1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/mmc/core/core.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
8 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 */
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/completion.h>
14 #include <linux/device.h>
15 #include <linux/delay.h>
16 #include <linux/pagemap.h>
17 #include <linux/err.h>
18 #include <linux/leds.h>
19 #include <linux/scatterlist.h>
20 #include <linux/log2.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/pm_wakeup.h>
23 #include <linux/suspend.h>
24 #include <linux/fault-inject.h>
25 #include <linux/random.h>
26 #include <linux/slab.h>
27 #include <linux/of.h>
28
29 #include <linux/mmc/card.h>
30 #include <linux/mmc/host.h>
31 #include <linux/mmc/mmc.h>
32 #include <linux/mmc/sd.h>
33 #include <linux/mmc/slot-gpio.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/mmc.h>
37
38 #include "core.h"
39 #include "card.h"
40 #include "bus.h"
41 #include "host.h"
42 #include "sdio_bus.h"
43 #include "pwrseq.h"
44
45 #include "mmc_ops.h"
46 #include "sd_ops.h"
47 #include "sdio_ops.h"
48
49 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
50 #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
51 #define SD_DISCARD_TIMEOUT_MS (250)
52
53 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
54
55 /*
56 * Enabling software CRCs on the data blocks can be a significant (30%)
57 * performance cost, and for other reasons may not always be desired.
58 * So we allow it it to be disabled.
59 */
60 bool use_spi_crc = 1;
61 module_param(use_spi_crc, bool, 0);
62
mmc_schedule_delayed_work(struct delayed_work * work,unsigned long delay)63 static int mmc_schedule_delayed_work(struct delayed_work *work,
64 unsigned long delay)
65 {
66 /*
67 * We use the system_freezable_wq, because of two reasons.
68 * First, it allows several works (not the same work item) to be
69 * executed simultaneously. Second, the queue becomes frozen when
70 * userspace becomes frozen during system PM.
71 */
72 return queue_delayed_work(system_freezable_wq, work, delay);
73 }
74
75 #ifdef CONFIG_FAIL_MMC_REQUEST
76
77 /*
78 * Internal function. Inject random data errors.
79 * If mmc_data is NULL no errors are injected.
80 */
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)81 static void mmc_should_fail_request(struct mmc_host *host,
82 struct mmc_request *mrq)
83 {
84 struct mmc_command *cmd = mrq->cmd;
85 struct mmc_data *data = mrq->data;
86 static const int data_errors[] = {
87 -ETIMEDOUT,
88 -EILSEQ,
89 -EIO,
90 };
91
92 if (!data)
93 return;
94
95 if ((cmd && cmd->error) || data->error ||
96 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
97 return;
98
99 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
100 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
101 }
102
103 #else /* CONFIG_FAIL_MMC_REQUEST */
104
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)105 static inline void mmc_should_fail_request(struct mmc_host *host,
106 struct mmc_request *mrq)
107 {
108 }
109
110 #endif /* CONFIG_FAIL_MMC_REQUEST */
111
mmc_complete_cmd(struct mmc_request * mrq)112 static inline void mmc_complete_cmd(struct mmc_request *mrq)
113 {
114 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
115 complete_all(&mrq->cmd_completion);
116 }
117
mmc_command_done(struct mmc_host * host,struct mmc_request * mrq)118 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
119 {
120 if (!mrq->cap_cmd_during_tfr)
121 return;
122
123 mmc_complete_cmd(mrq);
124
125 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
126 mmc_hostname(host), mrq->cmd->opcode);
127 }
128 EXPORT_SYMBOL(mmc_command_done);
129
130 /**
131 * mmc_request_done - finish processing an MMC request
132 * @host: MMC host which completed request
133 * @mrq: MMC request which request
134 *
135 * MMC drivers should call this function when they have completed
136 * their processing of a request.
137 */
mmc_request_done(struct mmc_host * host,struct mmc_request * mrq)138 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
139 {
140 struct mmc_command *cmd = mrq->cmd;
141 int err = cmd->error;
142
143 /* Flag re-tuning needed on CRC errors */
144 if (cmd->opcode != MMC_SEND_TUNING_BLOCK &&
145 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200 &&
146 !host->retune_crc_disable &&
147 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
148 (mrq->data && mrq->data->error == -EILSEQ) ||
149 (mrq->stop && mrq->stop->error == -EILSEQ)))
150 mmc_retune_needed(host);
151
152 if (err && cmd->retries && mmc_host_is_spi(host)) {
153 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
154 cmd->retries = 0;
155 }
156
157 if (host->ongoing_mrq == mrq)
158 host->ongoing_mrq = NULL;
159
160 mmc_complete_cmd(mrq);
161
162 trace_mmc_request_done(host, mrq);
163
164 /*
165 * We list various conditions for the command to be considered
166 * properly done:
167 *
168 * - There was no error, OK fine then
169 * - We are not doing some kind of retry
170 * - The card was removed (...so just complete everything no matter
171 * if there are errors or retries)
172 */
173 if (!err || !cmd->retries || mmc_card_removed(host->card)) {
174 mmc_should_fail_request(host, mrq);
175
176 if (!host->ongoing_mrq)
177 led_trigger_event(host->led, LED_OFF);
178
179 if (mrq->sbc) {
180 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
181 mmc_hostname(host), mrq->sbc->opcode,
182 mrq->sbc->error,
183 mrq->sbc->resp[0], mrq->sbc->resp[1],
184 mrq->sbc->resp[2], mrq->sbc->resp[3]);
185 }
186
187 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
188 mmc_hostname(host), cmd->opcode, err,
189 cmd->resp[0], cmd->resp[1],
190 cmd->resp[2], cmd->resp[3]);
191
192 if (mrq->data) {
193 pr_debug("%s: %d bytes transferred: %d\n",
194 mmc_hostname(host),
195 mrq->data->bytes_xfered, mrq->data->error);
196 }
197
198 if (mrq->stop) {
199 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
200 mmc_hostname(host), mrq->stop->opcode,
201 mrq->stop->error,
202 mrq->stop->resp[0], mrq->stop->resp[1],
203 mrq->stop->resp[2], mrq->stop->resp[3]);
204 }
205 }
206 /*
207 * Request starter must handle retries - see
208 * mmc_wait_for_req_done().
209 */
210 if (mrq->done)
211 mrq->done(mrq);
212 }
213
214 EXPORT_SYMBOL(mmc_request_done);
215
__mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)216 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
217 {
218 int err;
219
220 /* Assumes host controller has been runtime resumed by mmc_claim_host */
221 err = mmc_retune(host);
222 if (err) {
223 mrq->cmd->error = err;
224 mmc_request_done(host, mrq);
225 return;
226 }
227
228 /*
229 * For sdio rw commands we must wait for card busy otherwise some
230 * sdio devices won't work properly.
231 * And bypass I/O abort, reset and bus suspend operations.
232 */
233 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
234 host->ops->card_busy) {
235 int tries = 500; /* Wait aprox 500ms at maximum */
236
237 while (host->ops->card_busy(host) && --tries)
238 mmc_delay(1);
239
240 if (tries == 0) {
241 mrq->cmd->error = -EBUSY;
242 mmc_request_done(host, mrq);
243 return;
244 }
245 }
246
247 if (mrq->cap_cmd_during_tfr) {
248 host->ongoing_mrq = mrq;
249 /*
250 * Retry path could come through here without having waiting on
251 * cmd_completion, so ensure it is reinitialised.
252 */
253 reinit_completion(&mrq->cmd_completion);
254 }
255
256 trace_mmc_request_start(host, mrq);
257
258 if (host->cqe_on)
259 host->cqe_ops->cqe_off(host);
260
261 host->ops->request(host, mrq);
262 }
263
mmc_mrq_pr_debug(struct mmc_host * host,struct mmc_request * mrq,bool cqe)264 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
265 bool cqe)
266 {
267 if (mrq->sbc) {
268 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
269 mmc_hostname(host), mrq->sbc->opcode,
270 mrq->sbc->arg, mrq->sbc->flags);
271 }
272
273 if (mrq->cmd) {
274 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
275 mmc_hostname(host), cqe ? "CQE direct " : "",
276 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
277 } else if (cqe) {
278 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
279 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
280 }
281
282 if (mrq->data) {
283 pr_debug("%s: blksz %d blocks %d flags %08x "
284 "tsac %d ms nsac %d\n",
285 mmc_hostname(host), mrq->data->blksz,
286 mrq->data->blocks, mrq->data->flags,
287 mrq->data->timeout_ns / 1000000,
288 mrq->data->timeout_clks);
289 }
290
291 if (mrq->stop) {
292 pr_debug("%s: CMD%u arg %08x flags %08x\n",
293 mmc_hostname(host), mrq->stop->opcode,
294 mrq->stop->arg, mrq->stop->flags);
295 }
296 }
297
mmc_mrq_prep(struct mmc_host * host,struct mmc_request * mrq)298 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
299 {
300 unsigned int i, sz = 0;
301 struct scatterlist *sg;
302
303 if (mrq->cmd) {
304 mrq->cmd->error = 0;
305 mrq->cmd->mrq = mrq;
306 mrq->cmd->data = mrq->data;
307 }
308 if (mrq->sbc) {
309 mrq->sbc->error = 0;
310 mrq->sbc->mrq = mrq;
311 }
312 if (mrq->data) {
313 if (mrq->data->blksz > host->max_blk_size ||
314 mrq->data->blocks > host->max_blk_count ||
315 mrq->data->blocks * mrq->data->blksz > host->max_req_size)
316 return -EINVAL;
317
318 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
319 sz += sg->length;
320 if (sz != mrq->data->blocks * mrq->data->blksz)
321 return -EINVAL;
322
323 mrq->data->error = 0;
324 mrq->data->mrq = mrq;
325 if (mrq->stop) {
326 mrq->data->stop = mrq->stop;
327 mrq->stop->error = 0;
328 mrq->stop->mrq = mrq;
329 }
330 }
331
332 return 0;
333 }
334
mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)335 int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
336 {
337 int err;
338
339 init_completion(&mrq->cmd_completion);
340
341 mmc_retune_hold(host);
342
343 if (mmc_card_removed(host->card))
344 return -ENOMEDIUM;
345
346 mmc_mrq_pr_debug(host, mrq, false);
347
348 WARN_ON(!host->claimed);
349
350 err = mmc_mrq_prep(host, mrq);
351 if (err)
352 return err;
353
354 led_trigger_event(host->led, LED_FULL);
355 __mmc_start_request(host, mrq);
356
357 return 0;
358 }
359 EXPORT_SYMBOL(mmc_start_request);
360
mmc_wait_done(struct mmc_request * mrq)361 static void mmc_wait_done(struct mmc_request *mrq)
362 {
363 complete(&mrq->completion);
364 }
365
mmc_wait_ongoing_tfr_cmd(struct mmc_host * host)366 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
367 {
368 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
369
370 /*
371 * If there is an ongoing transfer, wait for the command line to become
372 * available.
