1  /* SPDX-License-Identifier: GPL-2.0 */
2  #ifndef _LINUX_MM_TYPES_H
3  #define _LINUX_MM_TYPES_H
4  
5  #include <linux/mm_types_task.h>
6  
7  #include <linux/auxvec.h>
8  #include <linux/list.h>
9  #include <linux/spinlock.h>
10  #include <linux/rbtree.h>
11  #include <linux/rwsem.h>
12  #include <linux/completion.h>
13  #include <linux/cpumask.h>
14  #include <linux/uprobes.h>
15  #include <linux/page-flags-layout.h>
16  #include <linux/workqueue.h>
17  
18  #include <asm/mmu.h>
19  
20  #ifndef AT_VECTOR_SIZE_ARCH
21  #define AT_VECTOR_SIZE_ARCH 0
22  #endif
23  #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
24  
25  
26  struct address_space;
27  struct mem_cgroup;
28  
29  /*
30   * Each physical page in the system has a struct page associated with
31   * it to keep track of whatever it is we are using the page for at the
32   * moment. Note that we have no way to track which tasks are using
33   * a page, though if it is a pagecache page, rmap structures can tell us
34   * who is mapping it.
35   *
36   * If you allocate the page using alloc_pages(), you can use some of the
37   * space in struct page for your own purposes.  The five words in the main
38   * union are available, except for bit 0 of the first word which must be
39   * kept clear.  Many users use this word to store a pointer to an object
40   * which is guaranteed to be aligned.  If you use the same storage as
41   * page->mapping, you must restore it to NULL before freeing the page.
42   *
43   * If your page will not be mapped to userspace, you can also use the four
44   * bytes in the mapcount union, but you must call page_mapcount_reset()
45   * before freeing it.
46   *
47   * If you want to use the refcount field, it must be used in such a way
48   * that other CPUs temporarily incrementing and then decrementing the
49   * refcount does not cause problems.  On receiving the page from
50   * alloc_pages(), the refcount will be positive.
51   *
52   * If you allocate pages of order > 0, you can use some of the fields
53   * in each subpage, but you may need to restore some of their values
54   * afterwards.
55   *
56   * SLUB uses cmpxchg_double() to atomically update its freelist and
57   * counters.  That requires that freelist & counters be adjacent and
58   * double-word aligned.  We align all struct pages to double-word
59   * boundaries, and ensure that 'freelist' is aligned within the
60   * struct.
61   */
62  #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
63  #define _struct_page_alignment	__aligned(2 * sizeof(unsigned long))
64  #else
65  #define _struct_page_alignment
66  #endif
67  
68  struct page {
69  	unsigned long flags;		/* Atomic flags, some possibly
70  					 * updated asynchronously */
71  	/*
72  	 * Five words (20/40 bytes) are available in this union.
73  	 * WARNING: bit 0 of the first word is used for PageTail(). That
74  	 * means the other users of this union MUST NOT use the bit to
75  	 * avoid collision and false-positive PageTail().
76  	 */
77  	union {
78  		struct {	/* Page cache and anonymous pages */
79  			/**
80  			 * @lru: Pageout list, eg. active_list protected by
81  			 * pgdat->lru_lock.  Sometimes used as a generic list
82  			 * by the page owner.
83  			 */
84  			struct list_head lru;
85  			/* See page-flags.h for PAGE_MAPPING_FLAGS */
86  			struct address_space *mapping;
87  			pgoff_t index;		/* Our offset within mapping. */
88  			/**
89  			 * @private: Mapping-private opaque data.
90  			 * Usually used for buffer_heads if PagePrivate.
91  			 * Used for swp_entry_t if PageSwapCache.
92  			 * Indicates order in the buddy system if PageBuddy.
93  			 */
94  			unsigned long private;
95  		};
96  		struct {	/* page_pool used by netstack */
97  			/**
98  			 * @dma_addr: might require a 64-bit value even on
99  			 * 32-bit architectures.
