1 /* SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0 */
2 /* Copyright (c) 2015-2018 Mellanox Technologies. All rights reserved */
3
4 #ifndef _MLXSW_REG_H
5 #define _MLXSW_REG_H
6
7 #include <linux/kernel.h>
8 #include <linux/string.h>
9 #include <linux/bitops.h>
10 #include <linux/if_vlan.h>
11
12 #include "item.h"
13 #include "port.h"
14
15 struct mlxsw_reg_info {
16 u16 id;
17 u16 len; /* In u8 */
18 const char *name;
19 };
20
21 #define MLXSW_REG_DEFINE(_name, _id, _len) \
22 static const struct mlxsw_reg_info mlxsw_reg_##_name = { \
23 .id = _id, \
24 .len = _len, \
25 .name = #_name, \
26 }
27
28 #define MLXSW_REG(type) (&mlxsw_reg_##type)
29 #define MLXSW_REG_LEN(type) MLXSW_REG(type)->len
30 #define MLXSW_REG_ZERO(type, payload) memset(payload, 0, MLXSW_REG(type)->len)
31
32 /* SGCR - Switch General Configuration Register
33 * --------------------------------------------
34 * This register is used for configuration of the switch capabilities.
35 */
36 #define MLXSW_REG_SGCR_ID 0x2000
37 #define MLXSW_REG_SGCR_LEN 0x10
38
39 MLXSW_REG_DEFINE(sgcr, MLXSW_REG_SGCR_ID, MLXSW_REG_SGCR_LEN);
40
41 /* reg_sgcr_llb
42 * Link Local Broadcast (Default=0)
43 * When set, all Link Local packets (224.0.0.X) will be treated as broadcast
44 * packets and ignore the IGMP snooping entries.
45 * Access: RW
46 */
47 MLXSW_ITEM32(reg, sgcr, llb, 0x04, 0, 1);
48
mlxsw_reg_sgcr_pack(char * payload,bool llb)49 static inline void mlxsw_reg_sgcr_pack(char *payload, bool llb)
50 {
51 MLXSW_REG_ZERO(sgcr, payload);
52 mlxsw_reg_sgcr_llb_set(payload, !!llb);
53 }
54
55 /* SPAD - Switch Physical Address Register
56 * ---------------------------------------
57 * The SPAD register configures the switch physical MAC address.
58 */
59 #define MLXSW_REG_SPAD_ID 0x2002
60 #define MLXSW_REG_SPAD_LEN 0x10
61
62 MLXSW_REG_DEFINE(spad, MLXSW_REG_SPAD_ID, MLXSW_REG_SPAD_LEN);
63
64 /* reg_spad_base_mac
65 * Base MAC address for the switch partitions.
66 * Per switch partition MAC address is equal to:
67 * base_mac + swid
68 * Access: RW
69 */
70 MLXSW_ITEM_BUF(reg, spad, base_mac, 0x02, 6);
71
72 /* SMID - Switch Multicast ID
73 * --------------------------
74 * The MID record maps from a MID (Multicast ID), which is a unique identifier
75 * of the multicast group within the stacking domain, into a list of local
76 * ports into which the packet is replicated.
77 */
78 #define MLXSW_REG_SMID_ID 0x2007
79 #define MLXSW_REG_SMID_LEN 0x240
80
81 MLXSW_REG_DEFINE(smid, MLXSW_REG_SMID_ID, MLXSW_REG_SMID_LEN);
82
83 /* reg_smid_swid
84 * Switch partition ID.
85 * Access: Index
86 */
87 MLXSW_ITEM32(reg, smid, swid, 0x00, 24, 8);
88
89 /* reg_smid_mid
90 * Multicast identifier - global identifier that represents the multicast group
91 * across all devices.
92 * Access: Index
93 */
94 MLXSW_ITEM32(reg, smid, mid, 0x00, 0, 16);
95
96 /* reg_smid_port
97 * Local port memebership (1 bit per port).
98 * Access: RW
99 */
100 MLXSW_ITEM_BIT_ARRAY(reg, smid, port, 0x20, 0x20, 1);
101
102 /* reg_smid_port_mask
103 * Local port mask (1 bit per port).
104 * Access: W
105 */
106 MLXSW_ITEM_BIT_ARRAY(reg, smid, port_mask, 0x220, 0x20, 1);
107
mlxsw_reg_smid_pack(char * payload,u16 mid,u8 port,bool set)108 static inline void mlxsw_reg_smid_pack(char *payload, u16 mid,
109 u8 port, bool set)
110 {
111 MLXSW_REG_ZERO(smid, payload);
112 mlxsw_reg_smid_swid_set(payload, 0);
113 mlxsw_reg_smid_mid_set(payload, mid);
114 mlxsw_reg_smid_port_set(payload, port, set);
115 mlxsw_reg_smid_port_mask_set(payload, port, 1);
116 }
117
118 /* SSPR - Switch System Port Record Register
119 * -----------------------------------------
120 * Configures the system port to local port mapping.
121 */
122 #define MLXSW_REG_SSPR_ID 0x2008
123 #define MLXSW_REG_SSPR_LEN 0x8
124
125 MLXSW_REG_DEFINE(sspr, MLXSW_REG_SSPR_ID, MLXSW_REG_SSPR_LEN);
126
127 /* reg_sspr_m
128 * Master - if set, then the record describes the master system port.
129 * This is needed in case a local port is mapped into several system ports
130 * (for multipathing). That number will be reported as the source system
131 * port when packets are forwarded to the CPU. Only one master port is allowed
132 * per local port.
133 *
134 * Note: Must be set for Spectrum.
135 * Access: RW
136 */
137 MLXSW_ITEM32(reg, sspr, m, 0x00, 31, 1);
138
139 /* reg_sspr_local_port
140 * Local port number.
141 *
142 * Access: RW
143 */
144 MLXSW_ITEM32(reg, sspr, local_port, 0x00, 16, 8);
145
146 /* reg_sspr_sub_port
147 * Virtual port within the physical port.
148 * Should be set to 0 when virtual ports are not enabled on the port.
149 *
150 * Access: RW
151 */
152 MLXSW_ITEM32(reg, sspr, sub_port, 0x00, 8, 8);
153
154 /* reg_sspr_system_port
155 * Unique identifier within the stacking domain that represents all the ports
156 * that are available in the system (external ports).
157 *
158 * Currently, only single-ASIC configurations are supported, so we default to
159 * 1:1 mapping between system ports and local ports.
160 * Access: Index
161 */
162 MLXSW_ITEM32(reg, sspr, system_port, 0x04, 0, 16);
163
mlxsw_reg_sspr_pack(char * payload,u8 local_port)164 static inline void mlxsw_reg_sspr_pack(char *payload, u8 local_port)
165 {
166 MLXSW_REG_ZERO(sspr, payload);
167 mlxsw_reg_sspr_m_set(payload, 1);
168 mlxsw_reg_sspr_local_port_set(payload, local_port);
169 mlxsw_reg_sspr_sub_port_set(payload, 0);
170 mlxsw_reg_sspr_system_port_set(payload, local_port);
171 }
172
173 /* SFDAT - Switch Filtering Database Aging Time
174 * --------------------------------------------
175 * Controls the Switch aging time. Aging time is able to be set per Switch
176 * Partition.
177 */
178 #define MLXSW_REG_SFDAT_ID 0x2009
179 #define MLXSW_REG_SFDAT_LEN 0x8
180
181 MLXSW_REG_DEFINE(sfdat, MLXSW_REG_SFDAT_ID, MLXSW_REG_SFDAT_LEN);
182
183 /* reg_sfdat_swid
184 * Switch partition ID.
185 * Access: Index
186 */
187 MLXSW_ITEM32(reg, sfdat, swid, 0x00, 24, 8);
188
189 /* reg_sfdat_age_time
190 * Aging time in seconds
191 * Min - 10 seconds
192 * Max - 1,000,000 seconds
193 * Default is 300 seconds.
194 * Access: RW
195 */
196 MLXSW_ITEM32(reg, sfdat, age_time, 0x04, 0, 20);
197
mlxsw_reg_sfdat_pack(char * payload,u32 age_time)198 static inline void mlxsw_reg_sfdat_pack(char *payload, u32 age_time)
199 {
200 MLXSW_REG_ZERO(sfdat, payload);
201 mlxsw_reg_sfdat_swid_set(payload, 0);
202 mlxsw_reg_sfdat_age_time_set(payload, age_time);
203 }
204
205 /* SFD - Switch Filtering Database
206 * -------------------------------
207 * The following register defines the access to the filtering database.
208 * The register supports querying, adding, removing and modifying the database.
209 * The access is optimized for bulk updates in which case more than one
210 * FDB record is present in the same command.
211 */
212 #define MLXSW_REG_SFD_ID 0x200A
213 #define MLXSW_REG_SFD_BASE_LEN 0x10 /* base length, without records */
214 #define MLXSW_REG_SFD_REC_LEN 0x10 /* record length */
215 #define MLXSW_REG_SFD_REC_MAX_COUNT 64
216 #define MLXSW_REG_SFD_LEN (MLXSW_REG_SFD_BASE_LEN + \
217 MLXSW_REG_SFD_REC_LEN * MLXSW_REG_SFD_REC_MAX_COUNT)
218
219 MLXSW_REG_DEFINE(sfd, MLXSW_REG_SFD_ID, MLXSW_REG_SFD_LEN);
220
221 /* reg_sfd_swid
222 * Switch partition ID for queries. Reserved on Write.
223 * Access: Index
224 */
225 MLXSW_ITEM32(reg, sfd, swid, 0x00, 24, 8);
226
227 enum mlxsw_reg_sfd_op {
228 /* Dump entire FDB a (process according to record_locator) */
229 MLXSW_REG_SFD_OP_QUERY_DUMP = 0,
230 /* Query records by {MAC, VID/FID} value */
231 MLXSW_REG_SFD_OP_QUERY_QUERY = 1,
232 /* Query and clear activity. Query records by {MAC, VID/FID} value */
233 MLXSW_REG_SFD_OP_QUERY_QUERY_AND_CLEAR_ACTIVITY = 2,
234 /* Test. Response indicates if each of the records could be
235 * added to the FDB.
236 */
237 MLXSW_REG_SFD_OP_WRITE_TEST = 0,
238 /* Add/modify. Aged-out records cannot be added. This command removes
239 * the learning notification of the {MAC, VID/FID}. Response includes
240 * the entries that were added to the FDB.
241 */
242 MLXSW_REG_SFD_OP_WRITE_EDIT = 1,
243 /* Remove record by {MAC, VID/FID}. This command also removes
244 * the learning notification and aged-out notifications
245 * of the {MAC, VID/FID}. The response provides current (pre-removal)
246 * entries as non-aged-out.
247 */
248 MLXSW_REG_SFD_OP_WRITE_REMOVE = 2,
249 /* Remove learned notification by {MAC, VID/FID}. The response provides
250 * the removed learning notification.
251 */
252 MLXSW_REG_SFD_OP_WRITE_REMOVE_NOTIFICATION = 2,
253 };
254
255 /* reg_sfd_op
256 * Operation.
257 * Access: OP
258 */
259 MLXSW_ITEM32(reg, sfd, op, 0x04, 30, 2);
260
261 /* reg_sfd_record_locator
262 * Used for querying the FDB. Use record_locator=0 to initiate the
263 * query. When a record is returned, a new record_locator is
264 * returned to be used in the subsequent query.
265 * Reserved for database update.
266 * Access: Index
267 */
268 MLXSW_ITEM32(reg, sfd, record_locator, 0x04, 0, 30);
269
270 /* reg_sfd_num_rec
271 * Request: Number of records to read/add/modify/remove
272 * Response: Number of records read/added/replaced/removed
273 * See above description for more details.
274 * Ranges 0..64
275 * Access: RW
276 */
277 MLXSW_ITEM32(reg, sfd, num_rec, 0x08, 0, 8);
278
mlxsw_reg_sfd_pack(char * payload,enum mlxsw_reg_sfd_op op,u32 record_locator)279 static inline void mlxsw_reg_sfd_pack(char *payload, enum mlxsw_reg_sfd_op op,
280 u32 record_locator)
281 {
282 MLXSW_REG_ZERO(sfd, payload);
283 mlxsw_reg_sfd_op_set(payload, op);
284 mlxsw_reg_sfd_record_locator_set(payload, record_locator);
285 }
286
287 /* reg_sfd_rec_swid
288 * Switch partition ID.
289 * Access: Index
290 */
291 MLXSW_ITEM32_INDEXED(reg, sfd, rec_swid, MLXSW_REG_SFD_BASE_LEN, 24, 8,
292 MLXSW_REG_SFD_REC_LEN, 0x00, false);
293
294 enum mlxsw_reg_sfd_rec_type {
295 MLXSW_REG_SFD_REC_TYPE_UNICAST = 0x0,
296 MLXSW_REG_SFD_REC_TYPE_UNICAST_LAG = 0x1,
297 MLXSW_REG_SFD_REC_TYPE_MULTICAST = 0x2,
298 MLXSW_REG_SFD_REC_TYPE_UNICAST_TUNNEL = 0xC,
299 };
300
301 /* reg_sfd_rec_type
302 * FDB record type.
303 * Access: RW
304 */
305 MLXSW_ITEM32_INDEXED(reg, sfd, rec_type, MLXSW_REG_SFD_BASE_LEN, 20, 4,
306 MLXSW_REG_SFD_REC_LEN, 0x00, false);
307
308 enum mlxsw_reg_sfd_rec_policy {
309 /* Replacement disabled, aging disabled. */
310 MLXSW_REG_SFD_REC_POLICY_STATIC_ENTRY = 0,
311 /* (mlag remote): Replacement enabled, aging disabled,
312 * learning notification enabled on this port.
313 */
314 MLXSW_REG_SFD_REC_POLICY_DYNAMIC_ENTRY_MLAG = 1,
315 /* (ingress device): Replacement enabled, aging enabled. */
316 MLXSW_REG_SFD_REC_POLICY_DYNAMIC_ENTRY_INGRESS = 3,
317 };
318
319 /* reg_sfd_rec_policy
320 * Policy.
321 * Access: RW
322 */
323 MLXSW_ITEM32_INDEXED(reg, sfd, rec_policy, MLXSW_REG_SFD_BASE_LEN, 18, 2,
324 MLXSW_REG_SFD_REC_LEN, 0x00, false);
325
326 /* reg_sfd_rec_a
327 * Activity. Set for new static entries. Set for static entries if a frame SMAC
328 * lookup hits on the entry.
329 * To clear the a bit, use "query and clear activity" op.
330 * Access: RO
331 */
332 MLXSW_ITEM32_INDEXED(reg, sfd, rec_a, MLXSW_REG_SFD_BASE_LEN, 16, 1,
333 MLXSW_REG_SFD_REC_LEN, 0x00, false);
334
335 /* reg_sfd_rec_mac
336 * MAC address.
337 * Access: Index
338 */
339 MLXSW_ITEM_BUF_INDEXED(reg, sfd, rec_mac, MLXSW_REG_SFD_BASE_LEN, 6,
340 MLXSW_REG_SFD_REC_LEN, 0x02);
341
342 enum mlxsw_reg_sfd_rec_action {
343 /* forward */
344 MLXSW_REG_SFD_REC_ACTION_NOP = 0,
345 /* forward and trap, trap_id is FDB_TRAP */
346 MLXSW_REG_SFD_REC_ACTION_MIRROR_TO_CPU = 1,
347 /* trap and do not forward, trap_id is FDB_TRAP */
348 MLXSW_REG_SFD_REC_ACTION_TRAP = 2,
349 /* forward to IP router */
350 MLXSW_REG_SFD_REC_ACTION_FORWARD_IP_ROUTER = 3,
351 MLXSW_REG_SFD_REC_ACTION_DISCARD_ERROR = 15,
352 };
353
354 /* reg_sfd_rec_action
355 * Action to apply on the packet.
356 * Note: Dynamic entries can only be configured with NOP action.
357 * Access: RW
358 */
359 MLXSW_ITEM32_INDEXED(reg, sfd, rec_action, MLXSW_REG_SFD_BASE_LEN, 28, 4,
360 MLXSW_REG_SFD_REC_LEN, 0x0C, false);
361
362 /* reg_sfd_uc_sub_port
363 * VEPA channel on local port.
364 * Valid only if local port is a non-stacking port. Must be 0 if multichannel
365 * VEPA is not enabled.
366 * Access: RW
367 */
368 MLXSW_ITEM32_INDEXED(reg, sfd, uc_sub_port, MLXSW_REG_SFD_BASE_LEN, 16, 8,
369 MLXSW_REG_SFD_REC_LEN, 0x08, false);
370
371 /* reg_sfd_uc_fid_vid
372 * Filtering ID or VLAN ID
373 * For SwitchX and SwitchX-2:
374 * - Dynamic entries (policy 2,3) use FID
375 * - Static entries (policy 0) use VID
376 * - When independent learning is configured, VID=FID
377 * For Spectrum: use FID for both Dynamic and Static entries.
378 * VID should not be used.
379 * Access: Index
380 */
381 MLXSW_ITEM32_INDEXED(reg, sfd, uc_fid_vid, MLXSW_REG_SFD_BASE_LEN, 0, 16,
382 MLXSW_REG_SFD_REC_LEN, 0x08, false);
383
384 /* reg_sfd_uc_system_port
385 * Unique port identifier for the final destination of the packet.
386 * Access: RW
387 */
388 MLXSW_ITEM32_INDEXED(reg, sfd, uc_system_port, MLXSW_REG_SFD_BASE_LEN, 0, 16,
389 MLXSW_REG_SFD_REC_LEN, 0x0C, false);
390
mlxsw_reg_sfd_rec_pack(char * payload,int rec_index,enum mlxsw_reg_sfd_rec_type rec_type,const char * mac,enum mlxsw_reg_sfd_rec_action action)391 static inline void mlxsw_reg_sfd_rec_pack(char *payload, int rec_index,
392 enum mlxsw_reg_sfd_rec_type rec_type,
393 const char *mac,
394 enum mlxsw_reg_sfd_rec_action action)
395 {
396 u8 num_rec = mlxsw_reg_sfd_num_rec_get(payload);
397
398 if (rec_index >= num_rec)
399 mlxsw_reg_sfd_num_rec_set(payload, rec_index + 1);
400 mlxsw_reg_sfd_rec_swid_set(payload, rec_index, 0);
401 mlxsw_reg_sfd_rec_type_set(payload, rec_index, rec_type);
402 mlxsw_reg_sfd_rec_mac_memcpy_to(payload, rec_index, mac);
403 mlxsw_reg_sfd_rec_action_set(payload, rec_index, action);
404 }
405
mlxsw_reg_sfd_uc_pack(char * payload,int rec_index,enum mlxsw_reg_sfd_rec_policy policy,const char * mac,u16 fid_vid,enum mlxsw_reg_sfd_rec_action action,u8 local_port)406 static inline void mlxsw_reg_sfd_uc_pack(char *payload, int rec_index,
407 enum mlxsw_reg_sfd_rec_policy policy,
408 const char *mac, u16 fid_vid,
409 enum mlxsw_reg_sfd_rec_action action,
410 u8 local_port)
411 {
412 mlxsw_reg_sfd_rec_pack(payload, rec_index,
413 MLXSW_REG_SFD_REC_TYPE_UNICAST, mac, action);
414 mlxsw_reg_sfd_rec_policy_set(payload, rec_index, policy);
415 mlxsw_reg_sfd_uc_sub_port_set(payload, rec_index, 0);
416 mlxsw_reg_sfd_uc_fid_vid_set(payload, rec_index, fid_vid);
417 mlxsw_reg_sfd_uc_system_port_set(payload, rec_index, local_port);
418 }
419
mlxsw_reg_sfd_uc_unpack(char * payload,int rec_index,char * mac,u16 * p_fid_vid,u8 * p_local_port)420 static inline void mlxsw_reg_sfd_uc_unpack(char *payload, int rec_index,
421 char *mac, u16 *p_fid_vid,
422 u8 *p_local_port)
423 {
424 mlxsw_reg_sfd_rec_mac_memcpy_from(payload, rec_index, mac);
425 *p_fid_vid = mlxsw_reg_sfd_uc_fid_vid_get(payload, rec_index);
426 *p_local_port = mlxsw_reg_sfd_uc_system_port_get(payload, rec_index);
427 }
428
429 /* reg_sfd_uc_lag_sub_port
430 * LAG sub port.
431 * Must be 0 if multichannel VEPA is not enabled.
432 * Access: RW
433 */
434 MLXSW_ITEM32_INDEXED(reg, sfd, uc_lag_sub_port, MLXSW_REG_SFD_BASE_LEN, 16, 8,
435 MLXSW_REG_SFD_REC_LEN, 0x08, false);
436
437 /* reg_sfd_uc_lag_fid_vid
438 * Filtering ID or VLAN ID
439 * For SwitchX and SwitchX-2:
440 * - Dynamic entries (policy 2,3) use FID
441 * - Static entries (policy 0) use VID
442 * - When independent learning is configured, VID=FID
443 * For Spectrum: use FID for both Dynamic and Static entries.
444 * VID should not be used.
445 * Access: Index
446 */
447 MLXSW_ITEM32_INDEXED(reg, sfd, uc_lag_fid_vid, MLXSW_REG_SFD_BASE_LEN, 0, 16,
448 MLXSW_REG_SFD_REC_LEN, 0x08, false);
449
450 /* reg_sfd_uc_lag_lag_vid
451 * Indicates VID in case of vFIDs. Reserved for FIDs.
452 * Access: RW
453 */
454 MLXSW_ITEM32_INDEXED(reg, sfd, uc_lag_lag_vid, MLXSW_REG_SFD_BASE_LEN, 16, 12,
455 MLXSW_REG_SFD_REC_LEN, 0x0C, false);
456
457 /* reg_sfd_uc_lag_lag_id
458 * LAG Identifier - pointer into the LAG descriptor table.
459 * Access: RW
460 */
461 MLXSW_ITEM32_INDEXED(reg, sfd, uc_lag_lag_id, MLXSW_REG_SFD_BASE_LEN, 0, 10,
462 MLXSW_REG_SFD_REC_LEN, 0x0C, false);
463
464 static inline void
mlxsw_reg_sfd_uc_lag_pack(char * payload,int rec_index,enum mlxsw_reg_sfd_rec_policy policy,const char * mac,u16 fid_vid,enum mlxsw_reg_sfd_rec_action action,u16 lag_vid,u16 lag_id)465 mlxsw_reg_sfd_uc_lag_pack(char *payload, int rec_index,
466 enum mlxsw_reg_sfd_rec_policy policy,
467 const char *mac, u16 fid_vid,
468 enum mlxsw_reg_sfd_rec_action action, u16 lag_vid,
469 u16 lag_id)
470 {
471 mlxsw_reg_sfd_rec_pack(payload, rec_index,
472 MLXSW_REG_SFD_REC_TYPE_UNICAST_LAG,
473 mac, action);
474 mlxsw_reg_sfd_rec_policy_set(payload, rec_index, policy);
475 mlxsw_reg_sfd_uc_lag_sub_port_set(payload, rec_index, 0);
476 mlxsw_reg_sfd_uc_lag_fid_vid_set(payload, rec_index, fid_vid);
477 mlxsw_reg_sfd_uc_lag_lag_vid_set(payload, rec_index, lag_vid);
478 mlxsw_reg_sfd_uc_lag_lag_id_set(payload, rec_index, lag_id);
479 }
480
mlxsw_reg_sfd_uc_lag_unpack(char * payload,int rec_index,char * mac,u16 * p_vid,u16 * p_lag_id)481 static inline void mlxsw_reg_sfd_uc_lag_unpack(char *payload, int rec_index,
482 char *mac, u16 *p_vid,
483 u16 *p_lag_id)
484 {
485 mlxsw_reg_sfd_rec_mac_memcpy_from(payload, rec_index, mac);
486 *p_vid = mlxsw_reg_sfd_uc_lag_fid_vid_get(payload, rec_index);
487 *p_lag_id = mlxsw_reg_sfd_uc_lag_lag_id_get(payload, rec_index);
488 }
489
490 /* reg_sfd_mc_pgi
491 *
492 * Multicast port group index - index into the port group table.
493 * Value 0x1FFF indicates the pgi should point to the MID entry.
494 * For Spectrum this value must be set to 0x1FFF
495 * Access: RW
496 */
497 MLXSW_ITEM32_INDEXED(reg, sfd, mc_pgi, MLXSW_REG_SFD_BASE_LEN, 16, 13,
498 MLXSW_REG_SFD_REC_LEN, 0x08, false);
499
500 /* reg_sfd_mc_fid_vid
501 *
502 * Filtering ID or VLAN ID
503 * Access: Index
504 */
505 MLXSW_ITEM32_INDEXED(reg, sfd, mc_fid_vid, MLXSW_REG_SFD_BASE_LEN, 0, 16,
506 MLXSW_REG_SFD_REC_LEN, 0x08, false);
507
508 /* reg_sfd_mc_mid
509 *
510 * Multicast identifier - global identifier that represents the multicast
511 * group across all devices.
512 * Access: RW
513 */
514 MLXSW_ITEM32_INDEXED(reg, sfd, mc_mid, MLXSW_REG_SFD_BASE_LEN, 0, 16,
515 MLXSW_REG_SFD_REC_LEN, 0x0C, false);
516
517 static inline void
mlxsw_reg_sfd_mc_pack(char * payload,int rec_index,const char * mac,u16 fid_vid,enum mlxsw_reg_sfd_rec_action action,u16 mid)518 mlxsw_reg_sfd_mc_pack(char *payload, int rec_index,
519 const char *mac, u16 fid_vid,
520 enum mlxsw_reg_sfd_rec_action action, u16 mid)
521 {
522 mlxsw_reg_sfd_rec_pack(payload, rec_index,
523 MLXSW_REG_SFD_REC_TYPE_MULTICAST, mac, action);
524 mlxsw_reg_sfd_mc_pgi_set(payload, rec_index, 0x1FFF);
525 mlxsw_reg_sfd_mc_fid_vid_set(payload, rec_index, fid_vid);
526 mlxsw_reg_sfd_mc_mid_set(payload, rec_index, mid);
527 }
528
529 /* reg_sfd_uc_tunnel_uip_msb
530 * When protocol is IPv4, the most significant byte of the underlay IPv4
531 * destination IP.
532 * When protocol is IPv6, reserved.
533 * Access: RW
534 */
535 MLXSW_ITEM32_INDEXED(reg, sfd, uc_tunnel_uip_msb, MLXSW_REG_SFD_BASE_LEN, 24,
536 8, MLXSW_REG_SFD_REC_LEN, 0x08, false);
537
538 /* reg_sfd_uc_tunnel_fid
539 * Filtering ID.
540 * Access: Index
541 */
542 MLXSW_ITEM32_INDEXED(reg, sfd, uc_tunnel_fid, MLXSW_REG_SFD_BASE_LEN, 0, 16,
543 MLXSW_REG_SFD_REC_LEN, 0x08, false);
544
545 enum mlxsw_reg_sfd_uc_tunnel_protocol {
546 MLXSW_REG_SFD_UC_TUNNEL_PROTOCOL_IPV4,
547 MLXSW_REG_SFD_UC_TUNNEL_PROTOCOL_IPV6,
548 };
549
550 /* reg_sfd_uc_tunnel_protocol
551 * IP protocol.
552 * Access: RW
553 */
554 MLXSW_ITEM32_INDEXED(reg, sfd, uc_tunnel_protocol, MLXSW_REG_SFD_BASE_LEN, 27,
555 1, MLXSW_REG_SFD_REC_LEN, 0x0C, false);
556
557 /* reg_sfd_uc_tunnel_uip_lsb
558 * When protocol is IPv4, the least significant bytes of the underlay
559 * IPv4 destination IP.
560 * When protocol is IPv6, pointer to the underlay IPv6 destination IP
561 * which is configured by RIPS.
562 * Access: RW
563 */
564 MLXSW_ITEM32_INDEXED(reg, sfd, uc_tunnel_uip_lsb, MLXSW_REG_SFD_BASE_LEN, 0,
565 24, MLXSW_REG_SFD_REC_LEN, 0x0C, false);
566
567 static inline void
mlxsw_reg_sfd_uc_tunnel_pack(char * payload,int rec_index,enum mlxsw_reg_sfd_rec_policy policy,const char * mac,u16 fid,enum mlxsw_reg_sfd_rec_action action,u32 uip,enum mlxsw_reg_sfd_uc_tunnel_protocol proto)568 mlxsw_reg_sfd_uc_tunnel_pack(char *payload, int rec_index,
569 enum mlxsw_reg_sfd_rec_policy policy,
570 const char *mac, u16 fid,
571 enum mlxsw_reg_sfd_rec_action action, u32 uip,
572 enum mlxsw_reg_sfd_uc_tunnel_protocol proto)
573 {
574 mlxsw_reg_sfd_rec_pack(payload, rec_index,
575 MLXSW_REG_SFD_REC_TYPE_UNICAST_TUNNEL, mac,
576 action);
577 mlxsw_reg_sfd_rec_policy_set(payload, rec_index, policy);
578 mlxsw_reg_sfd_uc_tunnel_uip_msb_set(payload, rec_index, uip >> 24);
579 mlxsw_reg_sfd_uc_tunnel_uip_lsb_set(payload, rec_index, uip);
580 mlxsw_reg_sfd_uc_tunnel_fid_set(payload, rec_index, fid);
581 mlxsw_reg_sfd_uc_tunnel_protocol_set(payload, rec_index, proto);
582 }
583
584 enum mlxsw_reg_tunnel_port {
585 MLXSW_REG_TUNNEL_PORT_NVE,
586 MLXSW_REG_TUNNEL_PORT_VPLS,
587 MLXSW_REG_TUNNEL_PORT_FLEX_TUNNEL0,
588 MLXSW_REG_TUNNEL_PORT_FLEX_TUNNEL1,
589 };
590
591 /* SFN - Switch FDB Notification Register
592 * -------------------------------------------
593 * The switch provides notifications on newly learned FDB entries and
594 * aged out entries. The notifications can be polled by software.
595 */
596 #define MLXSW_REG_SFN_ID 0x200B
597 #define MLXSW_REG_SFN_BASE_LEN 0x10 /* base length, without records */
598 #define MLXSW_REG_SFN_REC_LEN 0x10 /* record length */
599 #define MLXSW_REG_SFN_REC_MAX_COUNT 64
600 #define MLXSW_REG_SFN_LEN (MLXSW_REG_SFN_BASE_LEN + \
601 MLXSW_REG_SFN_REC_LEN * MLXSW_REG_SFN_REC_MAX_COUNT)
602
603 MLXSW_REG_DEFINE(sfn, MLXSW_REG_SFN_ID, MLXSW_REG_SFN_LEN);
604
605 /* reg_sfn_swid
606 * Switch partition ID.
607 * Access: Index
608 */
609 MLXSW_ITEM32(reg, sfn, swid, 0x00, 24, 8);
610
611 /* reg_sfn_end
612 * Forces the current session to end.
613 * Access: OP
614 */
615 MLXSW_ITEM32(reg, sfn, end, 0x04, 20, 1);
616
617 /* reg_sfn_num_rec
618 * Request: Number of learned notifications and aged-out notification
619 * records requested.
620 * Response: Number of notification records returned (must be smaller
621 * than or equal to the value requested)
622 * Ranges 0..64
623 * Access: OP
624 */
625 MLXSW_ITEM32(reg, sfn, num_rec, 0x04, 0, 8);
626
mlxsw_reg_sfn_pack(char * payload)627 static inline void mlxsw_reg_sfn_pack(char *payload)
628 {
629 MLXSW_REG_ZERO(sfn, payload);
630 mlxsw_reg_sfn_swid_set(payload, 0);
631 mlxsw_reg_sfn_end_set(payload, 0);
632 mlxsw_reg_sfn_num_rec_set(payload, MLXSW_REG_SFN_REC_MAX_COUNT);
633 }
634
635 /* reg_sfn_rec_swid
636 * Switch partition ID.
637 * Access: RO
638 */
639 MLXSW_ITEM32_INDEXED(reg, sfn, rec_swid, MLXSW_REG_SFN_BASE_LEN, 24, 8,
640 MLXSW_REG_SFN_REC_LEN, 0x00, false);
641
642 enum mlxsw_reg_sfn_rec_type {
643 /* MAC addresses learned on a regular port. */
644 MLXSW_REG_SFN_REC_TYPE_LEARNED_MAC = 0x5,
645 /* MAC addresses learned on a LAG port. */
646 MLXSW_REG_SFN_REC_TYPE_LEARNED_MAC_LAG = 0x6,
647 /* Aged-out MAC address on a regular port. */
648 MLXSW_REG_SFN_REC_TYPE_AGED_OUT_MAC = 0x7,
649 /* Aged-out MAC address on a LAG port. */
650 MLXSW_REG_SFN_REC_TYPE_AGED_OUT_MAC_LAG = 0x8,
651 /* Learned unicast tunnel record. */
652 MLXSW_REG_SFN_REC_TYPE_LEARNED_UNICAST_TUNNEL = 0xD,
653 /* Aged-out unicast tunnel record. */
654 MLXSW_REG_SFN_REC_TYPE_AGED_OUT_UNICAST_TUNNEL = 0xE,
655 };
656
657 /* reg_sfn_rec_type
658 * Notification record type.
659 * Access: RO
660 */
661 MLXSW_ITEM32_INDEXED(reg, sfn, rec_type, MLXSW_REG_SFN_BASE_LEN, 20, 4,
662 MLXSW_REG_SFN_REC_LEN, 0x00, false);
663
664 /* reg_sfn_rec_mac
665 * MAC address.
666 * Access: RO
667 */
668 MLXSW_ITEM_BUF_INDEXED(reg, sfn, rec_mac, MLXSW_REG_SFN_BASE_LEN, 6,
669 MLXSW_REG_SFN_REC_LEN, 0x02);
670
671 /* reg_sfn_mac_sub_port
672 * VEPA channel on the local port.
673 * 0 if multichannel VEPA is not enabled.
674 * Access: RO
675 */
676 MLXSW_ITEM32_INDEXED(reg, sfn, mac_sub_port, MLXSW_REG_SFN_BASE_LEN, 16, 8,
677 MLXSW_REG_SFN_REC_LEN, 0x08, false);
678
679 /* reg_sfn_mac_fid
680 * Filtering identifier.
681 * Access: RO
682 */
683 MLXSW_ITEM32_INDEXED(reg, sfn, mac_fid, MLXSW_REG_SFN_BASE_LEN, 0, 16,
684 MLXSW_REG_SFN_REC_LEN, 0x08, false);
685
686 /* reg_sfn_mac_system_port
687 * Unique port identifier for the final destination of the packet.
688 * Access: RO
689 */
690 MLXSW_ITEM32_INDEXED(reg, sfn, mac_system_port, MLXSW_REG_SFN_BASE_LEN, 0, 16,
691 MLXSW_REG_SFN_REC_LEN, 0x0C, false);
692
mlxsw_reg_sfn_mac_unpack(char * payload,int rec_index,char * mac,u16 * p_vid,u8 * p_local_port)693 static inline void mlxsw_reg_sfn_mac_unpack(char *payload, int rec_index,
694 char *mac, u16 *p_vid,
695 u8 *p_local_port)
696 {
697 mlxsw_reg_sfn_rec_mac_memcpy_from(payload, rec_index, mac);
698 *p_vid = mlxsw_reg_sfn_mac_fid_get(payload, rec_index);
699 *p_local_port = mlxsw_reg_sfn_mac_system_port_get(payload, rec_index);
700 }
701
702 /* reg_sfn_mac_lag_lag_id
703 * LAG ID (pointer into the LAG descriptor table).
704 * Access: RO
705 */
706 MLXSW_ITEM32_INDEXED(reg, sfn, mac_lag_lag_id, MLXSW_REG_SFN_BASE_LEN, 0, 10,
707 MLXSW_REG_SFN_REC_LEN, 0x0C, false);
708
mlxsw_reg_sfn_mac_lag_unpack(char * payload,int rec_index,char * mac,u16 * p_vid,u16 * p_lag_id)709 static inline void mlxsw_reg_sfn_mac_lag_unpack(char *payload, int rec_index,
710 char *mac, u16 *p_vid,
711 u16 *p_lag_id)
712 {
713 mlxsw_reg_sfn_rec_mac_memcpy_from(payload, rec_index, mac);
714 *p_vid = mlxsw_reg_sfn_mac_fid_get(payload, rec_index);
715 *p_lag_id = mlxsw_reg_sfn_mac_lag_lag_id_get(payload, rec_index);
716 }
717
718 /* reg_sfn_uc_tunnel_uip_msb
719 * When protocol is IPv4, the most significant byte of the underlay IPv4
720 * address of the remote VTEP.
721 * When protocol is IPv6, reserved.
722 * Access: RO
723 */
724 MLXSW_ITEM32_INDEXED(reg, sfn, uc_tunnel_uip_msb, MLXSW_REG_SFN_BASE_LEN, 24,
725 8, MLXSW_REG_SFN_REC_LEN, 0x08, false);
726
727 enum mlxsw_reg_sfn_uc_tunnel_protocol {
728 MLXSW_REG_SFN_UC_TUNNEL_PROTOCOL_IPV4,
729 MLXSW_REG_SFN_UC_TUNNEL_PROTOCOL_IPV6,
730 };
731
732 /* reg_sfn_uc_tunnel_protocol
733 * IP protocol.
734 * Access: RO
735 */
736 MLXSW_ITEM32_INDEXED(reg, sfn, uc_tunnel_protocol, MLXSW_REG_SFN_BASE_LEN, 27,
737 1, MLXSW_REG_SFN_REC_LEN, 0x0C, false);
738
739 /* reg_sfn_uc_tunnel_uip_lsb
740 * When protocol is IPv4, the least significant bytes of the underlay
741 * IPv4 address of the remote VTEP.
742 * When protocol is IPv6, ipv6_id to be queried from TNIPSD.
743 * Access: RO
744 */
745 MLXSW_ITEM32_INDEXED(reg, sfn, uc_tunnel_uip_lsb, MLXSW_REG_SFN_BASE_LEN, 0,
746 24, MLXSW_REG_SFN_REC_LEN, 0x0C, false);
747
748 /* reg_sfn_uc_tunnel_port
749 * Tunnel port.
750 * Reserved on Spectrum.
751 * Access: RO
752 */
753 MLXSW_ITEM32_INDEXED(reg, sfn, tunnel_port, MLXSW_REG_SFN_BASE_LEN, 0, 4,
754 MLXSW_REG_SFN_REC_LEN, 0x10, false);
755
756 static inline void
mlxsw_reg_sfn_uc_tunnel_unpack(char * payload,int rec_index,char * mac,u16 * p_fid,u32 * p_uip,enum mlxsw_reg_sfn_uc_tunnel_protocol * p_proto)757 mlxsw_reg_sfn_uc_tunnel_unpack(char *payload, int rec_index, char *mac,
758 u16 *p_fid, u32 *p_uip,
759 enum mlxsw_reg_sfn_uc_tunnel_protocol *p_proto)
760 {
761 u32 uip_msb, uip_lsb;
762
763 mlxsw_reg_sfn_rec_mac_memcpy_from(payload, rec_index, mac);
764 *p_fid = mlxsw_reg_sfn_mac_fid_get(payload, rec_index);
765 uip_msb = mlxsw_reg_sfn_uc_tunnel_uip_msb_get(payload, rec_index);
766 uip_lsb = mlxsw_reg_sfn_uc_tunnel_uip_lsb_get(payload, rec_index);
767 *p_uip = uip_msb << 24 | uip_lsb;
768 *p_proto = mlxsw_reg_sfn_uc_tunnel_protocol_get(payload, rec_index);
769 }
770
771 /* SPMS - Switch Port MSTP/RSTP State Register
772 * -------------------------------------------
773 * Configures the spanning tree state of a physical port.
774 */
775 #define MLXSW_REG_SPMS_ID 0x200D
776 #define MLXSW_REG_SPMS_LEN 0x404
777
778 MLXSW_REG_DEFINE(spms, MLXSW_REG_SPMS_ID, MLXSW_REG_SPMS_LEN);
779
780 /* reg_spms_local_port
781 * Local port number.
