1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/mmc/core/mmc.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 */
9
10 #include <linux/err.h>
11 #include <linux/of.h>
12 #include <linux/slab.h>
13 #include <linux/stat.h>
14 #include <linux/pm_runtime.h>
15
16 #include <linux/mmc/host.h>
17 #include <linux/mmc/card.h>
18 #include <linux/mmc/mmc.h>
19
20 #include "core.h"
21 #include "card.h"
22 #include "host.h"
23 #include "bus.h"
24 #include "mmc_ops.h"
25 #include "quirks.h"
26 #include "sd_ops.h"
27 #include "pwrseq.h"
28
29 #define DEFAULT_CMD6_TIMEOUT_MS 500
30 #define MIN_CACHE_EN_TIMEOUT_MS 1600
31 #define CACHE_FLUSH_TIMEOUT_MS 30000 /* 30s */
32
33 static const unsigned int tran_exp[] = {
34 10000, 100000, 1000000, 10000000,
35 0, 0, 0, 0
36 };
37
38 static const unsigned char tran_mant[] = {
39 0, 10, 12, 13, 15, 20, 25, 30,
40 35, 40, 45, 50, 55, 60, 70, 80,
41 };
42
43 static const unsigned int taac_exp[] = {
44 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
45 };
46
47 static const unsigned int taac_mant[] = {
48 0, 10, 12, 13, 15, 20, 25, 30,
49 35, 40, 45, 50, 55, 60, 70, 80,
50 };
51
52 #define UNSTUFF_BITS(resp,start,size) \
53 ({ \
54 const int __size = size; \
55 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
56 const int __off = 3 - ((start) / 32); \
57 const int __shft = (start) & 31; \
58 u32 __res; \
59 \
60 __res = resp[__off] >> __shft; \
61 if (__size + __shft > 32) \
62 __res |= resp[__off-1] << ((32 - __shft) % 32); \
63 __res & __mask; \
64 })
65
66 /*
67 * Given the decoded CSD structure, decode the raw CID to our CID structure.
68 */
mmc_decode_cid(struct mmc_card * card)69 static int mmc_decode_cid(struct mmc_card *card)
70 {
71 u32 *resp = card->raw_cid;
72
73 /*
74 * The selection of the format here is based upon published
75 * specs from sandisk and from what people have reported.
76 */
77 switch (card->csd.mmca_vsn) {
78 case 0: /* MMC v1.0 - v1.2 */
79 case 1: /* MMC v1.4 */
80 card->cid.manfid = UNSTUFF_BITS(resp, 104, 24);
81 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
82 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
83 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
84 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
85 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
86 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
87 card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8);
88 card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4);
89 card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4);
90 card->cid.serial = UNSTUFF_BITS(resp, 16, 24);
91 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
92 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
93 break;
94
95 case 2: /* MMC v2.0 - v2.2 */
96 case 3: /* MMC v3.1 - v3.3 */
97 case 4: /* MMC v4 */
98 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8);
99 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16);
100 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
101 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
102 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
103 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
104 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
105 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
106 card->cid.prv = UNSTUFF_BITS(resp, 48, 8);
107 card->cid.serial = UNSTUFF_BITS(resp, 16, 32);
108 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
109 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
110 break;
111
112 default:
113 pr_err("%s: card has unknown MMCA version %d\n",
114 mmc_hostname(card->host), card->csd.mmca_vsn);
115 return -EINVAL;
116 }
117
118 return 0;
119 }
120
mmc_set_erase_size(struct mmc_card * card)121 static void mmc_set_erase_size(struct mmc_card *card)
122 {
123 if (card->ext_csd.erase_group_def & 1)
124 card->erase_size = card->ext_csd.hc_erase_size;
125 else
126 card->erase_size = card->csd.erase_size;
127
128 mmc_init_erase(card);
129 }
130
131 /*
132 * Given a 128-bit response, decode to our card CSD structure.
133 */
mmc_decode_csd(struct mmc_card * card)134 static int mmc_decode_csd(struct mmc_card *card)
135 {
136 struct mmc_csd *csd = &card->csd;
137 unsigned int e, m, a, b;
138 u32 *resp = card->raw_csd;
139
140 /*
141 * We only understand CSD structure v1.1 and v1.2.
142 * v1.2 has extra information in bits 15, 11 and 10.
143 * We also support eMMC v4.4 & v4.41.
144 */
145 csd->structure = UNSTUFF_BITS(resp, 126, 2);
146 if (csd->structure == 0) {
147 pr_err("%s: unrecognised CSD structure version %d\n",
148 mmc_hostname(card->host), csd->structure);
149 return -EINVAL;
150 }
151
152 csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4);
153 m = UNSTUFF_BITS(resp, 115, 4);
154 e = UNSTUFF_BITS(resp, 112, 3);
155 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10;
156 csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100;
157
158 m = UNSTUFF_BITS(resp, 99, 4);
159 e = UNSTUFF_BITS(resp, 96, 3);
160 csd->max_dtr = tran_exp[e] * tran_mant[m];
161 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
162
163 e = UNSTUFF_BITS(resp, 47, 3);
164 m = UNSTUFF_BITS(resp, 62, 12);
165 csd->capacity = (1 + m) << (e + 2);
166
167 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
168 csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
169 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
170 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
171 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
172 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
173 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
174 csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
175
176 if (csd->write_blkbits >= 9) {
177 a = UNSTUFF_BITS(resp, 42, 5);
178 b = UNSTUFF_BITS(resp, 37, 5);
179 csd->erase_size = (a + 1) * (b + 1);
180 csd->erase_size <<= csd->write_blkbits - 9;
181 }
182
183 return 0;
184 }
185
mmc_select_card_type(struct mmc_card * card)186 static void mmc_select_card_type(struct mmc_card *card)
187 {
188 struct mmc_host *host = card->host;
189 u8 card_type = card->ext_csd.raw_card_type;
190 u32 caps = host->caps, caps2 = host->caps2;
191 unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
192 unsigned int avail_type = 0;
193
194 if (caps & MMC_CAP_MMC_HIGHSPEED &&
195 card_type & EXT_CSD_CARD_TYPE_HS_26) {
196 hs_max_dtr = MMC_HIGH_26_MAX_DTR;
197 avail_type |= EXT_CSD_CARD_TYPE_HS_26;
198 }
199
200 if (caps & MMC_CAP_MMC_HIGHSPEED &&
201 card_type & EXT_CSD_CARD_TYPE_HS_52) {
202 hs_max_dtr = MMC_HIGH_52_MAX_DTR;
203 avail_type |= EXT_CSD_CARD_TYPE_HS_52;
204 }
205
206 if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
207 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
208 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
209 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
210 }
211
212 if (caps & MMC_CAP_1_2V_DDR &&
213 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
214 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
215 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
216 }
217
218 if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
219 card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
220 hs200_max_dtr = MMC_HS200_MAX_DTR;
221 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
222 }
223
224 if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
225 card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
226 hs200_max_dtr = MMC_HS200_MAX_DTR;
227 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
228 }
229
230 if (caps2 & MMC_CAP2_HS400_1_8V &&
231 card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
232 hs200_max_dtr = MMC_HS200_MAX_DTR;
233 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
234 }
235
236 if (caps2 & MMC_CAP2_HS400_1_2V &&
237 card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
238 hs200_max_dtr = MMC_HS200_MAX_DTR;
239 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
240 }
241
242 if ((caps2 & MMC_CAP2_HS400_ES) &&
243 card->ext_csd.strobe_support &&
244 (avail_type & EXT_CSD_CARD_TYPE_HS400))
245 avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
246
247 card->ext_csd.hs_max_dtr = hs_max_dtr;
248 card->ext_csd.hs200_max_dtr = hs200_max_dtr;
249 card->mmc_avail_type = avail_type;
250 }
251
mmc_manage_enhanced_area(struct mmc_card * card,u8 * ext_csd)252 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
253 {
254 u8 hc_erase_grp_sz, hc_wp_grp_sz;
255
256 /*
257 * Disable these attributes by default
258 */
259 card->ext_csd.enhanced_area_offset = -EINVAL;
260 card->ext_csd.enhanced_area_size = -EINVAL;
261
262 /*
263 * Enhanced area feature support -- check whether the eMMC
264 * card has the Enhanced area enabled. If so, export enhanced
265 * area offset and size to user by adding sysfs interface.
