1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/mmc/core/sd.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
8 */
9
10 #include <linux/err.h>
11 #include <linux/sizes.h>
12 #include <linux/slab.h>
13 #include <linux/stat.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/random.h>
16 #include <linux/scatterlist.h>
17 #include <linux/sysfs.h>
18
19 #include <linux/mmc/host.h>
20 #include <linux/mmc/card.h>
21 #include <linux/mmc/mmc.h>
22 #include <linux/mmc/sd.h>
23
24 #include "core.h"
25 #include "card.h"
26 #include "host.h"
27 #include "bus.h"
28 #include "mmc_ops.h"
29 #include "sd.h"
30 #include "sd_ops.h"
31
32 static const unsigned int tran_exp[] = {
33 10000, 100000, 1000000, 10000000,
34 0, 0, 0, 0
35 };
36
37 static const unsigned char tran_mant[] = {
38 0, 10, 12, 13, 15, 20, 25, 30,
39 35, 40, 45, 50, 55, 60, 70, 80,
40 };
41
42 static const unsigned int taac_exp[] = {
43 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
44 };
45
46 static const unsigned int taac_mant[] = {
47 0, 10, 12, 13, 15, 20, 25, 30,
48 35, 40, 45, 50, 55, 60, 70, 80,
49 };
50
51 static const unsigned int sd_au_size[] = {
52 0, SZ_16K / 512, SZ_32K / 512, SZ_64K / 512,
53 SZ_128K / 512, SZ_256K / 512, SZ_512K / 512, SZ_1M / 512,
54 SZ_2M / 512, SZ_4M / 512, SZ_8M / 512, (SZ_8M + SZ_4M) / 512,
55 SZ_16M / 512, (SZ_16M + SZ_8M) / 512, SZ_32M / 512, SZ_64M / 512,
56 };
57
58 #define UNSTUFF_BITS(resp,start,size) \
59 ({ \
60 const int __size = size; \
61 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
62 const int __off = 3 - ((start) / 32); \
63 const int __shft = (start) & 31; \
64 u32 __res; \
65 \
66 __res = resp[__off] >> __shft; \
67 if (__size + __shft > 32) \
68 __res |= resp[__off-1] << ((32 - __shft) % 32); \
69 __res & __mask; \
70 })
71
72 #define SD_POWEROFF_NOTIFY_TIMEOUT_MS 1000
73 #define SD_WRITE_EXTR_SINGLE_TIMEOUT_MS 1000
74
75 struct sd_busy_data {
76 struct mmc_card *card;
77 u8 *reg_buf;
78 };
79
80 /*
81 * Given the decoded CSD structure, decode the raw CID to our CID structure.
82 */
mmc_decode_cid(struct mmc_card * card)83 void mmc_decode_cid(struct mmc_card *card)
84 {
85 u32 *resp = card->raw_cid;
86
87 /*
88 * Add the raw card ID (cid) data to the entropy pool. It doesn't
89 * matter that not all of it is unique, it's just bonus entropy.
90 */
91 add_device_randomness(&card->raw_cid, sizeof(card->raw_cid));
92
93 /*
94 * SD doesn't currently have a version field so we will
95 * have to assume we can parse this.
96 */
97 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8);
98 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16);
99 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
100 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
101 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
102 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
103 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
104 card->cid.hwrev = UNSTUFF_BITS(resp, 60, 4);
105 card->cid.fwrev = UNSTUFF_BITS(resp, 56, 4);
106 card->cid.serial = UNSTUFF_BITS(resp, 24, 32);
107 card->cid.year = UNSTUFF_BITS(resp, 12, 8);
108 card->cid.month = UNSTUFF_BITS(resp, 8, 4);
109
110 card->cid.year += 2000; /* SD cards year offset */
111 }
112
113 /*
114 * Given a 128-bit response, decode to our card CSD structure.
115 */
mmc_decode_csd(struct mmc_card * card)116 static int mmc_decode_csd(struct mmc_card *card)
117 {
118 struct mmc_csd *csd = &card->csd;
119 unsigned int e, m, csd_struct;
120 u32 *resp = card->raw_csd;
121
122 csd_struct = UNSTUFF_BITS(resp, 126, 2);
123
124 switch (csd_struct) {
125 case 0:
126 m = UNSTUFF_BITS(resp, 115, 4);
127 e = UNSTUFF_BITS(resp, 112, 3);
128 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10;
129 csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100;
130
131 m = UNSTUFF_BITS(resp, 99, 4);
132 e = UNSTUFF_BITS(resp, 96, 3);
133 csd->max_dtr = tran_exp[e] * tran_mant[m];
134 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
135
136 e = UNSTUFF_BITS(resp, 47, 3);
137 m = UNSTUFF_BITS(resp, 62, 12);
138 csd->capacity = (1 + m) << (e + 2);
139
140 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
141 csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
142 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
143 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
144 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
145 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
146 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
147 csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
148
149 if (UNSTUFF_BITS(resp, 46, 1)) {
150 csd->erase_size = 1;
151 } else if (csd->write_blkbits >= 9) {
152 csd->erase_size = UNSTUFF_BITS(resp, 39, 7) + 1;
153 csd->erase_size <<= csd->write_blkbits - 9;
154 }
155
156 if (UNSTUFF_BITS(resp, 13, 1))
157 mmc_card_set_readonly(card);
158 break;
159 case 1:
160 /*
161 * This is a block-addressed SDHC or SDXC card. Most
162 * interesting fields are unused and have fixed
163 * values. To avoid getting tripped by buggy cards,
164 * we assume those fixed values ourselves.
165 */
166 mmc_card_set_blockaddr(card);
167
168 csd->taac_ns = 0; /* Unused */
169 csd->taac_clks = 0; /* Unused */
170
171 m = UNSTUFF_BITS(resp, 99, 4);
172 e = UNSTUFF_BITS(resp, 96, 3);
173 csd->max_dtr = tran_exp[e] * tran_mant[m];
174 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
175 csd->c_size = UNSTUFF_BITS(resp, 48, 22);
176
177 /* SDXC cards have a minimum C_SIZE of 0x00FFFF */
178 if (csd->c_size >= 0xFFFF)
179 mmc_card_set_ext_capacity(card);
180
181 m = UNSTUFF_BITS(resp, 48, 22);
182 csd->capacity = (1 + m) << 10;
183
184 csd->read_blkbits = 9;
185 csd->read_partial = 0;
186 csd->write_misalign = 0;
187 csd->read_misalign = 0;
188 csd->r2w_factor = 4; /* Unused */
189 csd->write_blkbits = 9;
190 csd->write_partial = 0;
191 csd->erase_size = 1;
192
193 if (UNSTUFF_BITS(resp, 13, 1))
194 mmc_card_set_readonly(card);
195 break;
196 default:
197 pr_err("%s: unrecognised CSD structure version %d\n",
198 mmc_hostname(card->host), csd_struct);
199 return -EINVAL;
200 }
201
202 card->erase_size = csd->erase_size;
203
204 return 0;
205 }
206
207 /*
208 * Given a 64-bit response, decode to our card SCR structure.
209 */
mmc_decode_scr(struct mmc_card * card)210 static int mmc_decode_scr(struct mmc_card *card)
211 {
212 struct sd_scr *scr = &card->scr;
213 unsigned int scr_struct;
214 u32 resp[4];
215
216 resp[3] = card->raw_scr[1];
217 resp[2] = card->raw_scr[0];
218
219 scr_struct = UNSTUFF_BITS(resp, 60, 4);
220 if (scr_struct != 0) {
221 pr_err("%s: unrecognised SCR structure version %d\n",
222 mmc_hostname(card->host), scr_struct);
223 return -EINVAL;
224 }
225
226 scr->sda_vsn = UNSTUFF_BITS(resp, 56, 4);
227 scr->bus_widths = UNSTUFF_BITS(resp, 48, 4);
228 if (scr->sda_vsn == SCR_SPEC_VER_2)
229 /* Check if Physical Layer Spec v3.0 is supported */
230 scr->sda_spec3 = UNSTUFF_BITS(resp, 47, 1);
231
232 if (scr->sda_spec3) {
233 scr->sda_spec4 = UNSTUFF_BITS(resp, 42, 1);
234 scr->sda_specx = UNSTUFF_BITS(resp, 38, 4);
235 }
236
237 if (UNSTUFF_BITS(resp, 55, 1))
238 card->erased_byte = 0xFF;
239 else
240 card->erased_byte = 0x0;
241
242 if (scr->sda_spec4)
243 scr->cmds = UNSTUFF_BITS(resp, 32, 4);
244 else if (scr->sda_spec3)
245 scr->cmds = UNSTUFF_BITS(resp, 32, 2);
246
247 /* SD Spec says: any SD Card shall set at least bits 0 and 2 */
248 if (!(scr->bus_widths & SD_SCR_BUS_WIDTH_1) ||
249 !(scr->bus_widths & SD_SCR_BUS_WIDTH_4)) {
250 pr_err("%s: invalid bus width\n", mmc_hostname(card->host));
251 return -EINVAL;
252 }
253
254 return 0;
255 }
256
257 /*
258 * Fetch and process SD Status register.