782 * Access: Index
783 */
784 MLXSW_ITEM32(reg, spms, local_port, 0x00, 16, 8);
785
786 enum mlxsw_reg_spms_state {
787 MLXSW_REG_SPMS_STATE_NO_CHANGE,
788 MLXSW_REG_SPMS_STATE_DISCARDING,
789 MLXSW_REG_SPMS_STATE_LEARNING,
790 MLXSW_REG_SPMS_STATE_FORWARDING,
791 };
792
793 /* reg_spms_state
794 * Spanning tree state of each VLAN ID (VID) of the local port.
795 * 0 - Do not change spanning tree state (used only when writing).
796 * 1 - Discarding. No learning or forwarding to/from this port (default).
797 * 2 - Learning. Port is learning, but not forwarding.
798 * 3 - Forwarding. Port is learning and forwarding.
799 * Access: RW
800 */
801 MLXSW_ITEM_BIT_ARRAY(reg, spms, state, 0x04, 0x400, 2);
802
mlxsw_reg_spms_pack(char * payload,u8 local_port)803 static inline void mlxsw_reg_spms_pack(char *payload, u8 local_port)
804 {
805 MLXSW_REG_ZERO(spms, payload);
806 mlxsw_reg_spms_local_port_set(payload, local_port);
807 }
808
mlxsw_reg_spms_vid_pack(char * payload,u16 vid,enum mlxsw_reg_spms_state state)809 static inline void mlxsw_reg_spms_vid_pack(char *payload, u16 vid,
810 enum mlxsw_reg_spms_state state)
811 {
812 mlxsw_reg_spms_state_set(payload, vid, state);
813 }
814
815 /* SPVID - Switch Port VID
816 * -----------------------
817 * The switch port VID configures the default VID for a port.
818 */
819 #define MLXSW_REG_SPVID_ID 0x200E
820 #define MLXSW_REG_SPVID_LEN 0x08
821
822 MLXSW_REG_DEFINE(spvid, MLXSW_REG_SPVID_ID, MLXSW_REG_SPVID_LEN);
823
824 /* reg_spvid_tport
825 * Port is tunnel port.
826 * Reserved when SwitchX/-2 or Spectrum-1.
827 * Access: Index
828 */
829 MLXSW_ITEM32(reg, spvid, tport, 0x00, 24, 1);
830
831 /* reg_spvid_local_port
832 * When tport = 0: Local port number. Not supported for CPU port.
833 * When tport = 1: Tunnel port.
834 * Access: Index
835 */
836 MLXSW_ITEM32(reg, spvid, local_port, 0x00, 16, 8);
837
838 /* reg_spvid_sub_port
839 * Virtual port within the physical port.
840 * Should be set to 0 when virtual ports are not enabled on the port.
841 * Access: Index
842 */
843 MLXSW_ITEM32(reg, spvid, sub_port, 0x00, 8, 8);
844
845 /* reg_spvid_egr_et_set
846 * When VLAN is pushed at ingress (for untagged packets or for
847 * QinQ push mode) then the EtherType is decided at the egress port.
848 * Reserved when Spectrum-1.
849 * Access: RW
850 */
851 MLXSW_ITEM32(reg, spvid, egr_et_set, 0x04, 24, 1);
852
853 /* reg_spvid_et_vlan
854 * EtherType used for when VLAN is pushed at ingress (for untagged
855 * packets or for QinQ push mode).
856 * 0: ether_type0 - (default)
857 * 1: ether_type1
858 * 2: ether_type2 - Reserved when Spectrum-1, supported by Spectrum-2
859 * Ethertype IDs are configured by SVER.
860 * Reserved when egr_et_set = 1.
861 * Access: RW
862 */
863 MLXSW_ITEM32(reg, spvid, et_vlan, 0x04, 16, 2);
864
865 /* reg_spvid_pvid
866 * Port default VID
867 * Access: RW
868 */
869 MLXSW_ITEM32(reg, spvid, pvid, 0x04, 0, 12);
870
mlxsw_reg_spvid_pack(char * payload,u8 local_port,u16 pvid,u8 et_vlan)871 static inline void mlxsw_reg_spvid_pack(char *payload, u8 local_port, u16 pvid,
872 u8 et_vlan)
873 {
874 MLXSW_REG_ZERO(spvid, payload);
875 mlxsw_reg_spvid_local_port_set(payload, local_port);
876 mlxsw_reg_spvid_pvid_set(payload, pvid);
877 mlxsw_reg_spvid_et_vlan_set(payload, et_vlan);
878 }
879
880 /* SPVM - Switch Port VLAN Membership
881 * ----------------------------------
882 * The Switch Port VLAN Membership register configures the VLAN membership
883 * of a port in a VLAN denoted by VID. VLAN membership is managed per
884 * virtual port. The register can be used to add and remove VID(s) from a port.
885 */
886 #define MLXSW_REG_SPVM_ID 0x200F
887 #define MLXSW_REG_SPVM_BASE_LEN 0x04 /* base length, without records */
888 #define MLXSW_REG_SPVM_REC_LEN 0x04 /* record length */
889 #define MLXSW_REG_SPVM_REC_MAX_COUNT 255
890 #define MLXSW_REG_SPVM_LEN (MLXSW_REG_SPVM_BASE_LEN + \
891 MLXSW_REG_SPVM_REC_LEN * MLXSW_REG_SPVM_REC_MAX_COUNT)
892
893 MLXSW_REG_DEFINE(spvm, MLXSW_REG_SPVM_ID, MLXSW_REG_SPVM_LEN);
894
895 /* reg_spvm_pt
896 * Priority tagged. If this bit is set, packets forwarded to the port with
897 * untagged VLAN membership (u bit is set) will be tagged with priority tag
898 * (VID=0)
899 * Access: RW
900 */
901 MLXSW_ITEM32(reg, spvm, pt, 0x00, 31, 1);
902
903 /* reg_spvm_pte
904 * Priority Tagged Update Enable. On Write operations, if this bit is cleared,
905 * the pt bit will NOT be updated. To update the pt bit, pte must be set.
906 * Access: WO
907 */
908 MLXSW_ITEM32(reg, spvm, pte, 0x00, 30, 1);
909
910 /* reg_spvm_local_port
911 * Local port number.
912 * Access: Index
913 */
914 MLXSW_ITEM32(reg, spvm, local_port, 0x00, 16, 8);
915
916 /* reg_spvm_sub_port
917 * Virtual port within the physical port.
918 * Should be set to 0 when virtual ports are not enabled on the port.
919 * Access: Index
920 */
921 MLXSW_ITEM32(reg, spvm, sub_port, 0x00, 8, 8);
922
923 /* reg_spvm_num_rec
924 * Number of records to update. Each record contains: i, e, u, vid.
925 * Access: OP
926 */
927 MLXSW_ITEM32(reg, spvm, num_rec, 0x00, 0, 8);
928
929 /* reg_spvm_rec_i
930 * Ingress membership in VLAN ID.
931 * Access: Index
932 */
933 MLXSW_ITEM32_INDEXED(reg, spvm, rec_i,
934 MLXSW_REG_SPVM_BASE_LEN, 14, 1,
935 MLXSW_REG_SPVM_REC_LEN, 0, false);
936
937 /* reg_spvm_rec_e
938 * Egress membership in VLAN ID.
939 * Access: Index
940 */
941 MLXSW_ITEM32_INDEXED(reg, spvm, rec_e,
942 MLXSW_REG_SPVM_BASE_LEN, 13, 1,
943 MLXSW_REG_SPVM_REC_LEN, 0, false);
944
945 /* reg_spvm_rec_u
946 * Untagged - port is an untagged member - egress transmission uses untagged
947 * frames on VID<n>
948 * Access: Index
949 */
950 MLXSW_ITEM32_INDEXED(reg, spvm, rec_u,
951 MLXSW_REG_SPVM_BASE_LEN, 12, 1,
952 MLXSW_REG_SPVM_REC_LEN, 0, false);
953
954 /* reg_spvm_rec_vid
955 * Egress membership in VLAN ID.
956 * Access: Index
957 */
958 MLXSW_ITEM32_INDEXED(reg, spvm, rec_vid,
959 MLXSW_REG_SPVM_BASE_LEN, 0, 12,
960 MLXSW_REG_SPVM_REC_LEN, 0, false);
961
mlxsw_reg_spvm_pack(char * payload,u8 local_port,u16 vid_begin,u16 vid_end,bool is_member,bool untagged)962 static inline void mlxsw_reg_spvm_pack(char *payload, u8 local_port,
963 u16 vid_begin, u16 vid_end,
964 bool is_member, bool untagged)
965 {
966 int size = vid_end - vid_begin + 1;
967 int i;
968
969 MLXSW_REG_ZERO(spvm, payload);
970 mlxsw_reg_spvm_local_port_set(payload, local_port);
971 mlxsw_reg_spvm_num_rec_set(payload, size);
972
973 for (i = 0; i < size; i++) {
974 mlxsw_reg_spvm_rec_i_set(payload, i, is_member);
975 mlxsw_reg_spvm_rec_e_set(payload, i, is_member);
976 mlxsw_reg_spvm_rec_u_set(payload, i, untagged);
977 mlxsw_reg_spvm_rec_vid_set(payload, i, vid_begin + i);
978 }
979 }
980
981 /* SPAFT - Switch Port Acceptable Frame Types
982 * ------------------------------------------
983 * The Switch Port Acceptable Frame Types register configures the frame
984 * admittance of the port.
985 */
986 #define MLXSW_REG_SPAFT_ID 0x2010
987 #define MLXSW_REG_SPAFT_LEN 0x08
988
989 MLXSW_REG_DEFINE(spaft, MLXSW_REG_SPAFT_ID, MLXSW_REG_SPAFT_LEN);
990
991 /* reg_spaft_local_port
992 * Local port number.
993 * Access: Index
994 *
995 * Note: CPU port is not supported (all tag types are allowed).
996 */
997 MLXSW_ITEM32(reg, spaft, local_port, 0x00, 16, 8);
998
999 /* reg_spaft_sub_port
1000 * Virtual port within the physical port.
1001 * Should be set to 0 when virtual ports are not enabled on the port.
1002 * Access: RW
1003 */
1004 MLXSW_ITEM32(reg, spaft, sub_port, 0x00, 8, 8);
1005
1006 /* reg_spaft_allow_untagged
1007 * When set, untagged frames on the ingress are allowed (default).
1008 * Access: RW
1009 */
1010 MLXSW_ITEM32(reg, spaft, allow_untagged, 0x04, 31, 1);
1011
1012 /* reg_spaft_allow_prio_tagged
1013 * When set, priority tagged frames on the ingress are allowed (default).
1014 * Access: RW
1015 */
1016 MLXSW_ITEM32(reg, spaft, allow_prio_tagged, 0x04, 30, 1);
1017
1018 /* reg_spaft_allow_tagged
1019 * When set, tagged frames on the ingress are allowed (default).
1020 * Access: RW
1021 */
1022 MLXSW_ITEM32(reg, spaft, allow_tagged, 0x04, 29, 1);
1023
mlxsw_reg_spaft_pack(char * payload,u8 local_port,bool allow_untagged)1024 static inline void mlxsw_reg_spaft_pack(char *payload, u8 local_port,
1025 bool allow_untagged)
1026 {
1027 MLXSW_REG_ZERO(spaft, payload);
1028 mlxsw_reg_spaft_local_port_set(payload, local_port);
1029 mlxsw_reg_spaft_allow_untagged_set(payload, allow_untagged);
1030 mlxsw_reg_spaft_allow_prio_tagged_set(payload, allow_untagged);
1031 mlxsw_reg_spaft_allow_tagged_set(payload, true);
1032 }
1033
1034 /* SFGC - Switch Flooding Group Configuration
1035 * ------------------------------------------
1036 * The following register controls the association of flooding tables and MIDs
1037 * to packet types used for flooding.
1038 */
1039 #define MLXSW_REG_SFGC_ID 0x2011
1040 #define MLXSW_REG_SFGC_LEN 0x10
1041
1042 MLXSW_REG_DEFINE(sfgc, MLXSW_REG_SFGC_ID, MLXSW_REG_SFGC_LEN);
1043
1044 enum mlxsw_reg_sfgc_type {
1045 MLXSW_REG_SFGC_TYPE_BROADCAST,
1046 MLXSW_REG_SFGC_TYPE_UNKNOWN_UNICAST,
1047 MLXSW_REG_SFGC_TYPE_UNREGISTERED_MULTICAST_IPV4,
1048 MLXSW_REG_SFGC_TYPE_UNREGISTERED_MULTICAST_IPV6,
1049 MLXSW_REG_SFGC_TYPE_RESERVED,
1050 MLXSW_REG_SFGC_TYPE_UNREGISTERED_MULTICAST_NON_IP,
1051 MLXSW_REG_SFGC_TYPE_IPV4_LINK_LOCAL,
1052 MLXSW_REG_SFGC_TYPE_IPV6_ALL_HOST,
1053 MLXSW_REG_SFGC_TYPE_MAX,
1054 };
1055
1056 /* reg_sfgc_type
1057 * The traffic type to reach the flooding table.
1058 * Access: Index
1059 */
1060 MLXSW_ITEM32(reg, sfgc, type, 0x00, 0, 4);
1061
1062 enum mlxsw_reg_sfgc_bridge_type {
1063 MLXSW_REG_SFGC_BRIDGE_TYPE_1Q_FID = 0,
1064 MLXSW_REG_SFGC_BRIDGE_TYPE_VFID = 1,
1065 };
1066
1067 /* reg_sfgc_bridge_type
1068 * Access: Index
1069 *
1070 * Note: SwitchX-2 only supports 802.1Q mode.
1071 */
1072 MLXSW_ITEM32(reg, sfgc, bridge_type, 0x04, 24, 3);
1073
1074 enum mlxsw_flood_table_type {
1075 MLXSW_REG_SFGC_TABLE_TYPE_VID = 1,
1076 MLXSW_REG_SFGC_TABLE_TYPE_SINGLE = 2,
1077 MLXSW_REG_SFGC_TABLE_TYPE_ANY = 0,
1078 MLXSW_REG_SFGC_TABLE_TYPE_FID_OFFSET = 3,
1079 MLXSW_REG_SFGC_TABLE_TYPE_FID = 4,
1080 };
1081
1082 /* reg_sfgc_table_type
1083 * See mlxsw_flood_table_type
1084 * Access: RW
1085 *
1086 * Note: FID offset and FID types are not supported in SwitchX-2.
1087 */
1088 MLXSW_ITEM32(reg, sfgc, table_type, 0x04, 16, 3);
1089
1090 /* reg_sfgc_flood_table
1091 * Flooding table index to associate with the specific type on the specific
1092 * switch partition.
1093 * Access: RW
1094 */
1095 MLXSW_ITEM32(reg, sfgc, flood_table, 0x04, 0, 6);
1096
1097 /* reg_sfgc_mid
1098 * The multicast ID for the swid. Not supported for Spectrum
1099 * Access: RW
1100 */
1101 MLXSW_ITEM32(reg, sfgc, mid, 0x08, 0, 16);
1102
1103 /* reg_sfgc_counter_set_type
1104 * Counter Set Type for flow counters.
1105 * Access: RW
1106 */
1107 MLXSW_ITEM32(reg, sfgc, counter_set_type, 0x0C, 24, 8);
1108
1109 /* reg_sfgc_counter_index
1110 * Counter Index for flow counters.
1111 * Access: RW
1112 */
1113 MLXSW_ITEM32(reg, sfgc, counter_index, 0x0C, 0, 24);
1114
1115 static inline void
mlxsw_reg_sfgc_pack(char * payload,enum mlxsw_reg_sfgc_type type,enum mlxsw_reg_sfgc_bridge_type bridge_type,enum mlxsw_flood_table_type table_type,unsigned int flood_table)1116 mlxsw_reg_sfgc_pack(char *payload, enum mlxsw_reg_sfgc_type type,
1117 enum mlxsw_reg_sfgc_bridge_type bridge_type,
1118 enum mlxsw_flood_table_type table_type,
1119 unsigned int flood_table)
1120 {
1121 MLXSW_REG_ZERO(sfgc, payload);
1122 mlxsw_reg_sfgc_type_set(payload, type);
1123 mlxsw_reg_sfgc_bridge_type_set(payload, bridge_type);
1124 mlxsw_reg_sfgc_table_type_set(payload, table_type);
1125 mlxsw_reg_sfgc_flood_table_set(payload, flood_table);
1126 mlxsw_reg_sfgc_mid_set(payload, MLXSW_PORT_MID);
1127 }
1128
1129 /* SFTR - Switch Flooding Table Register
1130 * -------------------------------------
1131 * The switch flooding table is used for flooding packet replication. The table
1132 * defines a bit mask of ports for packet replication.
1133 */
1134 #define MLXSW_REG_SFTR_ID 0x2012
1135 #define MLXSW_REG_SFTR_LEN 0x420
1136
1137 MLXSW_REG_DEFINE(sftr, MLXSW_REG_SFTR_ID, MLXSW_REG_SFTR_LEN);
1138
1139 /* reg_sftr_swid
1140 * Switch partition ID with which to associate the port.
1141 * Access: Index
1142 */
1143 MLXSW_ITEM32(reg, sftr, swid, 0x00, 24, 8);
1144
1145 /* reg_sftr_flood_table
1146 * Flooding table index to associate with the specific type on the specific
1147 * switch partition.
1148 * Access: Index
1149 */
1150 MLXSW_ITEM32(reg, sftr, flood_table, 0x00, 16, 6);
1151
1152 /* reg_sftr_index
1153 * Index. Used as an index into the Flooding Table in case the table is
1154 * configured to use VID / FID or FID Offset.
1155 * Access: Index
1156 */
1157 MLXSW_ITEM32(reg, sftr, index, 0x00, 0, 16);
1158
1159 /* reg_sftr_table_type
1160 * See mlxsw_flood_table_type
1161 * Access: RW
1162 */
1163 MLXSW_ITEM32(reg, sftr, table_type, 0x04, 16, 3);
1164
1165 /* reg_sftr_range
1166 * Range of entries to update
1167 * Access: Index
1168 */
1169 MLXSW_ITEM32(reg, sftr, range, 0x04, 0, 16);
1170
1171 /* reg_sftr_port
1172 * Local port membership (1 bit per port).
1173 * Access: RW
1174 */
1175 MLXSW_ITEM_BIT_ARRAY(reg, sftr, port, 0x20, 0x20, 1);
1176
1177 /* reg_sftr_cpu_port_mask
1178 * CPU port mask (1 bit per port).
1179 * Access: W
1180 */
1181 MLXSW_ITEM_BIT_ARRAY(reg, sftr, port_mask, 0x220, 0x20, 1);
1182
mlxsw_reg_sftr_pack(char * payload,unsigned int flood_table,unsigned int index,enum mlxsw_flood_table_type table_type,unsigned int range,u8 port,bool set)1183 static inline void mlxsw_reg_sftr_pack(char *payload,
1184 unsigned int flood_table,
1185 unsigned int index,
1186 enum mlxsw_flood_table_type table_type,
1187 unsigned int range, u8 port, bool set)
1188 {
1189 MLXSW_REG_ZERO(sftr, payload);
1190 mlxsw_reg_sftr_swid_set(payload, 0);
1191 mlxsw_reg_sftr_flood_table_set(payload, flood_table);
1192 mlxsw_reg_sftr_index_set(payload, index);
1193 mlxsw_reg_sftr_table_type_set(payload, table_type);
1194 mlxsw_reg_sftr_range_set(payload, range);
1195 mlxsw_reg_sftr_port_set(payload, port, set);
1196 mlxsw_reg_sftr_port_mask_set(payload, port, 1);
1197 }
1198
1199 /* SFDF - Switch Filtering DB Flush
1200 * --------------------------------
1201 * The switch filtering DB flush register is used to flush the FDB.
1202 * Note that FDB notifications are flushed as well.
1203 */
1204 #define MLXSW_REG_SFDF_ID 0x2013
1205 #define MLXSW_REG_SFDF_LEN 0x14
1206
1207 MLXSW_REG_DEFINE(sfdf, MLXSW_REG_SFDF_ID, MLXSW_REG_SFDF_LEN);
1208
1209 /* reg_sfdf_swid
1210 * Switch partition ID.
1211 * Access: Index
1212 */
1213 MLXSW_ITEM32(reg, sfdf, swid, 0x00, 24, 8);
1214
1215 enum mlxsw_reg_sfdf_flush_type {
1216 MLXSW_REG_SFDF_FLUSH_PER_SWID,
1217 MLXSW_REG_SFDF_FLUSH_PER_FID,
1218 MLXSW_REG_SFDF_FLUSH_PER_PORT,
1219 MLXSW_REG_SFDF_FLUSH_PER_PORT_AND_FID,
1220 MLXSW_REG_SFDF_FLUSH_PER_LAG,
1221 MLXSW_REG_SFDF_FLUSH_PER_LAG_AND_FID,
1222 MLXSW_REG_SFDF_FLUSH_PER_NVE,
1223 MLXSW_REG_SFDF_FLUSH_PER_NVE_AND_FID,
1224 };
1225
1226 /* reg_sfdf_flush_type
1227 * Flush type.
1228 * 0 - All SWID dynamic entries are flushed.
1229 * 1 - All FID dynamic entries are flushed.
1230 * 2 - All dynamic entries pointing to port are flushed.
1231 * 3 - All FID dynamic entries pointing to port are flushed.
1232 * 4 - All dynamic entries pointing to LAG are flushed.
1233 * 5 - All FID dynamic entries pointing to LAG are flushed.
1234 * 6 - All entries of type "Unicast Tunnel" or "Multicast Tunnel" are
1235 * flushed.
1236 * 7 - All entries of type "Unicast Tunnel" or "Multicast Tunnel" are
1237 * flushed, per FID.
1238 * Access: RW
1239 */
1240 MLXSW_ITEM32(reg, sfdf, flush_type, 0x04, 28, 4);
1241
1242 /* reg_sfdf_flush_static
1243 * Static.
1244 * 0 - Flush only dynamic entries.
1245 * 1 - Flush both dynamic and static entries.
1246 * Access: RW
1247 */
1248 MLXSW_ITEM32(reg, sfdf, flush_static, 0x04, 24, 1);
1249
mlxsw_reg_sfdf_pack(char * payload,enum mlxsw_reg_sfdf_flush_type type)1250 static inline void mlxsw_reg_sfdf_pack(char *payload,
1251 enum mlxsw_reg_sfdf_flush_type type)
1252 {
1253 MLXSW_REG_ZERO(sfdf, payload);
1254 mlxsw_reg_sfdf_flush_type_set(payload, type);
1255 mlxsw_reg_sfdf_flush_static_set(payload, true);
1256 }
1257
1258 /* reg_sfdf_fid
1259 * FID to flush.
1260 * Access: RW
1261 */
1262 MLXSW_ITEM32(reg, sfdf, fid, 0x0C, 0, 16);
1263
1264 /* reg_sfdf_system_port
1265 * Port to flush.
1266 * Access: RW
1267 */
1268 MLXSW_ITEM32(reg, sfdf, system_port, 0x0C, 0, 16);
1269
1270 /* reg_sfdf_port_fid_system_port
1271 * Port to flush, pointed to by FID.
1272 * Access: RW
1273 */
1274 MLXSW_ITEM32(reg, sfdf, port_fid_system_port, 0x08, 0, 16);
1275
1276 /* reg_sfdf_lag_id
1277 * LAG ID to flush.
1278 * Access: RW
1279 */
1280 MLXSW_ITEM32(reg, sfdf, lag_id, 0x0C, 0, 10);
1281
1282 /* reg_sfdf_lag_fid_lag_id
1283 * LAG ID to flush, pointed to by FID.
1284 * Access: RW
1285 */
1286 MLXSW_ITEM32(reg, sfdf, lag_fid_lag_id, 0x08, 0, 10);
1287
1288 /* SLDR - Switch LAG Descriptor Register
1289 * -----------------------------------------
1290 * The switch LAG descriptor register is populated by LAG descriptors.
1291 * Each LAG descriptor is indexed by lag_id. The LAG ID runs from 0 to
1292 * max_lag-1.
1293 */
1294 #define MLXSW_REG_SLDR_ID 0x2014
1295 #define MLXSW_REG_SLDR_LEN 0x0C /* counting in only one port in list */
1296
1297 MLXSW_REG_DEFINE(sldr, MLXSW_REG_SLDR_ID, MLXSW_REG_SLDR_LEN);
1298
1299 enum mlxsw_reg_sldr_op {
1300 /* Indicates a creation of a new LAG-ID, lag_id must be valid */
1301 MLXSW_REG_SLDR_OP_LAG_CREATE,
1302 MLXSW_REG_SLDR_OP_LAG_DESTROY,
1303 /* Ports that appear in the list have the Distributor enabled */
1304 MLXSW_REG_SLDR_OP_LAG_ADD_PORT_LIST,
1305 /* Removes ports from the disributor list */
1306 MLXSW_REG_SLDR_OP_LAG_REMOVE_PORT_LIST,
1307 };
1308
1309 /* reg_sldr_op
1310 * Operation.
1311 * Access: RW
1312 */
1313 MLXSW_ITEM32(reg, sldr, op, 0x00, 29, 3);
1314
1315 /* reg_sldr_lag_id
1316 * LAG identifier. The lag_id is the index into the LAG descriptor table.
1317 * Access: Index
1318 */
1319 MLXSW_ITEM32(reg, sldr, lag_id, 0x00, 0, 10);
1320
mlxsw_reg_sldr_lag_create_pack(char * payload,u8 lag_id)1321 static inline void mlxsw_reg_sldr_lag_create_pack(char *payload, u8 lag_id)
1322 {
1323 MLXSW_REG_ZERO(sldr, payload);
1324 mlxsw_reg_sldr_op_set(payload, MLXSW_REG_SLDR_OP_LAG_CREATE);
1325 mlxsw_reg_sldr_lag_id_set(payload, lag_id);
1326 }
1327
mlxsw_reg_sldr_lag_destroy_pack(char * payload,u8 lag_id)1328 static inline void mlxsw_reg_sldr_lag_destroy_pack(char *payload, u8 lag_id)
1329 {
1330 MLXSW_REG_ZERO(sldr, payload);
1331 mlxsw_reg_sldr_op_set(payload, MLXSW_REG_SLDR_OP_LAG_DESTROY);
1332 mlxsw_reg_sldr_lag_id_set(payload, lag_id);
1333 }
1334
1335 /* reg_sldr_num_ports
1336 * The number of member ports of the LAG.
1337 * Reserved for Create / Destroy operations
1338 * For Add / Remove operations - indicates the number of ports in the list.
1339 * Access: RW
1340 */
1341 MLXSW_ITEM32(reg, sldr, num_ports, 0x04, 24, 8);
1342
1343 /* reg_sldr_system_port
1344 * System port.
1345 * Access: RW
1346 */
1347 MLXSW_ITEM32_INDEXED(reg, sldr, system_port, 0x08, 0, 16, 4, 0, false);
1348
mlxsw_reg_sldr_lag_add_port_pack(char * payload,u8 lag_id,u8 local_port)1349 static inline void mlxsw_reg_sldr_lag_add_port_pack(char *payload, u8 lag_id,
1350 u8 local_port)
1351 {
1352 MLXSW_REG_ZERO(sldr, payload);
1353 mlxsw_reg_sldr_op_set(payload, MLXSW_REG_SLDR_OP_LAG_ADD_PORT_LIST);
1354 mlxsw_reg_sldr_lag_id_set(payload, lag_id);
1355 mlxsw_reg_sldr_num_ports_set(payload, 1);
1356 mlxsw_reg_sldr_system_port_set(payload, 0, local_port);
1357 }
1358
mlxsw_reg_sldr_lag_remove_port_pack(char * payload,u8 lag_id,u8 local_port)1359 static inline void mlxsw_reg_sldr_lag_remove_port_pack(char *payload, u8 lag_id,
1360 u8 local_port)
1361 {
1362 MLXSW_REG_ZERO(sldr, payload);
1363 mlxsw_reg_sldr_op_set(payload, MLXSW_REG_SLDR_OP_LAG_REMOVE_PORT_LIST);
1364 mlxsw_reg_sldr_lag_id_set(payload, lag_id);
1365 mlxsw_reg_sldr_num_ports_set(payload, 1);
1366 mlxsw_reg_sldr_system_port_set(payload, 0, local_port);
1367 }
1368
1369 /* SLCR - Switch LAG Configuration 2 Register
1370 * -------------------------------------------
1371 * The Switch LAG Configuration register is used for configuring the
1372 * LAG properties of the switch.
1373 */
1374 #define MLXSW_REG_SLCR_ID 0x2015
1375 #define MLXSW_REG_SLCR_LEN 0x10
1376
1377 MLXSW_REG_DEFINE(slcr, MLXSW_REG_SLCR_ID, MLXSW_REG_SLCR_LEN);
1378
1379 enum mlxsw_reg_slcr_pp {
1380 /* Global Configuration (for all ports) */
1381 MLXSW_REG_SLCR_PP_GLOBAL,
1382 /* Per port configuration, based on local_port field */
1383 MLXSW_REG_SLCR_PP_PER_PORT,
1384 };
1385
1386 /* reg_slcr_pp
1387 * Per Port Configuration
1388 * Note: Reading at Global mode results in reading port 1 configuration.
1389 * Access: Index
1390 */
1391 MLXSW_ITEM32(reg, slcr, pp, 0x00, 24, 1);
1392
1393 /* reg_slcr_local_port
1394 * Local port number
1395 * Supported from CPU port
1396 * Not supported from router port
1397 * Reserved when pp = Global Configuration
1398 * Access: Index
1399 */
1400 MLXSW_ITEM32(reg, slcr, local_port, 0x00, 16, 8);
1401
1402 enum mlxsw_reg_slcr_type {
1403 MLXSW_REG_SLCR_TYPE_CRC, /* default */
1404 MLXSW_REG_SLCR_TYPE_XOR,
1405 MLXSW_REG_SLCR_TYPE_RANDOM,
1406 };
1407
1408 /* reg_slcr_type
1409 * Hash type
1410 * Access: RW
1411 */
1412 MLXSW_ITEM32(reg, slcr, type, 0x00, 0, 4);
1413
1414 /* Ingress port */
1415 #define MLXSW_REG_SLCR_LAG_HASH_IN_PORT BIT(0)
1416 /* SMAC - for IPv4 and IPv6 packets */
1417 #define MLXSW_REG_SLCR_LAG_HASH_SMAC_IP BIT(1)
1418 /* SMAC - for non-IP packets */
1419 #define MLXSW_REG_SLCR_LAG_HASH_SMAC_NONIP BIT(2)
1420 #define MLXSW_REG_SLCR_LAG_HASH_SMAC \
1421 (MLXSW_REG_SLCR_LAG_HASH_SMAC_IP | \
1422 MLXSW_REG_SLCR_LAG_HASH_SMAC_NONIP)
1423 /* DMAC - for IPv4 and IPv6 packets */
1424 #define MLXSW_REG_SLCR_LAG_HASH_DMAC_IP BIT(3)
1425 /* DMAC - for non-IP packets */
1426 #define MLXSW_REG_SLCR_LAG_HASH_DMAC_NONIP BIT(4)
1427 #define MLXSW_REG_SLCR_LAG_HASH_DMAC \
1428 (MLXSW_REG_SLCR_LAG_HASH_DMAC_IP | \
1429 MLXSW_REG_SLCR_LAG_HASH_DMAC_NONIP)
1430 /* Ethertype - for IPv4 and IPv6 packets */
1431 #define MLXSW_REG_SLCR_LAG_HASH_ETHERTYPE_IP BIT(5)
1432 /* Ethertype - for non-IP packets */
1433 #define MLXSW_REG_SLCR_LAG_HASH_ETHERTYPE_NONIP BIT(6)
1434 #define MLXSW_REG_SLCR_LAG_HASH_ETHERTYPE \
1435 (MLXSW_REG_SLCR_LAG_HASH_ETHERTYPE_IP | \
1436 MLXSW_REG_SLCR_LAG_HASH_ETHERTYPE_NONIP)
1437 /* VLAN ID - for IPv4 and IPv6 packets */
1438 #define MLXSW_REG_SLCR_LAG_HASH_VLANID_IP BIT(7)
1439 /* VLAN ID - for non-IP packets */
1440 #define MLXSW_REG_SLCR_LAG_HASH_VLANID_NONIP BIT(8)
1441 #define MLXSW_REG_SLCR_LAG_HASH_VLANID \
1442 (MLXSW_REG_SLCR_LAG_HASH_VLANID_IP | \
1443 MLXSW_REG_SLCR_LAG_HASH_VLANID_NONIP)
1444 /* Source IP address (can be IPv4 or IPv6) */
1445 #define MLXSW_REG_SLCR_LAG_HASH_SIP BIT(9)
1446 /* Destination IP address (can be IPv4 or IPv6) */
1447 #define MLXSW_REG_SLCR_LAG_HASH_DIP BIT(10)
1448 /* TCP/UDP source port */
1449 #define MLXSW_REG_SLCR_LAG_HASH_SPORT BIT(11)
1450 /* TCP/UDP destination port*/
1451 #define MLXSW_REG_SLCR_LAG_HASH_DPORT BIT(12)
1452 /* IPv4 Protocol/IPv6 Next Header */
1453 #define MLXSW_REG_SLCR_LAG_HASH_IPPROTO BIT(13)
1454 /* IPv6 Flow label */
1455 #define MLXSW_REG_SLCR_LAG_HASH_FLOWLABEL BIT(14)
1456 /* SID - FCoE source ID */
1457 #define MLXSW_REG_SLCR_LAG_HASH_FCOE_SID BIT(15)
1458 /* DID - FCoE destination ID */
1459 #define MLXSW_REG_SLCR_LAG_HASH_FCOE_DID BIT(16)
1460 /* OXID - FCoE originator exchange ID */
1461 #define MLXSW_REG_SLCR_LAG_HASH_FCOE_OXID BIT(17)
1462 /* Destination QP number - for RoCE packets */
1463 #define MLXSW_REG_SLCR_LAG_HASH_ROCE_DQP BIT(19)
1464
1465 /* reg_slcr_lag_hash
1466 * LAG hashing configuration. This is a bitmask, in which each set
1467 * bit includes the corresponding item in the LAG hash calculation.
1468 * The default lag_hash contains SMAC, DMAC, VLANID and
1469 * Ethertype (for all packet types).
1470 * Access: RW
1471 */
1472 MLXSW_ITEM32(reg, slcr, lag_hash, 0x04, 0, 20);
1473
1474 /* reg_slcr_seed
1475 * LAG seed value. The seed is the same for all ports.
1476 * Access: RW
1477 */
1478 MLXSW_ITEM32(reg, slcr, seed, 0x08, 0, 32);
1479
mlxsw_reg_slcr_pack(char * payload,u16 lag_hash,u32 seed)1480 static inline void mlxsw_reg_slcr_pack(char *payload, u16 lag_hash, u32 seed)
1481 {
1482 MLXSW_REG_ZERO(slcr, payload);
1483 mlxsw_reg_slcr_pp_set(payload, MLXSW_REG_SLCR_PP_GLOBAL);
1484 mlxsw_reg_slcr_type_set(payload, MLXSW_REG_SLCR_TYPE_CRC);
1485 mlxsw_reg_slcr_lag_hash_set(payload, lag_hash);
1486 mlxsw_reg_slcr_seed_set(payload, seed);
1487 }
1488
1489 /* SLCOR - Switch LAG Collector Register
1490 * -------------------------------------
1491 * The Switch LAG Collector register controls the Local Port membership
1492 * in a LAG and enablement of the collector.
1493 */
1494 #define MLXSW_REG_SLCOR_ID 0x2016
1495 #define MLXSW_REG_SLCOR_LEN 0x10
1496
1497 MLXSW_REG_DEFINE(slcor, MLXSW_REG_SLCOR_ID, MLXSW_REG_SLCOR_LEN);
1498
1499 enum mlxsw_reg_slcor_col {
1500 /* Port is added with collector disabled */
1501 MLXSW_REG_SLCOR_COL_LAG_ADD_PORT,
1502 MLXSW_REG_SLCOR_COL_LAG_COLLECTOR_ENABLED,
1503 MLXSW_REG_SLCOR_COL_LAG_COLLECTOR_DISABLED,
1504 MLXSW_REG_SLCOR_COL_LAG_REMOVE_PORT,
1505 };
1506
1507 /* reg_slcor_col
1508 * Collector configuration
1509 * Access: RW
1510 */
1511 MLXSW_ITEM32(reg, slcor, col, 0x00, 30, 2);
1512
1513 /* reg_slcor_local_port
1514 * Local port number
1515 * Not supported for CPU port
1516 * Access: Index
1517 */
1518 MLXSW_ITEM32(reg, slcor, local_port, 0x00, 16, 8);
1519
1520 /* reg_slcor_lag_id
1521 * LAG Identifier. Index into the LAG descriptor table.
1522 * Access: Index
1523 */
1524 MLXSW_ITEM32(reg, slcor, lag_id, 0x00, 0, 10);
1525
1526 /* reg_slcor_port_index
1527 * Port index in the LAG list. Only valid on Add Port to LAG col.
1528 * Valid range is from 0 to cap_max_lag_members-1
1529 * Access: RW
1530 */
1531 MLXSW_ITEM32(reg, slcor, port_index, 0x04, 0, 10);
1532
mlxsw_reg_slcor_pack(char * payload,u8 local_port,u16 lag_id,enum mlxsw_reg_slcor_col col)1533 static inline void mlxsw_reg_slcor_pack(char *payload,
1534 u8 local_port, u16 lag_id,
1535 enum mlxsw_reg_slcor_col col)
1536 {
1537 MLXSW_REG_ZERO(slcor, payload);
1538 mlxsw_reg_slcor_col_set(payload, col);
1539 mlxsw_reg_slcor_local_port_set(payload, local_port);
1540 mlxsw_reg_slcor_lag_id_set(payload, lag_id);
1541 }
1542
mlxsw_reg_slcor_port_add_pack(char * payload,u8 local_port,u16 lag_id,u8 port_index)1543 static inline void mlxsw_reg_slcor_port_add_pack(char *payload,
1544 u8 local_port, u16 lag_id,
1545 u8 port_index)
1546 {
1547 mlxsw_reg_slcor_pack(payload, local_port, lag_id,
1548 MLXSW_REG_SLCOR_COL_LAG_ADD_PORT);
1549 mlxsw_reg_slcor_port_index_set(payload, port_index);
1550 }
1551
mlxsw_reg_slcor_port_remove_pack(char * payload,u8 local_port,u16 lag_id)1552 static inline void mlxsw_reg_slcor_port_remove_pack(char *payload,
1553 u8 local_port, u16 lag_id)
1554 {
1555 mlxsw_reg_slcor_pack(payload, local_port, lag_id,
1556 MLXSW_REG_SLCOR_COL_LAG_REMOVE_PORT);
1557 }
1558
mlxsw_reg_slcor_col_enable_pack(char * payload,u8 local_port,u16 lag_id)1559 static inline void mlxsw_reg_slcor_col_enable_pack(char *payload,
1560 u8 local_port, u16 lag_id)
1561 {
1562 mlxsw_reg_slcor_pack(payload, local_port, lag_id,
1563 MLXSW_REG_SLCOR_COL_LAG_COLLECTOR_ENABLED);
1564 }
1565
mlxsw_reg_slcor_col_disable_pack(char * payload,u8 local_port,u16 lag_id)1566 static inline void mlxsw_reg_slcor_col_disable_pack(char *payload,
1567 u8 local_port, u16 lag_id)
1568 {
1569 mlxsw_reg_slcor_pack(payload, local_port, lag_id,
1570 MLXSW_REG_SLCOR_COL_LAG_COLLECTOR_ENABLED);
1571 }
1572
1573 /* SPMLR - Switch Port MAC Learning Register
1574 * -----------------------------------------
1575 * Controls the Switch MAC learning policy per port.
