1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * General Purpose functions for the global management of the
4 * Communication Processor Module.
5 * Copyright (c) 1997 Dan error_act (dmalek@jlc.net)
6 *
7 * In addition to the individual control of the communication
8 * channels, there are a few functions that globally affect the
9 * communication processor.
10 *
11 * Buffer descriptors must be allocated from the dual ported memory
12 * space. The allocator for that is here. When the communication
13 * process is reset, we reclaim the memory available. There is
14 * currently no deallocator for this memory.
15 * The amount of space available is platform dependent. On the
16 * MBX, the EPPC software loads additional microcode into the
17 * communication processor, and uses some of the DP ram for this
18 * purpose. Current, the first 512 bytes and the last 256 bytes of
19 * memory are used. Right now I am conservative and only use the
20 * memory that can never be used for microcode. If there are
21 * applications that require more DP ram, we can expand the boundaries
22 * but then we have to be careful of any downloaded microcode.
23 */
24 #include <linux/errno.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/param.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/interrupt.h>
32 #include <linux/irq.h>
33 #include <linux/module.h>
34 #include <linux/spinlock.h>
35 #include <linux/slab.h>
36 #include <asm/page.h>
37 #include <asm/pgtable.h>
38 #include <asm/8xx_immap.h>
39 #include <asm/cpm1.h>
40 #include <asm/io.h>
41 #include <asm/rheap.h>
42 #include <asm/prom.h>
43 #include <asm/cpm.h>
44
45 #include <asm/fs_pd.h>
46
47 #ifdef CONFIG_8xx_GPIO
48 #include <linux/of_gpio.h>
49 #endif
50
51 #define CPM_MAP_SIZE (0x4000)
52
53 cpm8xx_t __iomem *cpmp; /* Pointer to comm processor space */
54 immap_t __iomem *mpc8xx_immr;
55 static cpic8xx_t __iomem *cpic_reg;
56
57 static struct irq_domain *cpm_pic_host;
58
cpm_mask_irq(struct irq_data * d)59 static void cpm_mask_irq(struct irq_data *d)
60 {
61 unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
62
63 clrbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
64 }
65
cpm_unmask_irq(struct irq_data * d)66 static void cpm_unmask_irq(struct irq_data *d)
67 {
68 unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
69
70 setbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
71 }
72
cpm_end_irq(struct irq_data * d)73 static void cpm_end_irq(struct irq_data *d)
74 {
75 unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
76
77 out_be32(&cpic_reg->cpic_cisr, (1 << cpm_vec));
78 }
79
80 static struct irq_chip cpm_pic = {
81 .name = "CPM PIC",
82 .irq_mask = cpm_mask_irq,
83 .irq_unmask = cpm_unmask_irq,
84 .irq_eoi = cpm_end_irq,
85 };
86
cpm_get_irq(void)87 int cpm_get_irq(void)
88 {
89 int cpm_vec;
90
91 /*
92 * Get the vector by setting the ACK bit and then reading
93 * the register.
94 */
95 out_be16(&cpic_reg->cpic_civr, 1);
96 cpm_vec = in_be16(&cpic_reg->cpic_civr);
97 cpm_vec >>= 11;
98
99 return irq_linear_revmap(cpm_pic_host, cpm_vec);
100 }
101
cpm_pic_host_map(struct irq_domain * h,unsigned int virq,irq_hw_number_t hw)102 static int cpm_pic_host_map(struct irq_domain *h, unsigned int virq,
103 irq_hw_number_t hw)
104 {
105 pr_debug("cpm_pic_host_map(%d, 0x%lx)\n", virq, hw);
106
107 irq_set_status_flags(virq, IRQ_LEVEL);
108 irq_set_chip_and_handler(virq, &cpm_pic, handle_fasteoi_irq);
109 return 0;
110 }
111
112 /*
113 * The CPM can generate the error interrupt when there is a race condition
114 * between generating and masking interrupts. All we have to do is ACK it
115 * and return. This is a no-op function so we don't need any special
116 * tests in the interrupt handler.