373 */
374 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
375 wait_for_completion(&ongoing_mrq->cmd_completion);
376 }
377
__mmc_start_req(struct mmc_host * host,struct mmc_request * mrq)378 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
379 {
380 int err;
381
382 mmc_wait_ongoing_tfr_cmd(host);
383
384 init_completion(&mrq->completion);
385 mrq->done = mmc_wait_done;
386
387 err = mmc_start_request(host, mrq);
388 if (err) {
389 mrq->cmd->error = err;
390 mmc_complete_cmd(mrq);
391 complete(&mrq->completion);
392 }
393
394 return err;
395 }
396
mmc_wait_for_req_done(struct mmc_host * host,struct mmc_request * mrq)397 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
398 {
399 struct mmc_command *cmd;
400
401 while (1) {
402 wait_for_completion(&mrq->completion);
403
404 cmd = mrq->cmd;
405
406 /*
407 * If host has timed out waiting for the sanitize
408 * to complete, card might be still in programming state
409 * so let's try to bring the card out of programming
410 * state.
411 */
412 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
413 if (!mmc_interrupt_hpi(host->card)) {
414 pr_warn("%s: %s: Interrupted sanitize\n",
415 mmc_hostname(host), __func__);
416 cmd->error = 0;
417 break;
418 } else {
419 pr_err("%s: %s: Failed to interrupt sanitize\n",
420 mmc_hostname(host), __func__);
421 }
422 }
423 if (!cmd->error || !cmd->retries ||
424 mmc_card_removed(host->card))
425 break;
426
427 mmc_retune_recheck(host);
428
429 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
430 mmc_hostname(host), cmd->opcode, cmd->error);
431 cmd->retries--;
432 cmd->error = 0;
433 __mmc_start_request(host, mrq);
434 }
435
436 mmc_retune_release(host);
437 }
438 EXPORT_SYMBOL(mmc_wait_for_req_done);
439
440 /*
441 * mmc_cqe_start_req - Start a CQE request.
442 * @host: MMC host to start the request
443 * @mrq: request to start
444 *
445 * Start the request, re-tuning if needed and it is possible. Returns an error
446 * code if the request fails to start or -EBUSY if CQE is busy.
447 */
mmc_cqe_start_req(struct mmc_host * host,struct mmc_request * mrq)448 int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
449 {
450 int err;
451
452 /*
453 * CQE cannot process re-tuning commands. Caller must hold retuning
454 * while CQE is in use. Re-tuning can happen here only when CQE has no
455 * active requests i.e. this is the first. Note, re-tuning will call
456 * ->cqe_off().
457 */
458 err = mmc_retune(host);
459 if (err)
460 goto out_err;
461
462 mrq->host = host;
463
464 mmc_mrq_pr_debug(host, mrq, true);
465
466 err = mmc_mrq_prep(host, mrq);
467 if (err)
468 goto out_err;
469
470 err = host->cqe_ops->cqe_request(host, mrq);
471 if (err)
472 goto out_err;
473
474 trace_mmc_request_start(host, mrq);
475
476 return 0;
477
478 out_err:
479 if (mrq->cmd) {
480 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
481 mmc_hostname(host), mrq->cmd->opcode, err);
482 } else {
483 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
484 mmc_hostname(host), mrq->tag, err);
485 }
486 return err;
487 }
488 EXPORT_SYMBOL(mmc_cqe_start_req);
489
490 /**
491 * mmc_cqe_request_done - CQE has finished processing an MMC request
492 * @host: MMC host which completed request
493 * @mrq: MMC request which completed
494 *
495 * CQE drivers should call this function when they have completed
496 * their processing of a request.
497 */
mmc_cqe_request_done(struct mmc_host * host,struct mmc_request * mrq)498 void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
499 {
500 mmc_should_fail_request(host, mrq);
501
502 /* Flag re-tuning needed on CRC errors */
503 if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
504 (mrq->data && mrq->data->error == -EILSEQ))
505 mmc_retune_needed(host);
506
507 trace_mmc_request_done(host, mrq);
508
509 if (mrq->cmd) {
510 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
511 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
512 } else {
513 pr_debug("%s: CQE transfer done tag %d\n",
514 mmc_hostname(host), mrq->tag);
515 }
516
517 if (mrq->data) {
518 pr_debug("%s: %d bytes transferred: %d\n",
519 mmc_hostname(host),
520 mrq->data->bytes_xfered, mrq->data->error);
521 }
522
523 mrq->done(mrq);
524 }
525 EXPORT_SYMBOL(mmc_cqe_request_done);
526
527 /**
528 * mmc_cqe_post_req - CQE post process of a completed MMC request
529 * @host: MMC host
530 * @mrq: MMC request to be processed
531 */
mmc_cqe_post_req(struct mmc_host * host,struct mmc_request * mrq)532 void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
533 {
534 if (host->cqe_ops->cqe_post_req)
535 host->cqe_ops->cqe_post_req(host, mrq);
536 }
537 EXPORT_SYMBOL(mmc_cqe_post_req);
538
539 /* Arbitrary 1 second timeout */
540 #define MMC_CQE_RECOVERY_TIMEOUT 1000
541
542 /*
543 * mmc_cqe_recovery - Recover from CQE errors.
544 * @host: MMC host to recover
545 *
546 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
547 * in eMMC, and discarding the queue in CQE. CQE must call
548 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
549 * fails to discard its queue.
550 */
mmc_cqe_recovery(struct mmc_host * host)551 int mmc_cqe_recovery(struct mmc_host *host)
552 {
553 struct mmc_command cmd;
554 int err;
555
556 mmc_retune_hold_now(host);
557
558 /*
559 * Recovery is expected seldom, if at all, but it reduces performance,
560 * so make sure it is not completely silent.
561 */
562 pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
563
564 host->cqe_ops->cqe_recovery_start(host);
565
566 memset(&cmd, 0, sizeof(cmd));
567 cmd.opcode = MMC_STOP_TRANSMISSION,
568 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC,
569 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
570 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
571 mmc_wait_for_cmd(host, &cmd, 0);
572
573 memset(&cmd, 0, sizeof(cmd));
574 cmd.opcode = MMC_CMDQ_TASK_MGMT;
575 cmd.arg = 1; /* Discard entire queue */
576 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
577 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
578 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
579 err = mmc_wait_for_cmd(host, &cmd, 0);
580
581 host->cqe_ops->cqe_recovery_finish(host);
582
583 mmc_retune_release(host);
584
585 return err;
586 }
587 EXPORT_SYMBOL(mmc_cqe_recovery);
588
589 /**
590 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
591 * @host: MMC host
592 * @mrq: MMC request
593 *
594 * mmc_is_req_done() is used with requests that have
595 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
596 * starting a request and before waiting for it to complete. That is,
597 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
598 * and before mmc_wait_for_req_done(). If it is called at other times the
599 * result is not meaningful.
600 */
mmc_is_req_done(struct mmc_host * host,struct mmc_request * mrq)601 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
602 {
603 return completion_done(&mrq->completion);
604 }
605 EXPORT_SYMBOL(mmc_is_req_done);
606
607 /**
608 * mmc_wait_for_req - start a request and wait for completion
609 * @host: MMC host to start command
610 * @mrq: MMC request to start
611 *
612 * Start a new MMC custom command request for a host, and wait
613 * for the command to complete. In the case of 'cap_cmd_during_tfr'
614 * requests, the transfer is ongoing and the caller can issue further
615 * commands that do not use the data lines, and then wait by calling
616 * mmc_wait_for_req_done().
617 * Does not attempt to parse the response.
618 */
mmc_wait_for_req(struct mmc_host * host,struct mmc_request * mrq)619 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
620 {
621 __mmc_start_req(host, mrq);
622
623 if (!mrq->cap_cmd_during_tfr)
624 mmc_wait_for_req_done(host, mrq);
625 }
626 EXPORT_SYMBOL(mmc_wait_for_req);
627
628 /**
629 * mmc_wait_for_cmd - start a command and wait for completion
630 * @host: MMC host to start command
631 * @cmd: MMC command to start
632 * @retries: maximum number of retries
633 *
634 * Start a new MMC command for a host, and wait for the command
635 * to complete. Return any error that occurred while the command
636 * was executing. Do not attempt to parse the response.
637 */
mmc_wait_for_cmd(struct mmc_host * host,struct mmc_command * cmd,int retries)638 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
639 {
640 struct mmc_request mrq = {};
641
642 WARN_ON(!host->claimed);
643
644 memset(cmd->resp, 0, sizeof(cmd->resp));
645 cmd->retries = retries;
646
647 mrq.cmd = cmd;
648 cmd->data = NULL;
649
650 mmc_wait_for_req(host, &mrq);
651
652 return cmd->error;
653 }
654
655 EXPORT_SYMBOL(mmc_wait_for_cmd);
656
657 /**
658 * mmc_set_data_timeout - set the timeout for a data command
659 * @data: data phase for command
660 * @card: the MMC card associated with the data transfer
661 *
662 * Computes the data timeout parameters according to the
663 * correct algorithm given the card type.
664 */
mmc_set_data_timeout(struct mmc_data * data,const struct mmc_card * card)665 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
666 {
667 unsigned int mult;
668
669 /*
670 * SDIO cards only define an upper 1 s limit on access.