1576 */
1577 #define MLXSW_REG_SPMLR_ID 0x2018
1578 #define MLXSW_REG_SPMLR_LEN 0x8
1579
1580 MLXSW_REG_DEFINE(spmlr, MLXSW_REG_SPMLR_ID, MLXSW_REG_SPMLR_LEN);
1581
1582 /* reg_spmlr_local_port
1583 * Local port number.
1584 * Access: Index
1585 */
1586 MLXSW_ITEM32(reg, spmlr, local_port, 0x00, 16, 8);
1587
1588 /* reg_spmlr_sub_port
1589 * Virtual port within the physical port.
1590 * Should be set to 0 when virtual ports are not enabled on the port.
1591 * Access: Index
1592 */
1593 MLXSW_ITEM32(reg, spmlr, sub_port, 0x00, 8, 8);
1594
1595 enum mlxsw_reg_spmlr_learn_mode {
1596 MLXSW_REG_SPMLR_LEARN_MODE_DISABLE = 0,
1597 MLXSW_REG_SPMLR_LEARN_MODE_ENABLE = 2,
1598 MLXSW_REG_SPMLR_LEARN_MODE_SEC = 3,
1599 };
1600
1601 /* reg_spmlr_learn_mode
1602 * Learning mode on the port.
1603 * 0 - Learning disabled.
1604 * 2 - Learning enabled.
1605 * 3 - Security mode.
1606 *
1607 * In security mode the switch does not learn MACs on the port, but uses the
1608 * SMAC to see if it exists on another ingress port. If so, the packet is
1609 * classified as a bad packet and is discarded unless the software registers
1610 * to receive port security error packets usign HPKT.
1611 */
1612 MLXSW_ITEM32(reg, spmlr, learn_mode, 0x04, 30, 2);
1613
mlxsw_reg_spmlr_pack(char * payload,u8 local_port,enum mlxsw_reg_spmlr_learn_mode mode)1614 static inline void mlxsw_reg_spmlr_pack(char *payload, u8 local_port,
1615 enum mlxsw_reg_spmlr_learn_mode mode)
1616 {
1617 MLXSW_REG_ZERO(spmlr, payload);
1618 mlxsw_reg_spmlr_local_port_set(payload, local_port);
1619 mlxsw_reg_spmlr_sub_port_set(payload, 0);
1620 mlxsw_reg_spmlr_learn_mode_set(payload, mode);
1621 }
1622
1623 /* SVFA - Switch VID to FID Allocation Register
1624 * --------------------------------------------
1625 * Controls the VID to FID mapping and {Port, VID} to FID mapping for
1626 * virtualized ports.
1627 */
1628 #define MLXSW_REG_SVFA_ID 0x201C
1629 #define MLXSW_REG_SVFA_LEN 0x10
1630
1631 MLXSW_REG_DEFINE(svfa, MLXSW_REG_SVFA_ID, MLXSW_REG_SVFA_LEN);
1632
1633 /* reg_svfa_swid
1634 * Switch partition ID.
1635 * Access: Index
1636 */
1637 MLXSW_ITEM32(reg, svfa, swid, 0x00, 24, 8);
1638
1639 /* reg_svfa_local_port
1640 * Local port number.
1641 * Access: Index
1642 *
1643 * Note: Reserved for 802.1Q FIDs.
1644 */
1645 MLXSW_ITEM32(reg, svfa, local_port, 0x00, 16, 8);
1646
1647 enum mlxsw_reg_svfa_mt {
1648 MLXSW_REG_SVFA_MT_VID_TO_FID,
1649 MLXSW_REG_SVFA_MT_PORT_VID_TO_FID,
1650 };
1651
1652 /* reg_svfa_mapping_table
1653 * Mapping table:
1654 * 0 - VID to FID
1655 * 1 - {Port, VID} to FID
1656 * Access: Index
1657 *
1658 * Note: Reserved for SwitchX-2.
1659 */
1660 MLXSW_ITEM32(reg, svfa, mapping_table, 0x00, 8, 3);
1661
1662 /* reg_svfa_v
1663 * Valid.
1664 * Valid if set.
1665 * Access: RW
1666 *
1667 * Note: Reserved for SwitchX-2.
1668 */
1669 MLXSW_ITEM32(reg, svfa, v, 0x00, 0, 1);
1670
1671 /* reg_svfa_fid
1672 * Filtering ID.
1673 * Access: RW
1674 */
1675 MLXSW_ITEM32(reg, svfa, fid, 0x04, 16, 16);
1676
1677 /* reg_svfa_vid
1678 * VLAN ID.
1679 * Access: Index
1680 */
1681 MLXSW_ITEM32(reg, svfa, vid, 0x04, 0, 12);
1682
1683 /* reg_svfa_counter_set_type
1684 * Counter set type for flow counters.
1685 * Access: RW
1686 *
1687 * Note: Reserved for SwitchX-2.
1688 */
1689 MLXSW_ITEM32(reg, svfa, counter_set_type, 0x08, 24, 8);
1690
1691 /* reg_svfa_counter_index
1692 * Counter index for flow counters.
1693 * Access: RW
1694 *
1695 * Note: Reserved for SwitchX-2.
1696 */
1697 MLXSW_ITEM32(reg, svfa, counter_index, 0x08, 0, 24);
1698
mlxsw_reg_svfa_pack(char * payload,u8 local_port,enum mlxsw_reg_svfa_mt mt,bool valid,u16 fid,u16 vid)1699 static inline void mlxsw_reg_svfa_pack(char *payload, u8 local_port,
1700 enum mlxsw_reg_svfa_mt mt, bool valid,
1701 u16 fid, u16 vid)
1702 {
1703 MLXSW_REG_ZERO(svfa, payload);
1704 local_port = mt == MLXSW_REG_SVFA_MT_VID_TO_FID ? 0 : local_port;
1705 mlxsw_reg_svfa_swid_set(payload, 0);
1706 mlxsw_reg_svfa_local_port_set(payload, local_port);
1707 mlxsw_reg_svfa_mapping_table_set(payload, mt);
1708 mlxsw_reg_svfa_v_set(payload, valid);
1709 mlxsw_reg_svfa_fid_set(payload, fid);
1710 mlxsw_reg_svfa_vid_set(payload, vid);
1711 }
1712
1713 /* SPVTR - Switch Port VLAN Stacking Register
1714 * ------------------------------------------
1715 * The Switch Port VLAN Stacking register configures the VLAN mode of the port
1716 * to enable VLAN stacking.
1717 */
1718 #define MLXSW_REG_SPVTR_ID 0x201D
1719 #define MLXSW_REG_SPVTR_LEN 0x10
1720
1721 MLXSW_REG_DEFINE(spvtr, MLXSW_REG_SPVTR_ID, MLXSW_REG_SPVTR_LEN);
1722
1723 /* reg_spvtr_tport
1724 * Port is tunnel port.
1725 * Access: Index
1726 *
1727 * Note: Reserved when SwitchX/-2 or Spectrum-1.
1728 */
1729 MLXSW_ITEM32(reg, spvtr, tport, 0x00, 24, 1);
1730
1731 /* reg_spvtr_local_port
1732 * When tport = 0: local port number (Not supported from/to CPU).
1733 * When tport = 1: tunnel port.
1734 * Access: Index
1735 */
1736 MLXSW_ITEM32(reg, spvtr, local_port, 0x00, 16, 8);
1737
1738 /* reg_spvtr_ippe
1739 * Ingress Port Prio Mode Update Enable.
1740 * When set, the Port Prio Mode is updated with the provided ipprio_mode field.
1741 * Reserved on Get operations.
1742 * Access: OP
1743 */
1744 MLXSW_ITEM32(reg, spvtr, ippe, 0x04, 31, 1);
1745
1746 /* reg_spvtr_ipve
1747 * Ingress Port VID Mode Update Enable.
1748 * When set, the Ingress Port VID Mode is updated with the provided ipvid_mode
1749 * field.
1750 * Reserved on Get operations.
1751 * Access: OP
1752 */
1753 MLXSW_ITEM32(reg, spvtr, ipve, 0x04, 30, 1);
1754
1755 /* reg_spvtr_epve
1756 * Egress Port VID Mode Update Enable.
1757 * When set, the Egress Port VID Mode is updated with the provided epvid_mode
1758 * field.
1759 * Access: OP
1760 */
1761 MLXSW_ITEM32(reg, spvtr, epve, 0x04, 29, 1);
1762
1763 /* reg_spvtr_ipprio_mode
1764 * Ingress Port Priority Mode.
1765 * This controls the PCP and DEI of the new outer VLAN
1766 * Note: for SwitchX/-2 the DEI is not affected.
1767 * 0: use port default PCP and DEI (configured by QPDPC).
1768 * 1: use C-VLAN PCP and DEI.
1769 * Has no effect when ipvid_mode = 0.
1770 * Reserved when tport = 1.
1771 * Access: RW
1772 */
1773 MLXSW_ITEM32(reg, spvtr, ipprio_mode, 0x04, 20, 4);
1774
1775 enum mlxsw_reg_spvtr_ipvid_mode {
1776 /* IEEE Compliant PVID (default) */
1777 MLXSW_REG_SPVTR_IPVID_MODE_IEEE_COMPLIANT_PVID,
1778 /* Push VLAN (for VLAN stacking, except prio tagged packets) */
1779 MLXSW_REG_SPVTR_IPVID_MODE_PUSH_VLAN_FOR_UNTAGGED_PACKET,
1780 /* Always push VLAN (also for prio tagged packets) */
1781 MLXSW_REG_SPVTR_IPVID_MODE_ALWAYS_PUSH_VLAN,
1782 };
1783
1784 /* reg_spvtr_ipvid_mode
1785 * Ingress Port VLAN-ID Mode.
1786 * For Spectrum family, this affects the values of SPVM.i
1787 * Access: RW
1788 */
1789 MLXSW_ITEM32(reg, spvtr, ipvid_mode, 0x04, 16, 4);
1790
1791 enum mlxsw_reg_spvtr_epvid_mode {
1792 /* IEEE Compliant VLAN membership */
1793 MLXSW_REG_SPVTR_EPVID_MODE_IEEE_COMPLIANT_VLAN_MEMBERSHIP,
1794 /* Pop VLAN (for VLAN stacking) */
1795 MLXSW_REG_SPVTR_EPVID_MODE_POP_VLAN,
1796 };
1797
1798 /* reg_spvtr_epvid_mode
1799 * Egress Port VLAN-ID Mode.
1800 * For Spectrum family, this affects the values of SPVM.e,u,pt.
1801 * Access: WO
1802 */
1803 MLXSW_ITEM32(reg, spvtr, epvid_mode, 0x04, 0, 4);
1804
mlxsw_reg_spvtr_pack(char * payload,bool tport,u8 local_port,enum mlxsw_reg_spvtr_ipvid_mode ipvid_mode)1805 static inline void mlxsw_reg_spvtr_pack(char *payload, bool tport,
1806 u8 local_port,
1807 enum mlxsw_reg_spvtr_ipvid_mode ipvid_mode)
1808 {
1809 MLXSW_REG_ZERO(spvtr, payload);
1810 mlxsw_reg_spvtr_tport_set(payload, tport);
1811 mlxsw_reg_spvtr_local_port_set(payload, local_port);
1812 mlxsw_reg_spvtr_ipvid_mode_set(payload, ipvid_mode);
1813 mlxsw_reg_spvtr_ipve_set(payload, true);
1814 }
1815
1816 /* SVPE - Switch Virtual-Port Enabling Register
1817 * --------------------------------------------
1818 * Enables port virtualization.
1819 */
1820 #define MLXSW_REG_SVPE_ID 0x201E
1821 #define MLXSW_REG_SVPE_LEN 0x4
1822
1823 MLXSW_REG_DEFINE(svpe, MLXSW_REG_SVPE_ID, MLXSW_REG_SVPE_LEN);
1824
1825 /* reg_svpe_local_port
1826 * Local port number
1827 * Access: Index
1828 *
1829 * Note: CPU port is not supported (uses VLAN mode only).
1830 */
1831 MLXSW_ITEM32(reg, svpe, local_port, 0x00, 16, 8);
1832
1833 /* reg_svpe_vp_en
1834 * Virtual port enable.
1835 * 0 - Disable, VLAN mode (VID to FID).
1836 * 1 - Enable, Virtual port mode ({Port, VID} to FID).
1837 * Access: RW
1838 */
1839 MLXSW_ITEM32(reg, svpe, vp_en, 0x00, 8, 1);
1840
mlxsw_reg_svpe_pack(char * payload,u8 local_port,bool enable)1841 static inline void mlxsw_reg_svpe_pack(char *payload, u8 local_port,
1842 bool enable)
1843 {
1844 MLXSW_REG_ZERO(svpe, payload);
1845 mlxsw_reg_svpe_local_port_set(payload, local_port);
1846 mlxsw_reg_svpe_vp_en_set(payload, enable);
1847 }
1848
1849 /* SFMR - Switch FID Management Register
1850 * -------------------------------------
1851 * Creates and configures FIDs.
1852 */
1853 #define MLXSW_REG_SFMR_ID 0x201F
1854 #define MLXSW_REG_SFMR_LEN 0x18
1855
1856 MLXSW_REG_DEFINE(sfmr, MLXSW_REG_SFMR_ID, MLXSW_REG_SFMR_LEN);
1857
1858 enum mlxsw_reg_sfmr_op {
1859 MLXSW_REG_SFMR_OP_CREATE_FID,
1860 MLXSW_REG_SFMR_OP_DESTROY_FID,
1861 };
1862
1863 /* reg_sfmr_op
1864 * Operation.
1865 * 0 - Create or edit FID.
1866 * 1 - Destroy FID.
1867 * Access: WO
1868 */
1869 MLXSW_ITEM32(reg, sfmr, op, 0x00, 24, 4);
1870
1871 /* reg_sfmr_fid
1872 * Filtering ID.
1873 * Access: Index
1874 */
1875 MLXSW_ITEM32(reg, sfmr, fid, 0x00, 0, 16);
1876
1877 /* reg_sfmr_fid_offset
1878 * FID offset.
1879 * Used to point into the flooding table selected by SFGC register if
1880 * the table is of type FID-Offset. Otherwise, this field is reserved.
1881 * Access: RW
1882 */
1883 MLXSW_ITEM32(reg, sfmr, fid_offset, 0x08, 0, 16);
1884
1885 /* reg_sfmr_vtfp
1886 * Valid Tunnel Flood Pointer.
1887 * If not set, then nve_tunnel_flood_ptr is reserved and considered NULL.
1888 * Access: RW
1889 *
1890 * Note: Reserved for 802.1Q FIDs.
1891 */
1892 MLXSW_ITEM32(reg, sfmr, vtfp, 0x0C, 31, 1);
1893
1894 /* reg_sfmr_nve_tunnel_flood_ptr
1895 * Underlay Flooding and BC Pointer.
1896 * Used as a pointer to the first entry of the group based link lists of
1897 * flooding or BC entries (for NVE tunnels).
1898 * Access: RW
1899 */
1900 MLXSW_ITEM32(reg, sfmr, nve_tunnel_flood_ptr, 0x0C, 0, 24);
1901
1902 /* reg_sfmr_vv
1903 * VNI Valid.
1904 * If not set, then vni is reserved.
1905 * Access: RW
1906 *
1907 * Note: Reserved for 802.1Q FIDs.
1908 */
1909 MLXSW_ITEM32(reg, sfmr, vv, 0x10, 31, 1);
1910
1911 /* reg_sfmr_vni
1912 * Virtual Network Identifier.
1913 * Access: RW
1914 *
1915 * Note: A given VNI can only be assigned to one FID.
1916 */
1917 MLXSW_ITEM32(reg, sfmr, vni, 0x10, 0, 24);
1918
mlxsw_reg_sfmr_pack(char * payload,enum mlxsw_reg_sfmr_op op,u16 fid,u16 fid_offset)1919 static inline void mlxsw_reg_sfmr_pack(char *payload,
1920 enum mlxsw_reg_sfmr_op op, u16 fid,
1921 u16 fid_offset)
1922 {
1923 MLXSW_REG_ZERO(sfmr, payload);
1924 mlxsw_reg_sfmr_op_set(payload, op);
1925 mlxsw_reg_sfmr_fid_set(payload, fid);
1926 mlxsw_reg_sfmr_fid_offset_set(payload, fid_offset);
1927 mlxsw_reg_sfmr_vtfp_set(payload, false);
1928 mlxsw_reg_sfmr_vv_set(payload, false);
1929 }
1930
1931 /* SPVMLR - Switch Port VLAN MAC Learning Register
1932 * -----------------------------------------------
1933 * Controls the switch MAC learning policy per {Port, VID}.
1934 */
1935 #define MLXSW_REG_SPVMLR_ID 0x2020
1936 #define MLXSW_REG_SPVMLR_BASE_LEN 0x04 /* base length, without records */
1937 #define MLXSW_REG_SPVMLR_REC_LEN 0x04 /* record length */
1938 #define MLXSW_REG_SPVMLR_REC_MAX_COUNT 255
1939 #define MLXSW_REG_SPVMLR_LEN (MLXSW_REG_SPVMLR_BASE_LEN + \
1940 MLXSW_REG_SPVMLR_REC_LEN * \
1941 MLXSW_REG_SPVMLR_REC_MAX_COUNT)
1942
1943 MLXSW_REG_DEFINE(spvmlr, MLXSW_REG_SPVMLR_ID, MLXSW_REG_SPVMLR_LEN);
1944
1945 /* reg_spvmlr_local_port
1946 * Local ingress port.
1947 * Access: Index
1948 *
1949 * Note: CPU port is not supported.
1950 */
1951 MLXSW_ITEM32(reg, spvmlr, local_port, 0x00, 16, 8);
1952
1953 /* reg_spvmlr_num_rec
1954 * Number of records to update.
1955 * Access: OP
1956 */
1957 MLXSW_ITEM32(reg, spvmlr, num_rec, 0x00, 0, 8);
1958
1959 /* reg_spvmlr_rec_learn_enable
1960 * 0 - Disable learning for {Port, VID}.
1961 * 1 - Enable learning for {Port, VID}.
1962 * Access: RW
1963 */
1964 MLXSW_ITEM32_INDEXED(reg, spvmlr, rec_learn_enable, MLXSW_REG_SPVMLR_BASE_LEN,
1965 31, 1, MLXSW_REG_SPVMLR_REC_LEN, 0x00, false);
1966
1967 /* reg_spvmlr_rec_vid
1968 * VLAN ID to be added/removed from port or for querying.
1969 * Access: Index
1970 */
1971 MLXSW_ITEM32_INDEXED(reg, spvmlr, rec_vid, MLXSW_REG_SPVMLR_BASE_LEN, 0, 12,
1972 MLXSW_REG_SPVMLR_REC_LEN, 0x00, false);
1973
mlxsw_reg_spvmlr_pack(char * payload,u8 local_port,u16 vid_begin,u16 vid_end,bool learn_enable)1974 static inline void mlxsw_reg_spvmlr_pack(char *payload, u8 local_port,
1975 u16 vid_begin, u16 vid_end,
1976 bool learn_enable)
1977 {
1978 int num_rec = vid_end - vid_begin + 1;
1979 int i;
1980
1981 WARN_ON(num_rec < 1 || num_rec > MLXSW_REG_SPVMLR_REC_MAX_COUNT);
1982
1983 MLXSW_REG_ZERO(spvmlr, payload);
1984 mlxsw_reg_spvmlr_local_port_set(payload, local_port);
1985 mlxsw_reg_spvmlr_num_rec_set(payload, num_rec);
1986
1987 for (i = 0; i < num_rec; i++) {
1988 mlxsw_reg_spvmlr_rec_learn_enable_set(payload, i, learn_enable);
1989 mlxsw_reg_spvmlr_rec_vid_set(payload, i, vid_begin + i);
1990 }
1991 }
1992
1993 /* SPVC - Switch Port VLAN Classification Register
1994 * -----------------------------------------------
1995 * Configures the port to identify packets as untagged / single tagged /
1996 * double packets based on the packet EtherTypes.
1997 * Ethertype IDs are configured by SVER.
1998 */
1999 #define MLXSW_REG_SPVC_ID 0x2026
2000 #define MLXSW_REG_SPVC_LEN 0x0C
2001
2002 MLXSW_REG_DEFINE(spvc, MLXSW_REG_SPVC_ID, MLXSW_REG_SPVC_LEN);
2003
2004 /* reg_spvc_local_port
2005 * Local port.
2006 * Access: Index
2007 *
2008 * Note: applies both to Rx port and Tx port, so if a packet traverses
2009 * through Rx port i and a Tx port j then port i and port j must have the
2010 * same configuration.
2011 */
2012 MLXSW_ITEM32(reg, spvc, local_port, 0x00, 16, 8);
2013
2014 /* reg_spvc_inner_et2
2015 * Vlan Tag1 EtherType2 enable.
2016 * Packet is initially classified as double VLAN Tag if in addition to
2017 * being classified with a tag0 VLAN Tag its tag1 EtherType value is
2018 * equal to ether_type2.
2019 * 0: disable (default)
2020 * 1: enable
2021 * Access: RW
2022 */
2023 MLXSW_ITEM32(reg, spvc, inner_et2, 0x08, 17, 1);
2024
2025 /* reg_spvc_et2
2026 * Vlan Tag0 EtherType2 enable.
2027 * Packet is initially classified as VLAN Tag if its tag0 EtherType is
2028 * equal to ether_type2.
2029 * 0: disable (default)
2030 * 1: enable
2031 * Access: RW
2032 */
2033 MLXSW_ITEM32(reg, spvc, et2, 0x08, 16, 1);
2034
2035 /* reg_spvc_inner_et1
2036 * Vlan Tag1 EtherType1 enable.
2037 * Packet is initially classified as double VLAN Tag if in addition to
2038 * being classified with a tag0 VLAN Tag its tag1 EtherType value is
2039 * equal to ether_type1.
2040 * 0: disable
2041 * 1: enable (default)
2042 * Access: RW
2043 */
2044 MLXSW_ITEM32(reg, spvc, inner_et1, 0x08, 9, 1);
2045
2046 /* reg_spvc_et1
2047 * Vlan Tag0 EtherType1 enable.
2048 * Packet is initially classified as VLAN Tag if its tag0 EtherType is
2049 * equal to ether_type1.
2050 * 0: disable
2051 * 1: enable (default)
2052 * Access: RW
2053 */
2054 MLXSW_ITEM32(reg, spvc, et1, 0x08, 8, 1);
2055
2056 /* reg_inner_et0
2057 * Vlan Tag1 EtherType0 enable.
2058 * Packet is initially classified as double VLAN Tag if in addition to
2059 * being classified with a tag0 VLAN Tag its tag1 EtherType value is
2060 * equal to ether_type0.
2061 * 0: disable
2062 * 1: enable (default)
2063 * Access: RW
2064 */
2065 MLXSW_ITEM32(reg, spvc, inner_et0, 0x08, 1, 1);
2066
2067 /* reg_et0
2068 * Vlan Tag0 EtherType0 enable.
2069 * Packet is initially classified as VLAN Tag if its tag0 EtherType is
2070 * equal to ether_type0.
2071 * 0: disable
2072 * 1: enable (default)
2073 * Access: RW
2074 */
2075 MLXSW_ITEM32(reg, spvc, et0, 0x08, 0, 1);
2076
mlxsw_reg_spvc_pack(char * payload,u8 local_port,bool et1,bool et0)2077 static inline void mlxsw_reg_spvc_pack(char *payload, u8 local_port, bool et1,
2078 bool et0)
2079 {
2080 MLXSW_REG_ZERO(spvc, payload);
2081 mlxsw_reg_spvc_local_port_set(payload, local_port);
2082 /* Enable inner_et1 and inner_et0 to enable identification of double
2083 * tagged packets.
2084 */
2085 mlxsw_reg_spvc_inner_et1_set(payload, 1);
2086 mlxsw_reg_spvc_inner_et0_set(payload, 1);
2087 mlxsw_reg_spvc_et1_set(payload, et1);
2088 mlxsw_reg_spvc_et0_set(payload, et0);
2089 }
2090
2091 /* SPEVET - Switch Port Egress VLAN EtherType
2092 * ------------------------------------------
2093 * The switch port egress VLAN EtherType configures which EtherType to push at
2094 * egress for packets incoming through a local port for which 'SPVID.egr_et_set'
2095 * is set.
2096 */
2097 #define MLXSW_REG_SPEVET_ID 0x202A
2098 #define MLXSW_REG_SPEVET_LEN 0x08
2099
2100 MLXSW_REG_DEFINE(spevet, MLXSW_REG_SPEVET_ID, MLXSW_REG_SPEVET_LEN);
2101
2102 /* reg_spevet_local_port
2103 * Egress Local port number.
2104 * Not supported to CPU port.
2105 * Access: Index
2106 */
2107 MLXSW_ITEM32(reg, spevet, local_port, 0x00, 16, 8);
2108
2109 /* reg_spevet_et_vlan
2110 * Egress EtherType VLAN to push when SPVID.egr_et_set field set for the packet:
2111 * 0: ether_type0 - (default)
2112 * 1: ether_type1
2113 * 2: ether_type2
2114 * Access: RW
2115 */
2116 MLXSW_ITEM32(reg, spevet, et_vlan, 0x04, 16, 2);
2117
mlxsw_reg_spevet_pack(char * payload,u8 local_port,u8 et_vlan)2118 static inline void mlxsw_reg_spevet_pack(char *payload, u8 local_port,
2119 u8 et_vlan)
2120 {
2121 MLXSW_REG_ZERO(spevet, payload);
2122 mlxsw_reg_spevet_local_port_set(payload, local_port);
2123 mlxsw_reg_spevet_et_vlan_set(payload, et_vlan);
2124 }
2125
2126 /* CWTP - Congetion WRED ECN TClass Profile
2127 * ----------------------------------------
2128 * Configures the profiles for queues of egress port and traffic class
2129 */
2130 #define MLXSW_REG_CWTP_ID 0x2802
2131 #define MLXSW_REG_CWTP_BASE_LEN 0x28
2132 #define MLXSW_REG_CWTP_PROFILE_DATA_REC_LEN 0x08
2133 #define MLXSW_REG_CWTP_LEN 0x40
2134
2135 MLXSW_REG_DEFINE(cwtp, MLXSW_REG_CWTP_ID, MLXSW_REG_CWTP_LEN);
2136
2137 /* reg_cwtp_local_port
2138 * Local port number
2139 * Not supported for CPU port
2140 * Access: Index
2141 */
2142 MLXSW_ITEM32(reg, cwtp, local_port, 0, 16, 8);
2143
2144 /* reg_cwtp_traffic_class
2145 * Traffic Class to configure
2146 * Access: Index
2147 */
2148 MLXSW_ITEM32(reg, cwtp, traffic_class, 32, 0, 8);
2149
2150 /* reg_cwtp_profile_min
2151 * Minimum Average Queue Size of the profile in cells.
2152 * Access: RW
2153 */
2154 MLXSW_ITEM32_INDEXED(reg, cwtp, profile_min, MLXSW_REG_CWTP_BASE_LEN,
2155 0, 20, MLXSW_REG_CWTP_PROFILE_DATA_REC_LEN, 0, false);
2156
2157 /* reg_cwtp_profile_percent
2158 * Percentage of WRED and ECN marking for maximum Average Queue size
2159 * Range is 0 to 100, units of integer percentage
2160 * Access: RW
2161 */
2162 MLXSW_ITEM32_INDEXED(reg, cwtp, profile_percent, MLXSW_REG_CWTP_BASE_LEN,
2163 24, 7, MLXSW_REG_CWTP_PROFILE_DATA_REC_LEN, 4, false);
2164
2165 /* reg_cwtp_profile_max
2166 * Maximum Average Queue size of the profile in cells
2167 * Access: RW
2168 */
2169 MLXSW_ITEM32_INDEXED(reg, cwtp, profile_max, MLXSW_REG_CWTP_BASE_LEN,
2170 0, 20, MLXSW_REG_CWTP_PROFILE_DATA_REC_LEN, 4, false);
2171
2172 #define MLXSW_REG_CWTP_MIN_VALUE 64
2173 #define MLXSW_REG_CWTP_MAX_PROFILE 2
2174 #define MLXSW_REG_CWTP_DEFAULT_PROFILE 1
2175
mlxsw_reg_cwtp_pack(char * payload,u8 local_port,u8 traffic_class)2176 static inline void mlxsw_reg_cwtp_pack(char *payload, u8 local_port,
2177 u8 traffic_class)
2178 {
2179 int i;
2180
2181 MLXSW_REG_ZERO(cwtp, payload);
2182 mlxsw_reg_cwtp_local_port_set(payload, local_port);
2183 mlxsw_reg_cwtp_traffic_class_set(payload, traffic_class);
2184
2185 for (i = 0; i <= MLXSW_REG_CWTP_MAX_PROFILE; i++) {
2186 mlxsw_reg_cwtp_profile_min_set(payload, i,
2187 MLXSW_REG_CWTP_MIN_VALUE);
2188 mlxsw_reg_cwtp_profile_max_set(payload, i,
2189 MLXSW_REG_CWTP_MIN_VALUE);
2190 }
2191 }
2192
2193 #define MLXSW_REG_CWTP_PROFILE_TO_INDEX(profile) (profile - 1)
2194
2195 static inline void
mlxsw_reg_cwtp_profile_pack(char * payload,u8 profile,u32 min,u32 max,u32 probability)2196 mlxsw_reg_cwtp_profile_pack(char *payload, u8 profile, u32 min, u32 max,
2197 u32 probability)
2198 {
2199 u8 index = MLXSW_REG_CWTP_PROFILE_TO_INDEX(profile);
2200
2201 mlxsw_reg_cwtp_profile_min_set(payload, index, min);
2202 mlxsw_reg_cwtp_profile_max_set(payload, index, max);
2203 mlxsw_reg_cwtp_profile_percent_set(payload, index, probability);
2204 }
2205
2206 /* CWTPM - Congestion WRED ECN TClass and Pool Mapping
2207 * ---------------------------------------------------
2208 * The CWTPM register maps each egress port and traffic class to profile num.
2209 */
2210 #define MLXSW_REG_CWTPM_ID 0x2803
2211 #define MLXSW_REG_CWTPM_LEN 0x44
2212
2213 MLXSW_REG_DEFINE(cwtpm, MLXSW_REG_CWTPM_ID, MLXSW_REG_CWTPM_LEN);
2214
2215 /* reg_cwtpm_local_port
2216 * Local port number
2217 * Not supported for CPU port
2218 * Access: Index
2219 */
2220 MLXSW_ITEM32(reg, cwtpm, local_port, 0, 16, 8);
2221
2222 /* reg_cwtpm_traffic_class
2223 * Traffic Class to configure
2224 * Access: Index
2225 */
2226 MLXSW_ITEM32(reg, cwtpm, traffic_class, 32, 0, 8);
2227
2228 /* reg_cwtpm_ew
2229 * Control enablement of WRED for traffic class:
2230 * 0 - Disable
2231 * 1 - Enable
2232 * Access: RW
2233 */
2234 MLXSW_ITEM32(reg, cwtpm, ew, 36, 1, 1);
2235
2236 /* reg_cwtpm_ee
2237 * Control enablement of ECN for traffic class:
2238 * 0 - Disable
2239 * 1 - Enable
2240 * Access: RW
2241 */
2242 MLXSW_ITEM32(reg, cwtpm, ee, 36, 0, 1);
2243
2244 /* reg_cwtpm_tcp_g
2245 * TCP Green Profile.
2246 * Index of the profile within {port, traffic class} to use.
2247 * 0 for disabling both WRED and ECN for this type of traffic.
2248 * Access: RW
2249 */
2250 MLXSW_ITEM32(reg, cwtpm, tcp_g, 52, 0, 2);
2251
2252 /* reg_cwtpm_tcp_y
2253 * TCP Yellow Profile.
2254 * Index of the profile within {port, traffic class} to use.
2255 * 0 for disabling both WRED and ECN for this type of traffic.
2256 * Access: RW
2257 */
2258 MLXSW_ITEM32(reg, cwtpm, tcp_y, 56, 16, 2);
2259
2260 /* reg_cwtpm_tcp_r
2261 * TCP Red Profile.
2262 * Index of the profile within {port, traffic class} to use.
2263 * 0 for disabling both WRED and ECN for this type of traffic.
2264 * Access: RW
2265 */
2266 MLXSW_ITEM32(reg, cwtpm, tcp_r, 56, 0, 2);
2267
2268 /* reg_cwtpm_ntcp_g
2269 * Non-TCP Green Profile.
2270 * Index of the profile within {port, traffic class} to use.
2271 * 0 for disabling both WRED and ECN for this type of traffic.
2272 * Access: RW
2273 */
2274 MLXSW_ITEM32(reg, cwtpm, ntcp_g, 60, 0, 2);
2275
2276 /* reg_cwtpm_ntcp_y
2277 * Non-TCP Yellow Profile.
2278 * Index of the profile within {port, traffic class} to use.
2279 * 0 for disabling both WRED and ECN for this type of traffic.
2280 * Access: RW
2281 */
2282 MLXSW_ITEM32(reg, cwtpm, ntcp_y, 64, 16, 2);
2283
2284 /* reg_cwtpm_ntcp_r
2285 * Non-TCP Red Profile.
2286 * Index of the profile within {port, traffic class} to use.
2287 * 0 for disabling both WRED and ECN for this type of traffic.
2288 * Access: RW
2289 */
2290 MLXSW_ITEM32(reg, cwtpm, ntcp_r, 64, 0, 2);
2291
2292 #define MLXSW_REG_CWTPM_RESET_PROFILE 0
2293
mlxsw_reg_cwtpm_pack(char * payload,u8 local_port,u8 traffic_class,u8 profile,bool wred,bool ecn)2294 static inline void mlxsw_reg_cwtpm_pack(char *payload, u8 local_port,
2295 u8 traffic_class, u8 profile,
2296 bool wred, bool ecn)
2297 {
2298 MLXSW_REG_ZERO(cwtpm, payload);
2299 mlxsw_reg_cwtpm_local_port_set(payload, local_port);
2300 mlxsw_reg_cwtpm_traffic_class_set(payload, traffic_class);
2301 mlxsw_reg_cwtpm_ew_set(payload, wred);
2302 mlxsw_reg_cwtpm_ee_set(payload, ecn);
2303 mlxsw_reg_cwtpm_tcp_g_set(payload, profile);
2304 mlxsw_reg_cwtpm_tcp_y_set(payload, profile);
2305 mlxsw_reg_cwtpm_tcp_r_set(payload, profile);
2306 mlxsw_reg_cwtpm_ntcp_g_set(payload, profile);
2307 mlxsw_reg_cwtpm_ntcp_y_set(payload, profile);
2308 mlxsw_reg_cwtpm_ntcp_r_set(payload, profile);
2309 }
2310
2311 /* PGCR - Policy-Engine General Configuration Register
2312 * ---------------------------------------------------
2313 * This register configures general Policy-Engine settings.
2314 */
2315 #define MLXSW_REG_PGCR_ID 0x3001
2316 #define MLXSW_REG_PGCR_LEN 0x20
2317
2318 MLXSW_REG_DEFINE(pgcr, MLXSW_REG_PGCR_ID, MLXSW_REG_PGCR_LEN);
2319
2320 /* reg_pgcr_default_action_pointer_base
2321 * Default action pointer base. Each region has a default action pointer
2322 * which is equal to default_action_pointer_base + region_id.
2323 * Access: RW
2324 */
2325 MLXSW_ITEM32(reg, pgcr, default_action_pointer_base, 0x1C, 0, 24);
2326
mlxsw_reg_pgcr_pack(char * payload,u32 pointer_base)2327 static inline void mlxsw_reg_pgcr_pack(char *payload, u32 pointer_base)
2328 {
2329 MLXSW_REG_ZERO(pgcr, payload);
2330 mlxsw_reg_pgcr_default_action_pointer_base_set(payload, pointer_base);
2331 }
2332
2333 /* PPBT - Policy-Engine Port Binding Table
2334 * ---------------------------------------
2335 * This register is used for configuration of the Port Binding Table.
2336 */
2337 #define MLXSW_REG_PPBT_ID 0x3002
2338 #define MLXSW_REG_PPBT_LEN 0x14
2339
2340 MLXSW_REG_DEFINE(ppbt, MLXSW_REG_PPBT_ID, MLXSW_REG_PPBT_LEN);
2341
2342 enum mlxsw_reg_pxbt_e {
2343 MLXSW_REG_PXBT_E_IACL,
2344 MLXSW_REG_PXBT_E_EACL,
2345 };
2346
2347 /* reg_ppbt_e
2348 * Access: Index
2349 */
2350 MLXSW_ITEM32(reg, ppbt, e, 0x00, 31, 1);
2351
2352 enum mlxsw_reg_pxbt_op {
2353 MLXSW_REG_PXBT_OP_BIND,
2354 MLXSW_REG_PXBT_OP_UNBIND,
2355 };
2356
2357 /* reg_ppbt_op
2358 * Access: RW
2359 */
2360 MLXSW_ITEM32(reg, ppbt, op, 0x00, 28, 3);
2361
2362 /* reg_ppbt_local_port
2363 * Local port. Not including CPU port.
2364 * Access: Index
2365 */
2366 MLXSW_ITEM32(reg, ppbt, local_port, 0x00, 16, 8);
2367
2368 /* reg_ppbt_g
2369 * group - When set, the binding is of an ACL group. When cleared,
2370 * the binding is of an ACL.
2371 * Must be set to 1 for Spectrum.
2372 * Access: RW
2373 */
2374 MLXSW_ITEM32(reg, ppbt, g, 0x10, 31, 1);
2375
2376 /* reg_ppbt_acl_info
2377 * ACL/ACL group identifier. If the g bit is set, this field should hold
2378 * the acl_group_id, else it should hold the acl_id.
2379 * Access: RW
2380 */
2381 MLXSW_ITEM32(reg, ppbt, acl_info, 0x10, 0, 16);
2382
mlxsw_reg_ppbt_pack(char * payload,enum mlxsw_reg_pxbt_e e,enum mlxsw_reg_pxbt_op op,u8 local_port,u16 acl_info)2383 static inline void mlxsw_reg_ppbt_pack(char *payload, enum mlxsw_reg_pxbt_e e,
2384 enum mlxsw_reg_pxbt_op op,
2385 u8 local_port, u16 acl_info)
2386 {
2387 MLXSW_REG_ZERO(ppbt, payload);
2388 mlxsw_reg_ppbt_e_set(payload, e);
2389 mlxsw_reg_ppbt_op_set(payload, op);
2390 mlxsw_reg_ppbt_local_port_set(payload, local_port);
2391 mlxsw_reg_ppbt_g_set(payload, true);
2392 mlxsw_reg_ppbt_acl_info_set(payload, acl_info);
2393 }
2394
2395 /* PACL - Policy-Engine ACL Register
2396 * ---------------------------------
2397 * This register is used for configuration of the ACL.
2398 */
2399 #define MLXSW_REG_PACL_ID 0x3004
2400 #define MLXSW_REG_PACL_LEN 0x70
2401
2402 MLXSW_REG_DEFINE(pacl, MLXSW_REG_PACL_ID, MLXSW_REG_PACL_LEN);
2403
2404 /* reg_pacl_v
2405 * Valid. Setting the v bit makes the ACL valid. It should not be cleared
2406 * while the ACL is bounded to either a port, VLAN or ACL rule.
2407 * Access: RW
2408 */
2409 MLXSW_ITEM32(reg, pacl, v, 0x00, 24, 1);
2410
2411 /* reg_pacl_acl_id
2412 * An identifier representing the ACL (managed by software)
2413 * Range 0 .. cap_max_acl_regions - 1
2414 * Access: Index
2415 */
2416 MLXSW_ITEM32(reg, pacl, acl_id, 0x08, 0, 16);
2417
2418 #define MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN 16
2419
2420 /* reg_pacl_tcam_region_info
2421 * Opaque object that represents a TCAM region.
2422 * Obtained through PTAR register.