259 */
mmc_read_ssr(struct mmc_card * card)260 static int mmc_read_ssr(struct mmc_card *card)
261 {
262 unsigned int au, es, et, eo;
263 __be32 *raw_ssr;
264 u32 resp[4] = {};
265 u8 discard_support;
266 int i;
267
268 if (!(card->csd.cmdclass & CCC_APP_SPEC)) {
269 pr_warn("%s: card lacks mandatory SD Status function\n",
270 mmc_hostname(card->host));
271 return 0;
272 }
273
274 raw_ssr = kmalloc(sizeof(card->raw_ssr), GFP_KERNEL);
275 if (!raw_ssr)
276 return -ENOMEM;
277
278 if (mmc_app_sd_status(card, raw_ssr)) {
279 pr_warn("%s: problem reading SD Status register\n",
280 mmc_hostname(card->host));
281 kfree(raw_ssr);
282 return 0;
283 }
284
285 for (i = 0; i < 16; i++)
286 card->raw_ssr[i] = be32_to_cpu(raw_ssr[i]);
287
288 kfree(raw_ssr);
289
290 /*
291 * UNSTUFF_BITS only works with four u32s so we have to offset the
292 * bitfield positions accordingly.
293 */
294 au = UNSTUFF_BITS(card->raw_ssr, 428 - 384, 4);
295 if (au) {
296 if (au <= 9 || card->scr.sda_spec3) {
297 card->ssr.au = sd_au_size[au];
298 es = UNSTUFF_BITS(card->raw_ssr, 408 - 384, 16);
299 et = UNSTUFF_BITS(card->raw_ssr, 402 - 384, 6);
300 if (es && et) {
301 eo = UNSTUFF_BITS(card->raw_ssr, 400 - 384, 2);
302 card->ssr.erase_timeout = (et * 1000) / es;
303 card->ssr.erase_offset = eo * 1000;
304 }
305 } else {
306 pr_warn("%s: SD Status: Invalid Allocation Unit size\n",
307 mmc_hostname(card->host));
308 }
309 }
310
311 /*
312 * starting SD5.1 discard is supported if DISCARD_SUPPORT (b313) is set
313 */
314 resp[3] = card->raw_ssr[6];
315 discard_support = UNSTUFF_BITS(resp, 313 - 288, 1);
316 card->erase_arg = (card->scr.sda_specx && discard_support) ?
317 SD_DISCARD_ARG : SD_ERASE_ARG;
318
319 return 0;
320 }
321
322 /*
323 * Fetches and decodes switch information
324 */
mmc_read_switch(struct mmc_card * card)325 static int mmc_read_switch(struct mmc_card *card)
326 {
327 int err;
328 u8 *status;
329
330 if (card->scr.sda_vsn < SCR_SPEC_VER_1)
331 return 0;
332
333 if (!(card->csd.cmdclass & CCC_SWITCH)) {
334 pr_warn("%s: card lacks mandatory switch function, performance might suffer\n",
335 mmc_hostname(card->host));
336 return 0;
337 }
338
339 status = kmalloc(64, GFP_KERNEL);
340 if (!status)
341 return -ENOMEM;
342
343 /*
344 * Find out the card's support bits with a mode 0 operation.
345 * The argument does not matter, as the support bits do not
346 * change with the arguments.
347 */
348 err = mmc_sd_switch(card, 0, 0, 0, status);
349 if (err) {
350 /*
351 * If the host or the card can't do the switch,
352 * fail more gracefully.
353 */
354 if (err != -EINVAL && err != -ENOSYS && err != -EFAULT)
355 goto out;
356
357 pr_warn("%s: problem reading Bus Speed modes\n",
358 mmc_hostname(card->host));
359 err = 0;
360
361 goto out;
362 }
363
364 if (status[13] & SD_MODE_HIGH_SPEED)
365 card->sw_caps.hs_max_dtr = HIGH_SPEED_MAX_DTR;
366
367 if (card->scr.sda_spec3) {
368 card->sw_caps.sd3_bus_mode = status[13];
369 /* Driver Strengths supported by the card */
370 card->sw_caps.sd3_drv_type = status[9];
371 card->sw_caps.sd3_curr_limit = status[7] | status[6] << 8;
372 }
373
374 out:
375 kfree(status);
376
377 return err;
378 }
379
380 /*
381 * Test if the card supports high-speed mode and, if so, switch to it.
382 */
mmc_sd_switch_hs(struct mmc_card * card)383 int mmc_sd_switch_hs(struct mmc_card *card)
384 {
385 int err;
386 u8 *status;
387
388 if (card->scr.sda_vsn < SCR_SPEC_VER_1)
389 return 0;
390
391 if (!(card->csd.cmdclass & CCC_SWITCH))
392 return 0;
393
394 if (!(card->host->caps & MMC_CAP_SD_HIGHSPEED))
395 return 0;
396
397 if (card->sw_caps.hs_max_dtr == 0)
398 return 0;
399
400 status = kmalloc(64, GFP_KERNEL);
401 if (!status)
402 return -ENOMEM;
403
404 err = mmc_sd_switch(card, 1, 0, HIGH_SPEED_BUS_SPEED, status);
405 if (err)
406 goto out;
407
408 if ((status[16] & 0xF) != HIGH_SPEED_BUS_SPEED) {
409 pr_warn("%s: Problem switching card into high-speed mode!\n",
410 mmc_hostname(card->host));
411 err = 0;
412 } else {
413 err = 1;
414 }
415
416 out:
417 kfree(status);
418
419 return err;
420 }
421
sd_select_driver_type(struct mmc_card * card,u8 * status)422 static int sd_select_driver_type(struct mmc_card *card, u8 *status)
423 {
424 int card_drv_type, drive_strength, drv_type;
425 int err;
426
427 card->drive_strength = 0;
428
429 card_drv_type = card->sw_caps.sd3_drv_type | SD_DRIVER_TYPE_B;
430
431 drive_strength = mmc_select_drive_strength(card,
432 card->sw_caps.uhs_max_dtr,
433 card_drv_type, &drv_type);
434
435 if (drive_strength) {
436 err = mmc_sd_switch(card, 1, 2, drive_strength, status);
437 if (err)
438 return err;
439 if ((status[15] & 0xF) != drive_strength) {
440 pr_warn("%s: Problem setting drive strength!\n",
441 mmc_hostname(card->host));
442 return 0;
443 }
444 card->drive_strength = drive_strength;
445 }
446
447 if (drv_type)
448 mmc_set_driver_type(card->host, drv_type);
449
450 return 0;
451 }
452
sd_update_bus_speed_mode(struct mmc_card * card)453 static void sd_update_bus_speed_mode(struct mmc_card *card)
454 {
455 /*
456 * If the host doesn't support any of the UHS-I modes, fallback on
457 * default speed.
