1 /*
2 * linux/drivers/mmc/core/core.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/suspend.h>
28 #include <linux/fault-inject.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/of.h>
32
33 #include <linux/mmc/card.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/mmc.h>
36 #include <linux/mmc/sd.h>
37 #include <linux/mmc/slot-gpio.h>
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/mmc.h>
41
42 #include "core.h"
43 #include "card.h"
44 #include "bus.h"
45 #include "host.h"
46 #include "sdio_bus.h"
47 #include "pwrseq.h"
48
49 #include "mmc_ops.h"
50 #include "sd_ops.h"
51 #include "sdio_ops.h"
52
53 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
54 #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
55
56 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
57
58 /*
59 * Enabling software CRCs on the data blocks can be a significant (30%)
60 * performance cost, and for other reasons may not always be desired.
61 * So we allow it it to be disabled.
62 */
63 bool use_spi_crc = 1;
64 module_param(use_spi_crc, bool, 0);
65
mmc_schedule_delayed_work(struct delayed_work * work,unsigned long delay)66 static int mmc_schedule_delayed_work(struct delayed_work *work,
67 unsigned long delay)
68 {
69 /*
70 * We use the system_freezable_wq, because of two reasons.
71 * First, it allows several works (not the same work item) to be
72 * executed simultaneously. Second, the queue becomes frozen when
73 * userspace becomes frozen during system PM.
74 */
75 return queue_delayed_work(system_freezable_wq, work, delay);
76 }
77
78 #ifdef CONFIG_FAIL_MMC_REQUEST
79
80 /*
81 * Internal function. Inject random data errors.
82 * If mmc_data is NULL no errors are injected.
83 */
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)84 static void mmc_should_fail_request(struct mmc_host *host,
85 struct mmc_request *mrq)
86 {
87 struct mmc_command *cmd = mrq->cmd;
88 struct mmc_data *data = mrq->data;
89 static const int data_errors[] = {
90 -ETIMEDOUT,
91 -EILSEQ,
92 -EIO,
93 };
94
95 if (!data)
96 return;
97
98 if (cmd->error || data->error ||
99 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
100 return;
101
102 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
103 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
104 }
105
106 #else /* CONFIG_FAIL_MMC_REQUEST */
107
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)108 static inline void mmc_should_fail_request(struct mmc_host *host,
109 struct mmc_request *mrq)
110 {
111 }
112
113 #endif /* CONFIG_FAIL_MMC_REQUEST */
114
mmc_complete_cmd(struct mmc_request * mrq)115 static inline void mmc_complete_cmd(struct mmc_request *mrq)
116 {
117 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
118 complete_all(&mrq->cmd_completion);
119 }
120
mmc_command_done(struct mmc_host * host,struct mmc_request * mrq)121 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
122 {
123 if (!mrq->cap_cmd_during_tfr)
124 return;
125
126 mmc_complete_cmd(mrq);
127
128 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
129 mmc_hostname(host), mrq->cmd->opcode);
130 }
131 EXPORT_SYMBOL(mmc_command_done);
132
133 /**
134 * mmc_request_done - finish processing an MMC request
135 * @host: MMC host which completed request
136 * @mrq: MMC request which request
137 *
138 * MMC drivers should call this function when they have completed
139 * their processing of a request.
140 */
mmc_request_done(struct mmc_host * host,struct mmc_request * mrq)141 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
142 {
143 struct mmc_command *cmd = mrq->cmd;
144 int err = cmd->error;
145
146 /* Flag re-tuning needed on CRC errors */
147 if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
148 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
149 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
150 (mrq->data && mrq->data->error == -EILSEQ) ||
151 (mrq->stop && mrq->stop->error == -EILSEQ)))
152 mmc_retune_needed(host);
153
154 if (err && cmd->retries && mmc_host_is_spi(host)) {
155 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
156 cmd->retries = 0;
157 }
158
159 if (host->ongoing_mrq == mrq)
160 host->ongoing_mrq = NULL;
161
162 mmc_complete_cmd(mrq);
163
164 trace_mmc_request_done(host, mrq);
165
166 /*
167 * We list various conditions for the command to be considered
168 * properly done:
169 *
170 * - There was no error, OK fine then
171 * - We are not doing some kind of retry
172 * - The card was removed (...so just complete everything no matter
173 * if there are errors or retries)
174 */
175 if (!err || !cmd->retries || mmc_card_removed(host->card)) {
176 mmc_should_fail_request(host, mrq);
177
178 if (!host->ongoing_mrq)
179 led_trigger_event(host->led, LED_OFF);
180
181 if (mrq->sbc) {
182 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
183 mmc_hostname(host), mrq->sbc->opcode,
184 mrq->sbc->error,
185 mrq->sbc->resp[0], mrq->sbc->resp[1],
186 mrq->sbc->resp[2], mrq->sbc->resp[3]);
187 }
188
189 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
190 mmc_hostname(host), cmd->opcode, err,
191 cmd->resp[0], cmd->resp[1],
192 cmd->resp[2], cmd->resp[3]);
193
194 if (mrq->data) {
195 pr_debug("%s: %d bytes transferred: %d\n",
196 mmc_hostname(host),
197 mrq->data->bytes_xfered, mrq->data->error);
198 }
199
200 if (mrq->stop) {
201 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
202 mmc_hostname(host), mrq->stop->opcode,
203 mrq->stop->error,
204 mrq->stop->resp[0], mrq->stop->resp[1],
205 mrq->stop->resp[2], mrq->stop->resp[3]);
206 }
207 }
208 /*
209 * Request starter must handle retries - see
210 * mmc_wait_for_req_done().
211 */
212 if (mrq->done)
213 mrq->done(mrq);
214 }
215
216 EXPORT_SYMBOL(mmc_request_done);
217
__mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)218 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
219 {
220 int err;
221
222 /* Assumes host controller has been runtime resumed by mmc_claim_host */
223 err = mmc_retune(host);
224 if (err) {
225 mrq->cmd->error = err;
226 mmc_request_done(host, mrq);
227 return;
228 }
229
230 /*
231 * For sdio rw commands we must wait for card busy otherwise some
232 * sdio devices won't work properly.
233 * And bypass I/O abort, reset and bus suspend operations.
234 */
235 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
236 host->ops->card_busy) {
237 int tries = 500; /* Wait aprox 500ms at maximum */
238
239 while (host->ops->card_busy(host) && --tries)
240 mmc_delay(1);
241
242 if (tries == 0) {
243 mrq->cmd->error = -EBUSY;
244 mmc_request_done(host, mrq);
245 return;
246 }
247 }
248
249 if (mrq->cap_cmd_during_tfr) {
250 host->ongoing_mrq = mrq;
251 /*
252 * Retry path could come through here without having waiting on
253 * cmd_completion, so ensure it is reinitialised.
254 */
255 reinit_completion(&mrq->cmd_completion);
256 }
257
258 trace_mmc_request_start(host, mrq);
259
260 if (host->cqe_on)
261 host->cqe_ops->cqe_off(host);
262
263 host->ops->request(host, mrq);
264 }
265
mmc_mrq_pr_debug(struct mmc_host * host,struct mmc_request * mrq,bool cqe)266 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
267 bool cqe)
268 {
269 if (mrq->sbc) {
270 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
271 mmc_hostname(host), mrq->sbc->opcode,
272 mrq->sbc->arg, mrq->sbc->flags);
273 }
274
275 if (mrq->cmd) {
276 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
277 mmc_hostname(host), cqe ? "CQE direct " : "",
278 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
279 } else if (cqe) {
280 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
281 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
282 }
283
284 if (mrq->data) {
285 pr_debug("%s: blksz %d blocks %d flags %08x "
286 "tsac %d ms nsac %d\n",
287 mmc_hostname(host), mrq->data->blksz,
288 mrq->data->blocks, mrq->data->flags,
289 mrq->data->timeout_ns / 1000000,
290 mrq->data->timeout_clks);
291 }
292
293 if (mrq->stop) {
294 pr_debug("%s: CMD%u arg %08x flags %08x\n",
295 mmc_hostname(host), mrq->stop->opcode,
296 mrq->stop->arg, mrq->stop->flags);
297 }
298 }
299
mmc_mrq_prep(struct mmc_host * host,struct mmc_request * mrq)300 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
301 {
302 unsigned int i, sz = 0;
303 struct scatterlist *sg;
304
305 if (mrq->cmd) {
306 mrq->cmd->error = 0;
307 mrq->cmd->mrq = mrq;
308 mrq->cmd->data = mrq->data;
309 }
310 if (mrq->sbc) {
311 mrq->sbc->error = 0;
312 mrq->sbc->mrq = mrq;
313 }
314 if (mrq->data) {
315 if (mrq->data->blksz > host->max_blk_size ||
316 mrq->data->blocks > host->max_blk_count ||
317 mrq->data->blocks * mrq->data->blksz > host->max_req_size)
318 return -EINVAL;
319
320 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
321 sz += sg->length;
322 if (sz != mrq->data->blocks * mrq->data->blksz)
323 return -EINVAL;
324
325 mrq->data->error = 0;
326 mrq->data->mrq = mrq;
327 if (mrq->stop) {
328 mrq->data->stop = mrq->stop;
329 mrq->stop->error = 0;
330 mrq->stop->mrq = mrq;
331 }
332 }
333
334 return 0;
335 }
336
mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)337 int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
338 {
339 int err;
340
341 init_completion(&mrq->cmd_completion);
342
343 mmc_retune_hold(host);
344
345 if (mmc_card_removed(host->card))
346 return -ENOMEDIUM;
347
348 mmc_mrq_pr_debug(host, mrq, false);
349
350 WARN_ON(!host->claimed);
351
352 err = mmc_mrq_prep(host, mrq);
353 if (err)
354 return err;
355
356 led_trigger_event(host->led, LED_FULL);
357 __mmc_start_request(host, mrq);
358
359 return 0;
360 }
361 EXPORT_SYMBOL(mmc_start_request);
362
mmc_wait_done(struct mmc_request * mrq)363 static void mmc_wait_done(struct mmc_request *mrq)
364 {
365 complete(&mrq->completion);
366 }
367
mmc_wait_ongoing_tfr_cmd(struct mmc_host * host)368 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
369 {
370 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
371
372 /*
373 * If there is an ongoing transfer, wait for the command line to become
374 * available.
375 */
376 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
377 wait_for_completion(&ongoing_mrq->cmd_completion);
378 }
379
__mmc_start_req(struct mmc_host * host,struct mmc_request * mrq)380 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
381 {
382 int err;
383
384 mmc_wait_ongoing_tfr_cmd(host);
385
386 init_completion(&mrq->completion);
387 mrq->done = mmc_wait_done;
388
389 err = mmc_start_request(host, mrq);
390 if (err) {
391 mrq->cmd->error = err;
392 mmc_complete_cmd(mrq);
393 complete(&mrq->completion);
394 }
395
396 return err;
397 }
398
mmc_wait_for_req_done(struct mmc_host * host,struct mmc_request * mrq)399 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
400 {
401 struct mmc_command *cmd;
402
403 while (1) {
404 wait_for_completion(&mrq->completion);
405
406 cmd = mrq->cmd;
407
408 /*
409 * If host has timed out waiting for the sanitize
410 * to complete, card might be still in programming state
411 * so let's try to bring the card out of programming
412 * state.
