1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/mmc/core/core.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
8 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 */
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/completion.h>
14 #include <linux/device.h>
15 #include <linux/delay.h>
16 #include <linux/pagemap.h>
17 #include <linux/err.h>
18 #include <linux/leds.h>
19 #include <linux/scatterlist.h>
20 #include <linux/log2.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/pm_wakeup.h>
23 #include <linux/suspend.h>
24 #include <linux/fault-inject.h>
25 #include <linux/random.h>
26 #include <linux/slab.h>
27 #include <linux/of.h>
28
29 #include <linux/mmc/card.h>
30 #include <linux/mmc/host.h>
31 #include <linux/mmc/mmc.h>
32 #include <linux/mmc/sd.h>
33 #include <linux/mmc/slot-gpio.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/mmc.h>
37
38 #include "core.h"
39 #include "card.h"
40 #include "crypto.h"
41 #include "bus.h"
42 #include "host.h"
43 #include "sdio_bus.h"
44 #include "pwrseq.h"
45
46 #include "mmc_ops.h"
47 #include "sd_ops.h"
48 #include "sdio_ops.h"
49
50 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
51 #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
52 #define SD_DISCARD_TIMEOUT_MS (250)
53
54 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
55
56 /*
57 * Enabling software CRCs on the data blocks can be a significant (30%)
58 * performance cost, and for other reasons may not always be desired.
59 * So we allow it it to be disabled.
60 */
61 bool use_spi_crc = 1;
62 module_param(use_spi_crc, bool, 0);
63
mmc_schedule_delayed_work(struct delayed_work * work,unsigned long delay)64 static int mmc_schedule_delayed_work(struct delayed_work *work,
65 unsigned long delay)
66 {
67 /*
68 * We use the system_freezable_wq, because of two reasons.
69 * First, it allows several works (not the same work item) to be
70 * executed simultaneously. Second, the queue becomes frozen when
71 * userspace becomes frozen during system PM.
72 */
73 return queue_delayed_work(system_freezable_wq, work, delay);
74 }
75
76 #ifdef CONFIG_FAIL_MMC_REQUEST
77
78 /*
79 * Internal function. Inject random data errors.
80 * If mmc_data is NULL no errors are injected.
81 */
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)82 static void mmc_should_fail_request(struct mmc_host *host,
83 struct mmc_request *mrq)
84 {
85 struct mmc_command *cmd = mrq->cmd;
86 struct mmc_data *data = mrq->data;
87 static const int data_errors[] = {
88 -ETIMEDOUT,
89 -EILSEQ,
90 -EIO,
91 };
92
93 if (!data)
94 return;
95
96 if ((cmd && cmd->error) || data->error ||
97 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
98 return;
99
100 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
101 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
102 }
103
104 #else /* CONFIG_FAIL_MMC_REQUEST */
105
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)106 static inline void mmc_should_fail_request(struct mmc_host *host,
107 struct mmc_request *mrq)
108 {
109 }
110
111 #endif /* CONFIG_FAIL_MMC_REQUEST */
112
mmc_complete_cmd(struct mmc_request * mrq)113 static inline void mmc_complete_cmd(struct mmc_request *mrq)
114 {
115 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
116 complete_all(&mrq->cmd_completion);
117 }
118
mmc_command_done(struct mmc_host * host,struct mmc_request * mrq)119 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
120 {
121 if (!mrq->cap_cmd_during_tfr)
122 return;
123
124 mmc_complete_cmd(mrq);
125
126 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
127 mmc_hostname(host), mrq->cmd->opcode);
128 }
129 EXPORT_SYMBOL(mmc_command_done);
130
131 /**
132 * mmc_request_done - finish processing an MMC request
133 * @host: MMC host which completed request
134 * @mrq: MMC request which request
135 *
136 * MMC drivers should call this function when they have completed
137 * their processing of a request.
138 */
mmc_request_done(struct mmc_host * host,struct mmc_request * mrq)139 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
140 {
141 struct mmc_command *cmd = mrq->cmd;
142 int err = cmd->error;
143
144 /* Flag re-tuning needed on CRC errors */
145 if (cmd->opcode != MMC_SEND_TUNING_BLOCK &&
146 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200 &&
147 !host->retune_crc_disable &&
148 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
149 (mrq->data && mrq->data->error == -EILSEQ) ||
150 (mrq->stop && mrq->stop->error == -EILSEQ)))
151 mmc_retune_needed(host);
152
153 if (err && cmd->retries && mmc_host_is_spi(host)) {
154 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
155 cmd->retries = 0;
156 }
157
158 if (host->ongoing_mrq == mrq)
159 host->ongoing_mrq = NULL;
160
161 mmc_complete_cmd(mrq);
162
163 trace_mmc_request_done(host, mrq);
164
165 /*
166 * We list various conditions for the command to be considered
167 * properly done:
168 *
169 * - There was no error, OK fine then
170 * - We are not doing some kind of retry
171 * - The card was removed (...so just complete everything no matter
172 * if there are errors or retries)
173 */
174 if (!err || !cmd->retries || mmc_card_removed(host->card)) {
175 mmc_should_fail_request(host, mrq);
176
177 if (!host->ongoing_mrq)
178 led_trigger_event(host->led, LED_OFF);
179
180 if (mrq->sbc) {
181 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
182 mmc_hostname(host), mrq->sbc->opcode,
183 mrq->sbc->error,
184 mrq->sbc->resp[0], mrq->sbc->resp[1],
185 mrq->sbc->resp[2], mrq->sbc->resp[3]);
186 }
187
188 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
189 mmc_hostname(host), cmd->opcode, err,
190 cmd->resp[0], cmd->resp[1],
191 cmd->resp[2], cmd->resp[3]);
192
193 if (mrq->data) {
194 pr_debug("%s: %d bytes transferred: %d\n",
195 mmc_hostname(host),
196 mrq->data->bytes_xfered, mrq->data->error);
197 }
198
199 if (mrq->stop) {
200 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
201 mmc_hostname(host), mrq->stop->opcode,
202 mrq->stop->error,
203 mrq->stop->resp[0], mrq->stop->resp[1],
204 mrq->stop->resp[2], mrq->stop->resp[3]);
205 }
206 }
207 /*
208 * Request starter must handle retries - see
209 * mmc_wait_for_req_done().
210 */
211 if (mrq->done)
212 mrq->done(mrq);
213 }
214
215 EXPORT_SYMBOL(mmc_request_done);
216
__mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)217 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
218 {
219 int err;
220
221 /* Assumes host controller has been runtime resumed by mmc_claim_host */
222 err = mmc_retune(host);
223 if (err) {
224 mrq->cmd->error = err;
225 mmc_request_done(host, mrq);
226 return;
227 }
228
229 /*
230 * For sdio rw commands we must wait for card busy otherwise some
231 * sdio devices won't work properly.
232 * And bypass I/O abort, reset and bus suspend operations.
233 */
234 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
235 host->ops->card_busy) {
236 int tries = 500; /* Wait aprox 500ms at maximum */
237
238 while (host->ops->card_busy(host) && --tries)
239 mmc_delay(1);
240
241 if (tries == 0) {
242 mrq->cmd->error = -EBUSY;
243 mmc_request_done(host, mrq);
244 return;
245 }
246 }
247
248 if (mrq->cap_cmd_during_tfr) {
249 host->ongoing_mrq = mrq;
250 /*
251 * Retry path could come through here without having waiting on
252 * cmd_completion, so ensure it is reinitialised.
253 */
254 reinit_completion(&mrq->cmd_completion);
255 }
256
257 trace_mmc_request_start(host, mrq);
258
259 if (host->cqe_on)
260 host->cqe_ops->cqe_off(host);
261
262 host->ops->request(host, mrq);
263 }
264
mmc_mrq_pr_debug(struct mmc_host * host,struct mmc_request * mrq,bool cqe)265 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
266 bool cqe)
267 {
268 if (mrq->sbc) {
269 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
270 mmc_hostname(host), mrq->sbc->opcode,
271 mrq->sbc->arg, mrq->sbc->flags);
272 }
273
274 if (mrq->cmd) {
275 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
276 mmc_hostname(host), cqe ? "CQE direct " : "",
277 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
278 } else if (cqe) {
279 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
280 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
281 }
282
283 if (mrq->data) {
284 pr_debug("%s: blksz %d blocks %d flags %08x "
285 "tsac %d ms nsac %d\n",
286 mmc_hostname(host), mrq->data->blksz,
287 mrq->data->blocks, mrq->data->flags,
288 mrq->data->timeout_ns / 1000000,
289 mrq->data->timeout_clks);
290 }
291
292 if (mrq->stop) {
293 pr_debug("%s: CMD%u arg %08x flags %08x\n",
294 mmc_hostname(host), mrq->stop->opcode,
295 mrq->stop->arg, mrq->stop->flags);
296 }
297 }
298
mmc_mrq_prep(struct mmc_host * host,struct mmc_request * mrq)299 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
300 {
301 unsigned int i, sz = 0;
302 struct scatterlist *sg;
303
304 if (mrq->cmd) {
305 mrq->cmd->error = 0;
306 mrq->cmd->mrq = mrq;
307 mrq->cmd->data = mrq->data;
308 }
309 if (mrq->sbc) {
310 mrq->sbc->error = 0;
311 mrq->sbc->mrq = mrq;
312 }
313 if (mrq->data) {
314 if (mrq->data->blksz > host->max_blk_size ||
315 mrq->data->blocks > host->max_blk_count ||
316 mrq->data->blocks * mrq->data->blksz > host->max_req_size)
317 return -EINVAL;
318
319 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
320 sz += sg->length;
321 if (sz != mrq->data->blocks * mrq->data->blksz)
322 return -EINVAL;
323
324 mrq->data->error = 0;
325 mrq->data->mrq = mrq;
326 if (mrq->stop) {
327 mrq->data->stop = mrq->stop;
328 mrq->stop->error = 0;
329 mrq->stop->mrq = mrq;
330 }
331 }
332
333 return 0;
334 }
335
mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)336 int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
337 {
338 int err;
339
340 init_completion(&mrq->cmd_completion);
341
342 mmc_retune_hold(host);
343
344 if (mmc_card_removed(host->card))
345 return -ENOMEDIUM;
346
347 mmc_mrq_pr_debug(host, mrq, false);
348
349 WARN_ON(!host->claimed);
350
351 err = mmc_mrq_prep(host, mrq);
352 if (err)
353 return err;
354
355 led_trigger_event(host->led, LED_FULL);
356 __mmc_start_request(host, mrq);
357
358 return 0;
359 }
360 EXPORT_SYMBOL(mmc_start_request);
361
mmc_wait_done(struct mmc_request * mrq)362 static void mmc_wait_done(struct mmc_request *mrq)
363 {
364 complete(&mrq->completion);
365 }
366
mmc_wait_ongoing_tfr_cmd(struct mmc_host * host)367 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
368 {
369 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
370
371 /*
372 * If there is an ongoing transfer, wait for the command line to become
373 * available.