458 */
459 if (!mmc_host_uhs(card->host)) {
460 card->sd_bus_speed = 0;
461 return;
462 }
463
464 if ((card->host->caps & MMC_CAP_UHS_SDR104) &&
465 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR104)) {
466 card->sd_bus_speed = UHS_SDR104_BUS_SPEED;
467 } else if ((card->host->caps & MMC_CAP_UHS_DDR50) &&
468 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_DDR50)) {
469 card->sd_bus_speed = UHS_DDR50_BUS_SPEED;
470 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
471 MMC_CAP_UHS_SDR50)) && (card->sw_caps.sd3_bus_mode &
472 SD_MODE_UHS_SDR50)) {
473 card->sd_bus_speed = UHS_SDR50_BUS_SPEED;
474 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
475 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25)) &&
476 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR25)) {
477 card->sd_bus_speed = UHS_SDR25_BUS_SPEED;
478 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
479 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25 |
480 MMC_CAP_UHS_SDR12)) && (card->sw_caps.sd3_bus_mode &
481 SD_MODE_UHS_SDR12)) {
482 card->sd_bus_speed = UHS_SDR12_BUS_SPEED;
483 }
484 }
485
sd_set_bus_speed_mode(struct mmc_card * card,u8 * status)486 static int sd_set_bus_speed_mode(struct mmc_card *card, u8 *status)
487 {
488 int err;
489 unsigned int timing = 0;
490
491 switch (card->sd_bus_speed) {
492 case UHS_SDR104_BUS_SPEED:
493 timing = MMC_TIMING_UHS_SDR104;
494 card->sw_caps.uhs_max_dtr = UHS_SDR104_MAX_DTR;
495 break;
496 case UHS_DDR50_BUS_SPEED:
497 timing = MMC_TIMING_UHS_DDR50;
498 card->sw_caps.uhs_max_dtr = UHS_DDR50_MAX_DTR;
499 break;
500 case UHS_SDR50_BUS_SPEED:
501 timing = MMC_TIMING_UHS_SDR50;
502 card->sw_caps.uhs_max_dtr = UHS_SDR50_MAX_DTR;
503 break;
504 case UHS_SDR25_BUS_SPEED:
505 timing = MMC_TIMING_UHS_SDR25;
506 card->sw_caps.uhs_max_dtr = UHS_SDR25_MAX_DTR;
507 break;
508 case UHS_SDR12_BUS_SPEED:
509 timing = MMC_TIMING_UHS_SDR12;
510 card->sw_caps.uhs_max_dtr = UHS_SDR12_MAX_DTR;
511 break;
512 default:
513 return 0;
514 }
515
516 err = mmc_sd_switch(card, 1, 0, card->sd_bus_speed, status);
517 if (err)
518 return err;
519
520 if ((status[16] & 0xF) != card->sd_bus_speed)
521 pr_warn("%s: Problem setting bus speed mode!\n",
522 mmc_hostname(card->host));
523 else {
524 mmc_set_timing(card->host, timing);
525 mmc_set_clock(card->host, card->sw_caps.uhs_max_dtr);
526 }
527
528 return 0;
529 }
530
531 /* Get host's max current setting at its current voltage */
sd_get_host_max_current(struct mmc_host * host)532 static u32 sd_get_host_max_current(struct mmc_host *host)
533 {
534 u32 voltage, max_current;
535
536 voltage = 1 << host->ios.vdd;
537 switch (voltage) {
538 case MMC_VDD_165_195:
539 max_current = host->max_current_180;
540 break;
541 case MMC_VDD_29_30:
542 case MMC_VDD_30_31:
543 max_current = host->max_current_300;
544 break;
545 case MMC_VDD_32_33:
546 case MMC_VDD_33_34:
547 max_current = host->max_current_330;
548 break;
549 default:
550 max_current = 0;
551 }
552
553 return max_current;
554 }
555
sd_set_current_limit(struct mmc_card * card,u8 * status)556 static int sd_set_current_limit(struct mmc_card *card, u8 *status)
557 {
558 int current_limit = SD_SET_CURRENT_NO_CHANGE;
559 int err;
560 u32 max_current;
561
562 /*
563 * Current limit switch is only defined for SDR50, SDR104, and DDR50
564 * bus speed modes. For other bus speed modes, we do not change the
565 * current limit.
566 */
567 if ((card->sd_bus_speed != UHS_SDR50_BUS_SPEED) &&
568 (card->sd_bus_speed != UHS_SDR104_BUS_SPEED) &&
569 (card->sd_bus_speed != UHS_DDR50_BUS_SPEED))
570 return 0;
571
572 /*
573 * Host has different current capabilities when operating at
574 * different voltages, so find out its max current first.
575 */
576 max_current = sd_get_host_max_current(card->host);
577
578 /*
579 * We only check host's capability here, if we set a limit that is
580 * higher than the card's maximum current, the card will be using its
581 * maximum current, e.g. if the card's maximum current is 300ma, and
582 * when we set current limit to 200ma, the card will draw 200ma, and
583 * when we set current limit to 400/600/800ma, the card will draw its
584 * maximum 300ma from the host.
585 *
586 * The above is incorrect: if we try to set a current limit that is
587 * not supported by the card, the card can rightfully error out the
588 * attempt, and remain at the default current limit. This results
589 * in a 300mA card being limited to 200mA even though the host
590 * supports 800mA. Failures seen with SanDisk 8GB UHS cards with
591 * an iMX6 host. --rmk
592 */
593 if (max_current >= 800 &&
594 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_800)
595 current_limit = SD_SET_CURRENT_LIMIT_800;
596 else if (max_current >= 600 &&
597 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_600)
598 current_limit = SD_SET_CURRENT_LIMIT_600;
599 else if (max_current >= 400 &&
600 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_400)
601 current_limit = SD_SET_CURRENT_LIMIT_400;
602 else if (max_current >= 200 &&
603 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_200)
604 current_limit = SD_SET_CURRENT_LIMIT_200;
605
606 if (current_limit != SD_SET_CURRENT_NO_CHANGE) {
607 err = mmc_sd_switch(card, 1, 3, current_limit, status);
608 if (err)
609 return err;
610
611 if (((status[15] >> 4) & 0x0F) != current_limit)
612 pr_warn("%s: Problem setting current limit!\n",
613 mmc_hostname(card->host));
614
615 }
616
617 return 0;
618 }
619
620 /*
621 * UHS-I specific initialization procedure
622 */
mmc_sd_init_uhs_card(struct mmc_card * card)623 static int mmc_sd_init_uhs_card(struct mmc_card *card)
624 {
625 int err;
626 u8 *status;
627
628 if (!(card->csd.cmdclass & CCC_SWITCH))
629 return 0;
630
631 status = kmalloc(64, GFP_KERNEL);
632 if (!status)
633 return -ENOMEM;
634
635 /* Set 4-bit bus width */
636 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4);
637 if (err)
638 goto out;
639
640 mmc_set_bus_width(card->host, MMC_BUS_WIDTH_4);
641
642 /*
643 * Select the bus speed mode depending on host
644 * and card capability.
645 */
646 sd_update_bus_speed_mode(card);
647
648 /* Set the driver strength for the card */
649 err = sd_select_driver_type(card, status);
650 if (err)
651 goto out;
652
653 /* Set current limit for the card */
654 err = sd_set_current_limit(card, status);
655 if (err)
656 goto out;
657
658 /* Set bus speed mode of the card */
659 err = sd_set_bus_speed_mode(card, status);
660 if (err)
661 goto out;
662
663 /*
664 * SPI mode doesn't define CMD19 and tuning is only valid for SDR50 and
665 * SDR104 mode SD-cards. Note that tuning is mandatory for SDR104.
666 */
667 if (!mmc_host_is_spi(card->host) &&
668 (card->host->ios.timing == MMC_TIMING_UHS_SDR50 ||
669 card->host->ios.timing == MMC_TIMING_UHS_DDR50 ||
670 card->host->ios.timing == MMC_TIMING_UHS_SDR104)) {
671 err = mmc_execute_tuning(card);
672
673 /*
674 * As SD Specifications Part1 Physical Layer Specification
675 * Version 3.01 says, CMD19 tuning is available for unlocked
676 * cards in transfer state of 1.8V signaling mode. The small
677 * difference between v3.00 and 3.01 spec means that CMD19
678 * tuning is also available for DDR50 mode.