671 */
672 if (mmc_card_sdio(card)) {
673 data->timeout_ns = 1000000000;
674 data->timeout_clks = 0;
675 return;
676 }
677
678 /*
679 * SD cards use a 100 multiplier rather than 10
680 */
681 mult = mmc_card_sd(card) ? 100 : 10;
682
683 /*
684 * Scale up the multiplier (and therefore the timeout) by
685 * the r2w factor for writes.
686 */
687 if (data->flags & MMC_DATA_WRITE)
688 mult <<= card->csd.r2w_factor;
689
690 data->timeout_ns = card->csd.taac_ns * mult;
691 data->timeout_clks = card->csd.taac_clks * mult;
692
693 /*
694 * SD cards also have an upper limit on the timeout.
695 */
696 if (mmc_card_sd(card)) {
697 unsigned int timeout_us, limit_us;
698
699 timeout_us = data->timeout_ns / 1000;
700 if (card->host->ios.clock)
701 timeout_us += data->timeout_clks * 1000 /
702 (card->host->ios.clock / 1000);
703
704 if (data->flags & MMC_DATA_WRITE)
705 /*
706 * The MMC spec "It is strongly recommended
707 * for hosts to implement more than 500ms
708 * timeout value even if the card indicates
709 * the 250ms maximum busy length." Even the
710 * previous value of 300ms is known to be
711 * insufficient for some cards.
712 */
713 limit_us = 3000000;
714 else
715 limit_us = 100000;
716
717 /*
718 * SDHC cards always use these fixed values.
719 */
720 if (timeout_us > limit_us) {
721 data->timeout_ns = limit_us * 1000;
722 data->timeout_clks = 0;
723 }
724
725 /* assign limit value if invalid */
726 if (timeout_us == 0)
727 data->timeout_ns = limit_us * 1000;
728 }
729
730 /*
731 * Some cards require longer data read timeout than indicated in CSD.
732 * Address this by setting the read timeout to a "reasonably high"
733 * value. For the cards tested, 600ms has proven enough. If necessary,
734 * this value can be increased if other problematic cards require this.
735 */
736 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
737 data->timeout_ns = 600000000;
738 data->timeout_clks = 0;
739 }
740
741 /*
742 * Some cards need very high timeouts if driven in SPI mode.
743 * The worst observed timeout was 900ms after writing a
744 * continuous stream of data until the internal logic
745 * overflowed.
746 */
747 if (mmc_host_is_spi(card->host)) {
748 if (data->flags & MMC_DATA_WRITE) {
749 if (data->timeout_ns < 1000000000)
750 data->timeout_ns = 1000000000; /* 1s */
751 } else {
752 if (data->timeout_ns < 100000000)
753 data->timeout_ns = 100000000; /* 100ms */
754 }
755 }
756 }
757 EXPORT_SYMBOL(mmc_set_data_timeout);
758
759 /*
760 * Allow claiming an already claimed host if the context is the same or there is
761 * no context but the task is the same.
762 */
mmc_ctx_matches(struct mmc_host * host,struct mmc_ctx * ctx,struct task_struct * task)763 static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
764 struct task_struct *task)
765 {
766 return host->claimer == ctx ||
767 (!ctx && task && host->claimer->task == task);
768 }
769
mmc_ctx_set_claimer(struct mmc_host * host,struct mmc_ctx * ctx,struct task_struct * task)770 static inline void mmc_ctx_set_claimer(struct mmc_host *host,
771 struct mmc_ctx *ctx,
772 struct task_struct *task)
773 {
774 if (!host->claimer) {
775 if (ctx)
776 host->claimer = ctx;
777 else
778 host->claimer = &host->default_ctx;
779 }
780 if (task)
781 host->claimer->task = task;
782 }
783
784 /**
785 * __mmc_claim_host - exclusively claim a host
786 * @host: mmc host to claim
787 * @ctx: context that claims the host or NULL in which case the default
788 * context will be used
789 * @abort: whether or not the operation should be aborted
790 *
791 * Claim a host for a set of operations. If @abort is non null and
792 * dereference a non-zero value then this will return prematurely with
793 * that non-zero value without acquiring the lock. Returns zero
794 * with the lock held otherwise.
795 */
__mmc_claim_host(struct mmc_host * host,struct mmc_ctx * ctx,atomic_t * abort)796 int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
797 atomic_t *abort)
798 {
799 struct task_struct *task = ctx ? NULL : current;
800 DECLARE_WAITQUEUE(wait, current);
801 unsigned long flags;
802 int stop;
803 bool pm = false;
804
805 might_sleep();
806
807 add_wait_queue(&host->wq, &wait);
808 spin_lock_irqsave(&host->lock, flags);
809 while (1) {
810 set_current_state(TASK_UNINTERRUPTIBLE);
811 stop = abort ? atomic_read(abort) : 0;
812 if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
813 break;
814 spin_unlock_irqrestore(&host->lock, flags);
815 schedule();
816 spin_lock_irqsave(&host->lock, flags);
817 }
818 set_current_state(TASK_RUNNING);
819 if (!stop) {
820 host->claimed = 1;
821 mmc_ctx_set_claimer(host, ctx, task);
822 host->claim_cnt += 1;
823 if (host->claim_cnt == 1)
824 pm = true;
825 } else
826 wake_up(&host->wq);
827 spin_unlock_irqrestore(&host->lock, flags);
828 remove_wait_queue(&host->wq, &wait);
829
830 if (pm)
831 pm_runtime_get_sync(mmc_dev(host));
832
833 return stop;
834 }
835 EXPORT_SYMBOL(__mmc_claim_host);
836
837 /**
838 * mmc_release_host - release a host
839 * @host: mmc host to release
840 *
841 * Release a MMC host, allowing others to claim the host
842 * for their operations.
843 */
mmc_release_host(struct mmc_host * host)844 void mmc_release_host(struct mmc_host *host)
845 {
846 unsigned long flags;
847
848 WARN_ON(!host->claimed);
849
850 spin_lock_irqsave(&host->lock, flags);
851 if (--host->claim_cnt) {
852 /* Release for nested claim */
853 spin_unlock_irqrestore(&host->lock, flags);
854 } else {
855 host->claimed = 0;
856 host->claimer->task = NULL;
857 host->claimer = NULL;
858 spin_unlock_irqrestore(&host->lock, flags);
859 wake_up(&host->wq);
860 pm_runtime_mark_last_busy(mmc_dev(host));
861 if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
862 pm_runtime_put_sync_suspend(mmc_dev(host));
863 else
864 pm_runtime_put_autosuspend(mmc_dev(host));
865 }
866 }
867 EXPORT_SYMBOL(mmc_release_host);
868
869 /*
870 * This is a helper function, which fetches a runtime pm reference for the
871 * card device and also claims the host.
872 */
mmc_get_card(struct mmc_card * card,struct mmc_ctx * ctx)873 void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
874 {
875 pm_runtime_get_sync(&card->dev);
876 __mmc_claim_host(card->host, ctx, NULL);
877 }
878 EXPORT_SYMBOL(mmc_get_card);
879
880 /*
881 * This is a helper function, which releases the host and drops the runtime
882 * pm reference for the card device.
883 */
mmc_put_card(struct mmc_card * card,struct mmc_ctx * ctx)884 void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
885 {
886 struct mmc_host *host = card->host;
887
888 WARN_ON(ctx && host->claimer != ctx);
889
890 mmc_release_host(host);
891 pm_runtime_mark_last_busy(&card->dev);
892 pm_runtime_put_autosuspend(&card->dev);
893 }
894 EXPORT_SYMBOL(mmc_put_card);
895
896 /*
897 * Internal function that does the actual ios call to the host driver,
898 * optionally printing some debug output.
899 */
mmc_set_ios(struct mmc_host * host)900 static inline void mmc_set_ios(struct mmc_host *host)
901 {
902 struct mmc_ios *ios = &host->ios;
903
904 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
905 "width %u timing %u\n",
906 mmc_hostname(host), ios->clock, ios->bus_mode,
907 ios->power_mode, ios->chip_select, ios->vdd,
908 1 << ios->bus_width, ios->timing);
909
910 host->ops->set_ios(host, ios);
911 }
912
913 /*
914 * Control chip select pin on a host.
915 */
mmc_set_chip_select(struct mmc_host * host,int mode)916 void mmc_set_chip_select(struct mmc_host *host, int mode)
917 {
918 host->ios.chip_select = mode;
919 mmc_set_ios(host);
920 }
921
922 /*
923 * Sets the host clock to the highest possible frequency that
924 * is below "hz".
925 */
mmc_set_clock(struct mmc_host * host,unsigned int hz)926 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
927 {
928 WARN_ON(hz && hz < host->f_min);
929
930 if (hz > host->f_max)
931 hz = host->f_max;
932
933 host->ios.clock = hz;
934 mmc_set_ios(host);
935 }
936
mmc_execute_tuning(struct mmc_card * card)937 int mmc_execute_tuning(struct mmc_card *card)
938 {
939 struct mmc_host *host = card->host;
940 u32 opcode;
941 int err;
942
943 if (!host->ops->execute_tuning)
944 return 0;
945
946 if (host->cqe_on)
947 host->cqe_ops->cqe_off(host);
948
949 if (mmc_card_mmc(card))
950 opcode = MMC_SEND_TUNING_BLOCK_HS200;
951 else
952 opcode = MMC_SEND_TUNING_BLOCK;
953
954 err = host->ops->execute_tuning(host, opcode);
955
956 if (err)
957 pr_err("%s: tuning execution failed: %d\n",
958 mmc_hostname(host), err);
959 else
960 mmc_retune_enable(host);
961
962 return err;
963 }
964
965 /*
966 * Change the bus mode (open drain/push-pull) of a host.
967 */
mmc_set_bus_mode(struct mmc_host * host,unsigned int mode)968 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
969 {
970 host->ios.bus_mode = mode;
971 mmc_set_ios(host);
972 }
973
974 /*
975 * Change data bus width of a host.
