1 /*
2  * GTT virtualization
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Zhi Wang <zhi.a.wang@intel.com>
27  *    Zhenyu Wang <zhenyuw@linux.intel.com>
28  *    Xiao Zheng <xiao.zheng@intel.com>
29  *
30  * Contributors:
31  *    Min He <min.he@intel.com>
32  *    Bing Niu <bing.niu@intel.com>
33  *
34  */
35 
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40 
41 #if defined(VERBOSE_DEBUG)
42 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
43 #else
44 #define gvt_vdbg_mm(fmt, args...)
45 #endif
46 
47 static bool enable_out_of_sync = false;
48 static int preallocated_oos_pages = 8192;
49 
50 /*
51  * validate a gm address and related range size,
52  * translate it to host gm address
53  */
intel_gvt_ggtt_validate_range(struct intel_vgpu * vgpu,u64 addr,u32 size)54 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
55 {
56 	if ((!vgpu_gmadr_is_valid(vgpu, addr)) || (size
57 			&& !vgpu_gmadr_is_valid(vgpu, addr + size - 1))) {
58 		gvt_vgpu_err("invalid range gmadr 0x%llx size 0x%x\n",
59 				addr, size);
60 		return false;
61 	}
62 	return true;
63 }
64 
65 /* translate a guest gmadr to host gmadr */
intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu * vgpu,u64 g_addr,u64 * h_addr)66 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
67 {
68 	if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr),
69 		 "invalid guest gmadr %llx\n", g_addr))
70 		return -EACCES;
71 
72 	if (vgpu_gmadr_is_aperture(vgpu, g_addr))
73 		*h_addr = vgpu_aperture_gmadr_base(vgpu)
74 			  + (g_addr - vgpu_aperture_offset(vgpu));
75 	else
76 		*h_addr = vgpu_hidden_gmadr_base(vgpu)
77 			  + (g_addr - vgpu_hidden_offset(vgpu));
78 	return 0;
79 }
80 
81 /* translate a host gmadr to guest gmadr */
intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu * vgpu,u64 h_addr,u64 * g_addr)82 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
83 {
84 	if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr),
85 		 "invalid host gmadr %llx\n", h_addr))
86 		return -EACCES;
87 
88 	if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
89 		*g_addr = vgpu_aperture_gmadr_base(vgpu)
90 			+ (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
91 	else
92 		*g_addr = vgpu_hidden_gmadr_base(vgpu)
93 			+ (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
94 	return 0;
95 }
96 
intel_gvt_ggtt_index_g2h(struct intel_vgpu * vgpu,unsigned long g_index,unsigned long * h_index)97 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
98 			     unsigned long *h_index)
99 {
100 	u64 h_addr;
101 	int ret;
102 
103 	ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
104 				       &h_addr);
105 	if (ret)
106 		return ret;
107 
108 	*h_index = h_addr >> I915_GTT_PAGE_SHIFT;
109 	return 0;
110 }
111 
intel_gvt_ggtt_h2g_index(struct intel_vgpu * vgpu,unsigned long h_index,unsigned long * g_index)112 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
113 			     unsigned long *g_index)
114 {
115 	u64 g_addr;
116 	int ret;
117 
118 	ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
119 				       &g_addr);
120 	if (ret)
121 		return ret;
122 
123 	*g_index = g_addr >> I915_GTT_PAGE_SHIFT;
124 	return 0;
125 }
126 
127 #define gtt_type_is_entry(type) \
128 	(type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
129 	 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
130 	 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
131 
132 #define gtt_type_is_pt(type) \
133 	(type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
134 
135 #define gtt_type_is_pte_pt(type) \
136 	(type == GTT_TYPE_PPGTT_PTE_PT)
137 
138 #define gtt_type_is_root_pointer(type) \
139 	(gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
140 
141 #define gtt_init_entry(e, t, p, v) do { \
142 	(e)->type = t; \
143 	(e)->pdev = p; \
144 	memcpy(&(e)->val64, &v, sizeof(v)); \
145 } while (0)
146 
147 /*
148  * Mappings between GTT_TYPE* enumerations.
149  * Following information can be found according to the given type:
150  * - type of next level page table
151  * - type of entry inside this level page table
152  * - type of entry with PSE set
153  *
154  * If the given type doesn't have such a kind of information,
155  * e.g. give a l4 root entry type, then request to get its PSE type,
156  * give a PTE page table type, then request to get its next level page
157  * table type, as we know l4 root entry doesn't have a PSE bit,
158  * and a PTE page table doesn't have a next level page table type,
159  * GTT_TYPE_INVALID will be returned. This is useful when traversing a
160  * page table.
161  */
162 
163 struct gtt_type_table_entry {
164 	int entry_type;
165 	int pt_type;
166 	int next_pt_type;
167 	int pse_entry_type;
168 };
169 
170 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
171 	[type] = { \
172 		.entry_type = e_type, \
173 		.pt_type = cpt_type, \
174 		.next_pt_type = npt_type, \
175 		.pse_entry_type = pse_type, \
176 	}
177 
178 static struct gtt_type_table_entry gtt_type_table[] = {
179 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
180 			GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
181 			GTT_TYPE_INVALID,
182 			GTT_TYPE_PPGTT_PML4_PT,
183 			GTT_TYPE_INVALID),
184 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
185 			GTT_TYPE_PPGTT_PML4_ENTRY,
186 			GTT_TYPE_PPGTT_PML4_PT,
187 			GTT_TYPE_PPGTT_PDP_PT,
188 			GTT_TYPE_INVALID),
189 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
190 			GTT_TYPE_PPGTT_PML4_ENTRY,
191 			GTT_TYPE_PPGTT_PML4_PT,
192 			GTT_TYPE_PPGTT_PDP_PT,
193 			GTT_TYPE_INVALID),
194 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
195 			GTT_TYPE_PPGTT_PDP_ENTRY,
196 			GTT_TYPE_PPGTT_PDP_PT,
197 			GTT_TYPE_PPGTT_PDE_PT,
198 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
199 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
200 			GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
201 			GTT_TYPE_INVALID,
202 			GTT_TYPE_PPGTT_PDE_PT,
203 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
204 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
205 			GTT_TYPE_PPGTT_PDP_ENTRY,
206 			GTT_TYPE_PPGTT_PDP_PT,
207 			GTT_TYPE_PPGTT_PDE_PT,
208 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
209 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
210 			GTT_TYPE_PPGTT_PDE_ENTRY,
211 			GTT_TYPE_PPGTT_PDE_PT,
212 			GTT_TYPE_PPGTT_PTE_PT,
213 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
214 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
215 			GTT_TYPE_PPGTT_PDE_ENTRY,
216 			GTT_TYPE_PPGTT_PDE_PT,
217 			GTT_TYPE_PPGTT_PTE_PT,
218 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
219 	/* We take IPS bit as 'PSE' for PTE level. */
220 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
221 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
222 			GTT_TYPE_PPGTT_PTE_PT,
223 			GTT_TYPE_INVALID,
224 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
225 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
226 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
227 			GTT_TYPE_PPGTT_PTE_PT,
228 			GTT_TYPE_INVALID,
229 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
230 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY,
231 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
232 			GTT_TYPE_PPGTT_PTE_PT,
233 			GTT_TYPE_INVALID,
234 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
235 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
236 			GTT_TYPE_PPGTT_PDE_ENTRY,
237 			GTT_TYPE_PPGTT_PDE_PT,
238 			GTT_TYPE_INVALID,
239 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
240 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
241 			GTT_TYPE_PPGTT_PDP_ENTRY,
242 			GTT_TYPE_PPGTT_PDP_PT,
243 			GTT_TYPE_INVALID,
244 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
245 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
246 			GTT_TYPE_GGTT_PTE,
247 			GTT_TYPE_INVALID,
248 			GTT_TYPE_INVALID,
249 			GTT_TYPE_INVALID),
250 };
251 
get_next_pt_type(int type)252 static inline int get_next_pt_type(int type)
253 {
254 	return gtt_type_table[type].next_pt_type;
255 }
256 
get_pt_type(int type)257 static inline int get_pt_type(int type)
258 {
259 	return gtt_type_table[type].pt_type;
260 }
261 
get_entry_type(int type)262 static inline int get_entry_type(int type)
263 {
264 	return gtt_type_table[type].entry_type;
265 }
266 
get_pse_type(int type)267 static inline int get_pse_type(int type)
268 {
269 	return gtt_type_table[type].pse_entry_type;
270 }
271 
read_pte64(struct drm_i915_private * dev_priv,unsigned long index)272 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index)
273 {
274 	void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
275 
276 	return readq(addr);
277 }
278 
ggtt_invalidate(struct drm_i915_private * dev_priv)279 static void ggtt_invalidate(struct drm_i915_private *dev_priv)
280 {
281 	mmio_hw_access_pre(dev_priv);
282 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
283 	mmio_hw_access_post(dev_priv);
284 }
285 
write_pte64(struct drm_i915_private * dev_priv,unsigned long index,u64 pte)286 static void write_pte64(struct drm_i915_private *dev_priv,
287 		unsigned long index, u64 pte)
288 {
289 	void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
290 
291 	writeq(pte, addr);
292 }
293 
gtt_get_entry64(void * pt,struct intel_gvt_gtt_entry * e,unsigned long index,bool hypervisor_access,unsigned long gpa,struct intel_vgpu * vgpu)294 static inline int gtt_get_entry64(void *pt,
295 		struct intel_gvt_gtt_entry *e,
296 		unsigned long index, bool hypervisor_access, unsigned long gpa,
297 		struct intel_vgpu *vgpu)
298 {
299 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
300 	int ret;
301 
302 	if (WARN_ON(info->gtt_entry_size != 8))
303 		return -EINVAL;
304 
305 	if (hypervisor_access) {
306 		ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
307 				(index << info->gtt_entry_size_shift),
308 				&e->val64, 8);
309 		if (WARN_ON(ret))
310 			return ret;
311 	} else if (!pt) {
312 		e->val64 = read_pte64(vgpu->gvt->dev_priv, index);
313 	} else {
314 		e->val64 = *((u64 *)pt + index);
315 	}
316 	return 0;
317 }
318 
gtt_set_entry64(void * pt,struct intel_gvt_gtt_entry * e,unsigned long index,bool hypervisor_access,unsigned long gpa,struct intel_vgpu * vgpu)319 static inline int gtt_set_entry64(void *pt,
320 		struct intel_gvt_gtt_entry *e,
321 		unsigned long index, bool hypervisor_access, unsigned long gpa,
322 		struct intel_vgpu *vgpu)
323 {
324 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
325 	int ret;
326 
327 	if (WARN_ON(info->gtt_entry_size != 8))
328 		return -EINVAL;
329 
330 	if (hypervisor_access) {
331 		ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
332 				(index << info->gtt_entry_size_shift),
333 				&e->val64, 8);
334 		if (WARN_ON(ret))
335 			return ret;
336 	} else if (!pt) {
337 		write_pte64(vgpu->gvt->dev_priv, index, e->val64);
338 	} else {
339 		*((u64 *)pt + index) = e->val64;
340 	}
341 	return 0;
342 }
343 
344 #define GTT_HAW 46
345 
346 #define ADDR_1G_MASK	GENMASK_ULL(GTT_HAW - 1, 30)
347 #define ADDR_2M_MASK	GENMASK_ULL(GTT_HAW - 1, 21)
348 #define ADDR_64K_MASK	GENMASK_ULL(GTT_HAW - 1, 16)
349 #define ADDR_4K_MASK	GENMASK_ULL(GTT_HAW - 1, 12)
350 
351 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52)
352 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */
353 
354 #define GTT_64K_PTE_STRIDE 16
355 
gen8_gtt_get_pfn(struct intel_gvt_gtt_entry * e)356 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
357 {
358 	unsigned long pfn;
359 
360 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
361 		pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
362 	else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
363 		pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
364 	else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY)
365 		pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT;
366 	else
367 		pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
368 	return pfn;
369 }
370 
gen8_gtt_set_pfn(struct intel_gvt_gtt_entry * e,unsigned long pfn)371 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
372 {
373 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
374 		e->val64 &= ~ADDR_1G_MASK;
375 		pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
376 	} else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
377 		e->val64 &= ~ADDR_2M_MASK;
378 		pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
379 	} else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) {
380 		e->val64 &= ~ADDR_64K_MASK;
381 		pfn &= (ADDR_64K_MASK >> PAGE_SHIFT);
382 	} else {
383 		e->val64 &= ~ADDR_4K_MASK;
384 		pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
385 	}
386 
387 	e->val64 |= (pfn << PAGE_SHIFT);
388 }
389 
gen8_gtt_test_pse(struct intel_gvt_gtt_entry * e)390 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
391 {
392 	return !!(e->val64 & _PAGE_PSE);
393 }
394 
gen8_gtt_clear_pse(struct intel_gvt_gtt_entry * e)395 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e)
396 {
397 	if (gen8_gtt_test_pse(e)) {
398 		switch (e->type) {
399 		case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
400 			e->val64 &= ~_PAGE_PSE;
401 			e->type = GTT_TYPE_PPGTT_PDE_ENTRY;
402 			break;
403 		case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
404 			e->type = GTT_TYPE_PPGTT_PDP_ENTRY;
405 			e->val64 &= ~_PAGE_PSE;
406 			break;
407 		default:
408 			WARN_ON(1);
409 		}
410 	}
411 }
412 
gen8_gtt_test_ips(struct intel_gvt_gtt_entry * e)413 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e)
414 {
415 	if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
416 		return false;
417 
418 	return !!(e->val64 & GEN8_PDE_IPS_64K);
419 }
420 
gen8_gtt_clear_ips(struct intel_gvt_gtt_entry * e)421 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e)
422 {
423 	if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
424 		return;
425 
426 	e->val64 &= ~GEN8_PDE_IPS_64K;
427 }
428 
gen8_gtt_test_present(struct intel_gvt_gtt_entry * e)429 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
430 {
431 	/*
432 	 * i915 writes PDP root pointer registers without present bit,
433 	 * it also works, so we need to treat root pointer entry
434 	 * specifically.