413 */
414 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
415 if (!mmc_interrupt_hpi(host->card)) {
416 pr_warn("%s: %s: Interrupted sanitize\n",
417 mmc_hostname(host), __func__);
418 cmd->error = 0;
419 break;
420 } else {
421 pr_err("%s: %s: Failed to interrupt sanitize\n",
422 mmc_hostname(host), __func__);
423 }
424 }
425 if (!cmd->error || !cmd->retries ||
426 mmc_card_removed(host->card))
427 break;
428
429 mmc_retune_recheck(host);
430
431 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
432 mmc_hostname(host), cmd->opcode, cmd->error);
433 cmd->retries--;
434 cmd->error = 0;
435 __mmc_start_request(host, mrq);
436 }
437
438 mmc_retune_release(host);
439 }
440 EXPORT_SYMBOL(mmc_wait_for_req_done);
441
442 /*
443 * mmc_cqe_start_req - Start a CQE request.
444 * @host: MMC host to start the request
445 * @mrq: request to start
446 *
447 * Start the request, re-tuning if needed and it is possible. Returns an error
448 * code if the request fails to start or -EBUSY if CQE is busy.
449 */
mmc_cqe_start_req(struct mmc_host * host,struct mmc_request * mrq)450 int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
451 {
452 int err;
453
454 /*
455 * CQE cannot process re-tuning commands. Caller must hold retuning
456 * while CQE is in use. Re-tuning can happen here only when CQE has no
457 * active requests i.e. this is the first. Note, re-tuning will call
458 * ->cqe_off().
459 */
460 err = mmc_retune(host);
461 if (err)
462 goto out_err;
463
464 mrq->host = host;
465
466 mmc_mrq_pr_debug(host, mrq, true);
467
468 err = mmc_mrq_prep(host, mrq);
469 if (err)
470 goto out_err;
471
472 err = host->cqe_ops->cqe_request(host, mrq);
473 if (err)
474 goto out_err;
475
476 trace_mmc_request_start(host, mrq);
477
478 return 0;
479
480 out_err:
481 if (mrq->cmd) {
482 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
483 mmc_hostname(host), mrq->cmd->opcode, err);
484 } else {
485 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
486 mmc_hostname(host), mrq->tag, err);
487 }
488 return err;
489 }
490 EXPORT_SYMBOL(mmc_cqe_start_req);
491
492 /**
493 * mmc_cqe_request_done - CQE has finished processing an MMC request
494 * @host: MMC host which completed request
495 * @mrq: MMC request which completed
496 *
497 * CQE drivers should call this function when they have completed
498 * their processing of a request.
499 */
mmc_cqe_request_done(struct mmc_host * host,struct mmc_request * mrq)500 void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
501 {
502 mmc_should_fail_request(host, mrq);
503
504 /* Flag re-tuning needed on CRC errors */
505 if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
506 (mrq->data && mrq->data->error == -EILSEQ))
507 mmc_retune_needed(host);
508
509 trace_mmc_request_done(host, mrq);
510
511 if (mrq->cmd) {
512 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
513 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
514 } else {
515 pr_debug("%s: CQE transfer done tag %d\n",
516 mmc_hostname(host), mrq->tag);
517 }
518
519 if (mrq->data) {
520 pr_debug("%s: %d bytes transferred: %d\n",
521 mmc_hostname(host),
522 mrq->data->bytes_xfered, mrq->data->error);
523 }
524
525 mrq->done(mrq);
526 }
527 EXPORT_SYMBOL(mmc_cqe_request_done);
528
529 /**
530 * mmc_cqe_post_req - CQE post process of a completed MMC request
531 * @host: MMC host
532 * @mrq: MMC request to be processed
533 */
mmc_cqe_post_req(struct mmc_host * host,struct mmc_request * mrq)534 void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
535 {
536 if (host->cqe_ops->cqe_post_req)
537 host->cqe_ops->cqe_post_req(host, mrq);
538 }
539 EXPORT_SYMBOL(mmc_cqe_post_req);
540
541 /* Arbitrary 1 second timeout */
542 #define MMC_CQE_RECOVERY_TIMEOUT 1000
543
544 /*
545 * mmc_cqe_recovery - Recover from CQE errors.
546 * @host: MMC host to recover
547 *
548 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
549 * in eMMC, and discarding the queue in CQE. CQE must call
550 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
551 * fails to discard its queue.
552 */
mmc_cqe_recovery(struct mmc_host * host)553 int mmc_cqe_recovery(struct mmc_host *host)
554 {
555 struct mmc_command cmd;
556 int err;
557
558 mmc_retune_hold_now(host);
559
560 /*
561 * Recovery is expected seldom, if at all, but it reduces performance,
562 * so make sure it is not completely silent.
563 */
564 pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
565
566 host->cqe_ops->cqe_recovery_start(host);
567
568 memset(&cmd, 0, sizeof(cmd));
569 cmd.opcode = MMC_STOP_TRANSMISSION,
570 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC,
571 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
572 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
573 mmc_wait_for_cmd(host, &cmd, 0);
574
575 memset(&cmd, 0, sizeof(cmd));
576 cmd.opcode = MMC_CMDQ_TASK_MGMT;
577 cmd.arg = 1; /* Discard entire queue */
578 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
579 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
580 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
581 err = mmc_wait_for_cmd(host, &cmd, 0);
582
583 host->cqe_ops->cqe_recovery_finish(host);
584
585 mmc_retune_release(host);
586
587 return err;
588 }
589 EXPORT_SYMBOL(mmc_cqe_recovery);
590
591 /**
592 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
593 * @host: MMC host
594 * @mrq: MMC request
595 *
596 * mmc_is_req_done() is used with requests that have
597 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
598 * starting a request and before waiting for it to complete. That is,
599 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
600 * and before mmc_wait_for_req_done(). If it is called at other times the
601 * result is not meaningful.
602 */
mmc_is_req_done(struct mmc_host * host,struct mmc_request * mrq)603 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
604 {
605 return completion_done(&mrq->completion);
606 }
607 EXPORT_SYMBOL(mmc_is_req_done);
608
609 /**
610 * mmc_wait_for_req - start a request and wait for completion
611 * @host: MMC host to start command
612 * @mrq: MMC request to start
613 *
614 * Start a new MMC custom command request for a host, and wait
615 * for the command to complete. In the case of 'cap_cmd_during_tfr'
616 * requests, the transfer is ongoing and the caller can issue further
617 * commands that do not use the data lines, and then wait by calling
618 * mmc_wait_for_req_done().
619 * Does not attempt to parse the response.
620 */
mmc_wait_for_req(struct mmc_host * host,struct mmc_request * mrq)621 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
622 {
623 __mmc_start_req(host, mrq);
624
625 if (!mrq->cap_cmd_during_tfr)
626 mmc_wait_for_req_done(host, mrq);
627 }
628 EXPORT_SYMBOL(mmc_wait_for_req);
629
630 /**
631 * mmc_wait_for_cmd - start a command and wait for completion
632 * @host: MMC host to start command
633 * @cmd: MMC command to start
634 * @retries: maximum number of retries
635 *
636 * Start a new MMC command for a host, and wait for the command
637 * to complete. Return any error that occurred while the command
638 * was executing. Do not attempt to parse the response.
639 */
mmc_wait_for_cmd(struct mmc_host * host,struct mmc_command * cmd,int retries)640 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
641 {
642 struct mmc_request mrq = {};
643
644 WARN_ON(!host->claimed);
645
646 memset(cmd->resp, 0, sizeof(cmd->resp));
647 cmd->retries = retries;
648
649 mrq.cmd = cmd;
650 cmd->data = NULL;
651
652 mmc_wait_for_req(host, &mrq);
653
654 return cmd->error;
655 }
656
657 EXPORT_SYMBOL(mmc_wait_for_cmd);
658
659 /**
660 * mmc_set_data_timeout - set the timeout for a data command
661 * @data: data phase for command
662 * @card: the MMC card associated with the data transfer
663 *
664 * Computes the data timeout parameters according to the
665 * correct algorithm given the card type.
666 */
mmc_set_data_timeout(struct mmc_data * data,const struct mmc_card * card)667 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
668 {
669 unsigned int mult;
670
671 /*
672 * SDIO cards only define an upper 1 s limit on access.
673 */
674 if (mmc_card_sdio(card)) {
675 data->timeout_ns = 1000000000;
676 data->timeout_clks = 0;
677 return;
678 }
679
680 /*
681 * SD cards use a 100 multiplier rather than 10
682 */
683 mult = mmc_card_sd(card) ? 100 : 10;
684
685 /*
686 * Scale up the multiplier (and therefore the timeout) by
687 * the r2w factor for writes.
688 */
689 if (data->flags & MMC_DATA_WRITE)
690 mult <<= card->csd.r2w_factor;
691
692 data->timeout_ns = card->csd.taac_ns * mult;
693 data->timeout_clks = card->csd.taac_clks * mult;
694
695 /*
696 * SD cards also have an upper limit on the timeout.
697 */
698 if (mmc_card_sd(card)) {
699 unsigned int timeout_us, limit_us;
700
701 timeout_us = data->timeout_ns / 1000;
702 if (card->host->ios.clock)
703 timeout_us += data->timeout_clks * 1000 /
704 (card->host->ios.clock / 1000);
705
706 if (data->flags & MMC_DATA_WRITE)
707 /*
708 * The MMC spec "It is strongly recommended
709 * for hosts to implement more than 500ms
710 * timeout value even if the card indicates
711 * the 250ms maximum busy length." Even the
712 * previous value of 300ms is known to be
713 * insufficient for some cards.
714 */
715 limit_us = 3000000;
716 else
717 limit_us = 100000;
718
719 /*
720 * SDHC cards always use these fixed values.
721 */
722 if (timeout_us > limit_us) {
723 data->timeout_ns = limit_us * 1000;
724 data->timeout_clks = 0;
725 }
726
727 /* assign limit value if invalid */
728 if (timeout_us == 0)
729 data->timeout_ns = limit_us * 1000;
730 }
731
732 /*
733 * Some cards require longer data read timeout than indicated in CSD.
734 * Address this by setting the read timeout to a "reasonably high"
735 * value. For the cards tested, 600ms has proven enough. If necessary,
736 * this value can be increased if other problematic cards require this.
737 */
738 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
739 data->timeout_ns = 600000000;
740 data->timeout_clks = 0;
741 }
742
743 /*
744 * Some cards need very high timeouts if driven in SPI mode.
745 * The worst observed timeout was 900ms after writing a
746 * continuous stream of data until the internal logic
747 * overflowed.
748 */
749 if (mmc_host_is_spi(card->host)) {
750 if (data->flags & MMC_DATA_WRITE) {
751 if (data->timeout_ns < 1000000000)
752 data->timeout_ns = 1000000000; /* 1s */
753 } else {
754 if (data->timeout_ns < 100000000)
755 data->timeout_ns = 100000000; /* 100ms */
756 }
757 }
758 }
759 EXPORT_SYMBOL(mmc_set_data_timeout);
760
761 /**
762 * mmc_align_data_size - pads a transfer size to a more optimal value
763 * @card: the MMC card associated with the data transfer
764 * @sz: original transfer size
765 *
766 * Pads the original data size with a number of extra bytes in
767 * order to avoid controller bugs and/or performance hits
768 * (e.g. some controllers revert to PIO for certain sizes).
769 *
770 * Returns the improved size, which might be unmodified.