117 */
cpm_error_interrupt(int irq,void * dev)118 static irqreturn_t cpm_error_interrupt(int irq, void *dev)
119 {
120 return IRQ_HANDLED;
121 }
122
123 static struct irqaction cpm_error_irqaction = {
124 .handler = cpm_error_interrupt,
125 .flags = IRQF_NO_THREAD,
126 .name = "error",
127 };
128
129 static const struct irq_domain_ops cpm_pic_host_ops = {
130 .map = cpm_pic_host_map,
131 };
132
cpm_pic_init(void)133 unsigned int cpm_pic_init(void)
134 {
135 struct device_node *np = NULL;
136 struct resource res;
137 unsigned int sirq = 0, hwirq, eirq;
138 int ret;
139
140 pr_debug("cpm_pic_init\n");
141
142 np = of_find_compatible_node(NULL, NULL, "fsl,cpm1-pic");
143 if (np == NULL)
144 np = of_find_compatible_node(NULL, "cpm-pic", "CPM");
145 if (np == NULL) {
146 printk(KERN_ERR "CPM PIC init: can not find cpm-pic node\n");
147 return sirq;
148 }
149
150 ret = of_address_to_resource(np, 0, &res);
151 if (ret)
152 goto end;
153
154 cpic_reg = ioremap(res.start, resource_size(&res));
155 if (cpic_reg == NULL)
156 goto end;
157
158 sirq = irq_of_parse_and_map(np, 0);
159 if (!sirq)
160 goto end;
161
162 /* Initialize the CPM interrupt controller. */
163 hwirq = (unsigned int)virq_to_hw(sirq);
164 out_be32(&cpic_reg->cpic_cicr,
165 (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) |
166 ((hwirq/2) << 13) | CICR_HP_MASK);
167
168 out_be32(&cpic_reg->cpic_cimr, 0);
169
170 cpm_pic_host = irq_domain_add_linear(np, 64, &cpm_pic_host_ops, NULL);
171 if (cpm_pic_host == NULL) {
172 printk(KERN_ERR "CPM2 PIC: failed to allocate irq host!\n");
173 sirq = 0;
174 goto end;
175 }
176
177 /* Install our own error handler. */
178 np = of_find_compatible_node(NULL, NULL, "fsl,cpm1");
179 if (np == NULL)
180 np = of_find_node_by_type(NULL, "cpm");
181 if (np == NULL) {
182 printk(KERN_ERR "CPM PIC init: can not find cpm node\n");
183 goto end;
184 }
185
186 eirq = irq_of_parse_and_map(np, 0);
187 if (!eirq)
188 goto end;
189
190 if (setup_irq(eirq, &cpm_error_irqaction))
191 printk(KERN_ERR "Could not allocate CPM error IRQ!");
192
193 setbits32(&cpic_reg->cpic_cicr, CICR_IEN);
194
195 end:
196 of_node_put(np);
197 return sirq;
198 }
199
cpm_reset(void)200 void __init cpm_reset(void)
201 {
202 sysconf8xx_t __iomem *siu_conf;
203
204 mpc8xx_immr = ioremap(get_immrbase(), 0x4000);
205 if (!mpc8xx_immr) {
206 printk(KERN_CRIT "Could not map IMMR\n");
207 return;
208 }
209
210 cpmp = &mpc8xx_immr->im_cpm;
211
212 #ifndef CONFIG_PPC_EARLY_DEBUG_CPM
213 /* Perform a reset. */
214 out_be16(&cpmp->cp_cpcr, CPM_CR_RST | CPM_CR_FLG);
215
216 /* Wait for it. */
217 while (in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG);
218 #endif
219
220 #ifdef CONFIG_UCODE_PATCH
221 cpm_load_patch(cpmp);
222 #endif
223
224 /*
225 * Set SDMA Bus Request priority 5.
226 * On 860T, this also enables FEC priority 6. I am not sure
227 * this is what we really want for some applications, but the
228 * manual recommends it.
229 * Bit 25, FAM can also be set to use FEC aggressive mode (860T).
