1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_TYPES_H
3 #define _LINUX_MM_TYPES_H
4 
5 #include <linux/mm_types_task.h>
6 
7 #include <linux/auxvec.h>
8 #include <linux/list.h>
9 #include <linux/spinlock.h>
10 #include <linux/rbtree.h>
11 #include <linux/rwsem.h>
12 #include <linux/completion.h>
13 #include <linux/cpumask.h>
14 #include <linux/uprobes.h>
15 #include <linux/page-flags-layout.h>
16 #include <linux/workqueue.h>
17 
18 #include <asm/mmu.h>
19 
20 #ifndef AT_VECTOR_SIZE_ARCH
21 #define AT_VECTOR_SIZE_ARCH 0
22 #endif
23 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
24 
25 typedef int vm_fault_t;
26 
27 struct address_space;
28 struct mem_cgroup;
29 struct hmm;
30 
31 /*
32  * Each physical page in the system has a struct page associated with
33  * it to keep track of whatever it is we are using the page for at the
34  * moment. Note that we have no way to track which tasks are using
35  * a page, though if it is a pagecache page, rmap structures can tell us
36  * who is mapping it.
37  *
38  * If you allocate the page using alloc_pages(), you can use some of the
39  * space in struct page for your own purposes.  The five words in the main
40  * union are available, except for bit 0 of the first word which must be
41  * kept clear.  Many users use this word to store a pointer to an object
42  * which is guaranteed to be aligned.  If you use the same storage as
43  * page->mapping, you must restore it to NULL before freeing the page.
44  *
45  * If your page will not be mapped to userspace, you can also use the four
46  * bytes in the mapcount union, but you must call page_mapcount_reset()
47  * before freeing it.
48  *
49  * If you want to use the refcount field, it must be used in such a way
50  * that other CPUs temporarily incrementing and then decrementing the
51  * refcount does not cause problems.  On receiving the page from
52  * alloc_pages(), the refcount will be positive.
53  *
54  * If you allocate pages of order > 0, you can use some of the fields
55  * in each subpage, but you may need to restore some of their values
56  * afterwards.
57  *
58  * SLUB uses cmpxchg_double() to atomically update its freelist and
59  * counters.  That requires that freelist & counters be adjacent and
60  * double-word aligned.  We align all struct pages to double-word
61  * boundaries, and ensure that 'freelist' is aligned within the
62  * struct.
63  */
64 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
65 #define _struct_page_alignment	__aligned(2 * sizeof(unsigned long))
66 #else
67 #define _struct_page_alignment
68 #endif
69 
70 struct page {
71 	unsigned long flags;		/* Atomic flags, some possibly
72 					 * updated asynchronously */
73 	/*
74 	 * Five words (20/40 bytes) are available in this union.
75 	 * WARNING: bit 0 of the first word is used for PageTail(). That
76 	 * means the other users of this union MUST NOT use the bit to
77 	 * avoid collision and false-positive PageTail().
78 	 */
79 	union {
80 		struct {	/* Page cache and anonymous pages */
81 			/**
82 			 * @lru: Pageout list, eg. active_list protected by
83 			 * zone_lru_lock.  Sometimes used as a generic list
84 			 * by the page owner.
85 			 */
86 			struct list_head lru;
87 			/* See page-flags.h for PAGE_MAPPING_FLAGS */
88 			struct address_space *mapping;
89 			pgoff_t index;		/* Our offset within mapping. */
90 			/**
91 			 * @private: Mapping-private opaque data.
92 			 * Usually used for buffer_heads if PagePrivate.
93 			 * Used for swp_entry_t if PageSwapCache.
94 			 * Indicates order in the buddy system if PageBuddy.