374 */
375 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
376 wait_for_completion(&ongoing_mrq->cmd_completion);
377 }
378
__mmc_start_req(struct mmc_host * host,struct mmc_request * mrq)379 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
380 {
381 int err;
382
383 mmc_wait_ongoing_tfr_cmd(host);
384
385 init_completion(&mrq->completion);
386 mrq->done = mmc_wait_done;
387
388 err = mmc_start_request(host, mrq);
389 if (err) {
390 mrq->cmd->error = err;
391 mmc_complete_cmd(mrq);
392 complete(&mrq->completion);
393 }
394
395 return err;
396 }
397
mmc_wait_for_req_done(struct mmc_host * host,struct mmc_request * mrq)398 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
399 {
400 struct mmc_command *cmd;
401
402 while (1) {
403 wait_for_completion(&mrq->completion);
404
405 cmd = mrq->cmd;
406
407 if (!cmd->error || !cmd->retries ||
408 mmc_card_removed(host->card))
409 break;
410
411 mmc_retune_recheck(host);
412
413 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
414 mmc_hostname(host), cmd->opcode, cmd->error);
415 cmd->retries--;
416 cmd->error = 0;
417 __mmc_start_request(host, mrq);
418 }
419
420 mmc_retune_release(host);
421 }
422 EXPORT_SYMBOL(mmc_wait_for_req_done);
423
424 /*
425 * mmc_cqe_start_req - Start a CQE request.
426 * @host: MMC host to start the request
427 * @mrq: request to start
428 *
429 * Start the request, re-tuning if needed and it is possible. Returns an error
430 * code if the request fails to start or -EBUSY if CQE is busy.
431 */
mmc_cqe_start_req(struct mmc_host * host,struct mmc_request * mrq)432 int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
433 {
434 int err;
435
436 /*
437 * CQE cannot process re-tuning commands. Caller must hold retuning
438 * while CQE is in use. Re-tuning can happen here only when CQE has no
439 * active requests i.e. this is the first. Note, re-tuning will call
440 * ->cqe_off().
441 */
442 err = mmc_retune(host);
443 if (err)
444 goto out_err;
445
446 mrq->host = host;
447
448 mmc_mrq_pr_debug(host, mrq, true);
449
450 err = mmc_mrq_prep(host, mrq);
451 if (err)
452 goto out_err;
453
454 err = host->cqe_ops->cqe_request(host, mrq);
455 if (err)
456 goto out_err;
457
458 trace_mmc_request_start(host, mrq);
459
460 return 0;
461
462 out_err:
463 if (mrq->cmd) {
464 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
465 mmc_hostname(host), mrq->cmd->opcode, err);
466 } else {
467 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
468 mmc_hostname(host), mrq->tag, err);
469 }
470 return err;
471 }
472 EXPORT_SYMBOL(mmc_cqe_start_req);
473
474 /**
475 * mmc_cqe_request_done - CQE has finished processing an MMC request
476 * @host: MMC host which completed request
477 * @mrq: MMC request which completed
478 *
479 * CQE drivers should call this function when they have completed
480 * their processing of a request.
481 */
mmc_cqe_request_done(struct mmc_host * host,struct mmc_request * mrq)482 void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
483 {
484 mmc_should_fail_request(host, mrq);
485
486 /* Flag re-tuning needed on CRC errors */
487 if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
488 (mrq->data && mrq->data->error == -EILSEQ))
489 mmc_retune_needed(host);
490
491 trace_mmc_request_done(host, mrq);
492
493 if (mrq->cmd) {
494 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
495 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
496 } else {
497 pr_debug("%s: CQE transfer done tag %d\n",
498 mmc_hostname(host), mrq->tag);
499 }
500
501 if (mrq->data) {
502 pr_debug("%s: %d bytes transferred: %d\n",
503 mmc_hostname(host),
504 mrq->data->bytes_xfered, mrq->data->error);
505 }
506
507 mrq->done(mrq);
508 }
509 EXPORT_SYMBOL(mmc_cqe_request_done);
510
511 /**
512 * mmc_cqe_post_req - CQE post process of a completed MMC request
513 * @host: MMC host
514 * @mrq: MMC request to be processed
515 */
mmc_cqe_post_req(struct mmc_host * host,struct mmc_request * mrq)516 void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
517 {
518 if (host->cqe_ops->cqe_post_req)
519 host->cqe_ops->cqe_post_req(host, mrq);
520 }
521 EXPORT_SYMBOL(mmc_cqe_post_req);
522
523 /* Arbitrary 1 second timeout */
524 #define MMC_CQE_RECOVERY_TIMEOUT 1000
525
526 /*
527 * mmc_cqe_recovery - Recover from CQE errors.
528 * @host: MMC host to recover
529 *
530 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
531 * in eMMC, and discarding the queue in CQE. CQE must call
532 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
533 * fails to discard its queue.
534 */
mmc_cqe_recovery(struct mmc_host * host)535 int mmc_cqe_recovery(struct mmc_host *host)
536 {
537 struct mmc_command cmd;
538 int err;
539
540 mmc_retune_hold_now(host);
541
542 /*
543 * Recovery is expected seldom, if at all, but it reduces performance,
544 * so make sure it is not completely silent.
545 */
546 pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
547
548 host->cqe_ops->cqe_recovery_start(host);
549
550 memset(&cmd, 0, sizeof(cmd));
551 cmd.opcode = MMC_STOP_TRANSMISSION;
552 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
553 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
554 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
555 mmc_wait_for_cmd(host, &cmd, 0);
556
557 memset(&cmd, 0, sizeof(cmd));
558 cmd.opcode = MMC_CMDQ_TASK_MGMT;
559 cmd.arg = 1; /* Discard entire queue */
560 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
561 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
562 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
563 err = mmc_wait_for_cmd(host, &cmd, 0);
564
565 host->cqe_ops->cqe_recovery_finish(host);
566
567 mmc_retune_release(host);
568
569 return err;
570 }
571 EXPORT_SYMBOL(mmc_cqe_recovery);
572
573 /**
574 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
575 * @host: MMC host
576 * @mrq: MMC request
577 *
578 * mmc_is_req_done() is used with requests that have
579 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
580 * starting a request and before waiting for it to complete. That is,
581 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
582 * and before mmc_wait_for_req_done(). If it is called at other times the
583 * result is not meaningful.
584 */
mmc_is_req_done(struct mmc_host * host,struct mmc_request * mrq)585 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
586 {
587 return completion_done(&mrq->completion);
588 }
589 EXPORT_SYMBOL(mmc_is_req_done);
590
591 /**
592 * mmc_wait_for_req - start a request and wait for completion
593 * @host: MMC host to start command
594 * @mrq: MMC request to start
595 *
596 * Start a new MMC custom command request for a host, and wait
597 * for the command to complete. In the case of 'cap_cmd_during_tfr'
598 * requests, the transfer is ongoing and the caller can issue further
599 * commands that do not use the data lines, and then wait by calling
600 * mmc_wait_for_req_done().
601 * Does not attempt to parse the response.
602 */
mmc_wait_for_req(struct mmc_host * host,struct mmc_request * mrq)603 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
604 {
605 __mmc_start_req(host, mrq);
606
607 if (!mrq->cap_cmd_during_tfr)
608 mmc_wait_for_req_done(host, mrq);
609 }
610 EXPORT_SYMBOL(mmc_wait_for_req);
611
612 /**
613 * mmc_wait_for_cmd - start a command and wait for completion
614 * @host: MMC host to start command
615 * @cmd: MMC command to start
616 * @retries: maximum number of retries
617 *
618 * Start a new MMC command for a host, and wait for the command
619 * to complete. Return any error that occurred while the command
620 * was executing. Do not attempt to parse the response.
