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3976 {
3977 unsigned long flags;
3978 struct request_tracker *request;
3979 u16 smid;
3980
3981 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3982 if (list_empty(&ioc->hpr_free_list)) {
3983 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3984 return 0;
3985 }
3986
3987 request = list_entry(ioc->hpr_free_list.next,
3988 struct request_tracker, tracker_list);
3989 request->cb_idx = cb_idx;
3990 smid = request->smid;
3991 list_del(&request->tracker_list);
3992 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3993 return smid;
3994 }
3995
3996 static void
_base_recovery_check(struct MPT3SAS_ADAPTER * ioc)3997 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3998 {
3999 /*
4000 * See _wait_for_commands_to_complete() call with regards to this code.
4001 */
4002 if (ioc->shost_recovery && ioc->pending_io_count) {
4003 ioc->pending_io_count = scsi_host_busy(ioc->shost);
4004 if (ioc->pending_io_count == 0)
4005 wake_up(&ioc->reset_wq);
4006 }
4007 }
4008
mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER * ioc,struct scsiio_tracker * st)4009 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
4010 struct scsiio_tracker *st)
4011 {
4012 if (WARN_ON(st->smid == 0))
4013 return;
4014 st->cb_idx = 0xFF;
4015 st->direct_io = 0;
4016 st->scmd = NULL;
4017 atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
4018 st->smid = 0;
4019 }
4020
4021 /**
4022 * mpt3sas_base_free_smid - put smid back on free_list
4023 * @ioc: per adapter object
4024 * @smid: system request message index
4025 */
4026 void
mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER * ioc,u16 smid)4027 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4028 {
4029 unsigned long flags;
4030 int i;
4031
4032 if (smid < ioc->hi_priority_smid) {
4033 struct scsiio_tracker *st;
4034 void *request;
4035
4036 st = _get_st_from_smid(ioc, smid);
4037 if (!st) {
4038 _base_recovery_check(ioc);
4039 return;
4040 }
4041
4042 /* Clear MPI request frame */
4043 request = mpt3sas_base_get_msg_frame(ioc, smid);
4044 memset(request, 0, ioc->request_sz);
4045
4046 mpt3sas_base_clear_st(ioc, st);
4047 _base_recovery_check(ioc);
4048 ioc->io_queue_num[smid - 1] = 0;
4049 return;
4050 }
4051
4052 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4053 if (smid < ioc->internal_smid) {
4054 /* hi-priority */
4055 i = smid - ioc->hi_priority_smid;
4056 ioc->hpr_lookup[i].cb_idx = 0xFF;
4057 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
4058 } else if (smid <= ioc->hba_queue_depth) {
4059 /* internal queue */
4060 i = smid - ioc->internal_smid;
4061 ioc->internal_lookup[i].cb_idx = 0xFF;
4062 list_add(&ioc->internal_lookup[i].tracker_list,
4063 &ioc->internal_free_list);
4064 }
4065 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4066 }
4067
4068 /**
4069 * _base_mpi_ep_writeq - 32 bit write to MMIO
4070 * @b: data payload
4071 * @addr: address in MMIO space
4072 * @writeq_lock: spin lock
4073 *
4074 * This special handling for MPI EP to take care of 32 bit
4075 * environment where its not quarenteed to send the entire word
4076 * in one transfer.
4077 */
4078 static inline void
_base_mpi_ep_writeq(__u64 b,volatile void __iomem * addr,spinlock_t * writeq_lock)4079 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
4080 spinlock_t *writeq_lock)
4081 {
4082 unsigned long flags;
4083
4084 spin_lock_irqsave(writeq_lock, flags);
4085 __raw_writel((u32)(b), addr);
4086 __raw_writel((u32)(b >> 32), (addr + 4));
4087 spin_unlock_irqrestore(writeq_lock, flags);
4088 }
4089
4090 /**
4091 * _base_writeq - 64 bit write to MMIO
4092 * @b: data payload
4093 * @addr: address in MMIO space
4094 * @writeq_lock: spin lock
4095 *
4096 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
4097 * care of 32 bit environment where its not quarenteed to send the entire word
4098 * in one transfer.
4099 */
4100 #if defined(writeq) && defined(CONFIG_64BIT)
4101 static inline void
_base_writeq(__u64 b,volatile void __iomem * addr,spinlock_t * writeq_lock)4102 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4103 {
4104 wmb();
4105 __raw_writeq(b, addr);
4106 barrier();
4107 }
4108 #else
4109 static inline void
_base_writeq(__u64 b,volatile void __iomem * addr,spinlock_t * writeq_lock)4110 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4111 {
4112 _base_mpi_ep_writeq(b, addr, writeq_lock);
4113 }
4114 #endif
4115
4116 /**
4117 * _base_set_and_get_msix_index - get the msix index and assign to msix_io
4118 * variable of scsi tracker
4119 * @ioc: per adapter object
4120 * @smid: system request message index
4121 *
4122 * Return: msix index.
4123 */
4124 static u8
_base_set_and_get_msix_index(struct MPT3SAS_ADAPTER * ioc,u16 smid)4125 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4126 {
4127 struct scsiio_tracker *st = NULL;
4128
4129 if (smid < ioc->hi_priority_smid)
4130 st = _get_st_from_smid(ioc, smid);
4131
4132 if (st == NULL)
4133 return _base_get_msix_index(ioc, NULL);
4134
4135 st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd);
4136 return st->msix_io;
4137 }
4138
4139 /**
4140 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
4141 * @ioc: per adapter object
4142 * @smid: system request message index
4143 * @handle: device handle
4144 */
4145 static void
_base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)4146 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc,
4147 u16 smid, u16 handle)
4148 {
4149 Mpi2RequestDescriptorUnion_t descriptor;
4150 u64 *request = (u64 *)&descriptor;
4151 void *mpi_req_iomem;
4152 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4153
4154 _clone_sg_entries(ioc, (void *) mfp, smid);
4155 mpi_req_iomem = (void __force *)ioc->chip +
4156 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4157 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4158 ioc->request_sz);
4159 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4160 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4161 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4162 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4163 descriptor.SCSIIO.LMID = 0;
4164 _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4165 &ioc->scsi_lookup_lock);
4166 }
4167
4168 /**
4169 * _base_put_smid_scsi_io - send SCSI_IO request to firmware
4170 * @ioc: per adapter object
4171 * @smid: system request message index
4172 * @handle: device handle
4173 */
4174 static void
_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)4175 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
4176 {
4177 Mpi2RequestDescriptorUnion_t descriptor;
4178 u64 *request = (u64 *)&descriptor;
4179
4180
4181 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4182 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4183 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4184 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4185 descriptor.SCSIIO.LMID = 0;
4186 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4187 &ioc->scsi_lookup_lock);
4188 }
4189
4190 /**
4191 * _base_put_smid_fast_path - send fast path request to firmware
4192 * @ioc: per adapter object
4193 * @smid: system request message index
4194 * @handle: device handle
4195 */
4196 static void
_base_put_smid_fast_path(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)4197 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4198 u16 handle)
4199 {
4200 Mpi2RequestDescriptorUnion_t descriptor;
4201 u64 *request = (u64 *)&descriptor;
4202
4203 descriptor.SCSIIO.RequestFlags =
4204 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4205 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4206 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4207 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4208 descriptor.SCSIIO.LMID = 0;
4209 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4210 &ioc->scsi_lookup_lock);
4211 }
4212
4213 /**
4214 * _base_put_smid_hi_priority - send Task Management request to firmware
4215 * @ioc: per adapter object
4216 * @smid: system request message index
4217 * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4218 */
4219 static void
_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 msix_task)4220 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4221 u16 msix_task)
4222 {
4223 Mpi2RequestDescriptorUnion_t descriptor;
4224 void *mpi_req_iomem;
4225 u64 *request;
4226
4227 if (ioc->is_mcpu_endpoint) {
4228 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4229
4230 /* TBD 256 is offset within sys register. */
4231 mpi_req_iomem = (void __force *)ioc->chip
4232 + MPI_FRAME_START_OFFSET
4233 + (smid * ioc->request_sz);
4234 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4235 ioc->request_sz);
4236 }
4237
4238 request = (u64 *)&descriptor;
4239
4240 descriptor.HighPriority.RequestFlags =
4241 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4242 descriptor.HighPriority.MSIxIndex = msix_task;
4243 descriptor.HighPriority.SMID = cpu_to_le16(smid);
4244 descriptor.HighPriority.LMID = 0;
4245 descriptor.HighPriority.Reserved1 = 0;
4246 if (ioc->is_mcpu_endpoint)
4247 _base_mpi_ep_writeq(*request,
4248 &ioc->chip->RequestDescriptorPostLow,
4249 &ioc->scsi_lookup_lock);
4250 else
4251 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4252 &ioc->scsi_lookup_lock);
4253 }
4254
4255 /**
4256 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
4257 * firmware
4258 * @ioc: per adapter object
4259 * @smid: system request message index
4260 */
4261 void
mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER * ioc,u16 smid)4262 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4263 {
4264 Mpi2RequestDescriptorUnion_t descriptor;
4265 u64 *request = (u64 *)&descriptor;
4266
4267 descriptor.Default.RequestFlags =
4268 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
4269 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4270 descriptor.Default.SMID = cpu_to_le16(smid);
4271 descriptor.Default.LMID = 0;
4272 descriptor.Default.DescriptorTypeDependent = 0;
4273 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4274 &ioc->scsi_lookup_lock);
4275 }
4276
4277 /**
4278 * _base_put_smid_default - Default, primarily used for config pages
4279 * @ioc: per adapter object
4280 * @smid: system request message index
4281 */
4282 static void
_base_put_smid_default(struct MPT3SAS_ADAPTER * ioc,u16 smid)4283 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4284 {
4285 Mpi2RequestDescriptorUnion_t descriptor;
4286 void *mpi_req_iomem;
4287 u64 *request;
4288
4289 if (ioc->is_mcpu_endpoint) {
4290 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4291
4292 _clone_sg_entries(ioc, (void *) mfp, smid);
4293 /* TBD 256 is offset within sys register */
4294 mpi_req_iomem = (void __force *)ioc->chip +
4295 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4296 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4297 ioc->request_sz);
4298 }
4299 request = (u64 *)&descriptor;
4300 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4301 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4302 descriptor.Default.SMID = cpu_to_le16(smid);
4303 descriptor.Default.LMID = 0;
4304 descriptor.Default.DescriptorTypeDependent = 0;
4305 if (ioc->is_mcpu_endpoint)
4306 _base_mpi_ep_writeq(*request,
4307 &ioc->chip->RequestDescriptorPostLow,
4308 &ioc->scsi_lookup_lock);
4309 else
4310 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4311 &ioc->scsi_lookup_lock);
4312 }
4313
4314 /**
4315 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
4316 * Atomic Request Descriptor
4317 * @ioc: per adapter object
4318 * @smid: system request message index
4319 * @handle: device handle, unused in this function, for function type match
4320 *
4321 * Return: nothing.
4322 */
4323 static void
_base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)4324 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4325 u16 handle)
4326 {
4327 Mpi26AtomicRequestDescriptor_t descriptor;
4328 u32 *request = (u32 *)&descriptor;
4329
4330 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4331 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4332 descriptor.SMID = cpu_to_le16(smid);
4333
4334 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4335 }
4336
4337 /**
4338 * _base_put_smid_fast_path_atomic - send fast path request to firmware
4339 * using Atomic Request Descriptor
4340 * @ioc: per adapter object
4341 * @smid: system request message index
4342 * @handle: device handle, unused in this function, for function type match
4343 * Return: nothing
4344 */
4345 static void
_base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)4346 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4347 u16 handle)
4348 {
4349 Mpi26AtomicRequestDescriptor_t descriptor;
4350 u32 *request = (u32 *)&descriptor;
4351
4352 descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4353 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4354 descriptor.SMID = cpu_to_le16(smid);
4355
4356 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4357 }
4358
4359 /**
4360 * _base_put_smid_hi_priority_atomic - send Task Management request to
4361 * firmware using Atomic Request Descriptor
4362 * @ioc: per adapter object
4363 * @smid: system request message index
4364 * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4365 *
4366 * Return: nothing.
4367 */
4368 static void
_base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 msix_task)4369 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4370 u16 msix_task)
4371 {
4372 Mpi26AtomicRequestDescriptor_t descriptor;
4373 u32 *request = (u32 *)&descriptor;
4374
4375 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4376 descriptor.MSIxIndex = msix_task;
4377 descriptor.SMID = cpu_to_le16(smid);
4378
4379 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4380 }
4381
4382 /**
4383 * _base_put_smid_default_atomic - Default, primarily used for config pages
4384 * use Atomic Request Descriptor
4385 * @ioc: per adapter object
4386 * @smid: system request message index
4387 *
4388 * Return: nothing.
4389 */
4390 static void
_base_put_smid_default_atomic(struct MPT3SAS_ADAPTER * ioc,u16 smid)4391 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4392 {
4393 Mpi26AtomicRequestDescriptor_t descriptor;
4394 u32 *request = (u32 *)&descriptor;
4395
4396 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4397 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4398 descriptor.SMID = cpu_to_le16(smid);
4399
4400 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4401 }
4402
4403 /**
4404 * _base_display_OEMs_branding - Display branding string
4405 * @ioc: per adapter object
4406 */
4407 static void
_base_display_OEMs_branding(struct MPT3SAS_ADAPTER * ioc)4408 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
4409 {
4410 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
4411 return;
4412
4413 switch (ioc->pdev->subsystem_vendor) {
4414 case PCI_VENDOR_ID_INTEL:
4415 switch (ioc->pdev->device) {
4416 case MPI2_MFGPAGE_DEVID_SAS2008:
4417 switch (ioc->pdev->subsystem_device) {
4418 case MPT2SAS_INTEL_RMS2LL080_SSDID:
4419 ioc_info(ioc, "%s\n",
4420 MPT2SAS_INTEL_RMS2LL080_BRANDING);
4421 break;
4422 case MPT2SAS_INTEL_RMS2LL040_SSDID:
4423 ioc_info(ioc, "%s\n",
4424 MPT2SAS_INTEL_RMS2LL040_BRANDING);
4425 break;
4426 case MPT2SAS_INTEL_SSD910_SSDID:
4427 ioc_info(ioc, "%s\n",
4428 MPT2SAS_INTEL_SSD910_BRANDING);
4429 break;
4430 default:
4431 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4432 ioc->pdev->subsystem_device);
4433 break;
4434 }
4435 break;
4436 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4437 switch (ioc->pdev->subsystem_device) {
4438 case MPT2SAS_INTEL_RS25GB008_SSDID:
4439 ioc_info(ioc, "%s\n",
4440 MPT2SAS_INTEL_RS25GB008_BRANDING);
4441 break;
4442 case MPT2SAS_INTEL_RMS25JB080_SSDID:
4443 ioc_info(ioc, "%s\n",
4444 MPT2SAS_INTEL_RMS25JB080_BRANDING);
4445 break;
4446 case MPT2SAS_INTEL_RMS25JB040_SSDID:
4447 ioc_info(ioc, "%s\n",
4448 MPT2SAS_INTEL_RMS25JB040_BRANDING);
4449 break;
4450 case MPT2SAS_INTEL_RMS25KB080_SSDID:
4451 ioc_info(ioc, "%s\n",
4452 MPT2SAS_INTEL_RMS25KB080_BRANDING);
4453 break;
4454 case MPT2SAS_INTEL_RMS25KB040_SSDID:
4455 ioc_info(ioc, "%s\n",
4456 MPT2SAS_INTEL_RMS25KB040_BRANDING);
4457 break;
4458 case MPT2SAS_INTEL_RMS25LB040_SSDID:
4459 ioc_info(ioc, "%s\n",
4460 MPT2SAS_INTEL_RMS25LB040_BRANDING);
4461 break;
4462 case MPT2SAS_INTEL_RMS25LB080_SSDID:
4463 ioc_info(ioc, "%s\n",
4464 MPT2SAS_INTEL_RMS25LB080_BRANDING);
4465 break;
4466 default:
4467 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4468 ioc->pdev->subsystem_device);
4469 break;
4470 }
4471 break;
4472 case MPI25_MFGPAGE_DEVID_SAS3008:
4473 switch (ioc->pdev->subsystem_device) {
4474 case MPT3SAS_INTEL_RMS3JC080_SSDID:
4475 ioc_info(ioc, "%s\n",
4476 MPT3SAS_INTEL_RMS3JC080_BRANDING);
4477 break;
4478
4479 case MPT3SAS_INTEL_RS3GC008_SSDID:
4480 ioc_info(ioc, "%s\n",
4481 MPT3SAS_INTEL_RS3GC008_BRANDING);
4482 break;
4483 case MPT3SAS_INTEL_RS3FC044_SSDID:
4484 ioc_info(ioc, "%s\n",
4485 MPT3SAS_INTEL_RS3FC044_BRANDING);
4486 break;
4487 case MPT3SAS_INTEL_RS3UC080_SSDID:
4488 ioc_info(ioc, "%s\n",
4489 MPT3SAS_INTEL_RS3UC080_BRANDING);
4490 break;
4491 default:
4492 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4493 ioc->pdev->subsystem_device);
4494 break;
4495 }
4496 break;
4497 default:
4498 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4499 ioc->pdev->subsystem_device);
4500 break;
4501 }
4502 break;
4503 case PCI_VENDOR_ID_DELL:
4504 switch (ioc->pdev->device) {
4505 case MPI2_MFGPAGE_DEVID_SAS2008:
4506 switch (ioc->pdev->subsystem_device) {
4507 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
4508 ioc_info(ioc, "%s\n",
4509 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
4510 break;
4511 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
4512 ioc_info(ioc, "%s\n",
4513 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
4514 break;
4515 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
4516 ioc_info(ioc, "%s\n",
4517 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
4518 break;
4519 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
4520 ioc_info(ioc, "%s\n",
4521 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
4522 break;
4523 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
4524 ioc_info(ioc, "%s\n",
4525 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
4526 break;
4527 case MPT2SAS_DELL_PERC_H200_SSDID:
4528 ioc_info(ioc, "%s\n",
4529 MPT2SAS_DELL_PERC_H200_BRANDING);
4530 break;
4531 case MPT2SAS_DELL_6GBPS_SAS_SSDID:
4532 ioc_info(ioc, "%s\n",
4533 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
4534 break;
4535 default:
4536 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
4537 ioc->pdev->subsystem_device);
4538 break;
4539 }
4540 break;
4541 case MPI25_MFGPAGE_DEVID_SAS3008:
4542 switch (ioc->pdev->subsystem_device) {
4543 case MPT3SAS_DELL_12G_HBA_SSDID:
4544 ioc_info(ioc, "%s\n",
4545 MPT3SAS_DELL_12G_HBA_BRANDING);
4546 break;
4547 default:
4548 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
4549 ioc->pdev->subsystem_device);
4550 break;
4551 }
4552 break;
4553 default:
4554 ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n",
4555 ioc->pdev->subsystem_device);
4556 break;
4557 }
4558 break;
4559 case PCI_VENDOR_ID_CISCO:
4560 switch (ioc->pdev->device) {
4561 case MPI25_MFGPAGE_DEVID_SAS3008:
4562 switch (ioc->pdev->subsystem_device) {
4563 case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
4564 ioc_info(ioc, "%s\n",
4565 MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
4566 break;
4567 case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
4568 ioc_info(ioc, "%s\n",
4569 MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
4570 break;
4571 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4572 ioc_info(ioc, "%s\n",
4573 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4574 break;
4575 default:
4576 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4577 ioc->pdev->subsystem_device);
4578 break;
4579 }
4580 break;
4581 case MPI25_MFGPAGE_DEVID_SAS3108_1:
4582 switch (ioc->pdev->subsystem_device) {
4583 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4584 ioc_info(ioc, "%s\n",
4585 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4586 break;
4587 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
4588 ioc_info(ioc, "%s\n",
4589 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
4590 break;
4591 default:
4592 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4593 ioc->pdev->subsystem_device);
4594 break;
4595 }
4596 break;
4597 default:
4598 ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
4599 ioc->pdev->subsystem_device);
4600 break;
4601 }
4602 break;
4603 case MPT2SAS_HP_3PAR_SSVID:
4604 switch (ioc->pdev->device) {
4605 case MPI2_MFGPAGE_DEVID_SAS2004:
4606 switch (ioc->pdev->subsystem_device) {
4607 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
4608 ioc_info(ioc, "%s\n",
4609 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
4610 break;
4611 default:
4612 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4613 ioc->pdev->subsystem_device);
4614 break;
4615 }
4616 break;
4617 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4618 switch (ioc->pdev->subsystem_device) {
4619 case MPT2SAS_HP_2_4_INTERNAL_SSDID:
4620 ioc_info(ioc, "%s\n",
4621 MPT2SAS_HP_2_4_INTERNAL_BRANDING);
4622 break;
4623 case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
4624 ioc_info(ioc, "%s\n",
4625 MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
4626 break;
4627 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
4628 ioc_info(ioc, "%s\n",
4629 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
4630 break;
4631 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
4632 ioc_info(ioc, "%s\n",
4633 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
4634 break;
4635 default:
4636 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4637 ioc->pdev->subsystem_device);
4638 break;
4639 }
4640 break;
4641 default:
4642 ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n",
4643 ioc->pdev->subsystem_device);
4644 break;
4645 }
4646 break;
4647 default:
4648 break;
4649 }
4650 }
4651
4652 /**
4653 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
4654 * version from FW Image Header.