2423 * Access: RW
2424 */
2425 MLXSW_ITEM_BUF(reg, pacl, tcam_region_info, 0x30,
2426 MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN);
2427
mlxsw_reg_pacl_pack(char * payload,u16 acl_id,bool valid,const char * tcam_region_info)2428 static inline void mlxsw_reg_pacl_pack(char *payload, u16 acl_id,
2429 bool valid, const char *tcam_region_info)
2430 {
2431 MLXSW_REG_ZERO(pacl, payload);
2432 mlxsw_reg_pacl_acl_id_set(payload, acl_id);
2433 mlxsw_reg_pacl_v_set(payload, valid);
2434 mlxsw_reg_pacl_tcam_region_info_memcpy_to(payload, tcam_region_info);
2435 }
2436
2437 /* PAGT - Policy-Engine ACL Group Table
2438 * ------------------------------------
2439 * This register is used for configuration of the ACL Group Table.
2440 */
2441 #define MLXSW_REG_PAGT_ID 0x3005
2442 #define MLXSW_REG_PAGT_BASE_LEN 0x30
2443 #define MLXSW_REG_PAGT_ACL_LEN 4
2444 #define MLXSW_REG_PAGT_ACL_MAX_NUM 16
2445 #define MLXSW_REG_PAGT_LEN (MLXSW_REG_PAGT_BASE_LEN + \
2446 MLXSW_REG_PAGT_ACL_MAX_NUM * MLXSW_REG_PAGT_ACL_LEN)
2447
2448 MLXSW_REG_DEFINE(pagt, MLXSW_REG_PAGT_ID, MLXSW_REG_PAGT_LEN);
2449
2450 /* reg_pagt_size
2451 * Number of ACLs in the group.
2452 * Size 0 invalidates a group.
2453 * Range 0 .. cap_max_acl_group_size (hard coded to 16 for now)
2454 * Total number of ACLs in all groups must be lower or equal
2455 * to cap_max_acl_tot_groups
2456 * Note: a group which is binded must not be invalidated
2457 * Access: Index
2458 */
2459 MLXSW_ITEM32(reg, pagt, size, 0x00, 0, 8);
2460
2461 /* reg_pagt_acl_group_id
2462 * An identifier (numbered from 0..cap_max_acl_groups-1) representing
2463 * the ACL Group identifier (managed by software).
2464 * Access: Index
2465 */
2466 MLXSW_ITEM32(reg, pagt, acl_group_id, 0x08, 0, 16);
2467
2468 /* reg_pagt_multi
2469 * Multi-ACL
2470 * 0 - This ACL is the last ACL in the multi-ACL
2471 * 1 - This ACL is part of a multi-ACL
2472 * Access: RW
2473 */
2474 MLXSW_ITEM32_INDEXED(reg, pagt, multi, 0x30, 31, 1, 0x04, 0x00, false);
2475
2476 /* reg_pagt_acl_id
2477 * ACL identifier
2478 * Access: RW
2479 */
2480 MLXSW_ITEM32_INDEXED(reg, pagt, acl_id, 0x30, 0, 16, 0x04, 0x00, false);
2481
mlxsw_reg_pagt_pack(char * payload,u16 acl_group_id)2482 static inline void mlxsw_reg_pagt_pack(char *payload, u16 acl_group_id)
2483 {
2484 MLXSW_REG_ZERO(pagt, payload);
2485 mlxsw_reg_pagt_acl_group_id_set(payload, acl_group_id);
2486 }
2487
mlxsw_reg_pagt_acl_id_pack(char * payload,int index,u16 acl_id,bool multi)2488 static inline void mlxsw_reg_pagt_acl_id_pack(char *payload, int index,
2489 u16 acl_id, bool multi)
2490 {
2491 u8 size = mlxsw_reg_pagt_size_get(payload);
2492
2493 if (index >= size)
2494 mlxsw_reg_pagt_size_set(payload, index + 1);
2495 mlxsw_reg_pagt_multi_set(payload, index, multi);
2496 mlxsw_reg_pagt_acl_id_set(payload, index, acl_id);
2497 }
2498
2499 /* PTAR - Policy-Engine TCAM Allocation Register
2500 * ---------------------------------------------
2501 * This register is used for allocation of regions in the TCAM.
2502 * Note: Query method is not supported on this register.
2503 */
2504 #define MLXSW_REG_PTAR_ID 0x3006
2505 #define MLXSW_REG_PTAR_BASE_LEN 0x20
2506 #define MLXSW_REG_PTAR_KEY_ID_LEN 1
2507 #define MLXSW_REG_PTAR_KEY_ID_MAX_NUM 16
2508 #define MLXSW_REG_PTAR_LEN (MLXSW_REG_PTAR_BASE_LEN + \
2509 MLXSW_REG_PTAR_KEY_ID_MAX_NUM * MLXSW_REG_PTAR_KEY_ID_LEN)
2510
2511 MLXSW_REG_DEFINE(ptar, MLXSW_REG_PTAR_ID, MLXSW_REG_PTAR_LEN);
2512
2513 enum mlxsw_reg_ptar_op {
2514 /* allocate a TCAM region */
2515 MLXSW_REG_PTAR_OP_ALLOC,
2516 /* resize a TCAM region */
2517 MLXSW_REG_PTAR_OP_RESIZE,
2518 /* deallocate TCAM region */
2519 MLXSW_REG_PTAR_OP_FREE,
2520 /* test allocation */
2521 MLXSW_REG_PTAR_OP_TEST,
2522 };
2523
2524 /* reg_ptar_op
2525 * Access: OP
2526 */
2527 MLXSW_ITEM32(reg, ptar, op, 0x00, 28, 4);
2528
2529 /* reg_ptar_action_set_type
2530 * Type of action set to be used on this region.
2531 * For Spectrum and Spectrum-2, this is always type 2 - "flexible"
2532 * Access: WO
2533 */
2534 MLXSW_ITEM32(reg, ptar, action_set_type, 0x00, 16, 8);
2535
2536 enum mlxsw_reg_ptar_key_type {
2537 MLXSW_REG_PTAR_KEY_TYPE_FLEX = 0x50, /* Spetrum */
2538 MLXSW_REG_PTAR_KEY_TYPE_FLEX2 = 0x51, /* Spectrum-2 */
2539 };
2540
2541 /* reg_ptar_key_type
2542 * TCAM key type for the region.
2543 * Access: WO
2544 */
2545 MLXSW_ITEM32(reg, ptar, key_type, 0x00, 0, 8);
2546
2547 /* reg_ptar_region_size
2548 * TCAM region size. When allocating/resizing this is the requested size,
2549 * the response is the actual size. Note that actual size may be
2550 * larger than requested.
2551 * Allowed range 1 .. cap_max_rules-1
2552 * Reserved during op deallocate.
2553 * Access: WO
2554 */
2555 MLXSW_ITEM32(reg, ptar, region_size, 0x04, 0, 16);
2556
2557 /* reg_ptar_region_id
2558 * Region identifier
2559 * Range 0 .. cap_max_regions-1
2560 * Access: Index
2561 */
2562 MLXSW_ITEM32(reg, ptar, region_id, 0x08, 0, 16);
2563
2564 /* reg_ptar_tcam_region_info
2565 * Opaque object that represents the TCAM region.
2566 * Returned when allocating a region.
2567 * Provided by software for ACL generation and region deallocation and resize.
2568 * Access: RW
2569 */
2570 MLXSW_ITEM_BUF(reg, ptar, tcam_region_info, 0x10,
2571 MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN);
2572
2573 /* reg_ptar_flexible_key_id
2574 * Identifier of the Flexible Key.
2575 * Only valid if key_type == "FLEX_KEY"
2576 * The key size will be rounded up to one of the following values:
2577 * 9B, 18B, 36B, 54B.
2578 * This field is reserved for in resize operation.
2579 * Access: WO
2580 */
2581 MLXSW_ITEM8_INDEXED(reg, ptar, flexible_key_id, 0x20, 0, 8,
2582 MLXSW_REG_PTAR_KEY_ID_LEN, 0x00, false);
2583
mlxsw_reg_ptar_pack(char * payload,enum mlxsw_reg_ptar_op op,enum mlxsw_reg_ptar_key_type key_type,u16 region_size,u16 region_id,const char * tcam_region_info)2584 static inline void mlxsw_reg_ptar_pack(char *payload, enum mlxsw_reg_ptar_op op,
2585 enum mlxsw_reg_ptar_key_type key_type,
2586 u16 region_size, u16 region_id,
2587 const char *tcam_region_info)
2588 {
2589 MLXSW_REG_ZERO(ptar, payload);
2590 mlxsw_reg_ptar_op_set(payload, op);
2591 mlxsw_reg_ptar_action_set_type_set(payload, 2); /* "flexible" */
2592 mlxsw_reg_ptar_key_type_set(payload, key_type);
2593 mlxsw_reg_ptar_region_size_set(payload, region_size);
2594 mlxsw_reg_ptar_region_id_set(payload, region_id);
2595 mlxsw_reg_ptar_tcam_region_info_memcpy_to(payload, tcam_region_info);
2596 }
2597
mlxsw_reg_ptar_key_id_pack(char * payload,int index,u16 key_id)2598 static inline void mlxsw_reg_ptar_key_id_pack(char *payload, int index,
2599 u16 key_id)
2600 {
2601 mlxsw_reg_ptar_flexible_key_id_set(payload, index, key_id);
2602 }
2603
mlxsw_reg_ptar_unpack(char * payload,char * tcam_region_info)2604 static inline void mlxsw_reg_ptar_unpack(char *payload, char *tcam_region_info)
2605 {
2606 mlxsw_reg_ptar_tcam_region_info_memcpy_from(payload, tcam_region_info);
2607 }
2608
2609 /* PPBS - Policy-Engine Policy Based Switching Register
2610 * ----------------------------------------------------
2611 * This register retrieves and sets Policy Based Switching Table entries.
2612 */
2613 #define MLXSW_REG_PPBS_ID 0x300C
2614 #define MLXSW_REG_PPBS_LEN 0x14
2615
2616 MLXSW_REG_DEFINE(ppbs, MLXSW_REG_PPBS_ID, MLXSW_REG_PPBS_LEN);
2617
2618 /* reg_ppbs_pbs_ptr
2619 * Index into the PBS table.
2620 * For Spectrum, the index points to the KVD Linear.
2621 * Access: Index
2622 */
2623 MLXSW_ITEM32(reg, ppbs, pbs_ptr, 0x08, 0, 24);
2624
2625 /* reg_ppbs_system_port
2626 * Unique port identifier for the final destination of the packet.
2627 * Access: RW
2628 */
2629 MLXSW_ITEM32(reg, ppbs, system_port, 0x10, 0, 16);
2630
mlxsw_reg_ppbs_pack(char * payload,u32 pbs_ptr,u16 system_port)2631 static inline void mlxsw_reg_ppbs_pack(char *payload, u32 pbs_ptr,
2632 u16 system_port)
2633 {
2634 MLXSW_REG_ZERO(ppbs, payload);
2635 mlxsw_reg_ppbs_pbs_ptr_set(payload, pbs_ptr);
2636 mlxsw_reg_ppbs_system_port_set(payload, system_port);
2637 }
2638
2639 /* PRCR - Policy-Engine Rules Copy Register
2640 * ----------------------------------------
2641 * This register is used for accessing rules within a TCAM region.
2642 */
2643 #define MLXSW_REG_PRCR_ID 0x300D
2644 #define MLXSW_REG_PRCR_LEN 0x40
2645
2646 MLXSW_REG_DEFINE(prcr, MLXSW_REG_PRCR_ID, MLXSW_REG_PRCR_LEN);
2647
2648 enum mlxsw_reg_prcr_op {
2649 /* Move rules. Moves the rules from "tcam_region_info" starting
2650 * at offset "offset" to "dest_tcam_region_info"
2651 * at offset "dest_offset."
2652 */
2653 MLXSW_REG_PRCR_OP_MOVE,
2654 /* Copy rules. Copies the rules from "tcam_region_info" starting
2655 * at offset "offset" to "dest_tcam_region_info"
2656 * at offset "dest_offset."
2657 */
2658 MLXSW_REG_PRCR_OP_COPY,
2659 };
2660
2661 /* reg_prcr_op
2662 * Access: OP
2663 */
2664 MLXSW_ITEM32(reg, prcr, op, 0x00, 28, 4);
2665
2666 /* reg_prcr_offset
2667 * Offset within the source region to copy/move from.
2668 * Access: Index
2669 */
2670 MLXSW_ITEM32(reg, prcr, offset, 0x00, 0, 16);
2671
2672 /* reg_prcr_size
2673 * The number of rules to copy/move.
2674 * Access: WO
2675 */
2676 MLXSW_ITEM32(reg, prcr, size, 0x04, 0, 16);
2677
2678 /* reg_prcr_tcam_region_info
2679 * Opaque object that represents the source TCAM region.
2680 * Access: Index
2681 */
2682 MLXSW_ITEM_BUF(reg, prcr, tcam_region_info, 0x10,
2683 MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN);
2684
2685 /* reg_prcr_dest_offset
2686 * Offset within the source region to copy/move to.
2687 * Access: Index
2688 */
2689 MLXSW_ITEM32(reg, prcr, dest_offset, 0x20, 0, 16);
2690
2691 /* reg_prcr_dest_tcam_region_info
2692 * Opaque object that represents the destination TCAM region.
2693 * Access: Index
2694 */
2695 MLXSW_ITEM_BUF(reg, prcr, dest_tcam_region_info, 0x30,
2696 MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN);
2697
mlxsw_reg_prcr_pack(char * payload,enum mlxsw_reg_prcr_op op,const char * src_tcam_region_info,u16 src_offset,const char * dest_tcam_region_info,u16 dest_offset,u16 size)2698 static inline void mlxsw_reg_prcr_pack(char *payload, enum mlxsw_reg_prcr_op op,
2699 const char *src_tcam_region_info,
2700 u16 src_offset,
2701 const char *dest_tcam_region_info,
2702 u16 dest_offset, u16 size)
2703 {
2704 MLXSW_REG_ZERO(prcr, payload);
2705 mlxsw_reg_prcr_op_set(payload, op);
2706 mlxsw_reg_prcr_offset_set(payload, src_offset);
2707 mlxsw_reg_prcr_size_set(payload, size);
2708 mlxsw_reg_prcr_tcam_region_info_memcpy_to(payload,
2709 src_tcam_region_info);
2710 mlxsw_reg_prcr_dest_offset_set(payload, dest_offset);
2711 mlxsw_reg_prcr_dest_tcam_region_info_memcpy_to(payload,
2712 dest_tcam_region_info);
2713 }
2714
2715 /* PEFA - Policy-Engine Extended Flexible Action Register
2716 * ------------------------------------------------------
2717 * This register is used for accessing an extended flexible action entry
2718 * in the central KVD Linear Database.
2719 */
2720 #define MLXSW_REG_PEFA_ID 0x300F
2721 #define MLXSW_REG_PEFA_LEN 0xB0
2722
2723 MLXSW_REG_DEFINE(pefa, MLXSW_REG_PEFA_ID, MLXSW_REG_PEFA_LEN);
2724
2725 /* reg_pefa_index
2726 * Index in the KVD Linear Centralized Database.
2727 * Access: Index
2728 */
2729 MLXSW_ITEM32(reg, pefa, index, 0x00, 0, 24);
2730
2731 /* reg_pefa_a
2732 * Index in the KVD Linear Centralized Database.
2733 * Activity
2734 * For a new entry: set if ca=0, clear if ca=1
2735 * Set if a packet lookup has hit on the specific entry
2736 * Access: RO
2737 */
2738 MLXSW_ITEM32(reg, pefa, a, 0x04, 29, 1);
2739
2740 /* reg_pefa_ca
2741 * Clear activity
2742 * When write: activity is according to this field
2743 * When read: after reading the activity is cleared according to ca
2744 * Access: OP
2745 */
2746 MLXSW_ITEM32(reg, pefa, ca, 0x04, 24, 1);
2747
2748 #define MLXSW_REG_FLEX_ACTION_SET_LEN 0xA8
2749
2750 /* reg_pefa_flex_action_set
2751 * Action-set to perform when rule is matched.
2752 * Must be zero padded if action set is shorter.
2753 * Access: RW
2754 */
2755 MLXSW_ITEM_BUF(reg, pefa, flex_action_set, 0x08, MLXSW_REG_FLEX_ACTION_SET_LEN);
2756
mlxsw_reg_pefa_pack(char * payload,u32 index,bool ca,const char * flex_action_set)2757 static inline void mlxsw_reg_pefa_pack(char *payload, u32 index, bool ca,
2758 const char *flex_action_set)
2759 {
2760 MLXSW_REG_ZERO(pefa, payload);
2761 mlxsw_reg_pefa_index_set(payload, index);
2762 mlxsw_reg_pefa_ca_set(payload, ca);
2763 if (flex_action_set)
2764 mlxsw_reg_pefa_flex_action_set_memcpy_to(payload,
2765 flex_action_set);
2766 }
2767
mlxsw_reg_pefa_unpack(char * payload,bool * p_a)2768 static inline void mlxsw_reg_pefa_unpack(char *payload, bool *p_a)
2769 {
2770 *p_a = mlxsw_reg_pefa_a_get(payload);
2771 }
2772
2773 /* PEMRBT - Policy-Engine Multicast Router Binding Table Register
2774 * --------------------------------------------------------------
2775 * This register is used for binding Multicast router to an ACL group
2776 * that serves the MC router.
2777 * This register is not supported by SwitchX/-2 and Spectrum.
2778 */
2779 #define MLXSW_REG_PEMRBT_ID 0x3014
2780 #define MLXSW_REG_PEMRBT_LEN 0x14
2781
2782 MLXSW_REG_DEFINE(pemrbt, MLXSW_REG_PEMRBT_ID, MLXSW_REG_PEMRBT_LEN);
2783
2784 enum mlxsw_reg_pemrbt_protocol {
2785 MLXSW_REG_PEMRBT_PROTO_IPV4,
2786 MLXSW_REG_PEMRBT_PROTO_IPV6,
2787 };
2788
2789 /* reg_pemrbt_protocol
2790 * Access: Index
2791 */
2792 MLXSW_ITEM32(reg, pemrbt, protocol, 0x00, 0, 1);
2793
2794 /* reg_pemrbt_group_id
2795 * ACL group identifier.
2796 * Range 0..cap_max_acl_groups-1
2797 * Access: RW
2798 */
2799 MLXSW_ITEM32(reg, pemrbt, group_id, 0x10, 0, 16);
2800
2801 static inline void
mlxsw_reg_pemrbt_pack(char * payload,enum mlxsw_reg_pemrbt_protocol protocol,u16 group_id)2802 mlxsw_reg_pemrbt_pack(char *payload, enum mlxsw_reg_pemrbt_protocol protocol,
2803 u16 group_id)
2804 {
2805 MLXSW_REG_ZERO(pemrbt, payload);
2806 mlxsw_reg_pemrbt_protocol_set(payload, protocol);
2807 mlxsw_reg_pemrbt_group_id_set(payload, group_id);
2808 }
2809
2810 /* PTCE-V2 - Policy-Engine TCAM Entry Register Version 2
2811 * -----------------------------------------------------
2812 * This register is used for accessing rules within a TCAM region.
2813 * It is a new version of PTCE in order to support wider key,
2814 * mask and action within a TCAM region. This register is not supported
2815 * by SwitchX and SwitchX-2.
2816 */
2817 #define MLXSW_REG_PTCE2_ID 0x3017
2818 #define MLXSW_REG_PTCE2_LEN 0x1D8
2819
2820 MLXSW_REG_DEFINE(ptce2, MLXSW_REG_PTCE2_ID, MLXSW_REG_PTCE2_LEN);
2821
2822 /* reg_ptce2_v
2823 * Valid.
2824 * Access: RW
2825 */
2826 MLXSW_ITEM32(reg, ptce2, v, 0x00, 31, 1);
2827
2828 /* reg_ptce2_a
2829 * Activity. Set if a packet lookup has hit on the specific entry.
2830 * To clear the "a" bit, use "clear activity" op or "clear on read" op.
2831 * Access: RO
2832 */
2833 MLXSW_ITEM32(reg, ptce2, a, 0x00, 30, 1);
2834
2835 enum mlxsw_reg_ptce2_op {
2836 /* Read operation. */
2837 MLXSW_REG_PTCE2_OP_QUERY_READ = 0,
2838 /* clear on read operation. Used to read entry
2839 * and clear Activity bit.
2840 */
2841 MLXSW_REG_PTCE2_OP_QUERY_CLEAR_ON_READ = 1,
2842 /* Write operation. Used to write a new entry to the table.
2843 * All R/W fields are relevant for new entry. Activity bit is set
2844 * for new entries - Note write with v = 0 will delete the entry.
2845 */
2846 MLXSW_REG_PTCE2_OP_WRITE_WRITE = 0,
2847 /* Update action. Only action set will be updated. */
2848 MLXSW_REG_PTCE2_OP_WRITE_UPDATE = 1,
2849 /* Clear activity. A bit is cleared for the entry. */
2850 MLXSW_REG_PTCE2_OP_WRITE_CLEAR_ACTIVITY = 2,
2851 };
2852
2853 /* reg_ptce2_op
2854 * Access: OP
2855 */
2856 MLXSW_ITEM32(reg, ptce2, op, 0x00, 20, 3);
2857
2858 /* reg_ptce2_offset
2859 * Access: Index
2860 */
2861 MLXSW_ITEM32(reg, ptce2, offset, 0x00, 0, 16);
2862
2863 /* reg_ptce2_priority
2864 * Priority of the rule, higher values win. The range is 1..cap_kvd_size-1.
2865 * Note: priority does not have to be unique per rule.
2866 * Within a region, higher priority should have lower offset (no limitation
2867 * between regions in a multi-region).
2868 * Access: RW
2869 */
2870 MLXSW_ITEM32(reg, ptce2, priority, 0x04, 0, 24);
2871
2872 /* reg_ptce2_tcam_region_info
2873 * Opaque object that represents the TCAM region.
2874 * Access: Index
2875 */
2876 MLXSW_ITEM_BUF(reg, ptce2, tcam_region_info, 0x10,
2877 MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN);
2878
2879 #define MLXSW_REG_PTCEX_FLEX_KEY_BLOCKS_LEN 96
2880
2881 /* reg_ptce2_flex_key_blocks
2882 * ACL Key.
2883 * Access: RW
2884 */
2885 MLXSW_ITEM_BUF(reg, ptce2, flex_key_blocks, 0x20,
2886 MLXSW_REG_PTCEX_FLEX_KEY_BLOCKS_LEN);
2887
2888 /* reg_ptce2_mask
2889 * mask- in the same size as key. A bit that is set directs the TCAM
2890 * to compare the corresponding bit in key. A bit that is clear directs
2891 * the TCAM to ignore the corresponding bit in key.
2892 * Access: RW
2893 */
2894 MLXSW_ITEM_BUF(reg, ptce2, mask, 0x80,
2895 MLXSW_REG_PTCEX_FLEX_KEY_BLOCKS_LEN);
2896
2897 /* reg_ptce2_flex_action_set
2898 * ACL action set.
2899 * Access: RW
2900 */
2901 MLXSW_ITEM_BUF(reg, ptce2, flex_action_set, 0xE0,
2902 MLXSW_REG_FLEX_ACTION_SET_LEN);
2903
mlxsw_reg_ptce2_pack(char * payload,bool valid,enum mlxsw_reg_ptce2_op op,const char * tcam_region_info,u16 offset,u32 priority)2904 static inline void mlxsw_reg_ptce2_pack(char *payload, bool valid,
2905 enum mlxsw_reg_ptce2_op op,
2906 const char *tcam_region_info,
2907 u16 offset, u32 priority)
2908 {
2909 MLXSW_REG_ZERO(ptce2, payload);
2910 mlxsw_reg_ptce2_v_set(payload, valid);
2911 mlxsw_reg_ptce2_op_set(payload, op);
2912 mlxsw_reg_ptce2_offset_set(payload, offset);
2913 mlxsw_reg_ptce2_priority_set(payload, priority);
2914 mlxsw_reg_ptce2_tcam_region_info_memcpy_to(payload, tcam_region_info);
2915 }
2916
2917 /* PERPT - Policy-Engine ERP Table Register
2918 * ----------------------------------------
2919 * This register adds and removes eRPs from the eRP table.
2920 */
2921 #define MLXSW_REG_PERPT_ID 0x3021
2922 #define MLXSW_REG_PERPT_LEN 0x80
2923
2924 MLXSW_REG_DEFINE(perpt, MLXSW_REG_PERPT_ID, MLXSW_REG_PERPT_LEN);
2925
2926 /* reg_perpt_erpt_bank
2927 * eRP table bank.
2928 * Range 0 .. cap_max_erp_table_banks - 1
2929 * Access: Index
2930 */
2931 MLXSW_ITEM32(reg, perpt, erpt_bank, 0x00, 16, 4);
2932
2933 /* reg_perpt_erpt_index
2934 * Index to eRP table within the eRP bank.
2935 * Range is 0 .. cap_max_erp_table_bank_size - 1
2936 * Access: Index
2937 */
2938 MLXSW_ITEM32(reg, perpt, erpt_index, 0x00, 0, 8);
2939
2940 enum mlxsw_reg_perpt_key_size {
2941 MLXSW_REG_PERPT_KEY_SIZE_2KB,
2942 MLXSW_REG_PERPT_KEY_SIZE_4KB,
2943 MLXSW_REG_PERPT_KEY_SIZE_8KB,
2944 MLXSW_REG_PERPT_KEY_SIZE_12KB,
2945 };
2946
2947 /* reg_perpt_key_size
2948 * Access: OP
2949 */
2950 MLXSW_ITEM32(reg, perpt, key_size, 0x04, 0, 4);
2951
2952 /* reg_perpt_bf_bypass
2953 * 0 - The eRP is used only if bloom filter state is set for the given
2954 * rule.
2955 * 1 - The eRP is used regardless of bloom filter state.
2956 * The bypass is an OR condition of region_id or eRP. See PERCR.bf_bypass
2957 * Access: RW
2958 */
2959 MLXSW_ITEM32(reg, perpt, bf_bypass, 0x08, 8, 1);
2960
2961 /* reg_perpt_erp_id
2962 * eRP ID for use by the rules.
2963 * Access: RW
2964 */
2965 MLXSW_ITEM32(reg, perpt, erp_id, 0x08, 0, 4);
2966
2967 /* reg_perpt_erpt_base_bank
2968 * Base eRP table bank, points to head of erp_vector
2969 * Range is 0 .. cap_max_erp_table_banks - 1
2970 * Access: OP
2971 */
2972 MLXSW_ITEM32(reg, perpt, erpt_base_bank, 0x0C, 16, 4);
2973
2974 /* reg_perpt_erpt_base_index
2975 * Base index to eRP table within the eRP bank
2976 * Range is 0 .. cap_max_erp_table_bank_size - 1
2977 * Access: OP
2978 */
2979 MLXSW_ITEM32(reg, perpt, erpt_base_index, 0x0C, 0, 8);
2980
2981 /* reg_perpt_erp_index_in_vector
2982 * eRP index in the vector.
2983 * Access: OP
2984 */
2985 MLXSW_ITEM32(reg, perpt, erp_index_in_vector, 0x10, 0, 4);
2986
2987 /* reg_perpt_erp_vector
2988 * eRP vector.
2989 * Access: OP
2990 */
2991 MLXSW_ITEM_BIT_ARRAY(reg, perpt, erp_vector, 0x14, 4, 1);
2992
2993 /* reg_perpt_mask
2994 * Mask
2995 * 0 - A-TCAM will ignore the bit in key
2996 * 1 - A-TCAM will compare the bit in key
2997 * Access: RW
2998 */
2999 MLXSW_ITEM_BUF(reg, perpt, mask, 0x20, MLXSW_REG_PTCEX_FLEX_KEY_BLOCKS_LEN);
3000
mlxsw_reg_perpt_erp_vector_pack(char * payload,unsigned long * erp_vector,unsigned long size)3001 static inline void mlxsw_reg_perpt_erp_vector_pack(char *payload,
3002 unsigned long *erp_vector,
3003 unsigned long size)
3004 {
3005 unsigned long bit;
3006
3007 for_each_set_bit(bit, erp_vector, size)
3008 mlxsw_reg_perpt_erp_vector_set(payload, bit, true);
3009 }
3010
3011 static inline void
mlxsw_reg_perpt_pack(char * payload,u8 erpt_bank,u8 erpt_index,enum mlxsw_reg_perpt_key_size key_size,u8 erp_id,u8 erpt_base_bank,u8 erpt_base_index,u8 erp_index,char * mask)3012 mlxsw_reg_perpt_pack(char *payload, u8 erpt_bank, u8 erpt_index,
3013 enum mlxsw_reg_perpt_key_size key_size, u8 erp_id,
3014 u8 erpt_base_bank, u8 erpt_base_index, u8 erp_index,
3015 char *mask)
3016 {
3017 MLXSW_REG_ZERO(perpt, payload);
3018 mlxsw_reg_perpt_erpt_bank_set(payload, erpt_bank);
3019 mlxsw_reg_perpt_erpt_index_set(payload, erpt_index);
3020 mlxsw_reg_perpt_key_size_set(payload, key_size);
3021 mlxsw_reg_perpt_bf_bypass_set(payload, false);
3022 mlxsw_reg_perpt_erp_id_set(payload, erp_id);
3023 mlxsw_reg_perpt_erpt_base_bank_set(payload, erpt_base_bank);
3024 mlxsw_reg_perpt_erpt_base_index_set(payload, erpt_base_index);
3025 mlxsw_reg_perpt_erp_index_in_vector_set(payload, erp_index);
3026 mlxsw_reg_perpt_mask_memcpy_to(payload, mask);
3027 }
3028
3029 /* PERAR - Policy-Engine Region Association Register
3030 * -------------------------------------------------
3031 * This register associates a hw region for region_id's. Changing on the fly
3032 * is supported by the device.
3033 */
3034 #define MLXSW_REG_PERAR_ID 0x3026
3035 #define MLXSW_REG_PERAR_LEN 0x08
3036
3037 MLXSW_REG_DEFINE(perar, MLXSW_REG_PERAR_ID, MLXSW_REG_PERAR_LEN);
3038
3039 /* reg_perar_region_id
3040 * Region identifier
3041 * Range 0 .. cap_max_regions-1
3042 * Access: Index
3043 */
3044 MLXSW_ITEM32(reg, perar, region_id, 0x00, 0, 16);
3045
3046 static inline unsigned int
mlxsw_reg_perar_hw_regions_needed(unsigned int block_num)3047 mlxsw_reg_perar_hw_regions_needed(unsigned int block_num)
3048 {
3049 return DIV_ROUND_UP(block_num, 4);
3050 }
3051
3052 /* reg_perar_hw_region
3053 * HW Region
3054 * Range 0 .. cap_max_regions-1
3055 * Default: hw_region = region_id
3056 * For a 8 key block region, 2 consecutive regions are used
3057 * For a 12 key block region, 3 consecutive regions are used
3058 * Access: RW
3059 */
3060 MLXSW_ITEM32(reg, perar, hw_region, 0x04, 0, 16);
3061
mlxsw_reg_perar_pack(char * payload,u16 region_id,u16 hw_region)3062 static inline void mlxsw_reg_perar_pack(char *payload, u16 region_id,
3063 u16 hw_region)
3064 {
3065 MLXSW_REG_ZERO(perar, payload);
3066 mlxsw_reg_perar_region_id_set(payload, region_id);
3067 mlxsw_reg_perar_hw_region_set(payload, hw_region);
3068 }
3069
3070 /* PTCE-V3 - Policy-Engine TCAM Entry Register Version 3
3071 * -----------------------------------------------------
3072 * This register is a new version of PTCE-V2 in order to support the
3073 * A-TCAM. This register is not supported by SwitchX/-2 and Spectrum.
3074 */
3075 #define MLXSW_REG_PTCE3_ID 0x3027
3076 #define MLXSW_REG_PTCE3_LEN 0xF0
3077
3078 MLXSW_REG_DEFINE(ptce3, MLXSW_REG_PTCE3_ID, MLXSW_REG_PTCE3_LEN);
3079
3080 /* reg_ptce3_v
3081 * Valid.
3082 * Access: RW
3083 */
3084 MLXSW_ITEM32(reg, ptce3, v, 0x00, 31, 1);
3085
3086 enum mlxsw_reg_ptce3_op {
3087 /* Write operation. Used to write a new entry to the table.
3088 * All R/W fields are relevant for new entry. Activity bit is set
3089 * for new entries. Write with v = 0 will delete the entry. Must
3090 * not be used if an entry exists.
3091 */
3092 MLXSW_REG_PTCE3_OP_WRITE_WRITE = 0,
3093 /* Update operation */
3094 MLXSW_REG_PTCE3_OP_WRITE_UPDATE = 1,
3095 /* Read operation */
3096 MLXSW_REG_PTCE3_OP_QUERY_READ = 0,
3097 };
3098
3099 /* reg_ptce3_op
3100 * Access: OP
3101 */
3102 MLXSW_ITEM32(reg, ptce3, op, 0x00, 20, 3);
3103
3104 /* reg_ptce3_priority
3105 * Priority of the rule. Higher values win.
3106 * For Spectrum-2 range is 1..cap_kvd_size - 1
3107 * Note: Priority does not have to be unique per rule.
3108 * Access: RW
3109 */
3110 MLXSW_ITEM32(reg, ptce3, priority, 0x04, 0, 24);
3111
3112 /* reg_ptce3_tcam_region_info
3113 * Opaque object that represents the TCAM region.
3114 * Access: Index
3115 */
3116 MLXSW_ITEM_BUF(reg, ptce3, tcam_region_info, 0x10,
3117 MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN);
3118
3119 /* reg_ptce3_flex2_key_blocks
3120 * ACL key. The key must be masked according to eRP (if exists) or
3121 * according to master mask.
3122 * Access: Index
3123 */
3124 MLXSW_ITEM_BUF(reg, ptce3, flex2_key_blocks, 0x20,
3125 MLXSW_REG_PTCEX_FLEX_KEY_BLOCKS_LEN);
3126
3127 /* reg_ptce3_erp_id
3128 * eRP ID.
3129 * Access: Index
3130 */
3131 MLXSW_ITEM32(reg, ptce3, erp_id, 0x80, 0, 4);
3132
3133 /* reg_ptce3_delta_start
3134 * Start point of delta_value and delta_mask, in bits. Must not exceed
3135 * num_key_blocks * 36 - 8. Reserved when delta_mask = 0.
3136 * Access: Index
3137 */
3138 MLXSW_ITEM32(reg, ptce3, delta_start, 0x84, 0, 10);
3139
3140 /* reg_ptce3_delta_mask
3141 * Delta mask.
3142 * 0 - Ignore relevant bit in delta_value
3143 * 1 - Compare relevant bit in delta_value
3144 * Delta mask must not be set for reserved fields in the key blocks.
3145 * Note: No delta when no eRPs. Thus, for regions with
3146 * PERERP.erpt_pointer_valid = 0 the delta mask must be 0.
3147 * Access: Index
3148 */
3149 MLXSW_ITEM32(reg, ptce3, delta_mask, 0x88, 16, 8);
3150
3151 /* reg_ptce3_delta_value
3152 * Delta value.
3153 * Bits which are masked by delta_mask must be 0.
3154 * Access: Index
3155 */
3156 MLXSW_ITEM32(reg, ptce3, delta_value, 0x88, 0, 8);
3157
3158 /* reg_ptce3_prune_vector
3159 * Pruning vector relative to the PERPT.erp_id.
3160 * Used for reducing lookups.
3161 * 0 - NEED: Do a lookup using the eRP.
3162 * 1 - PRUNE: Do not perform a lookup using the eRP.
3163 * Maybe be modified by PEAPBL and PEAPBM.
3164 * Note: In Spectrum-2, a region of 8 key blocks must be set to either
3165 * all 1's or all 0's.
3166 * Access: RW
3167 */
3168 MLXSW_ITEM_BIT_ARRAY(reg, ptce3, prune_vector, 0x90, 4, 1);
3169
3170 /* reg_ptce3_prune_ctcam
3171 * Pruning on C-TCAM. Used for reducing lookups.
3172 * 0 - NEED: Do a lookup in the C-TCAM.
3173 * 1 - PRUNE: Do not perform a lookup in the C-TCAM.
3174 * Access: RW
3175 */
3176 MLXSW_ITEM32(reg, ptce3, prune_ctcam, 0x94, 31, 1);
3177
3178 /* reg_ptce3_large_exists
3179 * Large entry key ID exists.
3180 * Within the region:
3181 * 0 - SINGLE: The large_entry_key_id is not currently in use.
3182 * For rule insert: The MSB of the key (blocks 6..11) will be added.
3183 * For rule delete: The MSB of the key will be removed.
3184 * 1 - NON_SINGLE: The large_entry_key_id is currently in use.
3185 * For rule insert: The MSB of the key (blocks 6..11) will not be added.
3186 * For rule delete: The MSB of the key will not be removed.
3187 * Access: WO
3188 */
3189 MLXSW_ITEM32(reg, ptce3, large_exists, 0x98, 31, 1);
3190
3191 /* reg_ptce3_large_entry_key_id
3192 * Large entry key ID.
3193 * A key for 12 key blocks rules. Reserved when region has less than 12 key
3194 * blocks. Must be different for different keys which have the same common
3195 * 6 key blocks (MSB, blocks 6..11) key within a region.
3196 * Range is 0..cap_max_pe_large_key_id - 1
3197 * Access: RW
3198 */
3199 MLXSW_ITEM32(reg, ptce3, large_entry_key_id, 0x98, 0, 24);
3200
3201 /* reg_ptce3_action_pointer
3202 * Pointer to action.
3203 * Range is 0..cap_max_kvd_action_sets - 1
3204 * Access: RW
3205 */
3206 MLXSW_ITEM32(reg, ptce3, action_pointer, 0xA0, 0, 24);
3207
mlxsw_reg_ptce3_pack(char * payload,bool valid,enum mlxsw_reg_ptce3_op op,u32 priority,const char * tcam_region_info,const char * key,u8 erp_id,u16 delta_start,u8 delta_mask,u8 delta_value,bool large_exists,u32 lkey_id,u32 action_pointer)3208 static inline void mlxsw_reg_ptce3_pack(char *payload, bool valid,
3209 enum mlxsw_reg_ptce3_op op,
3210 u32 priority,
3211 const char *tcam_region_info,
3212 const char *key, u8 erp_id,
3213 u16 delta_start, u8 delta_mask,
3214 u8 delta_value, bool large_exists,
3215 u32 lkey_id, u32 action_pointer)
3216 {
3217 MLXSW_REG_ZERO(ptce3, payload);
3218 mlxsw_reg_ptce3_v_set(payload, valid);
3219 mlxsw_reg_ptce3_op_set(payload, op);
3220 mlxsw_reg_ptce3_priority_set(payload, priority);
3221 mlxsw_reg_ptce3_tcam_region_info_memcpy_to(payload, tcam_region_info);
3222 mlxsw_reg_ptce3_flex2_key_blocks_memcpy_to(payload, key);
3223 mlxsw_reg_ptce3_erp_id_set(payload, erp_id);
3224 mlxsw_reg_ptce3_delta_start_set(payload, delta_start);
3225 mlxsw_reg_ptce3_delta_mask_set(payload, delta_mask);
3226 mlxsw_reg_ptce3_delta_value_set(payload, delta_value);
3227 mlxsw_reg_ptce3_large_exists_set(payload, large_exists);
3228 mlxsw_reg_ptce3_large_entry_key_id_set(payload, lkey_id);
3229 mlxsw_reg_ptce3_action_pointer_set(payload, action_pointer);
3230 }
3231
3232 /* PERCR - Policy-Engine Region Configuration Register
3233 * ---------------------------------------------------
3234 * This register configures the region parameters. The region_id must be
3235 * allocated.