976 */
mmc_set_bus_width(struct mmc_host * host,unsigned int width)977 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
978 {
979 host->ios.bus_width = width;
980 mmc_set_ios(host);
981 }
982
983 /*
984 * Set initial state after a power cycle or a hw_reset.
985 */
mmc_set_initial_state(struct mmc_host * host)986 void mmc_set_initial_state(struct mmc_host *host)
987 {
988 if (host->cqe_on)
989 host->cqe_ops->cqe_off(host);
990
991 mmc_retune_disable(host);
992
993 if (mmc_host_is_spi(host))
994 host->ios.chip_select = MMC_CS_HIGH;
995 else
996 host->ios.chip_select = MMC_CS_DONTCARE;
997 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
998 host->ios.bus_width = MMC_BUS_WIDTH_1;
999 host->ios.timing = MMC_TIMING_LEGACY;
1000 host->ios.drv_type = 0;
1001 host->ios.enhanced_strobe = false;
1002
1003 /*
1004 * Make sure we are in non-enhanced strobe mode before we
1005 * actually enable it in ext_csd.
1006 */
1007 if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1008 host->ops->hs400_enhanced_strobe)
1009 host->ops->hs400_enhanced_strobe(host, &host->ios);
1010
1011 mmc_set_ios(host);
1012 }
1013
1014 /**
1015 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1016 * @vdd: voltage (mV)
1017 * @low_bits: prefer low bits in boundary cases
1018 *
1019 * This function returns the OCR bit number according to the provided @vdd
1020 * value. If conversion is not possible a negative errno value returned.
1021 *
1022 * Depending on the @low_bits flag the function prefers low or high OCR bits
1023 * on boundary voltages. For example,
1024 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1025 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1026 *
1027 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1028 */
mmc_vdd_to_ocrbitnum(int vdd,bool low_bits)1029 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1030 {
1031 const int max_bit = ilog2(MMC_VDD_35_36);
1032 int bit;
1033
1034 if (vdd < 1650 || vdd > 3600)
1035 return -EINVAL;
1036
1037 if (vdd >= 1650 && vdd <= 1950)
1038 return ilog2(MMC_VDD_165_195);
1039
1040 if (low_bits)
1041 vdd -= 1;
1042
1043 /* Base 2000 mV, step 100 mV, bit's base 8. */
1044 bit = (vdd - 2000) / 100 + 8;
1045 if (bit > max_bit)
1046 return max_bit;
1047 return bit;
1048 }
1049
1050 /**
1051 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1052 * @vdd_min: minimum voltage value (mV)
1053 * @vdd_max: maximum voltage value (mV)
1054 *
1055 * This function returns the OCR mask bits according to the provided @vdd_min
1056 * and @vdd_max values. If conversion is not possible the function returns 0.
1057 *
1058 * Notes wrt boundary cases:
1059 * This function sets the OCR bits for all boundary voltages, for example
1060 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1061 * MMC_VDD_34_35 mask.
1062 */
mmc_vddrange_to_ocrmask(int vdd_min,int vdd_max)1063 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1064 {
1065 u32 mask = 0;
1066
1067 if (vdd_max < vdd_min)
1068 return 0;
1069
1070 /* Prefer high bits for the boundary vdd_max values. */
1071 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1072 if (vdd_max < 0)
1073 return 0;
1074
1075 /* Prefer low bits for the boundary vdd_min values. */
1076 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1077 if (vdd_min < 0)
1078 return 0;
1079
1080 /* Fill the mask, from max bit to min bit. */
1081 while (vdd_max >= vdd_min)
1082 mask |= 1 << vdd_max--;
1083
1084 return mask;
1085 }
1086
mmc_of_get_func_num(struct device_node * node)1087 static int mmc_of_get_func_num(struct device_node *node)
1088 {
1089 u32 reg;
1090 int ret;
1091
1092 ret = of_property_read_u32(node, "reg", ®);
1093 if (ret < 0)
1094 return ret;
1095
1096 return reg;
1097 }
1098
mmc_of_find_child_device(struct mmc_host * host,unsigned func_num)1099 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1100 unsigned func_num)
1101 {
1102 struct device_node *node;
1103
1104 if (!host->parent || !host->parent->of_node)
1105 return NULL;
1106
1107 for_each_child_of_node(host->parent->of_node, node) {
1108 if (mmc_of_get_func_num(node) == func_num)
1109 return node;
1110 }
1111
1112 return NULL;
1113 }
1114
1115 /*
1116 * Mask off any voltages we don't support and select
1117 * the lowest voltage
1118 */
mmc_select_voltage(struct mmc_host * host,u32 ocr)1119 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1120 {
1121 int bit;
1122
1123 /*
1124 * Sanity check the voltages that the card claims to
1125 * support.
1126 */
1127 if (ocr & 0x7F) {
1128 dev_warn(mmc_dev(host),
1129 "card claims to support voltages below defined range\n");
1130 ocr &= ~0x7F;
1131 }
1132
1133 ocr &= host->ocr_avail;
1134 if (!ocr) {
1135 dev_warn(mmc_dev(host), "no support for card's volts\n");
1136 return 0;
1137 }
1138
1139 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1140 bit = ffs(ocr) - 1;
1141 ocr &= 3 << bit;
1142 mmc_power_cycle(host, ocr);
1143 } else {
1144 bit = fls(ocr) - 1;
1145 ocr &= 3 << bit;
1146 if (bit != host->ios.vdd)
1147 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1148 }
1149
1150 return ocr;
1151 }
1152
mmc_set_signal_voltage(struct mmc_host * host,int signal_voltage)1153 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1154 {
1155 int err = 0;
1156 int old_signal_voltage = host->ios.signal_voltage;
1157
1158 host->ios.signal_voltage = signal_voltage;
1159 if (host->ops->start_signal_voltage_switch)
1160 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1161
1162 if (err)
1163 host->ios.signal_voltage = old_signal_voltage;
1164
1165 return err;
1166
1167 }
1168
mmc_set_initial_signal_voltage(struct mmc_host * host)1169 void mmc_set_initial_signal_voltage(struct mmc_host *host)
1170 {
1171 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1172 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1173 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1174 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1175 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1176 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1177 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1178 }
1179
mmc_host_set_uhs_voltage(struct mmc_host * host)1180 int mmc_host_set_uhs_voltage(struct mmc_host *host)
1181 {
1182 u32 clock;
1183
1184 /*
1185 * During a signal voltage level switch, the clock must be gated
1186 * for 5 ms according to the SD spec
1187 */
1188 clock = host->ios.clock;
1189 host->ios.clock = 0;
1190 mmc_set_ios(host);
1191
1192 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1193 return -EAGAIN;
1194
1195 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1196 mmc_delay(10);
1197 host->ios.clock = clock;
1198 mmc_set_ios(host);
1199
1200 return 0;
1201 }
1202
mmc_set_uhs_voltage(struct mmc_host * host,u32 ocr)1203 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1204 {
1205 struct mmc_command cmd = {};
1206 int err = 0;
1207
1208 /*
1209 * If we cannot switch voltages, return failure so the caller
1210 * can continue without UHS mode
1211 */
1212 if (!host->ops->start_signal_voltage_switch)
1213 return -EPERM;
1214 if (!host->ops->card_busy)
1215 pr_warn("%s: cannot verify signal voltage switch\n",
1216 mmc_hostname(host));
1217
1218 cmd.opcode = SD_SWITCH_VOLTAGE;
1219 cmd.arg = 0;
1220 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1221
1222 err = mmc_wait_for_cmd(host, &cmd, 0);
1223 if (err)
1224 return err;
1225
1226 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1227 return -EIO;
1228
1229 /*
1230 * The card should drive cmd and dat[0:3] low immediately
1231 * after the response of cmd11, but wait 1 ms to be sure
1232 */
1233 mmc_delay(1);
1234 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1235 err = -EAGAIN;
1236 goto power_cycle;
1237 }
1238
1239 if (mmc_host_set_uhs_voltage(host)) {
1240 /*
1241 * Voltages may not have been switched, but we've already
1242 * sent CMD11, so a power cycle is required anyway
1243 */
1244 err = -EAGAIN;
1245 goto power_cycle;
1246 }
1247
1248 /* Wait for at least 1 ms according to spec */
1249 mmc_delay(1);
1250
1251 /*
1252 * Failure to switch is indicated by the card holding
1253 * dat[0:3] low
1254 */
1255 if (host->ops->card_busy && host->ops->card_busy(host))
1256 err = -EAGAIN;
1257
1258 power_cycle:
1259 if (err) {
1260 pr_debug("%s: Signal voltage switch failed, "
1261 "power cycling card\n", mmc_hostname(host));
1262 mmc_power_cycle(host, ocr);
1263 }
1264
1265 return err;
1266 }
1267
1268 /*
1269 * Select timing parameters for host.
1270 */
mmc_set_timing(struct mmc_host * host,unsigned int timing)1271 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1272 {
1273 host->ios.timing = timing;
1274 mmc_set_ios(host);
1275 }
1276
1277 /*
1278 * Select appropriate driver type for host.
1279 */
mmc_set_driver_type(struct mmc_host * host,unsigned int drv_type)1280 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1281 {
1282 host->ios.drv_type = drv_type;
1283 mmc_set_ios(host);
1284 }
1285
mmc_select_drive_strength(struct mmc_card * card,unsigned int max_dtr,int card_drv_type,int * drv_type)1286 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1287 int card_drv_type, int *drv_type)
1288 {
1289 struct mmc_host *host = card->host;
1290 int host_drv_type = SD_DRIVER_TYPE_B;
1291
1292 *drv_type = 0;
1293
1294 if (!host->ops->select_drive_strength)
1295 return 0;
1296
1297 /* Use SD definition of driver strength for hosts */
1298 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1299 host_drv_type |= SD_DRIVER_TYPE_A;
1300
1301 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1302 host_drv_type |= SD_DRIVER_TYPE_C;
1303
1304 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1305 host_drv_type |= SD_DRIVER_TYPE_D;
1306
1307 /*
1308 * The drive strength that the hardware can support
1309 * depends on the board design. Pass the appropriate
1310 * information and let the hardware specific code
1311 * return what is possible given the options
1312 */
1313 return host->ops->select_drive_strength(card, max_dtr,
1314 host_drv_type,
1315 card_drv_type,
1316 drv_type);
1317 }
1318
1319 /*
1320 * Apply power to the MMC stack. This is a two-stage process.