435 	 */
436 	if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
437 			|| e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
438 		return (e->val64 != 0);
439 	else
440 		return (e->val64 & _PAGE_PRESENT);
441 }
442 
gtt_entry_clear_present(struct intel_gvt_gtt_entry * e)443 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
444 {
445 	e->val64 &= ~_PAGE_PRESENT;
446 }
447 
gtt_entry_set_present(struct intel_gvt_gtt_entry * e)448 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
449 {
450 	e->val64 |= _PAGE_PRESENT;
451 }
452 
gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry * e)453 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e)
454 {
455 	return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED);
456 }
457 
gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry * e)458 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e)
459 {
460 	e->val64 |= GTT_SPTE_FLAG_64K_SPLITED;
461 }
462 
gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry * e)463 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e)
464 {
465 	e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED;
466 }
467 
468 /*
469  * Per-platform GMA routines.
470  */
gma_to_ggtt_pte_index(unsigned long gma)471 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
472 {
473 	unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
474 
475 	trace_gma_index(__func__, gma, x);
476 	return x;
477 }
478 
479 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
480 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
481 { \
482 	unsigned long x = (exp); \
483 	trace_gma_index(__func__, gma, x); \
484 	return x; \
485 }
486 
487 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
488 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
489 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
490 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
491 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
492 
493 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
494 	.get_entry = gtt_get_entry64,
495 	.set_entry = gtt_set_entry64,
496 	.clear_present = gtt_entry_clear_present,
497 	.set_present = gtt_entry_set_present,
498 	.test_present = gen8_gtt_test_present,
499 	.test_pse = gen8_gtt_test_pse,
500 	.clear_pse = gen8_gtt_clear_pse,
501 	.clear_ips = gen8_gtt_clear_ips,
502 	.test_ips = gen8_gtt_test_ips,
503 	.clear_64k_splited = gen8_gtt_clear_64k_splited,
504 	.set_64k_splited = gen8_gtt_set_64k_splited,
505 	.test_64k_splited = gen8_gtt_test_64k_splited,
506 	.get_pfn = gen8_gtt_get_pfn,
507 	.set_pfn = gen8_gtt_set_pfn,
508 };
509 
510 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
511 	.gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
512 	.gma_to_pte_index = gen8_gma_to_pte_index,
513 	.gma_to_pde_index = gen8_gma_to_pde_index,
514 	.gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
515 	.gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
516 	.gma_to_pml4_index = gen8_gma_to_pml4_index,
517 };
518 
519 /* Update entry type per pse and ips bit. */
update_entry_type_for_real(struct intel_gvt_gtt_pte_ops * pte_ops,struct intel_gvt_gtt_entry * entry,bool ips)520 static void update_entry_type_for_real(struct intel_gvt_gtt_pte_ops *pte_ops,
521 	struct intel_gvt_gtt_entry *entry, bool ips)
522 {
523 	switch (entry->type) {
524 	case GTT_TYPE_PPGTT_PDE_ENTRY:
525 	case GTT_TYPE_PPGTT_PDP_ENTRY:
526 		if (pte_ops->test_pse(entry))
527 			entry->type = get_pse_type(entry->type);
528 		break;
529 	case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
530 		if (ips)
531 			entry->type = get_pse_type(entry->type);
532 		break;
533 	default:
534 		GEM_BUG_ON(!gtt_type_is_entry(entry->type));
535 	}
536 
537 	GEM_BUG_ON(entry->type == GTT_TYPE_INVALID);
538 }
539 
540 /*
541  * MM helpers.
542  */
_ppgtt_get_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index,bool guest)543 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
544 		struct intel_gvt_gtt_entry *entry, unsigned long index,
545 		bool guest)
546 {
547 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
548 
549 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
550 
551 	entry->type = mm->ppgtt_mm.root_entry_type;
552 	pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
553 			   mm->ppgtt_mm.shadow_pdps,
554 			   entry, index, false, 0, mm->vgpu);
555 	update_entry_type_for_real(pte_ops, entry, false);
556 }
557 
ppgtt_get_guest_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)558 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
559 		struct intel_gvt_gtt_entry *entry, unsigned long index)
560 {
561 	_ppgtt_get_root_entry(mm, entry, index, true);
562 }
563 
ppgtt_get_shadow_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)564 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
565 		struct intel_gvt_gtt_entry *entry, unsigned long index)
566 {
567 	_ppgtt_get_root_entry(mm, entry, index, false);
568 }
569 
_ppgtt_set_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index,bool guest)570 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
571 		struct intel_gvt_gtt_entry *entry, unsigned long index,
572 		bool guest)
573 {
574 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
575 
576 	pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
577 			   mm->ppgtt_mm.shadow_pdps,
578 			   entry, index, false, 0, mm->vgpu);
579 }
580 
ppgtt_set_guest_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)581 static inline void ppgtt_set_guest_root_entry(struct intel_vgpu_mm *mm,
582 		struct intel_gvt_gtt_entry *entry, unsigned long index)
583 {
584 	_ppgtt_set_root_entry(mm, entry, index, true);
585 }
586 
ppgtt_set_shadow_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)587 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
588 		struct intel_gvt_gtt_entry *entry, unsigned long index)
589 {
590 	_ppgtt_set_root_entry(mm, entry, index, false);
591 }
592 
ggtt_get_guest_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)593 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
594 		struct intel_gvt_gtt_entry *entry, unsigned long index)
595 {
596 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
597 
598 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
599 
600 	entry->type = GTT_TYPE_GGTT_PTE;
601 	pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
602 			   false, 0, mm->vgpu);
603 }
604 
ggtt_set_guest_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)605 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
606 		struct intel_gvt_gtt_entry *entry, unsigned long index)
607 {
608 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
609 
610 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
611 
612 	pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
613 			   false, 0, mm->vgpu);
614 }
615 
ggtt_get_host_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)616 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
617 		struct intel_gvt_gtt_entry *entry, unsigned long index)
618 {
619 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
620 
621 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
622 
623 	pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
624 }
625 
ggtt_set_host_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)626 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
627 		struct intel_gvt_gtt_entry *entry, unsigned long index)
628 {
629 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
630 
631 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
632 
633 	pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
634 }
635 
636 /*
637  * PPGTT shadow page table helpers.
638  */
ppgtt_spt_get_entry(struct intel_vgpu_ppgtt_spt * spt,void * page_table,int type,struct intel_gvt_gtt_entry * e,unsigned long index,bool guest)639 static inline int ppgtt_spt_get_entry(
640 		struct intel_vgpu_ppgtt_spt *spt,
641 		void *page_table, int type,
642 		struct intel_gvt_gtt_entry *e, unsigned long index,
643 		bool guest)
644 {
645 	struct intel_gvt *gvt = spt->vgpu->gvt;
646 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
647 	int ret;
648 
649 	e->type = get_entry_type(type);
650 
651 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
652 		return -EINVAL;
653 
654 	ret = ops->get_entry(page_table, e, index, guest,
655 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
656 			spt->vgpu);
657 	if (ret)
658 		return ret;
659 
660 	update_entry_type_for_real(ops, e, guest ?