266 */
267 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
268 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
269 if (card->ext_csd.partition_setting_completed) {
270 hc_erase_grp_sz =
271 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
272 hc_wp_grp_sz =
273 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
274
275 /*
276 * calculate the enhanced data area offset, in bytes
277 */
278 card->ext_csd.enhanced_area_offset =
279 (((unsigned long long)ext_csd[139]) << 24) +
280 (((unsigned long long)ext_csd[138]) << 16) +
281 (((unsigned long long)ext_csd[137]) << 8) +
282 (((unsigned long long)ext_csd[136]));
283 if (mmc_card_blockaddr(card))
284 card->ext_csd.enhanced_area_offset <<= 9;
285 /*
286 * calculate the enhanced data area size, in kilobytes
287 */
288 card->ext_csd.enhanced_area_size =
289 (ext_csd[142] << 16) + (ext_csd[141] << 8) +
290 ext_csd[140];
291 card->ext_csd.enhanced_area_size *=
292 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
293 card->ext_csd.enhanced_area_size <<= 9;
294 } else {
295 pr_warn("%s: defines enhanced area without partition setting complete\n",
296 mmc_hostname(card->host));
297 }
298 }
299 }
300
mmc_part_add(struct mmc_card * card,u64 size,unsigned int part_cfg,char * name,int idx,bool ro,int area_type)301 static void mmc_part_add(struct mmc_card *card, u64 size,
302 unsigned int part_cfg, char *name, int idx, bool ro,
303 int area_type)
304 {
305 card->part[card->nr_parts].size = size;
306 card->part[card->nr_parts].part_cfg = part_cfg;
307 sprintf(card->part[card->nr_parts].name, name, idx);
308 card->part[card->nr_parts].force_ro = ro;
309 card->part[card->nr_parts].area_type = area_type;
310 card->nr_parts++;
311 }
312
mmc_manage_gp_partitions(struct mmc_card * card,u8 * ext_csd)313 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
314 {
315 int idx;
316 u8 hc_erase_grp_sz, hc_wp_grp_sz;
317 u64 part_size;
318
319 /*
320 * General purpose partition feature support --
321 * If ext_csd has the size of general purpose partitions,
322 * set size, part_cfg, partition name in mmc_part.
323 */
324 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
325 EXT_CSD_PART_SUPPORT_PART_EN) {
326 hc_erase_grp_sz =
327 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
328 hc_wp_grp_sz =
329 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
330
331 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
332 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
333 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
334 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
335 continue;
336 if (card->ext_csd.partition_setting_completed == 0) {
337 pr_warn("%s: has partition size defined without partition complete\n",
338 mmc_hostname(card->host));
339 break;
340 }
341 part_size =
342 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
343 << 16) +
344 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
345 << 8) +
346 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
347 part_size *= (hc_erase_grp_sz * hc_wp_grp_sz);
348 mmc_part_add(card, part_size << 19,
349 EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
350 "gp%d", idx, false,
351 MMC_BLK_DATA_AREA_GP);
352 }
353 }
354 }
355
356 /* Minimum partition switch timeout in milliseconds */
357 #define MMC_MIN_PART_SWITCH_TIME 300
358
359 /*
360 * Decode extended CSD.
361 */
mmc_decode_ext_csd(struct mmc_card * card,u8 * ext_csd)362 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
363 {
364 int err = 0, idx;
365 u64 part_size;
366 struct device_node *np;
367 bool broken_hpi = false;
368
369 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
370 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
371 if (card->csd.structure == 3) {
372 if (card->ext_csd.raw_ext_csd_structure > 2) {
373 pr_err("%s: unrecognised EXT_CSD structure "
374 "version %d\n", mmc_hostname(card->host),
375 card->ext_csd.raw_ext_csd_structure);
376 err = -EINVAL;
377 goto out;
378 }
379 }
380
381 np = mmc_of_find_child_device(card->host, 0);
382 if (np && of_device_is_compatible(np, "mmc-card"))
383 broken_hpi = of_property_read_bool(np, "broken-hpi");
384 of_node_put(np);
385
386 /*
387 * The EXT_CSD format is meant to be forward compatible. As long
388 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
389 * are authorized, see JEDEC JESD84-B50 section B.8.
390 */
391 card->ext_csd.rev = ext_csd[EXT_CSD_REV];
392
393 /* fixup device after ext_csd revision field is updated */
394 mmc_fixup_device(card, mmc_ext_csd_fixups);
395
396 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
397 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
398 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
399 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
400 if (card->ext_csd.rev >= 2) {
401 card->ext_csd.sectors =
402 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
403 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
404 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
405 ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
406
407 /* Cards with density > 2GiB are sector addressed */
408 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
409 mmc_card_set_blockaddr(card);
410 }
411
412 card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
413 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
414 mmc_select_card_type(card);
415
416 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
417 card->ext_csd.raw_erase_timeout_mult =
418 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
419 card->ext_csd.raw_hc_erase_grp_size =
420 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
421 card->ext_csd.raw_boot_mult =
422 ext_csd[EXT_CSD_BOOT_MULT];
423 if (card->ext_csd.rev >= 3) {
424 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
425 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
426
427 /* EXT_CSD value is in units of 10ms, but we store in ms */
428 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
429
430 /* Sleep / awake timeout in 100ns units */
431 if (sa_shift > 0 && sa_shift <= 0x17)
432 card->ext_csd.sa_timeout =
433 1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
434 card->ext_csd.erase_group_def =
435 ext_csd[EXT_CSD_ERASE_GROUP_DEF];
436 card->ext_csd.hc_erase_timeout = 300 *
437 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
438 card->ext_csd.hc_erase_size =
439 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
440
441 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
442
443 /*
444 * There are two boot regions of equal size, defined in
445 * multiples of 128K.
446 */
447 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
448 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
449 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
450 mmc_part_add(card, part_size,
451 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
452 "boot%d", idx, true,
453 MMC_BLK_DATA_AREA_BOOT);
454 }
455 }
456 }
457
458 card->ext_csd.raw_hc_erase_gap_size =
459 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
460 card->ext_csd.raw_sec_trim_mult =
461 ext_csd[EXT_CSD_SEC_TRIM_MULT];
462 card->ext_csd.raw_sec_erase_mult =
463 ext_csd[EXT_CSD_SEC_ERASE_MULT];
464 card->ext_csd.raw_sec_feature_support =
465 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
466 card->ext_csd.raw_trim_mult =
467 ext_csd[EXT_CSD_TRIM_MULT];
468 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
469 card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
470 if (card->ext_csd.rev >= 4) {
471 if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
472 EXT_CSD_PART_SETTING_COMPLETED)
473 card->ext_csd.partition_setting_completed = 1;
474 else
475 card->ext_csd.partition_setting_completed = 0;
476
477 mmc_manage_enhanced_area(card, ext_csd);
478
479 mmc_manage_gp_partitions(card, ext_csd);
480
481 card->ext_csd.sec_trim_mult =
482 ext_csd[EXT_CSD_SEC_TRIM_MULT];
483 card->ext_csd.sec_erase_mult =
484 ext_csd[EXT_CSD_SEC_ERASE_MULT];
485 card->ext_csd.sec_feature_support =
486 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
487 card->ext_csd.trim_timeout = 300 *
488 ext_csd[EXT_CSD_TRIM_MULT];
489
490 /*
491 * Note that the call to mmc_part_add above defaults to read
492 * only. If this default assumption is changed, the call must
493 * take into account the value of boot_locked below.
494 */
495 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
496 card->ext_csd.boot_ro_lockable = true;
497
498 /* Save power class values */
499 card->ext_csd.raw_pwr_cl_52_195 =
500 ext_csd[EXT_CSD_PWR_CL_52_195];
501 card->ext_csd.raw_pwr_cl_26_195 =
502 ext_csd[EXT_CSD_PWR_CL_26_195];
503 card->ext_csd.raw_pwr_cl_52_360 =
504 ext_csd[EXT_CSD_PWR_CL_52_360];
505 card->ext_csd.raw_pwr_cl_26_360 =
506 ext_csd[EXT_CSD_PWR_CL_26_360];
507 card->ext_csd.raw_pwr_cl_200_195 =
508 ext_csd[EXT_CSD_PWR_CL_200_195];
509 card->ext_csd.raw_pwr_cl_200_360 =
510 ext_csd[EXT_CSD_PWR_CL_200_360];
511 card->ext_csd.raw_pwr_cl_ddr_52_195 =
512 ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
513 card->ext_csd.raw_pwr_cl_ddr_52_360 =
514 ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
515 card->ext_csd.raw_pwr_cl_ddr_200_360 =
516 ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
517 }
518
519 if (card->ext_csd.rev >= 5) {
520 /* Adjust production date as per JEDEC JESD84-B451 */
521 if (card->cid.year < 2010)
522 card->cid.year += 16;
523
524 /* check whether the eMMC card supports BKOPS */
525 if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
526 card->ext_csd.bkops = 1;
527 card->ext_csd.man_bkops_en =
528 (ext_csd[EXT_CSD_BKOPS_EN] &
529 EXT_CSD_MANUAL_BKOPS_MASK);
530 card->ext_csd.raw_bkops_status =
531 ext_csd[EXT_CSD_BKOPS_STATUS];
532 if (card->ext_csd.man_bkops_en)
533 pr_debug("%s: MAN_BKOPS_EN bit is set\n",
534 mmc_hostname(card->host));
535 card->ext_csd.auto_bkops_en =
536 (ext_csd[EXT_CSD_BKOPS_EN] &
537 EXT_CSD_AUTO_BKOPS_MASK);
538 if (card->ext_csd.auto_bkops_en)
539 pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
540 mmc_hostname(card->host));
541 }
542
543 /* check whether the eMMC card supports HPI */
544 if (!mmc_card_broken_hpi(card) &&
545 !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
546 card->ext_csd.hpi = 1;
547 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
548 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION;
549 else
550 card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
551 /*
552 * Indicate the maximum timeout to close
553 * a command interrupted by HPI
554 */
555 card->ext_csd.out_of_int_time =
556 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
557 }
558
559 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
560 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
561
562 /*
563 * RPMB regions are defined in multiples of 128K.
