1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * linux/drivers/mmc/core/mmc_ops.h
4 *
5 * Copyright 2006-2007 Pierre Ossman
6 */
7
8 #include <linux/slab.h>
9 #include <linux/export.h>
10 #include <linux/types.h>
11 #include <linux/scatterlist.h>
12
13 #include <linux/mmc/host.h>
14 #include <linux/mmc/card.h>
15 #include <linux/mmc/mmc.h>
16
17 #include "core.h"
18 #include "card.h"
19 #include "host.h"
20 #include "mmc_ops.h"
21
22 #define MMC_BKOPS_TIMEOUT_MS (120 * 1000) /* 120s */
23 #define MMC_SANITIZE_TIMEOUT_MS (240 * 1000) /* 240s */
24
25 static const u8 tuning_blk_pattern_4bit[] = {
26 0xff, 0x0f, 0xff, 0x00, 0xff, 0xcc, 0xc3, 0xcc,
27 0xc3, 0x3c, 0xcc, 0xff, 0xfe, 0xff, 0xfe, 0xef,
28 0xff, 0xdf, 0xff, 0xdd, 0xff, 0xfb, 0xff, 0xfb,
29 0xbf, 0xff, 0x7f, 0xff, 0x77, 0xf7, 0xbd, 0xef,
30 0xff, 0xf0, 0xff, 0xf0, 0x0f, 0xfc, 0xcc, 0x3c,
31 0xcc, 0x33, 0xcc, 0xcf, 0xff, 0xef, 0xff, 0xee,
32 0xff, 0xfd, 0xff, 0xfd, 0xdf, 0xff, 0xbf, 0xff,
33 0xbb, 0xff, 0xf7, 0xff, 0xf7, 0x7f, 0x7b, 0xde,
34 };
35
36 static const u8 tuning_blk_pattern_8bit[] = {
37 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00,
38 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc,
39 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff,
40 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff,
41 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd,
42 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb,
43 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff,
44 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff,
45 0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00,
46 0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc,
47 0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff,
48 0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee,
49 0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd,
50 0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff,
51 0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff,
52 0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee,
53 };
54
55 struct mmc_busy_data {
56 struct mmc_card *card;
57 bool retry_crc_err;
58 enum mmc_busy_cmd busy_cmd;
59 };
60
__mmc_send_status(struct mmc_card * card,u32 * status,unsigned int retries)61 int __mmc_send_status(struct mmc_card *card, u32 *status, unsigned int retries)
62 {
63 int err;
64 struct mmc_command cmd = {};
65
66 cmd.opcode = MMC_SEND_STATUS;
67 if (!mmc_host_is_spi(card->host))
68 cmd.arg = card->rca << 16;
69 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
70
71 err = mmc_wait_for_cmd(card->host, &cmd, retries);
72 if (err)
73 return err;
74
75 /* NOTE: callers are required to understand the difference
76 * between "native" and SPI format status words!
77 */
78 if (status)
79 *status = cmd.resp[0];
80
81 return 0;
82 }
83 EXPORT_SYMBOL_GPL(__mmc_send_status);
84
mmc_send_status(struct mmc_card * card,u32 * status)85 int mmc_send_status(struct mmc_card *card, u32 *status)
86 {
87 return __mmc_send_status(card, status, MMC_CMD_RETRIES);
88 }
89 EXPORT_SYMBOL_GPL(mmc_send_status);
90
_mmc_select_card(struct mmc_host * host,struct mmc_card * card)91 static int _mmc_select_card(struct mmc_host *host, struct mmc_card *card)
92 {
93 struct mmc_command cmd = {};
94
95 cmd.opcode = MMC_SELECT_CARD;
96
97 if (card) {
98 cmd.arg = card->rca << 16;
99 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
100 } else {
101 cmd.arg = 0;
102 cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
103 }
104
105 return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
106 }
107
mmc_select_card(struct mmc_card * card)108 int mmc_select_card(struct mmc_card *card)
109 {
110
111 return _mmc_select_card(card->host, card);
112 }
113
mmc_deselect_cards(struct mmc_host * host)114 int mmc_deselect_cards(struct mmc_host *host)
115 {
116 return _mmc_select_card(host, NULL);
117 }
118
119 /*
120 * Write the value specified in the device tree or board code into the optional
121 * 16 bit Driver Stage Register. This can be used to tune raise/fall times and
122 * drive strength of the DAT and CMD outputs. The actual meaning of a given
123 * value is hardware dependant.
124 * The presence of the DSR register can be determined from the CSD register,
125 * bit 76.