1321 * First, we enable power to the card without the clock running.
1322 * We then wait a bit for the power to stabilise. Finally,
1323 * enable the bus drivers and clock to the card.
1324 *
1325 * We must _NOT_ enable the clock prior to power stablising.
1326 *
1327 * If a host does all the power sequencing itself, ignore the
1328 * initial MMC_POWER_UP stage.
1329 */
mmc_power_up(struct mmc_host * host,u32 ocr)1330 void mmc_power_up(struct mmc_host *host, u32 ocr)
1331 {
1332 if (host->ios.power_mode == MMC_POWER_ON)
1333 return;
1334
1335 mmc_pwrseq_pre_power_on(host);
1336
1337 host->ios.vdd = fls(ocr) - 1;
1338 host->ios.power_mode = MMC_POWER_UP;
1339 /* Set initial state and call mmc_set_ios */
1340 mmc_set_initial_state(host);
1341
1342 mmc_set_initial_signal_voltage(host);
1343
1344 /*
1345 * This delay should be sufficient to allow the power supply
1346 * to reach the minimum voltage.
1347 */
1348 mmc_delay(host->ios.power_delay_ms);
1349
1350 mmc_pwrseq_post_power_on(host);
1351
1352 host->ios.clock = host->f_init;
1353
1354 host->ios.power_mode = MMC_POWER_ON;
1355 mmc_set_ios(host);
1356
1357 /*
1358 * This delay must be at least 74 clock sizes, or 1 ms, or the
1359 * time required to reach a stable voltage.
1360 */
1361 mmc_delay(host->ios.power_delay_ms);
1362 }
1363
mmc_power_off(struct mmc_host * host)1364 void mmc_power_off(struct mmc_host *host)
1365 {
1366 if (host->ios.power_mode == MMC_POWER_OFF)
1367 return;
1368
1369 mmc_pwrseq_power_off(host);
1370
1371 host->ios.clock = 0;
1372 host->ios.vdd = 0;
1373
1374 host->ios.power_mode = MMC_POWER_OFF;
1375 /* Set initial state and call mmc_set_ios */
1376 mmc_set_initial_state(host);
1377
1378 /*
1379 * Some configurations, such as the 802.11 SDIO card in the OLPC
1380 * XO-1.5, require a short delay after poweroff before the card
1381 * can be successfully turned on again.
1382 */
1383 mmc_delay(1);
1384 }
1385
mmc_power_cycle(struct mmc_host * host,u32 ocr)1386 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1387 {
1388 mmc_power_off(host);
1389 /* Wait at least 1 ms according to SD spec */
1390 mmc_delay(1);
1391 mmc_power_up(host, ocr);
1392 }
1393
1394 /*
1395 * Cleanup when the last reference to the bus operator is dropped.
1396 */
__mmc_release_bus(struct mmc_host * host)1397 static void __mmc_release_bus(struct mmc_host *host)
1398 {
1399 WARN_ON(!host->bus_dead);
1400
1401 host->bus_ops = NULL;
1402 }
1403
1404 /*
1405 * Increase reference count of bus operator
1406 */
mmc_bus_get(struct mmc_host * host)1407 static inline void mmc_bus_get(struct mmc_host *host)
1408 {
1409 unsigned long flags;
1410
1411 spin_lock_irqsave(&host->lock, flags);
1412 host->bus_refs++;
1413 spin_unlock_irqrestore(&host->lock, flags);
1414 }
1415
1416 /*
1417 * Decrease reference count of bus operator and free it if
1418 * it is the last reference.
1419 */
mmc_bus_put(struct mmc_host * host)1420 static inline void mmc_bus_put(struct mmc_host *host)
1421 {
1422 unsigned long flags;
1423
1424 spin_lock_irqsave(&host->lock, flags);
1425 host->bus_refs--;
1426 if ((host->bus_refs == 0) && host->bus_ops)
1427 __mmc_release_bus(host);
1428 spin_unlock_irqrestore(&host->lock, flags);
1429 }
1430
1431 /*
1432 * Assign a mmc bus handler to a host. Only one bus handler may control a
1433 * host at any given time.
1434 */
mmc_attach_bus(struct mmc_host * host,const struct mmc_bus_ops * ops)1435 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1436 {
1437 unsigned long flags;
1438
1439 WARN_ON(!host->claimed);
1440
1441 spin_lock_irqsave(&host->lock, flags);
1442
1443 WARN_ON(host->bus_ops);
1444 WARN_ON(host->bus_refs);
1445
1446 host->bus_ops = ops;
1447 host->bus_refs = 1;
1448 host->bus_dead = 0;
1449
1450 spin_unlock_irqrestore(&host->lock, flags);
1451 }
1452
1453 /*
1454 * Remove the current bus handler from a host.
1455 */
mmc_detach_bus(struct mmc_host * host)1456 void mmc_detach_bus(struct mmc_host *host)
1457 {
1458 unsigned long flags;
1459
1460 WARN_ON(!host->claimed);
1461 WARN_ON(!host->bus_ops);
1462
1463 spin_lock_irqsave(&host->lock, flags);
1464
1465 host->bus_dead = 1;
1466
1467 spin_unlock_irqrestore(&host->lock, flags);
1468
1469 mmc_bus_put(host);
1470 }
1471
_mmc_detect_change(struct mmc_host * host,unsigned long delay,bool cd_irq)1472 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1473 bool cd_irq)
1474 {
1475 /*
1476 * If the device is configured as wakeup, we prevent a new sleep for
1477 * 5 s to give provision for user space to consume the event.
1478 */
1479 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1480 device_can_wakeup(mmc_dev(host)))
1481 pm_wakeup_event(mmc_dev(host), 5000);
1482
1483 host->detect_change = 1;
1484 mmc_schedule_delayed_work(&host->detect, delay);
1485 }
1486
1487 /**
1488 * mmc_detect_change - process change of state on a MMC socket
1489 * @host: host which changed state.
1490 * @delay: optional delay to wait before detection (jiffies)
1491 *
1492 * MMC drivers should call this when they detect a card has been
1493 * inserted or removed. The MMC layer will confirm that any
1494 * present card is still functional, and initialize any newly
1495 * inserted.
1496 */
mmc_detect_change(struct mmc_host * host,unsigned long delay)1497 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1498 {
1499 _mmc_detect_change(host, delay, true);
1500 }
1501 EXPORT_SYMBOL(mmc_detect_change);
1502
mmc_init_erase(struct mmc_card * card)1503 void mmc_init_erase(struct mmc_card *card)
1504 {
1505 unsigned int sz;
1506
1507 if (is_power_of_2(card->erase_size))
1508 card->erase_shift = ffs(card->erase_size) - 1;
1509 else
1510 card->erase_shift = 0;
1511
1512 /*
1513 * It is possible to erase an arbitrarily large area of an SD or MMC
1514 * card. That is not desirable because it can take a long time
1515 * (minutes) potentially delaying more important I/O, and also the
1516 * timeout calculations become increasingly hugely over-estimated.
1517 * Consequently, 'pref_erase' is defined as a guide to limit erases
1518 * to that size and alignment.
1519 *
1520 * For SD cards that define Allocation Unit size, limit erases to one
1521 * Allocation Unit at a time.
1522 * For MMC, have a stab at ai good value and for modern cards it will
1523 * end up being 4MiB. Note that if the value is too small, it can end
1524 * up taking longer to erase. Also note, erase_size is already set to
1525 * High Capacity Erase Size if available when this function is called.
1526 */
1527 if (mmc_card_sd(card) && card->ssr.au) {
1528 card->pref_erase = card->ssr.au;
1529 card->erase_shift = ffs(card->ssr.au) - 1;
1530 } else if (card->erase_size) {
1531 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1532 if (sz < 128)
1533 card->pref_erase = 512 * 1024 / 512;
1534 else if (sz < 512)
1535 card->pref_erase = 1024 * 1024 / 512;
1536 else if (sz < 1024)
1537 card->pref_erase = 2 * 1024 * 1024 / 512;
1538 else
1539 card->pref_erase = 4 * 1024 * 1024 / 512;
1540 if (card->pref_erase < card->erase_size)
1541 card->pref_erase = card->erase_size;
1542 else {
1543 sz = card->pref_erase % card->erase_size;
1544 if (sz)
1545 card->pref_erase += card->erase_size - sz;
1546 }
1547 } else
1548 card->pref_erase = 0;
1549 }
1550
mmc_mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1551 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1552 unsigned int arg, unsigned int qty)
1553 {
1554 unsigned int erase_timeout;
1555
1556 if (arg == MMC_DISCARD_ARG ||
1557 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1558 erase_timeout = card->ext_csd.trim_timeout;
1559 } else if (card->ext_csd.erase_group_def & 1) {
1560 /* High Capacity Erase Group Size uses HC timeouts */
1561 if (arg == MMC_TRIM_ARG)
1562 erase_timeout = card->ext_csd.trim_timeout;
1563 else
1564 erase_timeout = card->ext_csd.hc_erase_timeout;
1565 } else {
1566 /* CSD Erase Group Size uses write timeout */
1567 unsigned int mult = (10 << card->csd.r2w_factor);
1568 unsigned int timeout_clks = card->csd.taac_clks * mult;
1569 unsigned int timeout_us;
1570
1571 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1572 if (card->csd.taac_ns < 1000000)
1573 timeout_us = (card->csd.taac_ns * mult) / 1000;
1574 else
1575 timeout_us = (card->csd.taac_ns / 1000) * mult;
1576
1577 /*
1578 * ios.clock is only a target. The real clock rate might be
1579 * less but not that much less, so fudge it by multiplying by 2.
1580 */
1581 timeout_clks <<= 1;
1582 timeout_us += (timeout_clks * 1000) /
1583 (card->host->ios.clock / 1000);
1584
1585 erase_timeout = timeout_us / 1000;
1586
1587 /*
1588 * Theoretically, the calculation could underflow so round up
1589 * to 1ms in that case.
