1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4 *
5 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
6 * Copyright (C) 2010 ST-Ericsson SA
7 */
8 #include <linux/module.h>
9 #include <linux/moduleparam.h>
10 #include <linux/init.h>
11 #include <linux/ioport.h>
12 #include <linux/device.h>
13 #include <linux/io.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/highmem.h>
20 #include <linux/log2.h>
21 #include <linux/mmc/mmc.h>
22 #include <linux/mmc/pm.h>
23 #include <linux/mmc/host.h>
24 #include <linux/mmc/card.h>
25 #include <linux/mmc/sd.h>
26 #include <linux/mmc/slot-gpio.h>
27 #include <linux/amba/bus.h>
28 #include <linux/clk.h>
29 #include <linux/scatterlist.h>
30 #include <linux/of.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/dmaengine.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/amba/mmci.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/types.h>
37 #include <linux/pinctrl/consumer.h>
38 #include <linux/reset.h>
39
40 #include <asm/div64.h>
41 #include <asm/io.h>
42
43 #include "mmci.h"
44
45 #define DRIVER_NAME "mmci-pl18x"
46
47 static void mmci_variant_init(struct mmci_host *host);
48 static void ux500_variant_init(struct mmci_host *host);
49 static void ux500v2_variant_init(struct mmci_host *host);
50
51 static unsigned int fmax = 515633;
52
53 static struct variant_data variant_arm = {
54 .fifosize = 16 * 4,
55 .fifohalfsize = 8 * 4,
56 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
57 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
58 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
59 .cmdreg_srsp = MCI_CPSM_RESPONSE,
60 .datalength_bits = 16,
61 .datactrl_blocksz = 11,
62 .pwrreg_powerup = MCI_PWR_UP,
63 .f_max = 100000000,
64 .reversed_irq_handling = true,
65 .mmcimask1 = true,
66 .irq_pio_mask = MCI_IRQ_PIO_MASK,
67 .start_err = MCI_STARTBITERR,
68 .opendrain = MCI_ROD,
69 .init = mmci_variant_init,
70 };
71
72 static struct variant_data variant_arm_extended_fifo = {
73 .fifosize = 128 * 4,
74 .fifohalfsize = 64 * 4,
75 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
76 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
77 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
78 .cmdreg_srsp = MCI_CPSM_RESPONSE,
79 .datalength_bits = 16,
80 .datactrl_blocksz = 11,
81 .pwrreg_powerup = MCI_PWR_UP,
82 .f_max = 100000000,
83 .mmcimask1 = true,
84 .irq_pio_mask = MCI_IRQ_PIO_MASK,
85 .start_err = MCI_STARTBITERR,
86 .opendrain = MCI_ROD,
87 .init = mmci_variant_init,
88 };
89
90 static struct variant_data variant_arm_extended_fifo_hwfc = {
91 .fifosize = 128 * 4,
92 .fifohalfsize = 64 * 4,
93 .clkreg_enable = MCI_ARM_HWFCEN,
94 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
95 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
96 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
97 .cmdreg_srsp = MCI_CPSM_RESPONSE,
98 .datalength_bits = 16,
99 .datactrl_blocksz = 11,
100 .pwrreg_powerup = MCI_PWR_UP,
101 .f_max = 100000000,
102 .mmcimask1 = true,
103 .irq_pio_mask = MCI_IRQ_PIO_MASK,
104 .start_err = MCI_STARTBITERR,
105 .opendrain = MCI_ROD,
106 .init = mmci_variant_init,
107 };
108
109 static struct variant_data variant_u300 = {
110 .fifosize = 16 * 4,
111 .fifohalfsize = 8 * 4,
112 .clkreg_enable = MCI_ST_U300_HWFCEN,
113 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
114 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
115 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
116 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
117 .cmdreg_srsp = MCI_CPSM_RESPONSE,
118 .datalength_bits = 16,
119 .datactrl_blocksz = 11,
120 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
121 .st_sdio = true,
122 .pwrreg_powerup = MCI_PWR_ON,
123 .f_max = 100000000,
124 .signal_direction = true,
125 .pwrreg_clkgate = true,
126 .pwrreg_nopower = true,
127 .mmcimask1 = true,
128 .irq_pio_mask = MCI_IRQ_PIO_MASK,
129 .start_err = MCI_STARTBITERR,
130 .opendrain = MCI_OD,
131 .init = mmci_variant_init,
132 };
133
134 static struct variant_data variant_nomadik = {
135 .fifosize = 16 * 4,
136 .fifohalfsize = 8 * 4,
137 .clkreg = MCI_CLK_ENABLE,
138 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
139 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
140 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
141 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
142 .cmdreg_srsp = MCI_CPSM_RESPONSE,
143 .datalength_bits = 24,
144 .datactrl_blocksz = 11,
145 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
146 .st_sdio = true,
147 .st_clkdiv = true,
148 .pwrreg_powerup = MCI_PWR_ON,
149 .f_max = 100000000,
150 .signal_direction = true,
151 .pwrreg_clkgate = true,
152 .pwrreg_nopower = true,
153 .mmcimask1 = true,
154 .irq_pio_mask = MCI_IRQ_PIO_MASK,
155 .start_err = MCI_STARTBITERR,
156 .opendrain = MCI_OD,
157 .init = mmci_variant_init,
158 };
159
160 static struct variant_data variant_ux500 = {
161 .fifosize = 30 * 4,
162 .fifohalfsize = 8 * 4,
163 .clkreg = MCI_CLK_ENABLE,
164 .clkreg_enable = MCI_ST_UX500_HWFCEN,
165 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
166 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
167 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
168 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
169 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
170 .cmdreg_srsp = MCI_CPSM_RESPONSE,
171 .datalength_bits = 24,
172 .datactrl_blocksz = 11,
173 .datactrl_any_blocksz = true,
174 .dma_power_of_2 = true,
175 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
176 .st_sdio = true,
177 .st_clkdiv = true,
178 .pwrreg_powerup = MCI_PWR_ON,
179 .f_max = 100000000,
180 .signal_direction = true,
181 .pwrreg_clkgate = true,
182 .busy_detect = true,
183 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE,
184 .busy_detect_flag = MCI_ST_CARDBUSY,
185 .busy_detect_mask = MCI_ST_BUSYENDMASK,
186 .pwrreg_nopower = true,
187 .mmcimask1 = true,
188 .irq_pio_mask = MCI_IRQ_PIO_MASK,
189 .start_err = MCI_STARTBITERR,
190 .opendrain = MCI_OD,
191 .init = ux500_variant_init,
192 };
193
194 static struct variant_data variant_ux500v2 = {
195 .fifosize = 30 * 4,
196 .fifohalfsize = 8 * 4,
197 .clkreg = MCI_CLK_ENABLE,
198 .clkreg_enable = MCI_ST_UX500_HWFCEN,
199 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
200 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
201 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
202 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
203 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
204 .cmdreg_srsp = MCI_CPSM_RESPONSE,
205 .datactrl_mask_ddrmode = MCI_DPSM_ST_DDRMODE,
206 .datalength_bits = 24,
207 .datactrl_blocksz = 11,
208 .datactrl_any_blocksz = true,
209 .dma_power_of_2 = true,
210 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
211 .st_sdio = true,
212 .st_clkdiv = true,
213 .pwrreg_powerup = MCI_PWR_ON,
214 .f_max = 100000000,
215 .signal_direction = true,
216 .pwrreg_clkgate = true,
217 .busy_detect = true,
218 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE,
219 .busy_detect_flag = MCI_ST_CARDBUSY,
220 .busy_detect_mask = MCI_ST_BUSYENDMASK,
221 .pwrreg_nopower = true,
222 .mmcimask1 = true,
223 .irq_pio_mask = MCI_IRQ_PIO_MASK,
224 .start_err = MCI_STARTBITERR,
225 .opendrain = MCI_OD,
226 .init = ux500v2_variant_init,
227 };
228
229 static struct variant_data variant_stm32 = {
230 .fifosize = 32 * 4,
231 .fifohalfsize = 8 * 4,
232 .clkreg = MCI_CLK_ENABLE,
233 .clkreg_enable = MCI_ST_UX500_HWFCEN,
234 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
235 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
236 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
237 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
238 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
239 .cmdreg_srsp = MCI_CPSM_RESPONSE,
240 .irq_pio_mask = MCI_IRQ_PIO_MASK,
241 .datalength_bits = 24,
242 .datactrl_blocksz = 11,
243 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
244 .st_sdio = true,
245 .st_clkdiv = true,
246 .pwrreg_powerup = MCI_PWR_ON,
247 .f_max = 48000000,
248 .pwrreg_clkgate = true,
249 .pwrreg_nopower = true,
250 .init = mmci_variant_init,