621 */
mmc_wait_for_cmd(struct mmc_host * host,struct mmc_command * cmd,int retries)622 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
623 {
624 struct mmc_request mrq = {};
625
626 WARN_ON(!host->claimed);
627
628 memset(cmd->resp, 0, sizeof(cmd->resp));
629 cmd->retries = retries;
630
631 mrq.cmd = cmd;
632 cmd->data = NULL;
633
634 mmc_wait_for_req(host, &mrq);
635
636 return cmd->error;
637 }
638
639 EXPORT_SYMBOL(mmc_wait_for_cmd);
640
641 /**
642 * mmc_set_data_timeout - set the timeout for a data command
643 * @data: data phase for command
644 * @card: the MMC card associated with the data transfer
645 *
646 * Computes the data timeout parameters according to the
647 * correct algorithm given the card type.
648 */
mmc_set_data_timeout(struct mmc_data * data,const struct mmc_card * card)649 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
650 {
651 unsigned int mult;
652
653 /*
654 * SDIO cards only define an upper 1 s limit on access.
655 */
656 if (mmc_card_sdio(card)) {
657 data->timeout_ns = 1000000000;
658 data->timeout_clks = 0;
659 return;
660 }
661
662 /*
663 * SD cards use a 100 multiplier rather than 10
664 */
665 mult = mmc_card_sd(card) ? 100 : 10;
666
667 /*
668 * Scale up the multiplier (and therefore the timeout) by
669 * the r2w factor for writes.
670 */
671 if (data->flags & MMC_DATA_WRITE)
672 mult <<= card->csd.r2w_factor;
673
674 data->timeout_ns = card->csd.taac_ns * mult;
675 data->timeout_clks = card->csd.taac_clks * mult;
676
677 /*
678 * SD cards also have an upper limit on the timeout.
679 */
680 if (mmc_card_sd(card)) {
681 unsigned int timeout_us, limit_us;
682
683 timeout_us = data->timeout_ns / 1000;
684 if (card->host->ios.clock)
685 timeout_us += data->timeout_clks * 1000 /
686 (card->host->ios.clock / 1000);
687
688 if (data->flags & MMC_DATA_WRITE)
689 /*
690 * The MMC spec "It is strongly recommended
691 * for hosts to implement more than 500ms
692 * timeout value even if the card indicates
693 * the 250ms maximum busy length." Even the
694 * previous value of 300ms is known to be
695 * insufficient for some cards.
696 */
697 limit_us = 3000000;
698 else
699 limit_us = 100000;
700
701 /*
702 * SDHC cards always use these fixed values.
703 */
704 if (timeout_us > limit_us) {
705 data->timeout_ns = limit_us * 1000;
706 data->timeout_clks = 0;
707 }
708
709 /* assign limit value if invalid */
710 if (timeout_us == 0)
711 data->timeout_ns = limit_us * 1000;
712 }
713
714 /*
715 * Some cards require longer data read timeout than indicated in CSD.
716 * Address this by setting the read timeout to a "reasonably high"
717 * value. For the cards tested, 600ms has proven enough. If necessary,
718 * this value can be increased if other problematic cards require this.
719 */
720 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
721 data->timeout_ns = 600000000;
722 data->timeout_clks = 0;
723 }
724
725 /*
726 * Some cards need very high timeouts if driven in SPI mode.
727 * The worst observed timeout was 900ms after writing a
728 * continuous stream of data until the internal logic
729 * overflowed.
730 */
731 if (mmc_host_is_spi(card->host)) {
732 if (data->flags & MMC_DATA_WRITE) {
733 if (data->timeout_ns < 1000000000)
734 data->timeout_ns = 1000000000; /* 1s */
735 } else {
736 if (data->timeout_ns < 100000000)
737 data->timeout_ns = 100000000; /* 100ms */
738 }
739 }
740 }
741 EXPORT_SYMBOL(mmc_set_data_timeout);
742
743 /*
744 * Allow claiming an already claimed host if the context is the same or there is
745 * no context but the task is the same.
746 */
mmc_ctx_matches(struct mmc_host * host,struct mmc_ctx * ctx,struct task_struct * task)747 static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
748 struct task_struct *task)
749 {
750 return host->claimer == ctx ||
751 (!ctx && task && host->claimer->task == task);
752 }
753
mmc_ctx_set_claimer(struct mmc_host * host,struct mmc_ctx * ctx,struct task_struct * task)754 static inline void mmc_ctx_set_claimer(struct mmc_host *host,
755 struct mmc_ctx *ctx,
756 struct task_struct *task)
757 {
758 if (!host->claimer) {
759 if (ctx)
760 host->claimer = ctx;
761 else
762 host->claimer = &host->default_ctx;
763 }
764 if (task)
765 host->claimer->task = task;
766 }
767
768 /**
769 * __mmc_claim_host - exclusively claim a host
770 * @host: mmc host to claim
771 * @ctx: context that claims the host or NULL in which case the default
772 * context will be used
773 * @abort: whether or not the operation should be aborted
774 *
775 * Claim a host for a set of operations. If @abort is non null and
776 * dereference a non-zero value then this will return prematurely with
777 * that non-zero value without acquiring the lock. Returns zero
778 * with the lock held otherwise.
779 */
__mmc_claim_host(struct mmc_host * host,struct mmc_ctx * ctx,atomic_t * abort)780 int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
781 atomic_t *abort)
782 {
783 struct task_struct *task = ctx ? NULL : current;
784 DECLARE_WAITQUEUE(wait, current);
785 unsigned long flags;
786 int stop;
787 bool pm = false;
788
789 might_sleep();
790
791 add_wait_queue(&host->wq, &wait);
792 spin_lock_irqsave(&host->lock, flags);
793 while (1) {
794 set_current_state(TASK_UNINTERRUPTIBLE);
795 stop = abort ? atomic_read(abort) : 0;
796 if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
797 break;
798 spin_unlock_irqrestore(&host->lock, flags);
799 schedule();
800 spin_lock_irqsave(&host->lock, flags);
801 }
802 set_current_state(TASK_RUNNING);
803 if (!stop) {
804 host->claimed = 1;
805 mmc_ctx_set_claimer(host, ctx, task);
806 host->claim_cnt += 1;
807 if (host->claim_cnt == 1)
808 pm = true;
809 } else
810 wake_up(&host->wq);
811 spin_unlock_irqrestore(&host->lock, flags);
812 remove_wait_queue(&host->wq, &wait);
813
814 if (pm)
815 pm_runtime_get_sync(mmc_dev(host));
816
817 return stop;
818 }
819 EXPORT_SYMBOL(__mmc_claim_host);
820
821 /**
822 * mmc_release_host - release a host
823 * @host: mmc host to release
824 *
825 * Release a MMC host, allowing others to claim the host
826 * for their operations.
827 */
mmc_release_host(struct mmc_host * host)828 void mmc_release_host(struct mmc_host *host)
829 {
830 unsigned long flags;
831
832 WARN_ON(!host->claimed);
833
834 spin_lock_irqsave(&host->lock, flags);
835 if (--host->claim_cnt) {
836 /* Release for nested claim */
837 spin_unlock_irqrestore(&host->lock, flags);
838 } else {
839 host->claimed = 0;
840 host->claimer->task = NULL;
841 host->claimer = NULL;
842 spin_unlock_irqrestore(&host->lock, flags);
843 wake_up(&host->wq);
844 pm_runtime_mark_last_busy(mmc_dev(host));
845 if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
846 pm_runtime_put_sync_suspend(mmc_dev(host));
847 else
848 pm_runtime_put_autosuspend(mmc_dev(host));
849 }
850 }
851 EXPORT_SYMBOL(mmc_release_host);
852
853 /*
854 * This is a helper function, which fetches a runtime pm reference for the
855 * card device and also claims the host.
856 */
mmc_get_card(struct mmc_card * card,struct mmc_ctx * ctx)857 void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
858 {
859 pm_runtime_get_sync(&card->dev);
860 __mmc_claim_host(card->host, ctx, NULL);
861 }
862 EXPORT_SYMBOL(mmc_get_card);
863
864 /*
865 * This is a helper function, which releases the host and drops the runtime
866 * pm reference for the card device.
867 */
mmc_put_card(struct mmc_card * card,struct mmc_ctx * ctx)868 void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
869 {
870 struct mmc_host *host = card->host;
871
872 WARN_ON(ctx && host->claimer != ctx);
873
874 mmc_release_host(host);
875 pm_runtime_mark_last_busy(&card->dev);
876 pm_runtime_put_autosuspend(&card->dev);
877 }
878 EXPORT_SYMBOL(mmc_put_card);
879
880 /*
881 * Internal function that does the actual ios call to the host driver,
882 * optionally printing some debug output.
883 */
mmc_set_ios(struct mmc_host * host)884 static inline void mmc_set_ios(struct mmc_host *host)
885 {
886 struct mmc_ios *ios = &host->ios;
887
888 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
889 "width %u timing %u\n",
890 mmc_hostname(host), ios->clock, ios->bus_mode,
891 ios->power_mode, ios->chip_select, ios->vdd,
892 1 << ios->bus_width, ios->timing);
893
894 host->ops->set_ios(host, ios);
895 }
896
897 /*
898 * Control chip select pin on a host.