3236 */
3237 #define MLXSW_REG_PERCR_ID 0x302A
3238 #define MLXSW_REG_PERCR_LEN 0x80
3239
3240 MLXSW_REG_DEFINE(percr, MLXSW_REG_PERCR_ID, MLXSW_REG_PERCR_LEN);
3241
3242 /* reg_percr_region_id
3243 * Region identifier.
3244 * Range 0..cap_max_regions-1
3245 * Access: Index
3246 */
3247 MLXSW_ITEM32(reg, percr, region_id, 0x00, 0, 16);
3248
3249 /* reg_percr_atcam_ignore_prune
3250 * Ignore prune_vector by other A-TCAM rules. Used e.g., for a new rule.
3251 * Access: RW
3252 */
3253 MLXSW_ITEM32(reg, percr, atcam_ignore_prune, 0x04, 25, 1);
3254
3255 /* reg_percr_ctcam_ignore_prune
3256 * Ignore prune_ctcam by other A-TCAM rules. Used e.g., for a new rule.
3257 * Access: RW
3258 */
3259 MLXSW_ITEM32(reg, percr, ctcam_ignore_prune, 0x04, 24, 1);
3260
3261 /* reg_percr_bf_bypass
3262 * Bloom filter bypass.
3263 * 0 - Bloom filter is used (default)
3264 * 1 - Bloom filter is bypassed. The bypass is an OR condition of
3265 * region_id or eRP. See PERPT.bf_bypass
3266 * Access: RW
3267 */
3268 MLXSW_ITEM32(reg, percr, bf_bypass, 0x04, 16, 1);
3269
3270 /* reg_percr_master_mask
3271 * Master mask. Logical OR mask of all masks of all rules of a region
3272 * (both A-TCAM and C-TCAM). When there are no eRPs
3273 * (erpt_pointer_valid = 0), then this provides the mask.
3274 * Access: RW
3275 */
3276 MLXSW_ITEM_BUF(reg, percr, master_mask, 0x20, 96);
3277
mlxsw_reg_percr_pack(char * payload,u16 region_id)3278 static inline void mlxsw_reg_percr_pack(char *payload, u16 region_id)
3279 {
3280 MLXSW_REG_ZERO(percr, payload);
3281 mlxsw_reg_percr_region_id_set(payload, region_id);
3282 mlxsw_reg_percr_atcam_ignore_prune_set(payload, false);
3283 mlxsw_reg_percr_ctcam_ignore_prune_set(payload, false);
3284 mlxsw_reg_percr_bf_bypass_set(payload, false);
3285 }
3286
3287 /* PERERP - Policy-Engine Region eRP Register
3288 * ------------------------------------------
3289 * This register configures the region eRP. The region_id must be
3290 * allocated.
3291 */
3292 #define MLXSW_REG_PERERP_ID 0x302B
3293 #define MLXSW_REG_PERERP_LEN 0x1C
3294
3295 MLXSW_REG_DEFINE(pererp, MLXSW_REG_PERERP_ID, MLXSW_REG_PERERP_LEN);
3296
3297 /* reg_pererp_region_id
3298 * Region identifier.
3299 * Range 0..cap_max_regions-1
3300 * Access: Index
3301 */
3302 MLXSW_ITEM32(reg, pererp, region_id, 0x00, 0, 16);
3303
3304 /* reg_pererp_ctcam_le
3305 * C-TCAM lookup enable. Reserved when erpt_pointer_valid = 0.
3306 * Access: RW
3307 */
3308 MLXSW_ITEM32(reg, pererp, ctcam_le, 0x04, 28, 1);
3309
3310 /* reg_pererp_erpt_pointer_valid
3311 * erpt_pointer is valid.
3312 * Access: RW
3313 */
3314 MLXSW_ITEM32(reg, pererp, erpt_pointer_valid, 0x10, 31, 1);
3315
3316 /* reg_pererp_erpt_bank_pointer
3317 * Pointer to eRP table bank. May be modified at any time.
3318 * Range 0..cap_max_erp_table_banks-1
3319 * Reserved when erpt_pointer_valid = 0
3320 */
3321 MLXSW_ITEM32(reg, pererp, erpt_bank_pointer, 0x10, 16, 4);
3322
3323 /* reg_pererp_erpt_pointer
3324 * Pointer to eRP table within the eRP bank. Can be changed for an
3325 * existing region.
3326 * Range 0..cap_max_erp_table_size-1
3327 * Reserved when erpt_pointer_valid = 0
3328 * Access: RW
3329 */
3330 MLXSW_ITEM32(reg, pererp, erpt_pointer, 0x10, 0, 8);
3331
3332 /* reg_pererp_erpt_vector
3333 * Vector of allowed eRP indexes starting from erpt_pointer within the
3334 * erpt_bank_pointer. Next entries will be in next bank.
3335 * Note that eRP index is used and not eRP ID.
3336 * Reserved when erpt_pointer_valid = 0
3337 * Access: RW
3338 */
3339 MLXSW_ITEM_BIT_ARRAY(reg, pererp, erpt_vector, 0x14, 4, 1);
3340
3341 /* reg_pererp_master_rp_id
3342 * Master RP ID. When there are no eRPs, then this provides the eRP ID
3343 * for the lookup. Can be changed for an existing region.
3344 * Reserved when erpt_pointer_valid = 1
3345 * Access: RW
3346 */
3347 MLXSW_ITEM32(reg, pererp, master_rp_id, 0x18, 0, 4);
3348
mlxsw_reg_pererp_erp_vector_pack(char * payload,unsigned long * erp_vector,unsigned long size)3349 static inline void mlxsw_reg_pererp_erp_vector_pack(char *payload,
3350 unsigned long *erp_vector,
3351 unsigned long size)
3352 {
3353 unsigned long bit;
3354
3355 for_each_set_bit(bit, erp_vector, size)
3356 mlxsw_reg_pererp_erpt_vector_set(payload, bit, true);
3357 }
3358
mlxsw_reg_pererp_pack(char * payload,u16 region_id,bool ctcam_le,bool erpt_pointer_valid,u8 erpt_bank_pointer,u8 erpt_pointer,u8 master_rp_id)3359 static inline void mlxsw_reg_pererp_pack(char *payload, u16 region_id,
3360 bool ctcam_le, bool erpt_pointer_valid,
3361 u8 erpt_bank_pointer, u8 erpt_pointer,
3362 u8 master_rp_id)
3363 {
3364 MLXSW_REG_ZERO(pererp, payload);
3365 mlxsw_reg_pererp_region_id_set(payload, region_id);
3366 mlxsw_reg_pererp_ctcam_le_set(payload, ctcam_le);
3367 mlxsw_reg_pererp_erpt_pointer_valid_set(payload, erpt_pointer_valid);
3368 mlxsw_reg_pererp_erpt_bank_pointer_set(payload, erpt_bank_pointer);
3369 mlxsw_reg_pererp_erpt_pointer_set(payload, erpt_pointer);
3370 mlxsw_reg_pererp_master_rp_id_set(payload, master_rp_id);
3371 }
3372
3373 /* PEABFE - Policy-Engine Algorithmic Bloom Filter Entries Register
3374 * ----------------------------------------------------------------
3375 * This register configures the Bloom filter entries.
3376 */
3377 #define MLXSW_REG_PEABFE_ID 0x3022
3378 #define MLXSW_REG_PEABFE_BASE_LEN 0x10
3379 #define MLXSW_REG_PEABFE_BF_REC_LEN 0x4
3380 #define MLXSW_REG_PEABFE_BF_REC_MAX_COUNT 256
3381 #define MLXSW_REG_PEABFE_LEN (MLXSW_REG_PEABFE_BASE_LEN + \
3382 MLXSW_REG_PEABFE_BF_REC_LEN * \
3383 MLXSW_REG_PEABFE_BF_REC_MAX_COUNT)
3384
3385 MLXSW_REG_DEFINE(peabfe, MLXSW_REG_PEABFE_ID, MLXSW_REG_PEABFE_LEN);
3386
3387 /* reg_peabfe_size
3388 * Number of BF entries to be updated.
3389 * Range 1..256
3390 * Access: Op
3391 */
3392 MLXSW_ITEM32(reg, peabfe, size, 0x00, 0, 9);
3393
3394 /* reg_peabfe_bf_entry_state
3395 * Bloom filter state
3396 * 0 - Clear
3397 * 1 - Set
3398 * Access: RW
3399 */
3400 MLXSW_ITEM32_INDEXED(reg, peabfe, bf_entry_state,
3401 MLXSW_REG_PEABFE_BASE_LEN, 31, 1,
3402 MLXSW_REG_PEABFE_BF_REC_LEN, 0x00, false);
3403
3404 /* reg_peabfe_bf_entry_bank
3405 * Bloom filter bank ID
3406 * Range 0..cap_max_erp_table_banks-1
3407 * Access: Index
3408 */
3409 MLXSW_ITEM32_INDEXED(reg, peabfe, bf_entry_bank,
3410 MLXSW_REG_PEABFE_BASE_LEN, 24, 4,
3411 MLXSW_REG_PEABFE_BF_REC_LEN, 0x00, false);
3412
3413 /* reg_peabfe_bf_entry_index
3414 * Bloom filter entry index
3415 * Range 0..2^cap_max_bf_log-1
3416 * Access: Index
3417 */
3418 MLXSW_ITEM32_INDEXED(reg, peabfe, bf_entry_index,
3419 MLXSW_REG_PEABFE_BASE_LEN, 0, 24,
3420 MLXSW_REG_PEABFE_BF_REC_LEN, 0x00, false);
3421
mlxsw_reg_peabfe_pack(char * payload)3422 static inline void mlxsw_reg_peabfe_pack(char *payload)
3423 {
3424 MLXSW_REG_ZERO(peabfe, payload);
3425 }
3426
mlxsw_reg_peabfe_rec_pack(char * payload,int rec_index,u8 state,u8 bank,u32 bf_index)3427 static inline void mlxsw_reg_peabfe_rec_pack(char *payload, int rec_index,
3428 u8 state, u8 bank, u32 bf_index)
3429 {
3430 u8 num_rec = mlxsw_reg_peabfe_size_get(payload);
3431
3432 if (rec_index >= num_rec)
3433 mlxsw_reg_peabfe_size_set(payload, rec_index + 1);
3434 mlxsw_reg_peabfe_bf_entry_state_set(payload, rec_index, state);
3435 mlxsw_reg_peabfe_bf_entry_bank_set(payload, rec_index, bank);
3436 mlxsw_reg_peabfe_bf_entry_index_set(payload, rec_index, bf_index);
3437 }
3438
3439 /* IEDR - Infrastructure Entry Delete Register
3440 * ----------------------------------------------------
3441 * This register is used for deleting entries from the entry tables.
3442 * It is legitimate to attempt to delete a nonexisting entry (the device will
3443 * respond as a good flow).
3444 */
3445 #define MLXSW_REG_IEDR_ID 0x3804
3446 #define MLXSW_REG_IEDR_BASE_LEN 0x10 /* base length, without records */
3447 #define MLXSW_REG_IEDR_REC_LEN 0x8 /* record length */
3448 #define MLXSW_REG_IEDR_REC_MAX_COUNT 64
3449 #define MLXSW_REG_IEDR_LEN (MLXSW_REG_IEDR_BASE_LEN + \
3450 MLXSW_REG_IEDR_REC_LEN * \
3451 MLXSW_REG_IEDR_REC_MAX_COUNT)
3452
3453 MLXSW_REG_DEFINE(iedr, MLXSW_REG_IEDR_ID, MLXSW_REG_IEDR_LEN);
3454
3455 /* reg_iedr_num_rec
3456 * Number of records.
3457 * Access: OP
3458 */
3459 MLXSW_ITEM32(reg, iedr, num_rec, 0x00, 0, 8);
3460
3461 /* reg_iedr_rec_type
3462 * Resource type.
3463 * Access: OP
3464 */
3465 MLXSW_ITEM32_INDEXED(reg, iedr, rec_type, MLXSW_REG_IEDR_BASE_LEN, 24, 8,
3466 MLXSW_REG_IEDR_REC_LEN, 0x00, false);
3467
3468 /* reg_iedr_rec_size
3469 * Size of entries do be deleted. The unit is 1 entry, regardless of entry type.
3470 * Access: OP
3471 */
3472 MLXSW_ITEM32_INDEXED(reg, iedr, rec_size, MLXSW_REG_IEDR_BASE_LEN, 0, 13,
3473 MLXSW_REG_IEDR_REC_LEN, 0x00, false);
3474
3475 /* reg_iedr_rec_index_start
3476 * Resource index start.
3477 * Access: OP
3478 */
3479 MLXSW_ITEM32_INDEXED(reg, iedr, rec_index_start, MLXSW_REG_IEDR_BASE_LEN, 0, 24,
3480 MLXSW_REG_IEDR_REC_LEN, 0x04, false);
3481
mlxsw_reg_iedr_pack(char * payload)3482 static inline void mlxsw_reg_iedr_pack(char *payload)
3483 {
3484 MLXSW_REG_ZERO(iedr, payload);
3485 }
3486
mlxsw_reg_iedr_rec_pack(char * payload,int rec_index,u8 rec_type,u16 rec_size,u32 rec_index_start)3487 static inline void mlxsw_reg_iedr_rec_pack(char *payload, int rec_index,
3488 u8 rec_type, u16 rec_size,
3489 u32 rec_index_start)
3490 {
3491 u8 num_rec = mlxsw_reg_iedr_num_rec_get(payload);
3492
3493 if (rec_index >= num_rec)
3494 mlxsw_reg_iedr_num_rec_set(payload, rec_index + 1);
3495 mlxsw_reg_iedr_rec_type_set(payload, rec_index, rec_type);
3496 mlxsw_reg_iedr_rec_size_set(payload, rec_index, rec_size);
3497 mlxsw_reg_iedr_rec_index_start_set(payload, rec_index, rec_index_start);
3498 }
3499
3500 /* QPTS - QoS Priority Trust State Register
3501 * ----------------------------------------
3502 * This register controls the port policy to calculate the switch priority and
3503 * packet color based on incoming packet fields.
3504 */
3505 #define MLXSW_REG_QPTS_ID 0x4002
3506 #define MLXSW_REG_QPTS_LEN 0x8
3507
3508 MLXSW_REG_DEFINE(qpts, MLXSW_REG_QPTS_ID, MLXSW_REG_QPTS_LEN);
3509
3510 /* reg_qpts_local_port
3511 * Local port number.
3512 * Access: Index
3513 *
3514 * Note: CPU port is supported.
3515 */
3516 MLXSW_ITEM32(reg, qpts, local_port, 0x00, 16, 8);
3517
3518 enum mlxsw_reg_qpts_trust_state {
3519 MLXSW_REG_QPTS_TRUST_STATE_PCP = 1,
3520 MLXSW_REG_QPTS_TRUST_STATE_DSCP = 2, /* For MPLS, trust EXP. */
3521 };
3522
3523 /* reg_qpts_trust_state
3524 * Trust state for a given port.
3525 * Access: RW
3526 */
3527 MLXSW_ITEM32(reg, qpts, trust_state, 0x04, 0, 3);
3528
mlxsw_reg_qpts_pack(char * payload,u8 local_port,enum mlxsw_reg_qpts_trust_state ts)3529 static inline void mlxsw_reg_qpts_pack(char *payload, u8 local_port,
3530 enum mlxsw_reg_qpts_trust_state ts)
3531 {
3532 MLXSW_REG_ZERO(qpts, payload);
3533
3534 mlxsw_reg_qpts_local_port_set(payload, local_port);
3535 mlxsw_reg_qpts_trust_state_set(payload, ts);
3536 }
3537
3538 /* QPCR - QoS Policer Configuration Register
3539 * -----------------------------------------
3540 * The QPCR register is used to create policers - that limit
3541 * the rate of bytes or packets via some trap group.
3542 */
3543 #define MLXSW_REG_QPCR_ID 0x4004
3544 #define MLXSW_REG_QPCR_LEN 0x28
3545
3546 MLXSW_REG_DEFINE(qpcr, MLXSW_REG_QPCR_ID, MLXSW_REG_QPCR_LEN);
3547
3548 enum mlxsw_reg_qpcr_g {
3549 MLXSW_REG_QPCR_G_GLOBAL = 2,
3550 MLXSW_REG_QPCR_G_STORM_CONTROL = 3,
3551 };
3552
3553 /* reg_qpcr_g
3554 * The policer type.
3555 * Access: Index
3556 */
3557 MLXSW_ITEM32(reg, qpcr, g, 0x00, 14, 2);
3558
3559 /* reg_qpcr_pid
3560 * Policer ID.
3561 * Access: Index
3562 */
3563 MLXSW_ITEM32(reg, qpcr, pid, 0x00, 0, 14);
3564
3565 /* reg_qpcr_clear_counter
3566 * Clear counters.
3567 * Access: OP
3568 */
3569 MLXSW_ITEM32(reg, qpcr, clear_counter, 0x04, 31, 1);
3570
3571 /* reg_qpcr_color_aware
3572 * Is the policer aware of colors.
3573 * Must be 0 (unaware) for cpu port.
3574 * Access: RW for unbounded policer. RO for bounded policer.
3575 */
3576 MLXSW_ITEM32(reg, qpcr, color_aware, 0x04, 15, 1);
3577
3578 /* reg_qpcr_bytes
3579 * Is policer limit is for bytes per sec or packets per sec.
3580 * 0 - packets
3581 * 1 - bytes
3582 * Access: RW for unbounded policer. RO for bounded policer.
3583 */
3584 MLXSW_ITEM32(reg, qpcr, bytes, 0x04, 14, 1);
3585
3586 enum mlxsw_reg_qpcr_ir_units {
3587 MLXSW_REG_QPCR_IR_UNITS_M,
3588 MLXSW_REG_QPCR_IR_UNITS_K,
3589 };
3590
3591 /* reg_qpcr_ir_units
3592 * Policer's units for cir and eir fields (for bytes limits only)
3593 * 1 - 10^3
3594 * 0 - 10^6
3595 * Access: OP
3596 */
3597 MLXSW_ITEM32(reg, qpcr, ir_units, 0x04, 12, 1);
3598
3599 enum mlxsw_reg_qpcr_rate_type {
3600 MLXSW_REG_QPCR_RATE_TYPE_SINGLE = 1,
3601 MLXSW_REG_QPCR_RATE_TYPE_DOUBLE = 2,
3602 };
3603
3604 /* reg_qpcr_rate_type
3605 * Policer can have one limit (single rate) or 2 limits with specific operation
3606 * for packets that exceed the lower rate but not the upper one.
3607 * (For cpu port must be single rate)
3608 * Access: RW for unbounded policer. RO for bounded policer.
3609 */
3610 MLXSW_ITEM32(reg, qpcr, rate_type, 0x04, 8, 2);
3611
3612 /* reg_qpc_cbs
3613 * Policer's committed burst size.
3614 * The policer is working with time slices of 50 nano sec. By default every
3615 * slice is granted the proportionate share of the committed rate. If we want to
3616 * allow a slice to exceed that share (while still keeping the rate per sec) we
3617 * can allow burst. The burst size is between the default proportionate share
3618 * (and no lower than 8) to 32Gb. (Even though giving a number higher than the
3619 * committed rate will result in exceeding the rate). The burst size must be a
3620 * log of 2 and will be determined by 2^cbs.
3621 * Access: RW
3622 */
3623 MLXSW_ITEM32(reg, qpcr, cbs, 0x08, 24, 6);
3624
3625 /* reg_qpcr_cir
3626 * Policer's committed rate.
3627 * The rate used for sungle rate, the lower rate for double rate.
3628 * For bytes limits, the rate will be this value * the unit from ir_units.
3629 * (Resolution error is up to 1%).
3630 * Access: RW
3631 */
3632 MLXSW_ITEM32(reg, qpcr, cir, 0x0C, 0, 32);
3633
3634 /* reg_qpcr_eir
3635 * Policer's exceed rate.
3636 * The higher rate for double rate, reserved for single rate.
3637 * Lower rate for double rate policer.
3638 * For bytes limits, the rate will be this value * the unit from ir_units.
3639 * (Resolution error is up to 1%).
3640 * Access: RW
3641 */
3642 MLXSW_ITEM32(reg, qpcr, eir, 0x10, 0, 32);
3643
3644 #define MLXSW_REG_QPCR_DOUBLE_RATE_ACTION 2
3645
3646 /* reg_qpcr_exceed_action.
3647 * What to do with packets between the 2 limits for double rate.
3648 * Access: RW for unbounded policer. RO for bounded policer.
3649 */
3650 MLXSW_ITEM32(reg, qpcr, exceed_action, 0x14, 0, 4);
3651
3652 enum mlxsw_reg_qpcr_action {
3653 /* Discard */
3654 MLXSW_REG_QPCR_ACTION_DISCARD = 1,
3655 /* Forward and set color to red.
3656 * If the packet is intended to cpu port, it will be dropped.
3657 */
3658 MLXSW_REG_QPCR_ACTION_FORWARD = 2,
3659 };
3660
3661 /* reg_qpcr_violate_action
3662 * What to do with packets that cross the cir limit (for single rate) or the eir
3663 * limit (for double rate).
3664 * Access: RW for unbounded policer. RO for bounded policer.
3665 */
3666 MLXSW_ITEM32(reg, qpcr, violate_action, 0x18, 0, 4);
3667
3668 /* reg_qpcr_violate_count
3669 * Counts the number of times violate_action happened on this PID.
3670 * Access: RW
3671 */
3672 MLXSW_ITEM64(reg, qpcr, violate_count, 0x20, 0, 64);
3673
3674 /* Packets */
3675 #define MLXSW_REG_QPCR_LOWEST_CIR 1
3676 #define MLXSW_REG_QPCR_HIGHEST_CIR (2 * 1000 * 1000 * 1000) /* 2Gpps */
3677 #define MLXSW_REG_QPCR_LOWEST_CBS 4
3678 #define MLXSW_REG_QPCR_HIGHEST_CBS 24
3679
3680 /* Bandwidth */
3681 #define MLXSW_REG_QPCR_LOWEST_CIR_BITS 1024 /* bps */
3682 #define MLXSW_REG_QPCR_HIGHEST_CIR_BITS 2000000000000ULL /* 2Tbps */
3683 #define MLXSW_REG_QPCR_LOWEST_CBS_BITS_SP1 4
3684 #define MLXSW_REG_QPCR_LOWEST_CBS_BITS_SP2 4
3685 #define MLXSW_REG_QPCR_HIGHEST_CBS_BITS_SP1 25
3686 #define MLXSW_REG_QPCR_HIGHEST_CBS_BITS_SP2 31
3687
mlxsw_reg_qpcr_pack(char * payload,u16 pid,enum mlxsw_reg_qpcr_ir_units ir_units,bool bytes,u32 cir,u16 cbs)3688 static inline void mlxsw_reg_qpcr_pack(char *payload, u16 pid,
3689 enum mlxsw_reg_qpcr_ir_units ir_units,
3690 bool bytes, u32 cir, u16 cbs)
3691 {
3692 MLXSW_REG_ZERO(qpcr, payload);
3693 mlxsw_reg_qpcr_pid_set(payload, pid);
3694 mlxsw_reg_qpcr_g_set(payload, MLXSW_REG_QPCR_G_GLOBAL);
3695 mlxsw_reg_qpcr_rate_type_set(payload, MLXSW_REG_QPCR_RATE_TYPE_SINGLE);
3696 mlxsw_reg_qpcr_violate_action_set(payload,
3697 MLXSW_REG_QPCR_ACTION_DISCARD);
3698 mlxsw_reg_qpcr_cir_set(payload, cir);
3699 mlxsw_reg_qpcr_ir_units_set(payload, ir_units);
3700 mlxsw_reg_qpcr_bytes_set(payload, bytes);
3701 mlxsw_reg_qpcr_cbs_set(payload, cbs);
3702 }
3703
3704 /* QTCT - QoS Switch Traffic Class Table
3705 * -------------------------------------
3706 * Configures the mapping between the packet switch priority and the
3707 * traffic class on the transmit port.
3708 */
3709 #define MLXSW_REG_QTCT_ID 0x400A
3710 #define MLXSW_REG_QTCT_LEN 0x08
3711
3712 MLXSW_REG_DEFINE(qtct, MLXSW_REG_QTCT_ID, MLXSW_REG_QTCT_LEN);
3713
3714 /* reg_qtct_local_port
3715 * Local port number.
3716 * Access: Index
3717 *
3718 * Note: CPU port is not supported.
3719 */
3720 MLXSW_ITEM32(reg, qtct, local_port, 0x00, 16, 8);
3721
3722 /* reg_qtct_sub_port
3723 * Virtual port within the physical port.
3724 * Should be set to 0 when virtual ports are not enabled on the port.
3725 * Access: Index
3726 */
3727 MLXSW_ITEM32(reg, qtct, sub_port, 0x00, 8, 8);
3728
3729 /* reg_qtct_switch_prio
3730 * Switch priority.
3731 * Access: Index
3732 */
3733 MLXSW_ITEM32(reg, qtct, switch_prio, 0x00, 0, 4);
3734
3735 /* reg_qtct_tclass
3736 * Traffic class.
3737 * Default values:
3738 * switch_prio 0 : tclass 1
3739 * switch_prio 1 : tclass 0
3740 * switch_prio i : tclass i, for i > 1
3741 * Access: RW
3742 */
3743 MLXSW_ITEM32(reg, qtct, tclass, 0x04, 0, 4);
3744
mlxsw_reg_qtct_pack(char * payload,u8 local_port,u8 switch_prio,u8 tclass)3745 static inline void mlxsw_reg_qtct_pack(char *payload, u8 local_port,
3746 u8 switch_prio, u8 tclass)
3747 {
3748 MLXSW_REG_ZERO(qtct, payload);
3749 mlxsw_reg_qtct_local_port_set(payload, local_port);
3750 mlxsw_reg_qtct_switch_prio_set(payload, switch_prio);
3751 mlxsw_reg_qtct_tclass_set(payload, tclass);
3752 }
3753
3754 /* QEEC - QoS ETS Element Configuration Register
3755 * ---------------------------------------------
3756 * Configures the ETS elements.
3757 */
3758 #define MLXSW_REG_QEEC_ID 0x400D
3759 #define MLXSW_REG_QEEC_LEN 0x20
3760
3761 MLXSW_REG_DEFINE(qeec, MLXSW_REG_QEEC_ID, MLXSW_REG_QEEC_LEN);
3762
3763 /* reg_qeec_local_port
3764 * Local port number.
3765 * Access: Index
3766 *
3767 * Note: CPU port is supported.
3768 */
3769 MLXSW_ITEM32(reg, qeec, local_port, 0x00, 16, 8);
3770
3771 enum mlxsw_reg_qeec_hr {
3772 MLXSW_REG_QEEC_HR_PORT,
3773 MLXSW_REG_QEEC_HR_GROUP,
3774 MLXSW_REG_QEEC_HR_SUBGROUP,
3775 MLXSW_REG_QEEC_HR_TC,
3776 };
3777
3778 /* reg_qeec_element_hierarchy
3779 * 0 - Port
3780 * 1 - Group
3781 * 2 - Subgroup
3782 * 3 - Traffic Class
3783 * Access: Index
3784 */
3785 MLXSW_ITEM32(reg, qeec, element_hierarchy, 0x04, 16, 4);
3786
3787 /* reg_qeec_element_index
3788 * The index of the element in the hierarchy.
3789 * Access: Index
3790 */
3791 MLXSW_ITEM32(reg, qeec, element_index, 0x04, 0, 8);
3792
3793 /* reg_qeec_next_element_index
3794 * The index of the next (lower) element in the hierarchy.
3795 * Access: RW
3796 *
3797 * Note: Reserved for element_hierarchy 0.
3798 */
3799 MLXSW_ITEM32(reg, qeec, next_element_index, 0x08, 0, 8);
3800
3801 /* reg_qeec_mise
3802 * Min shaper configuration enable. Enables configuration of the min
3803 * shaper on this ETS element
3804 * 0 - Disable
3805 * 1 - Enable
3806 * Access: RW
3807 */
3808 MLXSW_ITEM32(reg, qeec, mise, 0x0C, 31, 1);
3809
3810 /* reg_qeec_ptps
3811 * PTP shaper
3812 * 0: regular shaper mode
3813 * 1: PTP oriented shaper
3814 * Allowed only for hierarchy 0
3815 * Not supported for CPU port
3816 * Note that ptps mode may affect the shaper rates of all hierarchies
3817 * Supported only on Spectrum-1
3818 * Access: RW
3819 */
3820 MLXSW_ITEM32(reg, qeec, ptps, 0x0C, 29, 1);
3821
3822 enum {
3823 MLXSW_REG_QEEC_BYTES_MODE,
3824 MLXSW_REG_QEEC_PACKETS_MODE,
3825 };
3826
3827 /* reg_qeec_pb
3828 * Packets or bytes mode.
3829 * 0 - Bytes mode
3830 * 1 - Packets mode
3831 * Access: RW
3832 *
3833 * Note: Used for max shaper configuration. For Spectrum, packets mode
3834 * is supported only for traffic classes of CPU port.
3835 */
3836 MLXSW_ITEM32(reg, qeec, pb, 0x0C, 28, 1);
3837
3838 /* The smallest permitted min shaper rate. */
3839 #define MLXSW_REG_QEEC_MIS_MIN 200000 /* Kbps */
3840
3841 /* reg_qeec_min_shaper_rate
3842 * Min shaper information rate.
3843 * For CPU port, can only be configured for port hierarchy.
3844 * When in bytes mode, value is specified in units of 1000bps.
3845 * Access: RW
3846 */
3847 MLXSW_ITEM32(reg, qeec, min_shaper_rate, 0x0C, 0, 28);
3848
3849 /* reg_qeec_mase
3850 * Max shaper configuration enable. Enables configuration of the max
3851 * shaper on this ETS element.
3852 * 0 - Disable
3853 * 1 - Enable
3854 * Access: RW
3855 */
3856 MLXSW_ITEM32(reg, qeec, mase, 0x10, 31, 1);
3857
3858 /* The largest max shaper value possible to disable the shaper. */
3859 #define MLXSW_REG_QEEC_MAS_DIS ((1u << 31) - 1) /* Kbps */
3860
3861 /* reg_qeec_max_shaper_rate
3862 * Max shaper information rate.
3863 * For CPU port, can only be configured for port hierarchy.
3864 * When in bytes mode, value is specified in units of 1000bps.
3865 * Access: RW
3866 */
3867 MLXSW_ITEM32(reg, qeec, max_shaper_rate, 0x10, 0, 31);
3868
3869 /* reg_qeec_de
3870 * DWRR configuration enable. Enables configuration of the dwrr and
3871 * dwrr_weight.
3872 * 0 - Disable
3873 * 1 - Enable
3874 * Access: RW
3875 */
3876 MLXSW_ITEM32(reg, qeec, de, 0x18, 31, 1);
3877
3878 /* reg_qeec_dwrr
3879 * Transmission selection algorithm to use on the link going down from
3880 * the ETS element.
3881 * 0 - Strict priority
3882 * 1 - DWRR
3883 * Access: RW
3884 */
3885 MLXSW_ITEM32(reg, qeec, dwrr, 0x18, 15, 1);
3886
3887 /* reg_qeec_dwrr_weight
3888 * DWRR weight on the link going down from the ETS element. The
3889 * percentage of bandwidth guaranteed to an ETS element within
3890 * its hierarchy. The sum of all weights across all ETS elements
3891 * within one hierarchy should be equal to 100. Reserved when
3892 * transmission selection algorithm is strict priority.
3893 * Access: RW
3894 */
3895 MLXSW_ITEM32(reg, qeec, dwrr_weight, 0x18, 0, 8);
3896
3897 /* reg_qeec_max_shaper_bs
3898 * Max shaper burst size
3899 * Burst size is 2^max_shaper_bs * 512 bits
3900 * For Spectrum-1: Range is: 5..25
3901 * For Spectrum-2: Range is: 11..25
3902 * Reserved when ptps = 1
3903 * Access: RW
3904 */
3905 MLXSW_ITEM32(reg, qeec, max_shaper_bs, 0x1C, 0, 6);
3906
3907 #define MLXSW_REG_QEEC_HIGHEST_SHAPER_BS 25
3908 #define MLXSW_REG_QEEC_LOWEST_SHAPER_BS_SP1 5
3909 #define MLXSW_REG_QEEC_LOWEST_SHAPER_BS_SP2 11
3910 #define MLXSW_REG_QEEC_LOWEST_SHAPER_BS_SP3 11
3911
mlxsw_reg_qeec_pack(char * payload,u8 local_port,enum mlxsw_reg_qeec_hr hr,u8 index,u8 next_index)3912 static inline void mlxsw_reg_qeec_pack(char *payload, u8 local_port,
3913 enum mlxsw_reg_qeec_hr hr, u8 index,
3914 u8 next_index)
3915 {
3916 MLXSW_REG_ZERO(qeec, payload);
3917 mlxsw_reg_qeec_local_port_set(payload, local_port);
3918 mlxsw_reg_qeec_element_hierarchy_set(payload, hr);
3919 mlxsw_reg_qeec_element_index_set(payload, index);
3920 mlxsw_reg_qeec_next_element_index_set(payload, next_index);
3921 }
3922
mlxsw_reg_qeec_ptps_pack(char * payload,u8 local_port,bool ptps)3923 static inline void mlxsw_reg_qeec_ptps_pack(char *payload, u8 local_port,
3924 bool ptps)
3925 {
3926 MLXSW_REG_ZERO(qeec, payload);
3927 mlxsw_reg_qeec_local_port_set(payload, local_port);
3928 mlxsw_reg_qeec_element_hierarchy_set(payload, MLXSW_REG_QEEC_HR_PORT);
3929 mlxsw_reg_qeec_ptps_set(payload, ptps);
3930 }
3931
3932 /* QRWE - QoS ReWrite Enable
3933 * -------------------------
3934 * This register configures the rewrite enable per receive port.
3935 */
3936 #define MLXSW_REG_QRWE_ID 0x400F
3937 #define MLXSW_REG_QRWE_LEN 0x08
3938
3939 MLXSW_REG_DEFINE(qrwe, MLXSW_REG_QRWE_ID, MLXSW_REG_QRWE_LEN);
3940
3941 /* reg_qrwe_local_port
3942 * Local port number.
3943 * Access: Index
3944 *
3945 * Note: CPU port is supported. No support for router port.
3946 */
3947 MLXSW_ITEM32(reg, qrwe, local_port, 0x00, 16, 8);
3948
3949 /* reg_qrwe_dscp
3950 * Whether to enable DSCP rewrite (default is 0, don't rewrite).
3951 * Access: RW
3952 */
3953 MLXSW_ITEM32(reg, qrwe, dscp, 0x04, 1, 1);
3954
3955 /* reg_qrwe_pcp
3956 * Whether to enable PCP and DEI rewrite (default is 0, don't rewrite).
3957 * Access: RW
3958 */
3959 MLXSW_ITEM32(reg, qrwe, pcp, 0x04, 0, 1);
3960
mlxsw_reg_qrwe_pack(char * payload,u8 local_port,bool rewrite_pcp,bool rewrite_dscp)3961 static inline void mlxsw_reg_qrwe_pack(char *payload, u8 local_port,
3962 bool rewrite_pcp, bool rewrite_dscp)
3963 {
3964 MLXSW_REG_ZERO(qrwe, payload);
3965 mlxsw_reg_qrwe_local_port_set(payload, local_port);
3966 mlxsw_reg_qrwe_pcp_set(payload, rewrite_pcp);
3967 mlxsw_reg_qrwe_dscp_set(payload, rewrite_dscp);
3968 }
3969
3970 /* QPDSM - QoS Priority to DSCP Mapping
3971 * ------------------------------------
3972 * QoS Priority to DSCP Mapping Register
3973 */
3974 #define MLXSW_REG_QPDSM_ID 0x4011
3975 #define MLXSW_REG_QPDSM_BASE_LEN 0x04 /* base length, without records */
3976 #define MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN 0x4 /* record length */
3977 #define MLXSW_REG_QPDSM_PRIO_ENTRY_REC_MAX_COUNT 16
3978 #define MLXSW_REG_QPDSM_LEN (MLXSW_REG_QPDSM_BASE_LEN + \
3979 MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN * \
3980 MLXSW_REG_QPDSM_PRIO_ENTRY_REC_MAX_COUNT)
3981
3982 MLXSW_REG_DEFINE(qpdsm, MLXSW_REG_QPDSM_ID, MLXSW_REG_QPDSM_LEN);
3983
3984 /* reg_qpdsm_local_port
3985 * Local Port. Supported for data packets from CPU port.
3986 * Access: Index
3987 */
3988 MLXSW_ITEM32(reg, qpdsm, local_port, 0x00, 16, 8);
3989
3990 /* reg_qpdsm_prio_entry_color0_e
3991 * Enable update of the entry for color 0 and a given port.
3992 * Access: WO
3993 */
3994 MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color0_e,
3995 MLXSW_REG_QPDSM_BASE_LEN, 31, 1,
3996 MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false);
3997
3998 /* reg_qpdsm_prio_entry_color0_dscp
3999 * DSCP field in the outer label of the packet for color 0 and a given port.
4000 * Reserved when e=0.
4001 * Access: RW
4002 */
4003 MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color0_dscp,
4004 MLXSW_REG_QPDSM_BASE_LEN, 24, 6,
4005 MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false);
4006
4007 /* reg_qpdsm_prio_entry_color1_e
4008 * Enable update of the entry for color 1 and a given port.
4009 * Access: WO
4010 */
4011 MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color1_e,
4012 MLXSW_REG_QPDSM_BASE_LEN, 23, 1,
4013 MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false);
4014
4015 /* reg_qpdsm_prio_entry_color1_dscp
4016 * DSCP field in the outer label of the packet for color 1 and a given port.
4017 * Reserved when e=0.
4018 * Access: RW
4019 */
4020 MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color1_dscp,
4021 MLXSW_REG_QPDSM_BASE_LEN, 16, 6,
4022 MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false);
4023
4024 /* reg_qpdsm_prio_entry_color2_e
4025 * Enable update of the entry for color 2 and a given port.
4026 * Access: WO
4027 */
4028 MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color2_e,
4029 MLXSW_REG_QPDSM_BASE_LEN, 15, 1,
4030 MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false);
4031
4032 /* reg_qpdsm_prio_entry_color2_dscp
4033 * DSCP field in the outer label of the packet for color 2 and a given port.
4034 * Reserved when e=0.
4035 * Access: RW
4036 */
4037 MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color2_dscp,
4038 MLXSW_REG_QPDSM_BASE_LEN, 8, 6,
4039 MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false);
4040
mlxsw_reg_qpdsm_pack(char * payload,u8 local_port)4041 static inline void mlxsw_reg_qpdsm_pack(char *payload, u8 local_port)
4042 {
4043 MLXSW_REG_ZERO(qpdsm, payload);
4044 mlxsw_reg_qpdsm_local_port_set(payload, local_port);
4045 }
4046
4047 static inline void
mlxsw_reg_qpdsm_prio_pack(char * payload,unsigned short prio,u8 dscp)4048 mlxsw_reg_qpdsm_prio_pack(char *payload, unsigned short prio, u8 dscp)
4049 {
4050 mlxsw_reg_qpdsm_prio_entry_color0_e_set(payload, prio, 1);
4051 mlxsw_reg_qpdsm_prio_entry_color0_dscp_set(payload, prio, dscp);
4052 mlxsw_reg_qpdsm_prio_entry_color1_e_set(payload, prio, 1);
4053 mlxsw_reg_qpdsm_prio_entry_color1_dscp_set(payload, prio, dscp);
4054 mlxsw_reg_qpdsm_prio_entry_color2_e_set(payload, prio, 1);
4055 mlxsw_reg_qpdsm_prio_entry_color2_dscp_set(payload, prio, dscp);
4056 }
4057
4058 /* QPDP - QoS Port DSCP to Priority Mapping Register
4059 * -------------------------------------------------
4060 * This register controls the port default Switch Priority and Color. The
4061 * default Switch Priority and Color are used for frames where the trust state
4062 * uses default values. All member ports of a LAG should be configured with the
4063 * same default values.