230 */
231 siu_conf = immr_map(im_siu_conf);
232 if ((mfspr(SPRN_IMMR) & 0xffff) == 0x0900) /* MPC885 */
233 out_be32(&siu_conf->sc_sdcr, 0x40);
234 else
235 out_be32(&siu_conf->sc_sdcr, 1);
236 immr_unmap(siu_conf);
237 }
238
239 static DEFINE_SPINLOCK(cmd_lock);
240
241 #define MAX_CR_CMD_LOOPS 10000
242
cpm_command(u32 command,u8 opcode)243 int cpm_command(u32 command, u8 opcode)
244 {
245 int i, ret;
246 unsigned long flags;
247
248 if (command & 0xffffff0f)
249 return -EINVAL;
250
251 spin_lock_irqsave(&cmd_lock, flags);
252
253 ret = 0;
254 out_be16(&cpmp->cp_cpcr, command | CPM_CR_FLG | (opcode << 8));
255 for (i = 0; i < MAX_CR_CMD_LOOPS; i++)
256 if ((in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0)
257 goto out;
258
259 printk(KERN_ERR "%s(): Not able to issue CPM command\n", __func__);
260 ret = -EIO;
261 out:
262 spin_unlock_irqrestore(&cmd_lock, flags);
263 return ret;
264 }
265 EXPORT_SYMBOL(cpm_command);
266
267 /*
268 * Set a baud rate generator. This needs lots of work. There are
269 * four BRGs, any of which can be wired to any channel.
270 * The internal baud rate clock is the system clock divided by 16.
271 * This assumes the baudrate is 16x oversampled by the uart.
272 */
273 #define BRG_INT_CLK (get_brgfreq())
274 #define BRG_UART_CLK (BRG_INT_CLK/16)
275 #define BRG_UART_CLK_DIV16 (BRG_UART_CLK/16)
276
277 void
cpm_setbrg(uint brg,uint rate)278 cpm_setbrg(uint brg, uint rate)
279 {
280 u32 __iomem *bp;
281
282 /* This is good enough to get SMCs running..... */
283 bp = &cpmp->cp_brgc1;
284 bp += brg;
285 /*
286 * The BRG has a 12-bit counter. For really slow baud rates (or
287 * really fast processors), we may have to further divide by 16.
288 */
289 if (((BRG_UART_CLK / rate) - 1) < 4096)
290 out_be32(bp, (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN);
291 else
292 out_be32(bp, (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) |
293 CPM_BRG_EN | CPM_BRG_DIV16);
294 }
295
296 struct cpm_ioport16 {
297 __be16 dir, par, odr_sor, dat, intr;
298 __be16 res[3];
299 };
300
301 struct cpm_ioport32b {
302 __be32 dir, par, odr, dat;
303 };
304
305 struct cpm_ioport32e {
306 __be32 dir, par, sor, odr, dat;
307 };
308
cpm1_set_pin32(int port,int pin,int flags)309 static void cpm1_set_pin32(int port, int pin, int flags)
310 {
311 struct cpm_ioport32e __iomem *iop;
312 pin = 1 << (31 - pin);
313
314 if (port == CPM_PORTB)
315 iop = (struct cpm_ioport32e __iomem *)
316 &mpc8xx_immr->im_cpm.cp_pbdir;
317 else
318 iop = (struct cpm_ioport32e __iomem *)
319 &mpc8xx_immr->im_cpm.cp_pedir;
320
321 if (flags & CPM_PIN_OUTPUT)
322 setbits32(&iop->dir, pin);
323 else
324 clrbits32(&iop->dir, pin);
325
326 if (!(flags & CPM_PIN_GPIO))
327 setbits32(&iop->par, pin);
328 else
329 clrbits32(&iop->par, pin);
330
331 if (port == CPM_PORTB) {
332 if (flags & CPM_PIN_OPENDRAIN)
333 setbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
334 else
335 clrbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
336 }
337
338 if (port == CPM_PORTE) {
339 if (flags & CPM_PIN_SECONDARY)
340 setbits32(&iop->sor, pin);
341 else
342 clrbits32(&iop->sor, pin);
343
344 if (flags & CPM_PIN_OPENDRAIN)
345 setbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