126 */
mmc_set_dsr(struct mmc_host * host)127 int mmc_set_dsr(struct mmc_host *host)
128 {
129 struct mmc_command cmd = {};
130
131 cmd.opcode = MMC_SET_DSR;
132
133 cmd.arg = (host->dsr << 16) | 0xffff;
134 cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
135
136 return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
137 }
138
mmc_go_idle(struct mmc_host * host)139 int mmc_go_idle(struct mmc_host *host)
140 {
141 int err;
142 struct mmc_command cmd = {};
143
144 /*
145 * Non-SPI hosts need to prevent chipselect going active during
146 * GO_IDLE; that would put chips into SPI mode. Remind them of
147 * that in case of hardware that won't pull up DAT3/nCS otherwise.
148 *
149 * SPI hosts ignore ios.chip_select; it's managed according to
150 * rules that must accommodate non-MMC slaves which this layer
151 * won't even know about.
152 */
153 if (!mmc_host_is_spi(host)) {
154 mmc_set_chip_select(host, MMC_CS_HIGH);
155 mmc_delay(1);
156 }
157
158 cmd.opcode = MMC_GO_IDLE_STATE;
159 cmd.arg = 0;
160 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_NONE | MMC_CMD_BC;
161
162 err = mmc_wait_for_cmd(host, &cmd, 0);
163
164 mmc_delay(1);
165
166 if (!mmc_host_is_spi(host)) {
167 mmc_set_chip_select(host, MMC_CS_DONTCARE);
168 mmc_delay(1);
169 }
170
171 host->use_spi_crc = 0;
172
173 return err;
174 }
175
mmc_send_op_cond(struct mmc_host * host,u32 ocr,u32 * rocr)176 int mmc_send_op_cond(struct mmc_host *host, u32 ocr, u32 *rocr)
177 {
178 struct mmc_command cmd = {};
179 int i, err = 0;
180
181 cmd.opcode = MMC_SEND_OP_COND;
182 cmd.arg = mmc_host_is_spi(host) ? 0 : ocr;
183 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R3 | MMC_CMD_BCR;
184
185 for (i = 100; i; i--) {
186 err = mmc_wait_for_cmd(host, &cmd, 0);
187 if (err)
188 break;
189
190 /* wait until reset completes */
191 if (mmc_host_is_spi(host)) {
192 if (!(cmd.resp[0] & R1_SPI_IDLE))
193 break;
194 } else {
195 if (cmd.resp[0] & MMC_CARD_BUSY)
196 break;
197 }
198
199 err = -ETIMEDOUT;
200
201 mmc_delay(10);
202
203 /*
204 * According to eMMC specification v5.1 section 6.4.3, we
205 * should issue CMD1 repeatedly in the idle state until
206 * the eMMC is ready. Otherwise some eMMC devices seem to enter
207 * the inactive mode after mmc_init_card() issued CMD0 when
208 * the eMMC device is busy.
209 */
210 if (!ocr && !mmc_host_is_spi(host))
211 cmd.arg = cmd.resp[0] | BIT(30);
212 }
213
214 if (rocr && !mmc_host_is_spi(host))
215 *rocr = cmd.resp[0];
216
217 return err;
218 }
219
mmc_set_relative_addr(struct mmc_card * card)220 int mmc_set_relative_addr(struct mmc_card *card)
221 {
222 struct mmc_command cmd = {};
223
224 cmd.opcode = MMC_SET_RELATIVE_ADDR;
225 cmd.arg = card->rca << 16;
226 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
227
228 return mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES);
229 }
230
231 static int
mmc_send_cxd_native(struct mmc_host * host,u32 arg,u32 * cxd,int opcode)232 mmc_send_cxd_native(struct mmc_host *host, u32 arg, u32 *cxd, int opcode)
233 {
234 int err;
235 struct mmc_command cmd = {};
236
237 cmd.opcode = opcode;
238 cmd.arg = arg;
239 cmd.flags = MMC_RSP_R2 | MMC_CMD_AC;
240
241 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
242 if (err)
243 return err;
244
245 memcpy(cxd, cmd.resp, sizeof(u32) * 4);
246
247 return 0;
248 }
249
250 /*
251 * NOTE: void *buf, caller for the buf is required to use DMA-capable
252 * buffer or on-stack buffer (with some overhead in callee).
253 */
mmc_send_adtc_data(struct mmc_card * card,struct mmc_host * host,u32 opcode,u32 args,void * buf,unsigned len)254 int mmc_send_adtc_data(struct mmc_card *card, struct mmc_host *host, u32 opcode,
255 u32 args, void *buf, unsigned len)
256 {
257 struct mmc_request mrq = {};
258 struct mmc_command cmd = {};
259 struct mmc_data data = {};
260 struct scatterlist sg;
261
262 mrq.cmd = &cmd;
263 mrq.data = &data;
264
265 cmd.opcode = opcode;
266 cmd.arg = args;
267
268 /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we
269 * rely on callers to never use this with "native" calls for reading
270 * CSD or CID. Native versions of those commands use the R2 type,
271 * not R1 plus a data block.