251 };
252
253 static struct variant_data variant_stm32_sdmmc = {
254 .fifosize = 16 * 4,
255 .fifohalfsize = 8 * 4,
256 .f_max = 208000000,
257 .stm32_clkdiv = true,
258 .cmdreg_cpsm_enable = MCI_CPSM_STM32_ENABLE,
259 .cmdreg_lrsp_crc = MCI_CPSM_STM32_LRSP_CRC,
260 .cmdreg_srsp_crc = MCI_CPSM_STM32_SRSP_CRC,
261 .cmdreg_srsp = MCI_CPSM_STM32_SRSP,
262 .cmdreg_stop = MCI_CPSM_STM32_CMDSTOP,
263 .data_cmd_enable = MCI_CPSM_STM32_CMDTRANS,
264 .irq_pio_mask = MCI_IRQ_PIO_STM32_MASK,
265 .datactrl_first = true,
266 .datacnt_useless = true,
267 .datalength_bits = 25,
268 .datactrl_blocksz = 14,
269 .datactrl_any_blocksz = true,
270 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
271 .stm32_idmabsize_mask = GENMASK(12, 5),
272 .busy_timeout = true,
273 .busy_detect = true,
274 .busy_detect_flag = MCI_STM32_BUSYD0,
275 .busy_detect_mask = MCI_STM32_BUSYD0ENDMASK,
276 .init = sdmmc_variant_init,
277 };
278
279 static struct variant_data variant_stm32_sdmmcv2 = {
280 .fifosize = 16 * 4,
281 .fifohalfsize = 8 * 4,
282 .f_max = 208000000,
283 .stm32_clkdiv = true,
284 .cmdreg_cpsm_enable = MCI_CPSM_STM32_ENABLE,
285 .cmdreg_lrsp_crc = MCI_CPSM_STM32_LRSP_CRC,
286 .cmdreg_srsp_crc = MCI_CPSM_STM32_SRSP_CRC,
287 .cmdreg_srsp = MCI_CPSM_STM32_SRSP,
288 .cmdreg_stop = MCI_CPSM_STM32_CMDSTOP,
289 .data_cmd_enable = MCI_CPSM_STM32_CMDTRANS,
290 .irq_pio_mask = MCI_IRQ_PIO_STM32_MASK,
291 .datactrl_first = true,
292 .datacnt_useless = true,
293 .datalength_bits = 25,
294 .datactrl_blocksz = 14,
295 .datactrl_any_blocksz = true,
296 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
297 .stm32_idmabsize_mask = GENMASK(16, 5),
298 .dma_lli = true,
299 .busy_timeout = true,
300 .busy_detect = true,
301 .busy_detect_flag = MCI_STM32_BUSYD0,
302 .busy_detect_mask = MCI_STM32_BUSYD0ENDMASK,
303 .init = sdmmc_variant_init,
304 };
305
306 static struct variant_data variant_qcom = {
307 .fifosize = 16 * 4,
308 .fifohalfsize = 8 * 4,
309 .clkreg = MCI_CLK_ENABLE,
310 .clkreg_enable = MCI_QCOM_CLK_FLOWENA |
311 MCI_QCOM_CLK_SELECT_IN_FBCLK,
312 .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
313 .datactrl_mask_ddrmode = MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
314 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
315 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
316 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
317 .cmdreg_srsp = MCI_CPSM_RESPONSE,
318 .data_cmd_enable = MCI_CPSM_QCOM_DATCMD,
319 .datalength_bits = 24,
320 .datactrl_blocksz = 11,
321 .datactrl_any_blocksz = true,
322 .pwrreg_powerup = MCI_PWR_UP,
323 .f_max = 208000000,
324 .explicit_mclk_control = true,
325 .qcom_fifo = true,
326 .qcom_dml = true,
327 .mmcimask1 = true,
328 .irq_pio_mask = MCI_IRQ_PIO_MASK,
329 .start_err = MCI_STARTBITERR,
330 .opendrain = MCI_ROD,
331 .init = qcom_variant_init,
332 };
333
334 /* Busy detection for the ST Micro variant */
mmci_card_busy(struct mmc_host * mmc)335 static int mmci_card_busy(struct mmc_host *mmc)
336 {
337 struct mmci_host *host = mmc_priv(mmc);
338 unsigned long flags;
339 int busy = 0;
340
341 spin_lock_irqsave(&host->lock, flags);
342 if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
343 busy = 1;
344 spin_unlock_irqrestore(&host->lock, flags);
345
346 return busy;
347 }
348
mmci_reg_delay(struct mmci_host * host)349 static void mmci_reg_delay(struct mmci_host *host)
350 {
351 /*
352 * According to the spec, at least three feedback clock cycles
353 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
354 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
355 * Worst delay time during card init is at 100 kHz => 30 us.
356 * Worst delay time when up and running is at 25 MHz => 120 ns.
357 */
358 if (host->cclk < 25000000)
359 udelay(30);
360 else
361 ndelay(120);
362 }
363
364 /*
365 * This must be called with host->lock held
366 */
mmci_write_clkreg(struct mmci_host * host,u32 clk)367 void mmci_write_clkreg(struct mmci_host *host, u32 clk)
368 {
369 if (host->clk_reg != clk) {
370 host->clk_reg = clk;
371 writel(clk, host->base + MMCICLOCK);
372 }
373 }
374
375 /*
376 * This must be called with host->lock held
377 */
mmci_write_pwrreg(struct mmci_host * host,u32 pwr)378 void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
379 {
380 if (host->pwr_reg != pwr) {
381 host->pwr_reg = pwr;
382 writel(pwr, host->base + MMCIPOWER);
383 }
384 }
385
386 /*
387 * This must be called with host->lock held
388 */
mmci_write_datactrlreg(struct mmci_host * host,u32 datactrl)389 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
390 {
391 /* Keep busy mode in DPSM if enabled */
392 datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
393
394 if (host->datactrl_reg != datactrl) {
395 host->datactrl_reg = datactrl;
396 writel(datactrl, host->base + MMCIDATACTRL);
397 }
398 }
399
400 /*
401 * This must be called with host->lock held
402 */
mmci_set_clkreg(struct mmci_host * host,unsigned int desired)403 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
404 {
405 struct variant_data *variant = host->variant;
406 u32 clk = variant->clkreg;
407
408 /* Make sure cclk reflects the current calculated clock */
409 host->cclk = 0;
410
411 if (desired) {
412 if (variant->explicit_mclk_control) {
413 host->cclk = host->mclk;
414 } else if (desired >= host->mclk) {
415 clk = MCI_CLK_BYPASS;
416 if (variant->st_clkdiv)
417 clk |= MCI_ST_UX500_NEG_EDGE;
418 host->cclk = host->mclk;
419 } else if (variant->st_clkdiv) {
420 /*
421 * DB8500 TRM says f = mclk / (clkdiv + 2)
422 * => clkdiv = (mclk / f) - 2
423 * Round the divider up so we don't exceed the max
424 * frequency
425 */
426 clk = DIV_ROUND_UP(host->mclk, desired) - 2;
427 if (clk >= 256)
428 clk = 255;
429 host->cclk = host->mclk / (clk + 2);
430 } else {
431 /*
432 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
433 * => clkdiv = mclk / (2 * f) - 1
434 */
435 clk = host->mclk / (2 * desired) - 1;
436 if (clk >= 256)
437 clk = 255;
438 host->cclk = host->mclk / (2 * (clk + 1));
439 }
440
441 clk |= variant->clkreg_enable;
442 clk |= MCI_CLK_ENABLE;
443 /* This hasn't proven to be worthwhile */
444 /* clk |= MCI_CLK_PWRSAVE; */
445 }
446
447 /* Set actual clock for debug */
448 host->mmc->actual_clock = host->cclk;
449
450 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
451 clk |= MCI_4BIT_BUS;
452 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
453 clk |= variant->clkreg_8bit_bus_enable;
454
455 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
456 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
457 clk |= variant->clkreg_neg_edge_enable;
458
459 mmci_write_clkreg(host, clk);
460 }
461
mmci_dma_release(struct mmci_host * host)462 static void mmci_dma_release(struct mmci_host *host)
463 {
464 if (host->ops && host->ops->dma_release)
465 host->ops->dma_release(host);
466
467 host->use_dma = false;
468 }
469
mmci_dma_setup(struct mmci_host * host)470 static void mmci_dma_setup(struct mmci_host *host)
471 {
472 if (!host->ops || !host->ops->dma_setup)
473 return;
474
475 if (host->ops->dma_setup(host))
476 return;
477
478 /* initialize pre request cookie */
479 host->next_cookie = 1;
480
481 host->use_dma = true;
482 }
483
484 /*
485 * Validate mmc prerequisites
486 */
mmci_validate_data(struct mmci_host * host,struct mmc_data * data)487 static int mmci_validate_data(struct mmci_host *host,
488 struct mmc_data *data)
489 {
490 struct variant_data *variant = host->variant;
491
492 if (!data)
493 return 0;
494 if (!is_power_of_2(data->blksz) && !variant->datactrl_any_blocksz) {
495 dev_err(mmc_dev(host->mmc),
496 "unsupported block size (%d bytes)\n", data->blksz);
497 return -EINVAL;
498 }
499
500 if (host->ops && host->ops->validate_data)
501 return host->ops->validate_data(host, data);
502
503 return 0;
504 }
505
mmci_prep_data(struct mmci_host * host,struct mmc_data * data,bool next)506 static int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
507 {
508 int err;
509
510 if (!host->ops || !host->ops->prep_data)
511 return 0;
512
513 err = host->ops->prep_data(host, data, next);
514
515 if (next && !err)
516 data->host_cookie = ++host->next_cookie < 0 ?