95 			 */
96 			unsigned long private;
97 		};
98 		struct {	/* slab, slob and slub */
99 			union {
100 				struct list_head slab_list;	/* uses lru */
101 				struct {	/* Partial pages */
102 					struct page *next;
103 #ifdef CONFIG_64BIT
104 					int pages;	/* Nr of pages left */
105 					int pobjects;	/* Approximate count */
106 #else
107 					short int pages;
108 					short int pobjects;
109 #endif
110 				};
111 			};
112 			struct kmem_cache *slab_cache; /* not slob */
113 			/* Double-word boundary */
114 			void *freelist;		/* first free object */
115 			union {
116 				void *s_mem;	/* slab: first object */
117 				unsigned long counters;		/* SLUB */
118 				struct {			/* SLUB */
119 					unsigned inuse:16;
120 					unsigned objects:15;
121 					unsigned frozen:1;
122 				};
123 			};
124 		};
125 		struct {	/* Tail pages of compound page */
126 			unsigned long compound_head;	/* Bit zero is set */
127 
128 			/* First tail page only */
129 			unsigned char compound_dtor;
130 			unsigned char compound_order;
131 			atomic_t compound_mapcount;
132 		};
133 		struct {	/* Second tail page of compound page */
134 			unsigned long _compound_pad_1;	/* compound_head */
135 			unsigned long _compound_pad_2;
136 			struct list_head deferred_list;
137 		};
138 		struct {	/* Page table pages */
139 			unsigned long _pt_pad_1;	/* compound_head */
140 			pgtable_t pmd_huge_pte; /* protected by page->ptl */
141 			unsigned long _pt_pad_2;	/* mapping */
142 			union {
143 				struct mm_struct *pt_mm; /* x86 pgds only */
144 				atomic_t pt_frag_refcount; /* powerpc */
145 			};
146 #if ALLOC_SPLIT_PTLOCKS
147 			spinlock_t *ptl;
148 #else
149 			spinlock_t ptl;
150 #endif
151 		};
152 		struct {	/* ZONE_DEVICE pages */
153 			/** @pgmap: Points to the hosting device page map. */
154 			struct dev_pagemap *pgmap;
155 			unsigned long hmm_data;
156 			unsigned long _zd_pad_1;	/* uses mapping */
157 		};
158 
159 		/** @rcu_head: You can use this to free a page by RCU. */
160 		struct rcu_head rcu_head;
161 	};
162 
163 	union {		/* This union is 4 bytes in size. */
164 		/*
165 		 * If the page can be mapped to userspace, encodes the number
166 		 * of times this page is referenced by a page table.
167 		 */
168 		atomic_t _mapcount;
169 
170 		/*
171 		 * If the page is neither PageSlab nor mappable to userspace,
172 		 * the value stored here may help determine what this page
173 		 * is used for.  See page-flags.h for a list of page types
174 		 * which are currently stored here.
175 		 */
176 		unsigned int page_type;
177 
178 		unsigned int active;		/* SLAB */
179 		int units;			/* SLOB */
180 	};
181 
182 	/* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */
183 	atomic_t _refcount;
184 
185 #ifdef CONFIG_MEMCG
186 	struct mem_cgroup *mem_cgroup;
187 #endif
188 
189 	/*
190 	 * On machines where all RAM is mapped into kernel address space,
191 	 * we can simply calculate the virtual address. On machines with
192 	 * highmem some memory is mapped into kernel virtual memory
193 	 * dynamically, so we need a place to store that address.
194 	 * Note that this field could be 16 bits on x86 ... ;)
195 	 *
196 	 * Architectures with slow multiplication can define
197 	 * WANT_PAGE_VIRTUAL in asm/page.h
198 	 */
199 #if defined(WANT_PAGE_VIRTUAL)
200 	void *virtual;			/* Kernel virtual address (NULL if
201 					   not kmapped, ie. highmem) */
202 #endif /* WANT_PAGE_VIRTUAL */
203 
204 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
205 	int _last_cpupid;
206 #endif
207 } _struct_page_alignment;
208 
209 #define PAGE_FRAG_CACHE_MAX_SIZE	__ALIGN_MASK(32768, ~PAGE_MASK)
210 #define PAGE_FRAG_CACHE_MAX_ORDER	get_order(PAGE_FRAG_CACHE_MAX_SIZE)
211 
212 struct page_frag_cache {
213 	void * va;
214 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
215 	__u16 offset;
216 	__u16 size;
217 #else
218 	__u32 offset;
219 #endif
220 	/* we maintain a pagecount bias, so that we dont dirty cache line
221 	 * containing page->_refcount every time we allocate a fragment.