564 */
565 card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
566 if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
567 mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
568 EXT_CSD_PART_CONFIG_ACC_RPMB,
569 "rpmb", 0, false,
570 MMC_BLK_DATA_AREA_RPMB);
571 }
572 }
573
574 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
575 if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
576 card->erased_byte = 0xFF;
577 else
578 card->erased_byte = 0x0;
579
580 /* eMMC v4.5 or later */
581 card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
582 if (card->ext_csd.rev >= 6) {
583 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
584
585 card->ext_csd.generic_cmd6_time = 10 *
586 ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
587 card->ext_csd.power_off_longtime = 10 *
588 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
589
590 card->ext_csd.cache_size =
591 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
592 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
593 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
594 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
595
596 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
597 card->ext_csd.data_sector_size = 4096;
598 else
599 card->ext_csd.data_sector_size = 512;
600
601 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
602 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
603 card->ext_csd.data_tag_unit_size =
604 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
605 (card->ext_csd.data_sector_size);
606 } else {
607 card->ext_csd.data_tag_unit_size = 0;
608 }
609
610 card->ext_csd.max_packed_writes =
611 ext_csd[EXT_CSD_MAX_PACKED_WRITES];
612 card->ext_csd.max_packed_reads =
613 ext_csd[EXT_CSD_MAX_PACKED_READS];
614 } else {
615 card->ext_csd.data_sector_size = 512;
616 }
617
618 /*
619 * GENERIC_CMD6_TIME is to be used "unless a specific timeout is defined
620 * when accessing a specific field", so use it here if there is no
621 * PARTITION_SWITCH_TIME.
622 */
623 if (!card->ext_csd.part_time)
624 card->ext_csd.part_time = card->ext_csd.generic_cmd6_time;
625 /* Some eMMC set the value too low so set a minimum */
626 if (card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
627 card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
628
629 /* eMMC v5 or later */
630 if (card->ext_csd.rev >= 7) {
631 memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
632 MMC_FIRMWARE_LEN);
633 card->ext_csd.ffu_capable =
634 (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
635 !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
636
637 card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
638 card->ext_csd.device_life_time_est_typ_a =
639 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
640 card->ext_csd.device_life_time_est_typ_b =
641 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
642 }
643
644 /* eMMC v5.1 or later */
645 if (card->ext_csd.rev >= 8) {
646 card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
647 EXT_CSD_CMDQ_SUPPORTED;
648 card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
649 EXT_CSD_CMDQ_DEPTH_MASK) + 1;
650 /* Exclude inefficiently small queue depths */
651 if (card->ext_csd.cmdq_depth <= 2) {
652 card->ext_csd.cmdq_support = false;
653 card->ext_csd.cmdq_depth = 0;
654 }
655 if (card->ext_csd.cmdq_support) {
656 pr_debug("%s: Command Queue supported depth %u\n",
657 mmc_hostname(card->host),
658 card->ext_csd.cmdq_depth);
659 }
660 card->ext_csd.enhanced_rpmb_supported =
661 (card->ext_csd.rel_param &
662 EXT_CSD_WR_REL_PARAM_EN_RPMB_REL_WR);
663 }
664 out:
665 return err;
666 }
667
mmc_read_ext_csd(struct mmc_card * card)668 static int mmc_read_ext_csd(struct mmc_card *card)
669 {
670 u8 *ext_csd;
671 int err;
672
673 if (!mmc_can_ext_csd(card))
674 return 0;
675
676 err = mmc_get_ext_csd(card, &ext_csd);
677 if (err) {
678 /* If the host or the card can't do the switch,
679 * fail more gracefully. */
680 if ((err != -EINVAL)
681 && (err != -ENOSYS)
682 && (err != -EFAULT))
683 return err;
684
685 /*
686 * High capacity cards should have this "magic" size
687 * stored in their CSD.
688 */
689 if (card->csd.capacity == (4096 * 512)) {
690 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
691 mmc_hostname(card->host));
692 } else {
693 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
694 mmc_hostname(card->host));
695 err = 0;
696 }
697
698 return err;
699 }
700
701 err = mmc_decode_ext_csd(card, ext_csd);
702 kfree(ext_csd);
703 return err;
704 }
705
mmc_compare_ext_csds(struct mmc_card * card,unsigned bus_width)706 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
707 {
708 u8 *bw_ext_csd;
709 int err;
710
711 if (bus_width == MMC_BUS_WIDTH_1)
712 return 0;
713
714 err = mmc_get_ext_csd(card, &bw_ext_csd);
715 if (err)
716 return err;
717
718 /* only compare read only fields */
719 err = !((card->ext_csd.raw_partition_support ==
720 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
721 (card->ext_csd.raw_erased_mem_count ==
722 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
723 (card->ext_csd.rev ==
724 bw_ext_csd[EXT_CSD_REV]) &&
725 (card->ext_csd.raw_ext_csd_structure ==
726 bw_ext_csd[EXT_CSD_STRUCTURE]) &&
727 (card->ext_csd.raw_card_type ==
728 bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
729 (card->ext_csd.raw_s_a_timeout ==
730 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
731 (card->ext_csd.raw_hc_erase_gap_size ==
732 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
733 (card->ext_csd.raw_erase_timeout_mult ==
734 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
735 (card->ext_csd.raw_hc_erase_grp_size ==
736 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
737 (card->ext_csd.raw_sec_trim_mult ==
738 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
739 (card->ext_csd.raw_sec_erase_mult ==
740 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
741 (card->ext_csd.raw_sec_feature_support ==
742 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
743 (card->ext_csd.raw_trim_mult ==
744 bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
745 (card->ext_csd.raw_sectors[0] ==
746 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
747 (card->ext_csd.raw_sectors[1] ==
748 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
749 (card->ext_csd.raw_sectors[2] ==
750 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
751 (card->ext_csd.raw_sectors[3] ==
752 bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
753 (card->ext_csd.raw_pwr_cl_52_195 ==
754 bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
755 (card->ext_csd.raw_pwr_cl_26_195 ==
756 bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
757 (card->ext_csd.raw_pwr_cl_52_360 ==
758 bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
759 (card->ext_csd.raw_pwr_cl_26_360 ==
760 bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
761 (card->ext_csd.raw_pwr_cl_200_195 ==
762 bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
763 (card->ext_csd.raw_pwr_cl_200_360 ==
764 bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
765 (card->ext_csd.raw_pwr_cl_ddr_52_195 ==
766 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
767 (card->ext_csd.raw_pwr_cl_ddr_52_360 ==
768 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
769 (card->ext_csd.raw_pwr_cl_ddr_200_360 ==
770 bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
771
772 if (err)
773 err = -EINVAL;
774
775 kfree(bw_ext_csd);
776 return err;
777 }
778
779 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
780 card->raw_cid[2], card->raw_cid[3]);
781 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
782 card->raw_csd[2], card->raw_csd[3]);
783 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
784 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
785 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
786 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
787 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
788 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
789 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
790 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
791 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
792 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev);
793 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info);
794 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
795 card->ext_csd.device_life_time_est_typ_a,
796 card->ext_csd.device_life_time_est_typ_b);
797 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
798 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
799 card->ext_csd.enhanced_area_offset);
800 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
801 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
802 MMC_DEV_ATTR(enhanced_rpmb_supported, "%#x\n",
803 card->ext_csd.enhanced_rpmb_supported);
804 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
805 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
806 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
807 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
808
mmc_fwrev_show(struct device * dev,struct device_attribute * attr,char * buf)809 static ssize_t mmc_fwrev_show(struct device *dev,
810 struct device_attribute *attr,
811 char *buf)
812 {
813 struct mmc_card *card = mmc_dev_to_card(dev);
814
815 if (card->ext_csd.rev < 7) {
816 return sprintf(buf, "0x%x\n", card->cid.fwrev);
817 } else {
818 return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
819 card->ext_csd.fwrev);
820 }
821 }
822
823 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
824
mmc_dsr_show(struct device * dev,struct device_attribute * attr,char * buf)825 static ssize_t mmc_dsr_show(struct device *dev,
826 struct device_attribute *attr,
827 char *buf)
828 {
829 struct mmc_card *card = mmc_dev_to_card(dev);
830 struct mmc_host *host = card->host;
831
832 if (card->csd.dsr_imp && host->dsr_req)
833 return sprintf(buf, "0x%x\n", host->dsr);
834 else
835 /* return default DSR value */
836 return sprintf(buf, "0x%x\n", 0x404);
837 }
838
839 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
840
841 static struct attribute *mmc_std_attrs[] = {
842 &dev_attr_cid.attr,
843 &dev_attr_csd.attr,
844 &dev_attr_date.attr,
845 &dev_attr_erase_size.attr,
846 &dev_attr_preferred_erase_size.attr,
847 &dev_attr_fwrev.attr,
848 &dev_attr_ffu_capable.attr,
849 &dev_attr_hwrev.attr,
850 &dev_attr_manfid.attr,
851 &dev_attr_name.attr,
852 &dev_attr_oemid.attr,
853 &dev_attr_prv.attr,
854 &dev_attr_rev.attr,
855 &dev_attr_pre_eol_info.attr,
856 &dev_attr_life_time.attr,
857 &dev_attr_serial.attr,
858 &dev_attr_enhanced_area_offset.attr,
859 &dev_attr_enhanced_area_size.attr,
860 &dev_attr_raw_rpmb_size_mult.attr,
861 &dev_attr_enhanced_rpmb_supported.attr,
862 &dev_attr_rel_sectors.attr,
863 &dev_attr_ocr.attr,
864 &dev_attr_rca.attr,
865 &dev_attr_dsr.attr,
866 &dev_attr_cmdq_en.attr,
867 NULL,
868 };
869 ATTRIBUTE_GROUPS(mmc_std);
870
871 static struct device_type mmc_type = {
872 .groups = mmc_std_groups,
873 };
874
875 /*
876 * Select the PowerClass for the current bus width
877 * If power class is defined for 4/8 bit bus in the
878 * extended CSD register, select it by executing the
879 * mmc_switch command.