346 else
347 clrbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
348 }
349 }
350
cpm1_set_pin16(int port,int pin,int flags)351 static void cpm1_set_pin16(int port, int pin, int flags)
352 {
353 struct cpm_ioport16 __iomem *iop =
354 (struct cpm_ioport16 __iomem *)&mpc8xx_immr->im_ioport;
355
356 pin = 1 << (15 - pin);
357
358 if (port != 0)
359 iop += port - 1;
360
361 if (flags & CPM_PIN_OUTPUT)
362 setbits16(&iop->dir, pin);
363 else
364 clrbits16(&iop->dir, pin);
365
366 if (!(flags & CPM_PIN_GPIO))
367 setbits16(&iop->par, pin);
368 else
369 clrbits16(&iop->par, pin);
370
371 if (port == CPM_PORTA) {
372 if (flags & CPM_PIN_OPENDRAIN)
373 setbits16(&iop->odr_sor, pin);
374 else
375 clrbits16(&iop->odr_sor, pin);
376 }
377 if (port == CPM_PORTC) {
378 if (flags & CPM_PIN_SECONDARY)
379 setbits16(&iop->odr_sor, pin);
380 else
381 clrbits16(&iop->odr_sor, pin);
382 if (flags & CPM_PIN_FALLEDGE)
383 setbits16(&iop->intr, pin);
384 else
385 clrbits16(&iop->intr, pin);
386 }
387 }
388
cpm1_set_pin(enum cpm_port port,int pin,int flags)389 void cpm1_set_pin(enum cpm_port port, int pin, int flags)
390 {
391 if (port == CPM_PORTB || port == CPM_PORTE)
392 cpm1_set_pin32(port, pin, flags);
393 else
394 cpm1_set_pin16(port, pin, flags);
395 }
396
cpm1_clk_setup(enum cpm_clk_target target,int clock,int mode)397 int cpm1_clk_setup(enum cpm_clk_target target, int clock, int mode)
398 {
399 int shift;
400 int i, bits = 0;
401 u32 __iomem *reg;
402 u32 mask = 7;
403
404 u8 clk_map[][3] = {
405 {CPM_CLK_SCC1, CPM_BRG1, 0},
406 {CPM_CLK_SCC1, CPM_BRG2, 1},
407 {CPM_CLK_SCC1, CPM_BRG3, 2},
408 {CPM_CLK_SCC1, CPM_BRG4, 3},
409 {CPM_CLK_SCC1, CPM_CLK1, 4},
410 {CPM_CLK_SCC1, CPM_CLK2, 5},
411 {CPM_CLK_SCC1, CPM_CLK3, 6},
412 {CPM_CLK_SCC1, CPM_CLK4, 7},
413
414 {CPM_CLK_SCC2, CPM_BRG1, 0},
415 {CPM_CLK_SCC2, CPM_BRG2, 1},
416 {CPM_CLK_SCC2, CPM_BRG3, 2},
417 {CPM_CLK_SCC2, CPM_BRG4, 3},
418 {CPM_CLK_SCC2, CPM_CLK1, 4},
419 {CPM_CLK_SCC2, CPM_CLK2, 5},
420 {CPM_CLK_SCC2, CPM_CLK3, 6},
421 {CPM_CLK_SCC2, CPM_CLK4, 7},
422
423 {CPM_CLK_SCC3, CPM_BRG1, 0},
424 {CPM_CLK_SCC3, CPM_BRG2, 1},
425 {CPM_CLK_SCC3, CPM_BRG3, 2},
426 {CPM_CLK_SCC3, CPM_BRG4, 3},
427 {CPM_CLK_SCC3, CPM_CLK5, 4},
428 {CPM_CLK_SCC3, CPM_CLK6, 5},
429 {CPM_CLK_SCC3, CPM_CLK7, 6},
430 {CPM_CLK_SCC3, CPM_CLK8, 7},
431
432 {CPM_CLK_SCC4, CPM_BRG1, 0},
433 {CPM_CLK_SCC4, CPM_BRG2, 1},
434 {CPM_CLK_SCC4, CPM_BRG3, 2},
435 {CPM_CLK_SCC4, CPM_BRG4, 3},
436 {CPM_CLK_SCC4, CPM_CLK5, 4},
437 {CPM_CLK_SCC4, CPM_CLK6, 5},
438 {CPM_CLK_SCC4, CPM_CLK7, 6},
439 {CPM_CLK_SCC4, CPM_CLK8, 7},
440
441 {CPM_CLK_SMC1, CPM_BRG1, 0},
442 {CPM_CLK_SMC1, CPM_BRG2, 1},
443 {CPM_CLK_SMC1, CPM_BRG3, 2},
444 {CPM_CLK_SMC1, CPM_BRG4, 3},
445 {CPM_CLK_SMC1, CPM_CLK1, 4},
446 {CPM_CLK_SMC1, CPM_CLK2, 5},
447 {CPM_CLK_SMC1, CPM_CLK3, 6},
448 {CPM_CLK_SMC1, CPM_CLK4, 7},
449
450 {CPM_CLK_SMC2, CPM_BRG1, 0},
451 {CPM_CLK_SMC2, CPM_BRG2, 1},
452 {CPM_CLK_SMC2, CPM_BRG3, 2},
453 {CPM_CLK_SMC2, CPM_BRG4, 3},
454 {CPM_CLK_SMC2, CPM_CLK5, 4},
455 {CPM_CLK_SMC2, CPM_CLK6, 5},
456 {CPM_CLK_SMC2, CPM_CLK7, 6},
457 {CPM_CLK_SMC2, CPM_CLK8, 7},
458 };
459
460 switch (target) {
461 case CPM_CLK_SCC1:
462 reg = &mpc8xx_immr->im_cpm.cp_sicr;