679 */
680 if (err && card->host->ios.timing == MMC_TIMING_UHS_DDR50) {
681 pr_warn("%s: ddr50 tuning failed\n",
682 mmc_hostname(card->host));
683 err = 0;
684 }
685 }
686
687 out:
688 kfree(status);
689
690 return err;
691 }
692
693 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
694 card->raw_cid[2], card->raw_cid[3]);
695 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
696 card->raw_csd[2], card->raw_csd[3]);
697 MMC_DEV_ATTR(scr, "%08x%08x\n", card->raw_scr[0], card->raw_scr[1]);
698 MMC_DEV_ATTR(ssr,
699 "%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x\n",
700 card->raw_ssr[0], card->raw_ssr[1], card->raw_ssr[2],
701 card->raw_ssr[3], card->raw_ssr[4], card->raw_ssr[5],
702 card->raw_ssr[6], card->raw_ssr[7], card->raw_ssr[8],
703 card->raw_ssr[9], card->raw_ssr[10], card->raw_ssr[11],
704 card->raw_ssr[12], card->raw_ssr[13], card->raw_ssr[14],
705 card->raw_ssr[15]);
706 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
707 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
708 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
709 MMC_DEV_ATTR(fwrev, "0x%x\n", card->cid.fwrev);
710 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
711 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
712 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
713 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
714 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
715 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
716 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
717
718
mmc_dsr_show(struct device * dev,struct device_attribute * attr,char * buf)719 static ssize_t mmc_dsr_show(struct device *dev, struct device_attribute *attr,
720 char *buf)
721 {
722 struct mmc_card *card = mmc_dev_to_card(dev);
723 struct mmc_host *host = card->host;
724
725 if (card->csd.dsr_imp && host->dsr_req)
726 return sysfs_emit(buf, "0x%x\n", host->dsr);
727 /* return default DSR value */
728 return sysfs_emit(buf, "0x%x\n", 0x404);
729 }
730
731 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
732
733 MMC_DEV_ATTR(vendor, "0x%04x\n", card->cis.vendor);
734 MMC_DEV_ATTR(device, "0x%04x\n", card->cis.device);
735 MMC_DEV_ATTR(revision, "%u.%u\n", card->major_rev, card->minor_rev);
736
737 #define sdio_info_attr(num) \
738 static ssize_t info##num##_show(struct device *dev, struct device_attribute *attr, char *buf) \
739 { \
740 struct mmc_card *card = mmc_dev_to_card(dev); \
741 \
742 if (num > card->num_info) \
743 return -ENODATA; \
744 if (!card->info[num - 1][0]) \
745 return 0; \
746 return sysfs_emit(buf, "%s\n", card->info[num - 1]); \
747 } \
748 static DEVICE_ATTR_RO(info##num)
749
750 sdio_info_attr(1);
751 sdio_info_attr(2);
752 sdio_info_attr(3);
753 sdio_info_attr(4);
754
755 static struct attribute *sd_std_attrs[] = {
756 &dev_attr_vendor.attr,
757 &dev_attr_device.attr,
758 &dev_attr_revision.attr,
759 &dev_attr_info1.attr,
760 &dev_attr_info2.attr,
761 &dev_attr_info3.attr,
762 &dev_attr_info4.attr,
763 &dev_attr_cid.attr,
764 &dev_attr_csd.attr,
765 &dev_attr_scr.attr,
766 &dev_attr_ssr.attr,
767 &dev_attr_date.attr,
768 &dev_attr_erase_size.attr,
769 &dev_attr_preferred_erase_size.attr,
770 &dev_attr_fwrev.attr,
771 &dev_attr_hwrev.attr,
772 &dev_attr_manfid.attr,
773 &dev_attr_name.attr,
774 &dev_attr_oemid.attr,
775 &dev_attr_serial.attr,
776 &dev_attr_ocr.attr,
777 &dev_attr_rca.attr,
778 &dev_attr_dsr.attr,
779 NULL,
780 };
781
sd_std_is_visible(struct kobject * kobj,struct attribute * attr,int index)782 static umode_t sd_std_is_visible(struct kobject *kobj, struct attribute *attr,
783 int index)
784 {
785 struct device *dev = kobj_to_dev(kobj);
786 struct mmc_card *card = mmc_dev_to_card(dev);
787
788 /* CIS vendor and device ids, revision and info string are available only for Combo cards */
789 if ((attr == &dev_attr_vendor.attr ||
790 attr == &dev_attr_device.attr ||
791 attr == &dev_attr_revision.attr ||
792 attr == &dev_attr_info1.attr ||
793 attr == &dev_attr_info2.attr ||
794 attr == &dev_attr_info3.attr ||
795 attr == &dev_attr_info4.attr
796 ) &&!mmc_card_sd_combo(card))
797 return 0;
798
799 return attr->mode;
800 }
801
802 static const struct attribute_group sd_std_group = {
803 .attrs = sd_std_attrs,
804 .is_visible = sd_std_is_visible,
805 };
806 __ATTRIBUTE_GROUPS(sd_std);
807
808 struct device_type sd_type = {
809 .groups = sd_std_groups,
810 };
811
812 /*
813 * Fetch CID from card.
814 */
mmc_sd_get_cid(struct mmc_host * host,u32 ocr,u32 * cid,u32 * rocr)815 int mmc_sd_get_cid(struct mmc_host *host, u32 ocr, u32 *cid, u32 *rocr)
816 {
817 int err;
818 u32 max_current;
819 int retries = 10;
820 u32 pocr = ocr;
821
822 try_again:
823 if (!retries) {
824 ocr &= ~SD_OCR_S18R;
825 pr_warn("%s: Skipping voltage switch\n", mmc_hostname(host));
826 }
827
828 /*
829 * Since we're changing the OCR value, we seem to
830 * need to tell some cards to go back to the idle
831 * state. We wait 1ms to give cards time to
832 * respond.
833 */
834 mmc_go_idle(host);
835
836 /*
837 * If SD_SEND_IF_COND indicates an SD 2.0
838 * compliant card and we should set bit 30
839 * of the ocr to indicate that we can handle
840 * block-addressed SDHC cards.
841 */
842 err = mmc_send_if_cond(host, ocr);
843 if (!err)
844 ocr |= SD_OCR_CCS;
845
846 /*
847 * If the host supports one of UHS-I modes, request the card
848 * to switch to 1.8V signaling level. If the card has failed
849 * repeatedly to switch however, skip this.
850 */
851 if (retries && mmc_host_uhs(host))
852 ocr |= SD_OCR_S18R;
853
854 /*
855 * If the host can supply more than 150mA at current voltage,
856 * XPC should be set to 1.
857 */
858 max_current = sd_get_host_max_current(host);
859 if (max_current > 150)
860 ocr |= SD_OCR_XPC;
861
862 err = mmc_send_app_op_cond(host, ocr, rocr);
863 if (err)
864 return err;
865
866 /*
867 * In case the S18A bit is set in the response, let's start the signal
868 * voltage switch procedure. SPI mode doesn't support CMD11.
869 * Note that, according to the spec, the S18A bit is not valid unless
870 * the CCS bit is set as well. We deliberately deviate from the spec in
871 * regards to this, which allows UHS-I to be supported for SDSC cards.
872 */
873 if (!mmc_host_is_spi(host) && (ocr & SD_OCR_S18R) &&
874 rocr && (*rocr & SD_ROCR_S18A)) {
875 err = mmc_set_uhs_voltage(host, pocr);
876 if (err == -EAGAIN) {
877 retries--;
878 goto try_again;
879 } else if (err) {
880 retries = 0;
881 goto try_again;
882 }
883 }
884
885 err = mmc_send_cid(host, cid);
886 return err;
887 }
888
mmc_sd_get_csd(struct mmc_card * card)889 int mmc_sd_get_csd(struct mmc_card *card)
890 {
891 int err;
892
893 /*
894 * Fetch CSD from card.
895 */
896 err = mmc_send_csd(card, card->raw_csd);
897 if (err)
898 return err;
899
900 err = mmc_decode_csd(card);
901 if (err)
902 return err;
903
904 return 0;
905 }
906
mmc_sd_get_ro(struct mmc_host * host)907 static int mmc_sd_get_ro(struct mmc_host *host)
908 {
909 int ro;
910
911 /*
912 * Some systems don't feature a write-protect pin and don't need one.
913 * E.g. because they only have micro-SD card slot. For those systems
914 * assume that the SD card is always read-write.