222 	 */
223 	unsigned int		pagecnt_bias;
224 	bool pfmemalloc;
225 };
226 
227 typedef unsigned long vm_flags_t;
228 
229 /*
230  * A region containing a mapping of a non-memory backed file under NOMMU
231  * conditions.  These are held in a global tree and are pinned by the VMAs that
232  * map parts of them.
233  */
234 struct vm_region {
235 	struct rb_node	vm_rb;		/* link in global region tree */
236 	vm_flags_t	vm_flags;	/* VMA vm_flags */
237 	unsigned long	vm_start;	/* start address of region */
238 	unsigned long	vm_end;		/* region initialised to here */
239 	unsigned long	vm_top;		/* region allocated to here */
240 	unsigned long	vm_pgoff;	/* the offset in vm_file corresponding to vm_start */
241 	struct file	*vm_file;	/* the backing file or NULL */
242 
243 	int		vm_usage;	/* region usage count (access under nommu_region_sem) */
244 	bool		vm_icache_flushed : 1; /* true if the icache has been flushed for
245 						* this region */
246 };
247 
248 #ifdef CONFIG_USERFAULTFD
249 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
250 struct vm_userfaultfd_ctx {
251 	struct userfaultfd_ctx *ctx;
252 };
253 #else /* CONFIG_USERFAULTFD */
254 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
255 struct vm_userfaultfd_ctx {};
256 #endif /* CONFIG_USERFAULTFD */
257 
258 /*
259  * This struct defines a memory VMM memory area. There is one of these
260  * per VM-area/task.  A VM area is any part of the process virtual memory
261  * space that has a special rule for the page-fault handlers (ie a shared
262  * library, the executable area etc).
263  */
264 struct vm_area_struct {
265 	/* The first cache line has the info for VMA tree walking. */
266 
267 	unsigned long vm_start;		/* Our start address within vm_mm. */
268 	unsigned long vm_end;		/* The first byte after our end address
269 					   within vm_mm. */
270 
271 	/* linked list of VM areas per task, sorted by address */
272 	struct vm_area_struct *vm_next, *vm_prev;
273 
274 	struct rb_node vm_rb;
275 
276 	/*
277 	 * Largest free memory gap in bytes to the left of this VMA.
278 	 * Either between this VMA and vma->vm_prev, or between one of the
279 	 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
280 	 * get_unmapped_area find a free area of the right size.
281 	 */
282 	unsigned long rb_subtree_gap;
283 
284 	/* Second cache line starts here. */
285 
286 	struct mm_struct *vm_mm;	/* The address space we belong to. */
287 	pgprot_t vm_page_prot;		/* Access permissions of this VMA. */
288 	unsigned long vm_flags;		/* Flags, see mm.h. */
289 
290 	/*
291 	 * For areas with an address space and backing store,
292 	 * linkage into the address_space->i_mmap interval tree.
293 	 */
294 	struct {
295 		struct rb_node rb;
296 		unsigned long rb_subtree_last;
297 	} shared;
298 
299 	/*
300 	 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
301 	 * list, after a COW of one of the file pages.	A MAP_SHARED vma
302 	 * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
303 	 * or brk vma (with NULL file) can only be in an anon_vma list.