100  			 */
101  			dma_addr_t dma_addr;
102  		};
103  		struct {	/* slab, slob and slub */
104  			union {
105  				struct list_head slab_list;
106  				struct {	/* Partial pages */
107  					struct page *next;
108  #ifdef CONFIG_64BIT
109  					int pages;	/* Nr of pages left */
110  					int pobjects;	/* Approximate count */
111  #else
112  					short int pages;
113  					short int pobjects;
114  #endif
115  				};
116  			};
117  			struct kmem_cache *slab_cache; /* not slob */
118  			/* Double-word boundary */
119  			void *freelist;		/* first free object */
120  			union {
121  				void *s_mem;	/* slab: first object */
122  				unsigned long counters;		/* SLUB */
123  				struct {			/* SLUB */
124  					unsigned inuse:16;
125  					unsigned objects:15;
126  					unsigned frozen:1;
127  				};
128  			};
129  		};
130  		struct {	/* Tail pages of compound page */
131  			unsigned long compound_head;	/* Bit zero is set */
132  
133  			/* First tail page only */
134  			unsigned char compound_dtor;
135  			unsigned char compound_order;
136  			atomic_t compound_mapcount;
137  			unsigned int compound_nr; /* 1 << compound_order */
138  		};
139  		struct {	/* Second tail page of compound page */
140  			unsigned long _compound_pad_1;	/* compound_head */
141  			atomic_t hpage_pinned_refcount;
142  			/* For both global and memcg */
143  			struct list_head deferred_list;
144  		};
145  		struct {	/* Page table pages */
146  			unsigned long _pt_pad_1;	/* compound_head */
147  			pgtable_t pmd_huge_pte; /* protected by page->ptl */
148  			unsigned long _pt_pad_2;	/* mapping */
149  			union {
150  				struct mm_struct *pt_mm; /* x86 pgds only */
151  				atomic_t pt_frag_refcount; /* powerpc */
152  			};
153  #if ALLOC_SPLIT_PTLOCKS
154  			spinlock_t *ptl;
155  #else
156  			spinlock_t ptl;
157  #endif
158  		};
159  		struct {	/* ZONE_DEVICE pages */
160  			/** @pgmap: Points to the hosting device page map. */
161  			struct dev_pagemap *pgmap;
162  			void *zone_device_data;
163  			/*
164  			 * ZONE_DEVICE private pages are counted as being
165  			 * mapped so the next 3 words hold the mapping, index,
166  			 * and private fields from the source anonymous or
167  			 * page cache page while the page is migrated to device
168  			 * private memory.
169  			 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also
170  			 * use the mapping, index, and private fields when
171  			 * pmem backed DAX files are mapped.
172  			 */
173  		};
174  
175  		/** @rcu_head: You can use this to free a page by RCU. */
176  		struct rcu_head rcu_head;
177  	};
178  
179  	union {		/* This union is 4 bytes in size. */
180  		/*
181  		 * If the page can be mapped to userspace, encodes the number
182  		 * of times this page is referenced by a page table.
183  		 */
184  		atomic_t _mapcount;
185  
186  		/*
187  		 * If the page is neither PageSlab nor mappable to userspace,
188  		 * the value stored here may help determine what this page
189  		 * is used for.  See page-flags.h for a list of page types
190  		 * which are currently stored here.
191  		 */
192  		unsigned int page_type;
193  
194  		unsigned int active;		/* SLAB */
195  		int units;			/* SLOB */
196  	};
197  
198  	/* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */
199  	atomic_t _refcount;
200  
201  #ifdef CONFIG_MEMCG
202  	union {
203  		struct mem_cgroup *mem_cgroup;
204  		struct obj_cgroup **obj_cgroups;
205  	};
206  #endif
207  
208  	/*
209  	 * On machines where all RAM is mapped into kernel address space,
210  	 * we can simply calculate the virtual address. On machines with
211  	 * highmem some memory is mapped into kernel virtual memory
212  	 * dynamically, so we need a place to store that address.