517 1 : host->next_cookie;
518
519 return err;
520 }
521
mmci_unprep_data(struct mmci_host * host,struct mmc_data * data,int err)522 static void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
523 int err)
524 {
525 if (host->ops && host->ops->unprep_data)
526 host->ops->unprep_data(host, data, err);
527
528 data->host_cookie = 0;
529 }
530
mmci_get_next_data(struct mmci_host * host,struct mmc_data * data)531 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
532 {
533 WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
534
535 if (host->ops && host->ops->get_next_data)
536 host->ops->get_next_data(host, data);
537 }
538
mmci_dma_start(struct mmci_host * host,unsigned int datactrl)539 static int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
540 {
541 struct mmc_data *data = host->data;
542 int ret;
543
544 if (!host->use_dma)
545 return -EINVAL;
546
547 ret = mmci_prep_data(host, data, false);
548 if (ret)
549 return ret;
550
551 if (!host->ops || !host->ops->dma_start)
552 return -EINVAL;
553
554 /* Okay, go for it. */
555 dev_vdbg(mmc_dev(host->mmc),
556 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
557 data->sg_len, data->blksz, data->blocks, data->flags);
558
559 ret = host->ops->dma_start(host, &datactrl);
560 if (ret)
561 return ret;
562
563 /* Trigger the DMA transfer */
564 mmci_write_datactrlreg(host, datactrl);
565
566 /*
567 * Let the MMCI say when the data is ended and it's time
568 * to fire next DMA request. When that happens, MMCI will
569 * call mmci_data_end()
570 */
571 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
572 host->base + MMCIMASK0);
573 return 0;
574 }
575
mmci_dma_finalize(struct mmci_host * host,struct mmc_data * data)576 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
577 {
578 if (!host->use_dma)
579 return;
580
581 if (host->ops && host->ops->dma_finalize)
582 host->ops->dma_finalize(host, data);
583 }
584
mmci_dma_error(struct mmci_host * host)585 static void mmci_dma_error(struct mmci_host *host)
586 {
587 if (!host->use_dma)
588 return;
589
590 if (host->ops && host->ops->dma_error)
591 host->ops->dma_error(host);
592 }
593
594 static void
mmci_request_end(struct mmci_host * host,struct mmc_request * mrq)595 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
596 {
597 writel(0, host->base + MMCICOMMAND);
598
599 BUG_ON(host->data);
600
601 host->mrq = NULL;
602 host->cmd = NULL;
603
604 mmc_request_done(host->mmc, mrq);
605 }
606
mmci_set_mask1(struct mmci_host * host,unsigned int mask)607 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
608 {
609 void __iomem *base = host->base;
610 struct variant_data *variant = host->variant;
611
612 if (host->singleirq) {
613 unsigned int mask0 = readl(base + MMCIMASK0);
614
615 mask0 &= ~variant->irq_pio_mask;
616 mask0 |= mask;
617
618 writel(mask0, base + MMCIMASK0);
619 }
620
621 if (variant->mmcimask1)
622 writel(mask, base + MMCIMASK1);
623
624 host->mask1_reg = mask;
625 }
626
mmci_stop_data(struct mmci_host * host)627 static void mmci_stop_data(struct mmci_host *host)
628 {
629 mmci_write_datactrlreg(host, 0);
630 mmci_set_mask1(host, 0);
631 host->data = NULL;
632 }
633
mmci_init_sg(struct mmci_host * host,struct mmc_data * data)634 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
635 {
636 unsigned int flags = SG_MITER_ATOMIC;
637
638 if (data->flags & MMC_DATA_READ)
639 flags |= SG_MITER_TO_SG;
640 else
641 flags |= SG_MITER_FROM_SG;
642
643 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
644 }
645
mmci_get_dctrl_cfg(struct mmci_host * host)646 static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
647 {
648 return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
649 }
650
ux500v2_get_dctrl_cfg(struct mmci_host * host)651 static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
652 {
653 return MCI_DPSM_ENABLE | (host->data->blksz << 16);
654 }
655
ux500_busy_complete(struct mmci_host * host,u32 status,u32 err_msk)656 static bool ux500_busy_complete(struct mmci_host *host, u32 status, u32 err_msk)
657 {
658 void __iomem *base = host->base;
659
660 /*
661 * Before unmasking for the busy end IRQ, confirm that the
662 * command was sent successfully. To keep track of having a
663 * command in-progress, waiting for busy signaling to end,
664 * store the status in host->busy_status.
665 *
666 * Note that, the card may need a couple of clock cycles before
667 * it starts signaling busy on DAT0, hence re-read the
668 * MMCISTATUS register here, to allow the busy bit to be set.
669 * Potentially we may even need to poll the register for a
670 * while, to allow it to be set, but tests indicates that it
671 * isn't needed.
672 */
673 if (!host->busy_status && !(status & err_msk) &&
674 (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
675 writel(readl(base + MMCIMASK0) |
676 host->variant->busy_detect_mask,
677 base + MMCIMASK0);
678
679 host->busy_status = status & (MCI_CMDSENT | MCI_CMDRESPEND);
680 return false;
681 }
682
683 /*
684 * If there is a command in-progress that has been successfully
685 * sent, then bail out if busy status is set and wait for the
686 * busy end IRQ.
687 *
688 * Note that, the HW triggers an IRQ on both edges while
689 * monitoring DAT0 for busy completion, but there is only one
690 * status bit in MMCISTATUS for the busy state. Therefore
691 * both the start and the end interrupts needs to be cleared,
692 * one after the other. So, clear the busy start IRQ here.
693 */
694 if (host->busy_status &&
695 (status & host->variant->busy_detect_flag)) {
696 writel(host->variant->busy_detect_mask, base + MMCICLEAR);
697 return false;
698 }
699
700 /*
701 * If there is a command in-progress that has been successfully
702 * sent and the busy bit isn't set, it means we have received
703 * the busy end IRQ. Clear and mask the IRQ, then continue to
704 * process the command.
705 */
706 if (host->busy_status) {
707 writel(host->variant->busy_detect_mask, base + MMCICLEAR);
708
709 writel(readl(base + MMCIMASK0) &
710 ~host->variant->busy_detect_mask, base + MMCIMASK0);
711 host->busy_status = 0;
712 }
713
714 return true;
715 }
716
717 /*
718 * All the DMA operation mode stuff goes inside this ifdef.
719 * This assumes that you have a generic DMA device interface,
720 * no custom DMA interfaces are supported.
721 */
722 #ifdef CONFIG_DMA_ENGINE
723 struct mmci_dmae_next {
724 struct dma_async_tx_descriptor *desc;
725 struct dma_chan *chan;
726 };
727
728 struct mmci_dmae_priv {
729 struct dma_chan *cur;
730 struct dma_chan *rx_channel;
731 struct dma_chan *tx_channel;
732 struct dma_async_tx_descriptor *desc_current;
733 struct mmci_dmae_next next_data;
734 };
735
mmci_dmae_setup(struct mmci_host * host)736 int mmci_dmae_setup(struct mmci_host *host)
737 {
738 const char *rxname, *txname;
739 struct mmci_dmae_priv *dmae;
740
741 dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
742 if (!dmae)
743 return -ENOMEM;
744
745 host->dma_priv = dmae;
746
747 dmae->rx_channel = dma_request_chan(mmc_dev(host->mmc), "rx");
748 if (IS_ERR(dmae->rx_channel)) {
749 int ret = PTR_ERR(dmae->rx_channel);
750 dmae->rx_channel = NULL;
751 return ret;
752 }
753
754 dmae->tx_channel = dma_request_chan(mmc_dev(host->mmc), "tx");
755 if (IS_ERR(dmae->tx_channel)) {
756 if (PTR_ERR(dmae->tx_channel) == -EPROBE_DEFER)
757 dev_warn(mmc_dev(host->mmc),
758 "Deferred probe for TX channel ignored\n");
759 dmae->tx_channel = NULL;
760 }
761
762 /*
763 * If only an RX channel is specified, the driver will
764 * attempt to use it bidirectionally, however if it is
765 * is specified but cannot be located, DMA will be disabled.
766 */
767 if (dmae->rx_channel && !dmae->tx_channel)
768 dmae->tx_channel = dmae->rx_channel;
769
770 if (dmae->rx_channel)
771 rxname = dma_chan_name(dmae->rx_channel);
772 else
773 rxname = "none";
774
775 if (dmae->tx_channel)
776 txname = dma_chan_name(dmae->tx_channel);
777 else
778 txname = "none";
779
780 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
781 rxname, txname);
782
783 /*
784 * Limit the maximum segment size in any SG entry according to
785 * the parameters of the DMA engine device.
786 */
787 if (dmae->tx_channel) {
788 struct device *dev = dmae->tx_channel->device->dev;
789 unsigned int max_seg_size = dma_get_max_seg_size(dev);
790
791 if (max_seg_size < host->mmc->max_seg_size)
792 host->mmc->max_seg_size = max_seg_size;
793 }
794 if (dmae->rx_channel) {
795 struct device *dev = dmae->rx_channel->device->dev;
796 unsigned int max_seg_size = dma_get_max_seg_size(dev);
797
798 if (max_seg_size < host->mmc->max_seg_size)
799 host->mmc->max_seg_size = max_seg_size;
800 }
801
802 if (!dmae->tx_channel || !dmae->rx_channel) {
803 mmci_dmae_release(host);
804 return -EINVAL;
805 }
806
807 return 0;
808 }
809
810 /*
811 * This is used in or so inline it
812 * so it can be discarded.
813 */
mmci_dmae_release(struct mmci_host * host)814 void mmci_dmae_release(struct mmci_host *host)
815 {
816 struct mmci_dmae_priv *dmae = host->dma_priv;
817
818 if (dmae->rx_channel)
819 dma_release_channel(dmae->rx_channel);
820 if (dmae->tx_channel)
821 dma_release_channel(dmae->tx_channel);
822 dmae->rx_channel = dmae->tx_channel = NULL;
823 }
824
mmci_dma_unmap(struct mmci_host * host,struct mmc_data * data)825 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
826 {
827 struct mmci_dmae_priv *dmae = host->dma_priv;
828 struct dma_chan *chan;
829
830 if (data->flags & MMC_DATA_READ)
831 chan = dmae->rx_channel;
832 else
833 chan = dmae->tx_channel;
834
835 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
836 mmc_get_dma_dir(data));
837 }
838
mmci_dmae_error(struct mmci_host * host)839 void mmci_dmae_error(struct mmci_host *host)
840 {
841 struct mmci_dmae_priv *dmae = host->dma_priv;
842
843 if (!dma_inprogress(host))
844 return;
845
846 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
847 dmaengine_terminate_all(dmae->cur);
848 host->dma_in_progress = false;
849 dmae->cur = NULL;
850 dmae->desc_current = NULL;
851 host->data->host_cookie = 0;
852
853 mmci_dma_unmap(host, host->data);
854 }
855
mmci_dmae_finalize(struct mmci_host * host,struct mmc_data * data)856 void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
857 {
858 struct mmci_dmae_priv *dmae = host->dma_priv;
859 u32 status;
860 int i;
861
862 if (!dma_inprogress(host))
863 return;
864
865 /* Wait up to 1ms for the DMA to complete */
866 for (i = 0; ; i++) {
867 status = readl(host->base + MMCISTATUS);
868 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
869 break;
870 udelay(10);
871 }
872
873 /*
874 * Check to see whether we still have some data left in the FIFO -
875 * this catches DMA controllers which are unable to monitor the
876 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
877 * contiguous buffers. On TX, we'll get a FIFO underrun error.