771 *
772 * Note that this function is only relevant when issuing a
773 * single scatter gather entry.
774 */
mmc_align_data_size(struct mmc_card * card,unsigned int sz)775 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
776 {
777 /*
778 * FIXME: We don't have a system for the controller to tell
779 * the core about its problems yet, so for now we just 32-bit
780 * align the size.
781 */
782 sz = ((sz + 3) / 4) * 4;
783
784 return sz;
785 }
786 EXPORT_SYMBOL(mmc_align_data_size);
787
788 /*
789 * Allow claiming an already claimed host if the context is the same or there is
790 * no context but the task is the same.
791 */
mmc_ctx_matches(struct mmc_host * host,struct mmc_ctx * ctx,struct task_struct * task)792 static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
793 struct task_struct *task)
794 {
795 return host->claimer == ctx ||
796 (!ctx && task && host->claimer->task == task);
797 }
798
mmc_ctx_set_claimer(struct mmc_host * host,struct mmc_ctx * ctx,struct task_struct * task)799 static inline void mmc_ctx_set_claimer(struct mmc_host *host,
800 struct mmc_ctx *ctx,
801 struct task_struct *task)
802 {
803 if (!host->claimer) {
804 if (ctx)
805 host->claimer = ctx;
806 else
807 host->claimer = &host->default_ctx;
808 }
809 if (task)
810 host->claimer->task = task;
811 }
812
813 /**
814 * __mmc_claim_host - exclusively claim a host
815 * @host: mmc host to claim
816 * @ctx: context that claims the host or NULL in which case the default
817 * context will be used
818 * @abort: whether or not the operation should be aborted
819 *
820 * Claim a host for a set of operations. If @abort is non null and
821 * dereference a non-zero value then this will return prematurely with
822 * that non-zero value without acquiring the lock. Returns zero
823 * with the lock held otherwise.
824 */
__mmc_claim_host(struct mmc_host * host,struct mmc_ctx * ctx,atomic_t * abort)825 int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
826 atomic_t *abort)
827 {
828 struct task_struct *task = ctx ? NULL : current;
829 DECLARE_WAITQUEUE(wait, current);
830 unsigned long flags;
831 int stop;
832 bool pm = false;
833
834 might_sleep();
835
836 add_wait_queue(&host->wq, &wait);
837 spin_lock_irqsave(&host->lock, flags);
838 while (1) {
839 set_current_state(TASK_UNINTERRUPTIBLE);
840 stop = abort ? atomic_read(abort) : 0;
841 if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
842 break;
843 spin_unlock_irqrestore(&host->lock, flags);
844 schedule();
845 spin_lock_irqsave(&host->lock, flags);
846 }
847 set_current_state(TASK_RUNNING);
848 if (!stop) {
849 host->claimed = 1;
850 mmc_ctx_set_claimer(host, ctx, task);
851 host->claim_cnt += 1;
852 if (host->claim_cnt == 1)
853 pm = true;
854 } else
855 wake_up(&host->wq);
856 spin_unlock_irqrestore(&host->lock, flags);
857 remove_wait_queue(&host->wq, &wait);
858
859 if (pm)
860 pm_runtime_get_sync(mmc_dev(host));
861
862 return stop;
863 }
864 EXPORT_SYMBOL(__mmc_claim_host);
865
866 /**
867 * mmc_release_host - release a host
868 * @host: mmc host to release
869 *
870 * Release a MMC host, allowing others to claim the host
871 * for their operations.
872 */
mmc_release_host(struct mmc_host * host)873 void mmc_release_host(struct mmc_host *host)
874 {
875 unsigned long flags;
876
877 WARN_ON(!host->claimed);
878
879 spin_lock_irqsave(&host->lock, flags);
880 if (--host->claim_cnt) {
881 /* Release for nested claim */
882 spin_unlock_irqrestore(&host->lock, flags);
883 } else {
884 host->claimed = 0;
885 host->claimer->task = NULL;
886 host->claimer = NULL;
887 spin_unlock_irqrestore(&host->lock, flags);
888 wake_up(&host->wq);
889 pm_runtime_mark_last_busy(mmc_dev(host));
890 pm_runtime_put_autosuspend(mmc_dev(host));
891 }
892 }
893 EXPORT_SYMBOL(mmc_release_host);
894
895 /*
896 * This is a helper function, which fetches a runtime pm reference for the
897 * card device and also claims the host.
898 */
mmc_get_card(struct mmc_card * card,struct mmc_ctx * ctx)899 void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
900 {
901 pm_runtime_get_sync(&card->dev);
902 __mmc_claim_host(card->host, ctx, NULL);
903 }
904 EXPORT_SYMBOL(mmc_get_card);
905
906 /*
907 * This is a helper function, which releases the host and drops the runtime
908 * pm reference for the card device.
909 */
mmc_put_card(struct mmc_card * card,struct mmc_ctx * ctx)910 void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
911 {
912 struct mmc_host *host = card->host;
913
914 WARN_ON(ctx && host->claimer != ctx);
915
916 mmc_release_host(host);
917 pm_runtime_mark_last_busy(&card->dev);
918 pm_runtime_put_autosuspend(&card->dev);
919 }
920 EXPORT_SYMBOL(mmc_put_card);
921
922 /*
923 * Internal function that does the actual ios call to the host driver,
924 * optionally printing some debug output.
925 */
mmc_set_ios(struct mmc_host * host)926 static inline void mmc_set_ios(struct mmc_host *host)
927 {
928 struct mmc_ios *ios = &host->ios;
929
930 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
931 "width %u timing %u\n",
932 mmc_hostname(host), ios->clock, ios->bus_mode,
933 ios->power_mode, ios->chip_select, ios->vdd,
934 1 << ios->bus_width, ios->timing);
935
936 host->ops->set_ios(host, ios);
937 }
938
939 /*
940 * Control chip select pin on a host.
941 */
mmc_set_chip_select(struct mmc_host * host,int mode)942 void mmc_set_chip_select(struct mmc_host *host, int mode)
943 {
944 host->ios.chip_select = mode;
945 mmc_set_ios(host);
946 }
947
948 /*
949 * Sets the host clock to the highest possible frequency that
950 * is below "hz".
951 */
mmc_set_clock(struct mmc_host * host,unsigned int hz)952 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
953 {
954 WARN_ON(hz && hz < host->f_min);
955
956 if (hz > host->f_max)
957 hz = host->f_max;
958
959 host->ios.clock = hz;
960 mmc_set_ios(host);
961 }
962
mmc_execute_tuning(struct mmc_card * card)963 int mmc_execute_tuning(struct mmc_card *card)
964 {
965 struct mmc_host *host = card->host;
966 u32 opcode;
967 int err;
968
969 if (!host->ops->execute_tuning)
970 return 0;
971
972 if (host->cqe_on)
973 host->cqe_ops->cqe_off(host);
974
975 if (mmc_card_mmc(card))
976 opcode = MMC_SEND_TUNING_BLOCK_HS200;
977 else
978 opcode = MMC_SEND_TUNING_BLOCK;
979
980 err = host->ops->execute_tuning(host, opcode);
981
982 if (err)
983 pr_err("%s: tuning execution failed: %d\n",
984 mmc_hostname(host), err);
985 else
986 mmc_retune_enable(host);
987
988 return err;
989 }
990
991 /*
992 * Change the bus mode (open drain/push-pull) of a host.
993 */
mmc_set_bus_mode(struct mmc_host * host,unsigned int mode)994 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
995 {
996 host->ios.bus_mode = mode;
997 mmc_set_ios(host);
998 }
999
1000 /*
1001 * Change data bus width of a host.
1002 */
mmc_set_bus_width(struct mmc_host * host,unsigned int width)1003 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1004 {
1005 host->ios.bus_width = width;
1006 mmc_set_ios(host);
1007 }
1008
1009 /*
1010 * Set initial state after a power cycle or a hw_reset.
1011 */
mmc_set_initial_state(struct mmc_host * host)1012 void mmc_set_initial_state(struct mmc_host *host)
1013 {
1014 if (host->cqe_on)
1015 host->cqe_ops->cqe_off(host);
1016
1017 mmc_retune_disable(host);
1018
1019 if (mmc_host_is_spi(host))
1020 host->ios.chip_select = MMC_CS_HIGH;
1021 else
1022 host->ios.chip_select = MMC_CS_DONTCARE;
1023 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1024 host->ios.bus_width = MMC_BUS_WIDTH_1;
1025 host->ios.timing = MMC_TIMING_LEGACY;
1026 host->ios.drv_type = 0;
1027 host->ios.enhanced_strobe = false;
1028
1029 /*
1030 * Make sure we are in non-enhanced strobe mode before we
1031 * actually enable it in ext_csd.
1032 */
1033 if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1034 host->ops->hs400_enhanced_strobe)
1035 host->ops->hs400_enhanced_strobe(host, &host->ios);
1036
1037 mmc_set_ios(host);
1038 }
1039
1040 /**
1041 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1042 * @vdd: voltage (mV)
1043 * @low_bits: prefer low bits in boundary cases
1044 *
1045 * This function returns the OCR bit number according to the provided @vdd
1046 * value. If conversion is not possible a negative errno value returned.
1047 *
1048 * Depending on the @low_bits flag the function prefers low or high OCR bits
1049 * on boundary voltages. For example,
1050 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1051 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1052 *
1053 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1054 */
mmc_vdd_to_ocrbitnum(int vdd,bool low_bits)1055 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1056 {
1057 const int max_bit = ilog2(MMC_VDD_35_36);
1058 int bit;
1059
1060 if (vdd < 1650 || vdd > 3600)
1061 return -EINVAL;
1062
1063 if (vdd >= 1650 && vdd <= 1950)
1064 return ilog2(MMC_VDD_165_195);
1065
1066 if (low_bits)
1067 vdd -= 1;
1068
1069 /* Base 2000 mV, step 100 mV, bit's base 8. */
1070 bit = (vdd - 2000) / 100 + 8;
1071 if (bit > max_bit)
1072 return max_bit;
1073 return bit;
1074 }
1075
1076 /**
1077 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1078 * @vdd_min: minimum voltage value (mV)
1079 * @vdd_max: maximum voltage value (mV)
1080 *
1081 * This function returns the OCR mask bits according to the provided @vdd_min
1082 * and @vdd_max values. If conversion is not possible the function returns 0.
1083 *
1084 * Notes wrt boundary cases:
1085 * This function sets the OCR bits for all boundary voltages, for example
1086 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1087 * MMC_VDD_34_35 mask.
1088 */
mmc_vddrange_to_ocrmask(int vdd_min,int vdd_max)1089 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1090 {
1091 u32 mask = 0;
1092
1093 if (vdd_max < vdd_min)
1094 return 0;
1095
1096 /* Prefer high bits for the boundary vdd_max values. */
1097 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1098 if (vdd_max < 0)
1099 return 0;
1100
1101 /* Prefer low bits for the boundary vdd_min values. */
1102 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1103 if (vdd_min < 0)
1104 return 0;
1105
1106 /* Fill the mask, from max bit to min bit. */
1107 while (vdd_max >= vdd_min)
1108 mask |= 1 << vdd_max--;
1109
1110 return mask;
1111 }
1112 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1113
1114 #ifdef CONFIG_OF
1115
1116 /**
1117 * mmc_of_parse_voltage - return mask of supported voltages
1118 * @np: The device node need to be parsed.