272 */
273 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
274
275 data.blksz = len;
276 data.blocks = 1;
277 data.flags = MMC_DATA_READ;
278 data.sg = &sg;
279 data.sg_len = 1;
280
281 sg_init_one(&sg, buf, len);
282
283 if (opcode == MMC_SEND_CSD || opcode == MMC_SEND_CID) {
284 /*
285 * The spec states that CSR and CID accesses have a timeout
286 * of 64 clock cycles.
287 */
288 data.timeout_ns = 0;
289 data.timeout_clks = 64;
290 } else
291 mmc_set_data_timeout(&data, card);
292
293 mmc_wait_for_req(host, &mrq);
294
295 if (cmd.error)
296 return cmd.error;
297 if (data.error)
298 return data.error;
299
300 return 0;
301 }
302
mmc_spi_send_cxd(struct mmc_host * host,u32 * cxd,u32 opcode)303 static int mmc_spi_send_cxd(struct mmc_host *host, u32 *cxd, u32 opcode)
304 {
305 int ret, i;
306 __be32 *cxd_tmp;
307
308 cxd_tmp = kzalloc(16, GFP_KERNEL);
309 if (!cxd_tmp)
310 return -ENOMEM;
311
312 ret = mmc_send_adtc_data(NULL, host, opcode, 0, cxd_tmp, 16);
313 if (ret)
314 goto err;
315
316 for (i = 0; i < 4; i++)
317 cxd[i] = be32_to_cpu(cxd_tmp[i]);
318
319 err:
320 kfree(cxd_tmp);
321 return ret;
322 }
323
mmc_send_csd(struct mmc_card * card,u32 * csd)324 int mmc_send_csd(struct mmc_card *card, u32 *csd)
325 {
326 if (mmc_host_is_spi(card->host))
327 return mmc_spi_send_cxd(card->host, csd, MMC_SEND_CSD);
328
329 return mmc_send_cxd_native(card->host, card->rca << 16, csd,
330 MMC_SEND_CSD);
331 }
332
mmc_send_cid(struct mmc_host * host,u32 * cid)333 int mmc_send_cid(struct mmc_host *host, u32 *cid)
334 {
335 if (mmc_host_is_spi(host))
336 return mmc_spi_send_cxd(host, cid, MMC_SEND_CID);
337
338 return mmc_send_cxd_native(host, 0, cid, MMC_ALL_SEND_CID);
339 }
340
mmc_get_ext_csd(struct mmc_card * card,u8 ** new_ext_csd)341 int mmc_get_ext_csd(struct mmc_card *card, u8 **new_ext_csd)
342 {
343 int err;
344 u8 *ext_csd;
345
346 if (!card || !new_ext_csd)
347 return -EINVAL;
348
349 if (!mmc_can_ext_csd(card))
350 return -EOPNOTSUPP;
351
352 /*
353 * As the ext_csd is so large and mostly unused, we don't store the
354 * raw block in mmc_card.
355 */
356 ext_csd = kzalloc(512, GFP_KERNEL);
357 if (!ext_csd)
358 return -ENOMEM;
359
360 err = mmc_send_adtc_data(card, card->host, MMC_SEND_EXT_CSD, 0, ext_csd,
361 512);
362 if (err)
363 kfree(ext_csd);
364 else
365 *new_ext_csd = ext_csd;
366
367 return err;
368 }
369 EXPORT_SYMBOL_GPL(mmc_get_ext_csd);
370
mmc_spi_read_ocr(struct mmc_host * host,int highcap,u32 * ocrp)371 int mmc_spi_read_ocr(struct mmc_host *host, int highcap, u32 *ocrp)
372 {
373 struct mmc_command cmd = {};
374 int err;
375
376 cmd.opcode = MMC_SPI_READ_OCR;
377 cmd.arg = highcap ? (1 << 30) : 0;
378 cmd.flags = MMC_RSP_SPI_R3;
379
380 err = mmc_wait_for_cmd(host, &cmd, 0);
381
382 *ocrp = cmd.resp[1];
383 return err;
384 }
385
mmc_spi_set_crc(struct mmc_host * host,int use_crc)386 int mmc_spi_set_crc(struct mmc_host *host, int use_crc)
387 {
388 struct mmc_command cmd = {};
389 int err;
390
391 cmd.opcode = MMC_SPI_CRC_ON_OFF;
392 cmd.flags = MMC_RSP_SPI_R1;
393 cmd.arg = use_crc;
394
395 err = mmc_wait_for_cmd(host, &cmd, 0);
396 if (!err)
397 host->use_spi_crc = use_crc;
398 return err;
399 }
400
mmc_switch_status_error(struct mmc_host * host,u32 status)401 static int mmc_switch_status_error(struct mmc_host *host, u32 status)
402 {
403 if (mmc_host_is_spi(host)) {
404 if (status & R1_SPI_ILLEGAL_COMMAND)
405 return -EBADMSG;
406 } else {
407 if (R1_STATUS(status))
408 pr_warn("%s: unexpected status %#x after switch\n",
409 mmc_hostname(host), status);
410 if (status & R1_SWITCH_ERROR)
411 return -EBADMSG;
412 }
413 return 0;
414 }
415