878 */
879 if (status & MCI_RXDATAAVLBLMASK) {
880 mmci_dma_error(host);
881 if (!data->error)
882 data->error = -EIO;
883 } else if (!data->host_cookie) {
884 mmci_dma_unmap(host, data);
885 }
886
887 /*
888 * Use of DMA with scatter-gather is impossible.
889 * Give up with DMA and switch back to PIO mode.
890 */
891 if (status & MCI_RXDATAAVLBLMASK) {
892 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
893 mmci_dma_release(host);
894 }
895
896 host->dma_in_progress = false;
897 dmae->cur = NULL;
898 dmae->desc_current = NULL;
899 }
900
901 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
_mmci_dmae_prep_data(struct mmci_host * host,struct mmc_data * data,struct dma_chan ** dma_chan,struct dma_async_tx_descriptor ** dma_desc)902 static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
903 struct dma_chan **dma_chan,
904 struct dma_async_tx_descriptor **dma_desc)
905 {
906 struct mmci_dmae_priv *dmae = host->dma_priv;
907 struct variant_data *variant = host->variant;
908 struct dma_slave_config conf = {
909 .src_addr = host->phybase + MMCIFIFO,
910 .dst_addr = host->phybase + MMCIFIFO,
911 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
912 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
913 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
914 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
915 .device_fc = false,
916 };
917 struct dma_chan *chan;
918 struct dma_device *device;
919 struct dma_async_tx_descriptor *desc;
920 int nr_sg;
921 unsigned long flags = DMA_CTRL_ACK;
922
923 if (data->flags & MMC_DATA_READ) {
924 conf.direction = DMA_DEV_TO_MEM;
925 chan = dmae->rx_channel;
926 } else {
927 conf.direction = DMA_MEM_TO_DEV;
928 chan = dmae->tx_channel;
929 }
930
931 /* If there's no DMA channel, fall back to PIO */
932 if (!chan)
933 return -EINVAL;
934
935 /* If less than or equal to the fifo size, don't bother with DMA */
936 if (data->blksz * data->blocks <= variant->fifosize)
937 return -EINVAL;
938
939 /*
940 * This is necessary to get SDIO working on the Ux500. We do not yet
941 * know if this is a bug in:
942 * - The Ux500 DMA controller (DMA40)
943 * - The MMCI DMA interface on the Ux500
944 * some power of two blocks (such as 64 bytes) are sent regularly
945 * during SDIO traffic and those work fine so for these we enable DMA
946 * transfers.
947 */
948 if (host->variant->dma_power_of_2 && !is_power_of_2(data->blksz))
949 return -EINVAL;
950
951 device = chan->device;
952 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
953 mmc_get_dma_dir(data));
954 if (nr_sg == 0)
955 return -EINVAL;
956
957 if (host->variant->qcom_dml)
958 flags |= DMA_PREP_INTERRUPT;
959
960 dmaengine_slave_config(chan, &conf);
961 desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
962 conf.direction, flags);
963 if (!desc)
964 goto unmap_exit;
965
966 *dma_chan = chan;
967 *dma_desc = desc;
968
969 return 0;
970
971 unmap_exit:
972 dma_unmap_sg(device->dev, data->sg, data->sg_len,
973 mmc_get_dma_dir(data));
974 return -ENOMEM;
975 }
976
mmci_dmae_prep_data(struct mmci_host * host,struct mmc_data * data,bool next)977 int mmci_dmae_prep_data(struct mmci_host *host,
978 struct mmc_data *data,
979 bool next)
980 {
981 struct mmci_dmae_priv *dmae = host->dma_priv;
982 struct mmci_dmae_next *nd = &dmae->next_data;
983
984 if (!host->use_dma)
985 return -EINVAL;
986
987 if (next)
988 return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
989 /* Check if next job is already prepared. */
990 if (dmae->cur && dmae->desc_current)
991 return 0;
992
993 /* No job were prepared thus do it now. */
994 return _mmci_dmae_prep_data(host, data, &dmae->cur,
995 &dmae->desc_current);
996 }
997
mmci_dmae_start(struct mmci_host * host,unsigned int * datactrl)998 int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
999 {
1000 struct mmci_dmae_priv *dmae = host->dma_priv;
1001 int ret;
1002
1003 host->dma_in_progress = true;
1004 ret = dma_submit_error(dmaengine_submit(dmae->desc_current));
1005 if (ret < 0) {
1006 host->dma_in_progress = false;
1007 return ret;
1008 }
1009 dma_async_issue_pending(dmae->cur);
1010
1011 *datactrl |= MCI_DPSM_DMAENABLE;
1012
1013 return 0;
1014 }
1015
mmci_dmae_get_next_data(struct mmci_host * host,struct mmc_data * data)1016 void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
1017 {
1018 struct mmci_dmae_priv *dmae = host->dma_priv;
1019 struct mmci_dmae_next *next = &dmae->next_data;
1020
1021 if (!host->use_dma)
1022 return;
1023
1024 WARN_ON(!data->host_cookie && (next->desc || next->chan));
1025
1026 dmae->desc_current = next->desc;
1027 dmae->cur = next->chan;
1028 next->desc = NULL;
1029 next->chan = NULL;
1030 }
1031
mmci_dmae_unprep_data(struct mmci_host * host,struct mmc_data * data,int err)1032 void mmci_dmae_unprep_data(struct mmci_host *host,
1033 struct mmc_data *data, int err)
1034
1035 {
1036 struct mmci_dmae_priv *dmae = host->dma_priv;
1037
1038 if (!host->use_dma)
1039 return;
1040
1041 mmci_dma_unmap(host, data);
1042
1043 if (err) {
1044 struct mmci_dmae_next *next = &dmae->next_data;
1045 struct dma_chan *chan;
1046 if (data->flags & MMC_DATA_READ)
1047 chan = dmae->rx_channel;
1048 else
1049 chan = dmae->tx_channel;
1050 dmaengine_terminate_all(chan);
1051
1052 if (dmae->desc_current == next->desc)
1053 dmae->desc_current = NULL;
1054
1055 if (dmae->cur == next->chan) {
1056 host->dma_in_progress = false;
1057 dmae->cur = NULL;
1058 }
1059
1060 next->desc = NULL;
1061 next->chan = NULL;
1062 }
1063 }
1064
1065 static struct mmci_host_ops mmci_variant_ops = {
1066 .prep_data = mmci_dmae_prep_data,
1067 .unprep_data = mmci_dmae_unprep_data,
1068 .get_datactrl_cfg = mmci_get_dctrl_cfg,
1069 .get_next_data = mmci_dmae_get_next_data,
1070 .dma_setup = mmci_dmae_setup,
1071 .dma_release = mmci_dmae_release,
1072 .dma_start = mmci_dmae_start,
1073 .dma_finalize = mmci_dmae_finalize,
1074 .dma_error = mmci_dmae_error,
1075 };
1076 #else
1077 static struct mmci_host_ops mmci_variant_ops = {
1078 .get_datactrl_cfg = mmci_get_dctrl_cfg,
1079 };
1080 #endif
1081
mmci_variant_init(struct mmci_host * host)1082 static void mmci_variant_init(struct mmci_host *host)
1083 {
1084 host->ops = &mmci_variant_ops;
1085 }
1086
ux500_variant_init(struct mmci_host * host)1087 static void ux500_variant_init(struct mmci_host *host)
1088 {
1089 host->ops = &mmci_variant_ops;
1090 host->ops->busy_complete = ux500_busy_complete;
1091 }
1092
ux500v2_variant_init(struct mmci_host * host)1093 static void ux500v2_variant_init(struct mmci_host *host)
1094 {
1095 host->ops = &mmci_variant_ops;
1096 host->ops->busy_complete = ux500_busy_complete;
1097 host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
1098 }
1099
mmci_pre_request(struct mmc_host * mmc,struct mmc_request * mrq)1100 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
1101 {
1102 struct mmci_host *host = mmc_priv(mmc);
1103 struct mmc_data *data = mrq->data;
1104
1105 if (!data)
1106 return;
1107
1108 WARN_ON(data->host_cookie);
1109
1110 if (mmci_validate_data(host, data))
1111 return;
1112
1113 mmci_prep_data(host, data, true);
1114 }
1115
mmci_post_request(struct mmc_host * mmc,struct mmc_request * mrq,int err)1116 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
1117 int err)
1118 {
1119 struct mmci_host *host = mmc_priv(mmc);
1120 struct mmc_data *data = mrq->data;
1121
1122 if (!data || !data->host_cookie)
1123 return;
1124
1125 mmci_unprep_data(host, data, err);
1126 }
1127
mmci_start_data(struct mmci_host * host,struct mmc_data * data)1128 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
1129 {
1130 struct variant_data *variant = host->variant;
1131 unsigned int datactrl, timeout, irqmask;
1132 unsigned long long clks;
1133 void __iomem *base;
1134
1135 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
1136 data->blksz, data->blocks, data->flags);
1137
1138 host->data = data;
1139 host->size = data->blksz * data->blocks;
1140 data->bytes_xfered = 0;
1141
1142 clks = (unsigned long long)data->timeout_ns * host->cclk;
1143 do_div(clks, NSEC_PER_SEC);
1144
1145 timeout = data->timeout_clks + (unsigned int)clks;
1146
1147 base = host->base;
1148 writel(timeout, base + MMCIDATATIMER);
1149 writel(host->size, base + MMCIDATALENGTH);
1150
1151 datactrl = host->ops->get_datactrl_cfg(host);
1152 datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
1153
1154 if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1155 u32 clk;
1156
1157 datactrl |= variant->datactrl_mask_sdio;
1158
1159 /*
1160 * The ST Micro variant for SDIO small write transfers
1161 * needs to have clock H/W flow control disabled,
1162 * otherwise the transfer will not start. The threshold
1163 * depends on the rate of MCLK.