915 */
916 if (host->caps2 & MMC_CAP2_NO_WRITE_PROTECT)
917 return 0;
918
919 if (!host->ops->get_ro)
920 return -1;
921
922 ro = host->ops->get_ro(host);
923
924 return ro;
925 }
926
mmc_sd_setup_card(struct mmc_host * host,struct mmc_card * card,bool reinit)927 int mmc_sd_setup_card(struct mmc_host *host, struct mmc_card *card,
928 bool reinit)
929 {
930 int err;
931
932 if (!reinit) {
933 /*
934 * Fetch SCR from card.
935 */
936 err = mmc_app_send_scr(card);
937 if (err)
938 return err;
939
940 err = mmc_decode_scr(card);
941 if (err)
942 return err;
943
944 /*
945 * Fetch and process SD Status register.
946 */
947 err = mmc_read_ssr(card);
948 if (err)
949 return err;
950
951 /* Erase init depends on CSD and SSR */
952 mmc_init_erase(card);
953 }
954
955 /*
956 * Fetch switch information from card. Note, sd3_bus_mode can change if
957 * voltage switch outcome changes, so do this always.
958 */
959 err = mmc_read_switch(card);
960 if (err)
961 return err;
962
963 /*
964 * For SPI, enable CRC as appropriate.
965 * This CRC enable is located AFTER the reading of the
966 * card registers because some SDHC cards are not able
967 * to provide valid CRCs for non-512-byte blocks.
968 */
969 if (mmc_host_is_spi(host)) {
970 err = mmc_spi_set_crc(host, use_spi_crc);
971 if (err)
972 return err;
973 }
974
975 /*
976 * Check if read-only switch is active.
977 */
978 if (!reinit) {
979 int ro = mmc_sd_get_ro(host);
980
981 if (ro < 0) {
982 pr_warn("%s: host does not support reading read-only switch, assuming write-enable\n",
983 mmc_hostname(host));
984 } else if (ro > 0) {
985 mmc_card_set_readonly(card);
986 }
987 }
988
989 return 0;
990 }
991
mmc_sd_get_max_clock(struct mmc_card * card)992 unsigned mmc_sd_get_max_clock(struct mmc_card *card)
993 {
994 unsigned max_dtr = (unsigned int)-1;
995
996 if (mmc_card_hs(card)) {
997 if (max_dtr > card->sw_caps.hs_max_dtr)
998 max_dtr = card->sw_caps.hs_max_dtr;
999 } else if (max_dtr > card->csd.max_dtr) {
1000 max_dtr = card->csd.max_dtr;
1001 }
1002
1003 return max_dtr;
1004 }
1005
mmc_sd_card_using_v18(struct mmc_card * card)1006 static bool mmc_sd_card_using_v18(struct mmc_card *card)
1007 {
1008 /*
1009 * According to the SD spec., the Bus Speed Mode (function group 1) bits
1010 * 2 to 4 are zero if the card is initialized at 3.3V signal level. Thus
1011 * they can be used to determine if the card has already switched to
1012 * 1.8V signaling.
1013 */
1014 return card->sw_caps.sd3_bus_mode &
1015 (SD_MODE_UHS_SDR50 | SD_MODE_UHS_SDR104 | SD_MODE_UHS_DDR50);
1016 }
1017
sd_write_ext_reg(struct mmc_card * card,u8 fno,u8 page,u16 offset,u8 reg_data)1018 static int sd_write_ext_reg(struct mmc_card *card, u8 fno, u8 page, u16 offset,
1019 u8 reg_data)
1020 {
1021 struct mmc_host *host = card->host;
1022 struct mmc_request mrq = {};
1023 struct mmc_command cmd = {};
1024 struct mmc_data data = {};
1025 struct scatterlist sg;
1026 u8 *reg_buf;
1027
1028 reg_buf = kzalloc(512, GFP_KERNEL);
1029 if (!reg_buf)
1030 return -ENOMEM;
1031
1032 mrq.cmd = &cmd;
1033 mrq.data = &data;
1034
1035 /*
1036 * Arguments of CMD49:
1037 * [31:31] MIO (0 = memory).
1038 * [30:27] FNO (function number).
1039 * [26:26] MW - mask write mode (0 = disable).
1040 * [25:18] page number.
1041 * [17:9] offset address.
1042 * [8:0] length (0 = 1 byte).
1043 */
1044 cmd.arg = fno << 27 | page << 18 | offset << 9;
1045
1046 /* The first byte in the buffer is the data to be written. */
1047 reg_buf[0] = reg_data;
1048
1049 data.flags = MMC_DATA_WRITE;
1050 data.blksz = 512;
1051 data.blocks = 1;
1052 data.sg = &sg;
1053 data.sg_len = 1;
1054 sg_init_one(&sg, reg_buf, 512);
1055
1056 cmd.opcode = SD_WRITE_EXTR_SINGLE;
1057 cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
1058
1059 mmc_set_data_timeout(&data, card);
1060 mmc_wait_for_req(host, &mrq);
1061
1062 kfree(reg_buf);
1063
1064 /*
1065 * Note that, the SD card is allowed to signal busy on DAT0 up to 1s
1066 * after the CMD49. Although, let's leave this to be managed by the
1067 * caller.
1068 */
1069
1070 if (cmd.error)
1071 return cmd.error;
1072 if (data.error)
1073 return data.error;
1074
1075 return 0;
1076 }
1077
sd_read_ext_reg(struct mmc_card * card,u8 fno,u8 page,u16 offset,u16 len,u8 * reg_buf)1078 static int sd_read_ext_reg(struct mmc_card *card, u8 fno, u8 page,
1079 u16 offset, u16 len, u8 *reg_buf)
1080 {
1081 u32 cmd_args;
1082
1083 /*
1084 * Command arguments of CMD48:
1085 * [31:31] MIO (0 = memory).
1086 * [30:27] FNO (function number).
1087 * [26:26] reserved (0).
1088 * [25:18] page number.
1089 * [17:9] offset address.
1090 * [8:0] length (0 = 1 byte, 1ff = 512 bytes).
1091 */
1092 cmd_args = fno << 27 | page << 18 | offset << 9 | (len -1);
1093
1094 return mmc_send_adtc_data(card, card->host, SD_READ_EXTR_SINGLE,
1095 cmd_args, reg_buf, 512);
1096 }
1097
sd_parse_ext_reg_power(struct mmc_card * card,u8 fno,u8 page,u16 offset)1098 static int sd_parse_ext_reg_power(struct mmc_card *card, u8 fno, u8 page,
1099 u16 offset)
1100 {
1101 int err;
1102 u8 *reg_buf;
1103
1104 reg_buf = kzalloc(512, GFP_KERNEL);
1105 if (!reg_buf)
1106 return -ENOMEM;
1107
1108 /* Read the extension register for power management function. */
1109 err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf);
1110 if (err) {
1111 pr_warn("%s: error %d reading PM func of ext reg\n",
1112 mmc_hostname(card->host), err);
1113 goto out;
1114 }
1115
1116 /* PM revision consists of 4 bits. */
1117 card->ext_power.rev = reg_buf[0] & 0xf;
1118
1119 /* Power Off Notification support at bit 4. */
1120 if (reg_buf[1] & BIT(4))
1121 card->ext_power.feature_support |= SD_EXT_POWER_OFF_NOTIFY;
1122
1123 /* Power Sustenance support at bit 5. */
1124 if (reg_buf[1] & BIT(5))
1125 card->ext_power.feature_support |= SD_EXT_POWER_SUSTENANCE;
1126
1127 /* Power Down Mode support at bit 6. */
1128 if (reg_buf[1] & BIT(6))
1129 card->ext_power.feature_support |= SD_EXT_POWER_DOWN_MODE;
1130
1131 card->ext_power.fno = fno;
1132 card->ext_power.page = page;
1133 card->ext_power.offset = offset;
1134
1135 out:
1136 kfree(reg_buf);
1137 return err;
1138 }
1139
sd_parse_ext_reg_perf(struct mmc_card * card,u8 fno,u8 page,u16 offset)1140 static int sd_parse_ext_reg_perf(struct mmc_card *card, u8 fno, u8 page,
1141 u16 offset)
1142 {
1143 int err;
1144 u8 *reg_buf;
1145
1146 reg_buf = kzalloc(512, GFP_KERNEL);
1147 if (!reg_buf)
1148 return -ENOMEM;
1149
1150 err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf);
1151 if (err) {
1152 pr_warn("%s: error %d reading PERF func of ext reg\n",
1153 mmc_hostname(card->host), err);
1154 goto out;
1155 }
1156
1157 /* PERF revision. */
1158 card->ext_perf.rev = reg_buf[0];
1159
1160 /* FX_EVENT support at bit 0. */
1161 if (reg_buf[1] & BIT(0))
1162 card->ext_perf.feature_support |= SD_EXT_PERF_FX_EVENT;
1163
1164 /* Card initiated self-maintenance support at bit 0. */
1165 if (reg_buf[2] & BIT(0))
1166 card->ext_perf.feature_support |= SD_EXT_PERF_CARD_MAINT;
1167
1168 /* Host initiated self-maintenance support at bit 1. */
1169 if (reg_buf[2] & BIT(1))
1170 card->ext_perf.feature_support |= SD_EXT_PERF_HOST_MAINT;
1171
1172 /* Cache support at bit 0. */
1173 if (reg_buf[4] & BIT(0))
1174 card->ext_perf.feature_support |= SD_EXT_PERF_CACHE;
1175
1176 /* Command queue support indicated via queue depth bits (0 to 4). */
1177 if (reg_buf[6] & 0x1f)
1178 card->ext_perf.feature_support |= SD_EXT_PERF_CMD_QUEUE;
1179
1180 card->ext_perf.fno = fno;
1181 card->ext_perf.page = page;
1182 card->ext_perf.offset = offset;
1183
1184 out:
1185 kfree(reg_buf);
1186 return err;
1187 }
1188
sd_parse_ext_reg(struct mmc_card * card,u8 * gen_info_buf,u16 * next_ext_addr)1189 static int sd_parse_ext_reg(struct mmc_card *card, u8 *gen_info_buf,
1190 u16 *next_ext_addr)
1191 {
1192 u8 num_regs, fno, page;
1193 u16 sfc, offset, ext = *next_ext_addr;
1194 u32 reg_addr;
1195
1196 /*
1197 * Parse only one register set per extension, as that is sufficient to
1198 * support the standard functions. This means another 48 bytes in the
1199 * buffer must be available.