213  	 * Note that this field could be 16 bits on x86 ... ;)
214  	 *
215  	 * Architectures with slow multiplication can define
216  	 * WANT_PAGE_VIRTUAL in asm/page.h
217  	 */
218  #if defined(WANT_PAGE_VIRTUAL)
219  	void *virtual;			/* Kernel virtual address (NULL if
220  					   not kmapped, ie. highmem) */
221  #endif /* WANT_PAGE_VIRTUAL */
222  
223  #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
224  	int _last_cpupid;
225  #endif
226  } _struct_page_alignment;
227  
compound_mapcount_ptr(struct page * page)228  static inline atomic_t *compound_mapcount_ptr(struct page *page)
229  {
230  	return &page[1].compound_mapcount;
231  }
232  
compound_pincount_ptr(struct page * page)233  static inline atomic_t *compound_pincount_ptr(struct page *page)
234  {
235  	return &page[2].hpage_pinned_refcount;
236  }
237  
238  /*
239   * Used for sizing the vmemmap region on some architectures
240   */
241  #define STRUCT_PAGE_MAX_SHIFT	(order_base_2(sizeof(struct page)))
242  
243  #define PAGE_FRAG_CACHE_MAX_SIZE	__ALIGN_MASK(32768, ~PAGE_MASK)
244  #define PAGE_FRAG_CACHE_MAX_ORDER	get_order(PAGE_FRAG_CACHE_MAX_SIZE)
245  
246  #define page_private(page)		((page)->private)
247  
set_page_private(struct page * page,unsigned long private)248  static inline void set_page_private(struct page *page, unsigned long private)
249  {
250  	page->private = private;
251  }
252  
253  struct page_frag_cache {
254  	void * va;
255  #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
256  	__u16 offset;
257  	__u16 size;
258  #else
259  	__u32 offset;
260  #endif
261  	/* we maintain a pagecount bias, so that we dont dirty cache line
262  	 * containing page->_refcount every time we allocate a fragment.
263  	 */
264  	unsigned int		pagecnt_bias;
265  	bool pfmemalloc;
266  };
267  
268  typedef unsigned long vm_flags_t;
269  
270  /*
271   * A region containing a mapping of a non-memory backed file under NOMMU
272   * conditions.  These are held in a global tree and are pinned by the VMAs that
273   * map parts of them.
274   */
275  struct vm_region {
276  	struct rb_node	vm_rb;		/* link in global region tree */
277  	vm_flags_t	vm_flags;	/* VMA vm_flags */
278  	unsigned long	vm_start;	/* start address of region */
279  	unsigned long	vm_end;		/* region initialised to here */
280  	unsigned long	vm_top;		/* region allocated to here */
281  	unsigned long	vm_pgoff;	/* the offset in vm_file corresponding to vm_start */
282  	struct file	*vm_file;	/* the backing file or NULL */
283  
284  	int		vm_usage;	/* region usage count (access under nommu_region_sem) */
285  	bool		vm_icache_flushed : 1; /* true if the icache has been flushed for
286  						* this region */
287  };
288  
289  #ifdef CONFIG_USERFAULTFD
290  #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
291  struct vm_userfaultfd_ctx {
292  	struct userfaultfd_ctx *ctx;
293  };
294  #else /* CONFIG_USERFAULTFD */
295  #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
296  struct vm_userfaultfd_ctx {};
297  #endif /* CONFIG_USERFAULTFD */
298  
299  /*
300   * This struct describes a virtual memory area. There is one of these
301   * per VM-area/task. A VM area is any part of the process virtual memory
302   * space that has a special rule for the page-fault handlers (ie a shared
303   * library, the executable area etc).
304   */
305  struct vm_area_struct {
306  	/* The first cache line has the info for VMA tree walking. */
307  
308  	unsigned long vm_start;		/* Our start address within vm_mm. */
309  	unsigned long vm_end;		/* The first byte after our end address
310  					   within vm_mm. */
311  
312  	/* linked list of VM areas per task, sorted by address */
313  	struct vm_area_struct *vm_next, *vm_prev;
314  
315  	struct rb_node vm_rb;
316  
317  	/*
318  	 * Largest free memory gap in bytes to the left of this VMA.
