1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_IA64_HW_IRQ_H
3 #define _ASM_IA64_HW_IRQ_H
4
5 /*
6 * Copyright (C) 2001-2003 Hewlett-Packard Co
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 */
9
10 #include <linux/interrupt.h>
11 #include <linux/sched.h>
12 #include <linux/types.h>
13 #include <linux/profile.h>
14
15 #include <asm/machvec.h>
16 #include <asm/ptrace.h>
17 #include <asm/smp.h>
18
19 typedef u8 ia64_vector;
20
21 /*
22 * 0 special
23 *
24 * 1,3-14 are reserved from firmware
25 *
26 * 16-255 (vectored external interrupts) are available
27 *
28 * 15 spurious interrupt (see IVR)
29 *
30 * 16 lowest priority, 255 highest priority
31 *
32 * 15 classes of 16 interrupts each.
33 */
34 #define IA64_MIN_VECTORED_IRQ 16
35 #define IA64_MAX_VECTORED_IRQ 255
36 #define IA64_NUM_VECTORS 256
37
38 #define AUTO_ASSIGN -1
39
40 #define IA64_SPURIOUS_INT_VECTOR 0x0f
41
42 /*
43 * Vectors 0x10-0x1f are used for low priority interrupts, e.g. CMCI.
44 */
45 #define IA64_CPEP_VECTOR 0x1c /* corrected platform error polling vector */
46 #define IA64_CMCP_VECTOR 0x1d /* corrected machine-check polling vector */
47 #define IA64_CPE_VECTOR 0x1e /* corrected platform error interrupt vector */
48 #define IA64_CMC_VECTOR 0x1f /* corrected machine-check interrupt vector */
49 /*
50 * Vectors 0x20-0x2f are reserved for legacy ISA IRQs.
51 * Use vectors 0x30-0xe7 as the default device vector range for ia64.
52 * Platforms may choose to reduce this range in platform_irq_setup, but the
53 * platform range must fall within
54 * [IA64_DEF_FIRST_DEVICE_VECTOR..IA64_DEF_LAST_DEVICE_VECTOR]
55 */
56 extern int ia64_first_device_vector;
57 extern int ia64_last_device_vector;
58
59 #if defined(CONFIG_SMP) && (defined(CONFIG_IA64_GENERIC) || defined (CONFIG_IA64_DIG))
60 /* Reserve the lower priority vector than device vectors for "move IRQ" IPI */
61 #define IA64_IRQ_MOVE_VECTOR 0x30 /* "move IRQ" IPI */
62 #define IA64_DEF_FIRST_DEVICE_VECTOR 0x31
63 #else
64 #define IA64_DEF_FIRST_DEVICE_VECTOR 0x30
65 #endif
66 #define IA64_DEF_LAST_DEVICE_VECTOR 0xe7
67 #define IA64_FIRST_DEVICE_VECTOR ia64_first_device_vector
68 #define IA64_LAST_DEVICE_VECTOR ia64_last_device_vector
69 #define IA64_MAX_DEVICE_VECTORS (IA64_DEF_LAST_DEVICE_VECTOR - IA64_DEF_FIRST_DEVICE_VECTOR + 1)
70 #define IA64_NUM_DEVICE_VECTORS (IA64_LAST_DEVICE_VECTOR - IA64_FIRST_DEVICE_VECTOR + 1)
71
72 #define IA64_MCA_RENDEZ_VECTOR 0xe8 /* MCA rendez interrupt */
73 #define IA64_PERFMON_VECTOR 0xee /* performance monitor interrupt vector */
74 #define IA64_TIMER_VECTOR 0xef /* use highest-prio group 15 interrupt for timer */
75 #define IA64_MCA_WAKEUP_VECTOR 0xf0 /* MCA wakeup (must be >MCA_RENDEZ_VECTOR) */
76 #define IA64_IPI_LOCAL_TLB_FLUSH 0xfc /* SMP flush local TLB */
77 #define IA64_IPI_RESCHEDULE 0xfd /* SMP reschedule */
78 #define IA64_IPI_VECTOR 0xfe /* inter-processor interrupt vector */
79
80 /* Used for encoding redirected irqs */
81
82 #define IA64_IRQ_REDIRECTED (1 << 31)
83
84 /* IA64 inter-cpu interrupt related definitions */
85
86 #define IA64_IPI_DEFAULT_BASE_ADDR 0xfee00000
87
88 /* Delivery modes for inter-cpu interrupts */
89 enum {
90 IA64_IPI_DM_INT = 0x0, /* pend an external interrupt */
91 IA64_IPI_DM_PMI = 0x2, /* pend a PMI */
92 IA64_IPI_DM_NMI = 0x4, /* pend an NMI (vector 2) */
93 IA64_IPI_DM_INIT = 0x5, /* pend an INIT interrupt */
94 IA64_IPI_DM_EXTINT = 0x7, /* pend an 8259-compatible interrupt. */
95 };
96
97 extern __u8 isa_irq_to_vector_map[16];
98 #define isa_irq_to_vector(x) isa_irq_to_vector_map[(x)]
99
100 struct irq_cfg {