304 	 */
305 	struct list_head anon_vma_chain; /* Serialized by mmap_sem &
306 					  * page_table_lock */
307 	struct anon_vma *anon_vma;	/* Serialized by page_table_lock */
308 
309 	/* Function pointers to deal with this struct. */
310 	const struct vm_operations_struct *vm_ops;
311 
312 	/* Information about our backing store: */
313 	unsigned long vm_pgoff;		/* Offset (within vm_file) in PAGE_SIZE
314 					   units */
315 	struct file * vm_file;		/* File we map to (can be NULL). */
316 	void * vm_private_data;		/* was vm_pte (shared mem) */
317 
318 	atomic_long_t swap_readahead_info;
319 #ifndef CONFIG_MMU
320 	struct vm_region *vm_region;	/* NOMMU mapping region */
321 #endif
322 #ifdef CONFIG_NUMA
323 	struct mempolicy *vm_policy;	/* NUMA policy for the VMA */
324 #endif
325 	struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
326 } __randomize_layout;
327 
328 struct core_thread {
329 	struct task_struct *task;
330 	struct core_thread *next;
331 };
332 
333 struct core_state {
334 	atomic_t nr_threads;
335 	struct core_thread dumper;
336 	struct completion startup;
337 };
338 
339 struct kioctx_table;
340 struct mm_struct {
341 	struct {
342 		struct vm_area_struct *mmap;		/* list of VMAs */
343 		struct rb_root mm_rb;
344 		u64 vmacache_seqnum;                   /* per-thread vmacache */
345 #ifdef CONFIG_MMU
346 		unsigned long (*get_unmapped_area) (struct file *filp,
347 				unsigned long addr, unsigned long len,
348 				unsigned long pgoff, unsigned long flags);
349 #endif
350 		unsigned long mmap_base;	/* base of mmap area */
351 		unsigned long mmap_legacy_base;	/* base of mmap area in bottom-up allocations */
352 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
353 		/* Base adresses for compatible mmap() */
354 		unsigned long mmap_compat_base;
355 		unsigned long mmap_compat_legacy_base;
356 #endif
357 		unsigned long task_size;	/* size of task vm space */
358 		unsigned long highest_vm_end;	/* highest vma end address */
359 		pgd_t * pgd;
360 
361 		/**
362 		 * @mm_users: The number of users including userspace.
363 		 *
364 		 * Use mmget()/mmget_not_zero()/mmput() to modify. When this
365 		 * drops to 0 (i.e. when the task exits and there are no other
366 		 * temporary reference holders), we also release a reference on
367 		 * @mm_count (which may then free the &struct mm_struct if
368 		 * @mm_count also drops to 0).
369 		 */
370 		atomic_t mm_users;
371 
372 		/**
373 		 * @mm_count: The number of references to &struct mm_struct
374 		 * (@mm_users count as 1).
375 		 *
376 		 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the
377 		 * &struct mm_struct is freed.
378 		 */
379 		atomic_t mm_count;
380 
381 #ifdef CONFIG_MMU
382 		atomic_long_t pgtables_bytes;	/* PTE page table pages */
383 #endif
384 		int map_count;			/* number of VMAs */
385 
386 		spinlock_t page_table_lock; /* Protects page tables and some
387 					     * counters
388 					     */
389 		struct rw_semaphore mmap_sem;
390 
391 		struct list_head mmlist; /* List of maybe swapped mm's.	These
392 					  * are globally strung together off
393 					  * init_mm.mmlist, and are protected
394 					  * by mmlist_lock
395 					  */
396 
397 
398 		unsigned long hiwater_rss; /* High-watermark of RSS usage */
399 		unsigned long hiwater_vm;  /* High-water virtual memory usage */
400 
401 		unsigned long total_vm;	   /* Total pages mapped */
402 		unsigned long locked_vm;   /* Pages that have PG_mlocked set */
403 		unsigned long pinned_vm;   /* Refcount permanently increased */
404 		unsigned long data_vm;	   /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
405 		unsigned long exec_vm;	   /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
406 		unsigned long stack_vm;	   /* VM_STACK */
407 		unsigned long def_flags;
408 
409 		spinlock_t arg_lock; /* protect the below fields */
410 		unsigned long start_code, end_code, start_data, end_data;
411 		unsigned long start_brk, brk, start_stack;
412 		unsigned long arg_start, arg_end, env_start, env_end;
413 
414 		unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
415 
416 		/*
417 		 * Special counters, in some configurations protected by the
418 		 * page_table_lock, in other configurations by being atomic.