416 /* Caller must hold re-tuning */
mmc_switch_status(struct mmc_card * card,bool crc_err_fatal)417 int mmc_switch_status(struct mmc_card *card, bool crc_err_fatal)
418 {
419 u32 status;
420 int err;
421
422 err = mmc_send_status(card, &status);
423 if (!crc_err_fatal && err == -EILSEQ)
424 return 0;
425 if (err)
426 return err;
427
428 return mmc_switch_status_error(card->host, status);
429 }
430
mmc_busy_cb(void * cb_data,bool * busy)431 static int mmc_busy_cb(void *cb_data, bool *busy)
432 {
433 struct mmc_busy_data *data = cb_data;
434 struct mmc_host *host = data->card->host;
435 u32 status = 0;
436 int err;
437
438 if (data->busy_cmd != MMC_BUSY_IO && host->ops->card_busy) {
439 *busy = host->ops->card_busy(host);
440 return 0;
441 }
442
443 err = mmc_send_status(data->card, &status);
444 if (data->retry_crc_err && err == -EILSEQ) {
445 *busy = true;
446 return 0;
447 }
448 if (err)
449 return err;
450
451 switch (data->busy_cmd) {
452 case MMC_BUSY_CMD6:
453 err = mmc_switch_status_error(host, status);
454 break;
455 case MMC_BUSY_ERASE:
456 err = R1_STATUS(status) ? -EIO : 0;
457 break;
458 case MMC_BUSY_HPI:
459 case MMC_BUSY_EXTR_SINGLE:
460 case MMC_BUSY_IO:
461 break;
462 default:
463 err = -EINVAL;
464 }
465
466 if (err)
467 return err;
468
469 *busy = !mmc_ready_for_data(status);
470 return 0;
471 }
472
__mmc_poll_for_busy(struct mmc_card * card,unsigned int timeout_ms,int (* busy_cb)(void * cb_data,bool * busy),void * cb_data)473 int __mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms,
474 int (*busy_cb)(void *cb_data, bool *busy),
475 void *cb_data)
476 {
477 struct mmc_host *host = card->host;
478 int err;
479 unsigned long timeout;
480 unsigned int udelay = 32, udelay_max = 32768;
481 bool expired = false;
482 bool busy = false;
483
484 timeout = jiffies + msecs_to_jiffies(timeout_ms) + 1;
485 do {
486 /*
487 * Due to the possibility of being preempted while polling,
488 * check the expiration time first.
489 */
490 expired = time_after(jiffies, timeout);
491
492 err = (*busy_cb)(cb_data, &busy);
493 if (err)
494 return err;
495
496 /* Timeout if the device still remains busy. */
497 if (expired && busy) {
498 pr_err("%s: Card stuck being busy! %s\n",
499 mmc_hostname(host), __func__);
500 return -ETIMEDOUT;
501 }
502
503 /* Throttle the polling rate to avoid hogging the CPU. */
504 if (busy) {
505 usleep_range(udelay, udelay * 2);
506 if (udelay < udelay_max)
507 udelay *= 2;
508 }
509 } while (busy);
510
511 return 0;
512 }
513 EXPORT_SYMBOL_GPL(__mmc_poll_for_busy);
514
mmc_poll_for_busy(struct mmc_card * card,unsigned int timeout_ms,bool retry_crc_err,enum mmc_busy_cmd busy_cmd)515 int mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms,
516 bool retry_crc_err, enum mmc_busy_cmd busy_cmd)
517 {
518 struct mmc_busy_data cb_data;
519
520 cb_data.card = card;
521 cb_data.retry_crc_err = retry_crc_err;
522 cb_data.busy_cmd = busy_cmd;
523
524 return __mmc_poll_for_busy(card, timeout_ms, &mmc_busy_cb, &cb_data);
525 }
526 EXPORT_SYMBOL_GPL(mmc_poll_for_busy);
527
mmc_prepare_busy_cmd(struct mmc_host * host,struct mmc_command * cmd,unsigned int timeout_ms)528 bool mmc_prepare_busy_cmd(struct mmc_host *host, struct mmc_command *cmd,
529 unsigned int timeout_ms)
530 {
531 /*
532 * If the max_busy_timeout of the host is specified, make sure it's
533 * enough to fit the used timeout_ms. In case it's not, let's instruct
534 * the host to avoid HW busy detection, by converting to a R1 response
535 * instead of a R1B. Note, some hosts requires R1B, which also means
536 * they are on their own when it comes to deal with the busy timeout.