319  	 * Either between this VMA and vma->vm_prev, or between one of the
320  	 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
321  	 * get_unmapped_area find a free area of the right size.
322  	 */
323  	unsigned long rb_subtree_gap;
324  
325  	/* Second cache line starts here. */
326  
327  	struct mm_struct *vm_mm;	/* The address space we belong to. */
328  
329  	/*
330  	 * Access permissions of this VMA.
331  	 * See vmf_insert_mixed_prot() for discussion.
332  	 */
333  	pgprot_t vm_page_prot;
334  	unsigned long vm_flags;		/* Flags, see mm.h. */
335  
336  	/*
337  	 * For areas with an address space and backing store,
338  	 * linkage into the address_space->i_mmap interval tree.
339  	 */
340  	struct {
341  		struct rb_node rb;
342  		unsigned long rb_subtree_last;
343  	} shared;
344  
345  	/*
346  	 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
347  	 * list, after a COW of one of the file pages.	A MAP_SHARED vma
348  	 * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
349  	 * or brk vma (with NULL file) can only be in an anon_vma list.
350  	 */
351  	struct list_head anon_vma_chain; /* Serialized by mmap_lock &
352  					  * page_table_lock */
353  	struct anon_vma *anon_vma;	/* Serialized by page_table_lock */
354  
355  	/* Function pointers to deal with this struct. */
356  	const struct vm_operations_struct *vm_ops;
357  
358  	/* Information about our backing store: */
359  	unsigned long vm_pgoff;		/* Offset (within vm_file) in PAGE_SIZE
360  					   units */
361  	struct file * vm_file;		/* File we map to (can be NULL). */
362  	void * vm_private_data;		/* was vm_pte (shared mem) */
363  
364  #ifdef CONFIG_SWAP
365  	atomic_long_t swap_readahead_info;
366  #endif
367  #ifndef CONFIG_MMU
368  	struct vm_region *vm_region;	/* NOMMU mapping region */
369  #endif
370  #ifdef CONFIG_NUMA
371  	struct mempolicy *vm_policy;	/* NUMA policy for the VMA */
372  #endif
373  	struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
374  } __randomize_layout;
375  
376  struct core_thread {
377  	struct task_struct *task;
378  	struct core_thread *next;
379  };
380  
381  struct core_state {
382  	atomic_t nr_threads;
383  	struct core_thread dumper;
384  	struct completion startup;
385  };
386  
387  struct kioctx_table;
388  struct mm_struct {
389  	struct {
390  		struct vm_area_struct *mmap;		/* list of VMAs */
391  		struct rb_root mm_rb;
392  		u64 vmacache_seqnum;                   /* per-thread vmacache */
393  #ifdef CONFIG_MMU
394  		unsigned long (*get_unmapped_area) (struct file *filp,
395  				unsigned long addr, unsigned long len,
396  				unsigned long pgoff, unsigned long flags);
397  #endif
398  		unsigned long mmap_base;	/* base of mmap area */
399  		unsigned long mmap_legacy_base;	/* base of mmap area in bottom-up allocations */
400  #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
401  		/* Base adresses for compatible mmap() */
402  		unsigned long mmap_compat_base;
403  		unsigned long mmap_compat_legacy_base;
404  #endif
405  		unsigned long task_size;	/* size of task vm space */
406  		unsigned long highest_vm_end;	/* highest vma end address */
407  		pgd_t * pgd;
408  
409  #ifdef CONFIG_MEMBARRIER
410  		/**
411  		 * @membarrier_state: Flags controlling membarrier behavior.
412  		 *
413  		 * This field is close to @pgd to hopefully fit in the same
414  		 * cache-line, which needs to be touched by switch_mm().
415  		 */
416  		atomic_t membarrier_state;
417  #endif
418  
419  		/**
420  		 * @mm_users: The number of users including userspace.