880 */
__mmc_select_powerclass(struct mmc_card * card,unsigned int bus_width)881 static int __mmc_select_powerclass(struct mmc_card *card,
882 unsigned int bus_width)
883 {
884 struct mmc_host *host = card->host;
885 struct mmc_ext_csd *ext_csd = &card->ext_csd;
886 unsigned int pwrclass_val = 0;
887 int err = 0;
888
889 switch (1 << host->ios.vdd) {
890 case MMC_VDD_165_195:
891 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
892 pwrclass_val = ext_csd->raw_pwr_cl_26_195;
893 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
894 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
895 ext_csd->raw_pwr_cl_52_195 :
896 ext_csd->raw_pwr_cl_ddr_52_195;
897 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
898 pwrclass_val = ext_csd->raw_pwr_cl_200_195;
899 break;
900 case MMC_VDD_27_28:
901 case MMC_VDD_28_29:
902 case MMC_VDD_29_30:
903 case MMC_VDD_30_31:
904 case MMC_VDD_31_32:
905 case MMC_VDD_32_33:
906 case MMC_VDD_33_34:
907 case MMC_VDD_34_35:
908 case MMC_VDD_35_36:
909 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
910 pwrclass_val = ext_csd->raw_pwr_cl_26_360;
911 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
912 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
913 ext_csd->raw_pwr_cl_52_360 :
914 ext_csd->raw_pwr_cl_ddr_52_360;
915 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
916 pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
917 ext_csd->raw_pwr_cl_ddr_200_360 :
918 ext_csd->raw_pwr_cl_200_360;
919 break;
920 default:
921 pr_warn("%s: Voltage range not supported for power class\n",
922 mmc_hostname(host));
923 return -EINVAL;
924 }
925
926 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
927 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
928 EXT_CSD_PWR_CL_8BIT_SHIFT;
929 else
930 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
931 EXT_CSD_PWR_CL_4BIT_SHIFT;
932
933 /* If the power class is different from the default value */
934 if (pwrclass_val > 0) {
935 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
936 EXT_CSD_POWER_CLASS,
937 pwrclass_val,
938 card->ext_csd.generic_cmd6_time);
939 }
940
941 return err;
942 }
943
mmc_select_powerclass(struct mmc_card * card)944 static int mmc_select_powerclass(struct mmc_card *card)
945 {
946 struct mmc_host *host = card->host;
947 u32 bus_width, ext_csd_bits;
948 int err, ddr;
949
950 /* Power class selection is supported for versions >= 4.0 */
951 if (!mmc_can_ext_csd(card))
952 return 0;
953
954 bus_width = host->ios.bus_width;
955 /* Power class values are defined only for 4/8 bit bus */
956 if (bus_width == MMC_BUS_WIDTH_1)
957 return 0;
958
959 ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
960 if (ddr)
961 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
962 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
963 else
964 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
965 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4;
966
967 err = __mmc_select_powerclass(card, ext_csd_bits);
968 if (err)
969 pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
970 mmc_hostname(host), 1 << bus_width, ddr);
971
972 return err;
973 }
974
975 /*
976 * Set the bus speed for the selected speed mode.
977 */
mmc_set_bus_speed(struct mmc_card * card)978 static void mmc_set_bus_speed(struct mmc_card *card)
979 {
980 unsigned int max_dtr = (unsigned int)-1;
981
982 if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
983 max_dtr > card->ext_csd.hs200_max_dtr)
984 max_dtr = card->ext_csd.hs200_max_dtr;
985 else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
986 max_dtr = card->ext_csd.hs_max_dtr;
987 else if (max_dtr > card->csd.max_dtr)
988 max_dtr = card->csd.max_dtr;
989
990 mmc_set_clock(card->host, max_dtr);
991 }
992
993 /*
994 * Select the bus width amoung 4-bit and 8-bit(SDR).
995 * If the bus width is changed successfully, return the selected width value.
996 * Zero is returned instead of error value if the wide width is not supported.
997 */
mmc_select_bus_width(struct mmc_card * card)998 static int mmc_select_bus_width(struct mmc_card *card)
999 {
1000 static unsigned ext_csd_bits[] = {
1001 EXT_CSD_BUS_WIDTH_8,
1002 EXT_CSD_BUS_WIDTH_4,
1003 };
1004 static unsigned bus_widths[] = {
1005 MMC_BUS_WIDTH_8,
1006 MMC_BUS_WIDTH_4,
1007 };
1008 struct mmc_host *host = card->host;
1009 unsigned idx, bus_width = 0;
1010 int err = 0;
1011
1012 if (!mmc_can_ext_csd(card) ||
1013 !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
1014 return 0;
1015
1016 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
1017
1018 /*
1019 * Unlike SD, MMC cards dont have a configuration register to notify
1020 * supported bus width. So bus test command should be run to identify
1021 * the supported bus width or compare the ext csd values of current
1022 * bus width and ext csd values of 1 bit mode read earlier.
1023 */
1024 for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1025 /*
1026 * Host is capable of 8bit transfer, then switch
1027 * the device to work in 8bit transfer mode. If the
1028 * mmc switch command returns error then switch to
1029 * 4bit transfer mode. On success set the corresponding
1030 * bus width on the host.
1031 */
1032 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1033 EXT_CSD_BUS_WIDTH,
1034 ext_csd_bits[idx],
1035 card->ext_csd.generic_cmd6_time);
1036 if (err)
1037 continue;
1038
1039 bus_width = bus_widths[idx];
1040 mmc_set_bus_width(host, bus_width);
1041
1042 /*
1043 * If controller can't handle bus width test,
1044 * compare ext_csd previously read in 1 bit mode
1045 * against ext_csd at new bus width
1046 */
1047 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1048 err = mmc_compare_ext_csds(card, bus_width);
1049 else
1050 err = mmc_bus_test(card, bus_width);
1051
1052 if (!err) {
1053 err = bus_width;
1054 break;
1055 } else {
1056 pr_warn("%s: switch to bus width %d failed\n",
1057 mmc_hostname(host), 1 << bus_width);
1058 }
1059 }
1060
1061 return err;
1062 }
1063
1064 /*
1065 * Switch to the high-speed mode
1066 */
mmc_select_hs(struct mmc_card * card)1067 static int mmc_select_hs(struct mmc_card *card)
1068 {
1069 int err;
1070
1071 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1072 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1073 card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1074 true, true, MMC_CMD_RETRIES);
1075 if (err)
1076 pr_warn("%s: switch to high-speed failed, err:%d\n",
1077 mmc_hostname(card->host), err);
1078
1079 return err;
1080 }
1081
1082 /*
1083 * Activate wide bus and DDR if supported.
1084 */
mmc_select_hs_ddr(struct mmc_card * card)1085 static int mmc_select_hs_ddr(struct mmc_card *card)
1086 {
1087 struct mmc_host *host = card->host;
1088 u32 bus_width, ext_csd_bits;
1089 int err = 0;
1090
1091 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1092 return 0;
1093
1094 bus_width = host->ios.bus_width;
1095 if (bus_width == MMC_BUS_WIDTH_1)
1096 return 0;
1097
1098 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1099 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1100
1101 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1102 EXT_CSD_BUS_WIDTH,
1103 ext_csd_bits,
1104 card->ext_csd.generic_cmd6_time,
1105 MMC_TIMING_MMC_DDR52,
1106 true, true, MMC_CMD_RETRIES);
1107 if (err) {
1108 pr_err("%s: switch to bus width %d ddr failed\n",
1109 mmc_hostname(host), 1 << bus_width);
1110 return err;
1111 }
1112
1113 /*
1114 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1115 * signaling.
1116 *
1117 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1118 *
1119 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1120 * in the JEDEC spec for DDR.
1121 *
1122 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1123 * host controller can support this, like some of the SDHCI
1124 * controller which connect to an eMMC device. Some of these
1125 * host controller still needs to use 1.8v vccq for supporting
1126 * DDR mode.