463 shift = 0;
464 break;
465
466 case CPM_CLK_SCC2:
467 reg = &mpc8xx_immr->im_cpm.cp_sicr;
468 shift = 8;
469 break;
470
471 case CPM_CLK_SCC3:
472 reg = &mpc8xx_immr->im_cpm.cp_sicr;
473 shift = 16;
474 break;
475
476 case CPM_CLK_SCC4:
477 reg = &mpc8xx_immr->im_cpm.cp_sicr;
478 shift = 24;
479 break;
480
481 case CPM_CLK_SMC1:
482 reg = &mpc8xx_immr->im_cpm.cp_simode;
483 shift = 12;
484 break;
485
486 case CPM_CLK_SMC2:
487 reg = &mpc8xx_immr->im_cpm.cp_simode;
488 shift = 28;
489 break;
490
491 default:
492 printk(KERN_ERR "cpm1_clock_setup: invalid clock target\n");
493 return -EINVAL;
494 }
495
496 for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
497 if (clk_map[i][0] == target && clk_map[i][1] == clock) {
498 bits = clk_map[i][2];
499 break;
500 }
501 }
502
503 if (i == ARRAY_SIZE(clk_map)) {
504 printk(KERN_ERR "cpm1_clock_setup: invalid clock combination\n");
505 return -EINVAL;
506 }
507
508 bits <<= shift;
509 mask <<= shift;
510
511 if (reg == &mpc8xx_immr->im_cpm.cp_sicr) {
512 if (mode == CPM_CLK_RTX) {
513 bits |= bits << 3;
514 mask |= mask << 3;
515 } else if (mode == CPM_CLK_RX) {
516 bits <<= 3;
517 mask <<= 3;
518 }
519 }
520
521 out_be32(reg, (in_be32(reg) & ~mask) | bits);
522
523 return 0;
524 }
525
526 /*
527 * GPIO LIB API implementation
528 */
529 #ifdef CONFIG_8xx_GPIO
530
531 struct cpm1_gpio16_chip {
532 struct of_mm_gpio_chip mm_gc;
533 spinlock_t lock;
534
535 /* shadowed data register to clear/set bits safely */
536 u16 cpdata;
537
538 /* IRQ associated with Pins when relevant */
539 int irq[16];
540 };
541
cpm1_gpio16_save_regs(struct of_mm_gpio_chip * mm_gc)542 static void cpm1_gpio16_save_regs(struct of_mm_gpio_chip *mm_gc)
543 {
544 struct cpm1_gpio16_chip *cpm1_gc =
545 container_of(mm_gc, struct cpm1_gpio16_chip, mm_gc);
546 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
547
548 cpm1_gc->cpdata = in_be16(&iop->dat);
549 }
550
cpm1_gpio16_get(struct gpio_chip * gc,unsigned int gpio)551 static int cpm1_gpio16_get(struct gpio_chip *gc, unsigned int gpio)
552 {
553 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
554 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
555 u16 pin_mask;
556
557 pin_mask = 1 << (15 - gpio);
558
559 return !!(in_be16(&iop->dat) & pin_mask);
560 }
561
__cpm1_gpio16_set(struct of_mm_gpio_chip * mm_gc,u16 pin_mask,int value)562 static void __cpm1_gpio16_set(struct of_mm_gpio_chip *mm_gc, u16 pin_mask,
563 int value)
564 {
565 struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
566 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
567
568 if (value)
569 cpm1_gc->cpdata |= pin_mask;
570 else
571 cpm1_gc->cpdata &= ~pin_mask;
572
573 out_be16(&iop->dat, cpm1_gc->cpdata);
574 }
575
cpm1_gpio16_set(struct gpio_chip * gc,unsigned int gpio,int value)576 static void cpm1_gpio16_set(struct gpio_chip *gc, unsigned int gpio, int value)
577 {
578 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
579 struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
580 unsigned long flags;
581 u16 pin_mask = 1 << (15 - gpio);
582
583 spin_lock_irqsave(&cpm1_gc->lock, flags);
584
585 __cpm1_gpio16_set(mm_gc, pin_mask, value);
586