899 */
mmc_set_chip_select(struct mmc_host * host,int mode)900 void mmc_set_chip_select(struct mmc_host *host, int mode)
901 {
902 host->ios.chip_select = mode;
903 mmc_set_ios(host);
904 }
905
906 /*
907 * Sets the host clock to the highest possible frequency that
908 * is below "hz".
909 */
mmc_set_clock(struct mmc_host * host,unsigned int hz)910 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
911 {
912 WARN_ON(hz && hz < host->f_min);
913
914 if (hz > host->f_max)
915 hz = host->f_max;
916
917 host->ios.clock = hz;
918 mmc_set_ios(host);
919 }
920
mmc_execute_tuning(struct mmc_card * card)921 int mmc_execute_tuning(struct mmc_card *card)
922 {
923 struct mmc_host *host = card->host;
924 u32 opcode;
925 int err;
926
927 if (!host->ops->execute_tuning)
928 return 0;
929
930 if (host->cqe_on)
931 host->cqe_ops->cqe_off(host);
932
933 if (mmc_card_mmc(card))
934 opcode = MMC_SEND_TUNING_BLOCK_HS200;
935 else
936 opcode = MMC_SEND_TUNING_BLOCK;
937
938 err = host->ops->execute_tuning(host, opcode);
939 if (!err) {
940 mmc_retune_clear(host);
941 mmc_retune_enable(host);
942 return 0;
943 }
944
945 /* Only print error when we don't check for card removal */
946 if (!host->detect_change)
947 pr_err("%s: tuning execution failed: %d\n",
948 mmc_hostname(host), err);
949
950 return err;
951 }
952
953 /*
954 * Change the bus mode (open drain/push-pull) of a host.
955 */
mmc_set_bus_mode(struct mmc_host * host,unsigned int mode)956 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
957 {
958 host->ios.bus_mode = mode;
959 mmc_set_ios(host);
960 }
961
962 /*
963 * Change data bus width of a host.
964 */
mmc_set_bus_width(struct mmc_host * host,unsigned int width)965 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
966 {
967 host->ios.bus_width = width;
968 mmc_set_ios(host);
969 }
970
971 /*
972 * Set initial state after a power cycle or a hw_reset.
973 */
mmc_set_initial_state(struct mmc_host * host)974 void mmc_set_initial_state(struct mmc_host *host)
975 {
976 if (host->cqe_on)
977 host->cqe_ops->cqe_off(host);
978
979 mmc_retune_disable(host);
980
981 if (mmc_host_is_spi(host))
982 host->ios.chip_select = MMC_CS_HIGH;
983 else
984 host->ios.chip_select = MMC_CS_DONTCARE;
985 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
986 host->ios.bus_width = MMC_BUS_WIDTH_1;
987 host->ios.timing = MMC_TIMING_LEGACY;
988 host->ios.drv_type = 0;
989 host->ios.enhanced_strobe = false;
990
991 /*
992 * Make sure we are in non-enhanced strobe mode before we
993 * actually enable it in ext_csd.
994 */
995 if ((host->caps2 & MMC_CAP2_HS400_ES) &&
996 host->ops->hs400_enhanced_strobe)
997 host->ops->hs400_enhanced_strobe(host, &host->ios);
998
999 mmc_set_ios(host);
1000
1001 mmc_crypto_set_initial_state(host);
1002 }
1003
1004 /**
1005 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1006 * @vdd: voltage (mV)
1007 * @low_bits: prefer low bits in boundary cases
1008 *
1009 * This function returns the OCR bit number according to the provided @vdd
1010 * value. If conversion is not possible a negative errno value returned.
1011 *
1012 * Depending on the @low_bits flag the function prefers low or high OCR bits
1013 * on boundary voltages. For example,
1014 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1015 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1016 *
1017 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1018 */
mmc_vdd_to_ocrbitnum(int vdd,bool low_bits)1019 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1020 {
1021 const int max_bit = ilog2(MMC_VDD_35_36);
1022 int bit;
1023
1024 if (vdd < 1650 || vdd > 3600)
1025 return -EINVAL;
1026
1027 if (vdd >= 1650 && vdd <= 1950)
1028 return ilog2(MMC_VDD_165_195);
1029
1030 if (low_bits)
1031 vdd -= 1;
1032
1033 /* Base 2000 mV, step 100 mV, bit's base 8. */
1034 bit = (vdd - 2000) / 100 + 8;
1035 if (bit > max_bit)
1036 return max_bit;
1037 return bit;
1038 }
1039
1040 /**
1041 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1042 * @vdd_min: minimum voltage value (mV)
1043 * @vdd_max: maximum voltage value (mV)
1044 *
1045 * This function returns the OCR mask bits according to the provided @vdd_min
1046 * and @vdd_max values. If conversion is not possible the function returns 0.
1047 *
1048 * Notes wrt boundary cases:
1049 * This function sets the OCR bits for all boundary voltages, for example
1050 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1051 * MMC_VDD_34_35 mask.
1052 */
mmc_vddrange_to_ocrmask(int vdd_min,int vdd_max)1053 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1054 {
1055 u32 mask = 0;
1056
1057 if (vdd_max < vdd_min)
1058 return 0;
1059
1060 /* Prefer high bits for the boundary vdd_max values. */
1061 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1062 if (vdd_max < 0)
1063 return 0;
1064
1065 /* Prefer low bits for the boundary vdd_min values. */
1066 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1067 if (vdd_min < 0)
1068 return 0;
1069
1070 /* Fill the mask, from max bit to min bit. */
1071 while (vdd_max >= vdd_min)
1072 mask |= 1 << vdd_max--;
1073
1074 return mask;
1075 }
1076
mmc_of_get_func_num(struct device_node * node)1077 static int mmc_of_get_func_num(struct device_node *node)
1078 {
1079 u32 reg;
1080 int ret;
1081
1082 ret = of_property_read_u32(node, "reg", ®);
1083 if (ret < 0)
1084 return ret;
1085
1086 return reg;
1087 }
1088
mmc_of_find_child_device(struct mmc_host * host,unsigned func_num)1089 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1090 unsigned func_num)
1091 {
1092 struct device_node *node;
1093
1094 if (!host->parent || !host->parent->of_node)
1095 return NULL;
1096
1097 for_each_child_of_node(host->parent->of_node, node) {
1098 if (mmc_of_get_func_num(node) == func_num)
1099 return node;
1100 }
1101
1102 return NULL;
1103 }
1104
1105 /*
1106 * Mask off any voltages we don't support and select
1107 * the lowest voltage
1108 */
mmc_select_voltage(struct mmc_host * host,u32 ocr)1109 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1110 {
1111 int bit;
1112
1113 /*
1114 * Sanity check the voltages that the card claims to
1115 * support.
1116 */
1117 if (ocr & 0x7F) {
1118 dev_warn(mmc_dev(host),
1119 "card claims to support voltages below defined range\n");
1120 ocr &= ~0x7F;
1121 }
1122
1123 ocr &= host->ocr_avail;
1124 if (!ocr) {
1125 dev_warn(mmc_dev(host), "no support for card's volts\n");
1126 return 0;
1127 }
1128
1129 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1130 bit = ffs(ocr) - 1;
1131 ocr &= 3 << bit;
1132 mmc_power_cycle(host, ocr);
1133 } else {
1134 bit = fls(ocr) - 1;
1135 ocr &= 3 << bit;
1136 if (bit != host->ios.vdd)
1137 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1138 }
1139
1140 return ocr;
1141 }
1142
mmc_set_signal_voltage(struct mmc_host * host,int signal_voltage)1143 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1144 {
1145 int err = 0;
1146 int old_signal_voltage = host->ios.signal_voltage;
1147
1148 host->ios.signal_voltage = signal_voltage;
1149 if (host->ops->start_signal_voltage_switch)
1150 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1151
1152 if (err)
1153 host->ios.signal_voltage = old_signal_voltage;
1154
1155 return err;
1156
1157 }
1158
mmc_set_initial_signal_voltage(struct mmc_host * host)1159 void mmc_set_initial_signal_voltage(struct mmc_host *host)
1160 {
1161 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1162 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1163 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1164 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1165 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1166 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1167 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1168 }
1169
mmc_host_set_uhs_voltage(struct mmc_host * host)1170 int mmc_host_set_uhs_voltage(struct mmc_host *host)
1171 {
1172 u32 clock;
1173
1174 /*
1175 * During a signal voltage level switch, the clock must be gated
1176 * for 5 ms according to the SD spec
1177 */
1178 clock = host->ios.clock;
1179 host->ios.clock = 0;
1180 mmc_set_ios(host);
1181
1182 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1183 return -EAGAIN;
1184
1185 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1186 mmc_delay(10);
1187 host->ios.clock = clock;
1188 mmc_set_ios(host);
1189
1190 return 0;
1191 }
1192
mmc_set_uhs_voltage(struct mmc_host * host,u32 ocr)1193 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1194 {
1195 struct mmc_command cmd = {};
1196 int err = 0;
1197
1198 /*
1199 * If we cannot switch voltages, return failure so the caller
1200 * can continue without UHS mode
1201 */
1202 if (!host->ops->start_signal_voltage_switch)
1203 return -EPERM;
1204 if (!host->ops->card_busy)
1205 pr_warn("%s: cannot verify signal voltage switch\n",
1206 mmc_hostname(host));
1207
1208 cmd.opcode = SD_SWITCH_VOLTAGE;
1209 cmd.arg = 0;
1210 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1211
1212 err = mmc_wait_for_cmd(host, &cmd, 0);
1213 if (err)
1214 goto power_cycle;
1215
1216 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1217 return -EIO;
1218
1219 /*
1220 * The card should drive cmd and dat[0:3] low immediately
1221 * after the response of cmd11, but wait 1 ms to be sure
1222 */
1223 mmc_delay(1);
1224 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1225 err = -EAGAIN;
1226 goto power_cycle;
1227 }
1228
1229 if (mmc_host_set_uhs_voltage(host)) {
1230 /*
1231 * Voltages may not have been switched, but we've already
1232 * sent CMD11, so a power cycle is required anyway
1233 */
1234 err = -EAGAIN;
1235 goto power_cycle;
1236 }
1237
1238 /* Wait for at least 1 ms according to spec */
1239 mmc_delay(1);
1240
1241 /*
1242 * Failure to switch is indicated by the card holding
1243 * dat[0:3] low
1244 */
1245 if (host->ops->card_busy && host->ops->card_busy(host))
1246 err = -EAGAIN;
1247
1248 power_cycle:
1249 if (err) {
1250 pr_debug("%s: Signal voltage switch failed, "
1251 "power cycling card\n", mmc_hostname(host));
1252 mmc_power_cycle(host, ocr);
1253 }
1254
1255 return err;
1256 }
1257
1258 /*
1259 * Select timing parameters for host.