1127 *
1128 * So the sequence will be:
1129 * if (host and device can both support 1.2v IO)
1130 * use 1.2v IO;
1131 * else if (host and device can both support 1.8v IO)
1132 * use 1.8v IO;
1133 * so if host and device can only support 3.3v IO, this is the
1134 * last choice.
1135 *
1136 * WARNING: eMMC rules are NOT the same as SD DDR
1137 */
1138 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
1139 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1140 if (!err)
1141 return 0;
1142 }
1143
1144 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
1145 host->caps & MMC_CAP_1_8V_DDR)
1146 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1147
1148 /* make sure vccq is 3.3v after switching disaster */
1149 if (err)
1150 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1151
1152 return err;
1153 }
1154
mmc_select_hs400(struct mmc_card * card)1155 static int mmc_select_hs400(struct mmc_card *card)
1156 {
1157 struct mmc_host *host = card->host;
1158 unsigned int max_dtr;
1159 int err = 0;
1160 u8 val;
1161
1162 /*
1163 * HS400 mode requires 8-bit bus width
1164 */
1165 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1166 host->ios.bus_width == MMC_BUS_WIDTH_8))
1167 return 0;
1168
1169 /* Switch card to HS mode */
1170 val = EXT_CSD_TIMING_HS;
1171 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1172 EXT_CSD_HS_TIMING, val,
1173 card->ext_csd.generic_cmd6_time, 0,
1174 false, true, MMC_CMD_RETRIES);
1175 if (err) {
1176 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1177 mmc_hostname(host), err);
1178 return err;
1179 }
1180
1181 /* Prepare host to downgrade to HS timing */
1182 if (host->ops->hs400_downgrade)
1183 host->ops->hs400_downgrade(host);
1184
1185 /* Set host controller to HS timing */
1186 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1187
1188 /* Reduce frequency to HS frequency */
1189 max_dtr = card->ext_csd.hs_max_dtr;
1190 mmc_set_clock(host, max_dtr);
1191
1192 err = mmc_switch_status(card, true);
1193 if (err)
1194 goto out_err;
1195
1196 if (host->ops->hs400_prepare_ddr)
1197 host->ops->hs400_prepare_ddr(host);
1198
1199 /* Switch card to DDR */
1200 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1201 EXT_CSD_BUS_WIDTH,
1202 EXT_CSD_DDR_BUS_WIDTH_8,
1203 card->ext_csd.generic_cmd6_time);
1204 if (err) {
1205 pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1206 mmc_hostname(host), err);
1207 return err;
1208 }
1209
1210 /* Switch card to HS400 */
1211 val = EXT_CSD_TIMING_HS400 |
1212 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1213 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1214 EXT_CSD_HS_TIMING, val,
1215 card->ext_csd.generic_cmd6_time, 0,
1216 false, true, MMC_CMD_RETRIES);
1217 if (err) {
1218 pr_err("%s: switch to hs400 failed, err:%d\n",
1219 mmc_hostname(host), err);
1220 return err;
1221 }
1222
1223 /* Set host controller to HS400 timing and frequency */
1224 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1225 mmc_set_bus_speed(card);
1226
1227 if (host->ops->hs400_complete)
1228 host->ops->hs400_complete(host);
1229
1230 err = mmc_switch_status(card, true);
1231 if (err)
1232 goto out_err;
1233
1234 return 0;
1235
1236 out_err:
1237 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1238 __func__, err);
1239 return err;
1240 }
1241
mmc_hs200_to_hs400(struct mmc_card * card)1242 int mmc_hs200_to_hs400(struct mmc_card *card)
1243 {
1244 return mmc_select_hs400(card);
1245 }
1246
mmc_hs400_to_hs200(struct mmc_card * card)1247 int mmc_hs400_to_hs200(struct mmc_card *card)
1248 {
1249 struct mmc_host *host = card->host;
1250 unsigned int max_dtr;
1251 int err;
1252 u8 val;
1253
1254 /* Reduce frequency to HS */
1255 max_dtr = card->ext_csd.hs_max_dtr;
1256 mmc_set_clock(host, max_dtr);
1257
1258 /* Switch HS400 to HS DDR */
1259 val = EXT_CSD_TIMING_HS;
1260 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1261 val, card->ext_csd.generic_cmd6_time, 0,
1262 false, true, MMC_CMD_RETRIES);
1263 if (err)
1264 goto out_err;
1265
1266 if (host->ops->hs400_downgrade)
1267 host->ops->hs400_downgrade(host);
1268
1269 mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1270
1271 err = mmc_switch_status(card, true);
1272 if (err)
1273 goto out_err;
1274
1275 /* Switch HS DDR to HS */
1276 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1277 EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1278 0, false, true, MMC_CMD_RETRIES);
1279 if (err)
1280 goto out_err;
1281
1282 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1283
1284 err = mmc_switch_status(card, true);
1285 if (err)
1286 goto out_err;
1287
1288 /* Switch HS to HS200 */
1289 val = EXT_CSD_TIMING_HS200 |
1290 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1291 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1292 val, card->ext_csd.generic_cmd6_time, 0,
1293 false, true, MMC_CMD_RETRIES);
1294 if (err)
1295 goto out_err;
1296
1297 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1298
1299 /*
1300 * For HS200, CRC errors are not a reliable way to know the switch
1301 * failed. If there really is a problem, we would expect tuning will
1302 * fail and the result ends up the same.
1303 */
1304 err = mmc_switch_status(card, false);
1305 if (err)
1306 goto out_err;
1307
1308 mmc_set_bus_speed(card);
1309
1310 /* Prepare tuning for HS400 mode. */
1311 if (host->ops->prepare_hs400_tuning)
1312 host->ops->prepare_hs400_tuning(host, &host->ios);
1313
1314 return 0;
1315
1316 out_err:
1317 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1318 __func__, err);
1319 return err;
1320 }
1321
mmc_select_driver_type(struct mmc_card * card)1322 static void mmc_select_driver_type(struct mmc_card *card)
1323 {
1324 int card_drv_type, drive_strength, drv_type = 0;
1325 int fixed_drv_type = card->host->fixed_drv_type;
1326
1327 card_drv_type = card->ext_csd.raw_driver_strength |
1328 mmc_driver_type_mask(0);
1329
1330 if (fixed_drv_type >= 0)
1331 drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type)
1332 ? fixed_drv_type : 0;
1333 else
1334 drive_strength = mmc_select_drive_strength(card,
1335 card->ext_csd.hs200_max_dtr,
1336 card_drv_type, &drv_type);
1337
1338 card->drive_strength = drive_strength;
1339
1340 if (drv_type)
1341 mmc_set_driver_type(card->host, drv_type);
1342 }
1343
mmc_select_hs400es(struct mmc_card * card)1344 static int mmc_select_hs400es(struct mmc_card *card)
1345 {
1346 struct mmc_host *host = card->host;
1347 int err = -EINVAL;
1348 u8 val;
1349
1350 if (!(host->caps & MMC_CAP_8_BIT_DATA)) {
1351 err = -ENOTSUPP;
1352 goto out_err;
1353 }
1354
1355 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1356 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1357
1358 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1359 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1360
1361 /* If fails try again during next card power cycle */
1362 if (err)
1363 goto out_err;
1364
1365 err = mmc_select_bus_width(card);
1366 if (err != MMC_BUS_WIDTH_8) {
1367 pr_err("%s: switch to 8bit bus width failed, err:%d\n",
1368 mmc_hostname(host), err);
1369 err = err < 0 ? err : -ENOTSUPP;
1370 goto out_err;
1371 }
1372
1373 /* Switch card to HS mode */
1374 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1375 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1376 card->ext_csd.generic_cmd6_time, 0,
1377 false, true, MMC_CMD_RETRIES);
1378 if (err) {
1379 pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1380 mmc_hostname(host), err);
1381 goto out_err;
1382 }
1383
1384 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1385 err = mmc_switch_status(card, true);
1386 if (err)
1387 goto out_err;
1388
1389 mmc_set_clock(host, card->ext_csd.hs_max_dtr);
1390
1391 /* Switch card to DDR with strobe bit */
1392 val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1393 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1394 EXT_CSD_BUS_WIDTH,
1395 val,
1396 card->ext_csd.generic_cmd6_time);
1397 if (err) {
1398 pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1399 mmc_hostname(host), err);
1400 goto out_err;
1401 }
1402
1403 mmc_select_driver_type(card);
1404
1405 /* Switch card to HS400 */
1406 val = EXT_CSD_TIMING_HS400 |
1407 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1408 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1409 EXT_CSD_HS_TIMING, val,
1410 card->ext_csd.generic_cmd6_time, 0,
1411 false, true, MMC_CMD_RETRIES);
1412 if (err) {
1413 pr_err("%s: switch to hs400es failed, err:%d\n",
1414 mmc_hostname(host), err);
1415 goto out_err;
1416 }
1417
1418 /* Set host controller to HS400 timing and frequency */
1419 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1420
1421 /* Controller enable enhanced strobe function */
1422 host->ios.enhanced_strobe = true;
1423 if (host->ops->hs400_enhanced_strobe)
1424 host->ops->hs400_enhanced_strobe(host, &host->ios);
1425
1426 err = mmc_switch_status(card, true);
1427 if (err)
1428 goto out_err;
1429
1430 return 0;
1431
1432 out_err:
1433 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1434 __func__, err);
1435 return err;
1436 }
1437
1438 /*
1439 * For device supporting HS200 mode, the following sequence
1440 * should be done before executing the tuning process.