1200 */
1201 if (ext + 48 > 512)
1202 return -EFAULT;
1203
1204 /* Standard Function Code */
1205 memcpy(&sfc, &gen_info_buf[ext], 2);
1206
1207 /* Address to the next extension. */
1208 memcpy(next_ext_addr, &gen_info_buf[ext + 40], 2);
1209
1210 /* Number of registers for this extension. */
1211 num_regs = gen_info_buf[ext + 42];
1212
1213 /* We support only one register per extension. */
1214 if (num_regs != 1)
1215 return 0;
1216
1217 /* Extension register address. */
1218 memcpy(®_addr, &gen_info_buf[ext + 44], 4);
1219
1220 /* 9 bits (0 to 8) contains the offset address. */
1221 offset = reg_addr & 0x1ff;
1222
1223 /* 8 bits (9 to 16) contains the page number. */
1224 page = reg_addr >> 9 & 0xff ;
1225
1226 /* 4 bits (18 to 21) contains the function number. */
1227 fno = reg_addr >> 18 & 0xf;
1228
1229 /* Standard Function Code for power management. */
1230 if (sfc == 0x1)
1231 return sd_parse_ext_reg_power(card, fno, page, offset);
1232
1233 /* Standard Function Code for performance enhancement. */
1234 if (sfc == 0x2)
1235 return sd_parse_ext_reg_perf(card, fno, page, offset);
1236
1237 return 0;
1238 }
1239
sd_read_ext_regs(struct mmc_card * card)1240 static int sd_read_ext_regs(struct mmc_card *card)
1241 {
1242 int err, i;
1243 u8 num_ext, *gen_info_buf;
1244 u16 rev, len, next_ext_addr;
1245
1246 if (mmc_host_is_spi(card->host))
1247 return 0;
1248
1249 if (!(card->scr.cmds & SD_SCR_CMD48_SUPPORT))
1250 return 0;
1251
1252 gen_info_buf = kzalloc(512, GFP_KERNEL);
1253 if (!gen_info_buf)
1254 return -ENOMEM;
1255
1256 /*
1257 * Read 512 bytes of general info, which is found at function number 0,
1258 * at page 0 and with no offset.
1259 */
1260 err = sd_read_ext_reg(card, 0, 0, 0, 512, gen_info_buf);
1261 if (err) {
1262 pr_warn("%s: error %d reading general info of SD ext reg\n",
1263 mmc_hostname(card->host), err);
1264 goto out;
1265 }
1266
1267 /* General info structure revision. */
1268 memcpy(&rev, &gen_info_buf[0], 2);
1269
1270 /* Length of general info in bytes. */
1271 memcpy(&len, &gen_info_buf[2], 2);
1272
1273 /* Number of extensions to be find. */
1274 num_ext = gen_info_buf[4];
1275
1276 /* We support revision 0, but limit it to 512 bytes for simplicity. */
1277 if (rev != 0 || len > 512) {
1278 pr_warn("%s: non-supported SD ext reg layout\n",
1279 mmc_hostname(card->host));
1280 goto out;
1281 }
1282
1283 /*
1284 * Parse the extension registers. The first extension should start
1285 * immediately after the general info header (16 bytes).
1286 */
1287 next_ext_addr = 16;
1288 for (i = 0; i < num_ext; i++) {
1289 err = sd_parse_ext_reg(card, gen_info_buf, &next_ext_addr);
1290 if (err) {
1291 pr_warn("%s: error %d parsing SD ext reg\n",
1292 mmc_hostname(card->host), err);
1293 goto out;
1294 }
1295 }
1296
1297 out:
1298 kfree(gen_info_buf);
1299 return err;
1300 }
1301
sd_cache_enabled(struct mmc_host * host)1302 static bool sd_cache_enabled(struct mmc_host *host)
1303 {
1304 return host->card->ext_perf.feature_enabled & SD_EXT_PERF_CACHE;
1305 }
1306
sd_flush_cache(struct mmc_host * host)1307 static int sd_flush_cache(struct mmc_host *host)
1308 {
1309 struct mmc_card *card = host->card;
1310 u8 *reg_buf, fno, page;
1311 u16 offset;
1312 int err;
1313
1314 if (!sd_cache_enabled(host))
1315 return 0;
1316
1317 reg_buf = kzalloc(512, GFP_KERNEL);
1318 if (!reg_buf)
1319 return -ENOMEM;
1320
1321 /*
1322 * Set Flush Cache at bit 0 in the performance enhancement register at
1323 * 261 bytes offset.
1324 */
1325 fno = card->ext_perf.fno;
1326 page = card->ext_perf.page;
1327 offset = card->ext_perf.offset + 261;
1328
1329 err = sd_write_ext_reg(card, fno, page, offset, BIT(0));
1330 if (err) {
1331 pr_warn("%s: error %d writing Cache Flush bit\n",
1332 mmc_hostname(host), err);
1333 goto out;
1334 }
1335
1336 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false,
1337 MMC_BUSY_EXTR_SINGLE);
1338 if (err)
1339 goto out;
1340
1341 /*
1342 * Read the Flush Cache bit. The card shall reset it, to confirm that
1343 * it's has completed the flushing of the cache.
1344 */
1345 err = sd_read_ext_reg(card, fno, page, offset, 1, reg_buf);
1346 if (err) {
1347 pr_warn("%s: error %d reading Cache Flush bit\n",
1348 mmc_hostname(host), err);
1349 goto out;
1350 }
1351
1352 if (reg_buf[0] & BIT(0))
1353 err = -ETIMEDOUT;
1354 out:
1355 kfree(reg_buf);
1356 return err;
1357 }
1358
sd_enable_cache(struct mmc_card * card)1359 static int sd_enable_cache(struct mmc_card *card)
1360 {
1361 u8 *reg_buf;
1362 int err;
1363
1364 card->ext_perf.feature_enabled &= ~SD_EXT_PERF_CACHE;
1365
1366 reg_buf = kzalloc(512, GFP_KERNEL);
1367 if (!reg_buf)
1368 return -ENOMEM;
1369
1370 /*
1371 * Set Cache Enable at bit 0 in the performance enhancement register at
1372 * 260 bytes offset.