421  		 *
422  		 * Use mmget()/mmget_not_zero()/mmput() to modify. When this
423  		 * drops to 0 (i.e. when the task exits and there are no other
424  		 * temporary reference holders), we also release a reference on
425  		 * @mm_count (which may then free the &struct mm_struct if
426  		 * @mm_count also drops to 0).
427  		 */
428  		atomic_t mm_users;
429  
430  		/**
431  		 * @mm_count: The number of references to &struct mm_struct
432  		 * (@mm_users count as 1).
433  		 *
434  		 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the
435  		 * &struct mm_struct is freed.
436  		 */
437  		atomic_t mm_count;
438  
439  		/**
440  		 * @has_pinned: Whether this mm has pinned any pages.  This can
441  		 * be either replaced in the future by @pinned_vm when it
442  		 * becomes stable, or grow into a counter on its own. We're
443  		 * aggresive on this bit now - even if the pinned pages were
444  		 * unpinned later on, we'll still keep this bit set for the
445  		 * lifecycle of this mm just for simplicity.
446  		 */
447  		atomic_t has_pinned;
448  
449  #ifdef CONFIG_MMU
450  		atomic_long_t pgtables_bytes;	/* PTE page table pages */
451  #endif
452  		int map_count;			/* number of VMAs */
453  
454  		spinlock_t page_table_lock; /* Protects page tables and some
455  					     * counters
456  					     */
457  		struct rw_semaphore mmap_lock;
458  
459  		struct list_head mmlist; /* List of maybe swapped mm's.	These
460  					  * are globally strung together off
461  					  * init_mm.mmlist, and are protected
462  					  * by mmlist_lock
463  					  */
464  
465  
466  		unsigned long hiwater_rss; /* High-watermark of RSS usage */
467  		unsigned long hiwater_vm;  /* High-water virtual memory usage */
468  
469  		unsigned long total_vm;	   /* Total pages mapped */
470  		unsigned long locked_vm;   /* Pages that have PG_mlocked set */
471  		atomic64_t    pinned_vm;   /* Refcount permanently increased */
472  		unsigned long data_vm;	   /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
473  		unsigned long exec_vm;	   /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
474  		unsigned long stack_vm;	   /* VM_STACK */
475  		unsigned long def_flags;
476  
477  		spinlock_t arg_lock; /* protect the below fields */
478  		unsigned long start_code, end_code, start_data, end_data;
479  		unsigned long start_brk, brk, start_stack;
480  		unsigned long arg_start, arg_end, env_start, env_end;
481  
482  		unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
483  
484  		/*
485  		 * Special counters, in some configurations protected by the
486  		 * page_table_lock, in other configurations by being atomic.
487  		 */
488  		struct mm_rss_stat rss_stat;
489  
490  		struct linux_binfmt *binfmt;
491  
492  		/* Architecture-specific MM context */
493  		mm_context_t context;
494  
495  		unsigned long flags; /* Must use atomic bitops to access */
496  
497  		struct core_state *core_state; /* coredumping support */
498  
499  #ifdef CONFIG_AIO
500  		spinlock_t			ioctx_lock;
501  		struct kioctx_table __rcu	*ioctx_table;
502  #endif
503  #ifdef CONFIG_MEMCG
504  		/*
505  		 * "owner" points to a task that is regarded as the canonical
506  		 * user/owner of this mm. All of the following must be true in
507  		 * order for it to be changed:
508  		 *
509  		 * current == mm->owner
510  		 * current->mm != mm
511  		 * new_owner->mm == mm
512  		 * new_owner->alloc_lock is held
513  		 */
514  		struct task_struct __rcu *owner;
515  #endif
516  		struct user_namespace *user_ns;
517  
518  		/* store ref to file /proc/<pid>/exe symlink points to */
519  		struct file __rcu *exe_file;
520  #ifdef CONFIG_MMU_NOTIFIER
521  		struct mmu_notifier_subscriptions *notifier_subscriptions;
522  #endif
523  #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
524  		pgtable_t pmd_huge_pte; /* protected by page_table_lock */
525  #endif
526  #ifdef CONFIG_NUMA_BALANCING
527  		/*
528  		 * numa_next_scan is the next time that the PTEs will be marked
529  		 * pte_numa. NUMA hinting faults will gather statistics and
530  		 * migrate pages to new nodes if necessary.