4655 * @ioc: per adapter object
4656 *
4657 * Return: 0 for success, non-zero for failure.
4658 */
4659 static int
_base_display_fwpkg_version(struct MPT3SAS_ADAPTER * ioc)4660 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
4661 {
4662 Mpi2FWImageHeader_t *fw_img_hdr;
4663 Mpi26ComponentImageHeader_t *cmp_img_hdr;
4664 Mpi25FWUploadRequest_t *mpi_request;
4665 Mpi2FWUploadReply_t mpi_reply;
4666 int r = 0, issue_diag_reset = 0;
4667 u32 package_version = 0;
4668 void *fwpkg_data = NULL;
4669 dma_addr_t fwpkg_data_dma;
4670 u16 smid, ioc_status;
4671 size_t data_length;
4672
4673 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4674
4675 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4676 ioc_err(ioc, "%s: internal command already in use\n", __func__);
4677 return -EAGAIN;
4678 }
4679
4680 data_length = sizeof(Mpi2FWImageHeader_t);
4681 fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length,
4682 &fwpkg_data_dma, GFP_KERNEL);
4683 if (!fwpkg_data) {
4684 ioc_err(ioc,
4685 "Memory allocation for fwpkg data failed at %s:%d/%s()!\n",
4686 __FILE__, __LINE__, __func__);
4687 return -ENOMEM;
4688 }
4689
4690 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4691 if (!smid) {
4692 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
4693 r = -EAGAIN;
4694 goto out;
4695 }
4696
4697 ioc->base_cmds.status = MPT3_CMD_PENDING;
4698 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4699 ioc->base_cmds.smid = smid;
4700 memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
4701 mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
4702 mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
4703 mpi_request->ImageSize = cpu_to_le32(data_length);
4704 ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
4705 data_length);
4706 init_completion(&ioc->base_cmds.done);
4707 ioc->put_smid_default(ioc, smid);
4708 /* Wait for 15 seconds */
4709 wait_for_completion_timeout(&ioc->base_cmds.done,
4710 FW_IMG_HDR_READ_TIMEOUT*HZ);
4711 ioc_info(ioc, "%s: complete\n", __func__);
4712 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4713 ioc_err(ioc, "%s: timeout\n", __func__);
4714 _debug_dump_mf(mpi_request,
4715 sizeof(Mpi25FWUploadRequest_t)/4);
4716 issue_diag_reset = 1;
4717 } else {
4718 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
4719 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
4720 memcpy(&mpi_reply, ioc->base_cmds.reply,
4721 sizeof(Mpi2FWUploadReply_t));
4722 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4723 MPI2_IOCSTATUS_MASK;
4724 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4725 fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data;
4726 if (le32_to_cpu(fw_img_hdr->Signature) ==
4727 MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) {
4728 cmp_img_hdr =
4729 (Mpi26ComponentImageHeader_t *)
4730 (fwpkg_data);
4731 package_version =
4732 le32_to_cpu(
4733 cmp_img_hdr->ApplicationSpecific);
4734 } else
4735 package_version =
4736 le32_to_cpu(
4737 fw_img_hdr->PackageVersion.Word);
4738 if (package_version)
4739 ioc_info(ioc,
4740 "FW Package Ver(%02d.%02d.%02d.%02d)\n",
4741 ((package_version) & 0xFF000000) >> 24,
4742 ((package_version) & 0x00FF0000) >> 16,
4743 ((package_version) & 0x0000FF00) >> 8,
4744 (package_version) & 0x000000FF);
4745 } else {
4746 _debug_dump_mf(&mpi_reply,
4747 sizeof(Mpi2FWUploadReply_t)/4);
4748 }
4749 }
4750 }
4751 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4752 out:
4753 if (fwpkg_data)
4754 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data,
4755 fwpkg_data_dma);
4756 if (issue_diag_reset) {
4757 if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
4758 return -EFAULT;
4759 if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
4760 return -EFAULT;
4761 r = -EAGAIN;
4762 }
4763 return r;
4764 }
4765
4766 /**
4767 * _base_display_ioc_capabilities - Display IOC's capabilities.
4768 * @ioc: per adapter object
4769 */
4770 static void
_base_display_ioc_capabilities(struct MPT3SAS_ADAPTER * ioc)4771 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
4772 {
4773 int i = 0;
4774 char desc[17] = {0};
4775 u32 iounit_pg1_flags;
4776
4777 strncpy(desc, ioc->manu_pg0.ChipName, 16);
4778 ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x)\n",
4779 desc,
4780 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
4781 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
4782 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
4783 ioc->facts.FWVersion.Word & 0x000000FF,
4784 ioc->pdev->revision);
4785
4786 _base_display_OEMs_branding(ioc);
4787
4788 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4789 pr_info("%sNVMe", i ? "," : "");
4790 i++;
4791 }
4792
4793 ioc_info(ioc, "Protocol=(");
4794
4795 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
4796 pr_cont("Initiator");
4797 i++;
4798 }
4799
4800 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
4801 pr_cont("%sTarget", i ? "," : "");
4802 i++;
4803 }
4804
4805 i = 0;
4806 pr_cont("), Capabilities=(");
4807
4808 if (!ioc->hide_ir_msg) {
4809 if (ioc->facts.IOCCapabilities &
4810 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
4811 pr_cont("Raid");
4812 i++;
4813 }
4814 }
4815
4816 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
4817 pr_cont("%sTLR", i ? "," : "");
4818 i++;
4819 }
4820
4821 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
4822 pr_cont("%sMulticast", i ? "," : "");
4823 i++;
4824 }
4825
4826 if (ioc->facts.IOCCapabilities &
4827 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
4828 pr_cont("%sBIDI Target", i ? "," : "");
4829 i++;
4830 }
4831
4832 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
4833 pr_cont("%sEEDP", i ? "," : "");
4834 i++;
4835 }
4836
4837 if (ioc->facts.IOCCapabilities &
4838 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
4839 pr_cont("%sSnapshot Buffer", i ? "," : "");
4840 i++;
4841 }
4842
4843 if (ioc->facts.IOCCapabilities &
4844 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
4845 pr_cont("%sDiag Trace Buffer", i ? "," : "");
4846 i++;
4847 }
4848
4849 if (ioc->facts.IOCCapabilities &
4850 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
4851 pr_cont("%sDiag Extended Buffer", i ? "," : "");
4852 i++;
4853 }
4854
4855 if (ioc->facts.IOCCapabilities &
4856 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
4857 pr_cont("%sTask Set Full", i ? "," : "");
4858 i++;
4859 }
4860
4861 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4862 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
4863 pr_cont("%sNCQ", i ? "," : "");
4864 i++;
4865 }
4866
4867 pr_cont(")\n");
4868 }
4869
4870 /**
4871 * mpt3sas_base_update_missing_delay - change the missing delay timers
4872 * @ioc: per adapter object
4873 * @device_missing_delay: amount of time till device is reported missing
4874 * @io_missing_delay: interval IO is returned when there is a missing device
4875 *
4876 * Passed on the command line, this function will modify the device missing
4877 * delay, as well as the io missing delay. This should be called at driver
4878 * load time.
4879 */
4880 void
mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER * ioc,u16 device_missing_delay,u8 io_missing_delay)4881 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4882 u16 device_missing_delay, u8 io_missing_delay)
4883 {
4884 u16 dmd, dmd_new, dmd_orignal;
4885 u8 io_missing_delay_original;
4886 u16 sz;
4887 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4888 Mpi2ConfigReply_t mpi_reply;
4889 u8 num_phys = 0;
4890 u16 ioc_status;
4891
4892 mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4893 if (!num_phys)
4894 return;
4895
4896 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
4897 sizeof(Mpi2SasIOUnit1PhyData_t));
4898 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4899 if (!sas_iounit_pg1) {
4900 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4901 __FILE__, __LINE__, __func__);
4902 goto out;
4903 }
4904 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4905 sas_iounit_pg1, sz))) {
4906 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4907 __FILE__, __LINE__, __func__);
4908 goto out;
4909 }
4910 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4911 MPI2_IOCSTATUS_MASK;
4912 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4913 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4914 __FILE__, __LINE__, __func__);
4915 goto out;
4916 }
4917
4918 /* device missing delay */
4919 dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4920 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4921 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4922 else
4923 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4924 dmd_orignal = dmd;
4925 if (device_missing_delay > 0x7F) {
4926 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4927 device_missing_delay;
4928 dmd = dmd / 16;
4929 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4930 } else
4931 dmd = device_missing_delay;
4932 sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4933
4934 /* io missing delay */
4935 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4936 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4937
4938 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4939 sz)) {
4940 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4941 dmd_new = (dmd &
4942 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4943 else
4944 dmd_new =
4945 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4946 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n",
4947 dmd_orignal, dmd_new);
4948 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n",
4949 io_missing_delay_original,
4950 io_missing_delay);
4951 ioc->device_missing_delay = dmd_new;
4952 ioc->io_missing_delay = io_missing_delay;
4953 }
4954
4955 out:
4956 kfree(sas_iounit_pg1);
4957 }
4958
4959 /**
4960 * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
4961 * according to performance mode.
4962 * @ioc : per adapter object
4963 *
4964 * Return: zero on success; otherwise return EAGAIN error code asking the
4965 * caller to retry.
4966 */
4967 static int
_base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER * ioc)4968 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc)
4969 {
4970 Mpi2IOCPage1_t ioc_pg1;
4971 Mpi2ConfigReply_t mpi_reply;
4972 int rc;
4973
4974 rc = mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy);
4975 if (rc)
4976 return rc;
4977 memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t));
4978
4979 switch (perf_mode) {
4980 case MPT_PERF_MODE_DEFAULT:
4981 case MPT_PERF_MODE_BALANCED:
4982 if (ioc->high_iops_queues) {
4983 ioc_info(ioc,
4984 "Enable interrupt coalescing only for first\t"
4985 "%d reply queues\n",
4986 MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
4987 /*
4988 * If 31st bit is zero then interrupt coalescing is
4989 * enabled for all reply descriptor post queues.
4990 * If 31st bit is set to one then user can
4991 * enable/disable interrupt coalescing on per reply
4992 * descriptor post queue group(8) basis. So to enable
4993 * interrupt coalescing only on first reply descriptor
4994 * post queue group 31st bit and zero th bit is enabled.
4995 */
4996 ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 |
4997 ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1));
4998 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4999 if (rc)
5000 return rc;
5001 ioc_info(ioc, "performance mode: balanced\n");
5002 return 0;
5003 }
5004 fallthrough;
5005 case MPT_PERF_MODE_LATENCY:
5006 /*
5007 * Enable interrupt coalescing on all reply queues
5008 * with timeout value 0xA
5009 */
5010 ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa);
5011 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
5012 ioc_pg1.ProductSpecific = 0;
5013 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5014 if (rc)
5015 return rc;
5016 ioc_info(ioc, "performance mode: latency\n");
5017 break;
5018 case MPT_PERF_MODE_IOPS:
5019 /*
5020 * Enable interrupt coalescing on all reply queues.
5021 */
5022 ioc_info(ioc,
5023 "performance mode: iops with coalescing timeout: 0x%x\n",
5024 le32_to_cpu(ioc_pg1.CoalescingTimeout));
5025 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
5026 ioc_pg1.ProductSpecific = 0;
5027 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5028 if (rc)
5029 return rc;
5030 break;
5031 }
5032 return 0;
5033 }
5034
5035 /**
5036 * _base_get_event_diag_triggers - get event diag trigger values from
5037 * persistent pages
5038 * @ioc : per adapter object
5039 *
5040 * Return: nothing.
5041 */
5042 static int
_base_get_event_diag_triggers(struct MPT3SAS_ADAPTER * ioc)5043 _base_get_event_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5044 {
5045 Mpi26DriverTriggerPage2_t trigger_pg2;
5046 struct SL_WH_EVENT_TRIGGER_T *event_tg;
5047 MPI26_DRIVER_MPI_EVENT_TIGGER_ENTRY *mpi_event_tg;
5048 Mpi2ConfigReply_t mpi_reply;
5049 int r = 0, i = 0;
5050 u16 count = 0;
5051 u16 ioc_status;
5052
5053 r = mpt3sas_config_get_driver_trigger_pg2(ioc, &mpi_reply,
5054 &trigger_pg2);
5055 if (r)
5056 return r;
5057
5058 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5059 MPI2_IOCSTATUS_MASK;
5060 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5061 dinitprintk(ioc,
5062 ioc_err(ioc,
5063 "%s: Failed to get trigger pg2, ioc_status(0x%04x)\n",
5064 __func__, ioc_status));
5065 return 0;
5066 }
5067
5068 if (le16_to_cpu(trigger_pg2.NumMPIEventTrigger)) {
5069 count = le16_to_cpu(trigger_pg2.NumMPIEventTrigger);
5070 count = min_t(u16, NUM_VALID_ENTRIES, count);
5071 ioc->diag_trigger_event.ValidEntries = count;
5072
5073 event_tg = &ioc->diag_trigger_event.EventTriggerEntry[0];
5074 mpi_event_tg = &trigger_pg2.MPIEventTriggers[0];
5075 for (i = 0; i < count; i++) {
5076 event_tg->EventValue = le16_to_cpu(
5077 mpi_event_tg->MPIEventCode);
5078 event_tg->LogEntryQualifier = le16_to_cpu(
5079 mpi_event_tg->MPIEventCodeSpecific);
5080 event_tg++;
5081 mpi_event_tg++;
5082 }
5083 }
5084 return 0;
5085 }
5086
5087 /**
5088 * _base_get_scsi_diag_triggers - get scsi diag trigger values from
5089 * persistent pages
5090 * @ioc : per adapter object
5091 *
5092 * Return: 0 on success; otherwise return failure status.
5093 */
5094 static int
_base_get_scsi_diag_triggers(struct MPT3SAS_ADAPTER * ioc)5095 _base_get_scsi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5096 {
5097 Mpi26DriverTriggerPage3_t trigger_pg3;
5098 struct SL_WH_SCSI_TRIGGER_T *scsi_tg;
5099 MPI26_DRIVER_SCSI_SENSE_TIGGER_ENTRY *mpi_scsi_tg;
5100 Mpi2ConfigReply_t mpi_reply;
5101 int r = 0, i = 0;
5102 u16 count = 0;
5103 u16 ioc_status;
5104
5105 r = mpt3sas_config_get_driver_trigger_pg3(ioc, &mpi_reply,
5106 &trigger_pg3);
5107 if (r)
5108 return r;
5109
5110 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5111 MPI2_IOCSTATUS_MASK;
5112 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5113 dinitprintk(ioc,
5114 ioc_err(ioc,
5115 "%s: Failed to get trigger pg3, ioc_status(0x%04x)\n",
5116 __func__, ioc_status));
5117 return 0;
5118 }
5119
5120 if (le16_to_cpu(trigger_pg3.NumSCSISenseTrigger)) {
5121 count = le16_to_cpu(trigger_pg3.NumSCSISenseTrigger);
5122 count = min_t(u16, NUM_VALID_ENTRIES, count);
5123 ioc->diag_trigger_scsi.ValidEntries = count;
5124
5125 scsi_tg = &ioc->diag_trigger_scsi.SCSITriggerEntry[0];
5126 mpi_scsi_tg = &trigger_pg3.SCSISenseTriggers[0];
5127 for (i = 0; i < count; i++) {
5128 scsi_tg->ASCQ = mpi_scsi_tg->ASCQ;
5129 scsi_tg->ASC = mpi_scsi_tg->ASC;
5130 scsi_tg->SenseKey = mpi_scsi_tg->SenseKey;
5131
5132 scsi_tg++;
5133 mpi_scsi_tg++;
5134 }
5135 }
5136 return 0;
5137 }
5138
5139 /**
5140 * _base_get_mpi_diag_triggers - get mpi diag trigger values from
5141 * persistent pages
5142 * @ioc : per adapter object
5143 *
5144 * Return: 0 on success; otherwise return failure status.
5145 */
5146 static int
_base_get_mpi_diag_triggers(struct MPT3SAS_ADAPTER * ioc)5147 _base_get_mpi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5148 {
5149 Mpi26DriverTriggerPage4_t trigger_pg4;
5150 struct SL_WH_MPI_TRIGGER_T *status_tg;
5151 MPI26_DRIVER_IOCSTATUS_LOGINFO_TIGGER_ENTRY *mpi_status_tg;
5152 Mpi2ConfigReply_t mpi_reply;
5153 int r = 0, i = 0;
5154 u16 count = 0;
5155 u16 ioc_status;
5156
5157 r = mpt3sas_config_get_driver_trigger_pg4(ioc, &mpi_reply,
5158 &trigger_pg4);
5159 if (r)
5160 return r;
5161
5162 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5163 MPI2_IOCSTATUS_MASK;
5164 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5165 dinitprintk(ioc,
5166 ioc_err(ioc,
5167 "%s: Failed to get trigger pg4, ioc_status(0x%04x)\n",
5168 __func__, ioc_status));
5169 return 0;
5170 }
5171
5172 if (le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger)) {
5173 count = le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger);
5174 count = min_t(u16, NUM_VALID_ENTRIES, count);
5175 ioc->diag_trigger_mpi.ValidEntries = count;
5176
5177 status_tg = &ioc->diag_trigger_mpi.MPITriggerEntry[0];
5178 mpi_status_tg = &trigger_pg4.IOCStatusLoginfoTriggers[0];
5179
5180 for (i = 0; i < count; i++) {
5181 status_tg->IOCStatus = le16_to_cpu(
5182 mpi_status_tg->IOCStatus);
5183 status_tg->IocLogInfo = le32_to_cpu(
5184 mpi_status_tg->LogInfo);
5185
5186 status_tg++;
5187 mpi_status_tg++;
5188 }
5189 }
5190 return 0;
5191 }
5192
5193 /**
5194 * _base_get_master_diag_triggers - get master diag trigger values from
5195 * persistent pages
5196 * @ioc : per adapter object
5197 *
5198 * Return: nothing.
5199 */
5200 static int
_base_get_master_diag_triggers(struct MPT3SAS_ADAPTER * ioc)5201 _base_get_master_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5202 {
5203 Mpi26DriverTriggerPage1_t trigger_pg1;
5204 Mpi2ConfigReply_t mpi_reply;
5205 int r;
5206 u16 ioc_status;
5207
5208 r = mpt3sas_config_get_driver_trigger_pg1(ioc, &mpi_reply,
5209 &trigger_pg1);
5210 if (r)
5211 return r;
5212
5213 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5214 MPI2_IOCSTATUS_MASK;
5215 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5216 dinitprintk(ioc,
5217 ioc_err(ioc,
5218 "%s: Failed to get trigger pg1, ioc_status(0x%04x)\n",
5219 __func__, ioc_status));
5220 return 0;
5221 }
5222
5223 if (le16_to_cpu(trigger_pg1.NumMasterTrigger))
5224 ioc->diag_trigger_master.MasterData |=
5225 le32_to_cpu(
5226 trigger_pg1.MasterTriggers[0].MasterTriggerFlags);
5227 return 0;
5228 }
5229
5230 /**
5231 * _base_check_for_trigger_pages_support - checks whether HBA FW supports
5232 * driver trigger pages or not
5233 * @ioc : per adapter object
5234 * @trigger_flags : address where trigger page0's TriggerFlags value is copied
5235 *
5236 * Return: trigger flags mask if HBA FW supports driver trigger pages;
5237 * otherwise returns %-EFAULT if driver trigger pages are not supported by FW or
5238 * return EAGAIN if diag reset occurred due to FW fault and asking the
5239 * caller to retry the command.
5240 *
5241 */
5242 static int
_base_check_for_trigger_pages_support(struct MPT3SAS_ADAPTER * ioc,u32 * trigger_flags)5243 _base_check_for_trigger_pages_support(struct MPT3SAS_ADAPTER *ioc, u32 *trigger_flags)
5244 {
5245 Mpi26DriverTriggerPage0_t trigger_pg0;
5246 int r = 0;
5247 Mpi2ConfigReply_t mpi_reply;
5248 u16 ioc_status;
5249
5250 r = mpt3sas_config_get_driver_trigger_pg0(ioc, &mpi_reply,
5251 &trigger_pg0);
5252 if (r)
5253 return r;
5254
5255 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5256 MPI2_IOCSTATUS_MASK;
5257 if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
5258 return -EFAULT;
5259
5260 *trigger_flags = le16_to_cpu(trigger_pg0.TriggerFlags);
5261 return 0;
5262 }
5263
5264 /**
5265 * _base_get_diag_triggers - Retrieve diag trigger values from
5266 * persistent pages.