1119 * @mask: mask of voltages available for MMC/SD/SDIO
1120 *
1121 * Parse the "voltage-ranges" DT property, returning zero if it is not
1122 * found, negative errno if the voltage-range specification is invalid,
1123 * or one if the voltage-range is specified and successfully parsed.
1124 */
mmc_of_parse_voltage(struct device_node * np,u32 * mask)1125 int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1126 {
1127 const u32 *voltage_ranges;
1128 int num_ranges, i;
1129
1130 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1131 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1132 if (!voltage_ranges) {
1133 pr_debug("%pOF: voltage-ranges unspecified\n", np);
1134 return 0;
1135 }
1136 if (!num_ranges) {
1137 pr_err("%pOF: voltage-ranges empty\n", np);
1138 return -EINVAL;
1139 }
1140
1141 for (i = 0; i < num_ranges; i++) {
1142 const int j = i * 2;
1143 u32 ocr_mask;
1144
1145 ocr_mask = mmc_vddrange_to_ocrmask(
1146 be32_to_cpu(voltage_ranges[j]),
1147 be32_to_cpu(voltage_ranges[j + 1]));
1148 if (!ocr_mask) {
1149 pr_err("%pOF: voltage-range #%d is invalid\n",
1150 np, i);
1151 return -EINVAL;
1152 }
1153 *mask |= ocr_mask;
1154 }
1155
1156 return 1;
1157 }
1158 EXPORT_SYMBOL(mmc_of_parse_voltage);
1159
1160 #endif /* CONFIG_OF */
1161
mmc_of_get_func_num(struct device_node * node)1162 static int mmc_of_get_func_num(struct device_node *node)
1163 {
1164 u32 reg;
1165 int ret;
1166
1167 ret = of_property_read_u32(node, "reg", ®);
1168 if (ret < 0)
1169 return ret;
1170
1171 return reg;
1172 }
1173
mmc_of_find_child_device(struct mmc_host * host,unsigned func_num)1174 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1175 unsigned func_num)
1176 {
1177 struct device_node *node;
1178
1179 if (!host->parent || !host->parent->of_node)
1180 return NULL;
1181
1182 for_each_child_of_node(host->parent->of_node, node) {
1183 if (mmc_of_get_func_num(node) == func_num)
1184 return node;
1185 }
1186
1187 return NULL;
1188 }
1189
1190 #ifdef CONFIG_REGULATOR
1191
1192 /**
1193 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1194 * @vdd_bit: OCR bit number
1195 * @min_uV: minimum voltage value (mV)
1196 * @max_uV: maximum voltage value (mV)
1197 *
1198 * This function returns the voltage range according to the provided OCR
1199 * bit number. If conversion is not possible a negative errno value returned.
1200 */
mmc_ocrbitnum_to_vdd(int vdd_bit,int * min_uV,int * max_uV)1201 static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
1202 {
1203 int tmp;
1204
1205 if (!vdd_bit)
1206 return -EINVAL;
1207
1208 /*
1209 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1210 * bits this regulator doesn't quite support ... don't
1211 * be too picky, most cards and regulators are OK with
1212 * a 0.1V range goof (it's a small error percentage).
1213 */
1214 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1215 if (tmp == 0) {
1216 *min_uV = 1650 * 1000;
1217 *max_uV = 1950 * 1000;
1218 } else {
1219 *min_uV = 1900 * 1000 + tmp * 100 * 1000;
1220 *max_uV = *min_uV + 100 * 1000;
1221 }
1222
1223 return 0;
1224 }
1225
1226 /**
1227 * mmc_regulator_get_ocrmask - return mask of supported voltages
1228 * @supply: regulator to use
1229 *
1230 * This returns either a negative errno, or a mask of voltages that
1231 * can be provided to MMC/SD/SDIO devices using the specified voltage
1232 * regulator. This would normally be called before registering the
1233 * MMC host adapter.
1234 */
mmc_regulator_get_ocrmask(struct regulator * supply)1235 int mmc_regulator_get_ocrmask(struct regulator *supply)
1236 {
1237 int result = 0;
1238 int count;
1239 int i;
1240 int vdd_uV;
1241 int vdd_mV;
1242
1243 count = regulator_count_voltages(supply);
1244 if (count < 0)
1245 return count;
1246
1247 for (i = 0; i < count; i++) {
1248 vdd_uV = regulator_list_voltage(supply, i);
1249 if (vdd_uV <= 0)
1250 continue;
1251
1252 vdd_mV = vdd_uV / 1000;
1253 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1254 }
1255
1256 if (!result) {
1257 vdd_uV = regulator_get_voltage(supply);
1258 if (vdd_uV <= 0)
1259 return vdd_uV;
1260
1261 vdd_mV = vdd_uV / 1000;
1262 result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1263 }
1264
1265 return result;
1266 }
1267 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1268
1269 /**
1270 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1271 * @mmc: the host to regulate
1272 * @supply: regulator to use
1273 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1274 *
1275 * Returns zero on success, else negative errno.
1276 *
1277 * MMC host drivers may use this to enable or disable a regulator using
1278 * a particular supply voltage. This would normally be called from the
1279 * set_ios() method.
1280 */
mmc_regulator_set_ocr(struct mmc_host * mmc,struct regulator * supply,unsigned short vdd_bit)1281 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1282 struct regulator *supply,
1283 unsigned short vdd_bit)
1284 {
1285 int result = 0;
1286 int min_uV, max_uV;
1287
1288 if (vdd_bit) {
1289 mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);
1290
1291 result = regulator_set_voltage(supply, min_uV, max_uV);
1292 if (result == 0 && !mmc->regulator_enabled) {
1293 result = regulator_enable(supply);
1294 if (!result)
1295 mmc->regulator_enabled = true;
1296 }
1297 } else if (mmc->regulator_enabled) {
1298 result = regulator_disable(supply);
1299 if (result == 0)
1300 mmc->regulator_enabled = false;
1301 }
1302
1303 if (result)
1304 dev_err(mmc_dev(mmc),
1305 "could not set regulator OCR (%d)\n", result);
1306 return result;
1307 }
1308 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1309
mmc_regulator_set_voltage_if_supported(struct regulator * regulator,int min_uV,int target_uV,int max_uV)1310 static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator,
1311 int min_uV, int target_uV,
1312 int max_uV)
1313 {
1314 /*
1315 * Check if supported first to avoid errors since we may try several
1316 * signal levels during power up and don't want to show errors.
1317 */
1318 if (!regulator_is_supported_voltage(regulator, min_uV, max_uV))
1319 return -EINVAL;
1320
1321 return regulator_set_voltage_triplet(regulator, min_uV, target_uV,
1322 max_uV);
1323 }
1324
1325 /**
1326 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1327 *
1328 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1329 * That will match the behavior of old boards where VQMMC and VMMC were supplied
1330 * by the same supply. The Bus Operating conditions for 3.3V signaling in the
1331 * SD card spec also define VQMMC in terms of VMMC.
1332 * If this is not possible we'll try the full 2.7-3.6V of the spec.
1333 *
1334 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1335 * requested voltage. This is definitely a good idea for UHS where there's a
1336 * separate regulator on the card that's trying to make 1.8V and it's best if
1337 * we match.
1338 *
1339 * This function is expected to be used by a controller's
1340 * start_signal_voltage_switch() function.
1341 */
mmc_regulator_set_vqmmc(struct mmc_host * mmc,struct mmc_ios * ios)1342 int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios)
1343 {
1344 struct device *dev = mmc_dev(mmc);
1345 int ret, volt, min_uV, max_uV;
1346
1347 /* If no vqmmc supply then we can't change the voltage */
1348 if (IS_ERR(mmc->supply.vqmmc))
1349 return -EINVAL;
1350
1351 switch (ios->signal_voltage) {
1352 case MMC_SIGNAL_VOLTAGE_120:
1353 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1354 1100000, 1200000, 1300000);
1355 case MMC_SIGNAL_VOLTAGE_180:
1356 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1357 1700000, 1800000, 1950000);
1358 case MMC_SIGNAL_VOLTAGE_330:
1359 ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV);
1360 if (ret < 0)
1361 return ret;
1362
1363 dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n",
1364 __func__, volt, max_uV);
1365
1366 min_uV = max(volt - 300000, 2700000);
1367 max_uV = min(max_uV + 200000, 3600000);
1368
1369 /*
1370 * Due to a limitation in the current implementation of
1371 * regulator_set_voltage_triplet() which is taking the lowest
1372 * voltage possible if below the target, search for a suitable
1373 * voltage in two steps and try to stay close to vmmc
1374 * with a 0.3V tolerance at first.
1375 */
1376 if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1377 min_uV, volt, max_uV))
1378 return 0;
1379
1380 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1381 2700000, volt, 3600000);
1382 default:
1383 return -EINVAL;
1384 }
1385 }
1386 EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc);
1387
1388 #endif /* CONFIG_REGULATOR */
1389
1390 /**
1391 * mmc_regulator_get_supply - try to get VMMC and VQMMC regulators for a host
1392 * @mmc: the host to regulate
1393 *
1394 * Returns 0 or errno. errno should be handled, it is either a critical error
1395 * or -EPROBE_DEFER. 0 means no critical error but it does not mean all
1396 * regulators have been found because they all are optional. If you require
1397 * certain regulators, you need to check separately in your driver if they got
1398 * populated after calling this function.
1399 */
mmc_regulator_get_supply(struct mmc_host * mmc)1400 int mmc_regulator_get_supply(struct mmc_host *mmc)
1401 {
1402 struct device *dev = mmc_dev(mmc);
1403 int ret;
1404
1405 mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1406 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1407
1408 if (IS_ERR(mmc->supply.vmmc)) {
1409 if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1410 return -EPROBE_DEFER;
1411 dev_dbg(dev, "No vmmc regulator found\n");
1412 } else {
1413 ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1414 if (ret > 0)
1415 mmc->ocr_avail = ret;
1416 else
1417 dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1418 }
1419
1420 if (IS_ERR(mmc->supply.vqmmc)) {
1421 if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1422 return -EPROBE_DEFER;
1423 dev_dbg(dev, "No vqmmc regulator found\n");
1424 }
1425
1426 return 0;
1427 }
1428 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1429
1430 /*
1431 * Mask off any voltages we don't support and select
1432 * the lowest voltage
1433 */
mmc_select_voltage(struct mmc_host * host,u32 ocr)1434 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1435 {
1436 int bit;
1437
1438 /*
1439 * Sanity check the voltages that the card claims to
1440 * support.