1260 */
mmc_set_timing(struct mmc_host * host,unsigned int timing)1261 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1262 {
1263 host->ios.timing = timing;
1264 mmc_set_ios(host);
1265 }
1266
1267 /*
1268 * Select appropriate driver type for host.
1269 */
mmc_set_driver_type(struct mmc_host * host,unsigned int drv_type)1270 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1271 {
1272 host->ios.drv_type = drv_type;
1273 mmc_set_ios(host);
1274 }
1275
mmc_select_drive_strength(struct mmc_card * card,unsigned int max_dtr,int card_drv_type,int * drv_type)1276 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1277 int card_drv_type, int *drv_type)
1278 {
1279 struct mmc_host *host = card->host;
1280 int host_drv_type = SD_DRIVER_TYPE_B;
1281
1282 *drv_type = 0;
1283
1284 if (!host->ops->select_drive_strength)
1285 return 0;
1286
1287 /* Use SD definition of driver strength for hosts */
1288 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1289 host_drv_type |= SD_DRIVER_TYPE_A;
1290
1291 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1292 host_drv_type |= SD_DRIVER_TYPE_C;
1293
1294 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1295 host_drv_type |= SD_DRIVER_TYPE_D;
1296
1297 /*
1298 * The drive strength that the hardware can support
1299 * depends on the board design. Pass the appropriate
1300 * information and let the hardware specific code
1301 * return what is possible given the options
1302 */
1303 return host->ops->select_drive_strength(card, max_dtr,
1304 host_drv_type,
1305 card_drv_type,
1306 drv_type);
1307 }
1308
1309 /*
1310 * Apply power to the MMC stack. This is a two-stage process.
1311 * First, we enable power to the card without the clock running.
1312 * We then wait a bit for the power to stabilise. Finally,
1313 * enable the bus drivers and clock to the card.
1314 *
1315 * We must _NOT_ enable the clock prior to power stablising.
1316 *
1317 * If a host does all the power sequencing itself, ignore the
1318 * initial MMC_POWER_UP stage.
1319 */
mmc_power_up(struct mmc_host * host,u32 ocr)1320 void mmc_power_up(struct mmc_host *host, u32 ocr)
1321 {
1322 if (host->ios.power_mode == MMC_POWER_ON)
1323 return;
1324
1325 mmc_pwrseq_pre_power_on(host);
1326
1327 host->ios.vdd = fls(ocr) - 1;
1328 host->ios.power_mode = MMC_POWER_UP;
1329 /* Set initial state and call mmc_set_ios */
1330 mmc_set_initial_state(host);
1331
1332 mmc_set_initial_signal_voltage(host);
1333
1334 /*
1335 * This delay should be sufficient to allow the power supply
1336 * to reach the minimum voltage.
1337 */
1338 mmc_delay(host->ios.power_delay_ms);
1339
1340 mmc_pwrseq_post_power_on(host);
1341
1342 host->ios.clock = host->f_init;
1343
1344 host->ios.power_mode = MMC_POWER_ON;
1345 mmc_set_ios(host);
1346
1347 /*
1348 * This delay must be at least 74 clock sizes, or 1 ms, or the
1349 * time required to reach a stable voltage.
1350 */
1351 mmc_delay(host->ios.power_delay_ms);
1352 }
1353
mmc_power_off(struct mmc_host * host)1354 void mmc_power_off(struct mmc_host *host)
1355 {
1356 if (host->ios.power_mode == MMC_POWER_OFF)
1357 return;
1358
1359 mmc_pwrseq_power_off(host);
1360
1361 host->ios.clock = 0;
1362 host->ios.vdd = 0;
1363
1364 host->ios.power_mode = MMC_POWER_OFF;
1365 /* Set initial state and call mmc_set_ios */
1366 mmc_set_initial_state(host);
1367
1368 /*
1369 * Some configurations, such as the 802.11 SDIO card in the OLPC
1370 * XO-1.5, require a short delay after poweroff before the card
1371 * can be successfully turned on again.
1372 */
1373 mmc_delay(1);
1374 }
1375
mmc_power_cycle(struct mmc_host * host,u32 ocr)1376 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1377 {
1378 mmc_power_off(host);
1379 /* Wait at least 1 ms according to SD spec */
1380 mmc_delay(1);
1381 mmc_power_up(host, ocr);
1382 }
1383
1384 /*
1385 * Assign a mmc bus handler to a host. Only one bus handler may control a
1386 * host at any given time.
1387 */
mmc_attach_bus(struct mmc_host * host,const struct mmc_bus_ops * ops)1388 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1389 {
1390 host->bus_ops = ops;
1391 }
1392
1393 /*
1394 * Remove the current bus handler from a host.
1395 */
mmc_detach_bus(struct mmc_host * host)1396 void mmc_detach_bus(struct mmc_host *host)
1397 {
1398 host->bus_ops = NULL;
1399 }
1400
_mmc_detect_change(struct mmc_host * host,unsigned long delay,bool cd_irq)1401 void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1402 {
1403 /*
1404 * Prevent system sleep for 5s to allow user space to consume the
1405 * corresponding uevent. This is especially useful, when CD irq is used
1406 * as a system wakeup, but doesn't hurt in other cases.
1407 */
1408 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1409 __pm_wakeup_event(host->ws, 5000);
1410
1411 host->detect_change = 1;
1412 mmc_schedule_delayed_work(&host->detect, delay);
1413 }
1414
1415 /**
1416 * mmc_detect_change - process change of state on a MMC socket
1417 * @host: host which changed state.
1418 * @delay: optional delay to wait before detection (jiffies)
1419 *
1420 * MMC drivers should call this when they detect a card has been
1421 * inserted or removed. The MMC layer will confirm that any
1422 * present card is still functional, and initialize any newly
1423 * inserted.
1424 */
mmc_detect_change(struct mmc_host * host,unsigned long delay)1425 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1426 {
1427 _mmc_detect_change(host, delay, true);
1428 }
1429 EXPORT_SYMBOL(mmc_detect_change);
1430
mmc_init_erase(struct mmc_card * card)1431 void mmc_init_erase(struct mmc_card *card)
1432 {
1433 unsigned int sz;
1434
1435 if (is_power_of_2(card->erase_size))
1436 card->erase_shift = ffs(card->erase_size) - 1;
1437 else
1438 card->erase_shift = 0;
1439
1440 /*
1441 * It is possible to erase an arbitrarily large area of an SD or MMC
1442 * card. That is not desirable because it can take a long time
1443 * (minutes) potentially delaying more important I/O, and also the
1444 * timeout calculations become increasingly hugely over-estimated.
1445 * Consequently, 'pref_erase' is defined as a guide to limit erases
1446 * to that size and alignment.
1447 *
1448 * For SD cards that define Allocation Unit size, limit erases to one
1449 * Allocation Unit at a time.
1450 * For MMC, have a stab at ai good value and for modern cards it will
1451 * end up being 4MiB. Note that if the value is too small, it can end
1452 * up taking longer to erase. Also note, erase_size is already set to
1453 * High Capacity Erase Size if available when this function is called.