1373 */
1374 err = sd_write_ext_reg(card, card->ext_perf.fno, card->ext_perf.page,
1375 card->ext_perf.offset + 260, BIT(0));
1376 if (err) {
1377 pr_warn("%s: error %d writing Cache Enable bit\n",
1378 mmc_hostname(card->host), err);
1379 goto out;
1380 }
1381
1382 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false,
1383 MMC_BUSY_EXTR_SINGLE);
1384 if (!err)
1385 card->ext_perf.feature_enabled |= SD_EXT_PERF_CACHE;
1386
1387 out:
1388 kfree(reg_buf);
1389 return err;
1390 }
1391
1392 /*
1393 * Handle the detection and initialisation of a card.
1394 *
1395 * In the case of a resume, "oldcard" will contain the card
1396 * we're trying to reinitialise.
1397 */
mmc_sd_init_card(struct mmc_host * host,u32 ocr,struct mmc_card * oldcard)1398 static int mmc_sd_init_card(struct mmc_host *host, u32 ocr,
1399 struct mmc_card *oldcard)
1400 {
1401 struct mmc_card *card;
1402 int err;
1403 u32 cid[4];
1404 u32 rocr = 0;
1405 bool v18_fixup_failed = false;
1406
1407 WARN_ON(!host->claimed);
1408 retry:
1409 err = mmc_sd_get_cid(host, ocr, cid, &rocr);
1410 if (err)
1411 return err;
1412
1413 if (oldcard) {
1414 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1415 pr_debug("%s: Perhaps the card was replaced\n",
1416 mmc_hostname(host));
1417 return -ENOENT;
1418 }
1419
1420 card = oldcard;
1421 } else {
1422 /*
1423 * Allocate card structure.
1424 */
1425 card = mmc_alloc_card(host, &sd_type);
1426 if (IS_ERR(card))
1427 return PTR_ERR(card);
1428
1429 card->ocr = ocr;
1430 card->type = MMC_TYPE_SD;
1431 memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1432 }
1433
1434 /*
1435 * Call the optional HC's init_card function to handle quirks.
1436 */
1437 if (host->ops->init_card)
1438 host->ops->init_card(host, card);
1439
1440 /*
1441 * For native busses: get card RCA and quit open drain mode.
1442 */
1443 if (!mmc_host_is_spi(host)) {
1444 err = mmc_send_relative_addr(host, &card->rca);
1445 if (err)
1446 goto free_card;
1447 }
1448
1449 if (!oldcard) {
1450 err = mmc_sd_get_csd(card);
1451 if (err)
1452 goto free_card;
1453
1454 mmc_decode_cid(card);
1455 }
1456
1457 /*
1458 * handling only for cards supporting DSR and hosts requesting
1459 * DSR configuration
1460 */
1461 if (card->csd.dsr_imp && host->dsr_req)
1462 mmc_set_dsr(host);
1463
1464 /*
1465 * Select card, as all following commands rely on that.
1466 */
1467 if (!mmc_host_is_spi(host)) {
1468 err = mmc_select_card(card);
1469 if (err)
1470 goto free_card;
1471 }
1472
1473 err = mmc_sd_setup_card(host, card, oldcard != NULL);
1474 if (err)
1475 goto free_card;
1476
1477 /*
1478 * If the card has not been power cycled, it may still be using 1.8V
1479 * signaling. Detect that situation and try to initialize a UHS-I (1.8V)
1480 * transfer mode.
1481 */
1482 if (!v18_fixup_failed && !mmc_host_is_spi(host) && mmc_host_uhs(host) &&
1483 mmc_sd_card_using_v18(card) &&
1484 host->ios.signal_voltage != MMC_SIGNAL_VOLTAGE_180) {
1485 if (mmc_host_set_uhs_voltage(host) ||
1486 mmc_sd_init_uhs_card(card)) {
1487 v18_fixup_failed = true;
1488 mmc_power_cycle(host, ocr);
1489 if (!oldcard)
1490 mmc_remove_card(card);
1491 goto retry;
1492 }
1493 goto cont;
1494 }
1495
1496 /* Initialization sequence for UHS-I cards */
1497 if (rocr & SD_ROCR_S18A && mmc_host_uhs(host)) {
1498 err = mmc_sd_init_uhs_card(card);
1499 if (err)
1500 goto free_card;
1501 } else {
1502 /*
1503 * Attempt to change to high-speed (if supported)
1504 */
1505 err = mmc_sd_switch_hs(card);
1506 if (err > 0)
1507 mmc_set_timing(card->host, MMC_TIMING_SD_HS);
1508 else if (err)
1509 goto free_card;
1510
1511 /*
1512 * Set bus speed.
1513 */
1514 mmc_set_clock(host, mmc_sd_get_max_clock(card));
1515
1516 /*
1517 * Switch to wider bus (if supported).
1518 */
1519 if ((host->caps & MMC_CAP_4_BIT_DATA) &&
1520 (card->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) {
1521 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4);
1522 if (err)
1523 goto free_card;
1524
1525 mmc_set_bus_width(host, MMC_BUS_WIDTH_4);
1526 }
1527 }
1528 cont:
1529 if (!oldcard) {
1530 /* Read/parse the extension registers. */
1531 err = sd_read_ext_regs(card);
1532 if (err)
1533 goto free_card;
1534 }
1535
1536 /* Enable internal SD cache if supported. */
1537 if (card->ext_perf.feature_support & SD_EXT_PERF_CACHE) {
1538 err = sd_enable_cache(card);
1539 if (err)
1540 goto free_card;
1541 }
1542
1543 if (host->cqe_ops && !host->cqe_enabled) {
1544 err = host->cqe_ops->cqe_enable(host, card);
1545 if (!err) {
1546 host->cqe_enabled = true;
1547 host->hsq_enabled = true;
1548 pr_info("%s: Host Software Queue enabled\n",
1549 mmc_hostname(host));
1550 }
1551 }
1552
1553 if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1554 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1555 pr_err("%s: Host failed to negotiate down from 3.3V\n",
1556 mmc_hostname(host));
1557 err = -EINVAL;
1558 goto free_card;
1559 }
1560
1561 host->card = card;
1562 return 0;
1563
1564 free_card:
1565 if (!oldcard)
1566 mmc_remove_card(card);
1567
1568 return err;
1569 }
1570
1571 /*
1572 * Host is being removed. Free up the current card.
1573 */
mmc_sd_remove(struct mmc_host * host)1574 static void mmc_sd_remove(struct mmc_host *host)
1575 {
1576 mmc_remove_card(host->card);
1577 host->card = NULL;
1578 }
1579
1580 /*
1581 * Card detection - card is alive.
1582 */
mmc_sd_alive(struct mmc_host * host)1583 static int mmc_sd_alive(struct mmc_host *host)
1584 {
1585 return mmc_send_status(host->card, NULL);
1586 }
1587
1588 /*
1589 * Card detection callback from host.
1590 */
mmc_sd_detect(struct mmc_host * host)1591 static void mmc_sd_detect(struct mmc_host *host)
1592 {
1593 int err;
1594
1595 mmc_get_card(host->card, NULL);
1596
1597 /*
1598 * Just check if our card has been removed.
1599 */
1600 err = _mmc_detect_card_removed(host);
1601
1602 mmc_put_card(host->card, NULL);
1603
1604 if (err) {
1605 mmc_sd_remove(host);
1606
1607 mmc_claim_host(host);
1608 mmc_detach_bus(host);
1609 mmc_power_off(host);
1610 mmc_release_host(host);
1611 }
1612 }
1613
sd_can_poweroff_notify(struct mmc_card * card)1614 static int sd_can_poweroff_notify(struct mmc_card *card)
1615 {
1616 return card->ext_power.feature_support & SD_EXT_POWER_OFF_NOTIFY;
1617 }
1618
sd_busy_poweroff_notify_cb(void * cb_data,bool * busy)1619 static int sd_busy_poweroff_notify_cb(void *cb_data, bool *busy)
1620 {
1621 struct sd_busy_data *data = cb_data;
1622 struct mmc_card *card = data->card;
1623 int err;
1624
1625 /*
1626 * Read the status register for the power management function. It's at
1627 * one byte offset and is one byte long. The Power Off Notification
1628 * Ready is bit 0.