1441 */
1442 if (ocr & 0x7F) {
1443 dev_warn(mmc_dev(host),
1444 "card claims to support voltages below defined range\n");
1445 ocr &= ~0x7F;
1446 }
1447
1448 ocr &= host->ocr_avail;
1449 if (!ocr) {
1450 dev_warn(mmc_dev(host), "no support for card's volts\n");
1451 return 0;
1452 }
1453
1454 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1455 bit = ffs(ocr) - 1;
1456 ocr &= 3 << bit;
1457 mmc_power_cycle(host, ocr);
1458 } else {
1459 bit = fls(ocr) - 1;
1460 ocr &= 3 << bit;
1461 if (bit != host->ios.vdd)
1462 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1463 }
1464
1465 return ocr;
1466 }
1467
mmc_set_signal_voltage(struct mmc_host * host,int signal_voltage)1468 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1469 {
1470 int err = 0;
1471 int old_signal_voltage = host->ios.signal_voltage;
1472
1473 host->ios.signal_voltage = signal_voltage;
1474 if (host->ops->start_signal_voltage_switch)
1475 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1476
1477 if (err)
1478 host->ios.signal_voltage = old_signal_voltage;
1479
1480 return err;
1481
1482 }
1483
mmc_set_initial_signal_voltage(struct mmc_host * host)1484 void mmc_set_initial_signal_voltage(struct mmc_host *host)
1485 {
1486 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1487 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1488 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1489 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1490 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1491 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1492 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1493 }
1494
mmc_host_set_uhs_voltage(struct mmc_host * host)1495 int mmc_host_set_uhs_voltage(struct mmc_host *host)
1496 {
1497 u32 clock;
1498
1499 /*
1500 * During a signal voltage level switch, the clock must be gated
1501 * for 5 ms according to the SD spec
1502 */
1503 clock = host->ios.clock;
1504 host->ios.clock = 0;
1505 mmc_set_ios(host);
1506
1507 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1508 return -EAGAIN;
1509
1510 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1511 mmc_delay(10);
1512 host->ios.clock = clock;
1513 mmc_set_ios(host);
1514
1515 return 0;
1516 }
1517
mmc_set_uhs_voltage(struct mmc_host * host,u32 ocr)1518 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1519 {
1520 struct mmc_command cmd = {};
1521 int err = 0;
1522
1523 /*
1524 * If we cannot switch voltages, return failure so the caller
1525 * can continue without UHS mode
1526 */
1527 if (!host->ops->start_signal_voltage_switch)
1528 return -EPERM;
1529 if (!host->ops->card_busy)
1530 pr_warn("%s: cannot verify signal voltage switch\n",
1531 mmc_hostname(host));
1532
1533 cmd.opcode = SD_SWITCH_VOLTAGE;
1534 cmd.arg = 0;
1535 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1536
1537 err = mmc_wait_for_cmd(host, &cmd, 0);
1538 if (err)
1539 return err;
1540
1541 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1542 return -EIO;
1543
1544 /*
1545 * The card should drive cmd and dat[0:3] low immediately
1546 * after the response of cmd11, but wait 1 ms to be sure
1547 */
1548 mmc_delay(1);
1549 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1550 err = -EAGAIN;
1551 goto power_cycle;
1552 }
1553
1554 if (mmc_host_set_uhs_voltage(host)) {
1555 /*
1556 * Voltages may not have been switched, but we've already
1557 * sent CMD11, so a power cycle is required anyway
1558 */
1559 err = -EAGAIN;
1560 goto power_cycle;
1561 }
1562
1563 /* Wait for at least 1 ms according to spec */
1564 mmc_delay(1);
1565
1566 /*
1567 * Failure to switch is indicated by the card holding
1568 * dat[0:3] low
1569 */
1570 if (host->ops->card_busy && host->ops->card_busy(host))
1571 err = -EAGAIN;
1572
1573 power_cycle:
1574 if (err) {
1575 pr_debug("%s: Signal voltage switch failed, "
1576 "power cycling card\n", mmc_hostname(host));
1577 mmc_power_cycle(host, ocr);
1578 }
1579
1580 return err;
1581 }
1582
1583 /*
1584 * Select timing parameters for host.
1585 */
mmc_set_timing(struct mmc_host * host,unsigned int timing)1586 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1587 {
1588 host->ios.timing = timing;
1589 mmc_set_ios(host);
1590 }
1591
1592 /*
1593 * Select appropriate driver type for host.
1594 */
mmc_set_driver_type(struct mmc_host * host,unsigned int drv_type)1595 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1596 {
1597 host->ios.drv_type = drv_type;
1598 mmc_set_ios(host);
1599 }
1600
mmc_select_drive_strength(struct mmc_card * card,unsigned int max_dtr,int card_drv_type,int * drv_type)1601 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1602 int card_drv_type, int *drv_type)
1603 {
1604 struct mmc_host *host = card->host;
1605 int host_drv_type = SD_DRIVER_TYPE_B;
1606
1607 *drv_type = 0;
1608
1609 if (!host->ops->select_drive_strength)
1610 return 0;
1611
1612 /* Use SD definition of driver strength for hosts */
1613 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1614 host_drv_type |= SD_DRIVER_TYPE_A;
1615
1616 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1617 host_drv_type |= SD_DRIVER_TYPE_C;
1618
1619 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1620 host_drv_type |= SD_DRIVER_TYPE_D;
1621
1622 /*
1623 * The drive strength that the hardware can support
1624 * depends on the board design. Pass the appropriate
1625 * information and let the hardware specific code
1626 * return what is possible given the options
1627 */
1628 return host->ops->select_drive_strength(card, max_dtr,
1629 host_drv_type,
1630 card_drv_type,
1631 drv_type);
1632 }
1633
1634 /*
1635 * Apply power to the MMC stack. This is a two-stage process.
1636 * First, we enable power to the card without the clock running.
1637 * We then wait a bit for the power to stabilise. Finally,
1638 * enable the bus drivers and clock to the card.
1639 *
1640 * We must _NOT_ enable the clock prior to power stablising.
1641 *
1642 * If a host does all the power sequencing itself, ignore the
1643 * initial MMC_POWER_UP stage.
1644 */
mmc_power_up(struct mmc_host * host,u32 ocr)1645 void mmc_power_up(struct mmc_host *host, u32 ocr)
1646 {
1647 if (host->ios.power_mode == MMC_POWER_ON)
1648 return;
1649
1650 mmc_pwrseq_pre_power_on(host);
1651
1652 host->ios.vdd = fls(ocr) - 1;
1653 host->ios.power_mode = MMC_POWER_UP;
1654 /* Set initial state and call mmc_set_ios */
1655 mmc_set_initial_state(host);
1656
1657 mmc_set_initial_signal_voltage(host);
1658
1659 /*
1660 * This delay should be sufficient to allow the power supply
1661 * to reach the minimum voltage.
1662 */
1663 mmc_delay(host->ios.power_delay_ms);
1664
1665 mmc_pwrseq_post_power_on(host);
1666
1667 host->ios.clock = host->f_init;
1668
1669 host->ios.power_mode = MMC_POWER_ON;
1670 mmc_set_ios(host);
1671
1672 /*
1673 * This delay must be at least 74 clock sizes, or 1 ms, or the
1674 * time required to reach a stable voltage.
1675 */
1676 mmc_delay(host->ios.power_delay_ms);
1677 }
1678
mmc_power_off(struct mmc_host * host)1679 void mmc_power_off(struct mmc_host *host)
1680 {
1681 if (host->ios.power_mode == MMC_POWER_OFF)
1682 return;
1683
1684 mmc_pwrseq_power_off(host);
1685
1686 host->ios.clock = 0;
1687 host->ios.vdd = 0;
1688
1689 host->ios.power_mode = MMC_POWER_OFF;
1690 /* Set initial state and call mmc_set_ios */
1691 mmc_set_initial_state(host);
1692
1693 /*
1694 * Some configurations, such as the 802.11 SDIO card in the OLPC
1695 * XO-1.5, require a short delay after poweroff before the card
1696 * can be successfully turned on again.
1697 */
1698 mmc_delay(1);
1699 }
1700
mmc_power_cycle(struct mmc_host * host,u32 ocr)1701 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1702 {
1703 mmc_power_off(host);
1704 /* Wait at least 1 ms according to SD spec */
1705 mmc_delay(1);
1706 mmc_power_up(host, ocr);
1707 }
1708
1709 /*
1710 * Cleanup when the last reference to the bus operator is dropped.
1711 */
__mmc_release_bus(struct mmc_host * host)1712 static void __mmc_release_bus(struct mmc_host *host)
1713 {
1714 WARN_ON(!host->bus_dead);
1715
1716 host->bus_ops = NULL;
1717 }
1718
1719 /*
1720 * Increase reference count of bus operator
1721 */
mmc_bus_get(struct mmc_host * host)1722 static inline void mmc_bus_get(struct mmc_host *host)
1723 {
1724 unsigned long flags;
1725
1726 spin_lock_irqsave(&host->lock, flags);
1727 host->bus_refs++;
1728 spin_unlock_irqrestore(&host->lock, flags);
1729 }
1730
1731 /*
1732 * Decrease reference count of bus operator and free it if
1733 * it is the last reference.
1734 */
mmc_bus_put(struct mmc_host * host)1735 static inline void mmc_bus_put(struct mmc_host *host)
1736 {
1737 unsigned long flags;
1738
1739 spin_lock_irqsave(&host->lock, flags);
1740 host->bus_refs--;
1741 if ((host->bus_refs == 0) && host->bus_ops)
1742 __mmc_release_bus(host);
1743 spin_unlock_irqrestore(&host->lock, flags);
1744 }
1745
1746 /*
1747 * Assign a mmc bus handler to a host. Only one bus handler may control a
1748 * host at any given time.
1749 */
mmc_attach_bus(struct mmc_host * host,const struct mmc_bus_ops * ops)1750 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1751 {
1752 unsigned long flags;
1753
1754 WARN_ON(!host->claimed);
1755
1756 spin_lock_irqsave(&host->lock, flags);
1757
1758 WARN_ON(host->bus_ops);
1759 WARN_ON(host->bus_refs);
1760
1761 host->bus_ops = ops;
1762 host->bus_refs = 1;
1763 host->bus_dead = 0;
1764
1765 spin_unlock_irqrestore(&host->lock, flags);
1766 }
1767
1768 /*
1769 * Remove the current bus handler from a host.
1770 */
mmc_detach_bus(struct mmc_host * host)1771 void mmc_detach_bus(struct mmc_host *host)
1772 {
1773 unsigned long flags;
1774
1775 WARN_ON(!host->claimed);
1776 WARN_ON(!host->bus_ops);
1777
1778 spin_lock_irqsave(&host->lock, flags);
1779
1780 host->bus_dead = 1;
1781
1782 spin_unlock_irqrestore(&host->lock, flags);
1783
1784 mmc_bus_put(host);
1785 }
1786
_mmc_detect_change(struct mmc_host * host,unsigned long delay,bool cd_irq)1787 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1788 bool cd_irq)
1789 {
1790 /*
1791 * If the device is configured as wakeup, we prevent a new sleep for
1792 * 5 s to give provision for user space to consume the event.
1793 */
1794 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1795 device_can_wakeup(mmc_dev(host)))
1796 pm_wakeup_event(mmc_dev(host), 5000);
1797
1798 host->detect_change = 1;
1799 mmc_schedule_delayed_work(&host->detect, delay);
1800 }
1801
1802 /**
1803 * mmc_detect_change - process change of state on a MMC socket
1804 * @host: host which changed state.
1805 * @delay: optional delay to wait before detection (jiffies)
1806 *
1807 * MMC drivers should call this when they detect a card has been
1808 * inserted or removed. The MMC layer will confirm that any
1809 * present card is still functional, and initialize any newly
1810 * inserted.