661 				   spt->guest_page.pde_ips : false);
662 
663 	gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
664 		    type, e->type, index, e->val64);
665 	return 0;
666 }
667 
ppgtt_spt_set_entry(struct intel_vgpu_ppgtt_spt * spt,void * page_table,int type,struct intel_gvt_gtt_entry * e,unsigned long index,bool guest)668 static inline int ppgtt_spt_set_entry(
669 		struct intel_vgpu_ppgtt_spt *spt,
670 		void *page_table, int type,
671 		struct intel_gvt_gtt_entry *e, unsigned long index,
672 		bool guest)
673 {
674 	struct intel_gvt *gvt = spt->vgpu->gvt;
675 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
676 
677 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
678 		return -EINVAL;
679 
680 	gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
681 		    type, e->type, index, e->val64);
682 
683 	return ops->set_entry(page_table, e, index, guest,
684 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
685 			spt->vgpu);
686 }
687 
688 #define ppgtt_get_guest_entry(spt, e, index) \
689 	ppgtt_spt_get_entry(spt, NULL, \
690 		spt->guest_page.type, e, index, true)
691 
692 #define ppgtt_set_guest_entry(spt, e, index) \
693 	ppgtt_spt_set_entry(spt, NULL, \
694 		spt->guest_page.type, e, index, true)
695 
696 #define ppgtt_get_shadow_entry(spt, e, index) \
697 	ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
698 		spt->shadow_page.type, e, index, false)
699 
700 #define ppgtt_set_shadow_entry(spt, e, index) \
701 	ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
702 		spt->shadow_page.type, e, index, false)
703 
alloc_spt(gfp_t gfp_mask)704 static void *alloc_spt(gfp_t gfp_mask)
705 {
706 	struct intel_vgpu_ppgtt_spt *spt;
707 
708 	spt = kzalloc(sizeof(*spt), gfp_mask);
709 	if (!spt)
710 		return NULL;
711 
712 	spt->shadow_page.page = alloc_page(gfp_mask);
713 	if (!spt->shadow_page.page) {
714 		kfree(spt);
715 		return NULL;
716 	}
717 	return spt;
718 }
719 
free_spt(struct intel_vgpu_ppgtt_spt * spt)720 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
721 {
722 	__free_page(spt->shadow_page.page);
723 	kfree(spt);
724 }
725 
726 static int detach_oos_page(struct intel_vgpu *vgpu,
727 		struct intel_vgpu_oos_page *oos_page);
728 
ppgtt_free_spt(struct intel_vgpu_ppgtt_spt * spt)729 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
730 {
731 	struct device *kdev = &spt->vgpu->gvt->dev_priv->drm.pdev->dev;
732 
733 	trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
734 
735 	dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
736 		       PCI_DMA_BIDIRECTIONAL);
737 
738 	radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
739 
740 	if (spt->guest_page.gfn) {
741 		if (spt->guest_page.oos_page)
742 			detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
743 
744 		intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
745 	}
746 
747 	list_del_init(&spt->post_shadow_list);
748 	free_spt(spt);
749 }
750 
ppgtt_free_all_spt(struct intel_vgpu * vgpu)751 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
752 {
753 	struct intel_vgpu_ppgtt_spt *spt;
754 	struct radix_tree_iter iter;
755 	void **slot;
756 
757 	radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
758 		spt = radix_tree_deref_slot(slot);
759 		ppgtt_free_spt(spt);
760 	}
761 }
762 
763 static int ppgtt_handle_guest_write_page_table_bytes(
764 		struct intel_vgpu_ppgtt_spt *spt,
765 		u64 pa, void *p_data, int bytes);
766 
ppgtt_write_protection_handler(struct intel_vgpu_page_track * page_track,u64 gpa,void * data,int bytes)767 static int ppgtt_write_protection_handler(
768 		struct intel_vgpu_page_track *page_track,
769 		u64 gpa, void *data, int bytes)
770 {
771 	struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
772 
773 	int ret;
774 
775 	if (bytes != 4 && bytes != 8)
776 		return -EINVAL;
777 
778 	ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
779 	if (ret)
780 		return ret;
781 	return ret;
782 }
783 
784 /* Find a spt by guest gfn. */
intel_vgpu_find_spt_by_gfn(struct intel_vgpu * vgpu,unsigned long gfn)785 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
786 		struct intel_vgpu *vgpu, unsigned long gfn)
787 {
788 	struct intel_vgpu_page_track *track;
789 
790 	track = intel_vgpu_find_page_track(vgpu, gfn);
791 	if (track && track->handler == ppgtt_write_protection_handler)
792 		return track->priv_data;
793 
794 	return NULL;
795 }
796 
797 /* Find the spt by shadow page mfn. */
intel_vgpu_find_spt_by_mfn(struct intel_vgpu * vgpu,unsigned long mfn)798 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
799 		struct intel_vgpu *vgpu, unsigned long mfn)
800 {
801 	return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
802 }
803 
804 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
805 
806 /* Allocate shadow page table without guest page. */
ppgtt_alloc_spt(struct intel_vgpu * vgpu,intel_gvt_gtt_type_t type)807 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
808 		struct intel_vgpu *vgpu, intel_gvt_gtt_type_t type)
809 {
810 	struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
811 	struct intel_vgpu_ppgtt_spt *spt = NULL;
812 	dma_addr_t daddr;
813 	int ret;
814 
815 retry:
816 	spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
817 	if (!spt) {
818 		if (reclaim_one_ppgtt_mm(vgpu->gvt))
819 			goto retry;
820 
821 		gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
822 		return ERR_PTR(-ENOMEM);
823 	}
824 
825 	spt->vgpu = vgpu;
826 	atomic_set(&spt->refcount, 1);
827 	INIT_LIST_HEAD(&spt->post_shadow_list);
828 
829 	/*
830 	 * Init shadow_page.
831 	 */
832 	spt->shadow_page.type = type;
833 	daddr = dma_map_page(kdev, spt->shadow_page.page,
834 			     0, 4096, PCI_DMA_BIDIRECTIONAL);
835 	if (dma_mapping_error(kdev, daddr)) {
836 		gvt_vgpu_err("fail to map dma addr\n");
837 		ret = -EINVAL;
838 		goto err_free_spt;
839 	}
840 	spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
841 	spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
842 
843 	ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
844 	if (ret)
845 		goto err_unmap_dma;
846 
847 	return spt;
848 
849 err_unmap_dma:
850 	dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
851 err_free_spt:
852 	free_spt(spt);
853 	return ERR_PTR(ret);
854 }
855 
856 /* Allocate shadow page table associated with specific gfn. */
ppgtt_alloc_spt_gfn(struct intel_vgpu * vgpu,intel_gvt_gtt_type_t type,unsigned long gfn,bool guest_pde_ips)857 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn(
858 		struct intel_vgpu *vgpu, intel_gvt_gtt_type_t type,
859 		unsigned long gfn, bool guest_pde_ips)
860 {
861 	struct intel_vgpu_ppgtt_spt *spt;
862 	int ret;
863 
864 	spt = ppgtt_alloc_spt(vgpu, type);
865 	if (IS_ERR(spt))
866 		return spt;
867 
868 	/*
869 	 * Init guest_page.
870 	 */
871 	ret = intel_vgpu_register_page_track(vgpu, gfn,
872 			ppgtt_write_protection_handler, spt);
873 	if (ret) {
874 		ppgtt_free_spt(spt);
875 		return ERR_PTR(ret);
876 	}
877 
878 	spt->guest_page.type = type;
879 	spt->guest_page.gfn = gfn;
880 	spt->guest_page.pde_ips = guest_pde_ips;
881 
882 	trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
883 
884 	return spt;
885 }
886 
887 #define pt_entry_size_shift(spt) \
888 	((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
889 
890 #define pt_entries(spt) \
891 	(I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
892 
893 #define for_each_present_guest_entry(spt, e, i) \
894 	for (i = 0; i < pt_entries(spt); \
895 	     i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
896 		if (!ppgtt_get_guest_entry(spt, e, i) && \
897 		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
898 
899 #define for_each_present_shadow_entry(spt, e, i) \
900 	for (i = 0; i < pt_entries(spt); \
901 	     i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
902 		if (!ppgtt_get_shadow_entry(spt, e, i) && \
903 		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
904 
905 #define for_each_shadow_entry(spt, e, i) \
906 	for (i = 0; i < pt_entries(spt); \
907 	     i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \
908 		if (!ppgtt_get_shadow_entry(spt, e, i))
909 
ppgtt_get_spt(struct intel_vgpu_ppgtt_spt * spt)910 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
911 {
912 	int v = atomic_read(&spt->refcount);
913 
914 	trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
915 	atomic_inc(&spt->refcount);
916 }
917 
ppgtt_put_spt(struct intel_vgpu_ppgtt_spt * spt)918 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt)
919 {
920 	int v = atomic_read(&spt->refcount);
921 
922 	trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
923 	return atomic_dec_return(&spt->refcount);
924 }
925 
926 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
927 
ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu * vgpu,struct intel_gvt_gtt_entry * e)928 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
929 		struct intel_gvt_gtt_entry *e)
930 {
931 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
932 	struct intel_vgpu_ppgtt_spt *s;
933 	intel_gvt_gtt_type_t cur_pt_type;
934 
935 	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
936 
937 	if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
938 		&& e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
939 		cur_pt_type = get_next_pt_type(e->type) + 1;
940 		if (ops->get_pfn(e) ==
941 			vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
942 			return 0;
943 	}
944 	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
945 	if (!s) {
946 		gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
947 				ops->get_pfn(e));
948 		return -ENXIO;
949 	}
950 	return ppgtt_invalidate_spt(s);
951 }
952 
ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt * spt,struct intel_gvt_gtt_entry * entry)953 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
954 		struct intel_gvt_gtt_entry *entry)
955 {
956 	struct intel_vgpu *vgpu = spt->vgpu;
957 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
958 	unsigned long pfn;
959 	int type;
960 
961 	pfn = ops->get_pfn(entry);
962 	type = spt->shadow_page.type;
963 
964 	/* Uninitialized spte or unshadowed spte. */
965 	if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn)
966 		return;
967 
968 	intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
969 }
970 
ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt * spt)971 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
972 {
973 	struct intel_vgpu *vgpu = spt->vgpu;
974 	struct intel_gvt_gtt_entry e;
975 	unsigned long index;
976 	int ret;
977 
978 	trace_spt_change(spt->vgpu->id, "die", spt,
979 			spt->guest_page.gfn, spt->shadow_page.type);
980 
981 	if (ppgtt_put_spt(spt) > 0)
982 		return 0;
983 
984 	for_each_present_shadow_entry(spt, &e, index) {
985 		switch (e.type) {
986 		case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
987 			gvt_vdbg_mm("invalidate 4K entry\n");
988 			ppgtt_invalidate_pte(spt, &e);
989 			break;
990 		case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
991 			/* We don't setup 64K shadow entry so far. */
992 			WARN(1, "suspicious 64K gtt entry\n");
993 			continue;
994 		case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
995 			gvt_vdbg_mm("invalidate 2M entry\n");
996 			continue;
997 		case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
998 			WARN(1, "GVT doesn't support 1GB page\n");
999 			continue;
1000 		case GTT_TYPE_PPGTT_PML4_ENTRY:
1001 		case GTT_TYPE_PPGTT_PDP_ENTRY:
1002 		case GTT_TYPE_PPGTT_PDE_ENTRY:
1003 			gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
1004 			ret = ppgtt_invalidate_spt_by_shadow_entry(
1005 					spt->vgpu, &e);
1006 			if (ret)
1007 				goto fail;
1008 			break;
1009 		default:
1010 			GEM_BUG_ON(1);
1011 		}
1012 	}
1013 
1014 	trace_spt_change(spt->vgpu->id, "release", spt,
1015 			 spt->guest_page.gfn, spt->shadow_page.type);
1016 	ppgtt_free_spt(spt);
1017 	return 0;
1018 fail:
1019 	gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
1020 			spt, e.val64, e.type);
1021 	return ret;
1022 }
1023 
vgpu_ips_enabled(struct intel_vgpu * vgpu)1024 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu)
1025 {
1026 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1027 
1028 	if (INTEL_GEN(dev_priv) == 9 || INTEL_GEN(dev_priv) == 10) {
1029 		u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) &
1030 			GAMW_ECO_ENABLE_64K_IPS_FIELD;
1031 
1032 		return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD;
1033 	} else if (INTEL_GEN(dev_priv) >= 11) {
1034 		/* 64K paging only controlled by IPS bit in PTE now. */
1035 		return true;
1036 	} else
1037 		return false;
1038 }
1039 
1040 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
1041 
ppgtt_populate_spt_by_guest_entry(struct intel_vgpu * vgpu,struct intel_gvt_gtt_entry * we)1042 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
1043 		struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
1044 {
1045 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1046 	struct intel_vgpu_ppgtt_spt *spt = NULL;
1047 	bool ips = false;
1048 	int ret;
1049 
1050 	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
1051 
1052 	if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1053 		ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we);
1054 
1055 	spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
1056 	if (spt) {
1057 		ppgtt_get_spt(spt);
1058 
1059 		if (ips != spt->guest_page.pde_ips) {
1060 			spt->guest_page.pde_ips = ips;
1061 
1062 			gvt_dbg_mm("reshadow PDE since ips changed\n");
1063 			clear_page(spt->shadow_page.vaddr);
1064 			ret = ppgtt_populate_spt(spt);
1065 			if (ret) {
1066 				ppgtt_put_spt(spt);
1067 				goto err;
1068 			}
1069 		}
1070 	} else {
1071 		int type = get_next_pt_type(we->type);
1072 
1073 		spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips);
1074 		if (IS_ERR(spt)) {
1075 			ret = PTR_ERR(spt);
1076 			goto err;
1077 		}
1078 
1079 		ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
1080 		if (ret)
1081 			goto err_free_spt;
1082 
1083 		ret = ppgtt_populate_spt(spt);
1084 		if (ret)
1085 			goto err_free_spt;
1086 
1087 		trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
1088 				 spt->shadow_page.type);
1089 	}
1090 	return spt;
1091 
1092 err_free_spt:
1093 	ppgtt_free_spt(spt);
1094 err:
1095 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1096 		     spt, we->val64, we->type);
1097 	return ERR_PTR(ret);
1098 }
1099 
ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry * se,struct intel_vgpu_ppgtt_spt * s,struct intel_gvt_gtt_entry * ge)1100 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
1101 		struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
1102 {
1103 	struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
1104 
1105 	se->type = ge->type;
1106 	se->val64 = ge->val64;
1107 
1108 	/* Because we always split 64KB pages, so clear IPS in shadow PDE. */
1109 	if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1110 		ops->clear_ips(se);
1111 
1112 	ops->set_pfn(se, s->shadow_page.mfn);
1113 }
1114 
1115 /**
1116  * Return 1 if 2MB huge gtt shadowing is possilbe, 0 if miscondition,
1117  * negtive if found err.