537 */
538 if (!(host->caps & MMC_CAP_NEED_RSP_BUSY) && host->max_busy_timeout &&
539 (timeout_ms > host->max_busy_timeout)) {
540 cmd->flags = MMC_CMD_AC | MMC_RSP_SPI_R1 | MMC_RSP_R1;
541 return false;
542 }
543
544 cmd->flags = MMC_CMD_AC | MMC_RSP_SPI_R1B | MMC_RSP_R1B;
545 cmd->busy_timeout = timeout_ms;
546 return true;
547 }
548
549 /**
550 * __mmc_switch - modify EXT_CSD register
551 * @card: the MMC card associated with the data transfer
552 * @set: cmd set values
553 * @index: EXT_CSD register index
554 * @value: value to program into EXT_CSD register
555 * @timeout_ms: timeout (ms) for operation performed by register write,
556 * timeout of zero implies maximum possible timeout
557 * @timing: new timing to change to
558 * @send_status: send status cmd to poll for busy
559 * @retry_crc_err: retry when CRC errors when polling with CMD13 for busy
560 * @retries: number of retries
561 *
562 * Modifies the EXT_CSD register for selected card.
563 */
__mmc_switch(struct mmc_card * card,u8 set,u8 index,u8 value,unsigned int timeout_ms,unsigned char timing,bool send_status,bool retry_crc_err,unsigned int retries)564 int __mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
565 unsigned int timeout_ms, unsigned char timing,
566 bool send_status, bool retry_crc_err, unsigned int retries)
567 {
568 struct mmc_host *host = card->host;
569 int err;
570 struct mmc_command cmd = {};
571 bool use_r1b_resp;
572 unsigned char old_timing = host->ios.timing;
573
574 mmc_retune_hold(host);
575
576 if (!timeout_ms) {
577 pr_warn("%s: unspecified timeout for CMD6 - use generic\n",
578 mmc_hostname(host));
579 timeout_ms = card->ext_csd.generic_cmd6_time;
580 }
581
582 cmd.opcode = MMC_SWITCH;
583 cmd.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
584 (index << 16) |
585 (value << 8) |
586 set;
587 use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd, timeout_ms);
588
589 err = mmc_wait_for_cmd(host, &cmd, retries);
590 if (err)
591 goto out;
592
593 /*If SPI or used HW busy detection above, then we don't need to poll. */
594 if (((host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) ||
595 mmc_host_is_spi(host))
596 goto out_tim;
597
598 /*
599 * If the host doesn't support HW polling via the ->card_busy() ops and
600 * when it's not allowed to poll by using CMD13, then we need to rely on
601 * waiting the stated timeout to be sufficient.
602 */
603 if (!send_status && !host->ops->card_busy) {
604 mmc_delay(timeout_ms);
605 goto out_tim;
606 }
607
608 /* Let's try to poll to find out when the command is completed. */
609 err = mmc_poll_for_busy(card, timeout_ms, retry_crc_err, MMC_BUSY_CMD6);
610 if (err)
611 goto out;
612
613 out_tim:
614 /* Switch to new timing before check switch status. */
615 if (timing)
616 mmc_set_timing(host, timing);
617
618 if (send_status) {
619 err = mmc_switch_status(card, true);
620 if (err && timing)
621 mmc_set_timing(host, old_timing);
622 }
623 out:
624 mmc_retune_release(host);
625
626 return err;
627 }
628
mmc_switch(struct mmc_card * card,u8 set,u8 index,u8 value,unsigned int timeout_ms)629 int mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
630 unsigned int timeout_ms)
631 {
632 return __mmc_switch(card, set, index, value, timeout_ms, 0,
633 true, false, MMC_CMD_RETRIES);
634 }
635 EXPORT_SYMBOL_GPL(mmc_switch);
636
mmc_send_tuning(struct mmc_host * host,u32 opcode,int * cmd_error)637 int mmc_send_tuning(struct mmc_host *host, u32 opcode, int *cmd_error)
638 {
639 struct mmc_request mrq = {};
640 struct mmc_command cmd = {};
641 struct mmc_data data = {};