1811 */
mmc_detect_change(struct mmc_host * host,unsigned long delay)1812 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1813 {
1814 _mmc_detect_change(host, delay, true);
1815 }
1816 EXPORT_SYMBOL(mmc_detect_change);
1817
mmc_init_erase(struct mmc_card * card)1818 void mmc_init_erase(struct mmc_card *card)
1819 {
1820 unsigned int sz;
1821
1822 if (is_power_of_2(card->erase_size))
1823 card->erase_shift = ffs(card->erase_size) - 1;
1824 else
1825 card->erase_shift = 0;
1826
1827 /*
1828 * It is possible to erase an arbitrarily large area of an SD or MMC
1829 * card. That is not desirable because it can take a long time
1830 * (minutes) potentially delaying more important I/O, and also the
1831 * timeout calculations become increasingly hugely over-estimated.
1832 * Consequently, 'pref_erase' is defined as a guide to limit erases
1833 * to that size and alignment.
1834 *
1835 * For SD cards that define Allocation Unit size, limit erases to one
1836 * Allocation Unit at a time.
1837 * For MMC, have a stab at ai good value and for modern cards it will
1838 * end up being 4MiB. Note that if the value is too small, it can end
1839 * up taking longer to erase. Also note, erase_size is already set to
1840 * High Capacity Erase Size if available when this function is called.
1841 */
1842 if (mmc_card_sd(card) && card->ssr.au) {
1843 card->pref_erase = card->ssr.au;
1844 card->erase_shift = ffs(card->ssr.au) - 1;
1845 } else if (card->erase_size) {
1846 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1847 if (sz < 128)
1848 card->pref_erase = 512 * 1024 / 512;
1849 else if (sz < 512)
1850 card->pref_erase = 1024 * 1024 / 512;
1851 else if (sz < 1024)
1852 card->pref_erase = 2 * 1024 * 1024 / 512;
1853 else
1854 card->pref_erase = 4 * 1024 * 1024 / 512;
1855 if (card->pref_erase < card->erase_size)
1856 card->pref_erase = card->erase_size;
1857 else {
1858 sz = card->pref_erase % card->erase_size;
1859 if (sz)
1860 card->pref_erase += card->erase_size - sz;
1861 }
1862 } else
1863 card->pref_erase = 0;
1864 }
1865
mmc_mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1866 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1867 unsigned int arg, unsigned int qty)
1868 {
1869 unsigned int erase_timeout;
1870
1871 if (arg == MMC_DISCARD_ARG ||
1872 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1873 erase_timeout = card->ext_csd.trim_timeout;
1874 } else if (card->ext_csd.erase_group_def & 1) {
1875 /* High Capacity Erase Group Size uses HC timeouts */
1876 if (arg == MMC_TRIM_ARG)
1877 erase_timeout = card->ext_csd.trim_timeout;
1878 else
1879 erase_timeout = card->ext_csd.hc_erase_timeout;
1880 } else {
1881 /* CSD Erase Group Size uses write timeout */
1882 unsigned int mult = (10 << card->csd.r2w_factor);
1883 unsigned int timeout_clks = card->csd.taac_clks * mult;
1884 unsigned int timeout_us;
1885
1886 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1887 if (card->csd.taac_ns < 1000000)
1888 timeout_us = (card->csd.taac_ns * mult) / 1000;
1889 else
1890 timeout_us = (card->csd.taac_ns / 1000) * mult;
1891
1892 /*
1893 * ios.clock is only a target. The real clock rate might be
1894 * less but not that much less, so fudge it by multiplying by 2.
1895 */
1896 timeout_clks <<= 1;
1897 timeout_us += (timeout_clks * 1000) /
1898 (card->host->ios.clock / 1000);
1899
1900 erase_timeout = timeout_us / 1000;
1901
1902 /*
1903 * Theoretically, the calculation could underflow so round up
1904 * to 1ms in that case.
1905 */
1906 if (!erase_timeout)
1907 erase_timeout = 1;
1908 }
1909
1910 /* Multiplier for secure operations */
1911 if (arg & MMC_SECURE_ARGS) {
1912 if (arg == MMC_SECURE_ERASE_ARG)
1913 erase_timeout *= card->ext_csd.sec_erase_mult;
1914 else
1915 erase_timeout *= card->ext_csd.sec_trim_mult;
1916 }
1917
1918 erase_timeout *= qty;
1919
1920 /*
1921 * Ensure at least a 1 second timeout for SPI as per
1922 * 'mmc_set_data_timeout()'
1923 */
1924 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1925 erase_timeout = 1000;
1926
1927 return erase_timeout;
1928 }
1929
mmc_sd_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1930 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1931 unsigned int arg,
1932 unsigned int qty)
1933 {
1934 unsigned int erase_timeout;
1935
1936 if (card->ssr.erase_timeout) {
1937 /* Erase timeout specified in SD Status Register (SSR) */
1938 erase_timeout = card->ssr.erase_timeout * qty +
1939 card->ssr.erase_offset;
1940 } else {
1941 /*
1942 * Erase timeout not specified in SD Status Register (SSR) so
1943 * use 250ms per write block.
1944 */
1945 erase_timeout = 250 * qty;
1946 }
1947
1948 /* Must not be less than 1 second */
1949 if (erase_timeout < 1000)
1950 erase_timeout = 1000;
1951
1952 return erase_timeout;
1953 }
1954
mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1955 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1956 unsigned int arg,
1957 unsigned int qty)
1958 {
1959 if (mmc_card_sd(card))
1960 return mmc_sd_erase_timeout(card, arg, qty);
1961 else
1962 return mmc_mmc_erase_timeout(card, arg, qty);
1963 }
1964
mmc_do_erase(struct mmc_card * card,unsigned int from,unsigned int to,unsigned int arg)1965 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1966 unsigned int to, unsigned int arg)
1967 {
1968 struct mmc_command cmd = {};
1969 unsigned int qty = 0, busy_timeout = 0;
1970 bool use_r1b_resp = false;
1971 unsigned long timeout;
1972 int loop_udelay=64, udelay_max=32768;
1973 int err;
1974
1975 mmc_retune_hold(card->host);
1976
1977 /*
1978 * qty is used to calculate the erase timeout which depends on how many
1979 * erase groups (or allocation units in SD terminology) are affected.
1980 * We count erasing part of an erase group as one erase group.
1981 * For SD, the allocation units are always a power of 2. For MMC, the
1982 * erase group size is almost certainly also power of 2, but it does not
1983 * seem to insist on that in the JEDEC standard, so we fall back to
1984 * division in that case. SD may not specify an allocation unit size,
1985 * in which case the timeout is based on the number of write blocks.
1986 *
1987 * Note that the timeout for secure trim 2 will only be correct if the
1988 * number of erase groups specified is the same as the total of all
1989 * preceding secure trim 1 commands. Since the power may have been
1990 * lost since the secure trim 1 commands occurred, it is generally
1991 * impossible to calculate the secure trim 2 timeout correctly.
1992 */
1993 if (card->erase_shift)
1994 qty += ((to >> card->erase_shift) -
1995 (from >> card->erase_shift)) + 1;
1996 else if (mmc_card_sd(card))
1997 qty += to - from + 1;
1998 else
1999 qty += ((to / card->erase_size) -
2000 (from / card->erase_size)) + 1;
2001
2002 if (!mmc_card_blockaddr(card)) {
2003 from <<= 9;
2004 to <<= 9;
2005 }
2006
2007 if (mmc_card_sd(card))
2008 cmd.opcode = SD_ERASE_WR_BLK_START;
2009 else
2010 cmd.opcode = MMC_ERASE_GROUP_START;
2011 cmd.arg = from;
2012 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2013 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2014 if (err) {
2015 pr_err("mmc_erase: group start error %d, "
2016 "status %#x\n", err, cmd.resp[0]);
2017 err = -EIO;
2018 goto out;
2019 }
2020
2021 memset(&cmd, 0, sizeof(struct mmc_command));
2022 if (mmc_card_sd(card))
2023 cmd.opcode = SD_ERASE_WR_BLK_END;
2024 else
2025 cmd.opcode = MMC_ERASE_GROUP_END;
2026 cmd.arg = to;
2027 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2028 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2029 if (err) {
2030 pr_err("mmc_erase: group end error %d, status %#x\n",
2031 err, cmd.resp[0]);
2032 err = -EIO;
2033 goto out;
2034 }
2035
2036 memset(&cmd, 0, sizeof(struct mmc_command));
2037 cmd.opcode = MMC_ERASE;
2038 cmd.arg = arg;
2039 busy_timeout = mmc_erase_timeout(card, arg, qty);
2040 /*
2041 * If the host controller supports busy signalling and the timeout for
2042 * the erase operation does not exceed the max_busy_timeout, we should
2043 * use R1B response. Or we need to prevent the host from doing hw busy
2044 * detection, which is done by converting to a R1 response instead.
2045 */
2046 if (card->host->max_busy_timeout &&
2047 busy_timeout > card->host->max_busy_timeout) {
2048 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2049 } else {
2050 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2051 cmd.busy_timeout = busy_timeout;
2052 use_r1b_resp = true;
2053 }
2054
2055 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2056 if (err) {
2057 pr_err("mmc_erase: erase error %d, status %#x\n",
2058 err, cmd.resp[0]);
2059 err = -EIO;
2060 goto out;
2061 }
2062
2063 if (mmc_host_is_spi(card->host))
2064 goto out;
2065
2066 /*
2067 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
2068 * shall be avoided.
2069 */
2070 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
2071 goto out;
2072
2073 timeout = jiffies + msecs_to_jiffies(busy_timeout);
2074 do {
2075 memset(&cmd, 0, sizeof(struct mmc_command));
2076 cmd.opcode = MMC_SEND_STATUS;
2077 cmd.arg = card->rca << 16;
2078 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2079 /* Do not retry else we can't see errors */
2080 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2081 if (err || R1_STATUS(cmd.resp[0])) {
2082 pr_err("error %d requesting status %#x\n",
2083 err, cmd.resp[0]);
2084 err = -EIO;
2085 goto out;
2086 }
2087
2088 /* Timeout if the device never becomes ready for data and
2089 * never leaves the program state.
2090 */
2091 if (time_after(jiffies, timeout)) {
2092 pr_err("%s: Card stuck in programming state! %s\n",
2093 mmc_hostname(card->host), __func__);
2094 err = -EIO;
2095 goto out;
2096 }
2097 if ((cmd.resp[0] & R1_READY_FOR_DATA) &&
2098 R1_CURRENT_STATE(cmd.resp[0]) != R1_STATE_PRG)
2099 break;
2100
2101 usleep_range(loop_udelay, loop_udelay*2);
2102 if (loop_udelay < udelay_max)
2103 loop_udelay *= 2;
2104 } while (1);
2105
2106 out:
2107 mmc_retune_release(card->host);
2108 return err;
2109 }
2110
mmc_align_erase_size(struct mmc_card * card,unsigned int * from,unsigned int * to,unsigned int nr)2111 static unsigned int mmc_align_erase_size(struct mmc_card *card,
2112 unsigned int *from,
2113 unsigned int *to,
2114 unsigned int nr)
2115 {
2116 unsigned int from_new = *from, nr_new = nr, rem;
2117
2118 /*
2119 * When the 'card->erase_size' is power of 2, we can use round_up/down()
2120 * to align the erase size efficiently.