5267 * @ioc : per adapter object
5268 *
5269 * Return: zero on success; otherwise return EAGAIN error codes
5270 * asking the caller to retry.
5271 */
5272 static int
_base_get_diag_triggers(struct MPT3SAS_ADAPTER * ioc)5273 _base_get_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5274 {
5275 int trigger_flags;
5276 int r;
5277
5278 /*
5279 * Default setting of master trigger.
5280 */
5281 ioc->diag_trigger_master.MasterData =
5282 (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET);
5283
5284 r = _base_check_for_trigger_pages_support(ioc, &trigger_flags);
5285 if (r) {
5286 if (r == -EAGAIN)
5287 return r;
5288 /*
5289 * Don't go for error handling when FW doesn't support
5290 * driver trigger pages.
5291 */
5292 return 0;
5293 }
5294
5295 ioc->supports_trigger_pages = 1;
5296
5297 /*
5298 * Retrieve master diag trigger values from driver trigger pg1
5299 * if master trigger bit enabled in TriggerFlags.
5300 */
5301 if ((u16)trigger_flags &
5302 MPI26_DRIVER_TRIGGER0_FLAG_MASTER_TRIGGER_VALID) {
5303 r = _base_get_master_diag_triggers(ioc);
5304 if (r)
5305 return r;
5306 }
5307
5308 /*
5309 * Retrieve event diag trigger values from driver trigger pg2
5310 * if event trigger bit enabled in TriggerFlags.
5311 */
5312 if ((u16)trigger_flags &
5313 MPI26_DRIVER_TRIGGER0_FLAG_MPI_EVENT_TRIGGER_VALID) {
5314 r = _base_get_event_diag_triggers(ioc);
5315 if (r)
5316 return r;
5317 }
5318
5319 /*
5320 * Retrieve scsi diag trigger values from driver trigger pg3
5321 * if scsi trigger bit enabled in TriggerFlags.
5322 */
5323 if ((u16)trigger_flags &
5324 MPI26_DRIVER_TRIGGER0_FLAG_SCSI_SENSE_TRIGGER_VALID) {
5325 r = _base_get_scsi_diag_triggers(ioc);
5326 if (r)
5327 return r;
5328 }
5329 /*
5330 * Retrieve mpi error diag trigger values from driver trigger pg4
5331 * if loginfo trigger bit enabled in TriggerFlags.
5332 */
5333 if ((u16)trigger_flags &
5334 MPI26_DRIVER_TRIGGER0_FLAG_LOGINFO_TRIGGER_VALID) {
5335 r = _base_get_mpi_diag_triggers(ioc);
5336 if (r)
5337 return r;
5338 }
5339 return 0;
5340 }
5341
5342 /**
5343 * _base_update_diag_trigger_pages - Update the driver trigger pages after
5344 * online FW update, in case updated FW supports driver
5345 * trigger pages.
5346 * @ioc : per adapter object
5347 *
5348 * Return: nothing.
5349 */
5350 static void
_base_update_diag_trigger_pages(struct MPT3SAS_ADAPTER * ioc)5351 _base_update_diag_trigger_pages(struct MPT3SAS_ADAPTER *ioc)
5352 {
5353
5354 if (ioc->diag_trigger_master.MasterData)
5355 mpt3sas_config_update_driver_trigger_pg1(ioc,
5356 &ioc->diag_trigger_master, 1);
5357
5358 if (ioc->diag_trigger_event.ValidEntries)
5359 mpt3sas_config_update_driver_trigger_pg2(ioc,
5360 &ioc->diag_trigger_event, 1);
5361
5362 if (ioc->diag_trigger_scsi.ValidEntries)
5363 mpt3sas_config_update_driver_trigger_pg3(ioc,
5364 &ioc->diag_trigger_scsi, 1);
5365
5366 if (ioc->diag_trigger_mpi.ValidEntries)
5367 mpt3sas_config_update_driver_trigger_pg4(ioc,
5368 &ioc->diag_trigger_mpi, 1);
5369 }
5370
5371 /**
5372 * _base_assign_fw_reported_qd - Get FW reported QD for SAS/SATA devices.
5373 * - On failure set default QD values.
5374 * @ioc : per adapter object
5375 *
5376 * Returns 0 for success, non-zero for failure.
5377 *
5378 */
_base_assign_fw_reported_qd(struct MPT3SAS_ADAPTER * ioc)5379 static int _base_assign_fw_reported_qd(struct MPT3SAS_ADAPTER *ioc)
5380 {
5381 Mpi2ConfigReply_t mpi_reply;
5382 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
5383 Mpi26PCIeIOUnitPage1_t pcie_iounit_pg1;
5384 u16 depth;
5385 int sz;
5386 int rc = 0;
5387
5388 ioc->max_wideport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5389 ioc->max_narrowport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5390 ioc->max_sata_qd = MPT3SAS_SATA_QUEUE_DEPTH;
5391 ioc->max_nvme_qd = MPT3SAS_NVME_QUEUE_DEPTH;
5392 if (!ioc->is_gen35_ioc)
5393 goto out;
5394 /* sas iounit page 1 */
5395 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData);
5396 sas_iounit_pg1 = kzalloc(sizeof(Mpi2SasIOUnitPage1_t), GFP_KERNEL);
5397 if (!sas_iounit_pg1) {
5398 pr_err("%s: failure at %s:%d/%s()!\n",
5399 ioc->name, __FILE__, __LINE__, __func__);
5400 return rc;
5401 }
5402 rc = mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
5403 sas_iounit_pg1, sz);
5404 if (rc) {
5405 pr_err("%s: failure at %s:%d/%s()!\n",
5406 ioc->name, __FILE__, __LINE__, __func__);
5407 goto out;
5408 }
5409
5410 depth = le16_to_cpu(sas_iounit_pg1->SASWideMaxQueueDepth);
5411 ioc->max_wideport_qd = (depth ? depth : MPT3SAS_SAS_QUEUE_DEPTH);
5412
5413 depth = le16_to_cpu(sas_iounit_pg1->SASNarrowMaxQueueDepth);
5414 ioc->max_narrowport_qd = (depth ? depth : MPT3SAS_SAS_QUEUE_DEPTH);
5415
5416 depth = sas_iounit_pg1->SATAMaxQDepth;
5417 ioc->max_sata_qd = (depth ? depth : MPT3SAS_SATA_QUEUE_DEPTH);
5418
5419 /* pcie iounit page 1 */
5420 rc = mpt3sas_config_get_pcie_iounit_pg1(ioc, &mpi_reply,
5421 &pcie_iounit_pg1, sizeof(Mpi26PCIeIOUnitPage1_t));
5422 if (rc) {
5423 pr_err("%s: failure at %s:%d/%s()!\n",
5424 ioc->name, __FILE__, __LINE__, __func__);
5425 goto out;
5426 }
5427 ioc->max_nvme_qd = (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) ?
5428 (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) :
5429 MPT3SAS_NVME_QUEUE_DEPTH;
5430 out:
5431 dinitprintk(ioc, pr_err(
5432 "MaxWidePortQD: 0x%x MaxNarrowPortQD: 0x%x MaxSataQD: 0x%x MaxNvmeQD: 0x%x\n",
5433 ioc->max_wideport_qd, ioc->max_narrowport_qd,
5434 ioc->max_sata_qd, ioc->max_nvme_qd));
5435 kfree(sas_iounit_pg1);
5436 return rc;
5437 }
5438
5439 /**
5440 * mpt3sas_atto_validate_nvram - validate the ATTO nvram read from mfg pg1
5441 *
5442 * @ioc : per adapter object
5443 * @n : ptr to the ATTO nvram structure
5444 * Return: 0 for success, non-zero for failure.
5445 */
5446 static int
mpt3sas_atto_validate_nvram(struct MPT3SAS_ADAPTER * ioc,struct ATTO_SAS_NVRAM * n)5447 mpt3sas_atto_validate_nvram(struct MPT3SAS_ADAPTER *ioc,
5448 struct ATTO_SAS_NVRAM *n)
5449 {
5450 int r = -EINVAL;
5451 union ATTO_SAS_ADDRESS *s1;
5452 u32 len;
5453 u8 *pb;
5454 u8 ckSum;
5455
5456 /* validate nvram checksum */
5457 pb = (u8 *) n;
5458 ckSum = ATTO_SASNVR_CKSUM_SEED;
5459 len = sizeof(struct ATTO_SAS_NVRAM);
5460
5461 while (len--)
5462 ckSum = ckSum + pb[len];
5463
5464 if (ckSum) {
5465 ioc_err(ioc, "Invalid ATTO NVRAM checksum\n");
5466 return r;
5467 }
5468
5469 s1 = (union ATTO_SAS_ADDRESS *) n->SasAddr;
5470
5471 if (n->Signature[0] != 'E'
5472 || n->Signature[1] != 'S'
5473 || n->Signature[2] != 'A'
5474 || n->Signature[3] != 'S')
5475 ioc_err(ioc, "Invalid ATTO NVRAM signature\n");
5476 else if (n->Version > ATTO_SASNVR_VERSION)
5477 ioc_info(ioc, "Invalid ATTO NVRAM version");
5478 else if ((n->SasAddr[7] & (ATTO_SAS_ADDR_ALIGN - 1))
5479 || s1->b[0] != 0x50
5480 || s1->b[1] != 0x01
5481 || s1->b[2] != 0x08
5482 || (s1->b[3] & 0xF0) != 0x60
5483 || ((s1->b[3] & 0x0F) | le32_to_cpu(s1->d[1])) == 0) {
5484 ioc_err(ioc, "Invalid ATTO SAS address\n");
5485 } else
5486 r = 0;
5487 return r;
5488 }
5489
5490 /**
5491 * mpt3sas_atto_get_sas_addr - get the ATTO SAS address from mfg page 1
5492 *
5493 * @ioc : per adapter object
5494 * @*sas_addr : return sas address
5495 * Return: 0 for success, non-zero for failure.
5496 */
5497 static int
mpt3sas_atto_get_sas_addr(struct MPT3SAS_ADAPTER * ioc,union ATTO_SAS_ADDRESS * sas_addr)5498 mpt3sas_atto_get_sas_addr(struct MPT3SAS_ADAPTER *ioc, union ATTO_SAS_ADDRESS *sas_addr)
5499 {
5500 Mpi2ManufacturingPage1_t mfg_pg1;
5501 Mpi2ConfigReply_t mpi_reply;
5502 struct ATTO_SAS_NVRAM *nvram;
5503 int r;
5504 __be64 addr;
5505
5506 r = mpt3sas_config_get_manufacturing_pg1(ioc, &mpi_reply, &mfg_pg1);
5507 if (r) {
5508 ioc_err(ioc, "Failed to read manufacturing page 1\n");
5509 return r;
5510 }
5511
5512 /* validate nvram */
5513 nvram = (struct ATTO_SAS_NVRAM *) mfg_pg1.VPD;
5514 r = mpt3sas_atto_validate_nvram(ioc, nvram);
5515 if (r)
5516 return r;
5517
5518 addr = *((__be64 *) nvram->SasAddr);
5519 sas_addr->q = cpu_to_le64(be64_to_cpu(addr));
5520 return r;
5521 }
5522
5523 /**
5524 * mpt3sas_atto_init - perform initializaion for ATTO branded
5525 * adapter.
5526 * @ioc : per adapter object
5527 *5
5528 * Return: 0 for success, non-zero for failure.
5529 */
5530 static int
mpt3sas_atto_init(struct MPT3SAS_ADAPTER * ioc)5531 mpt3sas_atto_init(struct MPT3SAS_ADAPTER *ioc)
5532 {
5533 int sz = 0;
5534 Mpi2BiosPage4_t *bios_pg4 = NULL;
5535 Mpi2ConfigReply_t mpi_reply;
5536 int r;
5537 int ix;
5538 union ATTO_SAS_ADDRESS sas_addr;
5539 union ATTO_SAS_ADDRESS temp;
5540 union ATTO_SAS_ADDRESS bias;
5541
5542 r = mpt3sas_atto_get_sas_addr(ioc, &sas_addr);
5543 if (r)
5544 return r;
5545
5546 /* get header first to get size */
5547 r = mpt3sas_config_get_bios_pg4(ioc, &mpi_reply, NULL, 0);
5548 if (r) {
5549 ioc_err(ioc, "Failed to read ATTO bios page 4 header.\n");
5550 return r;
5551 }
5552
5553 sz = mpi_reply.Header.PageLength * sizeof(u32);
5554 bios_pg4 = kzalloc(sz, GFP_KERNEL);
5555 if (!bios_pg4) {
5556 ioc_err(ioc, "Failed to allocate memory for ATTO bios page.\n");
5557 return -ENOMEM;
5558 }
5559
5560 /* read bios page 4 */
5561 r = mpt3sas_config_get_bios_pg4(ioc, &mpi_reply, bios_pg4, sz);
5562 if (r) {
5563 ioc_err(ioc, "Failed to read ATTO bios page 4\n");
5564 goto out;
5565 }
5566
5567 /* Update bios page 4 with the ATTO WWID */
5568 bias.q = sas_addr.q;
5569 bias.b[7] += ATTO_SAS_ADDR_DEVNAME_BIAS;
5570
5571 for (ix = 0; ix < bios_pg4->NumPhys; ix++) {
5572 temp.q = sas_addr.q;
5573 temp.b[7] += ix;
5574 bios_pg4->Phy[ix].ReassignmentWWID = temp.q;
5575 bios_pg4->Phy[ix].ReassignmentDeviceName = bias.q;
5576 }
5577 r = mpt3sas_config_set_bios_pg4(ioc, &mpi_reply, bios_pg4, sz);
5578
5579 out:
5580 kfree(bios_pg4);
5581 return r;
5582 }
5583
5584 /**
5585 * _base_static_config_pages - static start of day config pages
5586 * @ioc: per adapter object
5587 */
5588 static int
_base_static_config_pages(struct MPT3SAS_ADAPTER * ioc)5589 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
5590 {
5591 Mpi2ConfigReply_t mpi_reply;
5592 u32 iounit_pg1_flags;
5593 int tg_flags = 0;
5594 int rc;
5595 ioc->nvme_abort_timeout = 30;
5596
5597 rc = mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply,
5598 &ioc->manu_pg0);
5599 if (rc)
5600 return rc;
5601 if (ioc->ir_firmware) {
5602 rc = mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
5603 &ioc->manu_pg10);
5604 if (rc)
5605 return rc;
5606 }
5607
5608 if (ioc->pdev->vendor == MPI2_MFGPAGE_VENDORID_ATTO) {
5609 rc = mpt3sas_atto_init(ioc);
5610 if (rc)
5611 return rc;
5612 }
5613
5614 /*
5615 * Ensure correct T10 PI operation if vendor left EEDPTagMode
5616 * flag unset in NVDATA.
5617 */
5618 rc = mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply,
5619 &ioc->manu_pg11);
5620 if (rc)
5621 return rc;
5622 if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) {
5623 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
5624 ioc->name);
5625 ioc->manu_pg11.EEDPTagMode &= ~0x3;
5626 ioc->manu_pg11.EEDPTagMode |= 0x1;
5627 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
5628 &ioc->manu_pg11);
5629 }
5630 if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
5631 ioc->tm_custom_handling = 1;
5632 else {
5633 ioc->tm_custom_handling = 0;
5634 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
5635 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
5636 else if (ioc->manu_pg11.NVMeAbortTO >
5637 NVME_TASK_ABORT_MAX_TIMEOUT)
5638 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
5639 else
5640 ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
5641 }
5642 ioc->time_sync_interval =
5643 ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_MASK;
5644 if (ioc->time_sync_interval) {
5645 if (ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_UNIT_MASK)
5646 ioc->time_sync_interval =
5647 ioc->time_sync_interval * SECONDS_PER_HOUR;
5648 else
5649 ioc->time_sync_interval =
5650 ioc->time_sync_interval * SECONDS_PER_MIN;
5651 dinitprintk(ioc, ioc_info(ioc,
5652 "Driver-FW TimeSync interval is %d seconds. ManuPg11 TimeSync Unit is in %s\n",
5653 ioc->time_sync_interval, (ioc->manu_pg11.TimeSyncInterval &
5654 MPT3SAS_TIMESYNC_UNIT_MASK) ? "Hour" : "Minute"));
5655 } else {
5656 if (ioc->is_gen35_ioc)
5657 ioc_warn(ioc,
5658 "TimeSync Interval in Manuf page-11 is not enabled. Periodic Time-Sync will be disabled\n");
5659 }
5660 rc = _base_assign_fw_reported_qd(ioc);
5661 if (rc)
5662 return rc;
5663
5664 /*
5665 * ATTO doesn't use bios page 2 and 3 for bios settings.
5666 */
5667 if (ioc->pdev->vendor == MPI2_MFGPAGE_VENDORID_ATTO)
5668 ioc->bios_pg3.BiosVersion = 0;
5669 else {
5670 rc = mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
5671 if (rc)
5672 return rc;
5673 rc = mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
5674 if (rc)
5675 return rc;
5676 }
5677
5678 rc = mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
5679 if (rc)
5680 return rc;
5681 rc = mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
5682 if (rc)
5683 return rc;
5684 rc = mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5685 if (rc)
5686 return rc;
5687 rc = mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
5688 if (rc)
5689 return rc;
5690 _base_display_ioc_capabilities(ioc);
5691
5692 /*
5693 * Enable task_set_full handling in iounit_pg1 when the
5694 * facts capabilities indicate that its supported.
5695 */
5696 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
5697 if ((ioc->facts.IOCCapabilities &
5698 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
5699 iounit_pg1_flags &=
5700 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5701 else
5702 iounit_pg1_flags |=
5703 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5704 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
5705 rc = mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5706 if (rc)
5707 return rc;
5708
5709 if (ioc->iounit_pg8.NumSensors)
5710 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
5711 if (ioc->is_aero_ioc) {
5712 rc = _base_update_ioc_page1_inlinewith_perf_mode(ioc);
5713 if (rc)
5714 return rc;
5715 }
5716 if (ioc->is_gen35_ioc) {
5717 if (ioc->is_driver_loading) {
5718 rc = _base_get_diag_triggers(ioc);
5719 if (rc)
5720 return rc;
5721 } else {
5722 /*
5723 * In case of online HBA FW update operation,
5724 * check whether updated FW supports the driver trigger
5725 * pages or not.
5726 * - If previous FW has not supported driver trigger
5727 * pages and newer FW supports them then update these
5728 * pages with current diag trigger values.
5729 * - If previous FW has supported driver trigger pages
5730 * and new FW doesn't support them then disable
5731 * support_trigger_pages flag.
5732 */
5733 _base_check_for_trigger_pages_support(ioc, &tg_flags);
5734 if (!ioc->supports_trigger_pages && tg_flags != -EFAULT)
5735 _base_update_diag_trigger_pages(ioc);
5736 else if (ioc->supports_trigger_pages &&
5737 tg_flags == -EFAULT)
5738 ioc->supports_trigger_pages = 0;
5739 }
5740 }
5741 return 0;
5742 }
5743
5744 /**
5745 * mpt3sas_free_enclosure_list - release memory
5746 * @ioc: per adapter object
5747 *
5748 * Free memory allocated during enclosure add.
5749 */
5750 void
mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER * ioc)5751 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
5752 {
5753 struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
5754
5755 /* Free enclosure list */
5756 list_for_each_entry_safe(enclosure_dev,
5757 enclosure_dev_next, &ioc->enclosure_list, list) {
5758 list_del(&enclosure_dev->list);
5759 kfree(enclosure_dev);
5760 }
5761 }
5762
5763 /**
5764 * _base_release_memory_pools - release memory
5765 * @ioc: per adapter object
5766 *
5767 * Free memory allocated from _base_allocate_memory_pools.