1164 */
1165 if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1166 (host->size < 8 ||
1167 (host->size <= 8 && host->mclk > 50000000)))
1168 clk = host->clk_reg & ~variant->clkreg_enable;
1169 else
1170 clk = host->clk_reg | variant->clkreg_enable;
1171
1172 mmci_write_clkreg(host, clk);
1173 }
1174
1175 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1176 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1177 datactrl |= variant->datactrl_mask_ddrmode;
1178
1179 /*
1180 * Attempt to use DMA operation mode, if this
1181 * should fail, fall back to PIO mode
1182 */
1183 if (!mmci_dma_start(host, datactrl))
1184 return;
1185
1186 /* IRQ mode, map the SG list for CPU reading/writing */
1187 mmci_init_sg(host, data);
1188
1189 if (data->flags & MMC_DATA_READ) {
1190 irqmask = MCI_RXFIFOHALFFULLMASK;
1191
1192 /*
1193 * If we have less than the fifo 'half-full' threshold to
1194 * transfer, trigger a PIO interrupt as soon as any data
1195 * is available.
1196 */
1197 if (host->size < variant->fifohalfsize)
1198 irqmask |= MCI_RXDATAAVLBLMASK;
1199 } else {
1200 /*
1201 * We don't actually need to include "FIFO empty" here
1202 * since its implicit in "FIFO half empty".
1203 */
1204 irqmask = MCI_TXFIFOHALFEMPTYMASK;
1205 }
1206
1207 mmci_write_datactrlreg(host, datactrl);
1208 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1209 mmci_set_mask1(host, irqmask);
1210 }
1211
1212 static void
mmci_start_command(struct mmci_host * host,struct mmc_command * cmd,u32 c)1213 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1214 {
1215 void __iomem *base = host->base;
1216 unsigned long long clks;
1217
1218 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1219 cmd->opcode, cmd->arg, cmd->flags);
1220
1221 if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1222 writel(0, base + MMCICOMMAND);
1223 mmci_reg_delay(host);
1224 }
1225
1226 if (host->variant->cmdreg_stop &&
1227 cmd->opcode == MMC_STOP_TRANSMISSION)
1228 c |= host->variant->cmdreg_stop;
1229
1230 c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1231 if (cmd->flags & MMC_RSP_PRESENT) {
1232 if (cmd->flags & MMC_RSP_136)
1233 c |= host->variant->cmdreg_lrsp_crc;
1234 else if (cmd->flags & MMC_RSP_CRC)
1235 c |= host->variant->cmdreg_srsp_crc;
1236 else
1237 c |= host->variant->cmdreg_srsp;
1238 }
1239
1240 if (host->variant->busy_timeout && cmd->flags & MMC_RSP_BUSY) {
1241 if (!cmd->busy_timeout)
1242 cmd->busy_timeout = 10 * MSEC_PER_SEC;
1243
1244 clks = (unsigned long long)cmd->busy_timeout * host->cclk;
1245 do_div(clks, MSEC_PER_SEC);
1246 writel_relaxed(clks, host->base + MMCIDATATIMER);
1247 }
1248
1249 if (host->ops->pre_sig_volt_switch && cmd->opcode == SD_SWITCH_VOLTAGE)
1250 host->ops->pre_sig_volt_switch(host);
1251
1252 if (/*interrupt*/0)
1253 c |= MCI_CPSM_INTERRUPT;
1254
1255 if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1256 c |= host->variant->data_cmd_enable;
1257
1258 host->cmd = cmd;
1259
1260 writel(cmd->arg, base + MMCIARGUMENT);
1261 writel(c, base + MMCICOMMAND);
1262 }
1263
mmci_stop_command(struct mmci_host * host)1264 static void mmci_stop_command(struct mmci_host *host)
1265 {
1266 host->stop_abort.error = 0;
1267 mmci_start_command(host, &host->stop_abort, 0);
1268 }
1269
1270 static void
mmci_data_irq(struct mmci_host * host,struct mmc_data * data,unsigned int status)1271 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1272 unsigned int status)
1273 {
1274 unsigned int status_err;
1275
1276 /* Make sure we have data to handle */
1277 if (!data)
1278 return;
1279
1280 /* First check for errors */
1281 status_err = status & (host->variant->start_err |
1282 MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1283 MCI_TXUNDERRUN | MCI_RXOVERRUN);
1284
1285 if (status_err) {
1286 u32 remain, success;
1287
1288 /* Terminate the DMA transfer */
1289 mmci_dma_error(host);
1290
1291 /*
1292 * Calculate how far we are into the transfer. Note that
1293 * the data counter gives the number of bytes transferred
1294 * on the MMC bus, not on the host side. On reads, this
1295 * can be as much as a FIFO-worth of data ahead. This
1296 * matters for FIFO overruns only.
1297 */
1298 if (!host->variant->datacnt_useless) {
1299 remain = readl(host->base + MMCIDATACNT);
1300 success = data->blksz * data->blocks - remain;
1301 } else {
1302 success = 0;
1303 }
1304
1305 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1306 status_err, success);
1307 if (status_err & MCI_DATACRCFAIL) {
1308 /* Last block was not successful */
1309 success -= 1;
1310 data->error = -EILSEQ;
1311 } else if (status_err & MCI_DATATIMEOUT) {
1312 data->error = -ETIMEDOUT;
1313 } else if (status_err & MCI_STARTBITERR) {
1314 data->error = -ECOMM;
1315 } else if (status_err & MCI_TXUNDERRUN) {
1316 data->error = -EIO;
1317 } else if (status_err & MCI_RXOVERRUN) {
1318 if (success > host->variant->fifosize)
1319 success -= host->variant->fifosize;
1320 else
1321 success = 0;
1322 data->error = -EIO;
1323 }
1324 data->bytes_xfered = round_down(success, data->blksz);
1325 }
1326
1327 if (status & MCI_DATABLOCKEND)
1328 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1329
1330 if (status & MCI_DATAEND || data->error) {
1331 mmci_dma_finalize(host, data);
1332
1333 mmci_stop_data(host);
1334
1335 if (!data->error)
1336 /* The error clause is handled above, success! */
1337 data->bytes_xfered = data->blksz * data->blocks;
1338
1339 if (!data->stop) {
1340 if (host->variant->cmdreg_stop && data->error)
1341 mmci_stop_command(host);
1342 else
1343 mmci_request_end(host, data->mrq);
1344 } else if (host->mrq->sbc && !data->error) {
1345 mmci_request_end(host, data->mrq);
1346 } else {
1347 mmci_start_command(host, data->stop, 0);
1348 }
1349 }
1350 }
1351
1352 static void
mmci_cmd_irq(struct mmci_host * host,struct mmc_command * cmd,unsigned int status)1353 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1354 unsigned int status)
1355 {
1356 u32 err_msk = MCI_CMDCRCFAIL | MCI_CMDTIMEOUT;
1357 void __iomem *base = host->base;
1358 bool sbc, busy_resp;
1359
1360 if (!cmd)
1361 return;
1362
1363 sbc = (cmd == host->mrq->sbc);
1364 busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1365
1366 /*
1367 * We need to be one of these interrupts to be considered worth
1368 * handling. Note that we tag on any latent IRQs postponed
1369 * due to waiting for busy status.
1370 */
1371 if (host->variant->busy_timeout && busy_resp)
1372 err_msk |= MCI_DATATIMEOUT;
1373
1374 if (!((status | host->busy_status) &
1375 (err_msk | MCI_CMDSENT | MCI_CMDRESPEND)))
1376 return;
1377
1378 /* Handle busy detection on DAT0 if the variant supports it. */
1379 if (busy_resp && host->variant->busy_detect)
1380 if (!host->ops->busy_complete(host, status, err_msk))
1381 return;
1382
1383 host->cmd = NULL;
1384
1385 if (status & MCI_CMDTIMEOUT) {
1386 cmd->error = -ETIMEDOUT;
1387 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1388 cmd->error = -EILSEQ;
1389 } else if (host->variant->busy_timeout && busy_resp &&
1390 status & MCI_DATATIMEOUT) {
1391 cmd->error = -ETIMEDOUT;
1392 host->irq_action = IRQ_WAKE_THREAD;
1393 } else {
1394 cmd->resp[0] = readl(base + MMCIRESPONSE0);
1395 cmd->resp[1] = readl(base + MMCIRESPONSE1);
1396 cmd->resp[2] = readl(base + MMCIRESPONSE2);
1397 cmd->resp[3] = readl(base + MMCIRESPONSE3);
1398 }
1399
1400 if ((!sbc && !cmd->data) || cmd->error) {
1401 if (host->data) {
1402 /* Terminate the DMA transfer */
1403 mmci_dma_error(host);
1404
1405 mmci_stop_data(host);
1406 if (host->variant->cmdreg_stop && cmd->error) {
1407 mmci_stop_command(host);
1408 return;
1409 }
1410 }
1411
1412 if (host->irq_action != IRQ_WAKE_THREAD)
1413 mmci_request_end(host, host->mrq);
1414
1415 } else if (sbc) {
1416 mmci_start_command(host, host->mrq->cmd, 0);
1417 } else if (!host->variant->datactrl_first &&
1418 !(cmd->data->flags & MMC_DATA_READ)) {
1419 mmci_start_data(host, cmd->data);
1420 }
1421 }
1422
mmci_get_rx_fifocnt(struct mmci_host * host,u32 status,int remain)1423 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1424 {
1425 return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1426 }
1427
mmci_qcom_get_rx_fifocnt(struct mmci_host * host,u32 status,int r)1428 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1429 {
1430 /*
1431 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1432 * from the fifo range should be used
1433 */
1434 if (status & MCI_RXFIFOHALFFULL)
1435 return host->variant->fifohalfsize;
1436 else if (status & MCI_RXDATAAVLBL)
1437 return 4;
1438
1439 return 0;
1440 }
1441
mmci_pio_read(struct mmci_host * host,char * buffer,unsigned int remain)1442 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1443 {
1444 void __iomem *base = host->base;
1445 char *ptr = buffer;
1446 u32 status = readl(host->base + MMCISTATUS);
1447 int host_remain = host->size;
1448
1449 do {
1450 int count = host->get_rx_fifocnt(host, status, host_remain);
1451
1452 if (count > remain)
1453 count = remain;
1454
1455 if (count <= 0)
1456 break;
1457
1458 /*
1459 * SDIO especially may want to send something that is
1460 * not divisible by 4 (as opposed to card sectors
1461 * etc). Therefore make sure to always read the last bytes
1462 * while only doing full 32-bit reads towards the FIFO.