4064 */
4065 #define MLXSW_REG_QPDP_ID 0x4007
4066 #define MLXSW_REG_QPDP_LEN 0x8
4067
4068 MLXSW_REG_DEFINE(qpdp, MLXSW_REG_QPDP_ID, MLXSW_REG_QPDP_LEN);
4069
4070 /* reg_qpdp_local_port
4071 * Local Port. Supported for data packets from CPU port.
4072 * Access: Index
4073 */
4074 MLXSW_ITEM32(reg, qpdp, local_port, 0x00, 16, 8);
4075
4076 /* reg_qpdp_switch_prio
4077 * Default port Switch Priority (default 0)
4078 * Access: RW
4079 */
4080 MLXSW_ITEM32(reg, qpdp, switch_prio, 0x04, 0, 4);
4081
mlxsw_reg_qpdp_pack(char * payload,u8 local_port,u8 switch_prio)4082 static inline void mlxsw_reg_qpdp_pack(char *payload, u8 local_port,
4083 u8 switch_prio)
4084 {
4085 MLXSW_REG_ZERO(qpdp, payload);
4086 mlxsw_reg_qpdp_local_port_set(payload, local_port);
4087 mlxsw_reg_qpdp_switch_prio_set(payload, switch_prio);
4088 }
4089
4090 /* QPDPM - QoS Port DSCP to Priority Mapping Register
4091 * --------------------------------------------------
4092 * This register controls the mapping from DSCP field to
4093 * Switch Priority for IP packets.
4094 */
4095 #define MLXSW_REG_QPDPM_ID 0x4013
4096 #define MLXSW_REG_QPDPM_BASE_LEN 0x4 /* base length, without records */
4097 #define MLXSW_REG_QPDPM_DSCP_ENTRY_REC_LEN 0x2 /* record length */
4098 #define MLXSW_REG_QPDPM_DSCP_ENTRY_REC_MAX_COUNT 64
4099 #define MLXSW_REG_QPDPM_LEN (MLXSW_REG_QPDPM_BASE_LEN + \
4100 MLXSW_REG_QPDPM_DSCP_ENTRY_REC_LEN * \
4101 MLXSW_REG_QPDPM_DSCP_ENTRY_REC_MAX_COUNT)
4102
4103 MLXSW_REG_DEFINE(qpdpm, MLXSW_REG_QPDPM_ID, MLXSW_REG_QPDPM_LEN);
4104
4105 /* reg_qpdpm_local_port
4106 * Local Port. Supported for data packets from CPU port.
4107 * Access: Index
4108 */
4109 MLXSW_ITEM32(reg, qpdpm, local_port, 0x00, 16, 8);
4110
4111 /* reg_qpdpm_dscp_e
4112 * Enable update of the specific entry. When cleared, the switch_prio and color
4113 * fields are ignored and the previous switch_prio and color values are
4114 * preserved.
4115 * Access: WO
4116 */
4117 MLXSW_ITEM16_INDEXED(reg, qpdpm, dscp_entry_e, MLXSW_REG_QPDPM_BASE_LEN, 15, 1,
4118 MLXSW_REG_QPDPM_DSCP_ENTRY_REC_LEN, 0x00, false);
4119
4120 /* reg_qpdpm_dscp_prio
4121 * The new Switch Priority value for the relevant DSCP value.
4122 * Access: RW
4123 */
4124 MLXSW_ITEM16_INDEXED(reg, qpdpm, dscp_entry_prio,
4125 MLXSW_REG_QPDPM_BASE_LEN, 0, 4,
4126 MLXSW_REG_QPDPM_DSCP_ENTRY_REC_LEN, 0x00, false);
4127
mlxsw_reg_qpdpm_pack(char * payload,u8 local_port)4128 static inline void mlxsw_reg_qpdpm_pack(char *payload, u8 local_port)
4129 {
4130 MLXSW_REG_ZERO(qpdpm, payload);
4131 mlxsw_reg_qpdpm_local_port_set(payload, local_port);
4132 }
4133
4134 static inline void
mlxsw_reg_qpdpm_dscp_pack(char * payload,unsigned short dscp,u8 prio)4135 mlxsw_reg_qpdpm_dscp_pack(char *payload, unsigned short dscp, u8 prio)
4136 {
4137 mlxsw_reg_qpdpm_dscp_entry_e_set(payload, dscp, 1);
4138 mlxsw_reg_qpdpm_dscp_entry_prio_set(payload, dscp, prio);
4139 }
4140
4141 /* QTCTM - QoS Switch Traffic Class Table is Multicast-Aware Register
4142 * ------------------------------------------------------------------
4143 * This register configures if the Switch Priority to Traffic Class mapping is
4144 * based on Multicast packet indication. If so, then multicast packets will get
4145 * a Traffic Class that is plus (cap_max_tclass_data/2) the value configured by
4146 * QTCT.
4147 * By default, Switch Priority to Traffic Class mapping is not based on
4148 * Multicast packet indication.
4149 */
4150 #define MLXSW_REG_QTCTM_ID 0x401A
4151 #define MLXSW_REG_QTCTM_LEN 0x08
4152
4153 MLXSW_REG_DEFINE(qtctm, MLXSW_REG_QTCTM_ID, MLXSW_REG_QTCTM_LEN);
4154
4155 /* reg_qtctm_local_port
4156 * Local port number.
4157 * No support for CPU port.
4158 * Access: Index
4159 */
4160 MLXSW_ITEM32(reg, qtctm, local_port, 0x00, 16, 8);
4161
4162 /* reg_qtctm_mc
4163 * Multicast Mode
4164 * Whether Switch Priority to Traffic Class mapping is based on Multicast packet
4165 * indication (default is 0, not based on Multicast packet indication).
4166 */
4167 MLXSW_ITEM32(reg, qtctm, mc, 0x04, 0, 1);
4168
4169 static inline void
mlxsw_reg_qtctm_pack(char * payload,u8 local_port,bool mc)4170 mlxsw_reg_qtctm_pack(char *payload, u8 local_port, bool mc)
4171 {
4172 MLXSW_REG_ZERO(qtctm, payload);
4173 mlxsw_reg_qtctm_local_port_set(payload, local_port);
4174 mlxsw_reg_qtctm_mc_set(payload, mc);
4175 }
4176
4177 /* QPSC - QoS PTP Shaper Configuration Register
4178 * --------------------------------------------
4179 * The QPSC allows advanced configuration of the shapers when QEEC.ptps=1.
4180 * Supported only on Spectrum-1.
4181 */
4182 #define MLXSW_REG_QPSC_ID 0x401B
4183 #define MLXSW_REG_QPSC_LEN 0x28
4184
4185 MLXSW_REG_DEFINE(qpsc, MLXSW_REG_QPSC_ID, MLXSW_REG_QPSC_LEN);
4186
4187 enum mlxsw_reg_qpsc_port_speed {
4188 MLXSW_REG_QPSC_PORT_SPEED_100M,
4189 MLXSW_REG_QPSC_PORT_SPEED_1G,
4190 MLXSW_REG_QPSC_PORT_SPEED_10G,
4191 MLXSW_REG_QPSC_PORT_SPEED_25G,
4192 };
4193
4194 /* reg_qpsc_port_speed
4195 * Port speed.
4196 * Access: Index
4197 */
4198 MLXSW_ITEM32(reg, qpsc, port_speed, 0x00, 0, 4);
4199
4200 /* reg_qpsc_shaper_time_exp
4201 * The base-time-interval for updating the shapers tokens (for all hierarchies).
4202 * shaper_update_rate = 2 ^ shaper_time_exp * (1 + shaper_time_mantissa) * 32nSec
4203 * shaper_rate = 64bit * shaper_inc / shaper_update_rate
4204 * Access: RW
4205 */
4206 MLXSW_ITEM32(reg, qpsc, shaper_time_exp, 0x04, 16, 4);
4207
4208 /* reg_qpsc_shaper_time_mantissa
4209 * The base-time-interval for updating the shapers tokens (for all hierarchies).
4210 * shaper_update_rate = 2 ^ shaper_time_exp * (1 + shaper_time_mantissa) * 32nSec
4211 * shaper_rate = 64bit * shaper_inc / shaper_update_rate
4212 * Access: RW
4213 */
4214 MLXSW_ITEM32(reg, qpsc, shaper_time_mantissa, 0x04, 0, 5);
4215
4216 /* reg_qpsc_shaper_inc
4217 * Number of tokens added to shaper on each update.
4218 * Units of 8B.
4219 * Access: RW
4220 */
4221 MLXSW_ITEM32(reg, qpsc, shaper_inc, 0x08, 0, 5);
4222
4223 /* reg_qpsc_shaper_bs
4224 * Max shaper Burst size.
4225 * Burst size is 2 ^ max_shaper_bs * 512 [bits]
4226 * Range is: 5..25 (from 2KB..2GB)
4227 * Access: RW
4228 */
4229 MLXSW_ITEM32(reg, qpsc, shaper_bs, 0x0C, 0, 6);
4230
4231 /* reg_qpsc_ptsc_we
4232 * Write enable to port_to_shaper_credits.
4233 * Access: WO
4234 */
4235 MLXSW_ITEM32(reg, qpsc, ptsc_we, 0x10, 31, 1);
4236
4237 /* reg_qpsc_port_to_shaper_credits
4238 * For split ports: range 1..57
4239 * For non-split ports: range 1..112
4240 * Written only when ptsc_we is set.
4241 * Access: RW
4242 */
4243 MLXSW_ITEM32(reg, qpsc, port_to_shaper_credits, 0x10, 0, 8);
4244
4245 /* reg_qpsc_ing_timestamp_inc
4246 * Ingress timestamp increment.
4247 * 2's complement.
4248 * The timestamp of MTPPTR at ingress will be incremented by this value. Global
4249 * value for all ports.
4250 * Same units as used by MTPPTR.
4251 * Access: RW
4252 */
4253 MLXSW_ITEM32(reg, qpsc, ing_timestamp_inc, 0x20, 0, 32);
4254
4255 /* reg_qpsc_egr_timestamp_inc
4256 * Egress timestamp increment.
4257 * 2's complement.
4258 * The timestamp of MTPPTR at egress will be incremented by this value. Global
4259 * value for all ports.
4260 * Same units as used by MTPPTR.
4261 * Access: RW
4262 */
4263 MLXSW_ITEM32(reg, qpsc, egr_timestamp_inc, 0x24, 0, 32);
4264
4265 static inline void
mlxsw_reg_qpsc_pack(char * payload,enum mlxsw_reg_qpsc_port_speed port_speed,u8 shaper_time_exp,u8 shaper_time_mantissa,u8 shaper_inc,u8 shaper_bs,u8 port_to_shaper_credits,int ing_timestamp_inc,int egr_timestamp_inc)4266 mlxsw_reg_qpsc_pack(char *payload, enum mlxsw_reg_qpsc_port_speed port_speed,
4267 u8 shaper_time_exp, u8 shaper_time_mantissa, u8 shaper_inc,
4268 u8 shaper_bs, u8 port_to_shaper_credits,
4269 int ing_timestamp_inc, int egr_timestamp_inc)
4270 {
4271 MLXSW_REG_ZERO(qpsc, payload);
4272 mlxsw_reg_qpsc_port_speed_set(payload, port_speed);
4273 mlxsw_reg_qpsc_shaper_time_exp_set(payload, shaper_time_exp);
4274 mlxsw_reg_qpsc_shaper_time_mantissa_set(payload, shaper_time_mantissa);
4275 mlxsw_reg_qpsc_shaper_inc_set(payload, shaper_inc);
4276 mlxsw_reg_qpsc_shaper_bs_set(payload, shaper_bs);
4277 mlxsw_reg_qpsc_ptsc_we_set(payload, true);
4278 mlxsw_reg_qpsc_port_to_shaper_credits_set(payload, port_to_shaper_credits);
4279 mlxsw_reg_qpsc_ing_timestamp_inc_set(payload, ing_timestamp_inc);
4280 mlxsw_reg_qpsc_egr_timestamp_inc_set(payload, egr_timestamp_inc);
4281 }
4282
4283 /* PMLP - Ports Module to Local Port Register
4284 * ------------------------------------------
4285 * Configures the assignment of modules to local ports.
4286 */
4287 #define MLXSW_REG_PMLP_ID 0x5002
4288 #define MLXSW_REG_PMLP_LEN 0x40
4289
4290 MLXSW_REG_DEFINE(pmlp, MLXSW_REG_PMLP_ID, MLXSW_REG_PMLP_LEN);
4291
4292 /* reg_pmlp_rxtx
4293 * 0 - Tx value is used for both Tx and Rx.
4294 * 1 - Rx value is taken from a separte field.
4295 * Access: RW
4296 */
4297 MLXSW_ITEM32(reg, pmlp, rxtx, 0x00, 31, 1);
4298
4299 /* reg_pmlp_local_port
4300 * Local port number.
4301 * Access: Index
4302 */
4303 MLXSW_ITEM32(reg, pmlp, local_port, 0x00, 16, 8);
4304
4305 /* reg_pmlp_width
4306 * 0 - Unmap local port.
4307 * 1 - Lane 0 is used.
4308 * 2 - Lanes 0 and 1 are used.
4309 * 4 - Lanes 0, 1, 2 and 3 are used.
4310 * 8 - Lanes 0-7 are used.
4311 * Access: RW
4312 */
4313 MLXSW_ITEM32(reg, pmlp, width, 0x00, 0, 8);
4314
4315 /* reg_pmlp_module
4316 * Module number.
4317 * Access: RW
4318 */
4319 MLXSW_ITEM32_INDEXED(reg, pmlp, module, 0x04, 0, 8, 0x04, 0x00, false);
4320
4321 /* reg_pmlp_tx_lane
4322 * Tx Lane. When rxtx field is cleared, this field is used for Rx as well.
4323 * Access: RW
4324 */
4325 MLXSW_ITEM32_INDEXED(reg, pmlp, tx_lane, 0x04, 16, 4, 0x04, 0x00, false);
4326
4327 /* reg_pmlp_rx_lane
4328 * Rx Lane. When rxtx field is cleared, this field is ignored and Rx lane is
4329 * equal to Tx lane.
4330 * Access: RW
4331 */
4332 MLXSW_ITEM32_INDEXED(reg, pmlp, rx_lane, 0x04, 24, 4, 0x04, 0x00, false);
4333
mlxsw_reg_pmlp_pack(char * payload,u8 local_port)4334 static inline void mlxsw_reg_pmlp_pack(char *payload, u8 local_port)
4335 {
4336 MLXSW_REG_ZERO(pmlp, payload);
4337 mlxsw_reg_pmlp_local_port_set(payload, local_port);
4338 }
4339
4340 /* PMTU - Port MTU Register
4341 * ------------------------
4342 * Configures and reports the port MTU.
4343 */
4344 #define MLXSW_REG_PMTU_ID 0x5003
4345 #define MLXSW_REG_PMTU_LEN 0x10
4346
4347 MLXSW_REG_DEFINE(pmtu, MLXSW_REG_PMTU_ID, MLXSW_REG_PMTU_LEN);
4348
4349 /* reg_pmtu_local_port
4350 * Local port number.
4351 * Access: Index
4352 */
4353 MLXSW_ITEM32(reg, pmtu, local_port, 0x00, 16, 8);
4354
4355 /* reg_pmtu_max_mtu
4356 * Maximum MTU.
4357 * When port type (e.g. Ethernet) is configured, the relevant MTU is
4358 * reported, otherwise the minimum between the max_mtu of the different
4359 * types is reported.
4360 * Access: RO
4361 */
4362 MLXSW_ITEM32(reg, pmtu, max_mtu, 0x04, 16, 16);
4363
4364 /* reg_pmtu_admin_mtu
4365 * MTU value to set port to. Must be smaller or equal to max_mtu.
4366 * Note: If port type is Infiniband, then port must be disabled, when its
4367 * MTU is set.
4368 * Access: RW
4369 */
4370 MLXSW_ITEM32(reg, pmtu, admin_mtu, 0x08, 16, 16);
4371
4372 /* reg_pmtu_oper_mtu
4373 * The actual MTU configured on the port. Packets exceeding this size
4374 * will be dropped.
4375 * Note: In Ethernet and FC oper_mtu == admin_mtu, however, in Infiniband
4376 * oper_mtu might be smaller than admin_mtu.
4377 * Access: RO
4378 */
4379 MLXSW_ITEM32(reg, pmtu, oper_mtu, 0x0C, 16, 16);
4380
mlxsw_reg_pmtu_pack(char * payload,u8 local_port,u16 new_mtu)4381 static inline void mlxsw_reg_pmtu_pack(char *payload, u8 local_port,
4382 u16 new_mtu)
4383 {
4384 MLXSW_REG_ZERO(pmtu, payload);
4385 mlxsw_reg_pmtu_local_port_set(payload, local_port);
4386 mlxsw_reg_pmtu_max_mtu_set(payload, 0);
4387 mlxsw_reg_pmtu_admin_mtu_set(payload, new_mtu);
4388 mlxsw_reg_pmtu_oper_mtu_set(payload, 0);
4389 }
4390
4391 /* PTYS - Port Type and Speed Register
4392 * -----------------------------------
4393 * Configures and reports the port speed type.
4394 *
4395 * Note: When set while the link is up, the changes will not take effect
4396 * until the port transitions from down to up state.
4397 */
4398 #define MLXSW_REG_PTYS_ID 0x5004
4399 #define MLXSW_REG_PTYS_LEN 0x40
4400
4401 MLXSW_REG_DEFINE(ptys, MLXSW_REG_PTYS_ID, MLXSW_REG_PTYS_LEN);
4402
4403 /* an_disable_admin
4404 * Auto negotiation disable administrative configuration
4405 * 0 - Device doesn't support AN disable.
4406 * 1 - Device supports AN disable.
4407 * Access: RW
4408 */
4409 MLXSW_ITEM32(reg, ptys, an_disable_admin, 0x00, 30, 1);
4410
4411 /* reg_ptys_local_port
4412 * Local port number.
4413 * Access: Index
4414 */
4415 MLXSW_ITEM32(reg, ptys, local_port, 0x00, 16, 8);
4416
4417 #define MLXSW_REG_PTYS_PROTO_MASK_IB BIT(0)
4418 #define MLXSW_REG_PTYS_PROTO_MASK_ETH BIT(2)
4419
4420 /* reg_ptys_proto_mask
4421 * Protocol mask. Indicates which protocol is used.
4422 * 0 - Infiniband.
4423 * 1 - Fibre Channel.
4424 * 2 - Ethernet.
4425 * Access: Index
4426 */
4427 MLXSW_ITEM32(reg, ptys, proto_mask, 0x00, 0, 3);
4428
4429 enum {
4430 MLXSW_REG_PTYS_AN_STATUS_NA,
4431 MLXSW_REG_PTYS_AN_STATUS_OK,
4432 MLXSW_REG_PTYS_AN_STATUS_FAIL,
4433 };
4434
4435 /* reg_ptys_an_status
4436 * Autonegotiation status.
4437 * Access: RO
4438 */
4439 MLXSW_ITEM32(reg, ptys, an_status, 0x04, 28, 4);
4440
4441 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_SGMII_100M BIT(0)
4442 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_1000BASE_X_SGMII BIT(1)
4443 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_5GBASE_R BIT(3)
4444 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_XFI_XAUI_1_10G BIT(4)
4445 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_XLAUI_4_XLPPI_4_40G BIT(5)
4446 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_25GAUI_1_25GBASE_CR_KR BIT(6)
4447 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_50GAUI_2_LAUI_2_50GBASE_CR2_KR2 BIT(7)
4448 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_50GAUI_1_LAUI_1_50GBASE_CR_KR BIT(8)
4449 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_CAUI_4_100GBASE_CR4_KR4 BIT(9)
4450 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_100GAUI_2_100GBASE_CR2_KR2 BIT(10)
4451 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_200GAUI_4_200GBASE_CR4_KR4 BIT(12)
4452 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_400GAUI_8 BIT(15)
4453
4454 /* reg_ptys_ext_eth_proto_cap
4455 * Extended Ethernet port supported speeds and protocols.
4456 * Access: RO
4457 */
4458 MLXSW_ITEM32(reg, ptys, ext_eth_proto_cap, 0x08, 0, 32);
4459
4460 #define MLXSW_REG_PTYS_ETH_SPEED_SGMII BIT(0)
4461 #define MLXSW_REG_PTYS_ETH_SPEED_1000BASE_KX BIT(1)
4462 #define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_CX4 BIT(2)
4463 #define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_KX4 BIT(3)
4464 #define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_KR BIT(4)
4465 #define MLXSW_REG_PTYS_ETH_SPEED_40GBASE_CR4 BIT(6)
4466 #define MLXSW_REG_PTYS_ETH_SPEED_40GBASE_KR4 BIT(7)
4467 #define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_CR BIT(12)
4468 #define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_SR BIT(13)
4469 #define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_ER_LR BIT(14)
4470 #define MLXSW_REG_PTYS_ETH_SPEED_40GBASE_SR4 BIT(15)
4471 #define MLXSW_REG_PTYS_ETH_SPEED_40GBASE_LR4_ER4 BIT(16)
4472 #define MLXSW_REG_PTYS_ETH_SPEED_50GBASE_SR2 BIT(18)
4473 #define MLXSW_REG_PTYS_ETH_SPEED_50GBASE_KR4 BIT(19)
4474 #define MLXSW_REG_PTYS_ETH_SPEED_100GBASE_CR4 BIT(20)
4475 #define MLXSW_REG_PTYS_ETH_SPEED_100GBASE_SR4 BIT(21)
4476 #define MLXSW_REG_PTYS_ETH_SPEED_100GBASE_KR4 BIT(22)
4477 #define MLXSW_REG_PTYS_ETH_SPEED_100GBASE_LR4_ER4 BIT(23)
4478 #define MLXSW_REG_PTYS_ETH_SPEED_25GBASE_CR BIT(27)
4479 #define MLXSW_REG_PTYS_ETH_SPEED_25GBASE_KR BIT(28)
4480 #define MLXSW_REG_PTYS_ETH_SPEED_25GBASE_SR BIT(29)
4481 #define MLXSW_REG_PTYS_ETH_SPEED_50GBASE_CR2 BIT(30)
4482 #define MLXSW_REG_PTYS_ETH_SPEED_50GBASE_KR2 BIT(31)
4483
4484 /* reg_ptys_eth_proto_cap
4485 * Ethernet port supported speeds and protocols.
4486 * Access: RO
4487 */
4488 MLXSW_ITEM32(reg, ptys, eth_proto_cap, 0x0C, 0, 32);
4489
4490 /* reg_ptys_ib_link_width_cap
4491 * IB port supported widths.
4492 * Access: RO
4493 */
4494 MLXSW_ITEM32(reg, ptys, ib_link_width_cap, 0x10, 16, 16);
4495
4496 #define MLXSW_REG_PTYS_IB_SPEED_SDR BIT(0)
4497 #define MLXSW_REG_PTYS_IB_SPEED_DDR BIT(1)
4498 #define MLXSW_REG_PTYS_IB_SPEED_QDR BIT(2)
4499 #define MLXSW_REG_PTYS_IB_SPEED_FDR10 BIT(3)
4500 #define MLXSW_REG_PTYS_IB_SPEED_FDR BIT(4)
4501 #define MLXSW_REG_PTYS_IB_SPEED_EDR BIT(5)
4502
4503 /* reg_ptys_ib_proto_cap
4504 * IB port supported speeds and protocols.
4505 * Access: RO
4506 */
4507 MLXSW_ITEM32(reg, ptys, ib_proto_cap, 0x10, 0, 16);
4508
4509 /* reg_ptys_ext_eth_proto_admin
4510 * Extended speed and protocol to set port to.
4511 * Access: RW
4512 */
4513 MLXSW_ITEM32(reg, ptys, ext_eth_proto_admin, 0x14, 0, 32);
4514
4515 /* reg_ptys_eth_proto_admin
4516 * Speed and protocol to set port to.
4517 * Access: RW
4518 */
4519 MLXSW_ITEM32(reg, ptys, eth_proto_admin, 0x18, 0, 32);
4520
4521 /* reg_ptys_ib_link_width_admin
4522 * IB width to set port to.
4523 * Access: RW
4524 */
4525 MLXSW_ITEM32(reg, ptys, ib_link_width_admin, 0x1C, 16, 16);
4526
4527 /* reg_ptys_ib_proto_admin
4528 * IB speeds and protocols to set port to.
4529 * Access: RW
4530 */
4531 MLXSW_ITEM32(reg, ptys, ib_proto_admin, 0x1C, 0, 16);
4532
4533 /* reg_ptys_ext_eth_proto_oper
4534 * The extended current speed and protocol configured for the port.
4535 * Access: RO
4536 */
4537 MLXSW_ITEM32(reg, ptys, ext_eth_proto_oper, 0x20, 0, 32);
4538
4539 /* reg_ptys_eth_proto_oper
4540 * The current speed and protocol configured for the port.
4541 * Access: RO
4542 */
4543 MLXSW_ITEM32(reg, ptys, eth_proto_oper, 0x24, 0, 32);
4544
4545 /* reg_ptys_ib_link_width_oper
4546 * The current IB width to set port to.
4547 * Access: RO
4548 */
4549 MLXSW_ITEM32(reg, ptys, ib_link_width_oper, 0x28, 16, 16);
4550
4551 /* reg_ptys_ib_proto_oper
4552 * The current IB speed and protocol.
4553 * Access: RO
4554 */
4555 MLXSW_ITEM32(reg, ptys, ib_proto_oper, 0x28, 0, 16);
4556
4557 enum mlxsw_reg_ptys_connector_type {
4558 MLXSW_REG_PTYS_CONNECTOR_TYPE_UNKNOWN_OR_NO_CONNECTOR,
4559 MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_NONE,
4560 MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_TP,
4561 MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_AUI,
4562 MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_BNC,
4563 MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_MII,
4564 MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_FIBRE,
4565 MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_DA,
4566 MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_OTHER,
4567 };
4568
4569 /* reg_ptys_connector_type
4570 * Connector type indication.
4571 * Access: RO
4572 */
4573 MLXSW_ITEM32(reg, ptys, connector_type, 0x2C, 0, 4);
4574
mlxsw_reg_ptys_eth_pack(char * payload,u8 local_port,u32 proto_admin,bool autoneg)4575 static inline void mlxsw_reg_ptys_eth_pack(char *payload, u8 local_port,
4576 u32 proto_admin, bool autoneg)
4577 {
4578 MLXSW_REG_ZERO(ptys, payload);
4579 mlxsw_reg_ptys_local_port_set(payload, local_port);
4580 mlxsw_reg_ptys_proto_mask_set(payload, MLXSW_REG_PTYS_PROTO_MASK_ETH);
4581 mlxsw_reg_ptys_eth_proto_admin_set(payload, proto_admin);
4582 mlxsw_reg_ptys_an_disable_admin_set(payload, !autoneg);
4583 }
4584
mlxsw_reg_ptys_ext_eth_pack(char * payload,u8 local_port,u32 proto_admin,bool autoneg)4585 static inline void mlxsw_reg_ptys_ext_eth_pack(char *payload, u8 local_port,
4586 u32 proto_admin, bool autoneg)
4587 {
4588 MLXSW_REG_ZERO(ptys, payload);
4589 mlxsw_reg_ptys_local_port_set(payload, local_port);
4590 mlxsw_reg_ptys_proto_mask_set(payload, MLXSW_REG_PTYS_PROTO_MASK_ETH);
4591 mlxsw_reg_ptys_ext_eth_proto_admin_set(payload, proto_admin);
4592 mlxsw_reg_ptys_an_disable_admin_set(payload, !autoneg);
4593 }
4594
mlxsw_reg_ptys_eth_unpack(char * payload,u32 * p_eth_proto_cap,u32 * p_eth_proto_admin,u32 * p_eth_proto_oper)4595 static inline void mlxsw_reg_ptys_eth_unpack(char *payload,
4596 u32 *p_eth_proto_cap,
4597 u32 *p_eth_proto_admin,
4598 u32 *p_eth_proto_oper)
4599 {
4600 if (p_eth_proto_cap)
4601 *p_eth_proto_cap =
4602 mlxsw_reg_ptys_eth_proto_cap_get(payload);
4603 if (p_eth_proto_admin)
4604 *p_eth_proto_admin =
4605 mlxsw_reg_ptys_eth_proto_admin_get(payload);
4606 if (p_eth_proto_oper)
4607 *p_eth_proto_oper =
4608 mlxsw_reg_ptys_eth_proto_oper_get(payload);
4609 }
4610
mlxsw_reg_ptys_ext_eth_unpack(char * payload,u32 * p_eth_proto_cap,u32 * p_eth_proto_admin,u32 * p_eth_proto_oper)4611 static inline void mlxsw_reg_ptys_ext_eth_unpack(char *payload,
4612 u32 *p_eth_proto_cap,
4613 u32 *p_eth_proto_admin,
4614 u32 *p_eth_proto_oper)
4615 {
4616 if (p_eth_proto_cap)
4617 *p_eth_proto_cap =
4618 mlxsw_reg_ptys_ext_eth_proto_cap_get(payload);
4619 if (p_eth_proto_admin)
4620 *p_eth_proto_admin =
4621 mlxsw_reg_ptys_ext_eth_proto_admin_get(payload);
4622 if (p_eth_proto_oper)
4623 *p_eth_proto_oper =
4624 mlxsw_reg_ptys_ext_eth_proto_oper_get(payload);
4625 }
4626
mlxsw_reg_ptys_ib_pack(char * payload,u8 local_port,u16 proto_admin,u16 link_width)4627 static inline void mlxsw_reg_ptys_ib_pack(char *payload, u8 local_port,
4628 u16 proto_admin, u16 link_width)
4629 {
4630 MLXSW_REG_ZERO(ptys, payload);
4631 mlxsw_reg_ptys_local_port_set(payload, local_port);
4632 mlxsw_reg_ptys_proto_mask_set(payload, MLXSW_REG_PTYS_PROTO_MASK_IB);
4633 mlxsw_reg_ptys_ib_proto_admin_set(payload, proto_admin);
4634 mlxsw_reg_ptys_ib_link_width_admin_set(payload, link_width);
4635 }
4636
mlxsw_reg_ptys_ib_unpack(char * payload,u16 * p_ib_proto_cap,u16 * p_ib_link_width_cap,u16 * p_ib_proto_oper,u16 * p_ib_link_width_oper)4637 static inline void mlxsw_reg_ptys_ib_unpack(char *payload, u16 *p_ib_proto_cap,
4638 u16 *p_ib_link_width_cap,
4639 u16 *p_ib_proto_oper,
4640 u16 *p_ib_link_width_oper)
4641 {
4642 if (p_ib_proto_cap)
4643 *p_ib_proto_cap = mlxsw_reg_ptys_ib_proto_cap_get(payload);
4644 if (p_ib_link_width_cap)
4645 *p_ib_link_width_cap =
4646 mlxsw_reg_ptys_ib_link_width_cap_get(payload);
4647 if (p_ib_proto_oper)
4648 *p_ib_proto_oper = mlxsw_reg_ptys_ib_proto_oper_get(payload);
4649 if (p_ib_link_width_oper)
4650 *p_ib_link_width_oper =
4651 mlxsw_reg_ptys_ib_link_width_oper_get(payload);
4652 }
4653
4654 /* PPAD - Port Physical Address Register
4655 * -------------------------------------
4656 * The PPAD register configures the per port physical MAC address.
4657 */
4658 #define MLXSW_REG_PPAD_ID 0x5005
4659 #define MLXSW_REG_PPAD_LEN 0x10
4660
4661 MLXSW_REG_DEFINE(ppad, MLXSW_REG_PPAD_ID, MLXSW_REG_PPAD_LEN);
4662
4663 /* reg_ppad_single_base_mac
4664 * 0: base_mac, local port should be 0 and mac[7:0] is
4665 * reserved. HW will set incremental
4666 * 1: single_mac - mac of the local_port
4667 * Access: RW
4668 */
4669 MLXSW_ITEM32(reg, ppad, single_base_mac, 0x00, 28, 1);
4670
4671 /* reg_ppad_local_port
4672 * port number, if single_base_mac = 0 then local_port is reserved
4673 * Access: RW
4674 */
4675 MLXSW_ITEM32(reg, ppad, local_port, 0x00, 16, 8);
4676
4677 /* reg_ppad_mac
4678 * If single_base_mac = 0 - base MAC address, mac[7:0] is reserved.
4679 * If single_base_mac = 1 - the per port MAC address
4680 * Access: RW
4681 */
4682 MLXSW_ITEM_BUF(reg, ppad, mac, 0x02, 6);
4683
mlxsw_reg_ppad_pack(char * payload,bool single_base_mac,u8 local_port)4684 static inline void mlxsw_reg_ppad_pack(char *payload, bool single_base_mac,
4685 u8 local_port)
4686 {
4687 MLXSW_REG_ZERO(ppad, payload);
4688 mlxsw_reg_ppad_single_base_mac_set(payload, !!single_base_mac);
4689 mlxsw_reg_ppad_local_port_set(payload, local_port);
4690 }
4691
4692 /* PAOS - Ports Administrative and Operational Status Register
4693 * -----------------------------------------------------------
4694 * Configures and retrieves per port administrative and operational status.
4695 */
4696 #define MLXSW_REG_PAOS_ID 0x5006
4697 #define MLXSW_REG_PAOS_LEN 0x10
4698
4699 MLXSW_REG_DEFINE(paos, MLXSW_REG_PAOS_ID, MLXSW_REG_PAOS_LEN);
4700
4701 /* reg_paos_swid
4702 * Switch partition ID with which to associate the port.
4703 * Note: while external ports uses unique local port numbers (and thus swid is
4704 * redundant), router ports use the same local port number where swid is the
4705 * only indication for the relevant port.
4706 * Access: Index
4707 */
4708 MLXSW_ITEM32(reg, paos, swid, 0x00, 24, 8);
4709
4710 /* reg_paos_local_port
4711 * Local port number.
4712 * Access: Index
4713 */
4714 MLXSW_ITEM32(reg, paos, local_port, 0x00, 16, 8);
4715
4716 /* reg_paos_admin_status
4717 * Port administrative state (the desired state of the port):
4718 * 1 - Up.
4719 * 2 - Down.
4720 * 3 - Up once. This means that in case of link failure, the port won't go
4721 * into polling mode, but will wait to be re-enabled by software.
4722 * 4 - Disabled by system. Can only be set by hardware.
4723 * Access: RW
4724 */
4725 MLXSW_ITEM32(reg, paos, admin_status, 0x00, 8, 4);
4726
4727 /* reg_paos_oper_status
4728 * Port operational state (the current state):
4729 * 1 - Up.
4730 * 2 - Down.
4731 * 3 - Down by port failure. This means that the device will not let the
4732 * port up again until explicitly specified by software.
4733 * Access: RO
4734 */
4735 MLXSW_ITEM32(reg, paos, oper_status, 0x00, 0, 4);
4736
4737 /* reg_paos_ase
4738 * Admin state update enabled.
4739 * Access: WO
4740 */
4741 MLXSW_ITEM32(reg, paos, ase, 0x04, 31, 1);
4742
4743 /* reg_paos_ee
4744 * Event update enable. If this bit is set, event generation will be
4745 * updated based on the e field.
4746 * Access: WO
4747 */
4748 MLXSW_ITEM32(reg, paos, ee, 0x04, 30, 1);
4749
4750 /* reg_paos_e
4751 * Event generation on operational state change:
4752 * 0 - Do not generate event.
4753 * 1 - Generate Event.
4754 * 2 - Generate Single Event.
4755 * Access: RW
4756 */
4757 MLXSW_ITEM32(reg, paos, e, 0x04, 0, 2);
4758
mlxsw_reg_paos_pack(char * payload,u8 local_port,enum mlxsw_port_admin_status status)4759 static inline void mlxsw_reg_paos_pack(char *payload, u8 local_port,
4760 enum mlxsw_port_admin_status status)
4761 {
4762 MLXSW_REG_ZERO(paos, payload);
4763 mlxsw_reg_paos_swid_set(payload, 0);
4764 mlxsw_reg_paos_local_port_set(payload, local_port);
4765 mlxsw_reg_paos_admin_status_set(payload, status);
4766 mlxsw_reg_paos_oper_status_set(payload, 0);
4767 mlxsw_reg_paos_ase_set(payload, 1);
4768 mlxsw_reg_paos_ee_set(payload, 1);
4769 mlxsw_reg_paos_e_set(payload, 1);
4770 }
4771
4772 /* PFCC - Ports Flow Control Configuration Register
4773 * ------------------------------------------------
4774 * Configures and retrieves the per port flow control configuration.
4775 */
4776 #define MLXSW_REG_PFCC_ID 0x5007
4777 #define MLXSW_REG_PFCC_LEN 0x20
4778
4779 MLXSW_REG_DEFINE(pfcc, MLXSW_REG_PFCC_ID, MLXSW_REG_PFCC_LEN);
4780
4781 /* reg_pfcc_local_port
4782 * Local port number.
4783 * Access: Index
4784 */
4785 MLXSW_ITEM32(reg, pfcc, local_port, 0x00, 16, 8);
4786
4787 /* reg_pfcc_pnat
4788 * Port number access type. Determines the way local_port is interpreted:
4789 * 0 - Local port number.
4790 * 1 - IB / label port number.
4791 * Access: Index
4792 */
4793 MLXSW_ITEM32(reg, pfcc, pnat, 0x00, 14, 2);
4794
4795 /* reg_pfcc_shl_cap
4796 * Send to higher layers capabilities:
4797 * 0 - No capability of sending Pause and PFC frames to higher layers.
4798 * 1 - Device has capability of sending Pause and PFC frames to higher
4799 * layers.
4800 * Access: RO
4801 */
4802 MLXSW_ITEM32(reg, pfcc, shl_cap, 0x00, 1, 1);
4803
4804 /* reg_pfcc_shl_opr
4805 * Send to higher layers operation:
4806 * 0 - Pause and PFC frames are handled by the port (default).
4807 * 1 - Pause and PFC frames are handled by the port and also sent to
4808 * higher layers. Only valid if shl_cap = 1.
4809 * Access: RW
4810 */
4811 MLXSW_ITEM32(reg, pfcc, shl_opr, 0x00, 0, 1);
4812
4813 /* reg_pfcc_ppan
4814 * Pause policy auto negotiation.
4815 * 0 - Disabled. Generate / ignore Pause frames based on pptx / pprtx.
4816 * 1 - Enabled. When auto-negotiation is performed, set the Pause policy
4817 * based on the auto-negotiation resolution.
4818 * Access: RW
4819 *
4820 * Note: The auto-negotiation advertisement is set according to pptx and
4821 * pprtx. When PFC is set on Tx / Rx, ppan must be set to 0.
4822 */
4823 MLXSW_ITEM32(reg, pfcc, ppan, 0x04, 28, 4);
4824
4825 /* reg_pfcc_prio_mask_tx
4826 * Bit per priority indicating if Tx flow control policy should be
4827 * updated based on bit pfctx.
4828 * Access: WO
4829 */
4830 MLXSW_ITEM32(reg, pfcc, prio_mask_tx, 0x04, 16, 8);
4831
4832 /* reg_pfcc_prio_mask_rx
4833 * Bit per priority indicating if Rx flow control policy should be
4834 * updated based on bit pfcrx.
4835 * Access: WO
4836 */
4837 MLXSW_ITEM32(reg, pfcc, prio_mask_rx, 0x04, 0, 8);
4838
4839 /* reg_pfcc_pptx
4840 * Admin Pause policy on Tx.
4841 * 0 - Never generate Pause frames (default).
4842 * 1 - Generate Pause frames according to Rx buffer threshold.
4843 * Access: RW
4844 */
4845 MLXSW_ITEM32(reg, pfcc, pptx, 0x08, 31, 1);
4846
4847 /* reg_pfcc_aptx
4848 * Active (operational) Pause policy on Tx.
4849 * 0 - Never generate Pause frames.
4850 * 1 - Generate Pause frames according to Rx buffer threshold.