419 		 */
420 		struct mm_rss_stat rss_stat;
421 
422 		struct linux_binfmt *binfmt;
423 
424 		/* Architecture-specific MM context */
425 		mm_context_t context;
426 
427 		unsigned long flags; /* Must use atomic bitops to access */
428 
429 		struct core_state *core_state; /* coredumping support */
430 #ifdef CONFIG_MEMBARRIER
431 		atomic_t membarrier_state;
432 #endif
433 #ifdef CONFIG_AIO
434 		spinlock_t			ioctx_lock;
435 		struct kioctx_table __rcu	*ioctx_table;
436 #endif
437 #ifdef CONFIG_MEMCG
438 		/*
439 		 * "owner" points to a task that is regarded as the canonical
440 		 * user/owner of this mm. All of the following must be true in
441 		 * order for it to be changed:
442 		 *
443 		 * current == mm->owner
444 		 * current->mm != mm
445 		 * new_owner->mm == mm
446 		 * new_owner->alloc_lock is held
447 		 */
448 		struct task_struct __rcu *owner;
449 #endif
450 		struct user_namespace *user_ns;
451 
452 		/* store ref to file /proc/<pid>/exe symlink points to */
453 		struct file __rcu *exe_file;
454 #ifdef CONFIG_MMU_NOTIFIER
455 		struct mmu_notifier_mm *mmu_notifier_mm;
456 #endif
457 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
458 		pgtable_t pmd_huge_pte; /* protected by page_table_lock */
459 #endif
460 #ifdef CONFIG_NUMA_BALANCING
461 		/*
462 		 * numa_next_scan is the next time that the PTEs will be marked
463 		 * pte_numa. NUMA hinting faults will gather statistics and
464 		 * migrate pages to new nodes if necessary.
465 		 */
466 		unsigned long numa_next_scan;
467 
468 		/* Restart point for scanning and setting pte_numa */
469 		unsigned long numa_scan_offset;
470 
471 		/* numa_scan_seq prevents two threads setting pte_numa */
472 		int numa_scan_seq;
473 #endif
474 		/*
475 		 * An operation with batched TLB flushing is going on. Anything
476 		 * that can move process memory needs to flush the TLB when
477 		 * moving a PROT_NONE or PROT_NUMA mapped page.
478 		 */
479 		atomic_t tlb_flush_pending;
480 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
481 		/* See flush_tlb_batched_pending() */
482 		bool tlb_flush_batched;
483 #endif
484 		struct uprobes_state uprobes_state;
485 #ifdef CONFIG_HUGETLB_PAGE
486 		atomic_long_t hugetlb_usage;
487 #endif
488 		struct work_struct async_put_work;
489 
490 #if IS_ENABLED(CONFIG_HMM)
491 		/* HMM needs to track a few things per mm */
492 		struct hmm *hmm;
493 #endif
494 	} __randomize_layout;
495 
496 	/*
497 	 * The mm_cpumask needs to be at the end of mm_struct, because it
498 	 * is dynamically sized based on nr_cpu_ids.
499 	 */
500 	unsigned long cpu_bitmap[];
501 };
502 
503 extern struct mm_struct init_mm;
504 
505 /* Pointer magic because the dynamic array size confuses some compilers. */
mm_init_cpumask(struct mm_struct * mm)506 static inline void mm_init_cpumask(struct mm_struct *mm)
507 {
508 	unsigned long cpu_bitmap = (unsigned long)mm;
509 
510 	cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap);
511 	cpumask_clear((struct cpumask *)cpu_bitmap);
512 }
513 
514 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
mm_cpumask(struct mm_struct * mm)515 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
516 {
517 	return (struct cpumask *)&mm->cpu_bitmap;
518 }
519 
520 struct mmu_gather;
521 extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
522 				unsigned long start, unsigned long end);
523 extern void tlb_finish_mmu(struct mmu_gather *tlb,
524 				unsigned long start, unsigned long end);
525 
init_tlb_flush_pending(struct mm_struct * mm)526 static inline void init_tlb_flush_pending(struct mm_struct *mm)
527 {
528 	atomic_set(&mm->tlb_flush_pending, 0);
529 }
530 
inc_tlb_flush_pending(struct mm_struct * mm)531 static inline void inc_tlb_flush_pending(struct mm_struct *mm)
532 {
533 	atomic_inc(&mm->tlb_flush_pending);
534 	/*
535 	 * The only time this value is relevant is when there are indeed pages
536 	 * to flush. And we'll only flush pages after changing them, which
537 	 * requires the PTL.
538 	 *
539 	 * So the ordering here is:
540 	 *
541 	 *	atomic_inc(&mm->tlb_flush_pending);
542 	 *	spin_lock(&ptl);
543 	 *	...
544 	 *	set_pte_at();
545 	 *	spin_unlock(&ptl);
546 	 *
547 	 *				spin_lock(&ptl)
548 	 *				mm_tlb_flush_pending();
549 	 *				....