1590 */
1591 if (!erase_timeout)
1592 erase_timeout = 1;
1593 }
1594
1595 /* Multiplier for secure operations */
1596 if (arg & MMC_SECURE_ARGS) {
1597 if (arg == MMC_SECURE_ERASE_ARG)
1598 erase_timeout *= card->ext_csd.sec_erase_mult;
1599 else
1600 erase_timeout *= card->ext_csd.sec_trim_mult;
1601 }
1602
1603 erase_timeout *= qty;
1604
1605 /*
1606 * Ensure at least a 1 second timeout for SPI as per
1607 * 'mmc_set_data_timeout()'
1608 */
1609 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1610 erase_timeout = 1000;
1611
1612 return erase_timeout;
1613 }
1614
mmc_sd_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1615 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1616 unsigned int arg,
1617 unsigned int qty)
1618 {
1619 unsigned int erase_timeout;
1620
1621 /* for DISCARD none of the below calculation applies.
1622 * the busy timeout is 250msec per discard command.
1623 */
1624 if (arg == SD_DISCARD_ARG)
1625 return SD_DISCARD_TIMEOUT_MS;
1626
1627 if (card->ssr.erase_timeout) {
1628 /* Erase timeout specified in SD Status Register (SSR) */
1629 erase_timeout = card->ssr.erase_timeout * qty +
1630 card->ssr.erase_offset;
1631 } else {
1632 /*
1633 * Erase timeout not specified in SD Status Register (SSR) so
1634 * use 250ms per write block.
1635 */
1636 erase_timeout = 250 * qty;
1637 }
1638
1639 /* Must not be less than 1 second */
1640 if (erase_timeout < 1000)
1641 erase_timeout = 1000;
1642
1643 return erase_timeout;
1644 }
1645
mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1646 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1647 unsigned int arg,
1648 unsigned int qty)
1649 {
1650 if (mmc_card_sd(card))
1651 return mmc_sd_erase_timeout(card, arg, qty);
1652 else
1653 return mmc_mmc_erase_timeout(card, arg, qty);
1654 }
1655
mmc_do_erase(struct mmc_card * card,unsigned int from,unsigned int to,unsigned int arg)1656 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1657 unsigned int to, unsigned int arg)
1658 {
1659 struct mmc_command cmd = {};
1660 unsigned int qty = 0, busy_timeout = 0;
1661 bool use_r1b_resp = false;
1662 unsigned long timeout;
1663 int loop_udelay=64, udelay_max=32768;
1664 int err;
1665
1666 mmc_retune_hold(card->host);
1667
1668 /*
1669 * qty is used to calculate the erase timeout which depends on how many
1670 * erase groups (or allocation units in SD terminology) are affected.
1671 * We count erasing part of an erase group as one erase group.
1672 * For SD, the allocation units are always a power of 2. For MMC, the
1673 * erase group size is almost certainly also power of 2, but it does not
1674 * seem to insist on that in the JEDEC standard, so we fall back to
1675 * division in that case. SD may not specify an allocation unit size,
1676 * in which case the timeout is based on the number of write blocks.
1677 *
1678 * Note that the timeout for secure trim 2 will only be correct if the
1679 * number of erase groups specified is the same as the total of all
1680 * preceding secure trim 1 commands. Since the power may have been
1681 * lost since the secure trim 1 commands occurred, it is generally
1682 * impossible to calculate the secure trim 2 timeout correctly.
1683 */
1684 if (card->erase_shift)
1685 qty += ((to >> card->erase_shift) -
1686 (from >> card->erase_shift)) + 1;
1687 else if (mmc_card_sd(card))
1688 qty += to - from + 1;
1689 else
1690 qty += ((to / card->erase_size) -
1691 (from / card->erase_size)) + 1;
1692
1693 if (!mmc_card_blockaddr(card)) {
1694 from <<= 9;
1695 to <<= 9;
1696 }
1697
1698 if (mmc_card_sd(card))
1699 cmd.opcode = SD_ERASE_WR_BLK_START;
1700 else
1701 cmd.opcode = MMC_ERASE_GROUP_START;
1702 cmd.arg = from;
1703 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1704 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1705 if (err) {
1706 pr_err("mmc_erase: group start error %d, "
1707 "status %#x\n", err, cmd.resp[0]);
1708 err = -EIO;
1709 goto out;
1710 }
1711
1712 memset(&cmd, 0, sizeof(struct mmc_command));
1713 if (mmc_card_sd(card))
1714 cmd.opcode = SD_ERASE_WR_BLK_END;
1715 else
1716 cmd.opcode = MMC_ERASE_GROUP_END;
1717 cmd.arg = to;
1718 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1719 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1720 if (err) {
1721 pr_err("mmc_erase: group end error %d, status %#x\n",
1722 err, cmd.resp[0]);
1723 err = -EIO;
1724 goto out;
1725 }
1726
1727 memset(&cmd, 0, sizeof(struct mmc_command));
1728 cmd.opcode = MMC_ERASE;
1729 cmd.arg = arg;
1730 busy_timeout = mmc_erase_timeout(card, arg, qty);
1731 /*
1732 * If the host controller supports busy signalling and the timeout for
1733 * the erase operation does not exceed the max_busy_timeout, we should
1734 * use R1B response. Or we need to prevent the host from doing hw busy
1735 * detection, which is done by converting to a R1 response instead.
1736 */
1737 if (card->host->max_busy_timeout &&
1738 busy_timeout > card->host->max_busy_timeout) {
1739 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1740 } else {
1741 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1742 cmd.busy_timeout = busy_timeout;
1743 use_r1b_resp = true;
1744 }
1745
1746 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1747 if (err) {
1748 pr_err("mmc_erase: erase error %d, status %#x\n",
1749 err, cmd.resp[0]);
1750 err = -EIO;
1751 goto out;
1752 }
1753
1754 if (mmc_host_is_spi(card->host))
1755 goto out;
1756
1757 /*
1758 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1759 * shall be avoided.
1760 */
1761 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1762 goto out;
1763
1764 timeout = jiffies + msecs_to_jiffies(busy_timeout);
1765 do {
1766 memset(&cmd, 0, sizeof(struct mmc_command));
1767 cmd.opcode = MMC_SEND_STATUS;
1768 cmd.arg = card->rca << 16;
1769 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1770 /* Do not retry else we can't see errors */
1771 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1772 if (err || R1_STATUS(cmd.resp[0])) {
1773 pr_err("error %d requesting status %#x\n",
1774 err, cmd.resp[0]);
1775 err = -EIO;
1776 goto out;
1777 }
1778
1779 /* Timeout if the device never becomes ready for data and
1780 * never leaves the program state.
1781 */
1782 if (time_after(jiffies, timeout)) {
1783 pr_err("%s: Card stuck in programming state! %s\n",
1784 mmc_hostname(card->host), __func__);
1785 err = -EIO;
1786 goto out;
1787 }
1788 if ((cmd.resp[0] & R1_READY_FOR_DATA) &&
1789 R1_CURRENT_STATE(cmd.resp[0]) != R1_STATE_PRG)
1790 break;
1791
1792 usleep_range(loop_udelay, loop_udelay*2);
1793 if (loop_udelay < udelay_max)
1794 loop_udelay *= 2;
1795 } while (1);
1796
1797 out:
1798 mmc_retune_release(card->host);
1799 return err;
1800 }
1801
mmc_align_erase_size(struct mmc_card * card,unsigned int * from,unsigned int * to,unsigned int nr)1802 static unsigned int mmc_align_erase_size(struct mmc_card *card,
1803 unsigned int *from,
1804 unsigned int *to,
1805 unsigned int nr)
1806 {
1807 unsigned int from_new = *from, nr_new = nr, rem;
1808
1809 /*
1810 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1811 * to align the erase size efficiently.
1812 */
1813 if (is_power_of_2(card->erase_size)) {
1814 unsigned int temp = from_new;
1815
1816 from_new = round_up(temp, card->erase_size);
1817 rem = from_new - temp;
1818
1819 if (nr_new > rem)
1820 nr_new -= rem;
1821 else
1822 return 0;
1823
1824 nr_new = round_down(nr_new, card->erase_size);
1825 } else {
1826 rem = from_new % card->erase_size;
1827 if (rem) {
1828 rem = card->erase_size - rem;
1829 from_new += rem;
1830 if (nr_new > rem)
1831 nr_new -= rem;
1832 else
1833 return 0;
1834 }
1835
1836 rem = nr_new % card->erase_size;
1837 if (rem)
1838 nr_new -= rem;
1839 }
1840
1841 if (nr_new == 0)
1842 return 0;
1843
1844 *to = from_new + nr_new;
1845 *from = from_new;
1846
1847 return nr_new;
1848 }
1849
1850 /**
1851 * mmc_erase - erase sectors.
1852 * @card: card to erase
1853 * @from: first sector to erase
1854 * @nr: number of sectors to erase
1855 * @arg: erase command argument
1856 *
1857 * Caller must claim host before calling this function.
1858 */
mmc_erase(struct mmc_card * card,unsigned int from,unsigned int nr,unsigned int arg)1859 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1860 unsigned int arg)
1861 {
1862 unsigned int rem, to = from + nr;
1863 int err;
1864
1865 if (!(card->host->caps & MMC_CAP_ERASE) ||
1866 !(card->csd.cmdclass & CCC_ERASE))
1867 return -EOPNOTSUPP;
1868
1869 if (!card->erase_size)
1870 return -EOPNOTSUPP;
1871
1872 if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1873 return -EOPNOTSUPP;
1874
1875 if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1876 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1877 return -EOPNOTSUPP;
1878
1879 if (mmc_card_mmc(card) && (arg & MMC_TRIM_ARGS) &&
1880 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1881 return -EOPNOTSUPP;
1882
1883 if (arg == MMC_SECURE_ERASE_ARG) {
1884 if (from % card->erase_size || nr % card->erase_size)
1885 return -EINVAL;
1886 }
1887
1888 if (arg == MMC_ERASE_ARG)
1889 nr = mmc_align_erase_size(card, &from, &to, nr);
1890
1891 if (nr == 0)
1892 return 0;
1893
1894 if (to <= from)
1895 return -EINVAL;
1896
1897 /* 'from' and 'to' are inclusive */
1898 to -= 1;
1899
1900 /*
1901 * Special case where only one erase-group fits in the timeout budget:
1902 * If the region crosses an erase-group boundary on this particular
1903 * case, we will be trimming more than one erase-group which, does not
1904 * fit in the timeout budget of the controller, so we need to split it
1905 * and call mmc_do_erase() twice if necessary. This special case is
1906 * identified by the card->eg_boundary flag.