1118  */
is_2MB_gtt_possible(struct intel_vgpu * vgpu,struct intel_gvt_gtt_entry * entry)1119 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu,
1120 	struct intel_gvt_gtt_entry *entry)
1121 {
1122 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1123 	unsigned long pfn;
1124 
1125 	if (!HAS_PAGE_SIZES(vgpu->gvt->dev_priv, I915_GTT_PAGE_SIZE_2M))
1126 		return 0;
1127 
1128 	pfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, ops->get_pfn(entry));
1129 	if (pfn == INTEL_GVT_INVALID_ADDR)
1130 		return -EINVAL;
1131 
1132 	return PageTransHuge(pfn_to_page(pfn));
1133 }
1134 
split_2MB_gtt_entry(struct intel_vgpu * vgpu,struct intel_vgpu_ppgtt_spt * spt,unsigned long index,struct intel_gvt_gtt_entry * se)1135 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu,
1136 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1137 	struct intel_gvt_gtt_entry *se)
1138 {
1139 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1140 	struct intel_vgpu_ppgtt_spt *sub_spt;
1141 	struct intel_gvt_gtt_entry sub_se;
1142 	unsigned long start_gfn;
1143 	dma_addr_t dma_addr;
1144 	unsigned long sub_index;
1145 	int ret;
1146 
1147 	gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index);
1148 
1149 	start_gfn = ops->get_pfn(se);
1150 
1151 	sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT);
1152 	if (IS_ERR(sub_spt))
1153 		return PTR_ERR(sub_spt);
1154 
1155 	for_each_shadow_entry(sub_spt, &sub_se, sub_index) {
1156 		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1157 				start_gfn + sub_index, PAGE_SIZE, &dma_addr);
1158 		if (ret) {
1159 			ppgtt_invalidate_spt(spt);
1160 			return ret;
1161 		}
1162 		sub_se.val64 = se->val64;
1163 
1164 		/* Copy the PAT field from PDE. */
1165 		sub_se.val64 &= ~_PAGE_PAT;
1166 		sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5;
1167 
1168 		ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT);
1169 		ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index);
1170 	}
1171 
1172 	/* Clear dirty field. */
1173 	se->val64 &= ~_PAGE_DIRTY;
1174 
1175 	ops->clear_pse(se);
1176 	ops->clear_ips(se);
1177 	ops->set_pfn(se, sub_spt->shadow_page.mfn);
1178 	ppgtt_set_shadow_entry(spt, se, index);
1179 	return 0;
1180 }
1181 
split_64KB_gtt_entry(struct intel_vgpu * vgpu,struct intel_vgpu_ppgtt_spt * spt,unsigned long index,struct intel_gvt_gtt_entry * se)1182 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu,
1183 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1184 	struct intel_gvt_gtt_entry *se)
1185 {
1186 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1187 	struct intel_gvt_gtt_entry entry = *se;
1188 	unsigned long start_gfn;
1189 	dma_addr_t dma_addr;
1190 	int i, ret;
1191 
1192 	gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index);
1193 
1194 	GEM_BUG_ON(index % GTT_64K_PTE_STRIDE);
1195 
1196 	start_gfn = ops->get_pfn(se);
1197 
1198 	entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY;
1199 	ops->set_64k_splited(&entry);
1200 
1201 	for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1202 		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1203 					start_gfn + i, PAGE_SIZE, &dma_addr);
1204 		if (ret)
1205 			return ret;
1206 
1207 		ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT);
1208 		ppgtt_set_shadow_entry(spt, &entry, index + i);
1209 	}
1210 	return 0;
1211 }
1212 
ppgtt_populate_shadow_entry(struct intel_vgpu * vgpu,struct intel_vgpu_ppgtt_spt * spt,unsigned long index,struct intel_gvt_gtt_entry * ge)1213 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
1214 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1215 	struct intel_gvt_gtt_entry *ge)
1216 {
1217 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
1218 	struct intel_gvt_gtt_entry se = *ge;
1219 	unsigned long gfn, page_size = PAGE_SIZE;
1220 	dma_addr_t dma_addr;
1221 	int ret;
1222 
1223 	if (!pte_ops->test_present(ge))
1224 		return 0;
1225 
1226 	gfn = pte_ops->get_pfn(ge);
1227 
1228 	switch (ge->type) {
1229 	case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1230 		gvt_vdbg_mm("shadow 4K gtt entry\n");
1231 		break;
1232 	case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1233 		gvt_vdbg_mm("shadow 64K gtt entry\n");
1234 		/*
1235 		 * The layout of 64K page is special, the page size is
1236 		 * controlled by uper PDE. To be simple, we always split
1237 		 * 64K page to smaller 4K pages in shadow PT.
1238 		 */
1239 		return split_64KB_gtt_entry(vgpu, spt, index, &se);
1240 	case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1241 		gvt_vdbg_mm("shadow 2M gtt entry\n");
1242 		ret = is_2MB_gtt_possible(vgpu, ge);
1243 		if (ret == 0)
1244 			return split_2MB_gtt_entry(vgpu, spt, index, &se);
1245 		else if (ret < 0)
1246 			return ret;
1247 		page_size = I915_GTT_PAGE_SIZE_2M;
1248 		break;
1249 	case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1250 		gvt_vgpu_err("GVT doesn't support 1GB entry\n");
1251 		return -EINVAL;
1252 	default:
1253 		GEM_BUG_ON(1);
1254 	};
1255 
1256 	/* direct shadow */
1257 	ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, page_size,
1258 						      &dma_addr);
1259 	if (ret)
1260 		return -ENXIO;
1261 
1262 	pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
1263 	ppgtt_set_shadow_entry(spt, &se, index);
1264 	return 0;
1265 }
1266 
ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt * spt)1267 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
1268 {
1269 	struct intel_vgpu *vgpu = spt->vgpu;
1270 	struct intel_gvt *gvt = vgpu->gvt;
1271 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1272 	struct intel_vgpu_ppgtt_spt *s;
1273 	struct intel_gvt_gtt_entry se, ge;
1274 	unsigned long gfn, i;
1275 	int ret;
1276 
1277 	trace_spt_change(spt->vgpu->id, "born", spt,
1278 			 spt->guest_page.gfn, spt->shadow_page.type);
1279 
1280 	for_each_present_guest_entry(spt, &ge, i) {
1281 		if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
1282 			s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1283 			if (IS_ERR(s)) {
1284 				ret = PTR_ERR(s);
1285 				goto fail;
1286 			}
1287 			ppgtt_get_shadow_entry(spt, &se, i);
1288 			ppgtt_generate_shadow_entry(&se, s, &ge);
1289 			ppgtt_set_shadow_entry(spt, &se, i);
1290 		} else {
1291 			gfn = ops->get_pfn(&ge);
1292 			if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
1293 				ops->set_pfn(&se, gvt->gtt.scratch_mfn);
1294 				ppgtt_set_shadow_entry(spt, &se, i);
1295 				continue;
1296 			}
1297 
1298 			ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
1299 			if (ret)
1300 				goto fail;
1301 		}
1302 	}
1303 	return 0;
1304 fail:
1305 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1306 			spt, ge.val64, ge.type);
1307 	return ret;
1308 }
1309 
ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt * spt,struct intel_gvt_gtt_entry * se,unsigned long index)1310 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1311 		struct intel_gvt_gtt_entry *se, unsigned long index)
1312 {
1313 	struct intel_vgpu *vgpu = spt->vgpu;
1314 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1315 	int ret;
1316 
1317 	trace_spt_guest_change(spt->vgpu->id, "remove", spt,
1318 			       spt->shadow_page.type, se->val64, index);
1319 
1320 	gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1321 		    se->type, index, se->val64);
1322 
1323 	if (!ops->test_present(se))
1324 		return 0;
1325 
1326 	if (ops->get_pfn(se) ==
1327 	    vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1328 		return 0;
1329 
1330 	if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1331 		struct intel_vgpu_ppgtt_spt *s =
1332 			intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
1333 		if (!s) {
1334 			gvt_vgpu_err("fail to find guest page\n");
1335 			ret = -ENXIO;
1336 			goto fail;
1337 		}
1338 		ret = ppgtt_invalidate_spt(s);
1339 		if (ret)
1340 			goto fail;
1341 	} else {
1342 		/* We don't setup 64K shadow entry so far. */
1343 		WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY,
1344 		     "suspicious 64K entry\n");
1345 		ppgtt_invalidate_pte(spt, se);
1346 	}
1347 
1348 	return 0;
1349 fail:
1350 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1351 			spt, se->val64, se->type);
1352 	return ret;
1353 }
1354 
ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt * spt,struct intel_gvt_gtt_entry * we,unsigned long index)1355 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1356 		struct intel_gvt_gtt_entry *we, unsigned long index)
1357 {
1358 	struct intel_vgpu *vgpu = spt->vgpu;
1359 	struct intel_gvt_gtt_entry m;
1360 	struct intel_vgpu_ppgtt_spt *s;
1361 	int ret;
1362 
1363 	trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
1364 			       we->val64, index);
1365 
1366 	gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1367 		    we->type, index, we->val64);
1368 
1369 	if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1370 		s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1371 		if (IS_ERR(s)) {
1372 			ret = PTR_ERR(s);
1373 			goto fail;
1374 		}
1375 		ppgtt_get_shadow_entry(spt, &m, index);
1376 		ppgtt_generate_shadow_entry(&m, s, we);
1377 		ppgtt_set_shadow_entry(spt, &m, index);
1378 	} else {
1379 		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
1380 		if (ret)
1381 			goto fail;
1382 	}
1383 	return 0;
1384 fail:
1385 	gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1386 		spt, we->val64, we->type);
1387 	return ret;
1388 }
1389 
sync_oos_page(struct intel_vgpu * vgpu,struct intel_vgpu_oos_page * oos_page)1390 static int sync_oos_page(struct intel_vgpu *vgpu,
1391 		struct intel_vgpu_oos_page *oos_page)
1392 {
1393 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1394 	struct intel_gvt *gvt = vgpu->gvt;
1395 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1396 	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1397 	struct intel_gvt_gtt_entry old, new;
1398 	int index;
1399 	int ret;
1400 
1401 	trace_oos_change(vgpu->id, "sync", oos_page->id,