5768 */
5769 static void
_base_release_memory_pools(struct MPT3SAS_ADAPTER * ioc)5770 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
5771 {
5772 int i = 0;
5773 int j = 0;
5774 int dma_alloc_count = 0;
5775 struct chain_tracker *ct;
5776 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
5777
5778 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5779
5780 if (ioc->request) {
5781 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz,
5782 ioc->request, ioc->request_dma);
5783 dexitprintk(ioc,
5784 ioc_info(ioc, "request_pool(0x%p): free\n",
5785 ioc->request));
5786 ioc->request = NULL;
5787 }
5788
5789 if (ioc->sense) {
5790 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
5791 dma_pool_destroy(ioc->sense_dma_pool);
5792 dexitprintk(ioc,
5793 ioc_info(ioc, "sense_pool(0x%p): free\n",
5794 ioc->sense));
5795 ioc->sense = NULL;
5796 }
5797
5798 if (ioc->reply) {
5799 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
5800 dma_pool_destroy(ioc->reply_dma_pool);
5801 dexitprintk(ioc,
5802 ioc_info(ioc, "reply_pool(0x%p): free\n",
5803 ioc->reply));
5804 ioc->reply = NULL;
5805 }
5806
5807 if (ioc->reply_free) {
5808 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
5809 ioc->reply_free_dma);
5810 dma_pool_destroy(ioc->reply_free_dma_pool);
5811 dexitprintk(ioc,
5812 ioc_info(ioc, "reply_free_pool(0x%p): free\n",
5813 ioc->reply_free));
5814 ioc->reply_free = NULL;
5815 }
5816
5817 if (ioc->reply_post) {
5818 dma_alloc_count = DIV_ROUND_UP(count,
5819 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
5820 for (i = 0; i < count; i++) {
5821 if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0
5822 && dma_alloc_count) {
5823 if (ioc->reply_post[i].reply_post_free) {
5824 dma_pool_free(
5825 ioc->reply_post_free_dma_pool,
5826 ioc->reply_post[i].reply_post_free,
5827 ioc->reply_post[i].reply_post_free_dma);
5828 dexitprintk(ioc, ioc_info(ioc,
5829 "reply_post_free_pool(0x%p): free\n",
5830 ioc->reply_post[i].reply_post_free));
5831 ioc->reply_post[i].reply_post_free =
5832 NULL;
5833 }
5834 --dma_alloc_count;
5835 }
5836 }
5837 dma_pool_destroy(ioc->reply_post_free_dma_pool);
5838 if (ioc->reply_post_free_array &&
5839 ioc->rdpq_array_enable) {
5840 dma_pool_free(ioc->reply_post_free_array_dma_pool,
5841 ioc->reply_post_free_array,
5842 ioc->reply_post_free_array_dma);
5843 ioc->reply_post_free_array = NULL;
5844 }
5845 dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
5846 kfree(ioc->reply_post);
5847 }
5848
5849 if (ioc->pcie_sgl_dma_pool) {
5850 for (i = 0; i < ioc->scsiio_depth; i++) {
5851 dma_pool_free(ioc->pcie_sgl_dma_pool,
5852 ioc->pcie_sg_lookup[i].pcie_sgl,
5853 ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5854 ioc->pcie_sg_lookup[i].pcie_sgl = NULL;
5855 }
5856 dma_pool_destroy(ioc->pcie_sgl_dma_pool);
5857 }
5858 kfree(ioc->pcie_sg_lookup);
5859 ioc->pcie_sg_lookup = NULL;
5860
5861 if (ioc->config_page) {
5862 dexitprintk(ioc,
5863 ioc_info(ioc, "config_page(0x%p): free\n",
5864 ioc->config_page));
5865 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz,
5866 ioc->config_page, ioc->config_page_dma);
5867 }
5868
5869 kfree(ioc->hpr_lookup);
5870 ioc->hpr_lookup = NULL;
5871 kfree(ioc->internal_lookup);
5872 ioc->internal_lookup = NULL;
5873 if (ioc->chain_lookup) {
5874 for (i = 0; i < ioc->scsiio_depth; i++) {
5875 for (j = ioc->chains_per_prp_buffer;
5876 j < ioc->chains_needed_per_io; j++) {
5877 ct = &ioc->chain_lookup[i].chains_per_smid[j];
5878 if (ct && ct->chain_buffer)
5879 dma_pool_free(ioc->chain_dma_pool,
5880 ct->chain_buffer,
5881 ct->chain_buffer_dma);
5882 }
5883 kfree(ioc->chain_lookup[i].chains_per_smid);
5884 }
5885 dma_pool_destroy(ioc->chain_dma_pool);
5886 kfree(ioc->chain_lookup);
5887 ioc->chain_lookup = NULL;
5888 }
5889
5890 kfree(ioc->io_queue_num);
5891 ioc->io_queue_num = NULL;
5892 }
5893
5894 /**
5895 * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are
5896 * having same upper 32bits in their base memory address.
5897 * @start_address: Base address of a reply queue set
5898 * @pool_sz: Size of single Reply Descriptor Post Queues pool size
5899 *
5900 * Return: 1 if reply queues in a set have a same upper 32bits in their base
5901 * memory address, else 0.
5902 */
5903 static int
mpt3sas_check_same_4gb_region(dma_addr_t start_address,u32 pool_sz)5904 mpt3sas_check_same_4gb_region(dma_addr_t start_address, u32 pool_sz)
5905 {
5906 dma_addr_t end_address;
5907
5908 end_address = start_address + pool_sz - 1;
5909
5910 if (upper_32_bits(start_address) == upper_32_bits(end_address))
5911 return 1;
5912 else
5913 return 0;
5914 }
5915
5916 /**
5917 * _base_reduce_hba_queue_depth- Retry with reduced queue depth
5918 * @ioc: Adapter object
5919 *
5920 * Return: 0 for success, non-zero for failure.
5921 **/
5922 static inline int
_base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER * ioc)5923 _base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER *ioc)
5924 {
5925 int reduce_sz = 64;
5926
5927 if ((ioc->hba_queue_depth - reduce_sz) >
5928 (ioc->internal_depth + INTERNAL_SCSIIO_CMDS_COUNT)) {
5929 ioc->hba_queue_depth -= reduce_sz;
5930 return 0;
5931 } else
5932 return -ENOMEM;
5933 }
5934
5935 /**
5936 * _base_allocate_pcie_sgl_pool - Allocating DMA'able memory
5937 * for pcie sgl pools.
5938 * @ioc: Adapter object
5939 * @sz: DMA Pool size
5940 *
5941 * Return: 0 for success, non-zero for failure.
5942 */
5943
5944 static int
_base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER * ioc,u32 sz)5945 _base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5946 {
5947 int i = 0, j = 0;
5948 struct chain_tracker *ct;
5949
5950 ioc->pcie_sgl_dma_pool =
5951 dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz,
5952 ioc->page_size, 0);
5953 if (!ioc->pcie_sgl_dma_pool) {
5954 ioc_err(ioc, "PCIe SGL pool: dma_pool_create failed\n");
5955 return -ENOMEM;
5956 }
5957
5958 ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
5959 ioc->chains_per_prp_buffer =
5960 min(ioc->chains_per_prp_buffer, ioc->chains_needed_per_io);
5961 for (i = 0; i < ioc->scsiio_depth; i++) {
5962 ioc->pcie_sg_lookup[i].pcie_sgl =
5963 dma_pool_alloc(ioc->pcie_sgl_dma_pool, GFP_KERNEL,
5964 &ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5965 if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
5966 ioc_err(ioc, "PCIe SGL pool: dma_pool_alloc failed\n");
5967 return -EAGAIN;
5968 }
5969
5970 if (!mpt3sas_check_same_4gb_region(
5971 ioc->pcie_sg_lookup[i].pcie_sgl_dma, sz)) {
5972 ioc_err(ioc, "PCIE SGLs are not in same 4G !! pcie sgl (0x%p) dma = (0x%llx)\n",
5973 ioc->pcie_sg_lookup[i].pcie_sgl,
5974 (unsigned long long)
5975 ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5976 ioc->use_32bit_dma = true;
5977 return -EAGAIN;
5978 }
5979
5980 for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
5981 ct = &ioc->chain_lookup[i].chains_per_smid[j];
5982 ct->chain_buffer =
5983 ioc->pcie_sg_lookup[i].pcie_sgl +
5984 (j * ioc->chain_segment_sz);
5985 ct->chain_buffer_dma =
5986 ioc->pcie_sg_lookup[i].pcie_sgl_dma +
5987 (j * ioc->chain_segment_sz);
5988 }
5989 }
5990 dinitprintk(ioc, ioc_info(ioc,
5991 "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
5992 ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024));
5993 dinitprintk(ioc, ioc_info(ioc,
5994 "Number of chains can fit in a PRP page(%d)\n",
5995 ioc->chains_per_prp_buffer));
5996 return 0;
5997 }
5998
5999 /**
6000 * _base_allocate_chain_dma_pool - Allocating DMA'able memory
6001 * for chain dma pool.
6002 * @ioc: Adapter object
6003 * @sz: DMA Pool size
6004 *
6005 * Return: 0 for success, non-zero for failure.
6006 */
6007 static int
_base_allocate_chain_dma_pool(struct MPT3SAS_ADAPTER * ioc,u32 sz)6008 _base_allocate_chain_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
6009 {
6010 int i = 0, j = 0;
6011 struct chain_tracker *ctr;
6012
6013 ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
6014 ioc->chain_segment_sz, 16, 0);
6015 if (!ioc->chain_dma_pool)
6016 return -ENOMEM;
6017
6018 for (i = 0; i < ioc->scsiio_depth; i++) {
6019 for (j = ioc->chains_per_prp_buffer;
6020 j < ioc->chains_needed_per_io; j++) {
6021 ctr = &ioc->chain_lookup[i].chains_per_smid[j];
6022 ctr->chain_buffer = dma_pool_alloc(ioc->chain_dma_pool,
6023 GFP_KERNEL, &ctr->chain_buffer_dma);
6024 if (!ctr->chain_buffer)
6025 return -EAGAIN;
6026 if (!mpt3sas_check_same_4gb_region(
6027 ctr->chain_buffer_dma, ioc->chain_segment_sz)) {
6028 ioc_err(ioc,
6029 "Chain buffers are not in same 4G !!! Chain buff (0x%p) dma = (0x%llx)\n",
6030 ctr->chain_buffer,
6031 (unsigned long long)ctr->chain_buffer_dma);
6032 ioc->use_32bit_dma = true;
6033 return -EAGAIN;
6034 }
6035 }
6036 }
6037 dinitprintk(ioc, ioc_info(ioc,
6038 "chain_lookup depth (%d), frame_size(%d), pool_size(%d kB)\n",
6039 ioc->scsiio_depth, ioc->chain_segment_sz, ((ioc->scsiio_depth *
6040 (ioc->chains_needed_per_io - ioc->chains_per_prp_buffer) *
6041 ioc->chain_segment_sz))/1024));
6042 return 0;
6043 }
6044
6045 /**
6046 * _base_allocate_sense_dma_pool - Allocating DMA'able memory
6047 * for sense dma pool.
6048 * @ioc: Adapter object
6049 * @sz: DMA Pool size
6050 * Return: 0 for success, non-zero for failure.
6051 */
6052 static int
_base_allocate_sense_dma_pool(struct MPT3SAS_ADAPTER * ioc,u32 sz)6053 _base_allocate_sense_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
6054 {
6055 ioc->sense_dma_pool =
6056 dma_pool_create("sense pool", &ioc->pdev->dev, sz, 4, 0);
6057 if (!ioc->sense_dma_pool)
6058 return -ENOMEM;
6059 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool,
6060 GFP_KERNEL, &ioc->sense_dma);
6061 if (!ioc->sense)
6062 return -EAGAIN;
6063 if (!mpt3sas_check_same_4gb_region(ioc->sense_dma, sz)) {
6064 dinitprintk(ioc, pr_err(
6065 "Bad Sense Pool! sense (0x%p) sense_dma = (0x%llx)\n",
6066 ioc->sense, (unsigned long long) ioc->sense_dma));
6067 ioc->use_32bit_dma = true;
6068 return -EAGAIN;
6069 }
6070 ioc_info(ioc,
6071 "sense pool(0x%p) - dma(0x%llx): depth(%d), element_size(%d), pool_size (%d kB)\n",
6072 ioc->sense, (unsigned long long)ioc->sense_dma,
6073 ioc->scsiio_depth, SCSI_SENSE_BUFFERSIZE, sz/1024);
6074 return 0;
6075 }
6076
6077 /**
6078 * _base_allocate_reply_pool - Allocating DMA'able memory
6079 * for reply pool.
6080 * @ioc: Adapter object
6081 * @sz: DMA Pool size
6082 * Return: 0 for success, non-zero for failure.
6083 */
6084 static int
_base_allocate_reply_pool(struct MPT3SAS_ADAPTER * ioc,u32 sz)6085 _base_allocate_reply_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
6086 {
6087 /* reply pool, 4 byte align */
6088 ioc->reply_dma_pool = dma_pool_create("reply pool",
6089 &ioc->pdev->dev, sz, 4, 0);
6090 if (!ioc->reply_dma_pool)
6091 return -ENOMEM;
6092 ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
6093 &ioc->reply_dma);
6094 if (!ioc->reply)
6095 return -EAGAIN;
6096 if (!mpt3sas_check_same_4gb_region(ioc->reply_dma, sz)) {
6097 dinitprintk(ioc, pr_err(
6098 "Bad Reply Pool! Reply (0x%p) Reply dma = (0x%llx)\n",
6099 ioc->reply, (unsigned long long) ioc->reply_dma));
6100 ioc->use_32bit_dma = true;
6101 return -EAGAIN;
6102 }
6103 ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
6104 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
6105 ioc_info(ioc,
6106 "reply pool(0x%p) - dma(0x%llx): depth(%d), frame_size(%d), pool_size(%d kB)\n",
6107 ioc->reply, (unsigned long long)ioc->reply_dma,
6108 ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024);
6109 return 0;
6110 }
6111
6112 /**
6113 * _base_allocate_reply_free_dma_pool - Allocating DMA'able memory
6114 * for reply free dma pool.
6115 * @ioc: Adapter object
6116 * @sz: DMA Pool size
6117 * Return: 0 for success, non-zero for failure.
6118 */
6119 static int
_base_allocate_reply_free_dma_pool(struct MPT3SAS_ADAPTER * ioc,u32 sz)6120 _base_allocate_reply_free_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
6121 {
6122 /* reply free queue, 16 byte align */
6123 ioc->reply_free_dma_pool = dma_pool_create(
6124 "reply_free pool", &ioc->pdev->dev, sz, 16, 0);
6125 if (!ioc->reply_free_dma_pool)
6126 return -ENOMEM;
6127 ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool,
6128 GFP_KERNEL, &ioc->reply_free_dma);
6129 if (!ioc->reply_free)
6130 return -EAGAIN;
6131 if (!mpt3sas_check_same_4gb_region(ioc->reply_free_dma, sz)) {
6132 dinitprintk(ioc,
6133 pr_err("Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
6134 ioc->reply_free, (unsigned long long) ioc->reply_free_dma));
6135 ioc->use_32bit_dma = true;
6136 return -EAGAIN;
6137 }
6138 memset(ioc->reply_free, 0, sz);
6139 dinitprintk(ioc, ioc_info(ioc,
6140 "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
6141 ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
6142 dinitprintk(ioc, ioc_info(ioc,
6143 "reply_free_dma (0x%llx)\n",
6144 (unsigned long long)ioc->reply_free_dma));
6145 return 0;
6146 }
6147
6148 /**
6149 * _base_allocate_reply_post_free_array - Allocating DMA'able memory
6150 * for reply post free array.
6151 * @ioc: Adapter object
6152 * @reply_post_free_array_sz: DMA Pool size
6153 * Return: 0 for success, non-zero for failure.
6154 */
6155
6156 static int
_base_allocate_reply_post_free_array(struct MPT3SAS_ADAPTER * ioc,u32 reply_post_free_array_sz)6157 _base_allocate_reply_post_free_array(struct MPT3SAS_ADAPTER *ioc,
6158 u32 reply_post_free_array_sz)
6159 {
6160 ioc->reply_post_free_array_dma_pool =
6161 dma_pool_create("reply_post_free_array pool",
6162 &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
6163 if (!ioc->reply_post_free_array_dma_pool)
6164 return -ENOMEM;
6165 ioc->reply_post_free_array =
6166 dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
6167 GFP_KERNEL, &ioc->reply_post_free_array_dma);
6168 if (!ioc->reply_post_free_array)
6169 return -EAGAIN;
6170 if (!mpt3sas_check_same_4gb_region(ioc->reply_post_free_array_dma,
6171 reply_post_free_array_sz)) {
6172 dinitprintk(ioc, pr_err(
6173 "Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
6174 ioc->reply_free,
6175 (unsigned long long) ioc->reply_free_dma));
6176 ioc->use_32bit_dma = true;
6177 return -EAGAIN;
6178 }
6179 return 0;
6180 }
6181 /**
6182 * base_alloc_rdpq_dma_pool - Allocating DMA'able memory
6183 * for reply queues.
6184 * @ioc: per adapter object
6185 * @sz: DMA Pool size
6186 * Return: 0 for success, non-zero for failure.
6187 */
6188 static int
base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER * ioc,int sz)6189 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz)
6190 {
6191 int i = 0;
6192 u32 dma_alloc_count = 0;
6193 int reply_post_free_sz = ioc->reply_post_queue_depth *
6194 sizeof(Mpi2DefaultReplyDescriptor_t);
6195 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
6196
6197 ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct),
6198 GFP_KERNEL);
6199 if (!ioc->reply_post)
6200 return -ENOMEM;
6201 /*
6202 * For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and
6203 * VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should
6204 * be within 4GB boundary i.e reply queues in a set must have same
6205 * upper 32-bits in their memory address. so here driver is allocating
6206 * the DMA'able memory for reply queues according.
6207 * Driver uses limitation of
6208 * VENTURA_SERIES to manage INVADER_SERIES as well.
6209 */
6210 dma_alloc_count = DIV_ROUND_UP(count,
6211 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
6212 ioc->reply_post_free_dma_pool =
6213 dma_pool_create("reply_post_free pool",
6214 &ioc->pdev->dev, sz, 16, 0);
6215 if (!ioc->reply_post_free_dma_pool)
6216 return -ENOMEM;
6217 for (i = 0; i < count; i++) {
6218 if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) {
6219 ioc->reply_post[i].reply_post_free =
6220 dma_pool_zalloc(ioc->reply_post_free_dma_pool,
6221 GFP_KERNEL,
6222 &ioc->reply_post[i].reply_post_free_dma);
6223 if (!ioc->reply_post[i].reply_post_free)
6224 return -ENOMEM;
6225 /*
6226 * Each set of RDPQ pool must satisfy 4gb boundary
6227 * restriction.
6228 * 1) Check if allocated resources for RDPQ pool are in
6229 * the same 4GB range.
6230 * 2) If #1 is true, continue with 64 bit DMA.
6231 * 3) If #1 is false, return 1. which means free all the
6232 * resources and set DMA mask to 32 and allocate.
6233 */
6234 if (!mpt3sas_check_same_4gb_region(
6235 ioc->reply_post[i].reply_post_free_dma, sz)) {
6236 dinitprintk(ioc,
6237 ioc_err(ioc, "bad Replypost free pool(0x%p)"
6238 "reply_post_free_dma = (0x%llx)\n",
6239 ioc->reply_post[i].reply_post_free,
6240 (unsigned long long)
6241 ioc->reply_post[i].reply_post_free_dma));
6242 return -EAGAIN;
6243 }
6244 dma_alloc_count--;
6245
6246 } else {
6247 ioc->reply_post[i].reply_post_free =
6248 (Mpi2ReplyDescriptorsUnion_t *)
6249 ((long)ioc->reply_post[i-1].reply_post_free
6250 + reply_post_free_sz);
6251 ioc->reply_post[i].reply_post_free_dma =
6252 (dma_addr_t)
6253 (ioc->reply_post[i-1].reply_post_free_dma +
6254 reply_post_free_sz);
6255 }
6256 }
6257 return 0;
6258 }
6259
6260 /**
6261 * _base_allocate_memory_pools - allocate start of day memory pools
6262 * @ioc: per adapter object
6263 *
6264 * Return: 0 success, anything else error.
6265 */
6266 static int
_base_allocate_memory_pools(struct MPT3SAS_ADAPTER * ioc)6267 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
6268 {
6269 struct mpt3sas_facts *facts;
6270 u16 max_sge_elements;
6271 u16 chains_needed_per_io;
6272 u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
6273 u32 retry_sz;
6274 u32 rdpq_sz = 0, sense_sz = 0;
6275 u16 max_request_credit, nvme_blocks_needed;
6276 unsigned short sg_tablesize;
6277 u16 sge_size;
6278 int i;
6279 int ret = 0, rc = 0;
6280
6281 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6282
6283
6284 retry_sz = 0;
6285 facts = &ioc->facts;
6286
6287 /* command line tunables for max sgl entries */
6288 if (max_sgl_entries != -1)
6289 sg_tablesize = max_sgl_entries;
6290 else {
6291 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
6292 sg_tablesize = MPT2SAS_SG_DEPTH;
6293 else
6294 sg_tablesize = MPT3SAS_SG_DEPTH;
6295 }
6296
6297 /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
6298 if (reset_devices)
6299 sg_tablesize = min_t(unsigned short, sg_tablesize,
6300 MPT_KDUMP_MIN_PHYS_SEGMENTS);
6301
6302 if (ioc->is_mcpu_endpoint)
6303 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6304 else {
6305 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
6306 sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6307 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
6308 sg_tablesize = min_t(unsigned short, sg_tablesize,
6309 SG_MAX_SEGMENTS);
6310 ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
6311 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
6312 }
6313 ioc->shost->sg_tablesize = sg_tablesize;
6314 }
6315
6316 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
6317 (facts->RequestCredit / 4));
6318 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
6319 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
6320 INTERNAL_SCSIIO_CMDS_COUNT)) {
6321 ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
6322 facts->RequestCredit);
6323 return -ENOMEM;
6324 }
6325 ioc->internal_depth = 10;
6326 }
6327
6328 ioc->hi_priority_depth = ioc->internal_depth - (5);
6329 /* command line tunables for max controller queue depth */
6330 if (max_queue_depth != -1 && max_queue_depth != 0) {
6331 max_request_credit = min_t(u16, max_queue_depth +
6332 ioc->internal_depth, facts->RequestCredit);
6333 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
6334 max_request_credit = MAX_HBA_QUEUE_DEPTH;
6335 } else if (reset_devices)
6336 max_request_credit = min_t(u16, facts->RequestCredit,
6337 (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
6338 else
6339 max_request_credit = min_t(u16, facts->RequestCredit,
6340 MAX_HBA_QUEUE_DEPTH);
6341
6342 /* Firmware maintains additional facts->HighPriorityCredit number of
6343 * credits for HiPriprity Request messages, so hba queue depth will be
6344 * sum of max_request_credit and high priority queue depth.