642 struct scatterlist sg;
643 struct mmc_ios *ios = &host->ios;
644 const u8 *tuning_block_pattern;
645 int size, err = 0;
646 u8 *data_buf;
647
648 if (ios->bus_width == MMC_BUS_WIDTH_8) {
649 tuning_block_pattern = tuning_blk_pattern_8bit;
650 size = sizeof(tuning_blk_pattern_8bit);
651 } else if (ios->bus_width == MMC_BUS_WIDTH_4) {
652 tuning_block_pattern = tuning_blk_pattern_4bit;
653 size = sizeof(tuning_blk_pattern_4bit);
654 } else
655 return -EINVAL;
656
657 data_buf = kzalloc(size, GFP_KERNEL);
658 if (!data_buf)
659 return -ENOMEM;
660
661 mrq.cmd = &cmd;
662 mrq.data = &data;
663
664 cmd.opcode = opcode;
665 cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
666
667 data.blksz = size;
668 data.blocks = 1;
669 data.flags = MMC_DATA_READ;
670
671 /*
672 * According to the tuning specs, Tuning process
673 * is normally shorter 40 executions of CMD19,
674 * and timeout value should be shorter than 150 ms
675 */
676 data.timeout_ns = 150 * NSEC_PER_MSEC;
677
678 data.sg = &sg;
679 data.sg_len = 1;
680 sg_init_one(&sg, data_buf, size);
681
682 mmc_wait_for_req(host, &mrq);
683
684 if (cmd_error)
685 *cmd_error = cmd.error;
686
687 if (cmd.error) {
688 err = cmd.error;
689 goto out;
690 }
691
692 if (data.error) {
693 err = data.error;
694 goto out;
695 }
696
697 if (memcmp(data_buf, tuning_block_pattern, size))
698 err = -EIO;
699
700 out:
701 kfree(data_buf);
702 return err;
703 }
704 EXPORT_SYMBOL_GPL(mmc_send_tuning);
705
mmc_send_abort_tuning(struct mmc_host * host,u32 opcode)706 int mmc_send_abort_tuning(struct mmc_host *host, u32 opcode)
707 {
708 struct mmc_command cmd = {};
709
710 /*
711 * eMMC specification specifies that CMD12 can be used to stop a tuning
712 * command, but SD specification does not, so do nothing unless it is
713 * eMMC.
714 */
715 if (opcode != MMC_SEND_TUNING_BLOCK_HS200)
716 return 0;
717
718 cmd.opcode = MMC_STOP_TRANSMISSION;
719 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
720
721 /*
722 * For drivers that override R1 to R1b, set an arbitrary timeout based
723 * on the tuning timeout i.e. 150ms.
724 */
725 cmd.busy_timeout = 150;
726
727 return mmc_wait_for_cmd(host, &cmd, 0);
728 }
729 EXPORT_SYMBOL_GPL(mmc_send_abort_tuning);
730
731 static int
mmc_send_bus_test(struct mmc_card * card,struct mmc_host * host,u8 opcode,u8 len)732 mmc_send_bus_test(struct mmc_card *card, struct mmc_host *host, u8 opcode,
733 u8 len)
734 {
735 struct mmc_request mrq = {};
736 struct mmc_command cmd = {};
737 struct mmc_data data = {};
738 struct scatterlist sg;
739 u8 *data_buf;
740 u8 *test_buf;
741 int i, err;
742 static u8 testdata_8bit[8] = { 0x55, 0xaa, 0, 0, 0, 0, 0, 0 };
743 static u8 testdata_4bit[4] = { 0x5a, 0, 0, 0 };
744
745 /* dma onto stack is unsafe/nonportable, but callers to this
746 * routine normally provide temporary on-stack buffers ...
747 */
748 data_buf = kmalloc(len, GFP_KERNEL);
749 if (!data_buf)
750 return -ENOMEM;
751
752 if (len == 8)
753 test_buf = testdata_8bit;
754 else if (len == 4)
755 test_buf = testdata_4bit;
756 else {
757 pr_err("%s: Invalid bus_width %d\n",
758 mmc_hostname(host), len);
759 kfree(data_buf);
760 return -EINVAL;
761 }
762
763 if (opcode == MMC_BUS_TEST_W)
764 memcpy(data_buf, test_buf, len);
765
766 mrq.cmd = &cmd;
767 mrq.data = &data;
768 cmd.opcode = opcode;
769 cmd.arg = 0;
770
771 /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we
772 * rely on callers to never use this with "native" calls for reading
773 * CSD or CID. Native versions of those commands use the R2 type,
774 * not R1 plus a data block.