550 	 *				spin_unlock(&ptl);
551 	 *
552 	 *	flush_tlb_range();
553 	 *	atomic_dec(&mm->tlb_flush_pending);
554 	 *
555 	 * Where the increment if constrained by the PTL unlock, it thus
556 	 * ensures that the increment is visible if the PTE modification is
557 	 * visible. After all, if there is no PTE modification, nobody cares
558 	 * about TLB flushes either.
559 	 *
560 	 * This very much relies on users (mm_tlb_flush_pending() and
561 	 * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and
562 	 * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc
563 	 * locks (PPC) the unlock of one doesn't order against the lock of
564 	 * another PTL.
565 	 *
566 	 * The decrement is ordered by the flush_tlb_range(), such that
567 	 * mm_tlb_flush_pending() will not return false unless all flushes have
568 	 * completed.
569 	 */
570 }
571 
dec_tlb_flush_pending(struct mm_struct * mm)572 static inline void dec_tlb_flush_pending(struct mm_struct *mm)
573 {
574 	/*
575 	 * See inc_tlb_flush_pending().
576 	 *
577 	 * This cannot be smp_mb__before_atomic() because smp_mb() simply does
578 	 * not order against TLB invalidate completion, which is what we need.
579 	 *
580 	 * Therefore we must rely on tlb_flush_*() to guarantee order.
581 	 */
582 	atomic_dec(&mm->tlb_flush_pending);
583 }
584 
mm_tlb_flush_pending(struct mm_struct * mm)585 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
586 {
587 	/*
588 	 * Must be called after having acquired the PTL; orders against that
589 	 * PTLs release and therefore ensures that if we observe the modified
590 	 * PTE we must also observe the increment from inc_tlb_flush_pending().
591 	 *
592 	 * That is, it only guarantees to return true if there is a flush
593 	 * pending for _this_ PTL.
594 	 */
595 	return atomic_read(&mm->tlb_flush_pending);
596 }
597 
mm_tlb_flush_nested(struct mm_struct * mm)598 static inline bool mm_tlb_flush_nested(struct mm_struct *mm)
599 {
600 	/*
601 	 * Similar to mm_tlb_flush_pending(), we must have acquired the PTL
602 	 * for which there is a TLB flush pending in order to guarantee
603 	 * we've seen both that PTE modification and the increment.
604 	 *
605 	 * (no requirement on actually still holding the PTL, that is irrelevant)
606 	 */
607 	return atomic_read(&mm->tlb_flush_pending) > 1;
608 }
609 
610 struct vm_fault;
611 
612 struct vm_special_mapping {
613 	const char *name;	/* The name, e.g. "[vdso]". */
614 
615 	/*
616 	 * If .fault is not provided, this points to a
617 	 * NULL-terminated array of pages that back the special mapping.
618 	 *
619 	 * This must not be NULL unless .fault is provided.
620 	 */
621 	struct page **pages;
622 
623 	/*
624 	 * If non-NULL, then this is called to resolve page faults
625 	 * on the special mapping.  If used, .pages is not checked.
626 	 */
627 	vm_fault_t (*fault)(const struct vm_special_mapping *sm,
628 				struct vm_area_struct *vma,
629 				struct vm_fault *vmf);
630 
631 	int (*mremap)(const struct vm_special_mapping *sm,
632 		     struct vm_area_struct *new_vma);
633 };
634 
635 enum tlb_flush_reason {
636 	TLB_FLUSH_ON_TASK_SWITCH,
637 	TLB_REMOTE_SHOOTDOWN,
638 	TLB_LOCAL_SHOOTDOWN,
639 	TLB_LOCAL_MM_SHOOTDOWN,
640 	TLB_REMOTE_SEND_IPI,
641 	NR_TLB_FLUSH_REASONS,
642 };
643 
644  /*
645   * A swap entry has to fit into a "unsigned long", as the entry is hidden
646   * in the "index" field of the swapper address space.
647   */
648 typedef struct {
649 	unsigned long val;
650 } swp_entry_t;
651 
652 #endif /* _LINUX_MM_TYPES_H */
653