6345 */
6346 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
6347
6348 /* request frame size */
6349 ioc->request_sz = facts->IOCRequestFrameSize * 4;
6350
6351 /* reply frame size */
6352 ioc->reply_sz = facts->ReplyFrameSize * 4;
6353
6354 /* chain segment size */
6355 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6356 if (facts->IOCMaxChainSegmentSize)
6357 ioc->chain_segment_sz =
6358 facts->IOCMaxChainSegmentSize *
6359 MAX_CHAIN_ELEMT_SZ;
6360 else
6361 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
6362 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
6363 MAX_CHAIN_ELEMT_SZ;
6364 } else
6365 ioc->chain_segment_sz = ioc->request_sz;
6366
6367 /* calculate the max scatter element size */
6368 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
6369
6370 retry_allocation:
6371 total_sz = 0;
6372 /* calculate number of sg elements left over in the 1st frame */
6373 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
6374 sizeof(Mpi2SGEIOUnion_t)) + sge_size);
6375 ioc->max_sges_in_main_message = max_sge_elements/sge_size;
6376
6377 /* now do the same for a chain buffer */
6378 max_sge_elements = ioc->chain_segment_sz - sge_size;
6379 ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
6380
6381 /*
6382 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
6383 */
6384 chains_needed_per_io = ((ioc->shost->sg_tablesize -
6385 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
6386 + 1;
6387 if (chains_needed_per_io > facts->MaxChainDepth) {
6388 chains_needed_per_io = facts->MaxChainDepth;
6389 ioc->shost->sg_tablesize = min_t(u16,
6390 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
6391 * chains_needed_per_io), ioc->shost->sg_tablesize);
6392 }
6393 ioc->chains_needed_per_io = chains_needed_per_io;
6394
6395 /* reply free queue sizing - taking into account for 64 FW events */
6396 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6397
6398 /* mCPU manage single counters for simplicity */
6399 if (ioc->is_mcpu_endpoint)
6400 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
6401 else {
6402 /* calculate reply descriptor post queue depth */
6403 ioc->reply_post_queue_depth = ioc->hba_queue_depth +
6404 ioc->reply_free_queue_depth + 1;
6405 /* align the reply post queue on the next 16 count boundary */
6406 if (ioc->reply_post_queue_depth % 16)
6407 ioc->reply_post_queue_depth += 16 -
6408 (ioc->reply_post_queue_depth % 16);
6409 }
6410
6411 if (ioc->reply_post_queue_depth >
6412 facts->MaxReplyDescriptorPostQueueDepth) {
6413 ioc->reply_post_queue_depth =
6414 facts->MaxReplyDescriptorPostQueueDepth -
6415 (facts->MaxReplyDescriptorPostQueueDepth % 16);
6416 ioc->hba_queue_depth =
6417 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
6418 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6419 }
6420
6421 ioc_info(ioc,
6422 "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), "
6423 "sge_per_io(%d), chains_per_io(%d)\n",
6424 ioc->max_sges_in_main_message,
6425 ioc->max_sges_in_chain_message,
6426 ioc->shost->sg_tablesize,
6427 ioc->chains_needed_per_io);
6428
6429 /* reply post queue, 16 byte align */
6430 reply_post_free_sz = ioc->reply_post_queue_depth *
6431 sizeof(Mpi2DefaultReplyDescriptor_t);
6432 rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK;
6433 if ((_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
6434 || (ioc->reply_queue_count < RDPQ_MAX_INDEX_IN_ONE_CHUNK))
6435 rdpq_sz = reply_post_free_sz * ioc->reply_queue_count;
6436 ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz);
6437 if (ret == -EAGAIN) {
6438 /*
6439 * Free allocated bad RDPQ memory pools.
6440 * Change dma coherent mask to 32 bit and reallocate RDPQ
6441 */
6442 _base_release_memory_pools(ioc);
6443 ioc->use_32bit_dma = true;
6444 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6445 ioc_err(ioc,
6446 "32 DMA mask failed %s\n", pci_name(ioc->pdev));
6447 return -ENODEV;
6448 }
6449 if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz))
6450 return -ENOMEM;
6451 } else if (ret == -ENOMEM)
6452 return -ENOMEM;
6453 total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 :
6454 DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK));
6455 ioc->scsiio_depth = ioc->hba_queue_depth -
6456 ioc->hi_priority_depth - ioc->internal_depth;
6457
6458 /* set the scsi host can_queue depth
6459 * with some internal commands that could be outstanding
6460 */
6461 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
6462 dinitprintk(ioc,
6463 ioc_info(ioc, "scsi host: can_queue depth (%d)\n",
6464 ioc->shost->can_queue));
6465
6466 /* contiguous pool for request and chains, 16 byte align, one extra "
6467 * "frame for smid=0
6468 */
6469 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
6470 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
6471
6472 /* hi-priority queue */
6473 sz += (ioc->hi_priority_depth * ioc->request_sz);
6474
6475 /* internal queue */
6476 sz += (ioc->internal_depth * ioc->request_sz);
6477
6478 ioc->request_dma_sz = sz;
6479 ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz,
6480 &ioc->request_dma, GFP_KERNEL);
6481 if (!ioc->request) {
6482 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
6483 ioc->hba_queue_depth, ioc->chains_needed_per_io,
6484 ioc->request_sz, sz / 1024);
6485 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
6486 goto out;
6487 retry_sz = 64;
6488 ioc->hba_queue_depth -= retry_sz;
6489 _base_release_memory_pools(ioc);
6490 goto retry_allocation;
6491 }
6492
6493 if (retry_sz)
6494 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
6495 ioc->hba_queue_depth, ioc->chains_needed_per_io,
6496 ioc->request_sz, sz / 1024);
6497
6498 /* hi-priority queue */
6499 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
6500 ioc->request_sz);
6501 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
6502 ioc->request_sz);
6503
6504 /* internal queue */
6505 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
6506 ioc->request_sz);
6507 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
6508 ioc->request_sz);
6509
6510 ioc_info(ioc,
6511 "request pool(0x%p) - dma(0x%llx): "
6512 "depth(%d), frame_size(%d), pool_size(%d kB)\n",
6513 ioc->request, (unsigned long long) ioc->request_dma,
6514 ioc->hba_queue_depth, ioc->request_sz,
6515 (ioc->hba_queue_depth * ioc->request_sz) / 1024);
6516
6517 total_sz += sz;
6518
6519 dinitprintk(ioc,
6520 ioc_info(ioc, "scsiio(0x%p): depth(%d)\n",
6521 ioc->request, ioc->scsiio_depth));
6522
6523 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
6524 sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
6525 ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
6526 if (!ioc->chain_lookup) {
6527 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n");
6528 goto out;
6529 }
6530
6531 sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
6532 for (i = 0; i < ioc->scsiio_depth; i++) {
6533 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
6534 if (!ioc->chain_lookup[i].chains_per_smid) {
6535 ioc_err(ioc, "chain_lookup: kzalloc failed\n");
6536 goto out;
6537 }
6538 }
6539
6540 /* initialize hi-priority queue smid's */
6541 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
6542 sizeof(struct request_tracker), GFP_KERNEL);
6543 if (!ioc->hpr_lookup) {
6544 ioc_err(ioc, "hpr_lookup: kcalloc failed\n");
6545 goto out;
6546 }
6547 ioc->hi_priority_smid = ioc->scsiio_depth + 1;
6548 dinitprintk(ioc,
6549 ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
6550 ioc->hi_priority,
6551 ioc->hi_priority_depth, ioc->hi_priority_smid));
6552
6553 /* initialize internal queue smid's */
6554 ioc->internal_lookup = kcalloc(ioc->internal_depth,
6555 sizeof(struct request_tracker), GFP_KERNEL);
6556 if (!ioc->internal_lookup) {
6557 ioc_err(ioc, "internal_lookup: kcalloc failed\n");
6558 goto out;
6559 }
6560 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
6561 dinitprintk(ioc,
6562 ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n",
6563 ioc->internal,
6564 ioc->internal_depth, ioc->internal_smid));
6565
6566 ioc->io_queue_num = kcalloc(ioc->scsiio_depth,
6567 sizeof(u16), GFP_KERNEL);
6568 if (!ioc->io_queue_num)
6569 goto out;
6570 /*
6571 * The number of NVMe page sized blocks needed is:
6572 * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
6573 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
6574 * that is placed in the main message frame. 8 is the size of each PRP
6575 * entry or PRP list pointer entry. 8 is subtracted from page_size
6576 * because of the PRP list pointer entry at the end of a page, so this
6577 * is not counted as a PRP entry. The 1 added page is a round up.
6578 *
6579 * To avoid allocation failures due to the amount of memory that could
6580 * be required for NVMe PRP's, only each set of NVMe blocks will be
6581 * contiguous, so a new set is allocated for each possible I/O.
6582 */
6583
6584 ioc->chains_per_prp_buffer = 0;
6585 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
6586 nvme_blocks_needed =
6587 (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
6588 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
6589 nvme_blocks_needed++;
6590
6591 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
6592 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
6593 if (!ioc->pcie_sg_lookup) {
6594 ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n");
6595 goto out;
6596 }
6597 sz = nvme_blocks_needed * ioc->page_size;
6598 rc = _base_allocate_pcie_sgl_pool(ioc, sz);
6599 if (rc == -ENOMEM)
6600 return -ENOMEM;
6601 else if (rc == -EAGAIN)
6602 goto try_32bit_dma;
6603 total_sz += sz * ioc->scsiio_depth;
6604 }
6605
6606 rc = _base_allocate_chain_dma_pool(ioc, ioc->chain_segment_sz);
6607 if (rc == -ENOMEM)
6608 return -ENOMEM;
6609 else if (rc == -EAGAIN)
6610 goto try_32bit_dma;
6611 total_sz += ioc->chain_segment_sz * ((ioc->chains_needed_per_io -
6612 ioc->chains_per_prp_buffer) * ioc->scsiio_depth);
6613 dinitprintk(ioc,
6614 ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
6615 ioc->chain_depth, ioc->chain_segment_sz,
6616 (ioc->chain_depth * ioc->chain_segment_sz) / 1024));
6617 /* sense buffers, 4 byte align */
6618 sense_sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
6619 rc = _base_allocate_sense_dma_pool(ioc, sense_sz);
6620 if (rc == -ENOMEM)
6621 return -ENOMEM;
6622 else if (rc == -EAGAIN)
6623 goto try_32bit_dma;
6624 total_sz += sense_sz;
6625 /* reply pool, 4 byte align */
6626 sz = ioc->reply_free_queue_depth * ioc->reply_sz;
6627 rc = _base_allocate_reply_pool(ioc, sz);
6628 if (rc == -ENOMEM)
6629 return -ENOMEM;
6630 else if (rc == -EAGAIN)
6631 goto try_32bit_dma;
6632 total_sz += sz;
6633
6634 /* reply free queue, 16 byte align */
6635 sz = ioc->reply_free_queue_depth * 4;
6636 rc = _base_allocate_reply_free_dma_pool(ioc, sz);
6637 if (rc == -ENOMEM)
6638 return -ENOMEM;
6639 else if (rc == -EAGAIN)
6640 goto try_32bit_dma;
6641 dinitprintk(ioc,
6642 ioc_info(ioc, "reply_free_dma (0x%llx)\n",
6643 (unsigned long long)ioc->reply_free_dma));
6644 total_sz += sz;
6645 if (ioc->rdpq_array_enable) {
6646 reply_post_free_array_sz = ioc->reply_queue_count *
6647 sizeof(Mpi2IOCInitRDPQArrayEntry);
6648 rc = _base_allocate_reply_post_free_array(ioc,
6649 reply_post_free_array_sz);
6650 if (rc == -ENOMEM)
6651 return -ENOMEM;
6652 else if (rc == -EAGAIN)
6653 goto try_32bit_dma;
6654 }
6655 ioc->config_page_sz = 512;
6656 ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev,
6657 ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL);
6658 if (!ioc->config_page) {
6659 ioc_err(ioc, "config page: dma_pool_alloc failed\n");
6660 goto out;
6661 }
6662
6663 ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n",
6664 ioc->config_page, (unsigned long long)ioc->config_page_dma,
6665 ioc->config_page_sz);
6666 total_sz += ioc->config_page_sz;
6667
6668 ioc_info(ioc, "Allocated physical memory: size(%d kB)\n",
6669 total_sz / 1024);
6670 ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
6671 ioc->shost->can_queue, facts->RequestCredit);
6672 ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n",
6673 ioc->shost->sg_tablesize);
6674 return 0;
6675
6676 try_32bit_dma:
6677 _base_release_memory_pools(ioc);
6678 if (ioc->use_32bit_dma && (ioc->dma_mask > 32)) {
6679 /* Change dma coherent mask to 32 bit and reallocate */
6680 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6681 pr_err("Setting 32 bit coherent DMA mask Failed %s\n",
6682 pci_name(ioc->pdev));
6683 return -ENODEV;
6684 }
6685 } else if (_base_reduce_hba_queue_depth(ioc) != 0)
6686 return -ENOMEM;
6687 goto retry_allocation;
6688
6689 out:
6690 return -ENOMEM;
6691 }
6692
6693 /**
6694 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
6695 * @ioc: Pointer to MPT_ADAPTER structure
6696 * @cooked: Request raw or cooked IOC state
6697 *
6698 * Return: all IOC Doorbell register bits if cooked==0, else just the
6699 * Doorbell bits in MPI_IOC_STATE_MASK.
6700 */
6701 u32
mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER * ioc,int cooked)6702 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
6703 {
6704 u32 s, sc;
6705
6706 s = ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
6707 sc = s & MPI2_IOC_STATE_MASK;
6708 return cooked ? sc : s;
6709 }
6710
6711 /**
6712 * _base_wait_on_iocstate - waiting on a particular ioc state
6713 * @ioc: ?
6714 * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
6715 * @timeout: timeout in second
6716 *
6717 * Return: 0 for success, non-zero for failure.
6718 */
6719 static int
_base_wait_on_iocstate(struct MPT3SAS_ADAPTER * ioc,u32 ioc_state,int timeout)6720 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
6721 {
6722 u32 count, cntdn;
6723 u32 current_state;
6724
6725 count = 0;
6726 cntdn = 1000 * timeout;
6727 do {
6728 current_state = mpt3sas_base_get_iocstate(ioc, 1);
6729 if (current_state == ioc_state)
6730 return 0;
6731 if (count && current_state == MPI2_IOC_STATE_FAULT)
6732 break;
6733 if (count && current_state == MPI2_IOC_STATE_COREDUMP)
6734 break;
6735
6736 usleep_range(1000, 1500);
6737 count++;
6738 } while (--cntdn);
6739
6740 return current_state;
6741 }
6742
6743 /**
6744 * _base_dump_reg_set - This function will print hexdump of register set.
6745 * @ioc: per adapter object
6746 *
6747 * Return: nothing.
6748 */
6749 static inline void
_base_dump_reg_set(struct MPT3SAS_ADAPTER * ioc)6750 _base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc)
6751 {
6752 unsigned int i, sz = 256;
6753 u32 __iomem *reg = (u32 __iomem *)ioc->chip;
6754
6755 ioc_info(ioc, "System Register set:\n");
6756 for (i = 0; i < (sz / sizeof(u32)); i++)
6757 pr_info("%08x: %08x\n", (i * 4), readl(®[i]));
6758 }
6759
6760 /**
6761 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
6762 * a write to the doorbell)
6763 * @ioc: per adapter object
6764 * @timeout: timeout in seconds
6765 *
6766 * Return: 0 for success, non-zero for failure.
6767 *
6768 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
6769 */
6770
6771 static int
_base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER * ioc,int timeout)6772 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6773 {
6774 u32 cntdn, count;
6775 u32 int_status;
6776
6777 count = 0;
6778 cntdn = 1000 * timeout;
6779 do {
6780 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6781 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6782 dhsprintk(ioc,
6783 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6784 __func__, count, timeout));
6785 return 0;
6786 }
6787
6788 usleep_range(1000, 1500);
6789 count++;
6790 } while (--cntdn);
6791
6792 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6793 __func__, count, int_status);
6794 return -EFAULT;
6795 }
6796
6797 static int
_base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER * ioc,int timeout)6798 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6799 {
6800 u32 cntdn, count;
6801 u32 int_status;
6802
6803 count = 0;
6804 cntdn = 2000 * timeout;
6805 do {
6806 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6807 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6808 dhsprintk(ioc,
6809 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6810 __func__, count, timeout));
6811 return 0;
6812 }
6813
6814 udelay(500);
6815 count++;
6816 } while (--cntdn);
6817
6818 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6819 __func__, count, int_status);
6820 return -EFAULT;
6821
6822 }
6823
6824 /**
6825 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
6826 * @ioc: per adapter object
6827 * @timeout: timeout in second
6828 *
6829 * Return: 0 for success, non-zero for failure.
6830 *
6831 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
6832 * doorbell.
6833 */
6834 static int
_base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER * ioc,int timeout)6835 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
6836 {
6837 u32 cntdn, count;
6838 u32 int_status;
6839 u32 doorbell;
6840
6841 count = 0;
6842 cntdn = 1000 * timeout;
6843 do {
6844 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6845 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
6846 dhsprintk(ioc,
6847 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6848 __func__, count, timeout));
6849 return 0;
6850 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6851 doorbell = ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
6852 if ((doorbell & MPI2_IOC_STATE_MASK) ==
6853 MPI2_IOC_STATE_FAULT) {
6854 mpt3sas_print_fault_code(ioc, doorbell);
6855 return -EFAULT;
6856 }
6857 if ((doorbell & MPI2_IOC_STATE_MASK) ==
6858 MPI2_IOC_STATE_COREDUMP) {
6859 mpt3sas_print_coredump_info(ioc, doorbell);
6860 return -EFAULT;
6861 }
6862 } else if (int_status == 0xFFFFFFFF)
6863 goto out;
6864
6865 usleep_range(1000, 1500);
6866 count++;
6867 } while (--cntdn);
6868
6869 out:
6870 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6871 __func__, count, int_status);
6872 return -EFAULT;
6873 }
6874
6875 /**
6876 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
6877 * @ioc: per adapter object
6878 * @timeout: timeout in second
6879 *
6880 * Return: 0 for success, non-zero for failure.
6881 */
6882 static int
_base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER * ioc,int timeout)6883 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
6884 {
6885 u32 cntdn, count;
6886 u32 doorbell_reg;
6887
6888 count = 0;
6889 cntdn = 1000 * timeout;
6890 do {
6891 doorbell_reg = ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
6892 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
6893 dhsprintk(ioc,
6894 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6895 __func__, count, timeout));
6896 return 0;
6897 }
6898
6899 usleep_range(1000, 1500);
6900 count++;
6901 } while (--cntdn);
6902
6903 ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
6904 __func__, count, doorbell_reg);
6905 return -EFAULT;
6906 }
6907
6908 /**
6909 * _base_send_ioc_reset - send doorbell reset
6910 * @ioc: per adapter object
6911 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
6912 * @timeout: timeout in second
6913 *
6914 * Return: 0 for success, non-zero for failure.
6915 */
6916 static int
_base_send_ioc_reset(struct MPT3SAS_ADAPTER * ioc,u8 reset_type,int timeout)6917 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
6918 {
6919 u32 ioc_state;
6920 int r = 0;
6921 unsigned long flags;
6922
6923 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
6924 ioc_err(ioc, "%s: unknown reset_type\n", __func__);
6925 return -EFAULT;
6926 }
6927
6928 if (!(ioc->facts.IOCCapabilities &
6929 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
6930 return -EFAULT;
6931
6932 ioc_info(ioc, "sending message unit reset !!\n");
6933
6934 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
6935 &ioc->chip->Doorbell);
6936 if ((_base_wait_for_doorbell_ack(ioc, 15))) {
6937 r = -EFAULT;
6938 goto out;
6939 }
6940
6941 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
6942 if (ioc_state) {
6943 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6944 __func__, ioc_state);
6945 r = -EFAULT;
6946 goto out;
6947 }
6948 out:
6949 if (r != 0) {
6950 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6951 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6952 /*
6953 * Wait for IOC state CoreDump to clear only during
6954 * HBA initialization & release time.