1402 			 spt, spt->guest_page.type);
1403 
1404 	old.type = new.type = get_entry_type(spt->guest_page.type);
1405 	old.val64 = new.val64 = 0;
1406 
1407 	for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1408 				info->gtt_entry_size_shift); index++) {
1409 		ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1410 		ops->get_entry(NULL, &new, index, true,
1411 			       spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1412 
1413 		if (old.val64 == new.val64
1414 			&& !test_and_clear_bit(index, spt->post_shadow_bitmap))
1415 			continue;
1416 
1417 		trace_oos_sync(vgpu->id, oos_page->id,
1418 				spt, spt->guest_page.type,
1419 				new.val64, index);
1420 
1421 		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
1422 		if (ret)
1423 			return ret;
1424 
1425 		ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1426 	}
1427 
1428 	spt->guest_page.write_cnt = 0;
1429 	list_del_init(&spt->post_shadow_list);
1430 	return 0;
1431 }
1432 
detach_oos_page(struct intel_vgpu * vgpu,struct intel_vgpu_oos_page * oos_page)1433 static int detach_oos_page(struct intel_vgpu *vgpu,
1434 		struct intel_vgpu_oos_page *oos_page)
1435 {
1436 	struct intel_gvt *gvt = vgpu->gvt;
1437 	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1438 
1439 	trace_oos_change(vgpu->id, "detach", oos_page->id,
1440 			 spt, spt->guest_page.type);
1441 
1442 	spt->guest_page.write_cnt = 0;
1443 	spt->guest_page.oos_page = NULL;
1444 	oos_page->spt = NULL;
1445 
1446 	list_del_init(&oos_page->vm_list);
1447 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1448 
1449 	return 0;
1450 }
1451 
attach_oos_page(struct intel_vgpu_oos_page * oos_page,struct intel_vgpu_ppgtt_spt * spt)1452 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1453 		struct intel_vgpu_ppgtt_spt *spt)
1454 {
1455 	struct intel_gvt *gvt = spt->vgpu->gvt;
1456 	int ret;
1457 
1458 	ret = intel_gvt_hypervisor_read_gpa(spt->vgpu,
1459 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1460 			oos_page->mem, I915_GTT_PAGE_SIZE);
1461 	if (ret)
1462 		return ret;
1463 
1464 	oos_page->spt = spt;
1465 	spt->guest_page.oos_page = oos_page;
1466 
1467 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1468 
1469 	trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
1470 			 spt, spt->guest_page.type);
1471 	return 0;
1472 }
1473 
ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt * spt)1474 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1475 {
1476 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1477 	int ret;
1478 
1479 	ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
1480 	if (ret)
1481 		return ret;
1482 
1483 	trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
1484 			 spt, spt->guest_page.type);
1485 
1486 	list_del_init(&oos_page->vm_list);
1487 	return sync_oos_page(spt->vgpu, oos_page);
1488 }
1489 
ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt * spt)1490 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1491 {
1492 	struct intel_gvt *gvt = spt->vgpu->gvt;
1493 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1494 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1495 	int ret;
1496 
1497 	WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1498 
1499 	if (list_empty(&gtt->oos_page_free_list_head)) {
1500 		oos_page = container_of(gtt->oos_page_use_list_head.next,
1501 			struct intel_vgpu_oos_page, list);
1502 		ret = ppgtt_set_guest_page_sync(oos_page->spt);
1503 		if (ret)
1504 			return ret;
1505 		ret = detach_oos_page(spt->vgpu, oos_page);
1506 		if (ret)
1507 			return ret;
1508 	} else
1509 		oos_page = container_of(gtt->oos_page_free_list_head.next,
1510 			struct intel_vgpu_oos_page, list);
1511 	return attach_oos_page(oos_page, spt);
1512 }
1513 
ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt * spt)1514 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1515 {
1516 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1517 
1518 	if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1519 		return -EINVAL;
1520 
1521 	trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
1522 			 spt, spt->guest_page.type);
1523 
1524 	list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
1525 	return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
1526 }
1527 
1528 /**
1529  * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1530  * @vgpu: a vGPU
1531  *
1532  * This function is called before submitting a guest workload to host,
1533  * to sync all the out-of-synced shadow for vGPU
1534  *
1535  * Returns:
1536  * Zero on success, negative error code if failed.
1537  */
intel_vgpu_sync_oos_pages(struct intel_vgpu * vgpu)1538 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1539 {
1540 	struct list_head *pos, *n;
1541 	struct intel_vgpu_oos_page *oos_page;
1542 	int ret;
1543 
1544 	if (!enable_out_of_sync)
1545 		return 0;
1546 
1547 	list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1548 		oos_page = container_of(pos,
1549 				struct intel_vgpu_oos_page, vm_list);
1550 		ret = ppgtt_set_guest_page_sync(oos_page->spt);
1551 		if (ret)
1552 			return ret;
1553 	}
1554 	return 0;
1555 }
1556 
1557 /*
1558  * The heart of PPGTT shadow page table.
1559  */
ppgtt_handle_guest_write_page_table(struct intel_vgpu_ppgtt_spt * spt,struct intel_gvt_gtt_entry * we,unsigned long index)1560 static int ppgtt_handle_guest_write_page_table(
1561 		struct intel_vgpu_ppgtt_spt *spt,
1562 		struct intel_gvt_gtt_entry *we, unsigned long index)
1563 {
1564 	struct intel_vgpu *vgpu = spt->vgpu;
1565 	int type = spt->shadow_page.type;
1566 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1567 	struct intel_gvt_gtt_entry old_se;
1568 	int new_present;
1569 	int i, ret;
1570 
1571 	new_present = ops->test_present(we);
1572 
1573 	/*
1574 	 * Adding the new entry first and then removing the old one, that can
1575 	 * guarantee the ppgtt table is validated during the window between
1576 	 * adding and removal.
1577 	 */
1578 	ppgtt_get_shadow_entry(spt, &old_se, index);
1579 
1580 	if (new_present) {
1581 		ret = ppgtt_handle_guest_entry_add(spt, we, index);
1582 		if (ret)
1583 			goto fail;
1584 	}
1585 
1586 	ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
1587 	if (ret)
1588 		goto fail;
1589 
1590 	if (!new_present) {
1591 		/* For 64KB splited entries, we need clear them all. */
1592 		if (ops->test_64k_splited(&old_se) &&
1593 		    !(index % GTT_64K_PTE_STRIDE)) {
1594 			gvt_vdbg_mm("remove splited 64K shadow entries\n");
1595 			for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1596 				ops->clear_64k_splited(&old_se);
1597 				ops->set_pfn(&old_se,
1598 					vgpu->gtt.scratch_pt[type].page_mfn);
1599 				ppgtt_set_shadow_entry(spt, &old_se, index + i);
1600 			}
1601 		} else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY ||
1602 			   old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
1603 			ops->clear_pse(&old_se);
1604 			ops->set_pfn(&old_se,
1605 				     vgpu->gtt.scratch_pt[type].page_mfn);
1606 			ppgtt_set_shadow_entry(spt, &old_se, index);
1607 		} else {
1608 			ops->set_pfn(&old_se,
1609 				     vgpu->gtt.scratch_pt[type].page_mfn);
1610 			ppgtt_set_shadow_entry(spt, &old_se, index);
1611 		}
1612 	}
1613 
1614 	return 0;
1615 fail:
1616 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1617 			spt, we->val64, we->type);
1618 	return ret;
1619 }
1620 
1621 
1622 
can_do_out_of_sync(struct intel_vgpu_ppgtt_spt * spt)1623 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1624 {
1625 	return enable_out_of_sync
1626 		&& gtt_type_is_pte_pt(spt->guest_page.type)
1627 		&& spt->guest_page.write_cnt >= 2;
1628 }
1629 
ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt * spt,unsigned long index)1630 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1631 		unsigned long index)
1632 {
1633 	set_bit(index, spt->post_shadow_bitmap);
1634 	if (!list_empty(&spt->post_shadow_list))
1635 		return;
1636 
1637 	list_add_tail(&spt->post_shadow_list,
1638 			&spt->vgpu->gtt.post_shadow_list_head);
1639 }
1640 
1641 /**
1642  * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1643  * @vgpu: a vGPU
1644  *
1645  * This function is called before submitting a guest workload to host,
1646  * to flush all the post shadows for a vGPU.
1647  *
1648  * Returns:
1649  * Zero on success, negative error code if failed.
1650  */
intel_vgpu_flush_post_shadow(struct intel_vgpu * vgpu)1651 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1652 {
1653 	struct list_head *pos, *n;
1654 	struct intel_vgpu_ppgtt_spt *spt;
1655 	struct intel_gvt_gtt_entry ge;
1656 	unsigned long index;
1657 	int ret;
1658 
1659 	list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1660 		spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1661 				post_shadow_list);
1662 
1663 		for_each_set_bit(index, spt->post_shadow_bitmap,
1664 				GTT_ENTRY_NUM_IN_ONE_PAGE) {
1665 			ppgtt_get_guest_entry(spt, &ge, index);
1666 
1667 			ret = ppgtt_handle_guest_write_page_table(spt,
1668 							&ge, index);
1669 			if (ret)
1670 				return ret;
1671 			clear_bit(index, spt->post_shadow_bitmap);
1672 		}
1673 		list_del_init(&spt->post_shadow_list);
1674 	}
1675 	return 0;
1676 }
1677 
ppgtt_handle_guest_write_page_table_bytes(struct intel_vgpu_ppgtt_spt * spt,u64 pa,void * p_data,int bytes)1678 static int ppgtt_handle_guest_write_page_table_bytes(
1679 		struct intel_vgpu_ppgtt_spt *spt,
1680 		u64 pa, void *p_data, int bytes)
1681 {
1682 	struct intel_vgpu *vgpu = spt->vgpu;
1683 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1684 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1685 	struct intel_gvt_gtt_entry we, se;
1686 	unsigned long index;
1687 	int ret;
1688 
1689 	index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1690 
1691 	ppgtt_get_guest_entry(spt, &we, index);
1692 
1693 	/*
1694 	 * For page table which has 64K gtt entry, only PTE#0, PTE#16,
1695 	 * PTE#32, ... PTE#496 are used. Unused PTEs update should be
1696 	 * ignored.