4851 * Access: RO
4852 */
4853 MLXSW_ITEM32(reg, pfcc, aptx, 0x08, 30, 1);
4854
4855 /* reg_pfcc_pfctx
4856 * Priority based flow control policy on Tx[7:0]. Per-priority bit mask:
4857 * 0 - Never generate priority Pause frames on the specified priority
4858 * (default).
4859 * 1 - Generate priority Pause frames according to Rx buffer threshold on
4860 * the specified priority.
4861 * Access: RW
4862 *
4863 * Note: pfctx and pptx must be mutually exclusive.
4864 */
4865 MLXSW_ITEM32(reg, pfcc, pfctx, 0x08, 16, 8);
4866
4867 /* reg_pfcc_pprx
4868 * Admin Pause policy on Rx.
4869 * 0 - Ignore received Pause frames (default).
4870 * 1 - Respect received Pause frames.
4871 * Access: RW
4872 */
4873 MLXSW_ITEM32(reg, pfcc, pprx, 0x0C, 31, 1);
4874
4875 /* reg_pfcc_aprx
4876 * Active (operational) Pause policy on Rx.
4877 * 0 - Ignore received Pause frames.
4878 * 1 - Respect received Pause frames.
4879 * Access: RO
4880 */
4881 MLXSW_ITEM32(reg, pfcc, aprx, 0x0C, 30, 1);
4882
4883 /* reg_pfcc_pfcrx
4884 * Priority based flow control policy on Rx[7:0]. Per-priority bit mask:
4885 * 0 - Ignore incoming priority Pause frames on the specified priority
4886 * (default).
4887 * 1 - Respect incoming priority Pause frames on the specified priority.
4888 * Access: RW
4889 */
4890 MLXSW_ITEM32(reg, pfcc, pfcrx, 0x0C, 16, 8);
4891
4892 #define MLXSW_REG_PFCC_ALL_PRIO 0xFF
4893
mlxsw_reg_pfcc_prio_pack(char * payload,u8 pfc_en)4894 static inline void mlxsw_reg_pfcc_prio_pack(char *payload, u8 pfc_en)
4895 {
4896 mlxsw_reg_pfcc_prio_mask_tx_set(payload, MLXSW_REG_PFCC_ALL_PRIO);
4897 mlxsw_reg_pfcc_prio_mask_rx_set(payload, MLXSW_REG_PFCC_ALL_PRIO);
4898 mlxsw_reg_pfcc_pfctx_set(payload, pfc_en);
4899 mlxsw_reg_pfcc_pfcrx_set(payload, pfc_en);
4900 }
4901
mlxsw_reg_pfcc_pack(char * payload,u8 local_port)4902 static inline void mlxsw_reg_pfcc_pack(char *payload, u8 local_port)
4903 {
4904 MLXSW_REG_ZERO(pfcc, payload);
4905 mlxsw_reg_pfcc_local_port_set(payload, local_port);
4906 }
4907
4908 /* PPCNT - Ports Performance Counters Register
4909 * -------------------------------------------
4910 * The PPCNT register retrieves per port performance counters.
4911 */
4912 #define MLXSW_REG_PPCNT_ID 0x5008
4913 #define MLXSW_REG_PPCNT_LEN 0x100
4914 #define MLXSW_REG_PPCNT_COUNTERS_OFFSET 0x08
4915
4916 MLXSW_REG_DEFINE(ppcnt, MLXSW_REG_PPCNT_ID, MLXSW_REG_PPCNT_LEN);
4917
4918 /* reg_ppcnt_swid
4919 * For HCA: must be always 0.
4920 * Switch partition ID to associate port with.
4921 * Switch partitions are numbered from 0 to 7 inclusively.
4922 * Switch partition 254 indicates stacking ports.
4923 * Switch partition 255 indicates all switch partitions.
4924 * Only valid on Set() operation with local_port=255.
4925 * Access: Index
4926 */
4927 MLXSW_ITEM32(reg, ppcnt, swid, 0x00, 24, 8);
4928
4929 /* reg_ppcnt_local_port
4930 * Local port number.
4931 * 255 indicates all ports on the device, and is only allowed
4932 * for Set() operation.
4933 * Access: Index
4934 */
4935 MLXSW_ITEM32(reg, ppcnt, local_port, 0x00, 16, 8);
4936
4937 /* reg_ppcnt_pnat
4938 * Port number access type:
4939 * 0 - Local port number
4940 * 1 - IB port number
4941 * Access: Index
4942 */
4943 MLXSW_ITEM32(reg, ppcnt, pnat, 0x00, 14, 2);
4944
4945 enum mlxsw_reg_ppcnt_grp {
4946 MLXSW_REG_PPCNT_IEEE_8023_CNT = 0x0,
4947 MLXSW_REG_PPCNT_RFC_2863_CNT = 0x1,
4948 MLXSW_REG_PPCNT_RFC_2819_CNT = 0x2,
4949 MLXSW_REG_PPCNT_RFC_3635_CNT = 0x3,
4950 MLXSW_REG_PPCNT_EXT_CNT = 0x5,
4951 MLXSW_REG_PPCNT_DISCARD_CNT = 0x6,
4952 MLXSW_REG_PPCNT_PRIO_CNT = 0x10,
4953 MLXSW_REG_PPCNT_TC_CNT = 0x11,
4954 MLXSW_REG_PPCNT_TC_CONG_TC = 0x13,
4955 };
4956
4957 /* reg_ppcnt_grp
4958 * Performance counter group.
4959 * Group 63 indicates all groups. Only valid on Set() operation with
4960 * clr bit set.
4961 * 0x0: IEEE 802.3 Counters
4962 * 0x1: RFC 2863 Counters
4963 * 0x2: RFC 2819 Counters
4964 * 0x3: RFC 3635 Counters
4965 * 0x5: Ethernet Extended Counters
4966 * 0x6: Ethernet Discard Counters
4967 * 0x8: Link Level Retransmission Counters
4968 * 0x10: Per Priority Counters
4969 * 0x11: Per Traffic Class Counters
4970 * 0x12: Physical Layer Counters
4971 * 0x13: Per Traffic Class Congestion Counters
4972 * Access: Index
4973 */
4974 MLXSW_ITEM32(reg, ppcnt, grp, 0x00, 0, 6);
4975
4976 /* reg_ppcnt_clr
4977 * Clear counters. Setting the clr bit will reset the counter value
4978 * for all counters in the counter group. This bit can be set
4979 * for both Set() and Get() operation.
4980 * Access: OP
4981 */
4982 MLXSW_ITEM32(reg, ppcnt, clr, 0x04, 31, 1);
4983
4984 /* reg_ppcnt_prio_tc
4985 * Priority for counter set that support per priority, valid values: 0-7.
4986 * Traffic class for counter set that support per traffic class,
4987 * valid values: 0- cap_max_tclass-1 .
4988 * For HCA: cap_max_tclass is always 8.
4989 * Otherwise must be 0.
4990 * Access: Index
4991 */
4992 MLXSW_ITEM32(reg, ppcnt, prio_tc, 0x04, 0, 5);
4993
4994 /* Ethernet IEEE 802.3 Counter Group */
4995
4996 /* reg_ppcnt_a_frames_transmitted_ok
4997 * Access: RO
4998 */
4999 MLXSW_ITEM64(reg, ppcnt, a_frames_transmitted_ok,
5000 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x00, 0, 64);
5001
5002 /* reg_ppcnt_a_frames_received_ok
5003 * Access: RO
5004 */
5005 MLXSW_ITEM64(reg, ppcnt, a_frames_received_ok,
5006 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64);
5007
5008 /* reg_ppcnt_a_frame_check_sequence_errors
5009 * Access: RO
5010 */
5011 MLXSW_ITEM64(reg, ppcnt, a_frame_check_sequence_errors,
5012 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x10, 0, 64);
5013
5014 /* reg_ppcnt_a_alignment_errors
5015 * Access: RO
5016 */
5017 MLXSW_ITEM64(reg, ppcnt, a_alignment_errors,
5018 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x18, 0, 64);
5019
5020 /* reg_ppcnt_a_octets_transmitted_ok
5021 * Access: RO
5022 */
5023 MLXSW_ITEM64(reg, ppcnt, a_octets_transmitted_ok,
5024 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x20, 0, 64);
5025
5026 /* reg_ppcnt_a_octets_received_ok
5027 * Access: RO
5028 */
5029 MLXSW_ITEM64(reg, ppcnt, a_octets_received_ok,
5030 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x28, 0, 64);
5031
5032 /* reg_ppcnt_a_multicast_frames_xmitted_ok
5033 * Access: RO
5034 */
5035 MLXSW_ITEM64(reg, ppcnt, a_multicast_frames_xmitted_ok,
5036 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x30, 0, 64);
5037
5038 /* reg_ppcnt_a_broadcast_frames_xmitted_ok
5039 * Access: RO
5040 */
5041 MLXSW_ITEM64(reg, ppcnt, a_broadcast_frames_xmitted_ok,
5042 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x38, 0, 64);
5043
5044 /* reg_ppcnt_a_multicast_frames_received_ok
5045 * Access: RO
5046 */
5047 MLXSW_ITEM64(reg, ppcnt, a_multicast_frames_received_ok,
5048 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x40, 0, 64);
5049
5050 /* reg_ppcnt_a_broadcast_frames_received_ok
5051 * Access: RO
5052 */
5053 MLXSW_ITEM64(reg, ppcnt, a_broadcast_frames_received_ok,
5054 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x48, 0, 64);
5055
5056 /* reg_ppcnt_a_in_range_length_errors
5057 * Access: RO
5058 */
5059 MLXSW_ITEM64(reg, ppcnt, a_in_range_length_errors,
5060 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x50, 0, 64);
5061
5062 /* reg_ppcnt_a_out_of_range_length_field
5063 * Access: RO
5064 */
5065 MLXSW_ITEM64(reg, ppcnt, a_out_of_range_length_field,
5066 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x58, 0, 64);
5067
5068 /* reg_ppcnt_a_frame_too_long_errors
5069 * Access: RO
5070 */
5071 MLXSW_ITEM64(reg, ppcnt, a_frame_too_long_errors,
5072 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x60, 0, 64);
5073
5074 /* reg_ppcnt_a_symbol_error_during_carrier
5075 * Access: RO
5076 */
5077 MLXSW_ITEM64(reg, ppcnt, a_symbol_error_during_carrier,
5078 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x68, 0, 64);
5079
5080 /* reg_ppcnt_a_mac_control_frames_transmitted
5081 * Access: RO
5082 */
5083 MLXSW_ITEM64(reg, ppcnt, a_mac_control_frames_transmitted,
5084 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x70, 0, 64);
5085
5086 /* reg_ppcnt_a_mac_control_frames_received
5087 * Access: RO
5088 */
5089 MLXSW_ITEM64(reg, ppcnt, a_mac_control_frames_received,
5090 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x78, 0, 64);
5091
5092 /* reg_ppcnt_a_unsupported_opcodes_received
5093 * Access: RO
5094 */
5095 MLXSW_ITEM64(reg, ppcnt, a_unsupported_opcodes_received,
5096 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x80, 0, 64);
5097
5098 /* reg_ppcnt_a_pause_mac_ctrl_frames_received
5099 * Access: RO
5100 */
5101 MLXSW_ITEM64(reg, ppcnt, a_pause_mac_ctrl_frames_received,
5102 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x88, 0, 64);
5103
5104 /* reg_ppcnt_a_pause_mac_ctrl_frames_transmitted
5105 * Access: RO
5106 */
5107 MLXSW_ITEM64(reg, ppcnt, a_pause_mac_ctrl_frames_transmitted,
5108 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x90, 0, 64);
5109
5110 /* Ethernet RFC 2863 Counter Group */
5111
5112 /* reg_ppcnt_if_in_discards
5113 * Access: RO
5114 */
5115 MLXSW_ITEM64(reg, ppcnt, if_in_discards,
5116 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x10, 0, 64);
5117
5118 /* reg_ppcnt_if_out_discards
5119 * Access: RO
5120 */
5121 MLXSW_ITEM64(reg, ppcnt, if_out_discards,
5122 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x38, 0, 64);
5123
5124 /* reg_ppcnt_if_out_errors
5125 * Access: RO
5126 */
5127 MLXSW_ITEM64(reg, ppcnt, if_out_errors,
5128 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x40, 0, 64);
5129
5130 /* Ethernet RFC 2819 Counter Group */
5131
5132 /* reg_ppcnt_ether_stats_undersize_pkts
5133 * Access: RO
5134 */
5135 MLXSW_ITEM64(reg, ppcnt, ether_stats_undersize_pkts,
5136 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x30, 0, 64);
5137
5138 /* reg_ppcnt_ether_stats_oversize_pkts
5139 * Access: RO
5140 */
5141 MLXSW_ITEM64(reg, ppcnt, ether_stats_oversize_pkts,
5142 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x38, 0, 64);
5143
5144 /* reg_ppcnt_ether_stats_fragments
5145 * Access: RO
5146 */
5147 MLXSW_ITEM64(reg, ppcnt, ether_stats_fragments,
5148 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x40, 0, 64);
5149
5150 /* reg_ppcnt_ether_stats_pkts64octets
5151 * Access: RO
5152 */
5153 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts64octets,
5154 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x58, 0, 64);
5155
5156 /* reg_ppcnt_ether_stats_pkts65to127octets
5157 * Access: RO
5158 */
5159 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts65to127octets,
5160 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x60, 0, 64);
5161
5162 /* reg_ppcnt_ether_stats_pkts128to255octets
5163 * Access: RO
5164 */
5165 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts128to255octets,
5166 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x68, 0, 64);
5167
5168 /* reg_ppcnt_ether_stats_pkts256to511octets
5169 * Access: RO
5170 */
5171 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts256to511octets,
5172 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x70, 0, 64);
5173
5174 /* reg_ppcnt_ether_stats_pkts512to1023octets
5175 * Access: RO
5176 */
5177 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts512to1023octets,
5178 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x78, 0, 64);
5179
5180 /* reg_ppcnt_ether_stats_pkts1024to1518octets
5181 * Access: RO
5182 */
5183 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts1024to1518octets,
5184 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x80, 0, 64);
5185
5186 /* reg_ppcnt_ether_stats_pkts1519to2047octets
5187 * Access: RO
5188 */
5189 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts1519to2047octets,
5190 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x88, 0, 64);
5191
5192 /* reg_ppcnt_ether_stats_pkts2048to4095octets
5193 * Access: RO
5194 */
5195 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts2048to4095octets,
5196 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x90, 0, 64);
5197
5198 /* reg_ppcnt_ether_stats_pkts4096to8191octets
5199 * Access: RO
5200 */
5201 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts4096to8191octets,
5202 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x98, 0, 64);
5203
5204 /* reg_ppcnt_ether_stats_pkts8192to10239octets
5205 * Access: RO
5206 */
5207 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts8192to10239octets,
5208 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0xA0, 0, 64);
5209
5210 /* Ethernet RFC 3635 Counter Group */
5211
5212 /* reg_ppcnt_dot3stats_fcs_errors
5213 * Access: RO
5214 */
5215 MLXSW_ITEM64(reg, ppcnt, dot3stats_fcs_errors,
5216 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64);
5217
5218 /* reg_ppcnt_dot3stats_symbol_errors
5219 * Access: RO
5220 */
5221 MLXSW_ITEM64(reg, ppcnt, dot3stats_symbol_errors,
5222 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x60, 0, 64);
5223
5224 /* reg_ppcnt_dot3control_in_unknown_opcodes
5225 * Access: RO
5226 */
5227 MLXSW_ITEM64(reg, ppcnt, dot3control_in_unknown_opcodes,
5228 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x68, 0, 64);
5229
5230 /* reg_ppcnt_dot3in_pause_frames
5231 * Access: RO
5232 */
5233 MLXSW_ITEM64(reg, ppcnt, dot3in_pause_frames,
5234 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x70, 0, 64);
5235
5236 /* Ethernet Extended Counter Group Counters */
5237
5238 /* reg_ppcnt_ecn_marked
5239 * Access: RO
5240 */
5241 MLXSW_ITEM64(reg, ppcnt, ecn_marked,
5242 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64);
5243
5244 /* Ethernet Discard Counter Group Counters */
5245
5246 /* reg_ppcnt_ingress_general
5247 * Access: RO
5248 */
5249 MLXSW_ITEM64(reg, ppcnt, ingress_general,
5250 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x00, 0, 64);
5251
5252 /* reg_ppcnt_ingress_policy_engine
5253 * Access: RO
5254 */
5255 MLXSW_ITEM64(reg, ppcnt, ingress_policy_engine,
5256 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64);
5257
5258 /* reg_ppcnt_ingress_vlan_membership
5259 * Access: RO
5260 */
5261 MLXSW_ITEM64(reg, ppcnt, ingress_vlan_membership,
5262 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x10, 0, 64);
5263
5264 /* reg_ppcnt_ingress_tag_frame_type
5265 * Access: RO
5266 */
5267 MLXSW_ITEM64(reg, ppcnt, ingress_tag_frame_type,
5268 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x18, 0, 64);
5269
5270 /* reg_ppcnt_egress_vlan_membership
5271 * Access: RO
5272 */
5273 MLXSW_ITEM64(reg, ppcnt, egress_vlan_membership,
5274 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x20, 0, 64);
5275
5276 /* reg_ppcnt_loopback_filter
5277 * Access: RO
5278 */
5279 MLXSW_ITEM64(reg, ppcnt, loopback_filter,
5280 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x28, 0, 64);
5281
5282 /* reg_ppcnt_egress_general
5283 * Access: RO
5284 */
5285 MLXSW_ITEM64(reg, ppcnt, egress_general,
5286 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x30, 0, 64);
5287
5288 /* reg_ppcnt_egress_hoq
5289 * Access: RO
5290 */
5291 MLXSW_ITEM64(reg, ppcnt, egress_hoq,
5292 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x40, 0, 64);
5293
5294 /* reg_ppcnt_egress_policy_engine
5295 * Access: RO
5296 */
5297 MLXSW_ITEM64(reg, ppcnt, egress_policy_engine,
5298 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x50, 0, 64);
5299
5300 /* reg_ppcnt_ingress_tx_link_down
5301 * Access: RO
5302 */
5303 MLXSW_ITEM64(reg, ppcnt, ingress_tx_link_down,
5304 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x58, 0, 64);
5305
5306 /* reg_ppcnt_egress_stp_filter
5307 * Access: RO
5308 */
5309 MLXSW_ITEM64(reg, ppcnt, egress_stp_filter,
5310 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x60, 0, 64);
5311
5312 /* reg_ppcnt_egress_sll
5313 * Access: RO
5314 */
5315 MLXSW_ITEM64(reg, ppcnt, egress_sll,
5316 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x70, 0, 64);
5317
5318 /* Ethernet Per Priority Group Counters */
5319
5320 /* reg_ppcnt_rx_octets
5321 * Access: RO
5322 */
5323 MLXSW_ITEM64(reg, ppcnt, rx_octets,
5324 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x00, 0, 64);
5325
5326 /* reg_ppcnt_rx_frames
5327 * Access: RO
5328 */
5329 MLXSW_ITEM64(reg, ppcnt, rx_frames,
5330 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x20, 0, 64);
5331
5332 /* reg_ppcnt_tx_octets
5333 * Access: RO
5334 */
5335 MLXSW_ITEM64(reg, ppcnt, tx_octets,
5336 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x28, 0, 64);
5337
5338 /* reg_ppcnt_tx_frames
5339 * Access: RO
5340 */
5341 MLXSW_ITEM64(reg, ppcnt, tx_frames,
5342 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x48, 0, 64);
5343
5344 /* reg_ppcnt_rx_pause
5345 * Access: RO
5346 */
5347 MLXSW_ITEM64(reg, ppcnt, rx_pause,
5348 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x50, 0, 64);
5349
5350 /* reg_ppcnt_rx_pause_duration
5351 * Access: RO
5352 */
5353 MLXSW_ITEM64(reg, ppcnt, rx_pause_duration,
5354 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x58, 0, 64);
5355
5356 /* reg_ppcnt_tx_pause
5357 * Access: RO
5358 */
5359 MLXSW_ITEM64(reg, ppcnt, tx_pause,
5360 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x60, 0, 64);
5361
5362 /* reg_ppcnt_tx_pause_duration
5363 * Access: RO
5364 */
5365 MLXSW_ITEM64(reg, ppcnt, tx_pause_duration,
5366 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x68, 0, 64);
5367
5368 /* reg_ppcnt_rx_pause_transition
5369 * Access: RO
5370 */
5371 MLXSW_ITEM64(reg, ppcnt, tx_pause_transition,
5372 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x70, 0, 64);
5373
5374 /* Ethernet Per Traffic Group Counters */
5375
5376 /* reg_ppcnt_tc_transmit_queue
5377 * Contains the transmit queue depth in cells of traffic class
5378 * selected by prio_tc and the port selected by local_port.
5379 * The field cannot be cleared.
5380 * Access: RO
5381 */
5382 MLXSW_ITEM64(reg, ppcnt, tc_transmit_queue,
5383 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x00, 0, 64);
5384
5385 /* reg_ppcnt_tc_no_buffer_discard_uc
5386 * The number of unicast packets dropped due to lack of shared
5387 * buffer resources.
5388 * Access: RO
5389 */
5390 MLXSW_ITEM64(reg, ppcnt, tc_no_buffer_discard_uc,
5391 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64);
5392
5393 /* Ethernet Per Traffic Class Congestion Group Counters */
5394
5395 /* reg_ppcnt_wred_discard
5396 * Access: RO
5397 */
5398 MLXSW_ITEM64(reg, ppcnt, wred_discard,
5399 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x00, 0, 64);
5400
mlxsw_reg_ppcnt_pack(char * payload,u8 local_port,enum mlxsw_reg_ppcnt_grp grp,u8 prio_tc)5401 static inline void mlxsw_reg_ppcnt_pack(char *payload, u8 local_port,
5402 enum mlxsw_reg_ppcnt_grp grp,
5403 u8 prio_tc)
5404 {
5405 MLXSW_REG_ZERO(ppcnt, payload);
5406 mlxsw_reg_ppcnt_swid_set(payload, 0);
5407 mlxsw_reg_ppcnt_local_port_set(payload, local_port);
5408 mlxsw_reg_ppcnt_pnat_set(payload, 0);
5409 mlxsw_reg_ppcnt_grp_set(payload, grp);
5410 mlxsw_reg_ppcnt_clr_set(payload, 0);
5411 mlxsw_reg_ppcnt_prio_tc_set(payload, prio_tc);
5412 }
5413
5414 /* PLIB - Port Local to InfiniBand Port
5415 * ------------------------------------
5416 * The PLIB register performs mapping from Local Port into InfiniBand Port.
5417 */
5418 #define MLXSW_REG_PLIB_ID 0x500A
5419 #define MLXSW_REG_PLIB_LEN 0x10
5420
5421 MLXSW_REG_DEFINE(plib, MLXSW_REG_PLIB_ID, MLXSW_REG_PLIB_LEN);
5422
5423 /* reg_plib_local_port
5424 * Local port number.
5425 * Access: Index
5426 */
5427 MLXSW_ITEM32(reg, plib, local_port, 0x00, 16, 8);
5428
5429 /* reg_plib_ib_port
5430 * InfiniBand port remapping for local_port.
5431 * Access: RW
5432 */
5433 MLXSW_ITEM32(reg, plib, ib_port, 0x00, 0, 8);
5434
5435 /* PPTB - Port Prio To Buffer Register
5436 * -----------------------------------
5437 * Configures the switch priority to buffer table.
5438 */
5439 #define MLXSW_REG_PPTB_ID 0x500B
5440 #define MLXSW_REG_PPTB_LEN 0x10
5441
5442 MLXSW_REG_DEFINE(pptb, MLXSW_REG_PPTB_ID, MLXSW_REG_PPTB_LEN);
5443
5444 enum {
5445 MLXSW_REG_PPTB_MM_UM,
5446 MLXSW_REG_PPTB_MM_UNICAST,
5447 MLXSW_REG_PPTB_MM_MULTICAST,
5448 };
5449
5450 /* reg_pptb_mm
5451 * Mapping mode.
5452 * 0 - Map both unicast and multicast packets to the same buffer.
5453 * 1 - Map only unicast packets.
5454 * 2 - Map only multicast packets.
5455 * Access: Index
5456 *
5457 * Note: SwitchX-2 only supports the first option.
5458 */
5459 MLXSW_ITEM32(reg, pptb, mm, 0x00, 28, 2);
5460
5461 /* reg_pptb_local_port
5462 * Local port number.
5463 * Access: Index
5464 */
5465 MLXSW_ITEM32(reg, pptb, local_port, 0x00, 16, 8);
5466
5467 /* reg_pptb_um
5468 * Enables the update of the untagged_buf field.
5469 * Access: RW
5470 */
5471 MLXSW_ITEM32(reg, pptb, um, 0x00, 8, 1);
5472
5473 /* reg_pptb_pm
5474 * Enables the update of the prio_to_buff field.
5475 * Bit <i> is a flag for updating the mapping for switch priority <i>.
5476 * Access: RW
5477 */
5478 MLXSW_ITEM32(reg, pptb, pm, 0x00, 0, 8);
5479
5480 /* reg_pptb_prio_to_buff
5481 * Mapping of switch priority <i> to one of the allocated receive port
5482 * buffers.
5483 * Access: RW
5484 */
5485 MLXSW_ITEM_BIT_ARRAY(reg, pptb, prio_to_buff, 0x04, 0x04, 4);
5486
5487 /* reg_pptb_pm_msb
5488 * Enables the update of the prio_to_buff field.
5489 * Bit <i> is a flag for updating the mapping for switch priority <i+8>.
5490 * Access: RW
5491 */
5492 MLXSW_ITEM32(reg, pptb, pm_msb, 0x08, 24, 8);
5493
5494 /* reg_pptb_untagged_buff
5495 * Mapping of untagged frames to one of the allocated receive port buffers.
5496 * Access: RW
5497 *
5498 * Note: In SwitchX-2 this field must be mapped to buffer 8. Reserved for
5499 * Spectrum, as it maps untagged packets based on the default switch priority.
5500 */
5501 MLXSW_ITEM32(reg, pptb, untagged_buff, 0x08, 0, 4);
5502
5503 /* reg_pptb_prio_to_buff_msb
5504 * Mapping of switch priority <i+8> to one of the allocated receive port
5505 * buffers.
5506 * Access: RW
5507 */
5508 MLXSW_ITEM_BIT_ARRAY(reg, pptb, prio_to_buff_msb, 0x0C, 0x04, 4);
5509
5510 #define MLXSW_REG_PPTB_ALL_PRIO 0xFF
5511
mlxsw_reg_pptb_pack(char * payload,u8 local_port)5512 static inline void mlxsw_reg_pptb_pack(char *payload, u8 local_port)
5513 {
5514 MLXSW_REG_ZERO(pptb, payload);
5515 mlxsw_reg_pptb_mm_set(payload, MLXSW_REG_PPTB_MM_UM);
5516 mlxsw_reg_pptb_local_port_set(payload, local_port);
5517 mlxsw_reg_pptb_pm_set(payload, MLXSW_REG_PPTB_ALL_PRIO);
5518 mlxsw_reg_pptb_pm_msb_set(payload, MLXSW_REG_PPTB_ALL_PRIO);
5519 }
5520
mlxsw_reg_pptb_prio_to_buff_pack(char * payload,u8 prio,u8 buff)5521 static inline void mlxsw_reg_pptb_prio_to_buff_pack(char *payload, u8 prio,
5522 u8 buff)
5523 {
5524 mlxsw_reg_pptb_prio_to_buff_set(payload, prio, buff);
5525 mlxsw_reg_pptb_prio_to_buff_msb_set(payload, prio, buff);
5526 }
5527
5528 /* PBMC - Port Buffer Management Control Register
5529 * ----------------------------------------------
5530 * The PBMC register configures and retrieves the port packet buffer
5531 * allocation for different Prios, and the Pause threshold management.
5532 */
5533 #define MLXSW_REG_PBMC_ID 0x500C
5534 #define MLXSW_REG_PBMC_LEN 0x6C
5535
5536 MLXSW_REG_DEFINE(pbmc, MLXSW_REG_PBMC_ID, MLXSW_REG_PBMC_LEN);
5537
5538 /* reg_pbmc_local_port
5539 * Local port number.
5540 * Access: Index
5541 */
5542 MLXSW_ITEM32(reg, pbmc, local_port, 0x00, 16, 8);
5543
5544 /* reg_pbmc_xoff_timer_value
5545 * When device generates a pause frame, it uses this value as the pause
5546 * timer (time for the peer port to pause in quota-512 bit time).
5547 * Access: RW
5548 */
5549 MLXSW_ITEM32(reg, pbmc, xoff_timer_value, 0x04, 16, 16);
5550
5551 /* reg_pbmc_xoff_refresh
5552 * The time before a new pause frame should be sent to refresh the pause RW
5553 * state. Using the same units as xoff_timer_value above (in quota-512 bit
5554 * time).
5555 * Access: RW
5556 */
5557 MLXSW_ITEM32(reg, pbmc, xoff_refresh, 0x04, 0, 16);
5558
5559 #define MLXSW_REG_PBMC_PORT_SHARED_BUF_IDX 11
5560
5561 /* reg_pbmc_buf_lossy
5562 * The field indicates if the buffer is lossy.
5563 * 0 - Lossless
5564 * 1 - Lossy
5565 * Access: RW
5566 */
5567 MLXSW_ITEM32_INDEXED(reg, pbmc, buf_lossy, 0x0C, 25, 1, 0x08, 0x00, false);
5568
5569 /* reg_pbmc_buf_epsb
5570 * Eligible for Port Shared buffer.
5571 * If epsb is set, packets assigned to buffer are allowed to insert the port
5572 * shared buffer.
5573 * When buf_lossy is MLXSW_REG_PBMC_LOSSY_LOSSY this field is reserved.
5574 * Access: RW
5575 */
5576 MLXSW_ITEM32_INDEXED(reg, pbmc, buf_epsb, 0x0C, 24, 1, 0x08, 0x00, false);
5577
5578 /* reg_pbmc_buf_size
5579 * The part of the packet buffer array is allocated for the specific buffer.
5580 * Units are represented in cells.
5581 * Access: RW
5582 */
5583 MLXSW_ITEM32_INDEXED(reg, pbmc, buf_size, 0x0C, 0, 16, 0x08, 0x00, false);
5584
5585 /* reg_pbmc_buf_xoff_threshold
5586 * Once the amount of data in the buffer goes above this value, device
5587 * starts sending PFC frames for all priorities associated with the
5588 * buffer. Units are represented in cells. Reserved in case of lossy
5589 * buffer.
5590 * Access: RW
5591 *
5592 * Note: In Spectrum, reserved for buffer[9].
5593 */
5594 MLXSW_ITEM32_INDEXED(reg, pbmc, buf_xoff_threshold, 0x0C, 16, 16,
5595 0x08, 0x04, false);
5596
5597 /* reg_pbmc_buf_xon_threshold
5598 * When the amount of data in the buffer goes below this value, device
5599 * stops sending PFC frames for the priorities associated with the
5600 * buffer. Units are represented in cells. Reserved in case of lossy
5601 * buffer.
5602 * Access: RW
5603 *
5604 * Note: In Spectrum, reserved for buffer[9].
5605 */
5606 MLXSW_ITEM32_INDEXED(reg, pbmc, buf_xon_threshold, 0x0C, 0, 16,
5607 0x08, 0x04, false);
5608
mlxsw_reg_pbmc_pack(char * payload,u8 local_port,u16 xoff_timer_value,u16 xoff_refresh)5609 static inline void mlxsw_reg_pbmc_pack(char *payload, u8 local_port,
5610 u16 xoff_timer_value, u16 xoff_refresh)
5611 {
5612 MLXSW_REG_ZERO(pbmc, payload);
5613 mlxsw_reg_pbmc_local_port_set(payload, local_port);
5614 mlxsw_reg_pbmc_xoff_timer_value_set(payload, xoff_timer_value);
5615 mlxsw_reg_pbmc_xoff_refresh_set(payload, xoff_refresh);
5616 }
5617
mlxsw_reg_pbmc_lossy_buffer_pack(char * payload,int buf_index,u16 size)5618 static inline void mlxsw_reg_pbmc_lossy_buffer_pack(char *payload,
5619 int buf_index,
5620 u16 size)
5621 {
5622 mlxsw_reg_pbmc_buf_lossy_set(payload, buf_index, 1);
5623 mlxsw_reg_pbmc_buf_epsb_set(payload, buf_index, 0);
5624 mlxsw_reg_pbmc_buf_size_set(payload, buf_index, size);
5625 }
5626
mlxsw_reg_pbmc_lossless_buffer_pack(char * payload,int buf_index,u16 size,u16 threshold)5627 static inline void mlxsw_reg_pbmc_lossless_buffer_pack(char *payload,
5628 int buf_index, u16 size,
5629 u16 threshold)
5630 {
5631 mlxsw_reg_pbmc_buf_lossy_set(payload, buf_index, 0);
5632 mlxsw_reg_pbmc_buf_epsb_set(payload, buf_index, 0);
5633 mlxsw_reg_pbmc_buf_size_set(payload, buf_index, size);
5634 mlxsw_reg_pbmc_buf_xoff_threshold_set(payload, buf_index, threshold);
5635 mlxsw_reg_pbmc_buf_xon_threshold_set(payload, buf_index, threshold);
5636 }
5637
5638 /* PSPA - Port Switch Partition Allocation
5639 * ---------------------------------------
5640 * Controls the association of a port with a switch partition and enables
5641 * configuring ports as stacking ports.
5642 */
5643 #define MLXSW_REG_PSPA_ID 0x500D
5644 #define MLXSW_REG_PSPA_LEN 0x8
5645
5646 MLXSW_REG_DEFINE(pspa, MLXSW_REG_PSPA_ID, MLXSW_REG_PSPA_LEN);
5647
5648 /* reg_pspa_swid
5649 * Switch partition ID.
5650 * Access: RW
5651 */
5652 MLXSW_ITEM32(reg, pspa, swid, 0x00, 24, 8);
5653
5654 /* reg_pspa_local_port
5655 * Local port number.
5656 * Access: Index
5657 */
5658 MLXSW_ITEM32(reg, pspa, local_port, 0x00, 16, 8);
5659
5660 /* reg_pspa_sub_port
5661 * Virtual port within the local port. Set to 0 when virtual ports are
5662 * disabled on the local port.
5663 * Access: Index
5664 */
5665 MLXSW_ITEM32(reg, pspa, sub_port, 0x00, 8, 8);
5666
mlxsw_reg_pspa_pack(char * payload,u8 swid,u8 local_port)5667 static inline void mlxsw_reg_pspa_pack(char *payload, u8 swid, u8 local_port)
5668 {
5669 MLXSW_REG_ZERO(pspa, payload);
5670 mlxsw_reg_pspa_swid_set(payload, swid);
5671 mlxsw_reg_pspa_local_port_set(payload, local_port);
5672 mlxsw_reg_pspa_sub_port_set(payload, 0);
5673 }
5674
5675 /* PMAOS - Ports Module Administrative and Operational Status
5676 * ----------------------------------------------------------
5677 * This register configures and retrieves the per module status.
5678 */
5679 #define MLXSW_REG_PMAOS_ID 0x5012
5680 #define MLXSW_REG_PMAOS_LEN 0x10
5681
5682 MLXSW_REG_DEFINE(pmaos, MLXSW_REG_PMAOS_ID, MLXSW_REG_PMAOS_LEN);
5683
5684 /* reg_pmaos_slot_index
5685 * Slot index.
5686 * Access: Index
5687 */
5688 MLXSW_ITEM32(reg, pmaos, slot_index, 0x00, 24, 4);
5689
5690 /* reg_pmaos_module
5691 * Module number.
5692 * Access: Index
5693 */
5694 MLXSW_ITEM32(reg, pmaos, module, 0x00, 16, 8);
5695
5696 /* reg_pmaos_ase
5697 * Admin state update enable.
5698 * If this bit is set, admin state will be updated based on admin_state field.
5699 * Only relevant on Set() operations.
5700 * Access: WO
5701 */
5702 MLXSW_ITEM32(reg, pmaos, ase, 0x04, 31, 1);
5703
5704 /* reg_pmaos_ee
5705 * Event update enable.
5706 * If this bit is set, event generation will be updated based on the e field.
5707 * Only relevant on Set operations.
5708 * Access: WO
5709 */
5710 MLXSW_ITEM32(reg, pmaos, ee, 0x04, 30, 1);
5711
5712 enum mlxsw_reg_pmaos_e {
5713 MLXSW_REG_PMAOS_E_DO_NOT_GENERATE_EVENT,
5714 MLXSW_REG_PMAOS_E_GENERATE_EVENT,
5715 MLXSW_REG_PMAOS_E_GENERATE_SINGLE_EVENT,
5716 };
5717
5718 /* reg_pmaos_e
5719 * Event Generation on operational state change.
5720 * Access: RW
5721 */
5722 MLXSW_ITEM32(reg, pmaos, e, 0x04, 0, 2);
5723
mlxsw_reg_pmaos_pack(char * payload,u8 module,enum mlxsw_reg_pmaos_e e)5724 static inline void mlxsw_reg_pmaos_pack(char *payload, u8 module,
5725 enum mlxsw_reg_pmaos_e e)
5726 {
5727 MLXSW_REG_ZERO(pmaos, payload);
5728 mlxsw_reg_pmaos_module_set(payload, module);
5729 mlxsw_reg_pmaos_e_set(payload, e);
5730 mlxsw_reg_pmaos_ee_set(payload, true);
5731 }
5732
5733 /* PPLR - Port Physical Loopback Register
5734 * --------------------------------------
5735 * This register allows configuration of the port's loopback mode.
5736 */
5737 #define MLXSW_REG_PPLR_ID 0x5018
5738 #define MLXSW_REG_PPLR_LEN 0x8
5739
5740 MLXSW_REG_DEFINE(pplr, MLXSW_REG_PPLR_ID, MLXSW_REG_PPLR_LEN);
5741
5742 /* reg_pplr_local_port
5743 * Local port number.
5744 * Access: Index
5745 */
5746 MLXSW_ITEM32(reg, pplr, local_port, 0x00, 16, 8);
5747
5748 /* Phy local loopback. When set the port's egress traffic is looped back
5749 * to the receiver and the port transmitter is disabled.
5750 */
5751 #define MLXSW_REG_PPLR_LB_TYPE_BIT_PHY_LOCAL BIT(1)
5752
5753 /* reg_pplr_lb_en
5754 * Loopback enable.
5755 * Access: RW
5756 */
5757 MLXSW_ITEM32(reg, pplr, lb_en, 0x04, 0, 8);
5758
mlxsw_reg_pplr_pack(char * payload,u8 local_port,bool phy_local)5759 static inline void mlxsw_reg_pplr_pack(char *payload, u8 local_port,
5760 bool phy_local)
5761 {
5762 MLXSW_REG_ZERO(pplr, payload);
5763 mlxsw_reg_pplr_local_port_set(payload, local_port);
5764 mlxsw_reg_pplr_lb_en_set(payload,
5765 phy_local ?
5766 MLXSW_REG_PPLR_LB_TYPE_BIT_PHY_LOCAL : 0);
5767 }
5768
5769 /* PMPE - Port Module Plug/Unplug Event Register
5770 * ---------------------------------------------
5771 * This register reports any operational status change of a module.
5772 * A change in the module’s state will generate an event only if the change
5773 * happens after arming the event mechanism. Any changes to the module state
5774 * while the event mechanism is not armed will not be reported. Software can
5775 * query the PMPE register for module status.
5776 */
5777 #define MLXSW_REG_PMPE_ID 0x5024
5778 #define MLXSW_REG_PMPE_LEN 0x10
5779
5780 MLXSW_REG_DEFINE(pmpe, MLXSW_REG_PMPE_ID, MLXSW_REG_PMPE_LEN);
5781
5782 /* reg_pmpe_slot_index
5783 * Slot index.
5784 * Access: Index
5785 */
5786 MLXSW_ITEM32(reg, pmpe, slot_index, 0x00, 24, 4);
5787
5788 /* reg_pmpe_module
5789 * Module number.