2121 */
2122 if (is_power_of_2(card->erase_size)) {
2123 unsigned int temp = from_new;
2124
2125 from_new = round_up(temp, card->erase_size);
2126 rem = from_new - temp;
2127
2128 if (nr_new > rem)
2129 nr_new -= rem;
2130 else
2131 return 0;
2132
2133 nr_new = round_down(nr_new, card->erase_size);
2134 } else {
2135 rem = from_new % card->erase_size;
2136 if (rem) {
2137 rem = card->erase_size - rem;
2138 from_new += rem;
2139 if (nr_new > rem)
2140 nr_new -= rem;
2141 else
2142 return 0;
2143 }
2144
2145 rem = nr_new % card->erase_size;
2146 if (rem)
2147 nr_new -= rem;
2148 }
2149
2150 if (nr_new == 0)
2151 return 0;
2152
2153 *to = from_new + nr_new;
2154 *from = from_new;
2155
2156 return nr_new;
2157 }
2158
2159 /**
2160 * mmc_erase - erase sectors.
2161 * @card: card to erase
2162 * @from: first sector to erase
2163 * @nr: number of sectors to erase
2164 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2165 *
2166 * Caller must claim host before calling this function.
2167 */
mmc_erase(struct mmc_card * card,unsigned int from,unsigned int nr,unsigned int arg)2168 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2169 unsigned int arg)
2170 {
2171 unsigned int rem, to = from + nr;
2172 int err;
2173
2174 if (!(card->host->caps & MMC_CAP_ERASE) ||
2175 !(card->csd.cmdclass & CCC_ERASE))
2176 return -EOPNOTSUPP;
2177
2178 if (!card->erase_size)
2179 return -EOPNOTSUPP;
2180
2181 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2182 return -EOPNOTSUPP;
2183
2184 if ((arg & MMC_SECURE_ARGS) &&
2185 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2186 return -EOPNOTSUPP;
2187
2188 if ((arg & MMC_TRIM_ARGS) &&
2189 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2190 return -EOPNOTSUPP;
2191
2192 if (arg == MMC_SECURE_ERASE_ARG) {
2193 if (from % card->erase_size || nr % card->erase_size)
2194 return -EINVAL;
2195 }
2196
2197 if (arg == MMC_ERASE_ARG)
2198 nr = mmc_align_erase_size(card, &from, &to, nr);
2199
2200 if (nr == 0)
2201 return 0;
2202
2203 if (to <= from)
2204 return -EINVAL;
2205
2206 /* 'from' and 'to' are inclusive */
2207 to -= 1;
2208
2209 /*
2210 * Special case where only one erase-group fits in the timeout budget:
2211 * If the region crosses an erase-group boundary on this particular
2212 * case, we will be trimming more than one erase-group which, does not
2213 * fit in the timeout budget of the controller, so we need to split it
2214 * and call mmc_do_erase() twice if necessary. This special case is
2215 * identified by the card->eg_boundary flag.
2216 */
2217 rem = card->erase_size - (from % card->erase_size);
2218 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
2219 err = mmc_do_erase(card, from, from + rem - 1, arg);
2220 from += rem;
2221 if ((err) || (to <= from))
2222 return err;
2223 }
2224
2225 return mmc_do_erase(card, from, to, arg);
2226 }
2227 EXPORT_SYMBOL(mmc_erase);
2228
mmc_can_erase(struct mmc_card * card)2229 int mmc_can_erase(struct mmc_card *card)
2230 {
2231 if ((card->host->caps & MMC_CAP_ERASE) &&
2232 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2233 return 1;
2234 return 0;
2235 }
2236 EXPORT_SYMBOL(mmc_can_erase);
2237
mmc_can_trim(struct mmc_card * card)2238 int mmc_can_trim(struct mmc_card *card)
2239 {
2240 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
2241 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
2242 return 1;
2243 return 0;
2244 }
2245 EXPORT_SYMBOL(mmc_can_trim);
2246
mmc_can_discard(struct mmc_card * card)2247 int mmc_can_discard(struct mmc_card *card)
2248 {
2249 /*
2250 * As there's no way to detect the discard support bit at v4.5
2251 * use the s/w feature support filed.
2252 */
2253 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2254 return 1;
2255 return 0;
2256 }
2257 EXPORT_SYMBOL(mmc_can_discard);
2258
mmc_can_sanitize(struct mmc_card * card)2259 int mmc_can_sanitize(struct mmc_card *card)
2260 {
2261 if (!mmc_can_trim(card) && !mmc_can_erase(card))
2262 return 0;
2263 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2264 return 1;
2265 return 0;
2266 }
2267 EXPORT_SYMBOL(mmc_can_sanitize);
2268
mmc_can_secure_erase_trim(struct mmc_card * card)2269 int mmc_can_secure_erase_trim(struct mmc_card *card)
2270 {
2271 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2272 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2273 return 1;
2274 return 0;
2275 }
2276 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2277
mmc_erase_group_aligned(struct mmc_card * card,unsigned int from,unsigned int nr)2278 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2279 unsigned int nr)
2280 {
2281 if (!card->erase_size)
2282 return 0;
2283 if (from % card->erase_size || nr % card->erase_size)
2284 return 0;
2285 return 1;
2286 }
2287 EXPORT_SYMBOL(mmc_erase_group_aligned);
2288
mmc_do_calc_max_discard(struct mmc_card * card,unsigned int arg)2289 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2290 unsigned int arg)
2291 {
2292 struct mmc_host *host = card->host;
2293 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
2294 unsigned int last_timeout = 0;
2295 unsigned int max_busy_timeout = host->max_busy_timeout ?
2296 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
2297
2298 if (card->erase_shift) {
2299 max_qty = UINT_MAX >> card->erase_shift;
2300 min_qty = card->pref_erase >> card->erase_shift;
2301 } else if (mmc_card_sd(card)) {
2302 max_qty = UINT_MAX;
2303 min_qty = card->pref_erase;
2304 } else {
2305 max_qty = UINT_MAX / card->erase_size;
2306 min_qty = card->pref_erase / card->erase_size;
2307 }
2308
2309 /*
2310 * We should not only use 'host->max_busy_timeout' as the limitation
2311 * when deciding the max discard sectors. We should set a balance value
2312 * to improve the erase speed, and it can not get too long timeout at
2313 * the same time.
2314 *
2315 * Here we set 'card->pref_erase' as the minimal discard sectors no
2316 * matter what size of 'host->max_busy_timeout', but if the
2317 * 'host->max_busy_timeout' is large enough for more discard sectors,
2318 * then we can continue to increase the max discard sectors until we
2319 * get a balance value. In cases when the 'host->max_busy_timeout'
2320 * isn't specified, use the default max erase timeout.
2321 */
2322 do {
2323 y = 0;
2324 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2325 timeout = mmc_erase_timeout(card, arg, qty + x);
2326
2327 if (qty + x > min_qty && timeout > max_busy_timeout)
2328 break;
2329
2330 if (timeout < last_timeout)
2331 break;
2332 last_timeout = timeout;
2333 y = x;
2334 }
2335 qty += y;
2336 } while (y);
2337
2338 if (!qty)
2339 return 0;
2340
2341 /*
2342 * When specifying a sector range to trim, chances are we might cross
2343 * an erase-group boundary even if the amount of sectors is less than
2344 * one erase-group.
2345 * If we can only fit one erase-group in the controller timeout budget,
2346 * we have to care that erase-group boundaries are not crossed by a
2347 * single trim operation. We flag that special case with "eg_boundary".
2348 * In all other cases we can just decrement qty and pretend that we
2349 * always touch (qty + 1) erase-groups as a simple optimization.
2350 */
2351 if (qty == 1)
2352 card->eg_boundary = 1;
2353 else
2354 qty--;
2355
2356 /* Convert qty to sectors */
2357 if (card->erase_shift)
2358 max_discard = qty << card->erase_shift;
2359 else if (mmc_card_sd(card))
2360 max_discard = qty + 1;
2361 else
2362 max_discard = qty * card->erase_size;
2363
2364 return max_discard;
2365 }
2366
mmc_calc_max_discard(struct mmc_card * card)2367 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2368 {
2369 struct mmc_host *host = card->host;
2370 unsigned int max_discard, max_trim;
2371
2372 /*
2373 * Without erase_group_def set, MMC erase timeout depends on clock
2374 * frequence which can change. In that case, the best choice is
2375 * just the preferred erase size.
2376 */
2377 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2378 return card->pref_erase;
2379
2380 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2381 if (max_discard && mmc_can_trim(card)) {
2382 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2383 if (max_trim < max_discard)
2384 max_discard = max_trim;
2385 } else if (max_discard < card->erase_size) {
2386 max_discard = 0;
2387 }
2388 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2389 mmc_hostname(host), max_discard, host->max_busy_timeout ?
2390 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2391 return max_discard;
2392 }
2393 EXPORT_SYMBOL(mmc_calc_max_discard);
2394
mmc_card_is_blockaddr(struct mmc_card * card)2395 bool mmc_card_is_blockaddr(struct mmc_card *card)
2396 {
2397 return card ? mmc_card_blockaddr(card) : false;
2398 }
2399 EXPORT_SYMBOL(mmc_card_is_blockaddr);
2400
mmc_set_blocklen(struct mmc_card * card,unsigned int blocklen)2401 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2402 {
2403 struct mmc_command cmd = {};
2404
2405 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2406 mmc_card_hs400(card) || mmc_card_hs400es(card))
2407 return 0;
2408
2409 cmd.opcode = MMC_SET_BLOCKLEN;
2410 cmd.arg = blocklen;
2411 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2412 return mmc_wait_for_cmd(card->host, &cmd, 5);
2413 }
2414 EXPORT_SYMBOL(mmc_set_blocklen);
2415
mmc_set_blockcount(struct mmc_card * card,unsigned int blockcount,bool is_rel_write)2416 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2417 bool is_rel_write)
2418 {
2419 struct mmc_command cmd = {};
2420
2421 cmd.opcode = MMC_SET_BLOCK_COUNT;
2422 cmd.arg = blockcount & 0x0000FFFF;
2423 if (is_rel_write)
2424 cmd.arg |= 1 << 31;
2425 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2426 return mmc_wait_for_cmd(card->host, &cmd, 5);
2427 }
2428 EXPORT_SYMBOL(mmc_set_blockcount);
2429
mmc_hw_reset_for_init(struct mmc_host * host)2430 static void mmc_hw_reset_for_init(struct mmc_host *host)
2431 {
2432 mmc_pwrseq_reset(host);
2433
2434 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2435 return;
2436 host->ops->hw_reset(host);
2437 }
2438
mmc_hw_reset(struct mmc_host * host)2439 int mmc_hw_reset(struct mmc_host *host)
2440 {
2441 int ret;
2442
2443 if (!host->card)
2444 return -EINVAL;
2445
2446 mmc_bus_get(host);
2447 if (!host->bus_ops || host->bus_dead || !host->bus_ops->hw_reset) {
2448 mmc_bus_put(host);
2449 return -EOPNOTSUPP;
2450 }
2451
2452 ret = host->bus_ops->hw_reset(host);
2453 mmc_bus_put(host);
2454
2455 if (ret)
2456 pr_warn("%s: tried to HW reset card, got error %d\n",
2457 mmc_hostname(host), ret);
2458
2459 return ret;
2460 }
2461 EXPORT_SYMBOL(mmc_hw_reset);
2462
mmc_sw_reset(struct mmc_host * host)2463 int mmc_sw_reset(struct mmc_host *host)
2464 {
2465 int ret;
2466
2467 if (!host->card)
2468 return -EINVAL;
2469
2470 mmc_bus_get(host);
2471 if (!host->bus_ops || host->bus_dead || !host->bus_ops->sw_reset) {
2472 mmc_bus_put(host);
2473 return -EOPNOTSUPP;
2474 }
2475
2476 ret = host->bus_ops->sw_reset(host);
2477 mmc_bus_put(host);
2478
2479 if (ret)
2480 pr_warn("%s: tried to SW reset card, got error %d\n",
2481 mmc_hostname(host), ret);
2482
2483 return ret;
2484 }
2485 EXPORT_SYMBOL(mmc_sw_reset);
2486
mmc_rescan_try_freq(struct mmc_host * host,unsigned freq)2487 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2488 {
2489 host->f_init = freq;
2490
2491 pr_debug("%s: %s: trying to init card at %u Hz\n",
2492 mmc_hostname(host), __func__, host->f_init);
2493
2494 mmc_power_up(host, host->ocr_avail);
2495
2496 /*
2497 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2498 * do a hardware reset if possible.