6955 */
6956 if ((ioc_state & MPI2_IOC_STATE_MASK) ==
6957 MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 ||
6958 ioc->fault_reset_work_q == NULL)) {
6959 spin_unlock_irqrestore(
6960 &ioc->ioc_reset_in_progress_lock, flags);
6961 mpt3sas_print_coredump_info(ioc, ioc_state);
6962 mpt3sas_base_wait_for_coredump_completion(ioc,
6963 __func__);
6964 spin_lock_irqsave(
6965 &ioc->ioc_reset_in_progress_lock, flags);
6966 }
6967 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6968 }
6969 ioc_info(ioc, "message unit reset: %s\n",
6970 r == 0 ? "SUCCESS" : "FAILED");
6971 return r;
6972 }
6973
6974 /**
6975 * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
6976 * @ioc: per adapter object
6977 * @timeout: timeout in seconds
6978 *
6979 * Return: Waits up to timeout seconds for the IOC to
6980 * become operational. Returns 0 if IOC is present
6981 * and operational; otherwise returns %-EFAULT.
6982 */
6983
6984 int
mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER * ioc,int timeout)6985 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout)
6986 {
6987 int wait_state_count = 0;
6988 u32 ioc_state;
6989
6990 do {
6991 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
6992 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL)
6993 break;
6994
6995 /*
6996 * Watchdog thread will be started after IOC Initialization, so
6997 * no need to wait here for IOC state to become operational
6998 * when IOC Initialization is on. Instead the driver will
6999 * return ETIME status, so that calling function can issue
7000 * diag reset operation and retry the command.
7001 */
7002 if (ioc->is_driver_loading)
7003 return -ETIME;
7004
7005 ssleep(1);
7006 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
7007 __func__, ++wait_state_count);
7008 } while (--timeout);
7009 if (!timeout) {
7010 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__);
7011 return -EFAULT;
7012 }
7013 if (wait_state_count)
7014 ioc_info(ioc, "ioc is operational\n");
7015 return 0;
7016 }
7017
7018 /**
7019 * _base_handshake_req_reply_wait - send request thru doorbell interface
7020 * @ioc: per adapter object
7021 * @request_bytes: request length
7022 * @request: pointer having request payload
7023 * @reply_bytes: reply length
7024 * @reply: pointer to reply payload
7025 * @timeout: timeout in second
7026 *
7027 * Return: 0 for success, non-zero for failure.
7028 */
7029 static int
_base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER * ioc,int request_bytes,u32 * request,int reply_bytes,u16 * reply,int timeout)7030 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
7031 u32 *request, int reply_bytes, u16 *reply, int timeout)
7032 {
7033 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
7034 int i;
7035 u8 failed;
7036 __le32 *mfp;
7037
7038 /* make sure doorbell is not in use */
7039 if ((ioc->base_readl_ext_retry(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
7040 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__);
7041 return -EFAULT;
7042 }
7043
7044 /* clear pending doorbell interrupts from previous state changes */
7045 if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
7046 MPI2_HIS_IOC2SYS_DB_STATUS)
7047 writel(0, &ioc->chip->HostInterruptStatus);
7048
7049 /* send message to ioc */
7050 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
7051 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
7052 &ioc->chip->Doorbell);
7053
7054 if ((_base_spin_on_doorbell_int(ioc, 5))) {
7055 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7056 __LINE__);
7057 return -EFAULT;
7058 }
7059 writel(0, &ioc->chip->HostInterruptStatus);
7060
7061 if ((_base_wait_for_doorbell_ack(ioc, 5))) {
7062 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n",
7063 __LINE__);
7064 return -EFAULT;
7065 }
7066
7067 /* send message 32-bits at a time */
7068 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
7069 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
7070 if ((_base_wait_for_doorbell_ack(ioc, 5)))
7071 failed = 1;
7072 }
7073
7074 if (failed) {
7075 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n",
7076 __LINE__);
7077 return -EFAULT;
7078 }
7079
7080 /* now wait for the reply */
7081 if ((_base_wait_for_doorbell_int(ioc, timeout))) {
7082 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7083 __LINE__);
7084 return -EFAULT;
7085 }
7086
7087 /* read the first two 16-bits, it gives the total length of the reply */
7088 reply[0] = le16_to_cpu(ioc->base_readl_ext_retry(&ioc->chip->Doorbell)
7089 & MPI2_DOORBELL_DATA_MASK);
7090 writel(0, &ioc->chip->HostInterruptStatus);
7091 if ((_base_wait_for_doorbell_int(ioc, 5))) {
7092 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7093 __LINE__);
7094 return -EFAULT;
7095 }
7096 reply[1] = le16_to_cpu(ioc->base_readl_ext_retry(&ioc->chip->Doorbell)
7097 & MPI2_DOORBELL_DATA_MASK);
7098 writel(0, &ioc->chip->HostInterruptStatus);
7099
7100 for (i = 2; i < default_reply->MsgLength * 2; i++) {
7101 if ((_base_wait_for_doorbell_int(ioc, 5))) {
7102 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7103 __LINE__);
7104 return -EFAULT;
7105 }
7106 if (i >= reply_bytes/2) /* overflow case */
7107 ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
7108 else
7109 reply[i] = le16_to_cpu(
7110 ioc->base_readl_ext_retry(&ioc->chip->Doorbell)
7111 & MPI2_DOORBELL_DATA_MASK);
7112 writel(0, &ioc->chip->HostInterruptStatus);
7113 }
7114
7115 _base_wait_for_doorbell_int(ioc, 5);
7116 if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
7117 dhsprintk(ioc,
7118 ioc_info(ioc, "doorbell is in use (line=%d)\n",
7119 __LINE__));
7120 }
7121 writel(0, &ioc->chip->HostInterruptStatus);
7122
7123 if (ioc->logging_level & MPT_DEBUG_INIT) {
7124 mfp = (__le32 *)reply;
7125 pr_info("\toffset:data\n");
7126 for (i = 0; i < reply_bytes/4; i++)
7127 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
7128 le32_to_cpu(mfp[i]));
7129 }
7130 return 0;
7131 }
7132
7133 /**
7134 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
7135 * @ioc: per adapter object
7136 * @mpi_reply: the reply payload from FW
7137 * @mpi_request: the request payload sent to FW
7138 *
7139 * The SAS IO Unit Control Request message allows the host to perform low-level
7140 * operations, such as resets on the PHYs of the IO Unit, also allows the host
7141 * to obtain the IOC assigned device handles for a device if it has other
7142 * identifying information about the device, in addition allows the host to
7143 * remove IOC resources associated with the device.
7144 *
7145 * Return: 0 for success, non-zero for failure.
7146 */
7147 int
mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER * ioc,Mpi2SasIoUnitControlReply_t * mpi_reply,Mpi2SasIoUnitControlRequest_t * mpi_request)7148 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
7149 Mpi2SasIoUnitControlReply_t *mpi_reply,
7150 Mpi2SasIoUnitControlRequest_t *mpi_request)
7151 {
7152 u16 smid;
7153 u8 issue_reset = 0;
7154 int rc;
7155 void *request;
7156
7157 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7158
7159 mutex_lock(&ioc->base_cmds.mutex);
7160
7161 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
7162 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
7163 rc = -EAGAIN;
7164 goto out;
7165 }
7166
7167 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
7168 if (rc)
7169 goto out;
7170
7171 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7172 if (!smid) {
7173 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7174 rc = -EAGAIN;
7175 goto out;
7176 }
7177
7178 rc = 0;
7179 ioc->base_cmds.status = MPT3_CMD_PENDING;
7180 request = mpt3sas_base_get_msg_frame(ioc, smid);
7181 ioc->base_cmds.smid = smid;
7182 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
7183 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7184 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
7185 ioc->ioc_link_reset_in_progress = 1;
7186 init_completion(&ioc->base_cmds.done);
7187 ioc->put_smid_default(ioc, smid);
7188 wait_for_completion_timeout(&ioc->base_cmds.done,
7189 msecs_to_jiffies(10000));
7190 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7191 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
7192 ioc->ioc_link_reset_in_progress)
7193 ioc->ioc_link_reset_in_progress = 0;
7194 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7195 mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status,
7196 mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4,
7197 issue_reset);
7198 goto issue_host_reset;
7199 }
7200 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7201 memcpy(mpi_reply, ioc->base_cmds.reply,
7202 sizeof(Mpi2SasIoUnitControlReply_t));
7203 else
7204 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
7205 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7206 goto out;
7207
7208 issue_host_reset:
7209 if (issue_reset)
7210 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
7211 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7212 rc = -EFAULT;
7213 out:
7214 mutex_unlock(&ioc->base_cmds.mutex);
7215 return rc;
7216 }
7217
7218 /**
7219 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
7220 * @ioc: per adapter object
7221 * @mpi_reply: the reply payload from FW
7222 * @mpi_request: the request payload sent to FW
7223 *
7224 * The SCSI Enclosure Processor request message causes the IOC to
7225 * communicate with SES devices to control LED status signals.
7226 *
7227 * Return: 0 for success, non-zero for failure.
7228 */
7229 int
mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER * ioc,Mpi2SepReply_t * mpi_reply,Mpi2SepRequest_t * mpi_request)7230 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
7231 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
7232 {
7233 u16 smid;
7234 u8 issue_reset = 0;
7235 int rc;
7236 void *request;
7237
7238 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7239
7240 mutex_lock(&ioc->base_cmds.mutex);
7241
7242 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
7243 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
7244 rc = -EAGAIN;
7245 goto out;
7246 }
7247
7248 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
7249 if (rc)
7250 goto out;
7251
7252 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7253 if (!smid) {
7254 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7255 rc = -EAGAIN;
7256 goto out;
7257 }
7258
7259 rc = 0;
7260 ioc->base_cmds.status = MPT3_CMD_PENDING;
7261 request = mpt3sas_base_get_msg_frame(ioc, smid);
7262 ioc->base_cmds.smid = smid;
7263 memset(request, 0, ioc->request_sz);
7264 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
7265 init_completion(&ioc->base_cmds.done);
7266 ioc->put_smid_default(ioc, smid);
7267 wait_for_completion_timeout(&ioc->base_cmds.done,
7268 msecs_to_jiffies(10000));
7269 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7270 mpt3sas_check_cmd_timeout(ioc,
7271 ioc->base_cmds.status, mpi_request,
7272 sizeof(Mpi2SepRequest_t)/4, issue_reset);
7273 goto issue_host_reset;
7274 }
7275 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7276 memcpy(mpi_reply, ioc->base_cmds.reply,
7277 sizeof(Mpi2SepReply_t));
7278 else
7279 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
7280 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7281 goto out;
7282
7283 issue_host_reset:
7284 if (issue_reset)
7285 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
7286 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7287 rc = -EFAULT;
7288 out:
7289 mutex_unlock(&ioc->base_cmds.mutex);
7290 return rc;
7291 }
7292
7293 /**
7294 * _base_get_port_facts - obtain port facts reply and save in ioc
7295 * @ioc: per adapter object
7296 * @port: ?
7297 *
7298 * Return: 0 for success, non-zero for failure.
7299 */
7300 static int
_base_get_port_facts(struct MPT3SAS_ADAPTER * ioc,int port)7301 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
7302 {
7303 Mpi2PortFactsRequest_t mpi_request;
7304 Mpi2PortFactsReply_t mpi_reply;
7305 struct mpt3sas_port_facts *pfacts;
7306 int mpi_reply_sz, mpi_request_sz, r;
7307
7308 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7309
7310 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
7311 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
7312 memset(&mpi_request, 0, mpi_request_sz);
7313 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
7314 mpi_request.PortNumber = port;
7315 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
7316 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
7317
7318 if (r != 0) {
7319 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7320 return r;
7321 }
7322
7323 pfacts = &ioc->pfacts[port];
7324 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
7325 pfacts->PortNumber = mpi_reply.PortNumber;
7326 pfacts->VP_ID = mpi_reply.VP_ID;
7327 pfacts->VF_ID = mpi_reply.VF_ID;
7328 pfacts->MaxPostedCmdBuffers =
7329 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
7330
7331 return 0;
7332 }
7333
7334 /**
7335 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
7336 * @ioc: per adapter object
7337 * @timeout:
7338 *
7339 * Return: 0 for success, non-zero for failure.
7340 */
7341 static int
_base_wait_for_iocstate(struct MPT3SAS_ADAPTER * ioc,int timeout)7342 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
7343 {
7344 u32 ioc_state;
7345 int rc;
7346
7347 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7348
7349 if (ioc->pci_error_recovery) {
7350 dfailprintk(ioc,
7351 ioc_info(ioc, "%s: host in pci error recovery\n",
7352 __func__));
7353 return -EFAULT;
7354 }
7355
7356 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7357 dhsprintk(ioc,
7358 ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
7359 __func__, ioc_state));
7360
7361 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
7362 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
7363 return 0;
7364
7365 if (ioc_state & MPI2_DOORBELL_USED) {
7366 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
7367 goto issue_diag_reset;
7368 }
7369
7370 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
7371 mpt3sas_print_fault_code(ioc, ioc_state &
7372 MPI2_DOORBELL_DATA_MASK);
7373 goto issue_diag_reset;
7374 } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
7375 MPI2_IOC_STATE_COREDUMP) {
7376 ioc_info(ioc,
7377 "%s: Skipping the diag reset here. (ioc_state=0x%x)\n",
7378 __func__, ioc_state);
7379 return -EFAULT;
7380 }
7381
7382 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
7383 if (ioc_state) {
7384 dfailprintk(ioc,
7385 ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7386 __func__, ioc_state));
7387 return -EFAULT;
7388 }
7389
7390 issue_diag_reset:
7391 rc = _base_diag_reset(ioc);
7392 return rc;
7393 }
7394
7395 /**
7396 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
7397 * @ioc: per adapter object
7398 *
7399 * Return: 0 for success, non-zero for failure.
7400 */
7401 static int
_base_get_ioc_facts(struct MPT3SAS_ADAPTER * ioc)7402 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
7403 {
7404 Mpi2IOCFactsRequest_t mpi_request;
7405 Mpi2IOCFactsReply_t mpi_reply;
7406 struct mpt3sas_facts *facts;
7407 int mpi_reply_sz, mpi_request_sz, r;
7408
7409 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7410
7411 r = _base_wait_for_iocstate(ioc, 10);
7412 if (r) {
7413 dfailprintk(ioc,
7414 ioc_info(ioc, "%s: failed getting to correct state\n",
7415 __func__));
7416 return r;
7417 }
7418 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
7419 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
7420 memset(&mpi_request, 0, mpi_request_sz);
7421 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
7422 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
7423 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
7424
7425 if (r != 0) {
7426 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7427 return r;
7428 }
7429
7430 facts = &ioc->facts;
7431 memset(facts, 0, sizeof(struct mpt3sas_facts));
7432 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
7433 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
7434 facts->VP_ID = mpi_reply.VP_ID;
7435 facts->VF_ID = mpi_reply.VF_ID;
7436 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
7437 facts->MaxChainDepth = mpi_reply.MaxChainDepth;
7438 facts->WhoInit = mpi_reply.WhoInit;
7439 facts->NumberOfPorts = mpi_reply.NumberOfPorts;
7440 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
7441 if (ioc->msix_enable && (facts->MaxMSIxVectors <=
7442 MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
7443 ioc->combined_reply_queue = 0;
7444 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
7445 facts->MaxReplyDescriptorPostQueueDepth =
7446 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
7447 facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
7448 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
7449 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
7450 ioc->ir_firmware = 1;
7451 if ((facts->IOCCapabilities &
7452 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
7453 ioc->rdpq_array_capable = 1;
7454 if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
7455 && ioc->is_aero_ioc)
7456 ioc->atomic_desc_capable = 1;
7457 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
7458 facts->IOCRequestFrameSize =
7459 le16_to_cpu(mpi_reply.IOCRequestFrameSize);
7460 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
7461 facts->IOCMaxChainSegmentSize =
7462 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
7463 }
7464 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
7465 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
7466 ioc->shost->max_id = -1;
7467 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
7468 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
7469 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
7470 facts->HighPriorityCredit =
7471 le16_to_cpu(mpi_reply.HighPriorityCredit);
7472 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
7473 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
7474 facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
7475
7476 /*
7477 * Get the Page Size from IOC Facts. If it's 0, default to 4k.
7478 */
7479 ioc->page_size = 1 << facts->CurrentHostPageSize;
7480 if (ioc->page_size == 1) {
7481 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
7482 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
7483 }
7484 dinitprintk(ioc,
7485 ioc_info(ioc, "CurrentHostPageSize(%d)\n",
7486 facts->CurrentHostPageSize));
7487
7488 dinitprintk(ioc,
7489 ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n",
7490 facts->RequestCredit, facts->MaxChainDepth));
7491 dinitprintk(ioc,
7492 ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n",
7493 facts->IOCRequestFrameSize * 4,
7494 facts->ReplyFrameSize * 4));
7495 return 0;
7496 }
7497
7498 /**
7499 * _base_send_ioc_init - send ioc_init to firmware
7500 * @ioc: per adapter object
7501 *
7502 * Return: 0 for success, non-zero for failure.
7503 */
7504 static int
_base_send_ioc_init(struct MPT3SAS_ADAPTER * ioc)7505 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
7506 {
7507 Mpi2IOCInitRequest_t mpi_request;
7508 Mpi2IOCInitReply_t mpi_reply;
7509 int i, r = 0;
7510 ktime_t current_time;
7511 u16 ioc_status;
7512 u32 reply_post_free_array_sz = 0;
7513
7514 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7515
7516 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
7517 mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
7518 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
7519 mpi_request.VF_ID = 0; /* TODO */
7520 mpi_request.VP_ID = 0;
7521 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
7522 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
7523 mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
7524
7525 if (_base_is_controller_msix_enabled(ioc))
7526 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
7527 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
7528 mpi_request.ReplyDescriptorPostQueueDepth =
7529 cpu_to_le16(ioc->reply_post_queue_depth);
7530 mpi_request.ReplyFreeQueueDepth =
7531 cpu_to_le16(ioc->reply_free_queue_depth);
7532
7533 mpi_request.SenseBufferAddressHigh =
7534 cpu_to_le32((u64)ioc->sense_dma >> 32);
7535 mpi_request.SystemReplyAddressHigh =
7536 cpu_to_le32((u64)ioc->reply_dma >> 32);
7537 mpi_request.SystemRequestFrameBaseAddress =
7538 cpu_to_le64((u64)ioc->request_dma);
7539 mpi_request.ReplyFreeQueueAddress =
7540 cpu_to_le64((u64)ioc->reply_free_dma);
7541
7542 if (ioc->rdpq_array_enable) {
7543 reply_post_free_array_sz = ioc->reply_queue_count *
7544 sizeof(Mpi2IOCInitRDPQArrayEntry);
7545 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
7546 for (i = 0; i < ioc->reply_queue_count; i++)
7547 ioc->reply_post_free_array[i].RDPQBaseAddress =
7548 cpu_to_le64(
7549 (u64)ioc->reply_post[i].reply_post_free_dma);
7550 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
7551 mpi_request.ReplyDescriptorPostQueueAddress =
7552 cpu_to_le64((u64)ioc->reply_post_free_array_dma);
7553 } else {
7554 mpi_request.ReplyDescriptorPostQueueAddress =
7555 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
7556 }
7557
7558 /*
7559 * Set the flag to enable CoreDump state feature in IOC firmware.
7560 */
7561 mpi_request.ConfigurationFlags |=
7562 cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE);
7563
7564 /* This time stamp specifies number of milliseconds
7565 * since epoch ~ midnight January 1, 1970.
7566 */
7567 current_time = ktime_get_real();
7568 mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
7569
7570 if (ioc->logging_level & MPT_DEBUG_INIT) {
7571 __le32 *mfp;
7572 int i;
7573
7574 mfp = (__le32 *)&mpi_request;
7575 ioc_info(ioc, "\toffset:data\n");
7576 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
7577 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
7578 le32_to_cpu(mfp[i]));
7579 }
7580
7581 r = _base_handshake_req_reply_wait(ioc,
7582 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
7583 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 30);
7584
7585 if (r != 0) {
7586 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7587 return r;
7588 }
7589
7590 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
7591 if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
7592 mpi_reply.IOCLogInfo) {
7593 ioc_err(ioc, "%s: failed\n", __func__);
7594 r = -EIO;
7595 }
7596
7597 /* Reset TimeSync Counter*/
7598 ioc->timestamp_update_count = 0;
7599 return r;
7600 }
7601
7602 /**
7603 * mpt3sas_port_enable_done - command completion routine for port enable
7604 * @ioc: per adapter object
7605 * @smid: system request message index
7606 * @msix_index: MSIX table index supplied by the OS
7607 * @reply: reply message frame(lower 32bit addr)
7608 *
7609 * Return: 1 meaning mf should be freed from _base_interrupt
7610 * 0 means the mf is freed from this function.