531  		 */
532  		unsigned long numa_next_scan;
533  
534  		/* Restart point for scanning and setting pte_numa */
535  		unsigned long numa_scan_offset;
536  
537  		/* numa_scan_seq prevents two threads setting pte_numa */
538  		int numa_scan_seq;
539  #endif
540  		/*
541  		 * An operation with batched TLB flushing is going on. Anything
542  		 * that can move process memory needs to flush the TLB when
543  		 * moving a PROT_NONE or PROT_NUMA mapped page.
544  		 */
545  		atomic_t tlb_flush_pending;
546  #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
547  		/* See flush_tlb_batched_pending() */
548  		bool tlb_flush_batched;
549  #endif
550  		struct uprobes_state uprobes_state;
551  #ifdef CONFIG_HUGETLB_PAGE
552  		atomic_long_t hugetlb_usage;
553  #endif
554  		struct work_struct async_put_work;
555  
556  #ifdef CONFIG_IOMMU_SUPPORT
557  		u32 pasid;
558  #endif
559  	} __randomize_layout;
560  
561  	/*
562  	 * The mm_cpumask needs to be at the end of mm_struct, because it
563  	 * is dynamically sized based on nr_cpu_ids.
564  	 */
565  	unsigned long cpu_bitmap[];
566  };
567  
568  extern struct mm_struct init_mm;
569  
570  /* Pointer magic because the dynamic array size confuses some compilers. */
mm_init_cpumask(struct mm_struct * mm)571  static inline void mm_init_cpumask(struct mm_struct *mm)
572  {
573  	unsigned long cpu_bitmap = (unsigned long)mm;
574  
575  	cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap);
576  	cpumask_clear((struct cpumask *)cpu_bitmap);
577  }
578  
579  /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
mm_cpumask(struct mm_struct * mm)580  static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
581  {
582  	return (struct cpumask *)&mm->cpu_bitmap;
583  }
584  
585  struct mmu_gather;
586  extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
587  				unsigned long start, unsigned long end);
588  extern void tlb_finish_mmu(struct mmu_gather *tlb,
589  				unsigned long start, unsigned long end);
590  
init_tlb_flush_pending(struct mm_struct * mm)591  static inline void init_tlb_flush_pending(struct mm_struct *mm)
592  {
593  	atomic_set(&mm->tlb_flush_pending, 0);
594  }
595  
inc_tlb_flush_pending(struct mm_struct * mm)596  static inline void inc_tlb_flush_pending(struct mm_struct *mm)
597  {
598  	atomic_inc(&mm->tlb_flush_pending);
599  	/*
600  	 * The only time this value is relevant is when there are indeed pages
601  	 * to flush. And we'll only flush pages after changing them, which
602  	 * requires the PTL.
603  	 *
604  	 * So the ordering here is:
605  	 *
606  	 *	atomic_inc(&mm->tlb_flush_pending);
607  	 *	spin_lock(&ptl);
608  	 *	...
609  	 *	set_pte_at();
610  	 *	spin_unlock(&ptl);
611  	 *
612  	 *				spin_lock(&ptl)
613  	 *				mm_tlb_flush_pending();
614  	 *				....
615  	 *				spin_unlock(&ptl);
616  	 *
617  	 *	flush_tlb_range();
618  	 *	atomic_dec(&mm->tlb_flush_pending);
619  	 *
620  	 * Where the increment if constrained by the PTL unlock, it thus
621  	 * ensures that the increment is visible if the PTE modification is
622  	 * visible. After all, if there is no PTE modification, nobody cares
623  	 * about TLB flushes either.