1697 	 */
1698 	if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY &&
1699 	    (index % GTT_64K_PTE_STRIDE)) {
1700 		gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n",
1701 			    index);
1702 		return 0;
1703 	}
1704 
1705 	if (bytes == info->gtt_entry_size) {
1706 		ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
1707 		if (ret)
1708 			return ret;
1709 	} else {
1710 		if (!test_bit(index, spt->post_shadow_bitmap)) {
1711 			int type = spt->shadow_page.type;
1712 
1713 			ppgtt_get_shadow_entry(spt, &se, index);
1714 			ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
1715 			if (ret)
1716 				return ret;
1717 			ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1718 			ppgtt_set_shadow_entry(spt, &se, index);
1719 		}
1720 		ppgtt_set_post_shadow(spt, index);
1721 	}
1722 
1723 	if (!enable_out_of_sync)
1724 		return 0;
1725 
1726 	spt->guest_page.write_cnt++;
1727 
1728 	if (spt->guest_page.oos_page)
1729 		ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1730 				false, 0, vgpu);
1731 
1732 	if (can_do_out_of_sync(spt)) {
1733 		if (!spt->guest_page.oos_page)
1734 			ppgtt_allocate_oos_page(spt);
1735 
1736 		ret = ppgtt_set_guest_page_oos(spt);
1737 		if (ret < 0)
1738 			return ret;
1739 	}
1740 	return 0;
1741 }
1742 
invalidate_ppgtt_mm(struct intel_vgpu_mm * mm)1743 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1744 {
1745 	struct intel_vgpu *vgpu = mm->vgpu;
1746 	struct intel_gvt *gvt = vgpu->gvt;
1747 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1748 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1749 	struct intel_gvt_gtt_entry se;
1750 	int index;
1751 
1752 	if (!mm->ppgtt_mm.shadowed)
1753 		return;
1754 
1755 	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1756 		ppgtt_get_shadow_root_entry(mm, &se, index);
1757 
1758 		if (!ops->test_present(&se))
1759 			continue;
1760 
1761 		ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
1762 		se.val64 = 0;
1763 		ppgtt_set_shadow_root_entry(mm, &se, index);
1764 
1765 		trace_spt_guest_change(vgpu->id, "destroy root pointer",
1766 				       NULL, se.type, se.val64, index);
1767 	}
1768 
1769 	mm->ppgtt_mm.shadowed = false;
1770 }
1771 
1772 
shadow_ppgtt_mm(struct intel_vgpu_mm * mm)1773 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1774 {
1775 	struct intel_vgpu *vgpu = mm->vgpu;
1776 	struct intel_gvt *gvt = vgpu->gvt;
1777 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1778 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1779 	struct intel_vgpu_ppgtt_spt *spt;
1780 	struct intel_gvt_gtt_entry ge, se;
1781 	int index, ret;
1782 
1783 	if (mm->ppgtt_mm.shadowed)
1784 		return 0;
1785 
1786 	mm->ppgtt_mm.shadowed = true;
1787 
1788 	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1789 		ppgtt_get_guest_root_entry(mm, &ge, index);
1790 
1791 		if (!ops->test_present(&ge))
1792 			continue;
1793 
1794 		trace_spt_guest_change(vgpu->id, __func__, NULL,
1795 				       ge.type, ge.val64, index);
1796 
1797 		spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1798 		if (IS_ERR(spt)) {
1799 			gvt_vgpu_err("fail to populate guest root pointer\n");
1800 			ret = PTR_ERR(spt);
1801 			goto fail;
1802 		}
1803 		ppgtt_generate_shadow_entry(&se, spt, &ge);
1804 		ppgtt_set_shadow_root_entry(mm, &se, index);
1805 
1806 		trace_spt_guest_change(vgpu->id, "populate root pointer",
1807 				       NULL, se.type, se.val64, index);
1808 	}
1809 
1810 	return 0;
1811 fail:
1812 	invalidate_ppgtt_mm(mm);
1813 	return ret;
1814 }
1815 
vgpu_alloc_mm(struct intel_vgpu * vgpu)1816 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1817 {
1818 	struct intel_vgpu_mm *mm;
1819 
1820 	mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1821 	if (!mm)
1822 		return NULL;
1823 
1824 	mm->vgpu = vgpu;
1825 	kref_init(&mm->ref);
1826 	atomic_set(&mm->pincount, 0);
1827 
1828 	return mm;
1829 }
1830 
vgpu_free_mm(struct intel_vgpu_mm * mm)1831 static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1832 {
1833 	kfree(mm);
1834 }
1835 
1836 /**
1837  * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1838  * @vgpu: a vGPU
1839  * @root_entry_type: ppgtt root entry type
1840  * @pdps: guest pdps.
1841  *
1842  * This function is used to create a ppgtt mm object for a vGPU.
1843  *
1844  * Returns:
1845  * Zero on success, negative error code in pointer if failed.
1846  */
intel_vgpu_create_ppgtt_mm(struct intel_vgpu * vgpu,intel_gvt_gtt_type_t root_entry_type,u64 pdps[])1847 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1848 		intel_gvt_gtt_type_t root_entry_type, u64 pdps[])
1849 {
1850 	struct intel_gvt *gvt = vgpu->gvt;
1851 	struct intel_vgpu_mm *mm;
1852 	int ret;
1853 
1854 	mm = vgpu_alloc_mm(vgpu);
1855 	if (!mm)
1856 		return ERR_PTR(-ENOMEM);
1857 
1858 	mm->type = INTEL_GVT_MM_PPGTT;
1859 
1860 	GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1861 		   root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1862 	mm->ppgtt_mm.root_entry_type = root_entry_type;
1863 
1864 	INIT_LIST_HEAD(&mm->ppgtt_mm.list);
1865 	INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
1866 
1867 	if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1868 		mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1869 	else
1870 		memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1871 		       sizeof(mm->ppgtt_mm.guest_pdps));
1872 
1873 	ret = shadow_ppgtt_mm(mm);
1874 	if (ret) {
1875 		gvt_vgpu_err("failed to shadow ppgtt mm\n");
1876 		vgpu_free_mm(mm);
1877 		return ERR_PTR(ret);
1878 	}
1879 
1880 	list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
1881 	list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
1882 	return mm;
1883 }
1884 
intel_vgpu_create_ggtt_mm(struct intel_vgpu * vgpu)1885 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1886 {
1887 	struct intel_vgpu_mm *mm;
1888 	unsigned long nr_entries;
1889 
1890 	mm = vgpu_alloc_mm(vgpu);
1891 	if (!mm)
1892 		return ERR_PTR(-ENOMEM);
1893 
1894 	mm->type = INTEL_GVT_MM_GGTT;
1895 
1896 	nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1897 	mm->ggtt_mm.virtual_ggtt =
1898 		vzalloc(array_size(nr_entries,
1899 				   vgpu->gvt->device_info.gtt_entry_size));
1900 	if (!mm->ggtt_mm.virtual_ggtt) {
1901 		vgpu_free_mm(mm);
1902 		return ERR_PTR(-ENOMEM);
1903 	}
1904 	mm->ggtt_mm.last_partial_off = -1UL;
1905 
1906 	return mm;
1907 }
1908 
1909 /**
1910  * _intel_vgpu_mm_release - destroy a mm object
1911  * @mm_ref: a kref object
1912  *
1913  * This function is used to destroy a mm object for vGPU
1914  *
1915  */
_intel_vgpu_mm_release(struct kref * mm_ref)1916 void _intel_vgpu_mm_release(struct kref *mm_ref)
1917 {
1918 	struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1919 
1920 	if (GEM_WARN_ON(atomic_read(&mm->pincount)))
1921 		gvt_err("vgpu mm pin count bug detected\n");
1922 
1923 	if (mm->type == INTEL_GVT_MM_PPGTT) {
1924 		list_del(&mm->ppgtt_mm.list);
1925 		list_del(&mm->ppgtt_mm.lru_list);
1926 		invalidate_ppgtt_mm(mm);
1927 	} else {
1928 		vfree(mm->ggtt_mm.virtual_ggtt);
1929 		mm->ggtt_mm.last_partial_off = -1UL;
1930 	}
1931 
1932 	vgpu_free_mm(mm);
1933 }
1934 
1935 /**
1936  * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1937  * @mm: a vGPU mm object
1938  *
1939  * This function is called when user doesn't want to use a vGPU mm object
1940  */
intel_vgpu_unpin_mm(struct intel_vgpu_mm * mm)1941 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1942 {
1943 	atomic_dec(&mm->pincount);
1944 }
1945 
1946 /**
1947  * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1948  * @vgpu: a vGPU
1949  *
1950  * This function is called when user wants to use a vGPU mm object. If this
1951  * mm object hasn't been shadowed yet, the shadow will be populated at this
1952  * time.
1953  *
1954  * Returns:
1955  * Zero on success, negative error code if failed.
1956  */
intel_vgpu_pin_mm(struct intel_vgpu_mm * mm)1957 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
1958 {
1959 	int ret;
1960 
1961 	atomic_inc(&mm->pincount);
1962 
1963 	if (mm->type == INTEL_GVT_MM_PPGTT) {
1964 		ret = shadow_ppgtt_mm(mm);
1965 		if (ret)
1966 			return ret;
1967 
1968 		list_move_tail(&mm->ppgtt_mm.lru_list,
1969 			       &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
1970 
1971 	}
1972 
1973 	return 0;
1974 }
1975 
reclaim_one_ppgtt_mm(struct intel_gvt * gvt)1976 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
1977 {
1978 	struct intel_vgpu_mm *mm;
1979 	struct list_head *pos, *n;
1980 
1981 	list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
1982 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
1983 
1984 		if (atomic_read(&mm->pincount))
1985 			continue;
1986 
1987 		list_del_init(&mm->ppgtt_mm.lru_list);
1988 		invalidate_ppgtt_mm(mm);
1989 		return 1;
1990 	}
1991 	return 0;
1992 }
1993 
1994 /*
1995  * GMA translation APIs.
1996  */
ppgtt_get_next_level_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * e,unsigned long index,bool guest)1997 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
1998 		struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
1999 {
2000 	struct intel_vgpu *vgpu = mm->vgpu;
2001 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2002 	struct intel_vgpu_ppgtt_spt *s;
2003 
2004 	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
2005 	if (!s)
2006 		return -ENXIO;
2007 
2008 	if (!guest)
2009 		ppgtt_get_shadow_entry(s, e, index);
2010 	else
2011 		ppgtt_get_guest_entry(s, e, index);
2012 	return 0;
2013 }
2014 
2015 /**
2016  * intel_vgpu_gma_to_gpa - translate a gma to GPA
2017  * @mm: mm object. could be a PPGTT or GGTT mm object
2018  * @gma: graphics memory address in this mm object
2019  *
2020  * This function is used to translate a graphics memory address in specific
2021  * graphics memory space to guest physical address.
2022  *
2023  * Returns:
2024  * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
2025  */
intel_vgpu_gma_to_gpa(struct intel_vgpu_mm * mm,unsigned long gma)2026 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
2027 {
2028 	struct intel_vgpu *vgpu = mm->vgpu;
2029 	struct intel_gvt *gvt = vgpu->gvt;
2030 	struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
2031 	struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
2032 	unsigned long gpa = INTEL_GVT_INVALID_ADDR;
2033 	unsigned long gma_index[4];
2034 	struct intel_gvt_gtt_entry e;
2035 	int i, levels = 0;
2036 	int ret;
2037 
2038 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
2039 		   mm->type != INTEL_GVT_MM_PPGTT);
2040 
2041 	if (mm->type == INTEL_GVT_MM_GGTT) {
2042 		if (!vgpu_gmadr_is_valid(vgpu, gma))
2043 			goto err;
2044 
2045 		ggtt_get_guest_entry(mm, &e,
2046 			gma_ops->gma_to_ggtt_pte_index(gma));
2047 
2048 		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
2049 			+ (gma & ~I915_GTT_PAGE_MASK);
2050 
2051 		trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
2052 	} else {
2053 		switch (mm->ppgtt_mm.root_entry_type) {
2054 		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2055 			ppgtt_get_shadow_root_entry(mm, &e, 0);
2056 
2057 			gma_index[0] = gma_ops->gma_to_pml4_index(gma);
2058 			gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
2059 			gma_index[2] = gma_ops->gma_to_pde_index(gma);
2060 			gma_index[3] = gma_ops->gma_to_pte_index(gma);
2061 			levels = 4;
2062 			break;
2063 		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2064 			ppgtt_get_shadow_root_entry(mm, &e,
2065 					gma_ops->gma_to_l3_pdp_index(gma));
2066 
2067 			gma_index[0] = gma_ops->gma_to_pde_index(gma);
2068 			gma_index[1] = gma_ops->gma_to_pte_index(gma);
2069 			levels = 2;
2070 			break;
2071 		default:
2072 			GEM_BUG_ON(1);
2073 		}
2074 
2075 		/* walk the shadow page table and get gpa from guest entry */
2076 		for (i = 0; i < levels; i++) {
2077 			ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
2078 				(i == levels - 1));
2079 			if (ret)
2080 				goto err;
2081 
2082 			if (!pte_ops->test_present(&e)) {
2083 				gvt_dbg_core("GMA 0x%lx is not present\n", gma);
2084 				goto err;
2085 			}
2086 		}
2087 
2088 		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
2089 					(gma & ~I915_GTT_PAGE_MASK);
2090 		trace_gma_translate(vgpu->id, "ppgtt", 0,
2091 				    mm->ppgtt_mm.root_entry_type, gma, gpa);
2092 	}
2093 
2094 	return gpa;
2095 err:
2096 	gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
2097 	return INTEL_GVT_INVALID_ADDR;
2098 }
2099 
emulate_ggtt_mmio_read(struct intel_vgpu * vgpu,unsigned int off,void * p_data,unsigned int bytes)2100 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
2101 	unsigned int off, void *p_data, unsigned int bytes)
2102 {
2103 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2104 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2105 	unsigned long index = off >> info->gtt_entry_size_shift;
2106 	struct intel_gvt_gtt_entry e;
2107 
2108 	if (bytes != 4 && bytes != 8)
2109 		return -EINVAL;
2110 
2111 	ggtt_get_guest_entry(ggtt_mm, &e, index);
2112 	memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
2113 			bytes);
2114 	return 0;
2115 }
2116 
2117 /**
2118  * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
2119  * @vgpu: a vGPU
2120  * @off: register offset
2121  * @p_data: data will be returned to guest
2122  * @bytes: data length
2123  *
2124  * This function is used to emulate the GTT MMIO register read
2125  *
2126  * Returns:
2127  * Zero on success, error code if failed.