7611 */
7612 u8
mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 msix_index,u32 reply)7613 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
7614 u32 reply)
7615 {
7616 MPI2DefaultReply_t *mpi_reply;
7617 u16 ioc_status;
7618
7619 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
7620 return 1;
7621
7622 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
7623 if (!mpi_reply)
7624 return 1;
7625
7626 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
7627 return 1;
7628
7629 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
7630 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
7631 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
7632 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
7633 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7634 if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
7635 ioc->port_enable_failed = 1;
7636
7637 if (ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE_ASYNC) {
7638 ioc->port_enable_cmds.status &= ~MPT3_CMD_COMPLETE_ASYNC;
7639 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
7640 mpt3sas_port_enable_complete(ioc);
7641 return 1;
7642 } else {
7643 ioc->start_scan_failed = ioc_status;
7644 ioc->start_scan = 0;
7645 return 1;
7646 }
7647 }
7648 complete(&ioc->port_enable_cmds.done);
7649 return 1;
7650 }
7651
7652 /**
7653 * _base_send_port_enable - send port_enable(discovery stuff) to firmware
7654 * @ioc: per adapter object
7655 *
7656 * Return: 0 for success, non-zero for failure.
7657 */
7658 static int
_base_send_port_enable(struct MPT3SAS_ADAPTER * ioc)7659 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
7660 {
7661 Mpi2PortEnableRequest_t *mpi_request;
7662 Mpi2PortEnableReply_t *mpi_reply;
7663 int r = 0;
7664 u16 smid;
7665 u16 ioc_status;
7666
7667 ioc_info(ioc, "sending port enable !!\n");
7668
7669 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7670 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7671 return -EAGAIN;
7672 }
7673
7674 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7675 if (!smid) {
7676 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7677 return -EAGAIN;
7678 }
7679
7680 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7681 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7682 ioc->port_enable_cmds.smid = smid;
7683 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7684 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7685
7686 init_completion(&ioc->port_enable_cmds.done);
7687 ioc->put_smid_default(ioc, smid);
7688 wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
7689 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
7690 ioc_err(ioc, "%s: timeout\n", __func__);
7691 _debug_dump_mf(mpi_request,
7692 sizeof(Mpi2PortEnableRequest_t)/4);
7693 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
7694 r = -EFAULT;
7695 else
7696 r = -ETIME;
7697 goto out;
7698 }
7699
7700 mpi_reply = ioc->port_enable_cmds.reply;
7701 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7702 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
7703 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n",
7704 __func__, ioc_status);
7705 r = -EFAULT;
7706 goto out;
7707 }
7708
7709 out:
7710 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
7711 ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED");
7712 return r;
7713 }
7714
7715 /**
7716 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
7717 * @ioc: per adapter object
7718 *
7719 * Return: 0 for success, non-zero for failure.
7720 */
7721 int
mpt3sas_port_enable(struct MPT3SAS_ADAPTER * ioc)7722 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
7723 {
7724 Mpi2PortEnableRequest_t *mpi_request;
7725 u16 smid;
7726
7727 ioc_info(ioc, "sending port enable !!\n");
7728
7729 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7730 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7731 return -EAGAIN;
7732 }
7733
7734 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7735 if (!smid) {
7736 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7737 return -EAGAIN;
7738 }
7739 ioc->drv_internal_flags |= MPT_DRV_INTERNAL_FIRST_PE_ISSUED;
7740 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7741 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE_ASYNC;
7742 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7743 ioc->port_enable_cmds.smid = smid;
7744 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7745 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7746
7747 ioc->put_smid_default(ioc, smid);
7748 return 0;
7749 }
7750
7751 /**
7752 * _base_determine_wait_on_discovery - desposition
7753 * @ioc: per adapter object
7754 *
7755 * Decide whether to wait on discovery to complete. Used to either
7756 * locate boot device, or report volumes ahead of physical devices.
7757 *
7758 * Return: 1 for wait, 0 for don't wait.
7759 */
7760 static int
_base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER * ioc)7761 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
7762 {
7763 /* We wait for discovery to complete if IR firmware is loaded.
7764 * The sas topology events arrive before PD events, so we need time to
7765 * turn on the bit in ioc->pd_handles to indicate PD
7766 * Also, it maybe required to report Volumes ahead of physical
7767 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
7768 */
7769 if (ioc->ir_firmware)
7770 return 1;
7771
7772 /* if no Bios, then we don't need to wait */
7773 if (!ioc->bios_pg3.BiosVersion)
7774 return 0;
7775
7776 /* Bios is present, then we drop down here.
7777 *
7778 * If there any entries in the Bios Page 2, then we wait
7779 * for discovery to complete.
7780 */
7781
7782 /* Current Boot Device */
7783 if ((ioc->bios_pg2.CurrentBootDeviceForm &
7784 MPI2_BIOSPAGE2_FORM_MASK) ==
7785 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7786 /* Request Boot Device */
7787 (ioc->bios_pg2.ReqBootDeviceForm &
7788 MPI2_BIOSPAGE2_FORM_MASK) ==
7789 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7790 /* Alternate Request Boot Device */
7791 (ioc->bios_pg2.ReqAltBootDeviceForm &
7792 MPI2_BIOSPAGE2_FORM_MASK) ==
7793 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
7794 return 0;
7795
7796 return 1;
7797 }
7798
7799 /**
7800 * _base_unmask_events - turn on notification for this event
7801 * @ioc: per adapter object
7802 * @event: firmware event
7803 *
7804 * The mask is stored in ioc->event_masks.
7805 */
7806 static void
_base_unmask_events(struct MPT3SAS_ADAPTER * ioc,u16 event)7807 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
7808 {
7809 u32 desired_event;
7810
7811 if (event >= 128)
7812 return;
7813
7814 desired_event = (1 << (event % 32));
7815
7816 if (event < 32)
7817 ioc->event_masks[0] &= ~desired_event;
7818 else if (event < 64)
7819 ioc->event_masks[1] &= ~desired_event;
7820 else if (event < 96)
7821 ioc->event_masks[2] &= ~desired_event;
7822 else if (event < 128)
7823 ioc->event_masks[3] &= ~desired_event;
7824 }
7825
7826 /**
7827 * _base_event_notification - send event notification
7828 * @ioc: per adapter object
7829 *
7830 * Return: 0 for success, non-zero for failure.
7831 */
7832 static int
_base_event_notification(struct MPT3SAS_ADAPTER * ioc)7833 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
7834 {
7835 Mpi2EventNotificationRequest_t *mpi_request;
7836 u16 smid;
7837 int r = 0;
7838 int i, issue_diag_reset = 0;
7839
7840 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7841
7842 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
7843 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7844 return -EAGAIN;
7845 }
7846
7847 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7848 if (!smid) {
7849 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7850 return -EAGAIN;
7851 }
7852 ioc->base_cmds.status = MPT3_CMD_PENDING;
7853 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7854 ioc->base_cmds.smid = smid;
7855 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
7856 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
7857 mpi_request->VF_ID = 0; /* TODO */
7858 mpi_request->VP_ID = 0;
7859 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
7860 mpi_request->EventMasks[i] =
7861 cpu_to_le32(ioc->event_masks[i]);
7862 init_completion(&ioc->base_cmds.done);
7863 ioc->put_smid_default(ioc, smid);
7864 wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
7865 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7866 ioc_err(ioc, "%s: timeout\n", __func__);
7867 _debug_dump_mf(mpi_request,
7868 sizeof(Mpi2EventNotificationRequest_t)/4);
7869 if (ioc->base_cmds.status & MPT3_CMD_RESET)
7870 r = -EFAULT;
7871 else
7872 issue_diag_reset = 1;
7873
7874 } else
7875 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__));
7876 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7877
7878 if (issue_diag_reset) {
7879 if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
7880 return -EFAULT;
7881 if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
7882 return -EFAULT;
7883 r = -EAGAIN;
7884 }
7885 return r;
7886 }
7887
7888 /**
7889 * mpt3sas_base_validate_event_type - validating event types
7890 * @ioc: per adapter object
7891 * @event_type: firmware event
7892 *
7893 * This will turn on firmware event notification when application
7894 * ask for that event. We don't mask events that are already enabled.
7895 */
7896 void
mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER * ioc,u32 * event_type)7897 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
7898 {
7899 int i, j;
7900 u32 event_mask, desired_event;
7901 u8 send_update_to_fw;
7902
7903 for (i = 0, send_update_to_fw = 0; i <
7904 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
7905 event_mask = ~event_type[i];
7906 desired_event = 1;
7907 for (j = 0; j < 32; j++) {
7908 if (!(event_mask & desired_event) &&
7909 (ioc->event_masks[i] & desired_event)) {
7910 ioc->event_masks[i] &= ~desired_event;
7911 send_update_to_fw = 1;
7912 }
7913 desired_event = (desired_event << 1);
7914 }
7915 }
7916
7917 if (!send_update_to_fw)
7918 return;
7919
7920 mutex_lock(&ioc->base_cmds.mutex);
7921 _base_event_notification(ioc);
7922 mutex_unlock(&ioc->base_cmds.mutex);
7923 }
7924
7925 /**
7926 * _base_diag_reset - the "big hammer" start of day reset
7927 * @ioc: per adapter object
7928 *
7929 * Return: 0 for success, non-zero for failure.
7930 */
7931 static int
_base_diag_reset(struct MPT3SAS_ADAPTER * ioc)7932 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
7933 {
7934 u32 host_diagnostic;
7935 u32 ioc_state;
7936 u32 count;
7937 u32 hcb_size;
7938
7939 ioc_info(ioc, "sending diag reset !!\n");
7940
7941 pci_cfg_access_lock(ioc->pdev);
7942
7943 drsprintk(ioc, ioc_info(ioc, "clear interrupts\n"));
7944
7945 count = 0;
7946 do {
7947 /* Write magic sequence to WriteSequence register
7948 * Loop until in diagnostic mode
7949 */
7950 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n"));
7951 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
7952 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
7953 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
7954 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
7955 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
7956 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
7957 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
7958
7959 /* wait 100 msec */
7960 msleep(100);
7961
7962 if (count++ > 20) {
7963 ioc_info(ioc,
7964 "Stop writing magic sequence after 20 retries\n");
7965 _base_dump_reg_set(ioc);
7966 goto out;
7967 }
7968
7969 host_diagnostic = ioc->base_readl_ext_retry(&ioc->chip->HostDiagnostic);
7970 drsprintk(ioc,
7971 ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
7972 count, host_diagnostic));
7973
7974 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
7975
7976 hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
7977
7978 drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n"));
7979 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
7980 &ioc->chip->HostDiagnostic);
7981
7982 /*This delay allows the chip PCIe hardware time to finish reset tasks*/
7983 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
7984
7985 /* Approximately 300 second max wait */
7986 for (count = 0; count < (300000000 /
7987 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
7988
7989 host_diagnostic = ioc->base_readl_ext_retry(&ioc->chip->HostDiagnostic);
7990
7991 if (host_diagnostic == 0xFFFFFFFF) {
7992 ioc_info(ioc,
7993 "Invalid host diagnostic register value\n");
7994 _base_dump_reg_set(ioc);
7995 goto out;
7996 }
7997 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
7998 break;
7999
8000 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
8001 }
8002
8003 if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
8004
8005 drsprintk(ioc,
8006 ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n"));
8007 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
8008 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
8009 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
8010
8011 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n"));
8012 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
8013 &ioc->chip->HCBSize);
8014 }
8015
8016 drsprintk(ioc, ioc_info(ioc, "restart the adapter\n"));
8017 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
8018 &ioc->chip->HostDiagnostic);
8019
8020 drsprintk(ioc,
8021 ioc_info(ioc, "disable writes to the diagnostic register\n"));
8022 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
8023
8024 drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n"));
8025 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
8026 if (ioc_state) {
8027 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
8028 __func__, ioc_state);
8029 _base_dump_reg_set(ioc);
8030 goto out;
8031 }
8032
8033 pci_cfg_access_unlock(ioc->pdev);
8034 ioc_info(ioc, "diag reset: SUCCESS\n");
8035 return 0;
8036
8037 out:
8038 pci_cfg_access_unlock(ioc->pdev);
8039 ioc_err(ioc, "diag reset: FAILED\n");
8040 return -EFAULT;
8041 }
8042
8043 /**
8044 * mpt3sas_base_make_ioc_ready - put controller in READY state
8045 * @ioc: per adapter object
8046 * @type: FORCE_BIG_HAMMER or SOFT_RESET
8047 *
8048 * Return: 0 for success, non-zero for failure.
8049 */
8050 int
mpt3sas_base_make_ioc_ready(struct MPT3SAS_ADAPTER * ioc,enum reset_type type)8051 mpt3sas_base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
8052 {
8053 u32 ioc_state;
8054 int rc;
8055 int count;
8056
8057 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8058
8059 if (ioc->pci_error_recovery)
8060 return 0;
8061
8062 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8063 dhsprintk(ioc,
8064 ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
8065 __func__, ioc_state));
8066
8067 /* if in RESET state, it should move to READY state shortly */
8068 count = 0;
8069 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
8070 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
8071 MPI2_IOC_STATE_READY) {
8072 if (count++ == 10) {
8073 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
8074 __func__, ioc_state);
8075 return -EFAULT;
8076 }
8077 ssleep(1);
8078 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8079 }
8080 }
8081
8082 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
8083 return 0;
8084
8085 if (ioc_state & MPI2_DOORBELL_USED) {
8086 ioc_info(ioc, "unexpected doorbell active!\n");
8087 goto issue_diag_reset;
8088 }
8089
8090 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
8091 mpt3sas_print_fault_code(ioc, ioc_state &
8092 MPI2_DOORBELL_DATA_MASK);
8093 goto issue_diag_reset;
8094 }
8095
8096 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
8097 /*
8098 * if host reset is invoked while watch dog thread is waiting
8099 * for IOC state to be changed to Fault state then driver has
8100 * to wait here for CoreDump state to clear otherwise reset
8101 * will be issued to the FW and FW move the IOC state to
8102 * reset state without copying the FW logs to coredump region.
8103 */
8104 if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) {
8105 mpt3sas_print_coredump_info(ioc, ioc_state &
8106 MPI2_DOORBELL_DATA_MASK);
8107 mpt3sas_base_wait_for_coredump_completion(ioc,
8108 __func__);
8109 }
8110 goto issue_diag_reset;
8111 }
8112
8113 if (type == FORCE_BIG_HAMMER)
8114 goto issue_diag_reset;
8115
8116 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
8117 if (!(_base_send_ioc_reset(ioc,
8118 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
8119 return 0;
8120 }
8121
8122 issue_diag_reset:
8123 rc = _base_diag_reset(ioc);
8124 return rc;
8125 }
8126
8127 /**
8128 * _base_make_ioc_operational - put controller in OPERATIONAL state
8129 * @ioc: per adapter object
8130 *
8131 * Return: 0 for success, non-zero for failure.
8132 */
8133 static int
_base_make_ioc_operational(struct MPT3SAS_ADAPTER * ioc)8134 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
8135 {
8136 int r, i, index, rc;
8137 unsigned long flags;
8138 u32 reply_address;
8139 u16 smid;
8140 struct _tr_list *delayed_tr, *delayed_tr_next;
8141 struct _sc_list *delayed_sc, *delayed_sc_next;
8142 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
8143 u8 hide_flag;
8144 struct adapter_reply_queue *reply_q;
8145 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
8146
8147 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8148
8149 /* clean the delayed target reset list */
8150 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
8151 &ioc->delayed_tr_list, list) {
8152 list_del(&delayed_tr->list);
8153 kfree(delayed_tr);
8154 }
8155
8156
8157 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
8158 &ioc->delayed_tr_volume_list, list) {
8159 list_del(&delayed_tr->list);
8160 kfree(delayed_tr);
8161 }
8162
8163 list_for_each_entry_safe(delayed_sc, delayed_sc_next,
8164 &ioc->delayed_sc_list, list) {
8165 list_del(&delayed_sc->list);
8166 kfree(delayed_sc);
8167 }
8168
8169 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
8170 &ioc->delayed_event_ack_list, list) {
8171 list_del(&delayed_event_ack->list);
8172 kfree(delayed_event_ack);
8173 }
8174
8175 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
8176
8177 /* hi-priority queue */
8178 INIT_LIST_HEAD(&ioc->hpr_free_list);
8179 smid = ioc->hi_priority_smid;
8180 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
8181 ioc->hpr_lookup[i].cb_idx = 0xFF;
8182 ioc->hpr_lookup[i].smid = smid;
8183 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
8184 &ioc->hpr_free_list);
8185 }
8186
8187 /* internal queue */
8188 INIT_LIST_HEAD(&ioc->internal_free_list);
8189 smid = ioc->internal_smid;
8190 for (i = 0; i < ioc->internal_depth; i++, smid++) {
8191 ioc->internal_lookup[i].cb_idx = 0xFF;
8192 ioc->internal_lookup[i].smid = smid;
8193 list_add_tail(&ioc->internal_lookup[i].tracker_list,
8194 &ioc->internal_free_list);
8195 }
8196
8197 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
8198
8199 /* initialize Reply Free Queue */
8200 for (i = 0, reply_address = (u32)ioc->reply_dma ;
8201 i < ioc->reply_free_queue_depth ; i++, reply_address +=
8202 ioc->reply_sz) {
8203 ioc->reply_free[i] = cpu_to_le32(reply_address);
8204 if (ioc->is_mcpu_endpoint)
8205 _base_clone_reply_to_sys_mem(ioc,
8206 reply_address, i);
8207 }
8208
8209 /* initialize reply queues */
8210 if (ioc->is_driver_loading)
8211 _base_assign_reply_queues(ioc);
8212
8213 /* initialize Reply Post Free Queue */
8214 index = 0;
8215 reply_post_free_contig = ioc->reply_post[0].reply_post_free;
8216 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8217 /*
8218 * If RDPQ is enabled, switch to the next allocation.
8219 * Otherwise advance within the contiguous region.
8220 */
8221 if (ioc->rdpq_array_enable) {
8222 reply_q->reply_post_free =
8223 ioc->reply_post[index++].reply_post_free;
8224 } else {
8225 reply_q->reply_post_free = reply_post_free_contig;
8226 reply_post_free_contig += ioc->reply_post_queue_depth;
8227 }
8228
8229 reply_q->reply_post_host_index = 0;
8230 for (i = 0; i < ioc->reply_post_queue_depth; i++)
8231 reply_q->reply_post_free[i].Words =
8232 cpu_to_le64(ULLONG_MAX);
8233 if (!_base_is_controller_msix_enabled(ioc))
8234 goto skip_init_reply_post_free_queue;
8235 }
8236 skip_init_reply_post_free_queue:
8237
8238 r = _base_send_ioc_init(ioc);
8239 if (r) {
8240 /*
8241 * No need to check IOC state for fault state & issue
8242 * diag reset during host reset. This check is need
8243 * only during driver load time.
8244 */
8245 if (!ioc->is_driver_loading)
8246 return r;
8247
8248 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8249 if (rc || (_base_send_ioc_init(ioc)))
8250 return r;
8251 }
8252
8253 /* initialize reply free host index */
8254 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
8255 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
8256
8257 /* initialize reply post host index */
8258 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8259 if (ioc->combined_reply_queue)
8260 writel((reply_q->msix_index & 7)<<
8261 MPI2_RPHI_MSIX_INDEX_SHIFT,
8262 ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
8263 else
8264 writel(reply_q->msix_index <<
8265 MPI2_RPHI_MSIX_INDEX_SHIFT,
8266 &ioc->chip->ReplyPostHostIndex);
8267
8268 if (!_base_is_controller_msix_enabled(ioc))
8269 goto skip_init_reply_post_host_index;
8270 }
8271
8272 skip_init_reply_post_host_index:
8273
8274 mpt3sas_base_unmask_interrupts(ioc);
8275
8276 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
8277 r = _base_display_fwpkg_version(ioc);
8278 if (r)
8279 return r;
8280 }
8281
8282 r = _base_static_config_pages(ioc);
8283 if (r)
8284 return r;
8285
8286 r = _base_event_notification(ioc);
8287 if (r)
8288 return r;
8289
8290 if (!ioc->shost_recovery) {
8291
8292 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
8293 == 0x80) {
8294 hide_flag = (u8) (
8295 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
8296 MFG_PAGE10_HIDE_SSDS_MASK);
8297 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
8298 ioc->mfg_pg10_hide_flag = hide_flag;
8299 }
8300
8301 ioc->wait_for_discovery_to_complete =
8302 _base_determine_wait_on_discovery(ioc);
8303
8304 return r; /* scan_start and scan_finished support */
8305 }
8306
8307 r = _base_send_port_enable(ioc);
8308 if (r)
8309 return r;
8310
8311 return r;
8312 }
8313
8314 /**
8315 * mpt3sas_base_free_resources - free resources controller resources
8316 * @ioc: per adapter object
8317 */
8318 void
mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER * ioc)8319 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
8320 {
8321 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8322
8323 /* synchronizing freeing resource with pci_access_mutex lock */
8324 mutex_lock(&ioc->pci_access_mutex);
8325 if (ioc->chip_phys && ioc->chip) {
8326 mpt3sas_base_mask_interrupts(ioc);
8327 ioc->shost_recovery = 1;
8328 mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8329 ioc->shost_recovery = 0;
8330 }
8331
8332 mpt3sas_base_unmap_resources(ioc);
8333 mutex_unlock(&ioc->pci_access_mutex);
8334 return;
8335 }
8336
8337 /**
8338 * mpt3sas_base_attach - attach controller instance
8339 * @ioc: per adapter object
8340 *
8341 * Return: 0 for success, non-zero for failure.