101 ia64_vector vector;
102 cpumask_t domain;
103 cpumask_t old_domain;
104 unsigned move_cleanup_count;
105 u8 move_in_progress : 1;
106 };
107 extern spinlock_t vector_lock;
108 extern struct irq_cfg irq_cfg[NR_IRQS];
109 #define irq_to_domain(x) irq_cfg[(x)].domain
110 DECLARE_PER_CPU(int[IA64_NUM_VECTORS], vector_irq);
111
112 extern struct irq_chip irq_type_ia64_lsapic; /* CPU-internal interrupt controller */
113
114 #define ia64_register_ipi ia64_native_register_ipi
115 #define assign_irq_vector ia64_native_assign_irq_vector
116 #define free_irq_vector ia64_native_free_irq_vector
117 #define register_percpu_irq ia64_native_register_percpu_irq
118 #define ia64_resend_irq ia64_native_resend_irq
119
120 extern void ia64_native_register_ipi(void);
121 extern int bind_irq_vector(int irq, int vector, cpumask_t domain);
122 extern int ia64_native_assign_irq_vector (int irq); /* allocate a free vector */
123 extern void ia64_native_free_irq_vector (int vector);
124 extern int reserve_irq_vector (int vector);
125 extern void __setup_vector_irq(int cpu);
126 extern void ia64_send_ipi (int cpu, int vector, int delivery_mode, int redirect);
127 extern void ia64_native_register_percpu_irq (ia64_vector vec, struct irqaction *action);
128 extern void destroy_and_reserve_irq (unsigned int irq);
129
130 #if defined(CONFIG_SMP) && (defined(CONFIG_IA64_GENERIC) || defined(CONFIG_IA64_DIG))
131 extern int irq_prepare_move(int irq, int cpu);
132 extern void irq_complete_move(unsigned int irq);
133 #else
irq_prepare_move(int irq,int cpu)134 static inline int irq_prepare_move(int irq, int cpu) { return 0; }
irq_complete_move(unsigned int irq)135 static inline void irq_complete_move(unsigned int irq) {}
136 #endif
137
ia64_native_resend_irq(unsigned int vector)138 static inline void ia64_native_resend_irq(unsigned int vector)
139 {
140 platform_send_ipi(smp_processor_id(), vector, IA64_IPI_DM_INT, 0);
141 }
142
143 /*
144 * Default implementations for the irq-descriptor API:
145 */
146 #ifndef CONFIG_IA64_GENERIC
__ia64_irq_to_vector(int irq)147 static inline ia64_vector __ia64_irq_to_vector(int irq)
148 {
149 return irq_cfg[irq].vector;
150 }
151
152 static inline unsigned int
__ia64_local_vector_to_irq(ia64_vector vec)153 __ia64_local_vector_to_irq (ia64_vector vec)
154 {
155 return __this_cpu_read(vector_irq[vec]);
156 }
157 #endif
158
159 /*
160 * Next follows the irq descriptor interface. On IA-64, each CPU supports 256 interrupt
161 * vectors. On smaller systems, there is a one-to-one correspondence between interrupt
162 * vectors and the Linux irq numbers. However, larger systems may have multiple interrupt
163 * domains meaning that the translation from vector number to irq number depends on the
164 * interrupt domain that a CPU belongs to. This API abstracts such platform-dependent
165 * differences and provides a uniform means to translate between vector and irq numbers
166 * and to obtain the irq descriptor for a given irq number.
167 */
168
169 /* Extract the IA-64 vector that corresponds to IRQ. */
170 static inline ia64_vector
irq_to_vector(int irq)171 irq_to_vector (int irq)
172 {
173 return platform_irq_to_vector(irq);
174 }
175
176 /*
177 * Convert the local IA-64 vector to the corresponding irq number. This translation is
178 * done in the context of the interrupt domain that the currently executing CPU belongs
179 * to.
180 */
181 static inline unsigned int
local_vector_to_irq(ia64_vector vec)182 local_vector_to_irq (ia64_vector vec)
183 {
184 return platform_local_vector_to_irq(vec);
185 }
186
187 #endif /* _ASM_IA64_HW_IRQ_H */
188