1629 */
1630 err = sd_read_ext_reg(card, card->ext_power.fno, card->ext_power.page,
1631 card->ext_power.offset + 1, 1, data->reg_buf);
1632 if (err) {
1633 pr_warn("%s: error %d reading status reg of PM func\n",
1634 mmc_hostname(card->host), err);
1635 return err;
1636 }
1637
1638 *busy = !(data->reg_buf[0] & BIT(0));
1639 return 0;
1640 }
1641
sd_poweroff_notify(struct mmc_card * card)1642 static int sd_poweroff_notify(struct mmc_card *card)
1643 {
1644 struct sd_busy_data cb_data;
1645 u8 *reg_buf;
1646 int err;
1647
1648 reg_buf = kzalloc(512, GFP_KERNEL);
1649 if (!reg_buf)
1650 return -ENOMEM;
1651
1652 /*
1653 * Set the Power Off Notification bit in the power management settings
1654 * register at 2 bytes offset.
1655 */
1656 err = sd_write_ext_reg(card, card->ext_power.fno, card->ext_power.page,
1657 card->ext_power.offset + 2, BIT(0));
1658 if (err) {
1659 pr_warn("%s: error %d writing Power Off Notify bit\n",
1660 mmc_hostname(card->host), err);
1661 goto out;
1662 }
1663
1664 /* Find out when the command is completed. */
1665 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false,
1666 MMC_BUSY_EXTR_SINGLE);
1667 if (err)
1668 goto out;
1669
1670 cb_data.card = card;
1671 cb_data.reg_buf = reg_buf;
1672 err = __mmc_poll_for_busy(card->host, 0, SD_POWEROFF_NOTIFY_TIMEOUT_MS,
1673 &sd_busy_poweroff_notify_cb, &cb_data);
1674
1675 out:
1676 kfree(reg_buf);
1677 return err;
1678 }
1679
_mmc_sd_suspend(struct mmc_host * host)1680 static int _mmc_sd_suspend(struct mmc_host *host)
1681 {
1682 struct mmc_card *card = host->card;
1683 int err = 0;
1684
1685 mmc_claim_host(host);
1686
1687 if (mmc_card_suspended(card))
1688 goto out;
1689
1690 if (sd_can_poweroff_notify(card))
1691 err = sd_poweroff_notify(card);
1692 else if (!mmc_host_is_spi(host))
1693 err = mmc_deselect_cards(host);
1694
1695 if (!err) {
1696 mmc_power_off(host);
1697 mmc_card_set_suspended(card);
1698 }
1699
1700 out:
1701 mmc_release_host(host);
1702 return err;
1703 }
1704
1705 /*
1706 * Callback for suspend
1707 */
mmc_sd_suspend(struct mmc_host * host)1708 static int mmc_sd_suspend(struct mmc_host *host)
1709 {
1710 int err;
1711
1712 err = _mmc_sd_suspend(host);
1713 if (!err) {
1714 pm_runtime_disable(&host->card->dev);
1715 pm_runtime_set_suspended(&host->card->dev);
1716 }
1717
1718 return err;
1719 }
1720
1721 /*
1722 * This function tries to determine if the same card is still present
1723 * and, if so, restore all state to it.
1724 */
_mmc_sd_resume(struct mmc_host * host)1725 static int _mmc_sd_resume(struct mmc_host *host)
1726 {
1727 int err = 0;
1728
1729 mmc_claim_host(host);
1730
1731 if (!mmc_card_suspended(host->card))
1732 goto out;
1733
1734 mmc_power_up(host, host->card->ocr);
1735 err = mmc_sd_init_card(host, host->card->ocr, host->card);
1736 mmc_card_clr_suspended(host->card);
1737
1738 out:
1739 mmc_release_host(host);
1740 return err;
1741 }
1742
1743 /*
1744 * Callback for resume
1745 */
mmc_sd_resume(struct mmc_host * host)1746 static int mmc_sd_resume(struct mmc_host *host)
1747 {
1748 pm_runtime_enable(&host->card->dev);
1749 return 0;
1750 }
1751
1752 /*
1753 * Callback for runtime_suspend.
1754 */
mmc_sd_runtime_suspend(struct mmc_host * host)1755 static int mmc_sd_runtime_suspend(struct mmc_host *host)
1756 {
1757 int err;
1758
1759 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
1760 return 0;
1761
1762 err = _mmc_sd_suspend(host);
1763 if (err)
1764 pr_err("%s: error %d doing aggressive suspend\n",
1765 mmc_hostname(host), err);
1766
1767 return err;
1768 }
1769
1770 /*
1771 * Callback for runtime_resume.
1772 */
mmc_sd_runtime_resume(struct mmc_host * host)1773 static int mmc_sd_runtime_resume(struct mmc_host *host)
1774 {
1775 int err;
1776
1777 err = _mmc_sd_resume(host);
1778 if (err && err != -ENOMEDIUM)
1779 pr_err("%s: error %d doing runtime resume\n",
1780 mmc_hostname(host), err);
1781
1782 return 0;
1783 }
1784
mmc_sd_hw_reset(struct mmc_host * host)1785 static int mmc_sd_hw_reset(struct mmc_host *host)
1786 {
1787 mmc_power_cycle(host, host->card->ocr);
1788 return mmc_sd_init_card(host, host->card->ocr, host->card);
1789 }
1790
1791 static const struct mmc_bus_ops mmc_sd_ops = {
1792 .remove = mmc_sd_remove,
1793 .detect = mmc_sd_detect,
1794 .runtime_suspend = mmc_sd_runtime_suspend,
1795 .runtime_resume = mmc_sd_runtime_resume,
1796 .suspend = mmc_sd_suspend,
1797 .resume = mmc_sd_resume,
1798 .alive = mmc_sd_alive,
1799 .shutdown = mmc_sd_suspend,
1800 .hw_reset = mmc_sd_hw_reset,
1801 .cache_enabled = sd_cache_enabled,
1802 .flush_cache = sd_flush_cache,
1803 };
1804
1805 /*
1806 * Starting point for SD card init.
1807 */
mmc_attach_sd(struct mmc_host * host)1808 int mmc_attach_sd(struct mmc_host *host)
1809 {
1810 int err;
1811 u32 ocr, rocr;
1812
1813 WARN_ON(!host->claimed);
1814
1815 err = mmc_send_app_op_cond(host, 0, &ocr);
1816 if (err)
1817 return err;
1818
1819 mmc_attach_bus(host, &mmc_sd_ops);
1820 if (host->ocr_avail_sd)
1821 host->ocr_avail = host->ocr_avail_sd;
1822
1823 /*
1824 * We need to get OCR a different way for SPI.
1825 */
1826 if (mmc_host_is_spi(host)) {
1827 mmc_go_idle(host);
1828
1829 err = mmc_spi_read_ocr(host, 0, &ocr);
1830 if (err)
1831 goto err;
1832 }
1833
1834 /*
1835 * Some SD cards claims an out of spec VDD voltage range. Let's treat
1836 * these bits as being in-valid and especially also bit7.
1837 */
1838 ocr &= ~0x7FFF;
1839
1840 rocr = mmc_select_voltage(host, ocr);
1841
1842 /*
1843 * Can we support the voltage(s) of the card(s)?
1844 */
1845 if (!rocr) {
1846 err = -EINVAL;
1847 goto err;
1848 }
1849
1850 /*
1851 * Detect and init the card.
1852 */
1853 err = mmc_sd_init_card(host, rocr, NULL);
1854 if (err)
1855 goto err;
1856
1857 mmc_release_host(host);
1858 err = mmc_add_card(host->card);
1859 if (err)
1860 goto remove_card;
1861
1862 mmc_claim_host(host);
1863 return 0;
1864
1865 remove_card:
1866 mmc_remove_card(host->card);
1867 host->card = NULL;
1868 mmc_claim_host(host);
1869 err:
1870 mmc_detach_bus(host);
1871
1872 pr_err("%s: error %d whilst initialising SD card\n",
1873 mmc_hostname(host), err);
1874
1875 return err;
1876 }
1877