8342 */
8343 int
mpt3sas_base_attach(struct MPT3SAS_ADAPTER * ioc)8344 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
8345 {
8346 int r, i, rc;
8347 int cpu_id, last_cpu_id = 0;
8348
8349 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8350
8351 /* setup cpu_msix_table */
8352 ioc->cpu_count = num_online_cpus();
8353 for_each_online_cpu(cpu_id)
8354 last_cpu_id = cpu_id;
8355 ioc->cpu_msix_table_sz = last_cpu_id + 1;
8356 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
8357 ioc->reply_queue_count = 1;
8358 if (!ioc->cpu_msix_table) {
8359 ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n");
8360 r = -ENOMEM;
8361 goto out_free_resources;
8362 }
8363
8364 if (ioc->is_warpdrive) {
8365 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
8366 sizeof(resource_size_t *), GFP_KERNEL);
8367 if (!ioc->reply_post_host_index) {
8368 ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n");
8369 r = -ENOMEM;
8370 goto out_free_resources;
8371 }
8372 }
8373
8374 ioc->smp_affinity_enable = smp_affinity_enable;
8375
8376 ioc->rdpq_array_enable_assigned = 0;
8377 ioc->use_32bit_dma = false;
8378 ioc->dma_mask = 64;
8379 if (ioc->is_aero_ioc) {
8380 ioc->base_readl = &_base_readl_aero;
8381 ioc->base_readl_ext_retry = &_base_readl_ext_retry;
8382 } else {
8383 ioc->base_readl = &_base_readl;
8384 ioc->base_readl_ext_retry = &_base_readl;
8385 }
8386 r = mpt3sas_base_map_resources(ioc);
8387 if (r)
8388 goto out_free_resources;
8389
8390 pci_set_drvdata(ioc->pdev, ioc->shost);
8391 r = _base_get_ioc_facts(ioc);
8392 if (r) {
8393 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8394 if (rc || (_base_get_ioc_facts(ioc)))
8395 goto out_free_resources;
8396 }
8397
8398 switch (ioc->hba_mpi_version_belonged) {
8399 case MPI2_VERSION:
8400 ioc->build_sg_scmd = &_base_build_sg_scmd;
8401 ioc->build_sg = &_base_build_sg;
8402 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
8403 ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8404 break;
8405 case MPI25_VERSION:
8406 case MPI26_VERSION:
8407 /*
8408 * In SAS3.0,
8409 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
8410 * Target Status - all require the IEEE formatted scatter gather
8411 * elements.
8412 */
8413 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
8414 ioc->build_sg = &_base_build_sg_ieee;
8415 ioc->build_nvme_prp = &_base_build_nvme_prp;
8416 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
8417 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
8418 if (ioc->high_iops_queues)
8419 ioc->get_msix_index_for_smlio =
8420 &_base_get_high_iops_msix_index;
8421 else
8422 ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8423 break;
8424 }
8425 if (ioc->atomic_desc_capable) {
8426 ioc->put_smid_default = &_base_put_smid_default_atomic;
8427 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
8428 ioc->put_smid_fast_path =
8429 &_base_put_smid_fast_path_atomic;
8430 ioc->put_smid_hi_priority =
8431 &_base_put_smid_hi_priority_atomic;
8432 } else {
8433 ioc->put_smid_default = &_base_put_smid_default;
8434 ioc->put_smid_fast_path = &_base_put_smid_fast_path;
8435 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
8436 if (ioc->is_mcpu_endpoint)
8437 ioc->put_smid_scsi_io =
8438 &_base_put_smid_mpi_ep_scsi_io;
8439 else
8440 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
8441 }
8442 /*
8443 * These function pointers for other requests that don't
8444 * the require IEEE scatter gather elements.
8445 *
8446 * For example Configuration Pages and SAS IOUNIT Control don't.
8447 */
8448 ioc->build_sg_mpi = &_base_build_sg;
8449 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
8450
8451 r = mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8452 if (r)
8453 goto out_free_resources;
8454
8455 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
8456 sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
8457 if (!ioc->pfacts) {
8458 r = -ENOMEM;
8459 goto out_free_resources;
8460 }
8461
8462 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
8463 r = _base_get_port_facts(ioc, i);
8464 if (r) {
8465 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8466 if (rc || (_base_get_port_facts(ioc, i)))
8467 goto out_free_resources;
8468 }
8469 }
8470
8471 r = _base_allocate_memory_pools(ioc);
8472 if (r)
8473 goto out_free_resources;
8474
8475 if (irqpoll_weight > 0)
8476 ioc->thresh_hold = irqpoll_weight;
8477 else
8478 ioc->thresh_hold = ioc->hba_queue_depth/4;
8479
8480 _base_init_irqpolls(ioc);
8481 init_waitqueue_head(&ioc->reset_wq);
8482
8483 /* allocate memory pd handle bitmask list */
8484 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8485 if (ioc->facts.MaxDevHandle % 8)
8486 ioc->pd_handles_sz++;
8487 ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
8488 GFP_KERNEL);
8489 if (!ioc->pd_handles) {
8490 r = -ENOMEM;
8491 goto out_free_resources;
8492 }
8493 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
8494 GFP_KERNEL);
8495 if (!ioc->blocking_handles) {
8496 r = -ENOMEM;
8497 goto out_free_resources;
8498 }
8499
8500 /* allocate memory for pending OS device add list */
8501 ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
8502 if (ioc->facts.MaxDevHandle % 8)
8503 ioc->pend_os_device_add_sz++;
8504 ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
8505 GFP_KERNEL);
8506 if (!ioc->pend_os_device_add) {
8507 r = -ENOMEM;
8508 goto out_free_resources;
8509 }
8510
8511 ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
8512 ioc->device_remove_in_progress =
8513 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
8514 if (!ioc->device_remove_in_progress) {
8515 r = -ENOMEM;
8516 goto out_free_resources;
8517 }
8518
8519 ioc->fwfault_debug = mpt3sas_fwfault_debug;
8520
8521 /* base internal command bits */
8522 mutex_init(&ioc->base_cmds.mutex);
8523 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8524 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
8525
8526 /* port_enable command bits */
8527 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8528 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
8529
8530 /* transport internal command bits */
8531 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8532 ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
8533 mutex_init(&ioc->transport_cmds.mutex);
8534
8535 /* scsih internal command bits */
8536 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8537 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
8538 mutex_init(&ioc->scsih_cmds.mutex);
8539
8540 /* task management internal command bits */
8541 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8542 ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
8543 mutex_init(&ioc->tm_cmds.mutex);
8544
8545 /* config page internal command bits */
8546 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8547 ioc->config_cmds.status = MPT3_CMD_NOT_USED;
8548 mutex_init(&ioc->config_cmds.mutex);
8549
8550 /* ctl module internal command bits */
8551 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8552 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
8553 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
8554 mutex_init(&ioc->ctl_cmds.mutex);
8555
8556 if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
8557 !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
8558 !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
8559 !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
8560 r = -ENOMEM;
8561 goto out_free_resources;
8562 }
8563
8564 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
8565 ioc->event_masks[i] = -1;
8566
8567 /* here we enable the events we care about */
8568 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
8569 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
8570 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
8571 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
8572 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
8573 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
8574 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
8575 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
8576 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
8577 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
8578 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
8579 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
8580 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
8581 if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
8582 if (ioc->is_gen35_ioc) {
8583 _base_unmask_events(ioc,
8584 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
8585 _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
8586 _base_unmask_events(ioc,
8587 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
8588 }
8589 }
8590 r = _base_make_ioc_operational(ioc);
8591 if (r == -EAGAIN) {
8592 r = _base_make_ioc_operational(ioc);
8593 if (r)
8594 goto out_free_resources;
8595 }
8596
8597 /*
8598 * Copy current copy of IOCFacts in prev_fw_facts
8599 * and it will be used during online firmware upgrade.
8600 */
8601 memcpy(&ioc->prev_fw_facts, &ioc->facts,
8602 sizeof(struct mpt3sas_facts));
8603
8604 ioc->non_operational_loop = 0;
8605 ioc->ioc_coredump_loop = 0;
8606 ioc->got_task_abort_from_ioctl = 0;
8607 return 0;
8608
8609 out_free_resources:
8610
8611 ioc->remove_host = 1;
8612
8613 mpt3sas_base_free_resources(ioc);
8614 _base_release_memory_pools(ioc);
8615 pci_set_drvdata(ioc->pdev, NULL);
8616 kfree(ioc->cpu_msix_table);
8617 if (ioc->is_warpdrive)
8618 kfree(ioc->reply_post_host_index);
8619 kfree(ioc->pd_handles);
8620 kfree(ioc->blocking_handles);
8621 kfree(ioc->device_remove_in_progress);
8622 kfree(ioc->pend_os_device_add);
8623 kfree(ioc->tm_cmds.reply);
8624 kfree(ioc->transport_cmds.reply);
8625 kfree(ioc->scsih_cmds.reply);
8626 kfree(ioc->config_cmds.reply);
8627 kfree(ioc->base_cmds.reply);
8628 kfree(ioc->port_enable_cmds.reply);
8629 kfree(ioc->ctl_cmds.reply);
8630 kfree(ioc->ctl_cmds.sense);
8631 kfree(ioc->pfacts);
8632 ioc->ctl_cmds.reply = NULL;
8633 ioc->base_cmds.reply = NULL;
8634 ioc->tm_cmds.reply = NULL;
8635 ioc->scsih_cmds.reply = NULL;
8636 ioc->transport_cmds.reply = NULL;
8637 ioc->config_cmds.reply = NULL;
8638 ioc->pfacts = NULL;
8639 return r;
8640 }
8641
8642
8643 /**
8644 * mpt3sas_base_detach - remove controller instance
8645 * @ioc: per adapter object
8646 */
8647 void
mpt3sas_base_detach(struct MPT3SAS_ADAPTER * ioc)8648 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
8649 {
8650 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8651
8652 mpt3sas_base_stop_watchdog(ioc);
8653 mpt3sas_base_free_resources(ioc);
8654 _base_release_memory_pools(ioc);
8655 mpt3sas_free_enclosure_list(ioc);
8656 pci_set_drvdata(ioc->pdev, NULL);
8657 kfree(ioc->cpu_msix_table);
8658 if (ioc->is_warpdrive)
8659 kfree(ioc->reply_post_host_index);
8660 kfree(ioc->pd_handles);
8661 kfree(ioc->blocking_handles);
8662 kfree(ioc->device_remove_in_progress);
8663 kfree(ioc->pend_os_device_add);
8664 kfree(ioc->pfacts);
8665 kfree(ioc->ctl_cmds.reply);
8666 kfree(ioc->ctl_cmds.sense);
8667 kfree(ioc->base_cmds.reply);
8668 kfree(ioc->port_enable_cmds.reply);
8669 kfree(ioc->tm_cmds.reply);
8670 kfree(ioc->transport_cmds.reply);
8671 kfree(ioc->scsih_cmds.reply);
8672 kfree(ioc->config_cmds.reply);
8673 }
8674
8675 /**
8676 * _base_pre_reset_handler - pre reset handler
8677 * @ioc: per adapter object
8678 */
_base_pre_reset_handler(struct MPT3SAS_ADAPTER * ioc)8679 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
8680 {
8681 mpt3sas_scsih_pre_reset_handler(ioc);
8682 mpt3sas_ctl_pre_reset_handler(ioc);
8683 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
8684 }
8685
8686 /**
8687 * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands
8688 * @ioc: per adapter object
8689 */
8690 static void
_base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER * ioc)8691 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc)
8692 {
8693 dtmprintk(ioc,
8694 ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__));
8695 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
8696 ioc->transport_cmds.status |= MPT3_CMD_RESET;
8697 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
8698 complete(&ioc->transport_cmds.done);
8699 }
8700 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
8701 ioc->base_cmds.status |= MPT3_CMD_RESET;
8702 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
8703 complete(&ioc->base_cmds.done);
8704 }
8705 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
8706 ioc->port_enable_failed = 1;
8707 ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
8708 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
8709 if (ioc->is_driver_loading) {
8710 ioc->start_scan_failed =
8711 MPI2_IOCSTATUS_INTERNAL_ERROR;
8712 ioc->start_scan = 0;
8713 } else {
8714 complete(&ioc->port_enable_cmds.done);
8715 }
8716 }
8717 if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
8718 ioc->config_cmds.status |= MPT3_CMD_RESET;
8719 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
8720 ioc->config_cmds.smid = USHRT_MAX;
8721 complete(&ioc->config_cmds.done);
8722 }
8723 }
8724
8725 /**
8726 * _base_clear_outstanding_commands - clear all outstanding commands
8727 * @ioc: per adapter object
8728 */
_base_clear_outstanding_commands(struct MPT3SAS_ADAPTER * ioc)8729 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc)
8730 {
8731 mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc);
8732 mpt3sas_ctl_clear_outstanding_ioctls(ioc);
8733 _base_clear_outstanding_mpt_commands(ioc);
8734 }
8735
8736 /**
8737 * _base_reset_done_handler - reset done handler
8738 * @ioc: per adapter object
8739 */
_base_reset_done_handler(struct MPT3SAS_ADAPTER * ioc)8740 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
8741 {
8742 mpt3sas_scsih_reset_done_handler(ioc);
8743 mpt3sas_ctl_reset_done_handler(ioc);
8744 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
8745 }
8746
8747 /**
8748 * mpt3sas_wait_for_commands_to_complete - reset controller
8749 * @ioc: Pointer to MPT_ADAPTER structure
8750 *
8751 * This function is waiting 10s for all pending commands to complete
8752 * prior to putting controller in reset.
8753 */
8754 void
mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER * ioc)8755 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
8756 {
8757 u32 ioc_state;
8758
8759 ioc->pending_io_count = 0;
8760
8761 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8762 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
8763 return;
8764
8765 /* pending command count */
8766 ioc->pending_io_count = scsi_host_busy(ioc->shost);
8767
8768 if (!ioc->pending_io_count)
8769 return;
8770
8771 /* wait for pending commands to complete */
8772 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
8773 }
8774
8775 /**
8776 * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts
8777 * attributes during online firmware upgrade and update the corresponding
8778 * IOC variables accordingly.
8779 *
8780 * @ioc: Pointer to MPT_ADAPTER structure
8781 */
8782 static int
_base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER * ioc)8783 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc)
8784 {
8785 u16 pd_handles_sz;
8786 void *pd_handles = NULL, *blocking_handles = NULL;
8787 void *pend_os_device_add = NULL, *device_remove_in_progress = NULL;
8788 struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts;
8789
8790 if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) {
8791 pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8792 if (ioc->facts.MaxDevHandle % 8)
8793 pd_handles_sz++;
8794
8795 pd_handles = krealloc(ioc->pd_handles, pd_handles_sz,
8796 GFP_KERNEL);
8797 if (!pd_handles) {
8798 ioc_info(ioc,
8799 "Unable to allocate the memory for pd_handles of sz: %d\n",
8800 pd_handles_sz);
8801 return -ENOMEM;
8802 }
8803 memset(pd_handles + ioc->pd_handles_sz, 0,
8804 (pd_handles_sz - ioc->pd_handles_sz));
8805 ioc->pd_handles = pd_handles;
8806
8807 blocking_handles = krealloc(ioc->blocking_handles,
8808 pd_handles_sz, GFP_KERNEL);
8809 if (!blocking_handles) {
8810 ioc_info(ioc,
8811 "Unable to allocate the memory for "
8812 "blocking_handles of sz: %d\n",
8813 pd_handles_sz);
8814 return -ENOMEM;
8815 }
8816 memset(blocking_handles + ioc->pd_handles_sz, 0,
8817 (pd_handles_sz - ioc->pd_handles_sz));
8818 ioc->blocking_handles = blocking_handles;
8819 ioc->pd_handles_sz = pd_handles_sz;
8820
8821 pend_os_device_add = krealloc(ioc->pend_os_device_add,
8822 pd_handles_sz, GFP_KERNEL);
8823 if (!pend_os_device_add) {
8824 ioc_info(ioc,
8825 "Unable to allocate the memory for pend_os_device_add of sz: %d\n",
8826 pd_handles_sz);
8827 return -ENOMEM;
8828 }
8829 memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0,
8830 (pd_handles_sz - ioc->pend_os_device_add_sz));
8831 ioc->pend_os_device_add = pend_os_device_add;
8832 ioc->pend_os_device_add_sz = pd_handles_sz;
8833
8834 device_remove_in_progress = krealloc(
8835 ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL);
8836 if (!device_remove_in_progress) {
8837 ioc_info(ioc,
8838 "Unable to allocate the memory for "
8839 "device_remove_in_progress of sz: %d\n "
8840 , pd_handles_sz);
8841 return -ENOMEM;
8842 }
8843 memset(device_remove_in_progress +
8844 ioc->device_remove_in_progress_sz, 0,
8845 (pd_handles_sz - ioc->device_remove_in_progress_sz));
8846 ioc->device_remove_in_progress = device_remove_in_progress;
8847 ioc->device_remove_in_progress_sz = pd_handles_sz;
8848 }
8849
8850 memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts));
8851 return 0;
8852 }
8853
8854 /**
8855 * mpt3sas_base_hard_reset_handler - reset controller
8856 * @ioc: Pointer to MPT_ADAPTER structure
8857 * @type: FORCE_BIG_HAMMER or SOFT_RESET
8858 *
8859 * Return: 0 for success, non-zero for failure.
8860 */
8861 int
mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER * ioc,enum reset_type type)8862 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
8863 enum reset_type type)
8864 {
8865 int r;
8866 unsigned long flags;
8867 u32 ioc_state;
8868 u8 is_fault = 0, is_trigger = 0;
8869
8870 dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__));
8871
8872 if (ioc->pci_error_recovery) {
8873 ioc_err(ioc, "%s: pci error recovery reset\n", __func__);
8874 r = 0;
8875 goto out_unlocked;
8876 }
8877
8878 if (mpt3sas_fwfault_debug)
8879 mpt3sas_halt_firmware(ioc);
8880
8881 /* wait for an active reset in progress to complete */
8882 mutex_lock(&ioc->reset_in_progress_mutex);
8883
8884 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8885 ioc->shost_recovery = 1;
8886 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8887
8888 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8889 MPT3_DIAG_BUFFER_IS_REGISTERED) &&
8890 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8891 MPT3_DIAG_BUFFER_IS_RELEASED))) {
8892 is_trigger = 1;
8893 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8894 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
8895 (ioc_state & MPI2_IOC_STATE_MASK) ==
8896 MPI2_IOC_STATE_COREDUMP) {
8897 is_fault = 1;
8898 ioc->htb_rel.trigger_info_dwords[1] =
8899 (ioc_state & MPI2_DOORBELL_DATA_MASK);
8900 }
8901 }
8902 _base_pre_reset_handler(ioc);
8903 mpt3sas_wait_for_commands_to_complete(ioc);
8904 mpt3sas_base_mask_interrupts(ioc);
8905 mpt3sas_base_pause_mq_polling(ioc);
8906 r = mpt3sas_base_make_ioc_ready(ioc, type);
8907 if (r)
8908 goto out;
8909 _base_clear_outstanding_commands(ioc);
8910
8911 /* If this hard reset is called while port enable is active, then
8912 * there is no reason to call make_ioc_operational
8913 */
8914 if (ioc->is_driver_loading && ioc->port_enable_failed) {
8915 ioc->remove_host = 1;
8916 r = -EFAULT;
8917 goto out;
8918 }
8919 r = _base_get_ioc_facts(ioc);
8920 if (r)
8921 goto out;
8922
8923 r = _base_check_ioc_facts_changes(ioc);
8924 if (r) {
8925 ioc_info(ioc,
8926 "Some of the parameters got changed in this new firmware"
8927 " image and it requires system reboot\n");
8928 goto out;
8929 }
8930 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
8931 panic("%s: Issue occurred with flashing controller firmware."
8932 "Please reboot the system and ensure that the correct"
8933 " firmware version is running\n", ioc->name);
8934
8935 r = _base_make_ioc_operational(ioc);
8936 if (!r)
8937 _base_reset_done_handler(ioc);
8938
8939 out:
8940 ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED");
8941
8942 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8943 ioc->shost_recovery = 0;
8944 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8945 ioc->ioc_reset_count++;
8946 mutex_unlock(&ioc->reset_in_progress_mutex);
8947 mpt3sas_base_resume_mq_polling(ioc);
8948
8949 out_unlocked:
8950 if ((r == 0) && is_trigger) {
8951 if (is_fault)
8952 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
8953 else
8954 mpt3sas_trigger_master(ioc,
8955 MASTER_TRIGGER_ADAPTER_RESET);
8956 }
8957 dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__));
8958 return r;
8959 }
8960