1454 */
1455 if (mmc_card_sd(card) && card->ssr.au) {
1456 card->pref_erase = card->ssr.au;
1457 card->erase_shift = ffs(card->ssr.au) - 1;
1458 } else if (card->erase_size) {
1459 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1460 if (sz < 128)
1461 card->pref_erase = 512 * 1024 / 512;
1462 else if (sz < 512)
1463 card->pref_erase = 1024 * 1024 / 512;
1464 else if (sz < 1024)
1465 card->pref_erase = 2 * 1024 * 1024 / 512;
1466 else
1467 card->pref_erase = 4 * 1024 * 1024 / 512;
1468 if (card->pref_erase < card->erase_size)
1469 card->pref_erase = card->erase_size;
1470 else {
1471 sz = card->pref_erase % card->erase_size;
1472 if (sz)
1473 card->pref_erase += card->erase_size - sz;
1474 }
1475 } else
1476 card->pref_erase = 0;
1477 }
1478
mmc_mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1479 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1480 unsigned int arg, unsigned int qty)
1481 {
1482 unsigned int erase_timeout;
1483
1484 if (arg == MMC_DISCARD_ARG ||
1485 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1486 erase_timeout = card->ext_csd.trim_timeout;
1487 } else if (card->ext_csd.erase_group_def & 1) {
1488 /* High Capacity Erase Group Size uses HC timeouts */
1489 if (arg == MMC_TRIM_ARG)
1490 erase_timeout = card->ext_csd.trim_timeout;
1491 else
1492 erase_timeout = card->ext_csd.hc_erase_timeout;
1493 } else {
1494 /* CSD Erase Group Size uses write timeout */
1495 unsigned int mult = (10 << card->csd.r2w_factor);
1496 unsigned int timeout_clks = card->csd.taac_clks * mult;
1497 unsigned int timeout_us;
1498
1499 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1500 if (card->csd.taac_ns < 1000000)
1501 timeout_us = (card->csd.taac_ns * mult) / 1000;
1502 else
1503 timeout_us = (card->csd.taac_ns / 1000) * mult;
1504
1505 /*
1506 * ios.clock is only a target. The real clock rate might be
1507 * less but not that much less, so fudge it by multiplying by 2.
1508 */
1509 timeout_clks <<= 1;
1510 timeout_us += (timeout_clks * 1000) /
1511 (card->host->ios.clock / 1000);
1512
1513 erase_timeout = timeout_us / 1000;
1514
1515 /*
1516 * Theoretically, the calculation could underflow so round up
1517 * to 1ms in that case.
1518 */
1519 if (!erase_timeout)
1520 erase_timeout = 1;
1521 }
1522
1523 /* Multiplier for secure operations */
1524 if (arg & MMC_SECURE_ARGS) {
1525 if (arg == MMC_SECURE_ERASE_ARG)
1526 erase_timeout *= card->ext_csd.sec_erase_mult;
1527 else
1528 erase_timeout *= card->ext_csd.sec_trim_mult;
1529 }
1530
1531 erase_timeout *= qty;
1532
1533 /*
1534 * Ensure at least a 1 second timeout for SPI as per
1535 * 'mmc_set_data_timeout()'
1536 */
1537 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1538 erase_timeout = 1000;
1539
1540 return erase_timeout;
1541 }
1542
mmc_sd_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1543 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1544 unsigned int arg,
1545 unsigned int qty)
1546 {
1547 unsigned int erase_timeout;
1548
1549 /* for DISCARD none of the below calculation applies.
1550 * the busy timeout is 250msec per discard command.
1551 */
1552 if (arg == SD_DISCARD_ARG)
1553 return SD_DISCARD_TIMEOUT_MS;
1554
1555 if (card->ssr.erase_timeout) {
1556 /* Erase timeout specified in SD Status Register (SSR) */
1557 erase_timeout = card->ssr.erase_timeout * qty +
1558 card->ssr.erase_offset;
1559 } else {
1560 /*
1561 * Erase timeout not specified in SD Status Register (SSR) so
1562 * use 250ms per write block.
1563 */
1564 erase_timeout = 250 * qty;
1565 }
1566
1567 /* Must not be less than 1 second */
1568 if (erase_timeout < 1000)
1569 erase_timeout = 1000;
1570
1571 return erase_timeout;
1572 }
1573
mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1574 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1575 unsigned int arg,
1576 unsigned int qty)
1577 {
1578 if (mmc_card_sd(card))
1579 return mmc_sd_erase_timeout(card, arg, qty);
1580 else
1581 return mmc_mmc_erase_timeout(card, arg, qty);
1582 }
1583
mmc_do_erase(struct mmc_card * card,unsigned int from,unsigned int to,unsigned int arg)1584 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1585 unsigned int to, unsigned int arg)
1586 {
1587 struct mmc_command cmd = {};
1588 unsigned int qty = 0, busy_timeout = 0;
1589 bool use_r1b_resp;
1590 int err;
1591
1592 mmc_retune_hold(card->host);
1593
1594 /*
1595 * qty is used to calculate the erase timeout which depends on how many
1596 * erase groups (or allocation units in SD terminology) are affected.
1597 * We count erasing part of an erase group as one erase group.
1598 * For SD, the allocation units are always a power of 2. For MMC, the
1599 * erase group size is almost certainly also power of 2, but it does not
1600 * seem to insist on that in the JEDEC standard, so we fall back to
1601 * division in that case. SD may not specify an allocation unit size,
1602 * in which case the timeout is based on the number of write blocks.
1603 *
1604 * Note that the timeout for secure trim 2 will only be correct if the
1605 * number of erase groups specified is the same as the total of all
1606 * preceding secure trim 1 commands. Since the power may have been
1607 * lost since the secure trim 1 commands occurred, it is generally
1608 * impossible to calculate the secure trim 2 timeout correctly.
1609 */
1610 if (card->erase_shift)
1611 qty += ((to >> card->erase_shift) -
1612 (from >> card->erase_shift)) + 1;
1613 else if (mmc_card_sd(card))
1614 qty += to - from + 1;
1615 else
1616 qty += ((to / card->erase_size) -
1617 (from / card->erase_size)) + 1;
1618
1619 if (!mmc_card_blockaddr(card)) {
1620 from <<= 9;
1621 to <<= 9;
1622 }
1623
1624 if (mmc_card_sd(card))
1625 cmd.opcode = SD_ERASE_WR_BLK_START;
1626 else
1627 cmd.opcode = MMC_ERASE_GROUP_START;
1628 cmd.arg = from;
1629 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1630 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1631 if (err) {
1632 pr_err("mmc_erase: group start error %d, "
1633 "status %#x\n", err, cmd.resp[0]);
1634 err = -EIO;
1635 goto out;
1636 }
1637
1638 memset(&cmd, 0, sizeof(struct mmc_command));
1639 if (mmc_card_sd(card))
1640 cmd.opcode = SD_ERASE_WR_BLK_END;
1641 else
1642 cmd.opcode = MMC_ERASE_GROUP_END;
1643 cmd.arg = to;
1644 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1645 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1646 if (err) {
1647 pr_err("mmc_erase: group end error %d, status %#x\n",
1648 err, cmd.resp[0]);
1649 err = -EIO;
1650 goto out;
1651 }
1652
1653 memset(&cmd, 0, sizeof(struct mmc_command));
1654 cmd.opcode = MMC_ERASE;
1655 cmd.arg = arg;
1656 busy_timeout = mmc_erase_timeout(card, arg, qty);
1657 use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout);
1658
1659 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1660 if (err) {
1661 pr_err("mmc_erase: erase error %d, status %#x\n",
1662 err, cmd.resp[0]);
1663 err = -EIO;
1664 goto out;
1665 }
1666
1667 if (mmc_host_is_spi(card->host))
1668 goto out;
1669
1670 /*
1671 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1672 * shall be avoided.
1673 */
1674 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1675 goto out;
1676
1677 /* Let's poll to find out when the erase operation completes. */
1678 err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE);
1679
1680 out:
1681 mmc_retune_release(card->host);
1682 return err;
1683 }
1684
mmc_align_erase_size(struct mmc_card * card,unsigned int * from,unsigned int * to,unsigned int nr)1685 static unsigned int mmc_align_erase_size(struct mmc_card *card,
1686 unsigned int *from,
1687 unsigned int *to,
1688 unsigned int nr)
1689 {
1690 unsigned int from_new = *from, nr_new = nr, rem;
1691
1692 /*
1693 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1694 * to align the erase size efficiently.
1695 */
1696 if (is_power_of_2(card->erase_size)) {
1697 unsigned int temp = from_new;
1698
1699 from_new = round_up(temp, card->erase_size);
1700 rem = from_new - temp;
1701
1702 if (nr_new > rem)
1703 nr_new -= rem;
1704 else
1705 return 0;
1706
1707 nr_new = round_down(nr_new, card->erase_size);
1708 } else {
1709 rem = from_new % card->erase_size;
1710 if (rem) {
1711 rem = card->erase_size - rem;
1712 from_new += rem;
1713 if (nr_new > rem)
1714 nr_new -= rem;
1715 else
1716 return 0;
1717 }
1718
1719 rem = nr_new % card->erase_size;
1720 if (rem)
1721 nr_new -= rem;
1722 }
1723
1724 if (nr_new == 0)
1725 return 0;
1726
1727 *to = from_new + nr_new;
1728 *from = from_new;
1729
1730 return nr_new;
1731 }
1732
1733 /**
1734 * mmc_erase - erase sectors.
1735 * @card: card to erase
1736 * @from: first sector to erase
1737 * @nr: number of sectors to erase
1738 * @arg: erase command argument
1739 *
1740 * Caller must claim host before calling this function.