1463 */
1464 if (unlikely(count & 0x3)) {
1465 if (count < 4) {
1466 unsigned char buf[4];
1467 ioread32_rep(base + MMCIFIFO, buf, 1);
1468 memcpy(ptr, buf, count);
1469 } else {
1470 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1471 count &= ~0x3;
1472 }
1473 } else {
1474 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1475 }
1476
1477 ptr += count;
1478 remain -= count;
1479 host_remain -= count;
1480
1481 if (remain == 0)
1482 break;
1483
1484 status = readl(base + MMCISTATUS);
1485 } while (status & MCI_RXDATAAVLBL);
1486
1487 return ptr - buffer;
1488 }
1489
mmci_pio_write(struct mmci_host * host,char * buffer,unsigned int remain,u32 status)1490 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1491 {
1492 struct variant_data *variant = host->variant;
1493 void __iomem *base = host->base;
1494 char *ptr = buffer;
1495
1496 do {
1497 unsigned int count, maxcnt;
1498
1499 maxcnt = status & MCI_TXFIFOEMPTY ?
1500 variant->fifosize : variant->fifohalfsize;
1501 count = min(remain, maxcnt);
1502
1503 /*
1504 * SDIO especially may want to send something that is
1505 * not divisible by 4 (as opposed to card sectors
1506 * etc), and the FIFO only accept full 32-bit writes.
1507 * So compensate by adding +3 on the count, a single
1508 * byte become a 32bit write, 7 bytes will be two
1509 * 32bit writes etc.
1510 */
1511 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1512
1513 ptr += count;
1514 remain -= count;
1515
1516 if (remain == 0)
1517 break;
1518
1519 status = readl(base + MMCISTATUS);
1520 } while (status & MCI_TXFIFOHALFEMPTY);
1521
1522 return ptr - buffer;
1523 }
1524
1525 /*
1526 * PIO data transfer IRQ handler.
1527 */
mmci_pio_irq(int irq,void * dev_id)1528 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1529 {
1530 struct mmci_host *host = dev_id;
1531 struct sg_mapping_iter *sg_miter = &host->sg_miter;
1532 struct variant_data *variant = host->variant;
1533 void __iomem *base = host->base;
1534 u32 status;
1535
1536 status = readl(base + MMCISTATUS);
1537
1538 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1539
1540 do {
1541 unsigned int remain, len;
1542 char *buffer;
1543
1544 /*
1545 * For write, we only need to test the half-empty flag
1546 * here - if the FIFO is completely empty, then by
1547 * definition it is more than half empty.
1548 *
1549 * For read, check for data available.
1550 */
1551 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1552 break;
1553
1554 if (!sg_miter_next(sg_miter))
1555 break;
1556
1557 buffer = sg_miter->addr;
1558 remain = sg_miter->length;
1559
1560 len = 0;
1561 if (status & MCI_RXACTIVE)
1562 len = mmci_pio_read(host, buffer, remain);
1563 if (status & MCI_TXACTIVE)
1564 len = mmci_pio_write(host, buffer, remain, status);
1565
1566 sg_miter->consumed = len;
1567
1568 host->size -= len;
1569 remain -= len;
1570
1571 if (remain)
1572 break;
1573
1574 status = readl(base + MMCISTATUS);
1575 } while (1);
1576
1577 sg_miter_stop(sg_miter);
1578
1579 /*
1580 * If we have less than the fifo 'half-full' threshold to transfer,
1581 * trigger a PIO interrupt as soon as any data is available.
1582 */
1583 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1584 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1585
1586 /*
1587 * If we run out of data, disable the data IRQs; this
1588 * prevents a race where the FIFO becomes empty before
1589 * the chip itself has disabled the data path, and
1590 * stops us racing with our data end IRQ.
1591 */
1592 if (host->size == 0) {
1593 mmci_set_mask1(host, 0);
1594 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1595 }
1596
1597 return IRQ_HANDLED;
1598 }
1599
1600 /*
1601 * Handle completion of command and data transfers.
1602 */
mmci_irq(int irq,void * dev_id)1603 static irqreturn_t mmci_irq(int irq, void *dev_id)
1604 {
1605 struct mmci_host *host = dev_id;
1606 u32 status;
1607
1608 spin_lock(&host->lock);
1609 host->irq_action = IRQ_HANDLED;
1610
1611 do {
1612 status = readl(host->base + MMCISTATUS);
1613
1614 if (host->singleirq) {
1615 if (status & host->mask1_reg)
1616 mmci_pio_irq(irq, dev_id);
1617
1618 status &= ~host->variant->irq_pio_mask;
1619 }
1620
1621 /*
1622 * Busy detection is managed by mmci_cmd_irq(), including to
1623 * clear the corresponding IRQ.
1624 */
1625 status &= readl(host->base + MMCIMASK0);
1626 if (host->variant->busy_detect)
1627 writel(status & ~host->variant->busy_detect_mask,
1628 host->base + MMCICLEAR);
1629 else
1630 writel(status, host->base + MMCICLEAR);
1631
1632 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1633
1634 if (host->variant->reversed_irq_handling) {
1635 mmci_data_irq(host, host->data, status);
1636 mmci_cmd_irq(host, host->cmd, status);
1637 } else {
1638 mmci_cmd_irq(host, host->cmd, status);
1639 mmci_data_irq(host, host->data, status);
1640 }
1641
1642 /*
1643 * Busy detection has been handled by mmci_cmd_irq() above.
1644 * Clear the status bit to prevent polling in IRQ context.
1645 */
1646 if (host->variant->busy_detect_flag)
1647 status &= ~host->variant->busy_detect_flag;
1648
1649 } while (status);
1650
1651 spin_unlock(&host->lock);
1652
1653 return host->irq_action;
1654 }
1655
1656 /*
1657 * mmci_irq_thread() - A threaded IRQ handler that manages a reset of the HW.
1658 *
1659 * A reset is needed for some variants, where a datatimeout for a R1B request
1660 * causes the DPSM to stay busy (non-functional).
1661 */
mmci_irq_thread(int irq,void * dev_id)1662 static irqreturn_t mmci_irq_thread(int irq, void *dev_id)
1663 {
1664 struct mmci_host *host = dev_id;
1665 unsigned long flags;
1666
1667 if (host->rst) {
1668 reset_control_assert(host->rst);
1669 udelay(2);
1670 reset_control_deassert(host->rst);
1671 }
1672
1673 spin_lock_irqsave(&host->lock, flags);
1674 writel(host->clk_reg, host->base + MMCICLOCK);
1675 writel(host->pwr_reg, host->base + MMCIPOWER);
1676 writel(MCI_IRQENABLE | host->variant->start_err,
1677 host->base + MMCIMASK0);
1678
1679 host->irq_action = IRQ_HANDLED;
1680 mmci_request_end(host, host->mrq);
1681 spin_unlock_irqrestore(&host->lock, flags);
1682
1683 return host->irq_action;
1684 }
1685
mmci_request(struct mmc_host * mmc,struct mmc_request * mrq)1686 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1687 {
1688 struct mmci_host *host = mmc_priv(mmc);
1689 unsigned long flags;
1690
1691 WARN_ON(host->mrq != NULL);
1692
1693 mrq->cmd->error = mmci_validate_data(host, mrq->data);
1694 if (mrq->cmd->error) {
1695 mmc_request_done(mmc, mrq);
1696 return;
1697 }
1698
1699 spin_lock_irqsave(&host->lock, flags);
1700
1701 host->mrq = mrq;
1702
1703 if (mrq->data)
1704 mmci_get_next_data(host, mrq->data);
1705
1706 if (mrq->data &&
1707 (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1708 mmci_start_data(host, mrq->data);
1709
1710 if (mrq->sbc)
1711 mmci_start_command(host, mrq->sbc, 0);
1712 else
1713 mmci_start_command(host, mrq->cmd, 0);
1714
1715 spin_unlock_irqrestore(&host->lock, flags);
1716 }
1717
mmci_set_max_busy_timeout(struct mmc_host * mmc)1718 static void mmci_set_max_busy_timeout(struct mmc_host *mmc)
1719 {
1720 struct mmci_host *host = mmc_priv(mmc);
1721 u32 max_busy_timeout = 0;
1722
1723 if (!host->variant->busy_detect)
1724 return;
1725
1726 if (host->variant->busy_timeout && mmc->actual_clock)
1727 max_busy_timeout = ~0UL / (mmc->actual_clock / MSEC_PER_SEC);
1728
1729 mmc->max_busy_timeout = max_busy_timeout;
1730 }
1731
mmci_set_ios(struct mmc_host * mmc,struct mmc_ios * ios)1732 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1733 {
1734 struct mmci_host *host = mmc_priv(mmc);
1735 struct variant_data *variant = host->variant;
1736 u32 pwr = 0;
1737 unsigned long flags;
1738 int ret;
1739
1740 if (host->plat->ios_handler &&
1741 host->plat->ios_handler(mmc_dev(mmc), ios))
1742 dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1743
1744 switch (ios->power_mode) {
1745 case MMC_POWER_OFF:
1746 if (!IS_ERR(mmc->supply.vmmc))
1747 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1748
1749 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1750 regulator_disable(mmc->supply.vqmmc);
1751 host->vqmmc_enabled = false;
1752 }
1753
1754 break;
1755 case MMC_POWER_UP:
1756 if (!IS_ERR(mmc->supply.vmmc))
1757 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1758
1759 /*
1760 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1761 * and instead uses MCI_PWR_ON so apply whatever value is
1762 * configured in the variant data.
1763 */
1764 pwr |= variant->pwrreg_powerup;
1765
1766 break;
1767 case MMC_POWER_ON:
1768 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1769 ret = regulator_enable(mmc->supply.vqmmc);
1770 if (ret < 0)
1771 dev_err(mmc_dev(mmc),
1772 "failed to enable vqmmc regulator\n");
1773 else
1774 host->vqmmc_enabled = true;
1775 }
1776
1777 pwr |= MCI_PWR_ON;
1778 break;
1779 }
1780
1781 if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1782 /*
1783 * The ST Micro variant has some additional bits
1784 * indicating signal direction for the signals in
1785 * the SD/MMC bus and feedback-clock usage.