1907 */
1908 rem = card->erase_size - (from % card->erase_size);
1909 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
1910 err = mmc_do_erase(card, from, from + rem - 1, arg);
1911 from += rem;
1912 if ((err) || (to <= from))
1913 return err;
1914 }
1915
1916 return mmc_do_erase(card, from, to, arg);
1917 }
1918 EXPORT_SYMBOL(mmc_erase);
1919
mmc_can_erase(struct mmc_card * card)1920 int mmc_can_erase(struct mmc_card *card)
1921 {
1922 if ((card->host->caps & MMC_CAP_ERASE) &&
1923 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1924 return 1;
1925 return 0;
1926 }
1927 EXPORT_SYMBOL(mmc_can_erase);
1928
mmc_can_trim(struct mmc_card * card)1929 int mmc_can_trim(struct mmc_card *card)
1930 {
1931 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1932 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1933 return 1;
1934 return 0;
1935 }
1936 EXPORT_SYMBOL(mmc_can_trim);
1937
mmc_can_discard(struct mmc_card * card)1938 int mmc_can_discard(struct mmc_card *card)
1939 {
1940 /*
1941 * As there's no way to detect the discard support bit at v4.5
1942 * use the s/w feature support filed.
1943 */
1944 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1945 return 1;
1946 return 0;
1947 }
1948 EXPORT_SYMBOL(mmc_can_discard);
1949
mmc_can_sanitize(struct mmc_card * card)1950 int mmc_can_sanitize(struct mmc_card *card)
1951 {
1952 if (!mmc_can_trim(card) && !mmc_can_erase(card))
1953 return 0;
1954 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1955 return 1;
1956 return 0;
1957 }
1958 EXPORT_SYMBOL(mmc_can_sanitize);
1959
mmc_can_secure_erase_trim(struct mmc_card * card)1960 int mmc_can_secure_erase_trim(struct mmc_card *card)
1961 {
1962 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1963 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1964 return 1;
1965 return 0;
1966 }
1967 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1968
mmc_erase_group_aligned(struct mmc_card * card,unsigned int from,unsigned int nr)1969 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1970 unsigned int nr)
1971 {
1972 if (!card->erase_size)
1973 return 0;
1974 if (from % card->erase_size || nr % card->erase_size)
1975 return 0;
1976 return 1;
1977 }
1978 EXPORT_SYMBOL(mmc_erase_group_aligned);
1979
mmc_do_calc_max_discard(struct mmc_card * card,unsigned int arg)1980 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1981 unsigned int arg)
1982 {
1983 struct mmc_host *host = card->host;
1984 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1985 unsigned int last_timeout = 0;
1986 unsigned int max_busy_timeout = host->max_busy_timeout ?
1987 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1988
1989 if (card->erase_shift) {
1990 max_qty = UINT_MAX >> card->erase_shift;
1991 min_qty = card->pref_erase >> card->erase_shift;
1992 } else if (mmc_card_sd(card)) {
1993 max_qty = UINT_MAX;
1994 min_qty = card->pref_erase;
1995 } else {
1996 max_qty = UINT_MAX / card->erase_size;
1997 min_qty = card->pref_erase / card->erase_size;
1998 }
1999
2000 /*
2001 * We should not only use 'host->max_busy_timeout' as the limitation
2002 * when deciding the max discard sectors. We should set a balance value
2003 * to improve the erase speed, and it can not get too long timeout at
2004 * the same time.
2005 *
2006 * Here we set 'card->pref_erase' as the minimal discard sectors no
2007 * matter what size of 'host->max_busy_timeout', but if the
2008 * 'host->max_busy_timeout' is large enough for more discard sectors,
2009 * then we can continue to increase the max discard sectors until we
2010 * get a balance value. In cases when the 'host->max_busy_timeout'
2011 * isn't specified, use the default max erase timeout.
2012 */
2013 do {
2014 y = 0;
2015 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2016 timeout = mmc_erase_timeout(card, arg, qty + x);
2017
2018 if (qty + x > min_qty && timeout > max_busy_timeout)
2019 break;
2020
2021 if (timeout < last_timeout)
2022 break;
2023 last_timeout = timeout;
2024 y = x;
2025 }
2026 qty += y;
2027 } while (y);
2028
2029 if (!qty)
2030 return 0;
2031
2032 /*
2033 * When specifying a sector range to trim, chances are we might cross
2034 * an erase-group boundary even if the amount of sectors is less than
2035 * one erase-group.
2036 * If we can only fit one erase-group in the controller timeout budget,
2037 * we have to care that erase-group boundaries are not crossed by a
2038 * single trim operation. We flag that special case with "eg_boundary".
2039 * In all other cases we can just decrement qty and pretend that we
2040 * always touch (qty + 1) erase-groups as a simple optimization.
2041 */
2042 if (qty == 1)
2043 card->eg_boundary = 1;
2044 else
2045 qty--;
2046
2047 /* Convert qty to sectors */
2048 if (card->erase_shift)
2049 max_discard = qty << card->erase_shift;
2050 else if (mmc_card_sd(card))
2051 max_discard = qty + 1;
2052 else
2053 max_discard = qty * card->erase_size;
2054
2055 return max_discard;
2056 }
2057
mmc_calc_max_discard(struct mmc_card * card)2058 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2059 {
2060 struct mmc_host *host = card->host;
2061 unsigned int max_discard, max_trim;
2062
2063 /*
2064 * Without erase_group_def set, MMC erase timeout depends on clock
2065 * frequence which can change. In that case, the best choice is
2066 * just the preferred erase size.
2067 */
2068 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2069 return card->pref_erase;
2070
2071 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2072 if (mmc_can_trim(card)) {
2073 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2074 if (max_trim < max_discard || max_discard == 0)
2075 max_discard = max_trim;
2076 } else if (max_discard < card->erase_size) {
2077 max_discard = 0;
2078 }
2079 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2080 mmc_hostname(host), max_discard, host->max_busy_timeout ?
2081 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2082 return max_discard;
2083 }
2084 EXPORT_SYMBOL(mmc_calc_max_discard);
2085
mmc_card_is_blockaddr(struct mmc_card * card)2086 bool mmc_card_is_blockaddr(struct mmc_card *card)
2087 {
2088 return card ? mmc_card_blockaddr(card) : false;
2089 }
2090 EXPORT_SYMBOL(mmc_card_is_blockaddr);
2091
mmc_set_blocklen(struct mmc_card * card,unsigned int blocklen)2092 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2093 {
2094 struct mmc_command cmd = {};
2095
2096 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2097 mmc_card_hs400(card) || mmc_card_hs400es(card))
2098 return 0;
2099
2100 cmd.opcode = MMC_SET_BLOCKLEN;
2101 cmd.arg = blocklen;
2102 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2103 return mmc_wait_for_cmd(card->host, &cmd, 5);
2104 }
2105 EXPORT_SYMBOL(mmc_set_blocklen);
2106
mmc_hw_reset_for_init(struct mmc_host * host)2107 static void mmc_hw_reset_for_init(struct mmc_host *host)
2108 {
2109 mmc_pwrseq_reset(host);
2110
2111 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2112 return;
2113 host->ops->hw_reset(host);
2114 }
2115
mmc_hw_reset(struct mmc_host * host)2116 int mmc_hw_reset(struct mmc_host *host)
2117 {
2118 int ret;
2119
2120 if (!host->card)
2121 return -EINVAL;
2122
2123 mmc_bus_get(host);
2124 if (!host->bus_ops || host->bus_dead || !host->bus_ops->hw_reset) {
2125 mmc_bus_put(host);
2126 return -EOPNOTSUPP;
2127 }
2128
2129 ret = host->bus_ops->hw_reset(host);
2130 mmc_bus_put(host);
2131
2132 if (ret)
2133 pr_warn("%s: tried to HW reset card, got error %d\n",
2134 mmc_hostname(host), ret);
2135
2136 return ret;
2137 }
2138 EXPORT_SYMBOL(mmc_hw_reset);
2139
mmc_sw_reset(struct mmc_host * host)2140 int mmc_sw_reset(struct mmc_host *host)
2141 {
2142 int ret;
2143
2144 if (!host->card)
2145 return -EINVAL;
2146
2147 mmc_bus_get(host);
2148 if (!host->bus_ops || host->bus_dead || !host->bus_ops->sw_reset) {
2149 mmc_bus_put(host);
2150 return -EOPNOTSUPP;
2151 }
2152
2153 ret = host->bus_ops->sw_reset(host);
2154 mmc_bus_put(host);
2155
2156 if (ret)
2157 pr_warn("%s: tried to SW reset card, got error %d\n",
2158 mmc_hostname(host), ret);
2159
2160 return ret;
2161 }
2162 EXPORT_SYMBOL(mmc_sw_reset);
2163
mmc_rescan_try_freq(struct mmc_host * host,unsigned freq)2164 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2165 {
2166 host->f_init = freq;
2167
2168 pr_debug("%s: %s: trying to init card at %u Hz\n",
2169 mmc_hostname(host), __func__, host->f_init);
2170
2171 mmc_power_up(host, host->ocr_avail);
2172
2173 /*
2174 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2175 * do a hardware reset if possible.
2176 */
2177 mmc_hw_reset_for_init(host);
2178
2179 /*
2180 * sdio_reset sends CMD52 to reset card. Since we do not know
2181 * if the card is being re-initialized, just send it. CMD52
2182 * should be ignored by SD/eMMC cards.