1741 */
mmc_erase(struct mmc_card * card,unsigned int from,unsigned int nr,unsigned int arg)1742 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1743 unsigned int arg)
1744 {
1745 unsigned int rem, to = from + nr;
1746 int err;
1747
1748 if (!(card->csd.cmdclass & CCC_ERASE))
1749 return -EOPNOTSUPP;
1750
1751 if (!card->erase_size)
1752 return -EOPNOTSUPP;
1753
1754 if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1755 return -EOPNOTSUPP;
1756
1757 if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1758 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1759 return -EOPNOTSUPP;
1760
1761 if (mmc_card_mmc(card) && (arg & MMC_TRIM_ARGS) &&
1762 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1763 return -EOPNOTSUPP;
1764
1765 if (arg == MMC_SECURE_ERASE_ARG) {
1766 if (from % card->erase_size || nr % card->erase_size)
1767 return -EINVAL;
1768 }
1769
1770 if (arg == MMC_ERASE_ARG)
1771 nr = mmc_align_erase_size(card, &from, &to, nr);
1772
1773 if (nr == 0)
1774 return 0;
1775
1776 if (to <= from)
1777 return -EINVAL;
1778
1779 /* 'from' and 'to' are inclusive */
1780 to -= 1;
1781
1782 /*
1783 * Special case where only one erase-group fits in the timeout budget:
1784 * If the region crosses an erase-group boundary on this particular
1785 * case, we will be trimming more than one erase-group which, does not
1786 * fit in the timeout budget of the controller, so we need to split it
1787 * and call mmc_do_erase() twice if necessary. This special case is
1788 * identified by the card->eg_boundary flag.
1789 */
1790 rem = card->erase_size - (from % card->erase_size);
1791 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
1792 err = mmc_do_erase(card, from, from + rem - 1, arg);
1793 from += rem;
1794 if ((err) || (to <= from))
1795 return err;
1796 }
1797
1798 return mmc_do_erase(card, from, to, arg);
1799 }
1800 EXPORT_SYMBOL(mmc_erase);
1801
mmc_can_erase(struct mmc_card * card)1802 int mmc_can_erase(struct mmc_card *card)
1803 {
1804 if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
1805 return 1;
1806 return 0;
1807 }
1808 EXPORT_SYMBOL(mmc_can_erase);
1809
mmc_can_trim(struct mmc_card * card)1810 int mmc_can_trim(struct mmc_card *card)
1811 {
1812 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1813 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1814 return 1;
1815 return 0;
1816 }
1817 EXPORT_SYMBOL(mmc_can_trim);
1818
mmc_can_discard(struct mmc_card * card)1819 int mmc_can_discard(struct mmc_card *card)
1820 {
1821 /*
1822 * As there's no way to detect the discard support bit at v4.5
1823 * use the s/w feature support filed.
1824 */
1825 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1826 return 1;
1827 return 0;
1828 }
1829 EXPORT_SYMBOL(mmc_can_discard);
1830
mmc_can_sanitize(struct mmc_card * card)1831 int mmc_can_sanitize(struct mmc_card *card)
1832 {
1833 if (!mmc_can_trim(card) && !mmc_can_erase(card))
1834 return 0;
1835 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1836 return 1;
1837 return 0;
1838 }
1839
mmc_can_secure_erase_trim(struct mmc_card * card)1840 int mmc_can_secure_erase_trim(struct mmc_card *card)
1841 {
1842 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1843 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1844 return 1;
1845 return 0;
1846 }
1847 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1848
mmc_erase_group_aligned(struct mmc_card * card,unsigned int from,unsigned int nr)1849 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1850 unsigned int nr)
1851 {
1852 if (!card->erase_size)
1853 return 0;
1854 if (from % card->erase_size || nr % card->erase_size)
1855 return 0;
1856 return 1;
1857 }
1858 EXPORT_SYMBOL(mmc_erase_group_aligned);
1859
mmc_do_calc_max_discard(struct mmc_card * card,unsigned int arg)1860 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1861 unsigned int arg)
1862 {
1863 struct mmc_host *host = card->host;
1864 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1865 unsigned int last_timeout = 0;
1866 unsigned int max_busy_timeout = host->max_busy_timeout ?
1867 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1868
1869 if (card->erase_shift) {
1870 max_qty = UINT_MAX >> card->erase_shift;
1871 min_qty = card->pref_erase >> card->erase_shift;
1872 } else if (mmc_card_sd(card)) {
1873 max_qty = UINT_MAX;
1874 min_qty = card->pref_erase;
1875 } else {
1876 max_qty = UINT_MAX / card->erase_size;
1877 min_qty = card->pref_erase / card->erase_size;
1878 }
1879
1880 /*
1881 * We should not only use 'host->max_busy_timeout' as the limitation
1882 * when deciding the max discard sectors. We should set a balance value
1883 * to improve the erase speed, and it can not get too long timeout at
1884 * the same time.
1885 *
1886 * Here we set 'card->pref_erase' as the minimal discard sectors no
1887 * matter what size of 'host->max_busy_timeout', but if the
1888 * 'host->max_busy_timeout' is large enough for more discard sectors,
1889 * then we can continue to increase the max discard sectors until we
1890 * get a balance value. In cases when the 'host->max_busy_timeout'
1891 * isn't specified, use the default max erase timeout.
1892 */
1893 do {
1894 y = 0;
1895 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1896 timeout = mmc_erase_timeout(card, arg, qty + x);
1897
1898 if (qty + x > min_qty && timeout > max_busy_timeout)
1899 break;
1900
1901 if (timeout < last_timeout)
1902 break;
1903 last_timeout = timeout;
1904 y = x;
1905 }
1906 qty += y;
1907 } while (y);
1908
1909 if (!qty)
1910 return 0;
1911
1912 /*
1913 * When specifying a sector range to trim, chances are we might cross
1914 * an erase-group boundary even if the amount of sectors is less than
1915 * one erase-group.
1916 * If we can only fit one erase-group in the controller timeout budget,
1917 * we have to care that erase-group boundaries are not crossed by a
1918 * single trim operation. We flag that special case with "eg_boundary".
1919 * In all other cases we can just decrement qty and pretend that we
1920 * always touch (qty + 1) erase-groups as a simple optimization.
1921 */
1922 if (qty == 1)
1923 card->eg_boundary = 1;
1924 else
1925 qty--;
1926
1927 /* Convert qty to sectors */
1928 if (card->erase_shift)
1929 max_discard = qty << card->erase_shift;
1930 else if (mmc_card_sd(card))
1931 max_discard = qty + 1;
1932 else
1933 max_discard = qty * card->erase_size;
1934
1935 return max_discard;
1936 }
1937
mmc_calc_max_discard(struct mmc_card * card)1938 unsigned int mmc_calc_max_discard(struct mmc_card *card)
1939 {
1940 struct mmc_host *host = card->host;
1941 unsigned int max_discard, max_trim;
1942
1943 /*
1944 * Without erase_group_def set, MMC erase timeout depends on clock
1945 * frequence which can change. In that case, the best choice is
1946 * just the preferred erase size.
1947 */
1948 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1949 return card->pref_erase;
1950
1951 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1952 if (mmc_can_trim(card)) {
1953 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1954 if (max_trim < max_discard || max_discard == 0)
1955 max_discard = max_trim;
1956 } else if (max_discard < card->erase_size) {
1957 max_discard = 0;
1958 }
1959 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1960 mmc_hostname(host), max_discard, host->max_busy_timeout ?
1961 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
1962 return max_discard;
1963 }
1964 EXPORT_SYMBOL(mmc_calc_max_discard);
1965
mmc_card_is_blockaddr(struct mmc_card * card)1966 bool mmc_card_is_blockaddr(struct mmc_card *card)
1967 {
1968 return card ? mmc_card_blockaddr(card) : false;
1969 }
1970 EXPORT_SYMBOL(mmc_card_is_blockaddr);
1971
mmc_set_blocklen(struct mmc_card * card,unsigned int blocklen)1972 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1973 {
1974 struct mmc_command cmd = {};
1975
1976 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
1977 mmc_card_hs400(card) || mmc_card_hs400es(card))
1978 return 0;
1979
1980 cmd.opcode = MMC_SET_BLOCKLEN;
1981 cmd.arg = blocklen;
1982 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1983 return mmc_wait_for_cmd(card->host, &cmd, 5);
1984 }
1985 EXPORT_SYMBOL(mmc_set_blocklen);
1986
mmc_hw_reset_for_init(struct mmc_host * host)1987 static void mmc_hw_reset_for_init(struct mmc_host *host)
1988 {
1989 mmc_pwrseq_reset(host);
1990
1991 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1992 return;
1993 host->ops->hw_reset(host);
1994 }
1995
1996 /**
1997 * mmc_hw_reset - reset the card in hardware
1998 * @host: MMC host to which the card is attached
1999 *
2000 * Hard reset the card. This function is only for upper layers, like the
2001 * block layer or card drivers. You cannot use it in host drivers (struct
2002 * mmc_card might be gone then).
2003 *
2004 * Return: 0 on success, -errno on failure
2005 */
mmc_hw_reset(struct mmc_host * host)2006 int mmc_hw_reset(struct mmc_host *host)
2007 {
2008 int ret;
2009
2010 ret = host->bus_ops->hw_reset(host);
2011 if (ret < 0)
2012 pr_warn("%s: tried to HW reset card, got error %d\n",
2013 mmc_hostname(host), ret);
2014
2015 return ret;
2016 }
2017 EXPORT_SYMBOL(mmc_hw_reset);
2018
mmc_sw_reset(struct mmc_host * host)2019 int mmc_sw_reset(struct mmc_host *host)
2020 {
2021 int ret;
2022
2023 if (!host->bus_ops->sw_reset)
2024 return -EOPNOTSUPP;
2025
2026 ret = host->bus_ops->sw_reset(host);
2027 if (ret)
2028 pr_warn("%s: tried to SW reset card, got error %d\n",
2029 mmc_hostname(host), ret);
2030
2031 return ret;
2032 }
2033 EXPORT_SYMBOL(mmc_sw_reset);
2034
mmc_rescan_try_freq(struct mmc_host * host,unsigned freq)2035 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2036 {
2037 host->f_init = freq;
2038
2039 pr_debug("%s: %s: trying to init card at %u Hz\n",
2040 mmc_hostname(host), __func__, host->f_init);
2041
2042 mmc_power_up(host, host->ocr_avail);
2043
2044 /*
2045 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2046 * do a hardware reset if possible.