1786 */
1787 pwr |= host->pwr_reg_add;
1788
1789 if (ios->bus_width == MMC_BUS_WIDTH_4)
1790 pwr &= ~MCI_ST_DATA74DIREN;
1791 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1792 pwr &= (~MCI_ST_DATA74DIREN &
1793 ~MCI_ST_DATA31DIREN &
1794 ~MCI_ST_DATA2DIREN);
1795 }
1796
1797 if (variant->opendrain) {
1798 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1799 pwr |= variant->opendrain;
1800 } else {
1801 /*
1802 * If the variant cannot configure the pads by its own, then we
1803 * expect the pinctrl to be able to do that for us
1804 */
1805 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1806 pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1807 else
1808 pinctrl_select_default_state(mmc_dev(mmc));
1809 }
1810
1811 /*
1812 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1813 * gating the clock, the MCI_PWR_ON bit is cleared.
1814 */
1815 if (!ios->clock && variant->pwrreg_clkgate)
1816 pwr &= ~MCI_PWR_ON;
1817
1818 if (host->variant->explicit_mclk_control &&
1819 ios->clock != host->clock_cache) {
1820 ret = clk_set_rate(host->clk, ios->clock);
1821 if (ret < 0)
1822 dev_err(mmc_dev(host->mmc),
1823 "Error setting clock rate (%d)\n", ret);
1824 else
1825 host->mclk = clk_get_rate(host->clk);
1826 }
1827 host->clock_cache = ios->clock;
1828
1829 spin_lock_irqsave(&host->lock, flags);
1830
1831 if (host->ops && host->ops->set_clkreg)
1832 host->ops->set_clkreg(host, ios->clock);
1833 else
1834 mmci_set_clkreg(host, ios->clock);
1835
1836 mmci_set_max_busy_timeout(mmc);
1837
1838 if (host->ops && host->ops->set_pwrreg)
1839 host->ops->set_pwrreg(host, pwr);
1840 else
1841 mmci_write_pwrreg(host, pwr);
1842
1843 mmci_reg_delay(host);
1844
1845 spin_unlock_irqrestore(&host->lock, flags);
1846 }
1847
mmci_get_cd(struct mmc_host * mmc)1848 static int mmci_get_cd(struct mmc_host *mmc)
1849 {
1850 struct mmci_host *host = mmc_priv(mmc);
1851 struct mmci_platform_data *plat = host->plat;
1852 unsigned int status = mmc_gpio_get_cd(mmc);
1853
1854 if (status == -ENOSYS) {
1855 if (!plat->status)
1856 return 1; /* Assume always present */
1857
1858 status = plat->status(mmc_dev(host->mmc));
1859 }
1860 return status;
1861 }
1862
mmci_sig_volt_switch(struct mmc_host * mmc,struct mmc_ios * ios)1863 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1864 {
1865 struct mmci_host *host = mmc_priv(mmc);
1866 int ret;
1867
1868 ret = mmc_regulator_set_vqmmc(mmc, ios);
1869
1870 if (!ret && host->ops && host->ops->post_sig_volt_switch)
1871 ret = host->ops->post_sig_volt_switch(host, ios);
1872 else if (ret)
1873 ret = 0;
1874
1875 if (ret < 0)
1876 dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1877
1878 return ret;
1879 }
1880
1881 static struct mmc_host_ops mmci_ops = {
1882 .request = mmci_request,
1883 .pre_req = mmci_pre_request,
1884 .post_req = mmci_post_request,
1885 .set_ios = mmci_set_ios,
1886 .get_ro = mmc_gpio_get_ro,
1887 .get_cd = mmci_get_cd,
1888 .start_signal_voltage_switch = mmci_sig_volt_switch,
1889 };
1890
mmci_of_parse(struct device_node * np,struct mmc_host * mmc)1891 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1892 {
1893 struct mmci_host *host = mmc_priv(mmc);
1894 int ret = mmc_of_parse(mmc);
1895
1896 if (ret)
1897 return ret;
1898
1899 if (of_get_property(np, "st,sig-dir-dat0", NULL))
1900 host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1901 if (of_get_property(np, "st,sig-dir-dat2", NULL))
1902 host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1903 if (of_get_property(np, "st,sig-dir-dat31", NULL))
1904 host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1905 if (of_get_property(np, "st,sig-dir-dat74", NULL))
1906 host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1907 if (of_get_property(np, "st,sig-dir-cmd", NULL))
1908 host->pwr_reg_add |= MCI_ST_CMDDIREN;
1909 if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1910 host->pwr_reg_add |= MCI_ST_FBCLKEN;
1911 if (of_get_property(np, "st,sig-dir", NULL))
1912 host->pwr_reg_add |= MCI_STM32_DIRPOL;
1913 if (of_get_property(np, "st,neg-edge", NULL))
1914 host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
1915 if (of_get_property(np, "st,use-ckin", NULL))
1916 host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
1917
1918 if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1919 mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1920 if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1921 mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1922
1923 return 0;
1924 }
1925
mmci_probe(struct amba_device * dev,const struct amba_id * id)1926 static int mmci_probe(struct amba_device *dev,
1927 const struct amba_id *id)
1928 {
1929 struct mmci_platform_data *plat = dev->dev.platform_data;
1930 struct device_node *np = dev->dev.of_node;
1931 struct variant_data *variant = id->data;
1932 struct mmci_host *host;
1933 struct mmc_host *mmc;
1934 int ret;
1935
1936 /* Must have platform data or Device Tree. */
1937 if (!plat && !np) {
1938 dev_err(&dev->dev, "No plat data or DT found\n");
1939 return -EINVAL;
1940 }
1941
1942 if (!plat) {
1943 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1944 if (!plat)
1945 return -ENOMEM;
1946 }
1947
1948 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1949 if (!mmc)
1950 return -ENOMEM;
1951
1952 ret = mmci_of_parse(np, mmc);
1953 if (ret)
1954 goto host_free;
1955
1956 host = mmc_priv(mmc);
1957 host->mmc = mmc;
1958 host->mmc_ops = &mmci_ops;
1959 mmc->ops = &mmci_ops;
1960
1961 /*
1962 * Some variant (STM32) doesn't have opendrain bit, nevertheless
1963 * pins can be set accordingly using pinctrl
1964 */
1965 if (!variant->opendrain) {
1966 host->pinctrl = devm_pinctrl_get(&dev->dev);
1967 if (IS_ERR(host->pinctrl)) {
1968 dev_err(&dev->dev, "failed to get pinctrl");
1969 ret = PTR_ERR(host->pinctrl);
1970 goto host_free;
1971 }
1972
1973 host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1974 MMCI_PINCTRL_STATE_OPENDRAIN);
1975 if (IS_ERR(host->pins_opendrain)) {
1976 dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1977 ret = PTR_ERR(host->pins_opendrain);
1978 goto host_free;
1979 }
1980 }
1981
1982 host->hw_designer = amba_manf(dev);
1983 host->hw_revision = amba_rev(dev);
1984 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1985 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1986
1987 host->clk = devm_clk_get(&dev->dev, NULL);
1988 if (IS_ERR(host->clk)) {
1989 ret = PTR_ERR(host->clk);
1990 goto host_free;
1991 }
1992
1993 ret = clk_prepare_enable(host->clk);
1994 if (ret)
1995 goto host_free;
1996
1997 if (variant->qcom_fifo)
1998 host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1999 else
2000 host->get_rx_fifocnt = mmci_get_rx_fifocnt;
2001
2002 host->plat = plat;
2003 host->variant = variant;
2004 host->mclk = clk_get_rate(host->clk);
2005 /*
2006 * According to the spec, mclk is max 100 MHz,
2007 * so we try to adjust the clock down to this,
2008 * (if possible).
2009 */
2010 if (host->mclk > variant->f_max) {
2011 ret = clk_set_rate(host->clk, variant->f_max);
2012 if (ret < 0)
2013 goto clk_disable;
2014 host->mclk = clk_get_rate(host->clk);
2015 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
2016 host->mclk);
2017 }
2018
2019 host->phybase = dev->res.start;
2020 host->base = devm_ioremap_resource(&dev->dev, &dev->res);
2021 if (IS_ERR(host->base)) {
2022 ret = PTR_ERR(host->base);
2023 goto clk_disable;
2024 }
2025
2026 if (variant->init)
2027 variant->init(host);
2028
2029 /*
2030 * The ARM and ST versions of the block have slightly different
2031 * clock divider equations which means that the minimum divider
2032 * differs too.
2033 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
2034 */
2035 if (variant->st_clkdiv)
2036 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
2037 else if (variant->stm32_clkdiv)
2038 mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
2039 else if (variant->explicit_mclk_control)
2040 mmc->f_min = clk_round_rate(host->clk, 100000);
2041 else
2042 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
2043 /*
2044 * If no maximum operating frequency is supplied, fall back to use
2045 * the module parameter, which has a (low) default value in case it
2046 * is not specified. Either value must not exceed the clock rate into
2047 * the block, of course.
2048 */
2049 if (mmc->f_max)
2050 mmc->f_max = variant->explicit_mclk_control ?
2051 min(variant->f_max, mmc->f_max) :
2052 min(host->mclk, mmc->f_max);
2053 else
2054 mmc->f_max = variant->explicit_mclk_control ?
2055 fmax : min(host->mclk, fmax);
2056
2057
2058 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
2059
2060 host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
2061 if (IS_ERR(host->rst)) {
2062 ret = PTR_ERR(host->rst);
2063 goto clk_disable;
2064 }
2065
2066 /* Get regulators and the supported OCR mask */
2067 ret = mmc_regulator_get_supply(mmc);
2068 if (ret)
2069 goto clk_disable;
2070
2071 if (!mmc->ocr_avail)
2072 mmc->ocr_avail = plat->ocr_mask;
2073 else if (plat->ocr_mask)
2074 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
2075
2076 /* We support these capabilities. */
2077 mmc->caps |= MMC_CAP_CMD23;
2078
2079 /*
2080 * Enable busy detection.