2128  */
intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu * vgpu,unsigned int off,void * p_data,unsigned int bytes)2129 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
2130 	void *p_data, unsigned int bytes)
2131 {
2132 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2133 	int ret;
2134 
2135 	if (bytes != 4 && bytes != 8)
2136 		return -EINVAL;
2137 
2138 	off -= info->gtt_start_offset;
2139 	ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
2140 	return ret;
2141 }
2142 
ggtt_invalidate_pte(struct intel_vgpu * vgpu,struct intel_gvt_gtt_entry * entry)2143 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
2144 		struct intel_gvt_gtt_entry *entry)
2145 {
2146 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2147 	unsigned long pfn;
2148 
2149 	pfn = pte_ops->get_pfn(entry);
2150 	if (pfn != vgpu->gvt->gtt.scratch_mfn)
2151 		intel_gvt_hypervisor_dma_unmap_guest_page(vgpu,
2152 						pfn << PAGE_SHIFT);
2153 }
2154 
emulate_ggtt_mmio_write(struct intel_vgpu * vgpu,unsigned int off,void * p_data,unsigned int bytes)2155 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
2156 	void *p_data, unsigned int bytes)
2157 {
2158 	struct intel_gvt *gvt = vgpu->gvt;
2159 	const struct intel_gvt_device_info *info = &gvt->device_info;
2160 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2161 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
2162 	unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
2163 	unsigned long gma, gfn;
2164 	struct intel_gvt_gtt_entry e, m;
2165 	dma_addr_t dma_addr;
2166 	int ret;
2167 
2168 	if (bytes != 4 && bytes != 8)
2169 		return -EINVAL;
2170 
2171 	gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
2172 
2173 	/* the VM may configure the whole GM space when ballooning is used */
2174 	if (!vgpu_gmadr_is_valid(vgpu, gma))
2175 		return 0;
2176 
2177 	ggtt_get_guest_entry(ggtt_mm, &e, g_gtt_index);
2178 
2179 	memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
2180 			bytes);
2181 
2182 	/* If ggtt entry size is 8 bytes, and it's split into two 4 bytes
2183 	 * write, we assume the two 4 bytes writes are consecutive.
2184 	 * Otherwise, we abort and report error
2185 	 */
2186 	if (bytes < info->gtt_entry_size) {
2187 		if (ggtt_mm->ggtt_mm.last_partial_off == -1UL) {
2188 			/* the first partial part*/
2189 			ggtt_mm->ggtt_mm.last_partial_off = off;
2190 			ggtt_mm->ggtt_mm.last_partial_data = e.val64;
2191 			return 0;
2192 		} else if ((g_gtt_index ==
2193 				(ggtt_mm->ggtt_mm.last_partial_off >>
2194 				info->gtt_entry_size_shift)) &&
2195 			(off !=	ggtt_mm->ggtt_mm.last_partial_off)) {
2196 			/* the second partial part */
2197 
2198 			int last_off = ggtt_mm->ggtt_mm.last_partial_off &
2199 				(info->gtt_entry_size - 1);
2200 
2201 			memcpy((void *)&e.val64 + last_off,
2202 				(void *)&ggtt_mm->ggtt_mm.last_partial_data +
2203 				last_off, bytes);
2204 
2205 			ggtt_mm->ggtt_mm.last_partial_off = -1UL;
2206 		} else {
2207 			int last_offset;
2208 
2209 			gvt_vgpu_err("failed to populate guest ggtt entry: abnormal ggtt entry write sequence, last_partial_off=%lx, offset=%x, bytes=%d, ggtt entry size=%d\n",
2210 					ggtt_mm->ggtt_mm.last_partial_off, off,
2211 					bytes, info->gtt_entry_size);
2212 
2213 			/* set host ggtt entry to scratch page and clear
2214 			 * virtual ggtt entry as not present for last
2215 			 * partially write offset
2216 			 */
2217 			last_offset = ggtt_mm->ggtt_mm.last_partial_off &
2218 					(~(info->gtt_entry_size - 1));
2219 
2220 			ggtt_get_host_entry(ggtt_mm, &m, last_offset);
2221 			ggtt_invalidate_pte(vgpu, &m);
2222 			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2223 			ops->clear_present(&m);
2224 			ggtt_set_host_entry(ggtt_mm, &m, last_offset);
2225 			ggtt_invalidate(gvt->dev_priv);
2226 
2227 			ggtt_get_guest_entry(ggtt_mm, &e, last_offset);
2228 			ops->clear_present(&e);
2229 			ggtt_set_guest_entry(ggtt_mm, &e, last_offset);
2230 
2231 			ggtt_mm->ggtt_mm.last_partial_off = off;
2232 			ggtt_mm->ggtt_mm.last_partial_data = e.val64;
2233 
2234 			return 0;
2235 		}
2236 	}
2237 
2238 	if (ops->test_present(&e)) {
2239 		gfn = ops->get_pfn(&e);
2240 		m = e;
2241 
2242 		/* one PTE update may be issued in multiple writes and the
2243 		 * first write may not construct a valid gfn
2244 		 */
2245 		if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
2246 			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2247 			goto out;
2248 		}
2249 
2250 		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn,
2251 							PAGE_SIZE, &dma_addr);
2252 		if (ret) {
2253 			gvt_vgpu_err("fail to populate guest ggtt entry\n");
2254 			/* guest driver may read/write the entry when partial
2255 			 * update the entry in this situation p2m will fail
2256 			 * settting the shadow entry to point to a scratch page
2257 			 */
2258 			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2259 		} else
2260 			ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
2261 	} else {
2262 		ggtt_get_host_entry(ggtt_mm, &m, g_gtt_index);
2263 		ggtt_invalidate_pte(vgpu, &m);
2264 		ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2265 		ops->clear_present(&m);
2266 	}
2267 
2268 out:
2269 	ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
2270 	ggtt_invalidate(gvt->dev_priv);
2271 	ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2272 	return 0;
2273 }
2274 
2275 /*
2276  * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
2277  * @vgpu: a vGPU
2278  * @off: register offset
2279  * @p_data: data from guest write
2280  * @bytes: data length
2281  *
2282  * This function is used to emulate the GTT MMIO register write
2283  *
2284  * Returns:
2285  * Zero on success, error code if failed.
2286  */
intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu * vgpu,unsigned int off,void * p_data,unsigned int bytes)2287 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
2288 		unsigned int off, void *p_data, unsigned int bytes)
2289 {
2290 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2291 	int ret;
2292 
2293 	if (bytes != 4 && bytes != 8)
2294 		return -EINVAL;
2295 
2296 	off -= info->gtt_start_offset;
2297 	ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
2298 	return ret;
2299 }
2300 
alloc_scratch_pages(struct intel_vgpu * vgpu,intel_gvt_gtt_type_t type)2301 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
2302 		intel_gvt_gtt_type_t type)
2303 {
2304 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2305 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2306 	int page_entry_num = I915_GTT_PAGE_SIZE >>
2307 				vgpu->gvt->device_info.gtt_entry_size_shift;
2308 	void *scratch_pt;
2309 	int i;
2310 	struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
2311 	dma_addr_t daddr;
2312 
2313 	if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
2314 		return -EINVAL;
2315 
2316 	scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
2317 	if (!scratch_pt) {
2318 		gvt_vgpu_err("fail to allocate scratch page\n");
2319 		return -ENOMEM;
2320 	}
2321 
2322 	daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
2323 			4096, PCI_DMA_BIDIRECTIONAL);
2324 	if (dma_mapping_error(dev, daddr)) {
2325 		gvt_vgpu_err("fail to dmamap scratch_pt\n");
2326 		__free_page(virt_to_page(scratch_pt));
2327 		return -ENOMEM;
2328 	}
2329 	gtt->scratch_pt[type].page_mfn =
2330 		(unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2331 	gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2332 	gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2333 			vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2334 
2335 	/* Build the tree by full filled the scratch pt with the entries which
2336 	 * point to the next level scratch pt or scratch page. The
2337 	 * scratch_pt[type] indicate the scratch pt/scratch page used by the
2338 	 * 'type' pt.
2339 	 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2340 	 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2341 	 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2342 	 */
2343 	if (type > GTT_TYPE_PPGTT_PTE_PT) {
2344 		struct intel_gvt_gtt_entry se;
2345 
2346 		memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2347 		se.type = get_entry_type(type - 1);
2348 		ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2349 
2350 		/* The entry parameters like present/writeable/cache type
2351 		 * set to the same as i915's scratch page tree.
2352 		 */
2353 		se.val64 |= _PAGE_PRESENT | _PAGE_RW;
2354 		if (type == GTT_TYPE_PPGTT_PDE_PT)
2355 			se.val64 |= PPAT_CACHED;
2356 
2357 		for (i = 0; i < page_entry_num; i++)
2358 			ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2359 	}
2360 
2361 	return 0;
2362 }
2363 
release_scratch_page_tree(struct intel_vgpu * vgpu)2364 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2365 {
2366 	int i;
2367 	struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
2368 	dma_addr_t daddr;
2369 
2370 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2371 		if (vgpu->gtt.scratch_pt[i].page != NULL) {
2372 			daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2373 					I915_GTT_PAGE_SHIFT);
2374 			dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2375 			__free_page(vgpu->gtt.scratch_pt[i].page);
2376 			vgpu->gtt.scratch_pt[i].page = NULL;
2377 			vgpu->gtt.scratch_pt[i].page_mfn = 0;
2378 		}
2379 	}
2380 
2381 	return 0;
2382 }
2383 
create_scratch_page_tree(struct intel_vgpu * vgpu)2384 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2385 {
2386 	int i, ret;
2387 
2388 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2389 		ret = alloc_scratch_pages(vgpu, i);
2390 		if (ret)
2391 			goto err;
2392 	}
2393 
2394 	return 0;
2395 
2396 err:
2397 	release_scratch_page_tree(vgpu);
2398 	return ret;
2399 }
2400 
2401 /**
2402  * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2403  * @vgpu: a vGPU
2404  *
2405  * This function is used to initialize per-vGPU graphics memory virtualization
2406  * components.