775 */
776 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
777
778 data.blksz = len;
779 data.blocks = 1;
780 if (opcode == MMC_BUS_TEST_R)
781 data.flags = MMC_DATA_READ;
782 else
783 data.flags = MMC_DATA_WRITE;
784
785 data.sg = &sg;
786 data.sg_len = 1;
787 mmc_set_data_timeout(&data, card);
788 sg_init_one(&sg, data_buf, len);
789 mmc_wait_for_req(host, &mrq);
790 err = 0;
791 if (opcode == MMC_BUS_TEST_R) {
792 for (i = 0; i < len / 4; i++)
793 if ((test_buf[i] ^ data_buf[i]) != 0xff) {
794 err = -EIO;
795 break;
796 }
797 }
798 kfree(data_buf);
799
800 if (cmd.error)
801 return cmd.error;
802 if (data.error)
803 return data.error;
804
805 return err;
806 }
807
mmc_bus_test(struct mmc_card * card,u8 bus_width)808 int mmc_bus_test(struct mmc_card *card, u8 bus_width)
809 {
810 int width;
811
812 if (bus_width == MMC_BUS_WIDTH_8)
813 width = 8;
814 else if (bus_width == MMC_BUS_WIDTH_4)
815 width = 4;
816 else if (bus_width == MMC_BUS_WIDTH_1)
817 return 0; /* no need for test */
818 else
819 return -EINVAL;
820
821 /*
822 * Ignore errors from BUS_TEST_W. BUS_TEST_R will fail if there
823 * is a problem. This improves chances that the test will work.
824 */
825 mmc_send_bus_test(card, card->host, MMC_BUS_TEST_W, width);
826 return mmc_send_bus_test(card, card->host, MMC_BUS_TEST_R, width);
827 }
828
mmc_send_hpi_cmd(struct mmc_card * card)829 static int mmc_send_hpi_cmd(struct mmc_card *card)
830 {
831 unsigned int busy_timeout_ms = card->ext_csd.out_of_int_time;
832 struct mmc_host *host = card->host;
833 bool use_r1b_resp = false;
834 struct mmc_command cmd = {};
835 int err;
836
837 cmd.opcode = card->ext_csd.hpi_cmd;
838 cmd.arg = card->rca << 16 | 1;
839 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
840
841 if (cmd.opcode == MMC_STOP_TRANSMISSION)
842 use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd,
843 busy_timeout_ms);
844
845 err = mmc_wait_for_cmd(host, &cmd, 0);
846 if (err) {
847 pr_warn("%s: HPI error %d. Command response %#x\n",
848 mmc_hostname(host), err, cmd.resp[0]);
849 return err;
850 }
851
852 /* No need to poll when using HW busy detection. */
853 if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp)
854 return 0;
855
856 /* Let's poll to find out when the HPI request completes. */
857 return mmc_poll_for_busy(card, busy_timeout_ms, false, MMC_BUSY_HPI);
858 }
859
860 /**
861 * mmc_interrupt_hpi - Issue for High priority Interrupt
862 * @card: the MMC card associated with the HPI transfer
863 *
864 * Issued High Priority Interrupt, and check for card status
865 * until out-of prg-state.
866 */
mmc_interrupt_hpi(struct mmc_card * card)867 static int mmc_interrupt_hpi(struct mmc_card *card)
868 {
869 int err;
870 u32 status;
871
872 if (!card->ext_csd.hpi_en) {
873 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
874 return 1;
875 }
876
877 err = mmc_send_status(card, &status);
878 if (err) {
879 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
880 goto out;
881 }
882
883 switch (R1_CURRENT_STATE(status)) {
884 case R1_STATE_IDLE:
885 case R1_STATE_READY:
886 case R1_STATE_STBY:
887 case R1_STATE_TRAN:
888 /*
889 * In idle and transfer states, HPI is not needed and the caller
890 * can issue the next intended command immediately
891 */
892 goto out;
893 case R1_STATE_PRG:
894 break;
895 default:
896 /* In all other states, it's illegal to issue HPI */
897 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
898 mmc_hostname(card->host), R1_CURRENT_STATE(status));
899 err = -EINVAL;
900 goto out;
901 }
902
903 err = mmc_send_hpi_cmd(card);
904 out:
905 return err;
906 }
907
mmc_can_ext_csd(struct mmc_card * card)908 int mmc_can_ext_csd(struct mmc_card *card)
909 {
910 return (card && card->csd.mmca_vsn > CSD_SPEC_VER_3);
911 }
912
mmc_read_bkops_status(struct mmc_card * card)913 static int mmc_read_bkops_status(struct mmc_card *card)
914 {
915 int err;
916 u8 *ext_csd;
917
918 err = mmc_get_ext_csd(card, &ext_csd);
919 if (err)
920 return err;
921
922 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
923 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
924 kfree(ext_csd);
925 return 0;
926 }
927
928 /**
929 * mmc_run_bkops - Run BKOPS for supported cards
930 * @card: MMC card to run BKOPS for
931 *
932 * Run background operations synchronously for cards having manual BKOPS
933 * enabled and in case it reports urgent BKOPS level.