2047 */
2048 mmc_hw_reset_for_init(host);
2049
2050 /*
2051 * sdio_reset sends CMD52 to reset card. Since we do not know
2052 * if the card is being re-initialized, just send it. CMD52
2053 * should be ignored by SD/eMMC cards.
2054 * Skip it if we already know that we do not support SDIO commands
2055 */
2056 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2057 sdio_reset(host);
2058
2059 mmc_go_idle(host);
2060
2061 if (!(host->caps2 & MMC_CAP2_NO_SD)) {
2062 if (mmc_send_if_cond_pcie(host, host->ocr_avail))
2063 goto out;
2064 if (mmc_card_sd_express(host))
2065 return 0;
2066 }
2067
2068 /* Order's important: probe SDIO, then SD, then MMC */
2069 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2070 if (!mmc_attach_sdio(host))
2071 return 0;
2072
2073 if (!(host->caps2 & MMC_CAP2_NO_SD))
2074 if (!mmc_attach_sd(host))
2075 return 0;
2076
2077 if (!(host->caps2 & MMC_CAP2_NO_MMC))
2078 if (!mmc_attach_mmc(host))
2079 return 0;
2080
2081 out:
2082 mmc_power_off(host);
2083 return -EIO;
2084 }
2085
_mmc_detect_card_removed(struct mmc_host * host)2086 int _mmc_detect_card_removed(struct mmc_host *host)
2087 {
2088 int ret;
2089
2090 if (!host->card || mmc_card_removed(host->card))
2091 return 1;
2092
2093 ret = host->bus_ops->alive(host);
2094
2095 /*
2096 * Card detect status and alive check may be out of sync if card is
2097 * removed slowly, when card detect switch changes while card/slot
2098 * pads are still contacted in hardware (refer to "SD Card Mechanical
2099 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2100 * detect work 200ms later for this case.
2101 */
2102 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2103 mmc_detect_change(host, msecs_to_jiffies(200));
2104 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2105 }
2106
2107 if (ret) {
2108 mmc_card_set_removed(host->card);
2109 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2110 }
2111
2112 return ret;
2113 }
2114
mmc_detect_card_removed(struct mmc_host * host)2115 int mmc_detect_card_removed(struct mmc_host *host)
2116 {
2117 struct mmc_card *card = host->card;
2118 int ret;
2119
2120 WARN_ON(!host->claimed);
2121
2122 if (!card)
2123 return 1;
2124
2125 if (!mmc_card_is_removable(host))
2126 return 0;
2127
2128 ret = mmc_card_removed(card);
2129 /*
2130 * The card will be considered unchanged unless we have been asked to
2131 * detect a change or host requires polling to provide card detection.
2132 */
2133 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2134 return ret;
2135
2136 host->detect_change = 0;
2137 if (!ret) {
2138 ret = _mmc_detect_card_removed(host);
2139 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2140 /*
2141 * Schedule a detect work as soon as possible to let a
2142 * rescan handle the card removal.
2143 */
2144 cancel_delayed_work(&host->detect);
2145 _mmc_detect_change(host, 0, false);
2146 }
2147 }
2148
2149 return ret;
2150 }
2151 EXPORT_SYMBOL(mmc_detect_card_removed);
2152
mmc_card_alternative_gpt_sector(struct mmc_card * card,sector_t * gpt_sector)2153 int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector)
2154 {
2155 unsigned int boot_sectors_num;
2156
2157 if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA)))
2158 return -EOPNOTSUPP;
2159
2160 /* filter out unrelated cards */
2161 if (card->ext_csd.rev < 3 ||
2162 !mmc_card_mmc(card) ||
2163 !mmc_card_is_blockaddr(card) ||
2164 mmc_card_is_removable(card->host))
2165 return -ENOENT;
2166
2167 /*
2168 * eMMC storage has two special boot partitions in addition to the
2169 * main one. NVIDIA's bootloader linearizes eMMC boot0->boot1->main
2170 * accesses, this means that the partition table addresses are shifted
2171 * by the size of boot partitions. In accordance with the eMMC
2172 * specification, the boot partition size is calculated as follows:
2173 *
2174 * boot partition size = 128K byte x BOOT_SIZE_MULT
2175 *
2176 * Calculate number of sectors occupied by the both boot partitions.
2177 */
2178 boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K /
2179 SZ_512 * MMC_NUM_BOOT_PARTITION;
2180
2181 /* Defined by NVIDIA and used by Android devices. */
2182 *gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1;
2183
2184 return 0;
2185 }
2186 EXPORT_SYMBOL(mmc_card_alternative_gpt_sector);
2187
mmc_rescan(struct work_struct * work)2188 void mmc_rescan(struct work_struct *work)
2189 {
2190 struct mmc_host *host =
2191 container_of(work, struct mmc_host, detect.work);
2192 int i;
2193
2194 if (host->rescan_disable)
2195 return;
2196
2197 /* If there is a non-removable card registered, only scan once */
2198 if (!mmc_card_is_removable(host) && host->rescan_entered)
2199 return;
2200 host->rescan_entered = 1;
2201
2202 if (host->trigger_card_event && host->ops->card_event) {
2203 mmc_claim_host(host);
2204 host->ops->card_event(host);
2205 mmc_release_host(host);
2206 host->trigger_card_event = false;
2207 }
2208
2209 /* Verify a registered card to be functional, else remove it. */
2210 if (host->bus_ops)
2211 host->bus_ops->detect(host);
2212
2213 host->detect_change = 0;
2214
2215 /* if there still is a card present, stop here */
2216 if (host->bus_ops != NULL)
2217 goto out;
2218
2219 mmc_claim_host(host);
2220 if (mmc_card_is_removable(host) && host->ops->get_cd &&
2221 host->ops->get_cd(host) == 0) {
2222 mmc_power_off(host);
2223 mmc_release_host(host);
2224 goto out;
2225 }
2226
2227 /* If an SD express card is present, then leave it as is. */
2228 if (mmc_card_sd_express(host)) {
2229 mmc_release_host(host);
2230 goto out;
2231 }
2232
2233 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2234 unsigned int freq = freqs[i];
2235 if (freq > host->f_max) {
2236 if (i + 1 < ARRAY_SIZE(freqs))
2237 continue;
2238 freq = host->f_max;
2239 }
2240 if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2241 break;
2242 if (freqs[i] <= host->f_min)
2243 break;
2244 }
2245 mmc_release_host(host);
2246
2247 out:
2248 if (host->caps & MMC_CAP_NEEDS_POLL)
2249 mmc_schedule_delayed_work(&host->detect, HZ);
2250 }
2251
mmc_start_host(struct mmc_host * host)2252 void mmc_start_host(struct mmc_host *host)
2253 {
2254 host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2255 host->rescan_disable = 0;
2256
2257 if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2258 mmc_claim_host(host);
2259 mmc_power_up(host, host->ocr_avail);
2260 mmc_release_host(host);
2261 }
2262
2263 mmc_gpiod_request_cd_irq(host);
2264 _mmc_detect_change(host, 0, false);
2265 }
2266
mmc_stop_host(struct mmc_host * host)2267 void mmc_stop_host(struct mmc_host *host)
2268 {
2269 if (host->slot.cd_irq >= 0) {
2270 mmc_gpio_set_cd_wake(host, false);
2271 disable_irq(host->slot.cd_irq);
2272 }
2273
2274 host->rescan_disable = 1;
2275 cancel_delayed_work_sync(&host->detect);
2276
2277 /* clear pm flags now and let card drivers set them as needed */
2278 host->pm_flags = 0;
2279
2280 if (host->bus_ops) {
2281 /* Calling bus_ops->remove() with a claimed host can deadlock */
2282 host->bus_ops->remove(host);
2283 mmc_claim_host(host);
2284 mmc_detach_bus(host);
2285 mmc_power_off(host);
2286 mmc_release_host(host);
2287 return;
2288 }
2289
2290 mmc_claim_host(host);
2291 mmc_power_off(host);
2292 mmc_release_host(host);
2293 }
2294
mmc_init(void)2295 static int __init mmc_init(void)
2296 {
2297 int ret;
2298
2299 ret = mmc_register_bus();
2300 if (ret)
2301 return ret;
2302
2303 ret = mmc_register_host_class();
2304 if (ret)
2305 goto unregister_bus;
2306
2307 ret = sdio_register_bus();
2308 if (ret)
2309 goto unregister_host_class;
2310
2311 return 0;
2312
2313 unregister_host_class:
2314 mmc_unregister_host_class();
2315 unregister_bus:
2316 mmc_unregister_bus();
2317 return ret;
2318 }
2319
mmc_exit(void)2320 static void __exit mmc_exit(void)
2321 {
2322 sdio_unregister_bus();
2323 mmc_unregister_host_class();
2324 mmc_unregister_bus();
2325 }
2326
2327 subsys_initcall(mmc_init);
2328 module_exit(mmc_exit);
2329
2330 MODULE_LICENSE("GPL");
2331