2499 */
2500 mmc_hw_reset_for_init(host);
2501
2502 /*
2503 * sdio_reset sends CMD52 to reset card. Since we do not know
2504 * if the card is being re-initialized, just send it. CMD52
2505 * should be ignored by SD/eMMC cards.
2506 * Skip it if we already know that we do not support SDIO commands
2507 */
2508 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2509 sdio_reset(host);
2510
2511 mmc_go_idle(host);
2512
2513 if (!(host->caps2 & MMC_CAP2_NO_SD))
2514 mmc_send_if_cond(host, host->ocr_avail);
2515
2516 /* Order's important: probe SDIO, then SD, then MMC */
2517 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2518 if (!mmc_attach_sdio(host))
2519 return 0;
2520
2521 if (!(host->caps2 & MMC_CAP2_NO_SD))
2522 if (!mmc_attach_sd(host))
2523 return 0;
2524
2525 if (!(host->caps2 & MMC_CAP2_NO_MMC))
2526 if (!mmc_attach_mmc(host))
2527 return 0;
2528
2529 mmc_power_off(host);
2530 return -EIO;
2531 }
2532
_mmc_detect_card_removed(struct mmc_host * host)2533 int _mmc_detect_card_removed(struct mmc_host *host)
2534 {
2535 int ret;
2536
2537 if (!host->card || mmc_card_removed(host->card))
2538 return 1;
2539
2540 ret = host->bus_ops->alive(host);
2541
2542 /*
2543 * Card detect status and alive check may be out of sync if card is
2544 * removed slowly, when card detect switch changes while card/slot
2545 * pads are still contacted in hardware (refer to "SD Card Mechanical
2546 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2547 * detect work 200ms later for this case.
2548 */
2549 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2550 mmc_detect_change(host, msecs_to_jiffies(200));
2551 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2552 }
2553
2554 if (ret) {
2555 mmc_card_set_removed(host->card);
2556 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2557 }
2558
2559 return ret;
2560 }
2561
mmc_detect_card_removed(struct mmc_host * host)2562 int mmc_detect_card_removed(struct mmc_host *host)
2563 {
2564 struct mmc_card *card = host->card;
2565 int ret;
2566
2567 WARN_ON(!host->claimed);
2568
2569 if (!card)
2570 return 1;
2571
2572 if (!mmc_card_is_removable(host))
2573 return 0;
2574
2575 ret = mmc_card_removed(card);
2576 /*
2577 * The card will be considered unchanged unless we have been asked to
2578 * detect a change or host requires polling to provide card detection.
2579 */
2580 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2581 return ret;
2582
2583 host->detect_change = 0;
2584 if (!ret) {
2585 ret = _mmc_detect_card_removed(host);
2586 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2587 /*
2588 * Schedule a detect work as soon as possible to let a
2589 * rescan handle the card removal.
2590 */
2591 cancel_delayed_work(&host->detect);
2592 _mmc_detect_change(host, 0, false);
2593 }
2594 }
2595
2596 return ret;
2597 }
2598 EXPORT_SYMBOL(mmc_detect_card_removed);
2599
mmc_rescan(struct work_struct * work)2600 void mmc_rescan(struct work_struct *work)
2601 {
2602 struct mmc_host *host =
2603 container_of(work, struct mmc_host, detect.work);
2604 int i;
2605
2606 if (host->rescan_disable)
2607 return;
2608
2609 /* If there is a non-removable card registered, only scan once */
2610 if (!mmc_card_is_removable(host) && host->rescan_entered)
2611 return;
2612 host->rescan_entered = 1;
2613
2614 if (host->trigger_card_event && host->ops->card_event) {
2615 mmc_claim_host(host);
2616 host->ops->card_event(host);
2617 mmc_release_host(host);
2618 host->trigger_card_event = false;
2619 }
2620
2621 mmc_bus_get(host);
2622
2623 /*
2624 * if there is a _removable_ card registered, check whether it is
2625 * still present
2626 */
2627 if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host))
2628 host->bus_ops->detect(host);
2629
2630 host->detect_change = 0;
2631
2632 /*
2633 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2634 * the card is no longer present.
2635 */
2636 mmc_bus_put(host);
2637 mmc_bus_get(host);
2638
2639 /* if there still is a card present, stop here */
2640 if (host->bus_ops != NULL) {
2641 mmc_bus_put(host);
2642 goto out;
2643 }
2644
2645 /*
2646 * Only we can add a new handler, so it's safe to
2647 * release the lock here.
2648 */
2649 mmc_bus_put(host);
2650
2651 mmc_claim_host(host);
2652 if (mmc_card_is_removable(host) && host->ops->get_cd &&
2653 host->ops->get_cd(host) == 0) {
2654 mmc_power_off(host);
2655 mmc_release_host(host);
2656 goto out;
2657 }
2658
2659 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2660 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2661 break;
2662 if (freqs[i] <= host->f_min)
2663 break;
2664 }
2665 mmc_release_host(host);
2666
2667 out:
2668 if (host->caps & MMC_CAP_NEEDS_POLL)
2669 mmc_schedule_delayed_work(&host->detect, HZ);
2670 }
2671
mmc_start_host(struct mmc_host * host)2672 void mmc_start_host(struct mmc_host *host)
2673 {
2674 host->f_init = max(freqs[0], host->f_min);
2675 host->rescan_disable = 0;
2676 host->ios.power_mode = MMC_POWER_UNDEFINED;
2677
2678 if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2679 mmc_claim_host(host);
2680 mmc_power_up(host, host->ocr_avail);
2681 mmc_release_host(host);
2682 }
2683
2684 mmc_gpiod_request_cd_irq(host);
2685 _mmc_detect_change(host, 0, false);
2686 }
2687
mmc_stop_host(struct mmc_host * host)2688 void mmc_stop_host(struct mmc_host *host)
2689 {
2690 if (host->slot.cd_irq >= 0) {
2691 mmc_gpio_set_cd_wake(host, false);
2692 disable_irq(host->slot.cd_irq);
2693 }
2694
2695 host->rescan_disable = 1;
2696 cancel_delayed_work_sync(&host->detect);
2697
2698 /* clear pm flags now and let card drivers set them as needed */
2699 host->pm_flags = 0;
2700
2701 mmc_bus_get(host);
2702 if (host->bus_ops && !host->bus_dead) {
2703 /* Calling bus_ops->remove() with a claimed host can deadlock */
2704 host->bus_ops->remove(host);
2705 mmc_claim_host(host);
2706 mmc_detach_bus(host);
2707 mmc_power_off(host);
2708 mmc_release_host(host);
2709 mmc_bus_put(host);
2710 return;
2711 }
2712 mmc_bus_put(host);
2713
2714 mmc_claim_host(host);
2715 mmc_power_off(host);
2716 mmc_release_host(host);
2717 }
2718
2719 #ifdef CONFIG_PM_SLEEP
2720 /* Do the card removal on suspend if card is assumed removeable
2721 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2722 to sync the card.
2723 */
mmc_pm_notify(struct notifier_block * notify_block,unsigned long mode,void * unused)2724 static int mmc_pm_notify(struct notifier_block *notify_block,
2725 unsigned long mode, void *unused)
2726 {
2727 struct mmc_host *host = container_of(
2728 notify_block, struct mmc_host, pm_notify);
2729 unsigned long flags;
2730 int err = 0;
2731
2732 switch (mode) {
2733 case PM_HIBERNATION_PREPARE:
2734 case PM_SUSPEND_PREPARE:
2735 case PM_RESTORE_PREPARE:
2736 spin_lock_irqsave(&host->lock, flags);
2737 host->rescan_disable = 1;
2738 spin_unlock_irqrestore(&host->lock, flags);
2739 cancel_delayed_work_sync(&host->detect);
2740
2741 if (!host->bus_ops)
2742 break;
2743
2744 /* Validate prerequisites for suspend */
2745 if (host->bus_ops->pre_suspend)
2746 err = host->bus_ops->pre_suspend(host);
2747 if (!err)
2748 break;
2749
2750 if (!mmc_card_is_removable(host)) {
2751 dev_warn(mmc_dev(host),
2752 "pre_suspend failed for non-removable host: "
2753 "%d\n", err);
2754 /* Avoid removing non-removable hosts */
2755 break;
2756 }
2757
2758 /* Calling bus_ops->remove() with a claimed host can deadlock */
2759 host->bus_ops->remove(host);
2760 mmc_claim_host(host);
2761 mmc_detach_bus(host);
2762 mmc_power_off(host);
2763 mmc_release_host(host);
2764 host->pm_flags = 0;
2765 break;
2766
2767 case PM_POST_SUSPEND:
2768 case PM_POST_HIBERNATION:
2769 case PM_POST_RESTORE:
2770
2771 spin_lock_irqsave(&host->lock, flags);
2772 host->rescan_disable = 0;
2773 spin_unlock_irqrestore(&host->lock, flags);
2774 _mmc_detect_change(host, 0, false);
2775
2776 }
2777
2778 return 0;
2779 }
2780
mmc_register_pm_notifier(struct mmc_host * host)2781 void mmc_register_pm_notifier(struct mmc_host *host)
2782 {
2783 host->pm_notify.notifier_call = mmc_pm_notify;
2784 register_pm_notifier(&host->pm_notify);
2785 }
2786
mmc_unregister_pm_notifier(struct mmc_host * host)2787 void mmc_unregister_pm_notifier(struct mmc_host *host)
2788 {
2789 unregister_pm_notifier(&host->pm_notify);
2790 }
2791 #endif
2792
mmc_init(void)2793 static int __init mmc_init(void)
2794 {
2795 int ret;
2796
2797 ret = mmc_register_bus();
2798 if (ret)
2799 return ret;
2800
2801 ret = mmc_register_host_class();
2802 if (ret)
2803 goto unregister_bus;
2804
2805 ret = sdio_register_bus();
2806 if (ret)
2807 goto unregister_host_class;
2808
2809 return 0;
2810
2811 unregister_host_class:
2812 mmc_unregister_host_class();
2813 unregister_bus:
2814 mmc_unregister_bus();
2815 return ret;
2816 }
2817
mmc_exit(void)2818 static void __exit mmc_exit(void)
2819 {
2820 sdio_unregister_bus();
2821 mmc_unregister_host_class();
2822 mmc_unregister_bus();
2823 }
2824
2825 subsys_initcall(mmc_init);
2826 module_exit(mmc_exit);
2827
2828 MODULE_LICENSE("GPL");
2829