587 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
588 }
589
cpm1_gpio16_to_irq(struct gpio_chip * gc,unsigned int gpio)590 static int cpm1_gpio16_to_irq(struct gpio_chip *gc, unsigned int gpio)
591 {
592 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
593 struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
594
595 return cpm1_gc->irq[gpio] ? : -ENXIO;
596 }
597
cpm1_gpio16_dir_out(struct gpio_chip * gc,unsigned int gpio,int val)598 static int cpm1_gpio16_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
599 {
600 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
601 struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
602 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
603 unsigned long flags;
604 u16 pin_mask = 1 << (15 - gpio);
605
606 spin_lock_irqsave(&cpm1_gc->lock, flags);
607
608 setbits16(&iop->dir, pin_mask);
609 __cpm1_gpio16_set(mm_gc, pin_mask, val);
610
611 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
612
613 return 0;
614 }
615
cpm1_gpio16_dir_in(struct gpio_chip * gc,unsigned int gpio)616 static int cpm1_gpio16_dir_in(struct gpio_chip *gc, unsigned int gpio)
617 {
618 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
619 struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
620 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
621 unsigned long flags;
622 u16 pin_mask = 1 << (15 - gpio);
623
624 spin_lock_irqsave(&cpm1_gc->lock, flags);
625
626 clrbits16(&iop->dir, pin_mask);
627
628 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
629
630 return 0;
631 }
632
cpm1_gpiochip_add16(struct device * dev)633 int cpm1_gpiochip_add16(struct device *dev)
634 {
635 struct device_node *np = dev->of_node;
636 struct cpm1_gpio16_chip *cpm1_gc;
637 struct of_mm_gpio_chip *mm_gc;
638 struct gpio_chip *gc;
639 u16 mask;
640
641 cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
642 if (!cpm1_gc)
643 return -ENOMEM;
644
645 spin_lock_init(&cpm1_gc->lock);
646
647 if (!of_property_read_u16(np, "fsl,cpm1-gpio-irq-mask", &mask)) {
648 int i, j;
649
650 for (i = 0, j = 0; i < 16; i++)
651 if (mask & (1 << (15 - i)))
652 cpm1_gc->irq[i] = irq_of_parse_and_map(np, j++);
653 }
654
655 mm_gc = &cpm1_gc->mm_gc;
656 gc = &mm_gc->gc;
657
658 mm_gc->save_regs = cpm1_gpio16_save_regs;
659 gc->ngpio = 16;
660 gc->direction_input = cpm1_gpio16_dir_in;
661 gc->direction_output = cpm1_gpio16_dir_out;
662 gc->get = cpm1_gpio16_get;
663 gc->set = cpm1_gpio16_set;
664 gc->to_irq = cpm1_gpio16_to_irq;
665 gc->parent = dev;
666 gc->owner = THIS_MODULE;
667
668 return of_mm_gpiochip_add_data(np, mm_gc, cpm1_gc);
669 }
670
671 struct cpm1_gpio32_chip {
672 struct of_mm_gpio_chip mm_gc;
673 spinlock_t lock;
674
675 /* shadowed data register to clear/set bits safely */
676 u32 cpdata;
677 };
678
cpm1_gpio32_save_regs(struct of_mm_gpio_chip * mm_gc)679 static void cpm1_gpio32_save_regs(struct of_mm_gpio_chip *mm_gc)
680 {
681 struct cpm1_gpio32_chip *cpm1_gc =
682 container_of(mm_gc, struct cpm1_gpio32_chip, mm_gc);
683 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
684
685 cpm1_gc->cpdata = in_be32(&iop->dat);
686 }
687
cpm1_gpio32_get(struct gpio_chip * gc,unsigned int gpio)688 static int cpm1_gpio32_get(struct gpio_chip *gc, unsigned int gpio)