624  	 *
625  	 * This very much relies on users (mm_tlb_flush_pending() and
626  	 * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and
627  	 * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc
628  	 * locks (PPC) the unlock of one doesn't order against the lock of
629  	 * another PTL.
630  	 *
631  	 * The decrement is ordered by the flush_tlb_range(), such that
632  	 * mm_tlb_flush_pending() will not return false unless all flushes have
633  	 * completed.
634  	 */
635  }
636  
dec_tlb_flush_pending(struct mm_struct * mm)637  static inline void dec_tlb_flush_pending(struct mm_struct *mm)
638  {
639  	/*
640  	 * See inc_tlb_flush_pending().
641  	 *
642  	 * This cannot be smp_mb__before_atomic() because smp_mb() simply does
643  	 * not order against TLB invalidate completion, which is what we need.
644  	 *
645  	 * Therefore we must rely on tlb_flush_*() to guarantee order.
646  	 */
647  	atomic_dec(&mm->tlb_flush_pending);
648  }
649  
mm_tlb_flush_pending(struct mm_struct * mm)650  static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
651  {
652  	/*
653  	 * Must be called after having acquired the PTL; orders against that
654  	 * PTLs release and therefore ensures that if we observe the modified
655  	 * PTE we must also observe the increment from inc_tlb_flush_pending().
656  	 *
657  	 * That is, it only guarantees to return true if there is a flush
658  	 * pending for _this_ PTL.
659  	 */
660  	return atomic_read(&mm->tlb_flush_pending);
661  }
662  
mm_tlb_flush_nested(struct mm_struct * mm)663  static inline bool mm_tlb_flush_nested(struct mm_struct *mm)
664  {
665  	/*
666  	 * Similar to mm_tlb_flush_pending(), we must have acquired the PTL
667  	 * for which there is a TLB flush pending in order to guarantee
668  	 * we've seen both that PTE modification and the increment.
669  	 *
670  	 * (no requirement on actually still holding the PTL, that is irrelevant)
671  	 */
672  	return atomic_read(&mm->tlb_flush_pending) > 1;
673  }
674  
675  struct vm_fault;
676  
677  /**
678   * typedef vm_fault_t - Return type for page fault handlers.
679   *
680   * Page fault handlers return a bitmask of %VM_FAULT values.
681   */
682  typedef __bitwise unsigned int vm_fault_t;
683  
684  /**
685   * enum vm_fault_reason - Page fault handlers return a bitmask of
686   * these values to tell the core VM what happened when handling the
687   * fault. Used to decide whether a process gets delivered SIGBUS or
688   * just gets major/minor fault counters bumped up.
689   *
690   * @VM_FAULT_OOM:		Out Of Memory
691   * @VM_FAULT_SIGBUS:		Bad access
692   * @VM_FAULT_MAJOR:		Page read from storage
693   * @VM_FAULT_WRITE:		Special case for get_user_pages
694   * @VM_FAULT_HWPOISON:		Hit poisoned small page
695   * @VM_FAULT_HWPOISON_LARGE:	Hit poisoned large page. Index encoded
696   *				in upper bits
697   * @VM_FAULT_SIGSEGV:		segmentation fault
698   * @VM_FAULT_NOPAGE:		->fault installed the pte, not return page
699   * @VM_FAULT_LOCKED:		->fault locked the returned page
700   * @VM_FAULT_RETRY:		->fault blocked, must retry
701   * @VM_FAULT_FALLBACK:		huge page fault failed, fall back to small
702   * @VM_FAULT_DONE_COW:		->fault has fully handled COW
703   * @VM_FAULT_NEEDDSYNC:		->fault did not modify page tables and needs
704   *				fsync() to complete (for synchronous page faults