2081 */
2082 if (variant->busy_detect) {
2083 mmci_ops.card_busy = mmci_card_busy;
2084 /*
2085 * Not all variants have a flag to enable busy detection
2086 * in the DPSM, but if they do, set it here.
2087 */
2088 if (variant->busy_dpsm_flag)
2089 mmci_write_datactrlreg(host,
2090 host->variant->busy_dpsm_flag);
2091 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
2092 }
2093
2094 /* Prepare a CMD12 - needed to clear the DPSM on some variants. */
2095 host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
2096 host->stop_abort.arg = 0;
2097 host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
2098
2099 /* We support these PM capabilities. */
2100 mmc->pm_caps |= MMC_PM_KEEP_POWER;
2101
2102 /*
2103 * We can do SGIO
2104 */
2105 mmc->max_segs = NR_SG;
2106
2107 /*
2108 * Since only a certain number of bits are valid in the data length
2109 * register, we must ensure that we don't exceed 2^num-1 bytes in a
2110 * single request.
2111 */
2112 mmc->max_req_size = (1 << variant->datalength_bits) - 1;
2113
2114 /*
2115 * Set the maximum segment size. Since we aren't doing DMA
2116 * (yet) we are only limited by the data length register.
2117 */
2118 mmc->max_seg_size = mmc->max_req_size;
2119
2120 /*
2121 * Block size can be up to 2048 bytes, but must be a power of two.
2122 */
2123 mmc->max_blk_size = 1 << variant->datactrl_blocksz;
2124
2125 /*
2126 * Limit the number of blocks transferred so that we don't overflow
2127 * the maximum request size.
2128 */
2129 mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
2130
2131 spin_lock_init(&host->lock);
2132
2133 writel(0, host->base + MMCIMASK0);
2134
2135 if (variant->mmcimask1)
2136 writel(0, host->base + MMCIMASK1);
2137
2138 writel(0xfff, host->base + MMCICLEAR);
2139
2140 /*
2141 * If:
2142 * - not using DT but using a descriptor table, or
2143 * - using a table of descriptors ALONGSIDE DT, or
2144 * look up these descriptors named "cd" and "wp" right here, fail
2145 * silently of these do not exist
2146 */
2147 if (!np) {
2148 ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0);
2149 if (ret == -EPROBE_DEFER)
2150 goto clk_disable;
2151
2152 ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0);
2153 if (ret == -EPROBE_DEFER)
2154 goto clk_disable;
2155 }
2156
2157 ret = devm_request_threaded_irq(&dev->dev, dev->irq[0], mmci_irq,
2158 mmci_irq_thread, IRQF_SHARED,
2159 DRIVER_NAME " (cmd)", host);
2160 if (ret)
2161 goto clk_disable;
2162
2163 if (!dev->irq[1])
2164 host->singleirq = true;
2165 else {
2166 ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2167 IRQF_SHARED, DRIVER_NAME " (pio)", host);
2168 if (ret)
2169 goto clk_disable;
2170 }
2171
2172 writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2173
2174 amba_set_drvdata(dev, mmc);
2175
2176 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2177 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2178 amba_rev(dev), (unsigned long long)dev->res.start,
2179 dev->irq[0], dev->irq[1]);
2180
2181 mmci_dma_setup(host);
2182
2183 pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2184 pm_runtime_use_autosuspend(&dev->dev);
2185
2186 mmc_add_host(mmc);
2187
2188 pm_runtime_put(&dev->dev);
2189 return 0;
2190
2191 clk_disable:
2192 clk_disable_unprepare(host->clk);
2193 host_free:
2194 mmc_free_host(mmc);
2195 return ret;
2196 }
2197
mmci_remove(struct amba_device * dev)2198 static int mmci_remove(struct amba_device *dev)
2199 {
2200 struct mmc_host *mmc = amba_get_drvdata(dev);
2201
2202 if (mmc) {
2203 struct mmci_host *host = mmc_priv(mmc);
2204 struct variant_data *variant = host->variant;
2205
2206 /*
2207 * Undo pm_runtime_put() in probe. We use the _sync
2208 * version here so that we can access the primecell.
2209 */
2210 pm_runtime_get_sync(&dev->dev);
2211
2212 mmc_remove_host(mmc);
2213
2214 writel(0, host->base + MMCIMASK0);
2215
2216 if (variant->mmcimask1)
2217 writel(0, host->base + MMCIMASK1);
2218
2219 writel(0, host->base + MMCICOMMAND);
2220 writel(0, host->base + MMCIDATACTRL);
2221
2222 mmci_dma_release(host);
2223 clk_disable_unprepare(host->clk);
2224 mmc_free_host(mmc);
2225 }
2226
2227 return 0;
2228 }
2229
2230 #ifdef CONFIG_PM
mmci_save(struct mmci_host * host)2231 static void mmci_save(struct mmci_host *host)
2232 {
2233 unsigned long flags;
2234
2235 spin_lock_irqsave(&host->lock, flags);
2236
2237 writel(0, host->base + MMCIMASK0);
2238 if (host->variant->pwrreg_nopower) {
2239 writel(0, host->base + MMCIDATACTRL);
2240 writel(0, host->base + MMCIPOWER);
2241 writel(0, host->base + MMCICLOCK);
2242 }
2243 mmci_reg_delay(host);
2244
2245 spin_unlock_irqrestore(&host->lock, flags);
2246 }
2247
mmci_restore(struct mmci_host * host)2248 static void mmci_restore(struct mmci_host *host)
2249 {
2250 unsigned long flags;
2251
2252 spin_lock_irqsave(&host->lock, flags);
2253
2254 if (host->variant->pwrreg_nopower) {
2255 writel(host->clk_reg, host->base + MMCICLOCK);
2256 writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2257 writel(host->pwr_reg, host->base + MMCIPOWER);
2258 }
2259 writel(MCI_IRQENABLE | host->variant->start_err,
2260 host->base + MMCIMASK0);
2261 mmci_reg_delay(host);
2262
2263 spin_unlock_irqrestore(&host->lock, flags);
2264 }
2265
mmci_runtime_suspend(struct device * dev)2266 static int mmci_runtime_suspend(struct device *dev)
2267 {
2268 struct amba_device *adev = to_amba_device(dev);
2269 struct mmc_host *mmc = amba_get_drvdata(adev);
2270
2271 if (mmc) {
2272 struct mmci_host *host = mmc_priv(mmc);
2273 pinctrl_pm_select_sleep_state(dev);
2274 mmci_save(host);
2275 clk_disable_unprepare(host->clk);
2276 }
2277
2278 return 0;
2279 }
2280
mmci_runtime_resume(struct device * dev)2281 static int mmci_runtime_resume(struct device *dev)
2282 {
2283 struct amba_device *adev = to_amba_device(dev);
2284 struct mmc_host *mmc = amba_get_drvdata(adev);
2285
2286 if (mmc) {
2287 struct mmci_host *host = mmc_priv(mmc);
2288 clk_prepare_enable(host->clk);
2289 mmci_restore(host);
2290 pinctrl_select_default_state(dev);
2291 }
2292
2293 return 0;
2294 }
2295 #endif
2296
2297 static const struct dev_pm_ops mmci_dev_pm_ops = {
2298 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2299 pm_runtime_force_resume)
2300 SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2301 };
2302
2303 static const struct amba_id mmci_ids[] = {
2304 {
2305 .id = 0x00041180,
2306 .mask = 0xff0fffff,
2307 .data = &variant_arm,
2308 },
2309 {
2310 .id = 0x01041180,
2311 .mask = 0xff0fffff,
2312 .data = &variant_arm_extended_fifo,
2313 },
2314 {
2315 .id = 0x02041180,
2316 .mask = 0xff0fffff,
2317 .data = &variant_arm_extended_fifo_hwfc,
2318 },
2319 {
2320 .id = 0x00041181,
2321 .mask = 0x000fffff,
2322 .data = &variant_arm,
2323 },
2324 /* ST Micro variants */
2325 {
2326 .id = 0x00180180,
2327 .mask = 0x00ffffff,
2328 .data = &variant_u300,
2329 },
2330 {
2331 .id = 0x10180180,
2332 .mask = 0xf0ffffff,
2333 .data = &variant_nomadik,
2334 },
2335 {
2336 .id = 0x00280180,
2337 .mask = 0x00ffffff,
2338 .data = &variant_nomadik,
2339 },
2340 {
2341 .id = 0x00480180,
2342 .mask = 0xf0ffffff,
2343 .data = &variant_ux500,
2344 },
2345 {
2346 .id = 0x10480180,
2347 .mask = 0xf0ffffff,
2348 .data = &variant_ux500v2,
2349 },
2350 {
2351 .id = 0x00880180,
2352 .mask = 0x00ffffff,
2353 .data = &variant_stm32,
2354 },
2355 {
2356 .id = 0x10153180,
2357 .mask = 0xf0ffffff,
2358 .data = &variant_stm32_sdmmc,
2359 },
2360 {
2361 .id = 0x00253180,
2362 .mask = 0xf0ffffff,
2363 .data = &variant_stm32_sdmmcv2,
2364 },
2365 /* Qualcomm variants */
2366 {
2367 .id = 0x00051180,
2368 .mask = 0x000fffff,
2369 .data = &variant_qcom,
2370 },
2371 { 0, 0 },
2372 };
2373
2374 MODULE_DEVICE_TABLE(amba, mmci_ids);
2375
2376 static struct amba_driver mmci_driver = {
2377 .drv = {
2378 .name = DRIVER_NAME,
2379 .pm = &mmci_dev_pm_ops,
2380 },
2381 .probe = mmci_probe,
2382 .remove = mmci_remove,
2383 .id_table = mmci_ids,
2384 };
2385
2386 module_amba_driver(mmci_driver);
2387
2388 module_param(fmax, uint, 0444);
2389
2390 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2391 MODULE_LICENSE("GPL");
2392