1441 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1442 * 2. switch to HS200 mode
1443 * 3. set the clock to > 52Mhz and <=200MHz
1444 */
mmc_select_hs200(struct mmc_card * card)1445 static int mmc_select_hs200(struct mmc_card *card)
1446 {
1447 struct mmc_host *host = card->host;
1448 unsigned int old_timing, old_signal_voltage;
1449 int err = -EINVAL;
1450 u8 val;
1451
1452 old_signal_voltage = host->ios.signal_voltage;
1453 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1454 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1455
1456 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1457 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1458
1459 /* If fails try again during next card power cycle */
1460 if (err)
1461 return err;
1462
1463 mmc_select_driver_type(card);
1464
1465 /*
1466 * Set the bus width(4 or 8) with host's support and
1467 * switch to HS200 mode if bus width is set successfully.
1468 */
1469 err = mmc_select_bus_width(card);
1470 if (err > 0) {
1471 val = EXT_CSD_TIMING_HS200 |
1472 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1473 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1474 EXT_CSD_HS_TIMING, val,
1475 card->ext_csd.generic_cmd6_time, 0,
1476 false, true, MMC_CMD_RETRIES);
1477 if (err)
1478 goto err;
1479 old_timing = host->ios.timing;
1480 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1481
1482 /*
1483 * For HS200, CRC errors are not a reliable way to know the
1484 * switch failed. If there really is a problem, we would expect
1485 * tuning will fail and the result ends up the same.
1486 */
1487 err = mmc_switch_status(card, false);
1488
1489 /*
1490 * mmc_select_timing() assumes timing has not changed if
1491 * it is a switch error.
1492 */
1493 if (err == -EBADMSG)
1494 mmc_set_timing(host, old_timing);
1495 }
1496 err:
1497 if (err) {
1498 /* fall back to the old signal voltage, if fails report error */
1499 if (mmc_set_signal_voltage(host, old_signal_voltage))
1500 err = -EIO;
1501
1502 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1503 __func__, err);
1504 }
1505 return err;
1506 }
1507
1508 /*
1509 * Activate High Speed, HS200 or HS400ES mode if supported.
1510 */
mmc_select_timing(struct mmc_card * card)1511 static int mmc_select_timing(struct mmc_card *card)
1512 {
1513 int err = 0;
1514
1515 if (!mmc_can_ext_csd(card))
1516 goto bus_speed;
1517
1518 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES)
1519 err = mmc_select_hs400es(card);
1520 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200)
1521 err = mmc_select_hs200(card);
1522 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1523 err = mmc_select_hs(card);
1524
1525 if (err && err != -EBADMSG)
1526 return err;
1527
1528 bus_speed:
1529 /*
1530 * Set the bus speed to the selected bus timing.
1531 * If timing is not selected, backward compatible is the default.
1532 */
1533 mmc_set_bus_speed(card);
1534 return 0;
1535 }
1536
1537 /*
1538 * Execute tuning sequence to seek the proper bus operating
1539 * conditions for HS200 and HS400, which sends CMD21 to the device.
1540 */
mmc_hs200_tuning(struct mmc_card * card)1541 static int mmc_hs200_tuning(struct mmc_card *card)
1542 {
1543 struct mmc_host *host = card->host;
1544
1545 /*
1546 * Timing should be adjusted to the HS400 target
1547 * operation frequency for tuning process
1548 */
1549 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1550 host->ios.bus_width == MMC_BUS_WIDTH_8)
1551 if (host->ops->prepare_hs400_tuning)
1552 host->ops->prepare_hs400_tuning(host, &host->ios);
1553
1554 return mmc_execute_tuning(card);
1555 }
1556
1557 /*
1558 * Handle the detection and initialisation of a card.
1559 *
1560 * In the case of a resume, "oldcard" will contain the card
1561 * we're trying to reinitialise.
1562 */
mmc_init_card(struct mmc_host * host,u32 ocr,struct mmc_card * oldcard)1563 static int mmc_init_card(struct mmc_host *host, u32 ocr,
1564 struct mmc_card *oldcard)
1565 {
1566 struct mmc_card *card;
1567 int err;
1568 u32 cid[4];
1569 u32 rocr;
1570
1571 WARN_ON(!host->claimed);
1572
1573 /* Set correct bus mode for MMC before attempting init */
1574 if (!mmc_host_is_spi(host))
1575 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1576
1577 /*
1578 * Since we're changing the OCR value, we seem to
1579 * need to tell some cards to go back to the idle
1580 * state. We wait 1ms to give cards time to
1581 * respond.
1582 * mmc_go_idle is needed for eMMC that are asleep
1583 */
1584 mmc_go_idle(host);
1585
1586 /* The extra bit indicates that we support high capacity */
1587 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1588 if (err)
1589 goto err;
1590
1591 /*
1592 * For SPI, enable CRC as appropriate.
1593 */
1594 if (mmc_host_is_spi(host)) {
1595 err = mmc_spi_set_crc(host, use_spi_crc);
1596 if (err)
1597 goto err;
1598 }
1599
1600 /*
1601 * Fetch CID from card.
1602 */
1603 err = mmc_send_cid(host, cid);
1604 if (err)
1605 goto err;
1606
1607 if (oldcard) {
1608 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1609 pr_debug("%s: Perhaps the card was replaced\n",
1610 mmc_hostname(host));
1611 err = -ENOENT;
1612 goto err;
1613 }
1614
1615 card = oldcard;
1616 } else {
1617 /*
1618 * Allocate card structure.
1619 */
1620 card = mmc_alloc_card(host, &mmc_type);
1621 if (IS_ERR(card)) {
1622 err = PTR_ERR(card);
1623 goto err;
1624 }
1625
1626 card->ocr = ocr;
1627 card->type = MMC_TYPE_MMC;
1628 card->rca = 1;
1629 memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1630 }
1631
1632 /*
1633 * Call the optional HC's init_card function to handle quirks.
1634 */
1635 if (host->ops->init_card)
1636 host->ops->init_card(host, card);
1637
1638 /*
1639 * For native busses: set card RCA and quit open drain mode.
1640 */
1641 if (!mmc_host_is_spi(host)) {
1642 err = mmc_set_relative_addr(card);
1643 if (err)
1644 goto free_card;
1645
1646 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1647 }
1648
1649 if (!oldcard) {
1650 /*
1651 * Fetch CSD from card.
1652 */
1653 err = mmc_send_csd(card, card->raw_csd);
1654 if (err)
1655 goto free_card;
1656
1657 err = mmc_decode_csd(card);
1658 if (err)
1659 goto free_card;
1660 err = mmc_decode_cid(card);
1661 if (err)
1662 goto free_card;
1663 }
1664
1665 /*
1666 * handling only for cards supporting DSR and hosts requesting
1667 * DSR configuration
1668 */
1669 if (card->csd.dsr_imp && host->dsr_req)
1670 mmc_set_dsr(host);
1671
1672 /*
1673 * Select card, as all following commands rely on that.
1674 */
1675 if (!mmc_host_is_spi(host)) {
1676 err = mmc_select_card(card);
1677 if (err)
1678 goto free_card;
1679 }
1680
1681 if (!oldcard) {
1682 /* Read extended CSD. */
1683 err = mmc_read_ext_csd(card);
1684 if (err)
1685 goto free_card;
1686
1687 /*
1688 * If doing byte addressing, check if required to do sector
1689 * addressing. Handle the case of <2GB cards needing sector
1690 * addressing. See section 8.1 JEDEC Standard JED84-A441;
1691 * ocr register has bit 30 set for sector addressing.
1692 */
1693 if (rocr & BIT(30))
1694 mmc_card_set_blockaddr(card);
1695
1696 /* Erase size depends on CSD and Extended CSD */
1697 mmc_set_erase_size(card);
1698 }
1699
1700 /* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1701 if (card->ext_csd.rev >= 3) {
1702 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1703 EXT_CSD_ERASE_GROUP_DEF, 1,
1704 card->ext_csd.generic_cmd6_time);
1705
1706 if (err && err != -EBADMSG)
1707 goto free_card;
1708
1709 if (err) {
1710 /*
1711 * Just disable enhanced area off & sz
1712 * will try to enable ERASE_GROUP_DEF
1713 * during next time reinit
1714 */
1715 card->ext_csd.enhanced_area_offset = -EINVAL;
1716 card->ext_csd.enhanced_area_size = -EINVAL;
1717 } else {
1718 card->ext_csd.erase_group_def = 1;
1719 /*
1720 * enable ERASE_GRP_DEF successfully.