2183 * Skip it if we already know that we do not support SDIO commands
2184 */
2185 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2186 sdio_reset(host);
2187
2188 mmc_go_idle(host);
2189
2190 if (!(host->caps2 & MMC_CAP2_NO_SD))
2191 mmc_send_if_cond(host, host->ocr_avail);
2192
2193 /* Order's important: probe SDIO, then SD, then MMC */
2194 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2195 if (!mmc_attach_sdio(host))
2196 return 0;
2197
2198 if (!(host->caps2 & MMC_CAP2_NO_SD))
2199 if (!mmc_attach_sd(host))
2200 return 0;
2201
2202 if (!(host->caps2 & MMC_CAP2_NO_MMC))
2203 if (!mmc_attach_mmc(host))
2204 return 0;
2205
2206 mmc_power_off(host);
2207 return -EIO;
2208 }
2209
_mmc_detect_card_removed(struct mmc_host * host)2210 int _mmc_detect_card_removed(struct mmc_host *host)
2211 {
2212 int ret;
2213
2214 if (!host->card || mmc_card_removed(host->card))
2215 return 1;
2216
2217 ret = host->bus_ops->alive(host);
2218
2219 /*
2220 * Card detect status and alive check may be out of sync if card is
2221 * removed slowly, when card detect switch changes while card/slot
2222 * pads are still contacted in hardware (refer to "SD Card Mechanical
2223 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2224 * detect work 200ms later for this case.
2225 */
2226 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2227 mmc_detect_change(host, msecs_to_jiffies(200));
2228 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2229 }
2230
2231 if (ret) {
2232 mmc_card_set_removed(host->card);
2233 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2234 }
2235
2236 return ret;
2237 }
2238
mmc_detect_card_removed(struct mmc_host * host)2239 int mmc_detect_card_removed(struct mmc_host *host)
2240 {
2241 struct mmc_card *card = host->card;
2242 int ret;
2243
2244 WARN_ON(!host->claimed);
2245
2246 if (!card)
2247 return 1;
2248
2249 if (!mmc_card_is_removable(host))
2250 return 0;
2251
2252 ret = mmc_card_removed(card);
2253 /*
2254 * The card will be considered unchanged unless we have been asked to
2255 * detect a change or host requires polling to provide card detection.
2256 */
2257 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2258 return ret;
2259
2260 host->detect_change = 0;
2261 if (!ret) {
2262 ret = _mmc_detect_card_removed(host);
2263 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2264 /*
2265 * Schedule a detect work as soon as possible to let a
2266 * rescan handle the card removal.
2267 */
2268 cancel_delayed_work(&host->detect);
2269 _mmc_detect_change(host, 0, false);
2270 }
2271 }
2272
2273 return ret;
2274 }
2275 EXPORT_SYMBOL(mmc_detect_card_removed);
2276
mmc_rescan(struct work_struct * work)2277 void mmc_rescan(struct work_struct *work)
2278 {
2279 struct mmc_host *host =
2280 container_of(work, struct mmc_host, detect.work);
2281 int i;
2282
2283 if (host->rescan_disable)
2284 return;
2285
2286 /* If there is a non-removable card registered, only scan once */
2287 if (!mmc_card_is_removable(host) && host->rescan_entered)
2288 return;
2289 host->rescan_entered = 1;
2290
2291 if (host->trigger_card_event && host->ops->card_event) {
2292 mmc_claim_host(host);
2293 host->ops->card_event(host);
2294 mmc_release_host(host);
2295 host->trigger_card_event = false;
2296 }
2297
2298 mmc_bus_get(host);
2299
2300 /*
2301 * if there is a _removable_ card registered, check whether it is
2302 * still present
2303 */
2304 if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host))
2305 host->bus_ops->detect(host);
2306
2307 host->detect_change = 0;
2308
2309 /*
2310 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2311 * the card is no longer present.
2312 */
2313 mmc_bus_put(host);
2314 mmc_bus_get(host);
2315
2316 /* if there still is a card present, stop here */
2317 if (host->bus_ops != NULL) {
2318 mmc_bus_put(host);
2319 goto out;
2320 }
2321
2322 /*
2323 * Only we can add a new handler, so it's safe to
2324 * release the lock here.
2325 */
2326 mmc_bus_put(host);
2327
2328 mmc_claim_host(host);
2329 if (mmc_card_is_removable(host) && host->ops->get_cd &&
2330 host->ops->get_cd(host) == 0) {
2331 mmc_power_off(host);
2332 mmc_release_host(host);
2333 goto out;
2334 }
2335
2336 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2337 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2338 break;
2339 if (freqs[i] <= host->f_min)
2340 break;
2341 }
2342 mmc_release_host(host);
2343
2344 out:
2345 if (host->caps & MMC_CAP_NEEDS_POLL)
2346 mmc_schedule_delayed_work(&host->detect, HZ);
2347 }
2348
mmc_start_host(struct mmc_host * host)2349 void mmc_start_host(struct mmc_host *host)
2350 {
2351 host->f_init = max(freqs[0], host->f_min);
2352 host->rescan_disable = 0;
2353 host->ios.power_mode = MMC_POWER_UNDEFINED;
2354
2355 if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2356 mmc_claim_host(host);
2357 mmc_power_up(host, host->ocr_avail);
2358 mmc_release_host(host);
2359 }
2360
2361 mmc_gpiod_request_cd_irq(host);
2362 _mmc_detect_change(host, 0, false);
2363 }
2364
mmc_stop_host(struct mmc_host * host)2365 void mmc_stop_host(struct mmc_host *host)
2366 {
2367 if (host->slot.cd_irq >= 0) {
2368 mmc_gpio_set_cd_wake(host, false);
2369 disable_irq(host->slot.cd_irq);
2370 }
2371
2372 host->rescan_disable = 1;
2373 cancel_delayed_work_sync(&host->detect);
2374
2375 /* clear pm flags now and let card drivers set them as needed */
2376 host->pm_flags = 0;
2377
2378 mmc_bus_get(host);
2379 if (host->bus_ops && !host->bus_dead) {
2380 /* Calling bus_ops->remove() with a claimed host can deadlock */
2381 host->bus_ops->remove(host);
2382 mmc_claim_host(host);
2383 mmc_detach_bus(host);
2384 mmc_power_off(host);
2385 mmc_release_host(host);
2386 mmc_bus_put(host);
2387 return;
2388 }
2389 mmc_bus_put(host);
2390
2391 mmc_claim_host(host);
2392 mmc_power_off(host);
2393 mmc_release_host(host);
2394 }
2395
2396 #ifdef CONFIG_PM_SLEEP
2397 /* Do the card removal on suspend if card is assumed removeable
2398 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2399 to sync the card.
2400 */
mmc_pm_notify(struct notifier_block * notify_block,unsigned long mode,void * unused)2401 static int mmc_pm_notify(struct notifier_block *notify_block,
2402 unsigned long mode, void *unused)
2403 {
2404 struct mmc_host *host = container_of(
2405 notify_block, struct mmc_host, pm_notify);
2406 unsigned long flags;
2407 int err = 0;
2408
2409 switch (mode) {
2410 case PM_HIBERNATION_PREPARE:
2411 case PM_SUSPEND_PREPARE:
2412 case PM_RESTORE_PREPARE:
2413 spin_lock_irqsave(&host->lock, flags);
2414 host->rescan_disable = 1;
2415 spin_unlock_irqrestore(&host->lock, flags);
2416 cancel_delayed_work_sync(&host->detect);
2417
2418 if (!host->bus_ops)
2419 break;
2420
2421 /* Validate prerequisites for suspend */
2422 if (host->bus_ops->pre_suspend)
2423 err = host->bus_ops->pre_suspend(host);
2424 if (!err)
2425 break;
2426
2427 if (!mmc_card_is_removable(host)) {
2428 dev_warn(mmc_dev(host),
2429 "pre_suspend failed for non-removable host: "
2430 "%d\n", err);
2431 /* Avoid removing non-removable hosts */
2432 break;
2433 }
2434
2435 /* Calling bus_ops->remove() with a claimed host can deadlock */
2436 host->bus_ops->remove(host);
2437 mmc_claim_host(host);
2438 mmc_detach_bus(host);
2439 mmc_power_off(host);
2440 mmc_release_host(host);
2441 host->pm_flags = 0;
2442 break;
2443
2444 case PM_POST_SUSPEND:
2445 case PM_POST_HIBERNATION:
2446 case PM_POST_RESTORE:
2447
2448 spin_lock_irqsave(&host->lock, flags);
2449 host->rescan_disable = 0;
2450 spin_unlock_irqrestore(&host->lock, flags);
2451 _mmc_detect_change(host, 0, false);
2452
2453 }
2454
2455 return 0;
2456 }
2457
mmc_register_pm_notifier(struct mmc_host * host)2458 void mmc_register_pm_notifier(struct mmc_host *host)
2459 {
2460 host->pm_notify.notifier_call = mmc_pm_notify;
2461 register_pm_notifier(&host->pm_notify);
2462 }
2463
mmc_unregister_pm_notifier(struct mmc_host * host)2464 void mmc_unregister_pm_notifier(struct mmc_host *host)
2465 {
2466 unregister_pm_notifier(&host->pm_notify);
2467 }
2468 #endif
2469
mmc_init(void)2470 static int __init mmc_init(void)
2471 {
2472 int ret;
2473
2474 ret = mmc_register_bus();
2475 if (ret)
2476 return ret;
2477
2478 ret = mmc_register_host_class();
2479 if (ret)
2480 goto unregister_bus;
2481
2482 ret = sdio_register_bus();
2483 if (ret)
2484 goto unregister_host_class;
2485
2486 return 0;
2487
2488 unregister_host_class:
2489 mmc_unregister_host_class();
2490 unregister_bus:
2491 mmc_unregister_bus();
2492 return ret;
2493 }
2494
mmc_exit(void)2495 static void __exit mmc_exit(void)
2496 {
2497 sdio_unregister_bus();
2498 mmc_unregister_host_class();
2499 mmc_unregister_bus();
2500 }
2501
2502 subsys_initcall(mmc_init);
2503 module_exit(mmc_exit);
2504
2505 MODULE_LICENSE("GPL");
2506