934 */
mmc_run_bkops(struct mmc_card * card)935 void mmc_run_bkops(struct mmc_card *card)
936 {
937 int err;
938
939 if (!card->ext_csd.man_bkops_en)
940 return;
941
942 err = mmc_read_bkops_status(card);
943 if (err) {
944 pr_err("%s: Failed to read bkops status: %d\n",
945 mmc_hostname(card->host), err);
946 return;
947 }
948
949 if (!card->ext_csd.raw_bkops_status ||
950 card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2)
951 return;
952
953 mmc_retune_hold(card->host);
954
955 /*
956 * For urgent BKOPS status, LEVEL_2 and higher, let's execute
957 * synchronously. Future wise, we may consider to start BKOPS, for less
958 * urgent levels by using an asynchronous background task, when idle.
959 */
960 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
961 EXT_CSD_BKOPS_START, 1, MMC_BKOPS_TIMEOUT_MS);
962 /*
963 * If the BKOPS timed out, the card is probably still busy in the
964 * R1_STATE_PRG. Rather than continue to wait, let's try to abort
965 * it with a HPI command to get back into R1_STATE_TRAN.
966 */
967 if (err == -ETIMEDOUT && !mmc_interrupt_hpi(card))
968 pr_warn("%s: BKOPS aborted\n", mmc_hostname(card->host));
969 else if (err)
970 pr_warn("%s: Error %d running bkops\n",
971 mmc_hostname(card->host), err);
972
973 mmc_retune_release(card->host);
974 }
975 EXPORT_SYMBOL(mmc_run_bkops);
976
mmc_cmdq_switch(struct mmc_card * card,bool enable)977 static int mmc_cmdq_switch(struct mmc_card *card, bool enable)
978 {
979 u8 val = enable ? EXT_CSD_CMDQ_MODE_ENABLED : 0;
980 int err;
981
982 if (!card->ext_csd.cmdq_support)
983 return -EOPNOTSUPP;
984
985 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CMDQ_MODE_EN,
986 val, card->ext_csd.generic_cmd6_time);
987 if (!err)
988 card->ext_csd.cmdq_en = enable;
989
990 return err;
991 }
992
mmc_cmdq_enable(struct mmc_card * card)993 int mmc_cmdq_enable(struct mmc_card *card)
994 {
995 return mmc_cmdq_switch(card, true);
996 }
997 EXPORT_SYMBOL_GPL(mmc_cmdq_enable);
998
mmc_cmdq_disable(struct mmc_card * card)999 int mmc_cmdq_disable(struct mmc_card *card)
1000 {
1001 return mmc_cmdq_switch(card, false);
1002 }
1003 EXPORT_SYMBOL_GPL(mmc_cmdq_disable);
1004
mmc_sanitize(struct mmc_card * card,unsigned int timeout_ms)1005 int mmc_sanitize(struct mmc_card *card, unsigned int timeout_ms)
1006 {
1007 struct mmc_host *host = card->host;
1008 int err;
1009
1010 if (!mmc_can_sanitize(card)) {
1011 pr_warn("%s: Sanitize not supported\n", mmc_hostname(host));
1012 return -EOPNOTSUPP;
1013 }
1014
1015 if (!timeout_ms)
1016 timeout_ms = MMC_SANITIZE_TIMEOUT_MS;
1017
1018 pr_debug("%s: Sanitize in progress...\n", mmc_hostname(host));
1019
1020 mmc_retune_hold(host);
1021
1022 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_SANITIZE_START,
1023 1, timeout_ms, 0, true, false, 0);
1024 if (err)
1025 pr_err("%s: Sanitize failed err=%d\n", mmc_hostname(host), err);
1026
1027 /*
1028 * If the sanitize operation timed out, the card is probably still busy
1029 * in the R1_STATE_PRG. Rather than continue to wait, let's try to abort
1030 * it with a HPI command to get back into R1_STATE_TRAN.
1031 */
1032 if (err == -ETIMEDOUT && !mmc_interrupt_hpi(card))
1033 pr_warn("%s: Sanitize aborted\n", mmc_hostname(host));
1034
1035 mmc_retune_release(host);
1036
1037 pr_debug("%s: Sanitize completed\n", mmc_hostname(host));
1038 return err;
1039 }
1040 EXPORT_SYMBOL_GPL(mmc_sanitize);
1041