1721 * This will affect the erase size, so
1722 * here need to reset erase size
1723 */
1724 mmc_set_erase_size(card);
1725 }
1726 }
1727
1728 /*
1729 * Ensure eMMC user default partition is enabled
1730 */
1731 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1732 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1733 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1734 card->ext_csd.part_config,
1735 card->ext_csd.part_time);
1736 if (err && err != -EBADMSG)
1737 goto free_card;
1738 }
1739
1740 /*
1741 * Enable power_off_notification byte in the ext_csd register
1742 */
1743 if (card->ext_csd.rev >= 6) {
1744 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1745 EXT_CSD_POWER_OFF_NOTIFICATION,
1746 EXT_CSD_POWER_ON,
1747 card->ext_csd.generic_cmd6_time);
1748 if (err && err != -EBADMSG)
1749 goto free_card;
1750
1751 /*
1752 * The err can be -EBADMSG or 0,
1753 * so check for success and update the flag
1754 */
1755 if (!err)
1756 card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1757 }
1758
1759 /* set erase_arg */
1760 if (mmc_can_discard(card))
1761 card->erase_arg = MMC_DISCARD_ARG;
1762 else if (mmc_can_trim(card))
1763 card->erase_arg = MMC_TRIM_ARG;
1764 else
1765 card->erase_arg = MMC_ERASE_ARG;
1766
1767 /*
1768 * Select timing interface
1769 */
1770 err = mmc_select_timing(card);
1771 if (err)
1772 goto free_card;
1773
1774 if (mmc_card_hs200(card)) {
1775 host->doing_init_tune = 1;
1776
1777 err = mmc_hs200_tuning(card);
1778 if (!err)
1779 err = mmc_select_hs400(card);
1780
1781 host->doing_init_tune = 0;
1782
1783 if (err)
1784 goto free_card;
1785
1786 } else if (!mmc_card_hs400es(card)) {
1787 /* Select the desired bus width optionally */
1788 err = mmc_select_bus_width(card);
1789 if (err > 0 && mmc_card_hs(card)) {
1790 err = mmc_select_hs_ddr(card);
1791 if (err)
1792 goto free_card;
1793 }
1794 }
1795
1796 /*
1797 * Choose the power class with selected bus interface
1798 */
1799 mmc_select_powerclass(card);
1800
1801 /*
1802 * Enable HPI feature (if supported)
1803 */
1804 if (card->ext_csd.hpi) {
1805 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1806 EXT_CSD_HPI_MGMT, 1,
1807 card->ext_csd.generic_cmd6_time);
1808 if (err && err != -EBADMSG)
1809 goto free_card;
1810 if (err) {
1811 pr_warn("%s: Enabling HPI failed\n",
1812 mmc_hostname(card->host));
1813 card->ext_csd.hpi_en = 0;
1814 } else {
1815 card->ext_csd.hpi_en = 1;
1816 }
1817 }
1818
1819 /*
1820 * If cache size is higher than 0, this indicates the existence of cache
1821 * and it can be turned on. Note that some eMMCs from Micron has been
1822 * reported to need ~800 ms timeout, while enabling the cache after
1823 * sudden power failure tests. Let's extend the timeout to a minimum of
1824 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards.
1825 */
1826 if (card->ext_csd.cache_size > 0) {
1827 unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS;
1828
1829 timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms);
1830 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1831 EXT_CSD_CACHE_CTRL, 1, timeout_ms);
1832 if (err && err != -EBADMSG)
1833 goto free_card;
1834
1835 /*
1836 * Only if no error, cache is turned on successfully.
1837 */
1838 if (err) {
1839 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1840 mmc_hostname(card->host), err);
1841 card->ext_csd.cache_ctrl = 0;
1842 } else {
1843 card->ext_csd.cache_ctrl = 1;
1844 }
1845 }
1846
1847 /*
1848 * Enable Command Queue if supported. Note that Packed Commands cannot
1849 * be used with Command Queue.
1850 */
1851 card->ext_csd.cmdq_en = false;
1852 if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) {
1853 err = mmc_cmdq_enable(card);
1854 if (err && err != -EBADMSG)
1855 goto free_card;
1856 if (err) {
1857 pr_warn("%s: Enabling CMDQ failed\n",
1858 mmc_hostname(card->host));
1859 card->ext_csd.cmdq_support = false;
1860 card->ext_csd.cmdq_depth = 0;
1861 }
1862 }
1863 /*
1864 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1865 * disabled for a time, so a flag is needed to indicate to re-enable the
1866 * Command Queue.
1867 */
1868 card->reenable_cmdq = card->ext_csd.cmdq_en;
1869
1870 if (host->cqe_ops && !host->cqe_enabled) {
1871 err = host->cqe_ops->cqe_enable(host, card);
1872 if (!err) {
1873 host->cqe_enabled = true;
1874
1875 if (card->ext_csd.cmdq_en) {
1876 pr_info("%s: Command Queue Engine enabled\n",
1877 mmc_hostname(host));
1878 } else {
1879 host->hsq_enabled = true;
1880 pr_info("%s: Host Software Queue enabled\n",
1881 mmc_hostname(host));
1882 }
1883 }
1884 }
1885
1886 if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1887 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1888 pr_err("%s: Host failed to negotiate down from 3.3V\n",
1889 mmc_hostname(host));
1890 err = -EINVAL;
1891 goto free_card;
1892 }
1893
1894 if (!oldcard)
1895 host->card = card;
1896
1897 return 0;
1898
1899 free_card:
1900 if (!oldcard)
1901 mmc_remove_card(card);
1902 err:
1903 return err;
1904 }
1905
mmc_can_sleep(struct mmc_card * card)1906 static int mmc_can_sleep(struct mmc_card *card)
1907 {
1908 return card->ext_csd.rev >= 3;
1909 }
1910
mmc_sleep_busy_cb(void * cb_data,bool * busy)1911 static int mmc_sleep_busy_cb(void *cb_data, bool *busy)
1912 {
1913 struct mmc_host *host = cb_data;
1914
1915 *busy = host->ops->card_busy(host);
1916 return 0;
1917 }
1918
mmc_sleep(struct mmc_host * host)1919 static int mmc_sleep(struct mmc_host *host)
1920 {
1921 struct mmc_command cmd = {};
1922 struct mmc_card *card = host->card;
1923 unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1924 bool use_r1b_resp;
1925 int err;
1926
1927 /* Re-tuning can't be done once the card is deselected */
1928 mmc_retune_hold(host);
1929
1930 err = mmc_deselect_cards(host);
1931 if (err)
1932 goto out_release;
1933
1934 cmd.opcode = MMC_SLEEP_AWAKE;
1935 cmd.arg = card->rca << 16;
1936 cmd.arg |= 1 << 15;
1937 use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd, timeout_ms);
1938
1939 err = mmc_wait_for_cmd(host, &cmd, 0);
1940 if (err)
1941 goto out_release;
1942
1943 /*
1944 * If the host does not wait while the card signals busy, then we can
1945 * try to poll, but only if the host supports HW polling, as the
1946 * SEND_STATUS cmd is not allowed. If we can't poll, then we simply need
1947 * to wait the sleep/awake timeout.
1948 */
1949 if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp)
1950 goto out_release;
1951
1952 if (!host->ops->card_busy) {
1953 mmc_delay(timeout_ms);
1954 goto out_release;
1955 }
1956
1957 err = __mmc_poll_for_busy(card, timeout_ms, &mmc_sleep_busy_cb, host);
1958
1959 out_release:
1960 mmc_retune_release(host);
1961 return err;
1962 }
1963
mmc_can_poweroff_notify(const struct mmc_card * card)1964 static int mmc_can_poweroff_notify(const struct mmc_card *card)
1965 {
1966 return card &&
1967 mmc_card_mmc(card) &&
1968 (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
1969 }
1970
mmc_poweroff_notify(struct mmc_card * card,unsigned int notify_type)1971 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
1972 {
1973 unsigned int timeout = card->ext_csd.generic_cmd6_time;
1974 int err;
1975
1976 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
1977 if (notify_type == EXT_CSD_POWER_OFF_LONG)
1978 timeout = card->ext_csd.power_off_longtime;
1979
1980 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1981 EXT_CSD_POWER_OFF_NOTIFICATION,
1982 notify_type, timeout, 0, false, false, MMC_CMD_RETRIES);
1983 if (err)
1984 pr_err("%s: Power Off Notification timed out, %u\n",
1985 mmc_hostname(card->host), timeout);
1986
1987 /* Disable the power off notification after the switch operation. */
1988 card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
1989
1990 return err;
1991 }
1992
1993 /*
1994 * Host is being removed. Free up the current card.
1995 */
mmc_remove(struct mmc_host * host)1996 static void mmc_remove(struct mmc_host *host)
1997 {
1998 mmc_remove_card(host->card);
1999 host->card = NULL;
2000 }
2001
2002 /*
2003 * Card detection - card is alive.
2004 */
mmc_alive(struct mmc_host * host)2005 static int mmc_alive(struct mmc_host *host)
2006 {
2007 return mmc_send_status(host->card, NULL);
2008 }
2009
2010 /*
2011 * Card detection callback from host.
2012 */
mmc_detect(struct mmc_host * host)2013 static void mmc_detect(struct mmc_host *host)
2014 {
2015 int err;
2016
2017 mmc_get_card(host->card, NULL);
2018
2019 /*
2020 * Just check if our card has been removed.