689 {
690 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
691 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
692 u32 pin_mask;
693
694 pin_mask = 1 << (31 - gpio);
695
696 return !!(in_be32(&iop->dat) & pin_mask);
697 }
698
__cpm1_gpio32_set(struct of_mm_gpio_chip * mm_gc,u32 pin_mask,int value)699 static void __cpm1_gpio32_set(struct of_mm_gpio_chip *mm_gc, u32 pin_mask,
700 int value)
701 {
702 struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
703 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
704
705 if (value)
706 cpm1_gc->cpdata |= pin_mask;
707 else
708 cpm1_gc->cpdata &= ~pin_mask;
709
710 out_be32(&iop->dat, cpm1_gc->cpdata);
711 }
712
cpm1_gpio32_set(struct gpio_chip * gc,unsigned int gpio,int value)713 static void cpm1_gpio32_set(struct gpio_chip *gc, unsigned int gpio, int value)
714 {
715 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
716 struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
717 unsigned long flags;
718 u32 pin_mask = 1 << (31 - gpio);
719
720 spin_lock_irqsave(&cpm1_gc->lock, flags);
721
722 __cpm1_gpio32_set(mm_gc, pin_mask, value);
723
724 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
725 }
726
cpm1_gpio32_dir_out(struct gpio_chip * gc,unsigned int gpio,int val)727 static int cpm1_gpio32_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
728 {
729 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
730 struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
731 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
732 unsigned long flags;
733 u32 pin_mask = 1 << (31 - gpio);
734
735 spin_lock_irqsave(&cpm1_gc->lock, flags);
736
737 setbits32(&iop->dir, pin_mask);
738 __cpm1_gpio32_set(mm_gc, pin_mask, val);
739
740 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
741
742 return 0;
743 }
744
cpm1_gpio32_dir_in(struct gpio_chip * gc,unsigned int gpio)745 static int cpm1_gpio32_dir_in(struct gpio_chip *gc, unsigned int gpio)
746 {
747 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
748 struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
749 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
750 unsigned long flags;
751 u32 pin_mask = 1 << (31 - gpio);
752
753 spin_lock_irqsave(&cpm1_gc->lock, flags);
754
755 clrbits32(&iop->dir, pin_mask);
756
757 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
758
759 return 0;
760 }
761
cpm1_gpiochip_add32(struct device * dev)762 int cpm1_gpiochip_add32(struct device *dev)
763 {
764 struct device_node *np = dev->of_node;
765 struct cpm1_gpio32_chip *cpm1_gc;
766 struct of_mm_gpio_chip *mm_gc;
767 struct gpio_chip *gc;
768
769 cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
770 if (!cpm1_gc)
771 return -ENOMEM;
772
773 spin_lock_init(&cpm1_gc->lock);
774
775 mm_gc = &cpm1_gc->mm_gc;
776 gc = &mm_gc->gc;
777
778 mm_gc->save_regs = cpm1_gpio32_save_regs;
779 gc->ngpio = 32;
780 gc->direction_input = cpm1_gpio32_dir_in;
781 gc->direction_output = cpm1_gpio32_dir_out;
782 gc->get = cpm1_gpio32_get;
783 gc->set = cpm1_gpio32_set;
784 gc->parent = dev;
785 gc->owner = THIS_MODULE;
786
787 return of_mm_gpiochip_add_data(np, mm_gc, cpm1_gc);
788 }
789
790 #endif /* CONFIG_8xx_GPIO */
791