705   *				in DAX)
706   * @VM_FAULT_HINDEX_MASK:	mask HINDEX value
707   *
708   */
709  enum vm_fault_reason {
710  	VM_FAULT_OOM            = (__force vm_fault_t)0x000001,
711  	VM_FAULT_SIGBUS         = (__force vm_fault_t)0x000002,
712  	VM_FAULT_MAJOR          = (__force vm_fault_t)0x000004,
713  	VM_FAULT_WRITE          = (__force vm_fault_t)0x000008,
714  	VM_FAULT_HWPOISON       = (__force vm_fault_t)0x000010,
715  	VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020,
716  	VM_FAULT_SIGSEGV        = (__force vm_fault_t)0x000040,
717  	VM_FAULT_NOPAGE         = (__force vm_fault_t)0x000100,
718  	VM_FAULT_LOCKED         = (__force vm_fault_t)0x000200,
719  	VM_FAULT_RETRY          = (__force vm_fault_t)0x000400,
720  	VM_FAULT_FALLBACK       = (__force vm_fault_t)0x000800,
721  	VM_FAULT_DONE_COW       = (__force vm_fault_t)0x001000,
722  	VM_FAULT_NEEDDSYNC      = (__force vm_fault_t)0x002000,
723  	VM_FAULT_HINDEX_MASK    = (__force vm_fault_t)0x0f0000,
724  };
725  
726  /* Encode hstate index for a hwpoisoned large page */
727  #define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16))
728  #define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf)
729  
730  #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS |	\
731  			VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON |	\
732  			VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK)
733  
734  #define VM_FAULT_RESULT_TRACE \
735  	{ VM_FAULT_OOM,                 "OOM" },	\
736  	{ VM_FAULT_SIGBUS,              "SIGBUS" },	\
737  	{ VM_FAULT_MAJOR,               "MAJOR" },	\
738  	{ VM_FAULT_WRITE,               "WRITE" },	\
739  	{ VM_FAULT_HWPOISON,            "HWPOISON" },	\
740  	{ VM_FAULT_HWPOISON_LARGE,      "HWPOISON_LARGE" },	\
741  	{ VM_FAULT_SIGSEGV,             "SIGSEGV" },	\
742  	{ VM_FAULT_NOPAGE,              "NOPAGE" },	\
743  	{ VM_FAULT_LOCKED,              "LOCKED" },	\
744  	{ VM_FAULT_RETRY,               "RETRY" },	\
745  	{ VM_FAULT_FALLBACK,            "FALLBACK" },	\
746  	{ VM_FAULT_DONE_COW,            "DONE_COW" },	\
747  	{ VM_FAULT_NEEDDSYNC,           "NEEDDSYNC" }
748  
749  struct vm_special_mapping {
750  	const char *name;	/* The name, e.g. "[vdso]". */
751  
752  	/*
753  	 * If .fault is not provided, this points to a
754  	 * NULL-terminated array of pages that back the special mapping.
755  	 *
756  	 * This must not be NULL unless .fault is provided.
757  	 */
758  	struct page **pages;
759  
760  	/*
761  	 * If non-NULL, then this is called to resolve page faults
762  	 * on the special mapping.  If used, .pages is not checked.
763  	 */
764  	vm_fault_t (*fault)(const struct vm_special_mapping *sm,
765  				struct vm_area_struct *vma,
766  				struct vm_fault *vmf);
767  
768  	int (*mremap)(const struct vm_special_mapping *sm,
769  		     struct vm_area_struct *new_vma);
770  };
771  
772  enum tlb_flush_reason {
773  	TLB_FLUSH_ON_TASK_SWITCH,
774  	TLB_REMOTE_SHOOTDOWN,
775  	TLB_LOCAL_SHOOTDOWN,
776  	TLB_LOCAL_MM_SHOOTDOWN,
777  	TLB_REMOTE_SEND_IPI,
778  	NR_TLB_FLUSH_REASONS,
779  };
780  
781   /*
782    * A swap entry has to fit into a "unsigned long", as the entry is hidden
783    * in the "index" field of the swapper address space.
784    */
785  typedef struct {
786  	unsigned long val;
787  } swp_entry_t;
788  
789  #endif /* _LINUX_MM_TYPES_H */
790