2021 */
2022 err = _mmc_detect_card_removed(host);
2023
2024 mmc_put_card(host->card, NULL);
2025
2026 if (err) {
2027 mmc_remove(host);
2028
2029 mmc_claim_host(host);
2030 mmc_detach_bus(host);
2031 mmc_power_off(host);
2032 mmc_release_host(host);
2033 }
2034 }
2035
_mmc_cache_enabled(struct mmc_host * host)2036 static bool _mmc_cache_enabled(struct mmc_host *host)
2037 {
2038 return host->card->ext_csd.cache_size > 0 &&
2039 host->card->ext_csd.cache_ctrl & 1;
2040 }
2041
2042 /*
2043 * Flush the internal cache of the eMMC to non-volatile storage.
2044 */
_mmc_flush_cache(struct mmc_host * host)2045 static int _mmc_flush_cache(struct mmc_host *host)
2046 {
2047 int err = 0;
2048
2049 if (_mmc_cache_enabled(host)) {
2050 err = mmc_switch(host->card, EXT_CSD_CMD_SET_NORMAL,
2051 EXT_CSD_FLUSH_CACHE, 1,
2052 CACHE_FLUSH_TIMEOUT_MS);
2053 if (err)
2054 pr_err("%s: cache flush error %d\n",
2055 mmc_hostname(host), err);
2056 }
2057
2058 return err;
2059 }
2060
_mmc_suspend(struct mmc_host * host,bool is_suspend)2061 static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
2062 {
2063 int err = 0;
2064 unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
2065 EXT_CSD_POWER_OFF_LONG;
2066
2067 mmc_claim_host(host);
2068
2069 if (mmc_card_suspended(host->card))
2070 goto out;
2071
2072 err = _mmc_flush_cache(host);
2073 if (err)
2074 goto out;
2075
2076 if (mmc_can_poweroff_notify(host->card) &&
2077 ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend ||
2078 (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE_IN_SUSPEND)))
2079 err = mmc_poweroff_notify(host->card, notify_type);
2080 else if (mmc_can_sleep(host->card))
2081 err = mmc_sleep(host);
2082 else if (!mmc_host_is_spi(host))
2083 err = mmc_deselect_cards(host);
2084
2085 if (!err) {
2086 mmc_power_off(host);
2087 mmc_card_set_suspended(host->card);
2088 }
2089 out:
2090 mmc_release_host(host);
2091 return err;
2092 }
2093
2094 /*
2095 * Suspend callback
2096 */
mmc_suspend(struct mmc_host * host)2097 static int mmc_suspend(struct mmc_host *host)
2098 {
2099 int err;
2100
2101 err = _mmc_suspend(host, true);
2102 if (!err) {
2103 pm_runtime_disable(&host->card->dev);
2104 pm_runtime_set_suspended(&host->card->dev);
2105 }
2106
2107 return err;
2108 }
2109
2110 /*
2111 * This function tries to determine if the same card is still present
2112 * and, if so, restore all state to it.
2113 */
_mmc_resume(struct mmc_host * host)2114 static int _mmc_resume(struct mmc_host *host)
2115 {
2116 int err = 0;
2117
2118 mmc_claim_host(host);
2119
2120 if (!mmc_card_suspended(host->card))
2121 goto out;
2122
2123 mmc_power_up(host, host->card->ocr);
2124 err = mmc_init_card(host, host->card->ocr, host->card);
2125 mmc_card_clr_suspended(host->card);
2126
2127 out:
2128 mmc_release_host(host);
2129 return err;
2130 }
2131
2132 /*
2133 * Shutdown callback
2134 */
mmc_shutdown(struct mmc_host * host)2135 static int mmc_shutdown(struct mmc_host *host)
2136 {
2137 int err = 0;
2138
2139 /*
2140 * In a specific case for poweroff notify, we need to resume the card
2141 * before we can shutdown it properly.
2142 */
2143 if (mmc_can_poweroff_notify(host->card) &&
2144 !(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
2145 err = _mmc_resume(host);
2146
2147 if (!err)
2148 err = _mmc_suspend(host, false);
2149
2150 return err;
2151 }
2152
2153 /*
2154 * Callback for resume.
2155 */
mmc_resume(struct mmc_host * host)2156 static int mmc_resume(struct mmc_host *host)
2157 {
2158 pm_runtime_enable(&host->card->dev);
2159 return 0;
2160 }
2161
2162 /*
2163 * Callback for runtime_suspend.
2164 */
mmc_runtime_suspend(struct mmc_host * host)2165 static int mmc_runtime_suspend(struct mmc_host *host)
2166 {
2167 int err;
2168
2169 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2170 return 0;
2171
2172 err = _mmc_suspend(host, true);
2173 if (err)
2174 pr_err("%s: error %d doing aggressive suspend\n",
2175 mmc_hostname(host), err);
2176
2177 return err;
2178 }
2179
2180 /*
2181 * Callback for runtime_resume.
2182 */
mmc_runtime_resume(struct mmc_host * host)2183 static int mmc_runtime_resume(struct mmc_host *host)
2184 {
2185 int err;
2186
2187 err = _mmc_resume(host);
2188 if (err && err != -ENOMEDIUM)
2189 pr_err("%s: error %d doing runtime resume\n",
2190 mmc_hostname(host), err);
2191
2192 return 0;
2193 }
2194
mmc_can_reset(struct mmc_card * card)2195 static int mmc_can_reset(struct mmc_card *card)
2196 {
2197 u8 rst_n_function;
2198
2199 rst_n_function = card->ext_csd.rst_n_function;
2200 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2201 return 0;
2202 return 1;
2203 }
2204
_mmc_hw_reset(struct mmc_host * host)2205 static int _mmc_hw_reset(struct mmc_host *host)
2206 {
2207 struct mmc_card *card = host->card;
2208
2209 /*
2210 * In the case of recovery, we can't expect flushing the cache to work
2211 * always, but we have a go and ignore errors.
2212 */
2213 _mmc_flush_cache(host);
2214
2215 if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset &&
2216 mmc_can_reset(card)) {
2217 /* If the card accept RST_n signal, send it. */
2218 mmc_set_clock(host, host->f_init);
2219 host->ops->hw_reset(host);
2220 /* Set initial state and call mmc_set_ios */
2221 mmc_set_initial_state(host);
2222 } else {
2223 /* Do a brute force power cycle */
2224 mmc_power_cycle(host, card->ocr);
2225 mmc_pwrseq_reset(host);
2226 }
2227 return mmc_init_card(host, card->ocr, card);
2228 }
2229
2230 static const struct mmc_bus_ops mmc_ops = {
2231 .remove = mmc_remove,
2232 .detect = mmc_detect,
2233 .suspend = mmc_suspend,
2234 .resume = mmc_resume,
2235 .runtime_suspend = mmc_runtime_suspend,
2236 .runtime_resume = mmc_runtime_resume,
2237 .alive = mmc_alive,
2238 .shutdown = mmc_shutdown,
2239 .hw_reset = _mmc_hw_reset,
2240 .cache_enabled = _mmc_cache_enabled,
2241 .flush_cache = _mmc_flush_cache,
2242 };
2243
2244 /*
2245 * Starting point for MMC card init.
2246 */
mmc_attach_mmc(struct mmc_host * host)2247 int mmc_attach_mmc(struct mmc_host *host)
2248 {
2249 int err;
2250 u32 ocr, rocr;
2251
2252 WARN_ON(!host->claimed);
2253
2254 /* Set correct bus mode for MMC before attempting attach */
2255 if (!mmc_host_is_spi(host))
2256 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2257
2258 err = mmc_send_op_cond(host, 0, &ocr);
2259 if (err)
2260 return err;
2261
2262 mmc_attach_bus(host, &mmc_ops);
2263 if (host->ocr_avail_mmc)
2264 host->ocr_avail = host->ocr_avail_mmc;
2265
2266 /*
2267 * We need to get OCR a different way for SPI.
2268 */
2269 if (mmc_host_is_spi(host)) {
2270 err = mmc_spi_read_ocr(host, 1, &ocr);
2271 if (err)
2272 goto err;
2273 }
2274
2275 rocr = mmc_select_voltage(host, ocr);
2276
2277 /*
2278 * Can we support the voltage of the card?
2279 */
2280 if (!rocr) {
2281 err = -EINVAL;
2282 goto err;
2283 }
2284
2285 /*
2286 * Detect and init the card.
2287 */
2288 err = mmc_init_card(host, rocr, NULL);
2289 if (err)
2290 goto err;
2291
2292 mmc_release_host(host);
2293 err = mmc_add_card(host->card);
2294 if (err)
2295 goto remove_card;
2296
2297 mmc_claim_host(host);
2298 return 0;
2299
2300 remove_card:
2301 mmc_remove_card(host->card);
2302 mmc_claim_host(host);
2303 host->card = NULL;
2304 err:
2305 mmc_detach_bus(host);
2306
2307 pr_err("%s: error %d whilst initialising MMC card\n",
2308 mmc_hostname(host), err);
2309
2310 return err;
2311 }
2312