2407  *
2408  * Returns:
2409  * Zero on success, error code if failed.
2410  */
intel_vgpu_init_gtt(struct intel_vgpu * vgpu)2411 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2412 {
2413 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2414 
2415 	INIT_RADIX_TREE(&gtt->spt_tree, GFP_KERNEL);
2416 
2417 	INIT_LIST_HEAD(&gtt->ppgtt_mm_list_head);
2418 	INIT_LIST_HEAD(&gtt->oos_page_list_head);
2419 	INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2420 
2421 	gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2422 	if (IS_ERR(gtt->ggtt_mm)) {
2423 		gvt_vgpu_err("fail to create mm for ggtt.\n");
2424 		return PTR_ERR(gtt->ggtt_mm);
2425 	}
2426 
2427 	intel_vgpu_reset_ggtt(vgpu, false);
2428 
2429 	return create_scratch_page_tree(vgpu);
2430 }
2431 
intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu * vgpu)2432 static void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2433 {
2434 	struct list_head *pos, *n;
2435 	struct intel_vgpu_mm *mm;
2436 
2437 	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2438 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2439 		intel_vgpu_destroy_mm(mm);
2440 	}
2441 
2442 	if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2443 		gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2444 
2445 	if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2446 		gvt_err("Why we still has spt not freed?\n");
2447 		ppgtt_free_all_spt(vgpu);
2448 	}
2449 }
2450 
intel_vgpu_destroy_ggtt_mm(struct intel_vgpu * vgpu)2451 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2452 {
2453 	intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
2454 	vgpu->gtt.ggtt_mm = NULL;
2455 }
2456 
2457 /**
2458  * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2459  * @vgpu: a vGPU
2460  *
2461  * This function is used to clean up per-vGPU graphics memory virtualization
2462  * components.
2463  *
2464  * Returns:
2465  * Zero on success, error code if failed.
2466  */
intel_vgpu_clean_gtt(struct intel_vgpu * vgpu)2467 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2468 {
2469 	intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2470 	intel_vgpu_destroy_ggtt_mm(vgpu);
2471 	release_scratch_page_tree(vgpu);
2472 }
2473 
clean_spt_oos(struct intel_gvt * gvt)2474 static void clean_spt_oos(struct intel_gvt *gvt)
2475 {
2476 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2477 	struct list_head *pos, *n;
2478 	struct intel_vgpu_oos_page *oos_page;
2479 
2480 	WARN(!list_empty(&gtt->oos_page_use_list_head),
2481 		"someone is still using oos page\n");
2482 
2483 	list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2484 		oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2485 		list_del(&oos_page->list);
2486 		kfree(oos_page);
2487 	}
2488 }
2489 
setup_spt_oos(struct intel_gvt * gvt)2490 static int setup_spt_oos(struct intel_gvt *gvt)
2491 {
2492 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2493 	struct intel_vgpu_oos_page *oos_page;
2494 	int i;
2495 	int ret;
2496 
2497 	INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2498 	INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2499 
2500 	for (i = 0; i < preallocated_oos_pages; i++) {
2501 		oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2502 		if (!oos_page) {
2503 			ret = -ENOMEM;
2504 			goto fail;
2505 		}
2506 
2507 		INIT_LIST_HEAD(&oos_page->list);
2508 		INIT_LIST_HEAD(&oos_page->vm_list);
2509 		oos_page->id = i;
2510 		list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2511 	}
2512 
2513 	gvt_dbg_mm("%d oos pages preallocated\n", i);
2514 
2515 	return 0;
2516 fail:
2517 	clean_spt_oos(gvt);
2518 	return ret;
2519 }
2520 
2521 /**
2522  * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2523  * @vgpu: a vGPU
2524  * @page_table_level: PPGTT page table level
2525  * @root_entry: PPGTT page table root pointers
2526  *
2527  * This function is used to find a PPGTT mm object from mm object pool
2528  *
2529  * Returns:
2530  * pointer to mm object on success, NULL if failed.
2531  */
intel_vgpu_find_ppgtt_mm(struct intel_vgpu * vgpu,u64 pdps[])2532 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2533 		u64 pdps[])
2534 {
2535 	struct intel_vgpu_mm *mm;
2536 	struct list_head *pos;
2537 
2538 	list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2539 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2540 
2541 		switch (mm->ppgtt_mm.root_entry_type) {
2542 		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2543 			if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2544 				return mm;
2545 			break;
2546 		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2547 			if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
2548 				    sizeof(mm->ppgtt_mm.guest_pdps)))
2549 				return mm;
2550 			break;
2551 		default:
2552 			GEM_BUG_ON(1);
2553 		}
2554 	}
2555 	return NULL;
2556 }
2557 
2558 /**
2559  * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2560  * @vgpu: a vGPU
2561  * @root_entry_type: ppgtt root entry type
2562  * @pdps: guest pdps
2563  *
2564  * This function is used to find or create a PPGTT mm object from a guest.
2565  *
2566  * Returns:
2567  * Zero on success, negative error code if failed.
2568  */
intel_vgpu_get_ppgtt_mm(struct intel_vgpu * vgpu,intel_gvt_gtt_type_t root_entry_type,u64 pdps[])2569 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2570 		intel_gvt_gtt_type_t root_entry_type, u64 pdps[])
2571 {
2572 	struct intel_vgpu_mm *mm;
2573 
2574 	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2575 	if (mm) {
2576 		intel_vgpu_mm_get(mm);
2577 	} else {
2578 		mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2579 		if (IS_ERR(mm))
2580 			gvt_vgpu_err("fail to create mm\n");
2581 	}
2582 	return mm;
2583 }
2584 
2585 /**
2586  * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2587  * @vgpu: a vGPU
2588  * @pdps: guest pdps
2589  *
2590  * This function is used to find a PPGTT mm object from a guest and destroy it.
2591  *
2592  * Returns:
2593  * Zero on success, negative error code if failed.
2594  */
intel_vgpu_put_ppgtt_mm(struct intel_vgpu * vgpu,u64 pdps[])2595 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2596 {
2597 	struct intel_vgpu_mm *mm;
2598 
2599 	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2600 	if (!mm) {
2601 		gvt_vgpu_err("fail to find ppgtt instance.\n");
2602 		return -EINVAL;
2603 	}
2604 	intel_vgpu_mm_put(mm);
2605 	return 0;
2606 }
2607 
2608 /**
2609  * intel_gvt_init_gtt - initialize mm components of a GVT device
2610  * @gvt: GVT device
2611  *
2612  * This function is called at the initialization stage, to initialize
2613  * the mm components of a GVT device.
2614  *
2615  * Returns:
2616  * zero on success, negative error code if failed.
2617  */
intel_gvt_init_gtt(struct intel_gvt * gvt)2618 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2619 {
2620 	int ret;
2621 	void *page;
2622 	struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2623 	dma_addr_t daddr;
2624 
2625 	gvt_dbg_core("init gtt\n");
2626 
2627 	gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2628 	gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2629 
2630 	page = (void *)get_zeroed_page(GFP_KERNEL);
2631 	if (!page) {
2632 		gvt_err("fail to allocate scratch ggtt page\n");
2633 		return -ENOMEM;
2634 	}
2635 
2636 	daddr = dma_map_page(dev, virt_to_page(page), 0,
2637 			4096, PCI_DMA_BIDIRECTIONAL);
2638 	if (dma_mapping_error(dev, daddr)) {
2639 		gvt_err("fail to dmamap scratch ggtt page\n");
2640 		__free_page(virt_to_page(page));
2641 		return -ENOMEM;
2642 	}
2643 
2644 	gvt->gtt.scratch_page = virt_to_page(page);
2645 	gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2646 
2647 	if (enable_out_of_sync) {
2648 		ret = setup_spt_oos(gvt);
2649 		if (ret) {
2650 			gvt_err("fail to initialize SPT oos\n");
2651 			dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2652 			__free_page(gvt->gtt.scratch_page);
2653 			return ret;
2654 		}
2655 	}
2656 	INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
2657 	return 0;
2658 }
2659 
2660 /**
2661  * intel_gvt_clean_gtt - clean up mm components of a GVT device
2662  * @gvt: GVT device
2663  *
2664  * This function is called at the driver unloading stage, to clean up the
2665  * the mm components of a GVT device.
2666  *
2667  */
intel_gvt_clean_gtt(struct intel_gvt * gvt)2668 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2669 {
2670 	struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2671 	dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2672 					I915_GTT_PAGE_SHIFT);
2673 
2674 	dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2675 
2676 	__free_page(gvt->gtt.scratch_page);
2677 
2678 	if (enable_out_of_sync)
2679 		clean_spt_oos(gvt);
2680 }
2681 
2682 /**
2683  * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2684  * @vgpu: a vGPU
2685  *
2686  * This function is called when invalidate all PPGTT instances of a vGPU.
2687  *
2688  */
intel_vgpu_invalidate_ppgtt(struct intel_vgpu * vgpu)2689 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2690 {
2691 	struct list_head *pos, *n;
2692 	struct intel_vgpu_mm *mm;
2693 
2694 	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2695 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2696 		if (mm->type == INTEL_GVT_MM_PPGTT) {
2697 			list_del_init(&mm->ppgtt_mm.lru_list);
2698 			if (mm->ppgtt_mm.shadowed)
2699 				invalidate_ppgtt_mm(mm);
2700 		}
2701 	}
2702 }
2703 
2704 /**
2705  * intel_vgpu_reset_ggtt - reset the GGTT entry
2706  * @vgpu: a vGPU
2707  * @invalidate_old: invalidate old entries
2708  *
2709  * This function is called at the vGPU create stage
2710  * to reset all the GGTT entries.
2711  *
2712  */
intel_vgpu_reset_ggtt(struct intel_vgpu * vgpu,bool invalidate_old)2713 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
2714 {
2715 	struct intel_gvt *gvt = vgpu->gvt;
2716 	struct drm_i915_private *dev_priv = gvt->dev_priv;
2717 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2718 	struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2719 	struct intel_gvt_gtt_entry old_entry;
2720 	u32 index;
2721 	u32 num_entries;
2722 
2723 	pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2724 	pte_ops->set_present(&entry);
2725 
2726 	index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2727 	num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2728 	while (num_entries--) {
2729 		if (invalidate_old) {
2730 			ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2731 			ggtt_invalidate_pte(vgpu, &old_entry);
2732 		}
2733 		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2734 	}
2735 
2736 	index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2737 	num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2738 	while (num_entries--) {
2739 		if (invalidate_old) {
2740 			ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2741 			ggtt_invalidate_pte(vgpu, &old_entry);
2742 		}
2743 		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2744 	}
2745 
2746 	ggtt_invalidate(dev_priv);
2747 }
2748 
2749 /**
2750  * intel_vgpu_reset_gtt - reset the all GTT related status
2751  * @vgpu: a vGPU
2752  *
2753  * This function is called from vfio core to reset reset all
2754  * GTT related status, including GGTT, PPGTT, scratch page.
2755  *
2756  */
intel_vgpu_reset_gtt(struct intel_vgpu * vgpu)2757 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
2758 {
2759 	/* Shadow pages are only created when there is no page
2760 	 * table tracking data, so remove page tracking data after
2761 	 * removing the shadow pages.
2762 	 */
2763 	intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2764 	intel_vgpu_reset_ggtt(vgpu, true);
2765 }
2766