5790 * Access: Index
5791 */
5792 MLXSW_ITEM32(reg, pmpe, module, 0x00, 16, 8);
5793
5794 enum mlxsw_reg_pmpe_module_status {
5795 MLXSW_REG_PMPE_MODULE_STATUS_PLUGGED_ENABLED = 1,
5796 MLXSW_REG_PMPE_MODULE_STATUS_UNPLUGGED,
5797 MLXSW_REG_PMPE_MODULE_STATUS_PLUGGED_ERROR,
5798 MLXSW_REG_PMPE_MODULE_STATUS_PLUGGED_DISABLED,
5799 };
5800
5801 /* reg_pmpe_module_status
5802 * Module status.
5803 * Access: RO
5804 */
5805 MLXSW_ITEM32(reg, pmpe, module_status, 0x00, 0, 4);
5806
5807 /* reg_pmpe_error_type
5808 * Module error details.
5809 * Access: RO
5810 */
5811 MLXSW_ITEM32(reg, pmpe, error_type, 0x04, 8, 4);
5812
5813 /* PDDR - Port Diagnostics Database Register
5814 * -----------------------------------------
5815 * The PDDR enables to read the Phy debug database
5816 */
5817 #define MLXSW_REG_PDDR_ID 0x5031
5818 #define MLXSW_REG_PDDR_LEN 0x100
5819
5820 MLXSW_REG_DEFINE(pddr, MLXSW_REG_PDDR_ID, MLXSW_REG_PDDR_LEN);
5821
5822 /* reg_pddr_local_port
5823 * Local port number.
5824 * Access: Index
5825 */
5826 MLXSW_ITEM32(reg, pddr, local_port, 0x00, 16, 8);
5827
5828 enum mlxsw_reg_pddr_page_select {
5829 MLXSW_REG_PDDR_PAGE_SELECT_TROUBLESHOOTING_INFO = 1,
5830 };
5831
5832 /* reg_pddr_page_select
5833 * Page select index.
5834 * Access: Index
5835 */
5836 MLXSW_ITEM32(reg, pddr, page_select, 0x04, 0, 8);
5837
5838 enum mlxsw_reg_pddr_trblsh_group_opcode {
5839 /* Monitor opcodes */
5840 MLXSW_REG_PDDR_TRBLSH_GROUP_OPCODE_MONITOR,
5841 };
5842
5843 /* reg_pddr_group_opcode
5844 * Group selector.
5845 * Access: Index
5846 */
5847 MLXSW_ITEM32(reg, pddr, trblsh_group_opcode, 0x08, 0, 16);
5848
5849 /* reg_pddr_status_opcode
5850 * Group selector.
5851 * Access: RO
5852 */
5853 MLXSW_ITEM32(reg, pddr, trblsh_status_opcode, 0x0C, 0, 16);
5854
mlxsw_reg_pddr_pack(char * payload,u8 local_port,u8 page_select)5855 static inline void mlxsw_reg_pddr_pack(char *payload, u8 local_port,
5856 u8 page_select)
5857 {
5858 MLXSW_REG_ZERO(pddr, payload);
5859 mlxsw_reg_pddr_local_port_set(payload, local_port);
5860 mlxsw_reg_pddr_page_select_set(payload, page_select);
5861 }
5862
5863 /* PMTM - Port Module Type Mapping Register
5864 * ----------------------------------------
5865 * The PMTM allows query or configuration of module types.
5866 */
5867 #define MLXSW_REG_PMTM_ID 0x5067
5868 #define MLXSW_REG_PMTM_LEN 0x10
5869
5870 MLXSW_REG_DEFINE(pmtm, MLXSW_REG_PMTM_ID, MLXSW_REG_PMTM_LEN);
5871
5872 /* reg_pmtm_module
5873 * Module number.
5874 * Access: Index
5875 */
5876 MLXSW_ITEM32(reg, pmtm, module, 0x00, 16, 8);
5877
5878 enum mlxsw_reg_pmtm_module_type {
5879 /* Backplane with 4 lanes */
5880 MLXSW_REG_PMTM_MODULE_TYPE_BP_4X,
5881 /* QSFP */
5882 MLXSW_REG_PMTM_MODULE_TYPE_QSFP,
5883 /* SFP */
5884 MLXSW_REG_PMTM_MODULE_TYPE_SFP,
5885 /* Backplane with single lane */
5886 MLXSW_REG_PMTM_MODULE_TYPE_BP_1X = 4,
5887 /* Backplane with two lane */
5888 MLXSW_REG_PMTM_MODULE_TYPE_BP_2X = 8,
5889 /* Chip2Chip4x */
5890 MLXSW_REG_PMTM_MODULE_TYPE_C2C4X = 10,
5891 /* Chip2Chip2x */
5892 MLXSW_REG_PMTM_MODULE_TYPE_C2C2X,
5893 /* Chip2Chip1x */
5894 MLXSW_REG_PMTM_MODULE_TYPE_C2C1X,
5895 /* QSFP-DD */
5896 MLXSW_REG_PMTM_MODULE_TYPE_QSFP_DD = 14,
5897 /* OSFP */
5898 MLXSW_REG_PMTM_MODULE_TYPE_OSFP,
5899 /* SFP-DD */
5900 MLXSW_REG_PMTM_MODULE_TYPE_SFP_DD,
5901 /* DSFP */
5902 MLXSW_REG_PMTM_MODULE_TYPE_DSFP,
5903 /* Chip2Chip8x */
5904 MLXSW_REG_PMTM_MODULE_TYPE_C2C8X,
5905 };
5906
5907 /* reg_pmtm_module_type
5908 * Module type.
5909 * Access: RW
5910 */
5911 MLXSW_ITEM32(reg, pmtm, module_type, 0x04, 0, 4);
5912
mlxsw_reg_pmtm_pack(char * payload,u8 module)5913 static inline void mlxsw_reg_pmtm_pack(char *payload, u8 module)
5914 {
5915 MLXSW_REG_ZERO(pmtm, payload);
5916 mlxsw_reg_pmtm_module_set(payload, module);
5917 }
5918
5919 static inline void
mlxsw_reg_pmtm_unpack(char * payload,enum mlxsw_reg_pmtm_module_type * module_type)5920 mlxsw_reg_pmtm_unpack(char *payload,
5921 enum mlxsw_reg_pmtm_module_type *module_type)
5922 {
5923 *module_type = mlxsw_reg_pmtm_module_type_get(payload);
5924 }
5925
5926 /* HTGT - Host Trap Group Table
5927 * ----------------------------
5928 * Configures the properties for forwarding to CPU.
5929 */
5930 #define MLXSW_REG_HTGT_ID 0x7002
5931 #define MLXSW_REG_HTGT_LEN 0x20
5932
5933 MLXSW_REG_DEFINE(htgt, MLXSW_REG_HTGT_ID, MLXSW_REG_HTGT_LEN);
5934
5935 /* reg_htgt_swid
5936 * Switch partition ID.
5937 * Access: Index
5938 */
5939 MLXSW_ITEM32(reg, htgt, swid, 0x00, 24, 8);
5940
5941 #define MLXSW_REG_HTGT_PATH_TYPE_LOCAL 0x0 /* For locally attached CPU */
5942
5943 /* reg_htgt_type
5944 * CPU path type.
5945 * Access: RW
5946 */
5947 MLXSW_ITEM32(reg, htgt, type, 0x00, 8, 4);
5948
5949 enum mlxsw_reg_htgt_trap_group {
5950 MLXSW_REG_HTGT_TRAP_GROUP_EMAD,
5951 MLXSW_REG_HTGT_TRAP_GROUP_MFDE,
5952 MLXSW_REG_HTGT_TRAP_GROUP_MTWE,
5953 MLXSW_REG_HTGT_TRAP_GROUP_PMPE,
5954 MLXSW_REG_HTGT_TRAP_GROUP_SP_STP,
5955 MLXSW_REG_HTGT_TRAP_GROUP_SP_LACP,
5956 MLXSW_REG_HTGT_TRAP_GROUP_SP_LLDP,
5957 MLXSW_REG_HTGT_TRAP_GROUP_SP_MC_SNOOPING,
5958 MLXSW_REG_HTGT_TRAP_GROUP_SP_BGP,
5959 MLXSW_REG_HTGT_TRAP_GROUP_SP_OSPF,
5960 MLXSW_REG_HTGT_TRAP_GROUP_SP_PIM,
5961 MLXSW_REG_HTGT_TRAP_GROUP_SP_MULTICAST,
5962 MLXSW_REG_HTGT_TRAP_GROUP_SP_NEIGH_DISCOVERY,
5963 MLXSW_REG_HTGT_TRAP_GROUP_SP_ROUTER_EXP,
5964 MLXSW_REG_HTGT_TRAP_GROUP_SP_EXTERNAL_ROUTE,
5965 MLXSW_REG_HTGT_TRAP_GROUP_SP_IP2ME,
5966 MLXSW_REG_HTGT_TRAP_GROUP_SP_DHCP,
5967 MLXSW_REG_HTGT_TRAP_GROUP_SP_EVENT,
5968 MLXSW_REG_HTGT_TRAP_GROUP_SP_IPV6,
5969 MLXSW_REG_HTGT_TRAP_GROUP_SP_LBERROR,
5970 MLXSW_REG_HTGT_TRAP_GROUP_SP_PTP0,
5971 MLXSW_REG_HTGT_TRAP_GROUP_SP_PTP1,
5972 MLXSW_REG_HTGT_TRAP_GROUP_SP_VRRP,
5973 MLXSW_REG_HTGT_TRAP_GROUP_SP_PKT_SAMPLE,
5974 MLXSW_REG_HTGT_TRAP_GROUP_SP_FLOW_LOGGING,
5975 MLXSW_REG_HTGT_TRAP_GROUP_SP_FID_MISS,
5976 MLXSW_REG_HTGT_TRAP_GROUP_SP_BFD,
5977 MLXSW_REG_HTGT_TRAP_GROUP_SP_DUMMY,
5978 MLXSW_REG_HTGT_TRAP_GROUP_SP_L2_DISCARDS,
5979 MLXSW_REG_HTGT_TRAP_GROUP_SP_L3_DISCARDS,
5980 MLXSW_REG_HTGT_TRAP_GROUP_SP_L3_EXCEPTIONS,
5981 MLXSW_REG_HTGT_TRAP_GROUP_SP_TUNNEL_DISCARDS,
5982 MLXSW_REG_HTGT_TRAP_GROUP_SP_ACL_DISCARDS,
5983 MLXSW_REG_HTGT_TRAP_GROUP_SP_BUFFER_DISCARDS,
5984
5985 __MLXSW_REG_HTGT_TRAP_GROUP_MAX,
5986 MLXSW_REG_HTGT_TRAP_GROUP_MAX = __MLXSW_REG_HTGT_TRAP_GROUP_MAX - 1
5987 };
5988
5989 /* reg_htgt_trap_group
5990 * Trap group number. User defined number specifying which trap groups
5991 * should be forwarded to the CPU. The mapping between trap IDs and trap
5992 * groups is configured using HPKT register.
5993 * Access: Index
5994 */
5995 MLXSW_ITEM32(reg, htgt, trap_group, 0x00, 0, 8);
5996
5997 enum {
5998 MLXSW_REG_HTGT_POLICER_DISABLE,
5999 MLXSW_REG_HTGT_POLICER_ENABLE,
6000 };
6001
6002 /* reg_htgt_pide
6003 * Enable policer ID specified using 'pid' field.
6004 * Access: RW
6005 */
6006 MLXSW_ITEM32(reg, htgt, pide, 0x04, 15, 1);
6007
6008 #define MLXSW_REG_HTGT_INVALID_POLICER 0xff
6009
6010 /* reg_htgt_pid
6011 * Policer ID for the trap group.
6012 * Access: RW
6013 */
6014 MLXSW_ITEM32(reg, htgt, pid, 0x04, 0, 8);
6015
6016 #define MLXSW_REG_HTGT_TRAP_TO_CPU 0x0
6017
6018 /* reg_htgt_mirror_action
6019 * Mirror action to use.
6020 * 0 - Trap to CPU.
6021 * 1 - Trap to CPU and mirror to a mirroring agent.
6022 * 2 - Mirror to a mirroring agent and do not trap to CPU.
6023 * Access: RW
6024 *
6025 * Note: Mirroring to a mirroring agent is only supported in Spectrum.
6026 */
6027 MLXSW_ITEM32(reg, htgt, mirror_action, 0x08, 8, 2);
6028
6029 /* reg_htgt_mirroring_agent
6030 * Mirroring agent.
6031 * Access: RW
6032 */
6033 MLXSW_ITEM32(reg, htgt, mirroring_agent, 0x08, 0, 3);
6034
6035 #define MLXSW_REG_HTGT_DEFAULT_PRIORITY 0
6036
6037 /* reg_htgt_priority
6038 * Trap group priority.
6039 * In case a packet matches multiple classification rules, the packet will
6040 * only be trapped once, based on the trap ID associated with the group (via
6041 * register HPKT) with the highest priority.
6042 * Supported values are 0-7, with 7 represnting the highest priority.
6043 * Access: RW
6044 *
6045 * Note: In SwitchX-2 this field is ignored and the priority value is replaced
6046 * by the 'trap_group' field.
6047 */
6048 MLXSW_ITEM32(reg, htgt, priority, 0x0C, 0, 4);
6049
6050 #define MLXSW_REG_HTGT_DEFAULT_TC 7
6051
6052 /* reg_htgt_local_path_cpu_tclass
6053 * CPU ingress traffic class for the trap group.
6054 * Access: RW
6055 */
6056 MLXSW_ITEM32(reg, htgt, local_path_cpu_tclass, 0x10, 16, 6);
6057
6058 enum mlxsw_reg_htgt_local_path_rdq {
6059 MLXSW_REG_HTGT_LOCAL_PATH_RDQ_SX2_CTRL = 0x13,
6060 MLXSW_REG_HTGT_LOCAL_PATH_RDQ_SX2_RX = 0x14,
6061 MLXSW_REG_HTGT_LOCAL_PATH_RDQ_SX2_EMAD = 0x15,
6062 MLXSW_REG_HTGT_LOCAL_PATH_RDQ_SIB_EMAD = 0x15,
6063 };
6064 /* reg_htgt_local_path_rdq
6065 * Receive descriptor queue (RDQ) to use for the trap group.
6066 * Access: RW
6067 */
6068 MLXSW_ITEM32(reg, htgt, local_path_rdq, 0x10, 0, 6);
6069
mlxsw_reg_htgt_pack(char * payload,u8 group,u8 policer_id,u8 priority,u8 tc)6070 static inline void mlxsw_reg_htgt_pack(char *payload, u8 group, u8 policer_id,
6071 u8 priority, u8 tc)
6072 {
6073 MLXSW_REG_ZERO(htgt, payload);
6074
6075 if (policer_id == MLXSW_REG_HTGT_INVALID_POLICER) {
6076 mlxsw_reg_htgt_pide_set(payload,
6077 MLXSW_REG_HTGT_POLICER_DISABLE);
6078 } else {
6079 mlxsw_reg_htgt_pide_set(payload,
6080 MLXSW_REG_HTGT_POLICER_ENABLE);
6081 mlxsw_reg_htgt_pid_set(payload, policer_id);
6082 }
6083
6084 mlxsw_reg_htgt_type_set(payload, MLXSW_REG_HTGT_PATH_TYPE_LOCAL);
6085 mlxsw_reg_htgt_trap_group_set(payload, group);
6086 mlxsw_reg_htgt_mirror_action_set(payload, MLXSW_REG_HTGT_TRAP_TO_CPU);
6087 mlxsw_reg_htgt_mirroring_agent_set(payload, 0);
6088 mlxsw_reg_htgt_priority_set(payload, priority);
6089 mlxsw_reg_htgt_local_path_cpu_tclass_set(payload, tc);
6090 mlxsw_reg_htgt_local_path_rdq_set(payload, group);
6091 }
6092
6093 /* HPKT - Host Packet Trap
6094 * -----------------------
6095 * Configures trap IDs inside trap groups.
6096 */
6097 #define MLXSW_REG_HPKT_ID 0x7003
6098 #define MLXSW_REG_HPKT_LEN 0x10
6099
6100 MLXSW_REG_DEFINE(hpkt, MLXSW_REG_HPKT_ID, MLXSW_REG_HPKT_LEN);
6101
6102 enum {
6103 MLXSW_REG_HPKT_ACK_NOT_REQUIRED,
6104 MLXSW_REG_HPKT_ACK_REQUIRED,
6105 };
6106
6107 /* reg_hpkt_ack
6108 * Require acknowledgements from the host for events.
6109 * If set, then the device will wait for the event it sent to be acknowledged
6110 * by the host. This option is only relevant for event trap IDs.
6111 * Access: RW
6112 *
6113 * Note: Currently not supported by firmware.
6114 */
6115 MLXSW_ITEM32(reg, hpkt, ack, 0x00, 24, 1);
6116
6117 enum mlxsw_reg_hpkt_action {
6118 MLXSW_REG_HPKT_ACTION_FORWARD,
6119 MLXSW_REG_HPKT_ACTION_TRAP_TO_CPU,
6120 MLXSW_REG_HPKT_ACTION_MIRROR_TO_CPU,
6121 MLXSW_REG_HPKT_ACTION_DISCARD,
6122 MLXSW_REG_HPKT_ACTION_SOFT_DISCARD,
6123 MLXSW_REG_HPKT_ACTION_TRAP_AND_SOFT_DISCARD,
6124 MLXSW_REG_HPKT_ACTION_TRAP_EXCEPTION_TO_CPU,
6125 MLXSW_REG_HPKT_ACTION_SET_FW_DEFAULT = 15,
6126 };
6127
6128 /* reg_hpkt_action
6129 * Action to perform on packet when trapped.
6130 * 0 - No action. Forward to CPU based on switching rules.
6131 * 1 - Trap to CPU (CPU receives sole copy).
6132 * 2 - Mirror to CPU (CPU receives a replica of the packet).
6133 * 3 - Discard.
6134 * 4 - Soft discard (allow other traps to act on the packet).
6135 * 5 - Trap and soft discard (allow other traps to overwrite this trap).
6136 * 6 - Trap to CPU (CPU receives sole copy) and count it as error.
6137 * 15 - Restore the firmware's default action.
6138 * Access: RW
6139 *
6140 * Note: Must be set to 0 (forward) for event trap IDs, as they are already
6141 * addressed to the CPU.
6142 */
6143 MLXSW_ITEM32(reg, hpkt, action, 0x00, 20, 3);
6144
6145 /* reg_hpkt_trap_group
6146 * Trap group to associate the trap with.
6147 * Access: RW
6148 */
6149 MLXSW_ITEM32(reg, hpkt, trap_group, 0x00, 12, 6);
6150
6151 /* reg_hpkt_trap_id
6152 * Trap ID.
6153 * Access: Index
6154 *
6155 * Note: A trap ID can only be associated with a single trap group. The device
6156 * will associate the trap ID with the last trap group configured.
6157 */
6158 MLXSW_ITEM32(reg, hpkt, trap_id, 0x00, 0, 10);
6159
6160 enum {
6161 MLXSW_REG_HPKT_CTRL_PACKET_DEFAULT,
6162 MLXSW_REG_HPKT_CTRL_PACKET_NO_BUFFER,
6163 MLXSW_REG_HPKT_CTRL_PACKET_USE_BUFFER,
6164 };
6165
6166 /* reg_hpkt_ctrl
6167 * Configure dedicated buffer resources for control packets.
6168 * Ignored by SwitchX-2.
6169 * 0 - Keep factory defaults.
6170 * 1 - Do not use control buffer for this trap ID.
6171 * 2 - Use control buffer for this trap ID.
6172 * Access: RW
6173 */
6174 MLXSW_ITEM32(reg, hpkt, ctrl, 0x04, 16, 2);
6175
mlxsw_reg_hpkt_pack(char * payload,u8 action,u16 trap_id,enum mlxsw_reg_htgt_trap_group trap_group,bool is_ctrl)6176 static inline void mlxsw_reg_hpkt_pack(char *payload, u8 action, u16 trap_id,
6177 enum mlxsw_reg_htgt_trap_group trap_group,
6178 bool is_ctrl)
6179 {
6180 MLXSW_REG_ZERO(hpkt, payload);
6181 mlxsw_reg_hpkt_ack_set(payload, MLXSW_REG_HPKT_ACK_NOT_REQUIRED);
6182 mlxsw_reg_hpkt_action_set(payload, action);
6183 mlxsw_reg_hpkt_trap_group_set(payload, trap_group);
6184 mlxsw_reg_hpkt_trap_id_set(payload, trap_id);
6185 mlxsw_reg_hpkt_ctrl_set(payload, is_ctrl ?
6186 MLXSW_REG_HPKT_CTRL_PACKET_USE_BUFFER :
6187 MLXSW_REG_HPKT_CTRL_PACKET_NO_BUFFER);
6188 }
6189
6190 /* RGCR - Router General Configuration Register
6191 * --------------------------------------------
6192 * The register is used for setting up the router configuration.
6193 */
6194 #define MLXSW_REG_RGCR_ID 0x8001
6195 #define MLXSW_REG_RGCR_LEN 0x28
6196
6197 MLXSW_REG_DEFINE(rgcr, MLXSW_REG_RGCR_ID, MLXSW_REG_RGCR_LEN);
6198
6199 /* reg_rgcr_ipv4_en
6200 * IPv4 router enable.
6201 * Access: RW
6202 */
6203 MLXSW_ITEM32(reg, rgcr, ipv4_en, 0x00, 31, 1);
6204
6205 /* reg_rgcr_ipv6_en
6206 * IPv6 router enable.
6207 * Access: RW
6208 */
6209 MLXSW_ITEM32(reg, rgcr, ipv6_en, 0x00, 30, 1);
6210
6211 /* reg_rgcr_max_router_interfaces
6212 * Defines the maximum number of active router interfaces for all virtual
6213 * routers.
6214 * Access: RW
6215 */
6216 MLXSW_ITEM32(reg, rgcr, max_router_interfaces, 0x10, 0, 16);
6217
6218 /* reg_rgcr_usp
6219 * Update switch priority and packet color.
6220 * 0 - Preserve the value of Switch Priority and packet color.
6221 * 1 - Recalculate the value of Switch Priority and packet color.
6222 * Access: RW
6223 *
6224 * Note: Not supported by SwitchX and SwitchX-2.
6225 */
6226 MLXSW_ITEM32(reg, rgcr, usp, 0x18, 20, 1);
6227
6228 /* reg_rgcr_pcp_rw
6229 * Indicates how to handle the pcp_rewrite_en value:
6230 * 0 - Preserve the value of pcp_rewrite_en.
6231 * 2 - Disable PCP rewrite.
6232 * 3 - Enable PCP rewrite.
6233 * Access: RW
6234 *
6235 * Note: Not supported by SwitchX and SwitchX-2.
6236 */
6237 MLXSW_ITEM32(reg, rgcr, pcp_rw, 0x18, 16, 2);
6238
6239 /* reg_rgcr_activity_dis
6240 * Activity disable:
6241 * 0 - Activity will be set when an entry is hit (default).
6242 * 1 - Activity will not be set when an entry is hit.
6243 *
6244 * Bit 0 - Disable activity bit in Router Algorithmic LPM Unicast Entry
6245 * (RALUE).
6246 * Bit 1 - Disable activity bit in Router Algorithmic LPM Unicast Host
6247 * Entry (RAUHT).
6248 * Bits 2:7 are reserved.
6249 * Access: RW
6250 *
6251 * Note: Not supported by SwitchX, SwitchX-2 and Switch-IB.
6252 */
6253 MLXSW_ITEM32(reg, rgcr, activity_dis, 0x20, 0, 8);
6254
mlxsw_reg_rgcr_pack(char * payload,bool ipv4_en,bool ipv6_en)6255 static inline void mlxsw_reg_rgcr_pack(char *payload, bool ipv4_en,
6256 bool ipv6_en)
6257 {
6258 MLXSW_REG_ZERO(rgcr, payload);
6259 mlxsw_reg_rgcr_ipv4_en_set(payload, ipv4_en);
6260 mlxsw_reg_rgcr_ipv6_en_set(payload, ipv6_en);
6261 }
6262
6263 /* RITR - Router Interface Table Register
6264 * --------------------------------------
6265 * The register is used to configure the router interface table.
6266 */
6267 #define MLXSW_REG_RITR_ID 0x8002
6268 #define MLXSW_REG_RITR_LEN 0x40
6269
6270 MLXSW_REG_DEFINE(ritr, MLXSW_REG_RITR_ID, MLXSW_REG_RITR_LEN);
6271
6272 /* reg_ritr_enable
6273 * Enables routing on the router interface.
6274 * Access: RW
6275 */
6276 MLXSW_ITEM32(reg, ritr, enable, 0x00, 31, 1);
6277
6278 /* reg_ritr_ipv4
6279 * IPv4 routing enable. Enables routing of IPv4 traffic on the router
6280 * interface.
6281 * Access: RW
6282 */
6283 MLXSW_ITEM32(reg, ritr, ipv4, 0x00, 29, 1);
6284
6285 /* reg_ritr_ipv6
6286 * IPv6 routing enable. Enables routing of IPv6 traffic on the router
6287 * interface.
6288 * Access: RW
6289 */
6290 MLXSW_ITEM32(reg, ritr, ipv6, 0x00, 28, 1);
6291
6292 /* reg_ritr_ipv4_mc
6293 * IPv4 multicast routing enable.
6294 * Access: RW
6295 */
6296 MLXSW_ITEM32(reg, ritr, ipv4_mc, 0x00, 27, 1);
6297
6298 /* reg_ritr_ipv6_mc
6299 * IPv6 multicast routing enable.
6300 * Access: RW
6301 */
6302 MLXSW_ITEM32(reg, ritr, ipv6_mc, 0x00, 26, 1);
6303
6304 enum mlxsw_reg_ritr_if_type {
6305 /* VLAN interface. */
6306 MLXSW_REG_RITR_VLAN_IF,
6307 /* FID interface. */
6308 MLXSW_REG_RITR_FID_IF,
6309 /* Sub-port interface. */
6310 MLXSW_REG_RITR_SP_IF,
6311 /* Loopback Interface. */
6312 MLXSW_REG_RITR_LOOPBACK_IF,
6313 };
6314
6315 /* reg_ritr_type
6316 * Router interface type as per enum mlxsw_reg_ritr_if_type.
6317 * Access: RW
6318 */
6319 MLXSW_ITEM32(reg, ritr, type, 0x00, 23, 3);
6320
6321 enum {
6322 MLXSW_REG_RITR_RIF_CREATE,
6323 MLXSW_REG_RITR_RIF_DEL,
6324 };
6325
6326 /* reg_ritr_op
6327 * Opcode:
6328 * 0 - Create or edit RIF.
6329 * 1 - Delete RIF.
6330 * Reserved for SwitchX-2. For Spectrum, editing of interface properties
6331 * is not supported. An interface must be deleted and re-created in order
6332 * to update properties.
6333 * Access: WO
6334 */
6335 MLXSW_ITEM32(reg, ritr, op, 0x00, 20, 2);
6336
6337 /* reg_ritr_rif
6338 * Router interface index. A pointer to the Router Interface Table.
6339 * Access: Index
6340 */
6341 MLXSW_ITEM32(reg, ritr, rif, 0x00, 0, 16);
6342
6343 /* reg_ritr_ipv4_fe
6344 * IPv4 Forwarding Enable.
6345 * Enables routing of IPv4 traffic on the router interface. When disabled,
6346 * forwarding is blocked but local traffic (traps and IP2ME) will be enabled.
6347 * Not supported in SwitchX-2.
6348 * Access: RW
6349 */
6350 MLXSW_ITEM32(reg, ritr, ipv4_fe, 0x04, 29, 1);
6351
6352 /* reg_ritr_ipv6_fe
6353 * IPv6 Forwarding Enable.
6354 * Enables routing of IPv6 traffic on the router interface. When disabled,
6355 * forwarding is blocked but local traffic (traps and IP2ME) will be enabled.
6356 * Not supported in SwitchX-2.
6357 * Access: RW
6358 */
6359 MLXSW_ITEM32(reg, ritr, ipv6_fe, 0x04, 28, 1);
6360
6361 /* reg_ritr_ipv4_mc_fe
6362 * IPv4 Multicast Forwarding Enable.
6363 * When disabled, forwarding is blocked but local traffic (traps and IP to me)
6364 * will be enabled.
6365 * Access: RW
6366 */
6367 MLXSW_ITEM32(reg, ritr, ipv4_mc_fe, 0x04, 27, 1);
6368
6369 /* reg_ritr_ipv6_mc_fe
6370 * IPv6 Multicast Forwarding Enable.
6371 * When disabled, forwarding is blocked but local traffic (traps and IP to me)
6372 * will be enabled.
6373 * Access: RW
6374 */
6375 MLXSW_ITEM32(reg, ritr, ipv6_mc_fe, 0x04, 26, 1);
6376
6377 /* reg_ritr_lb_en
6378 * Loop-back filter enable for unicast packets.
6379 * If the flag is set then loop-back filter for unicast packets is
6380 * implemented on the RIF. Multicast packets are always subject to
6381 * loop-back filtering.
6382 * Access: RW
6383 */
6384 MLXSW_ITEM32(reg, ritr, lb_en, 0x04, 24, 1);
6385
6386 /* reg_ritr_virtual_router
6387 * Virtual router ID associated with the router interface.
6388 * Access: RW
6389 */
6390 MLXSW_ITEM32(reg, ritr, virtual_router, 0x04, 0, 16);
6391
6392 /* reg_ritr_mtu
6393 * Router interface MTU.
6394 * Access: RW
6395 */
6396 MLXSW_ITEM32(reg, ritr, mtu, 0x34, 0, 16);
6397
6398 /* reg_ritr_if_swid
6399 * Switch partition ID.
6400 * Access: RW
6401 */
6402 MLXSW_ITEM32(reg, ritr, if_swid, 0x08, 24, 8);
6403
6404 /* reg_ritr_if_mac
6405 * Router interface MAC address.
6406 * In Spectrum, all MAC addresses must have the same 38 MSBits.
6407 * Access: RW
6408 */
6409 MLXSW_ITEM_BUF(reg, ritr, if_mac, 0x12, 6);
6410
6411 /* reg_ritr_if_vrrp_id_ipv6
6412 * VRRP ID for IPv6
6413 * Note: Reserved for RIF types other than VLAN, FID and Sub-port.
6414 * Access: RW
6415 */
6416 MLXSW_ITEM32(reg, ritr, if_vrrp_id_ipv6, 0x1C, 8, 8);
6417
6418 /* reg_ritr_if_vrrp_id_ipv4
6419 * VRRP ID for IPv4
6420 * Note: Reserved for RIF types other than VLAN, FID and Sub-port.
6421 * Access: RW
6422 */
6423 MLXSW_ITEM32(reg, ritr, if_vrrp_id_ipv4, 0x1C, 0, 8);
6424
6425 /* VLAN Interface */
6426
6427 /* reg_ritr_vlan_if_vid
6428 * VLAN ID.
6429 * Access: RW
6430 */
6431 MLXSW_ITEM32(reg, ritr, vlan_if_vid, 0x08, 0, 12);
6432
6433 /* FID Interface */
6434
6435 /* reg_ritr_fid_if_fid
6436 * Filtering ID. Used to connect a bridge to the router. Only FIDs from
6437 * the vFID range are supported.
6438 * Access: RW
6439 */
6440 MLXSW_ITEM32(reg, ritr, fid_if_fid, 0x08, 0, 16);
6441
mlxsw_reg_ritr_fid_set(char * payload,enum mlxsw_reg_ritr_if_type rif_type,u16 fid)6442 static inline void mlxsw_reg_ritr_fid_set(char *payload,
6443 enum mlxsw_reg_ritr_if_type rif_type,
6444 u16 fid)
6445 {
6446 if (rif_type == MLXSW_REG_RITR_FID_IF)
6447 mlxsw_reg_ritr_fid_if_fid_set(payload, fid);
6448 else
6449 mlxsw_reg_ritr_vlan_if_vid_set(payload, fid);
6450 }
6451
6452 /* Sub-port Interface */
6453
6454 /* reg_ritr_sp_if_lag
6455 * LAG indication. When this bit is set the system_port field holds the
6456 * LAG identifier.
6457 * Access: RW
6458 */
6459 MLXSW_ITEM32(reg, ritr, sp_if_lag, 0x08, 24, 1);
6460
6461 /* reg_ritr_sp_system_port
6462 * Port unique indentifier. When lag bit is set, this field holds the
6463 * lag_id in bits 0:9.
6464 * Access: RW
6465 */
6466 MLXSW_ITEM32(reg, ritr, sp_if_system_port, 0x08, 0, 16);
6467
6468 /* reg_ritr_sp_if_vid
6469 * VLAN ID.
6470 * Access: RW
6471 */
6472 MLXSW_ITEM32(reg, ritr, sp_if_vid, 0x18, 0, 12);
6473
6474 /* Loopback Interface */
6475
6476 enum mlxsw_reg_ritr_loopback_protocol {
6477 /* IPinIP IPv4 underlay Unicast */
6478 MLXSW_REG_RITR_LOOPBACK_PROTOCOL_IPIP_IPV4,
6479 /* IPinIP IPv6 underlay Unicast */
6480 MLXSW_REG_RITR_LOOPBACK_PROTOCOL_IPIP_IPV6,
6481 /* IPinIP generic - used for Spectrum-2 underlay RIF */
6482 MLXSW_REG_RITR_LOOPBACK_GENERIC,
6483 };
6484
6485 /* reg_ritr_loopback_protocol
6486 * Access: RW
6487 */
6488 MLXSW_ITEM32(reg, ritr, loopback_protocol, 0x08, 28, 4);
6489
6490 enum mlxsw_reg_ritr_loopback_ipip_type {
6491 /* Tunnel is IPinIP. */
6492 MLXSW_REG_RITR_LOOPBACK_IPIP_TYPE_IP_IN_IP,
6493 /* Tunnel is GRE, no key. */
6494 MLXSW_REG_RITR_LOOPBACK_IPIP_TYPE_IP_IN_GRE_IN_IP,
6495 /* Tunnel is GRE, with a key. */
6496 MLXSW_REG_RITR_LOOPBACK_IPIP_TYPE_IP_IN_GRE_KEY_IN_IP,
6497 };
6498
6499 /* reg_ritr_loopback_ipip_type
6500 * Encapsulation type.
6501 * Access: RW
6502 */
6503 MLXSW_ITEM32(reg, ritr, loopback_ipip_type, 0x10, 24, 4);
6504
6505 enum mlxsw_reg_ritr_loopback_ipip_options {
6506 /* The key is defined by gre_key. */
6507 MLXSW_REG_RITR_LOOPBACK_IPIP_OPTIONS_GRE_KEY_PRESET,
6508 };
6509
6510 /* reg_ritr_loopback_ipip_options
6511 * Access: RW
6512 */
6513 MLXSW_ITEM32(reg, ritr, loopback_ipip_options, 0x10, 20, 4);
6514
6515 /* reg_ritr_loopback_ipip_uvr
6516 * Underlay Virtual Router ID.
6517 * Range is 0..cap_max_virtual_routers-1.
6518 * Reserved for Spectrum-2.
6519 * Access: RW
6520 */
6521 MLXSW_ITEM32(reg, ritr, loopback_ipip_uvr, 0x10, 0, 16);
6522
6523 /* reg_ritr_loopback_ipip_underlay_rif
6524 * Underlay ingress router interface.
6525 * Reserved for Spectrum.
6526 * Access: RW
6527 */
6528 MLXSW_ITEM32(reg, ritr, loopback_ipip_underlay_rif, 0x14, 0, 16);
6529
6530 /* reg_ritr_loopback_ipip_usip*
6531 * Encapsulation Underlay source IP.
6532 * Access: RW
6533 */
6534 MLXSW_ITEM_BUF(reg, ritr, loopback_ipip_usip6, 0x18, 16);
6535 MLXSW_ITEM32(reg, ritr, loopback_ipip_usip4, 0x24, 0, 32);
6536
6537 /* reg_ritr_loopback_ipip_gre_key
6538 * GRE Key.
6539 * Reserved when ipip_type is not IP_IN_GRE_KEY_IN_IP.
6540 * Access: RW
6541 */
6542 MLXSW_ITEM32(reg, ritr, loopback_ipip_gre_key, 0x28, 0, 32);
6543
6544 /* Shared between ingress/egress */
6545 enum mlxsw_reg_ritr_counter_set_type {
6546 /* No Count. */
6547 MLXSW_REG_RITR_COUNTER_SET_TYPE_NO_COUNT = 0x0,
6548 /* Basic. Used for router interfaces, counting the following:
6549 * - Error and Discard counters.
6550 * - Unicast, Multicast and Broadcast counters. Sharing the
6551 * same set of counters for the different type of traffic
6552 * (IPv4, IPv6 and mpls).
6553 */
6554 MLXSW_REG_RITR_COUNTER_SET_TYPE_BASIC = 0x9,
6555 };
6556
6557 /* reg_ritr_ingress_counter_index
6558 * Counter Index for flow counter.
6559 * Access: RW
6560 */
6561 MLXSW_ITEM32(reg, ritr, ingress_counter_index, 0x38, 0, 24);
6562
6563 /* reg_ritr_ingress_counter_set_type
6564 * Igress Counter Set Type for router interface counter.
6565 * Access: RW
6566 */
6567 MLXSW_ITEM32(reg, ritr, ingress_counter_set_type, 0x38, 24, 8);
6568
6569 /* reg_ritr_egress_counter_index
6570 * Counter Index for flow counter.
6571 * Access: RW
6572 */
6573 MLXSW_ITEM32(reg, ritr, egress_counter_index, 0x3C, 0, 24);
6574
6575 /* reg_ritr_egress_counter_set_type
6576 * Egress Counter Set Type for router interface counter.
6577 * Access: RW
6578 */
6579 MLXSW_ITEM32(reg, ritr, egress_counter_set_type, 0x3C, 24, 8);
6580
mlxsw_reg_ritr_counter_pack(char * payload,u32 index,bool enable,bool egress)6581 static inline void mlxsw_reg_ritr_counter_pack(char *payload, u32 index,
6582 bool enable, bool egress)
6583 {
6584 enum mlxsw_reg_ritr_counter_set_type set_type;
6585
6586 if (enable)
6587 set_type = MLXSW_REG_RITR_COUNTER_SET_TYPE_BASIC;
6588 else
6589 set_type = MLXSW_REG_RITR_COUNTER_SET_TYPE_NO_COUNT;
6590 mlxsw_reg_ritr_egress_counter_set_type_set(payload, set_type);
6591
6592 if (egress)
6593 mlxsw_reg_ritr_egress_counter_index_set(payload, index);
6594 else
6595 mlxsw_reg_ritr_ingress_counter_index_set(payload, index);
6596 }
6597
mlxsw_reg_ritr_rif_pack(char * payload,u16 rif)6598 static inline void mlxsw_reg_ritr_rif_pack(char *payload, u16 rif)
6599 {
6600 MLXSW_REG_ZERO(ritr, payload);
6601 mlxsw_reg_ritr_rif_set(payload, rif);
6602 }
6603
mlxsw_reg_ritr_sp_if_pack(char * payload,bool lag,u16 system_port,u16 vid)6604 static inline void mlxsw_reg_ritr_sp_if_pack(char *payload, bool lag,
6605 u16 system_port, u16 vid)
6606 {
6607 mlxsw_reg_ritr_sp_if_lag_set(payload, lag);
6608 mlxsw_reg_ritr_sp_if_system_port_set(payload, system_port);
6609 mlxsw_reg_ritr_sp_if_vid_set(payload, vid);
6610 }
6611
mlxsw_reg_ritr_pack(char * payload,bool enable,enum mlxsw_reg_ritr_if_type type,u16 rif,u16 vr_id,u16 mtu)6612 static inline void mlxsw_reg_ritr_pack(char *payload, bool enable,
6613 enum mlxsw_reg_ritr_if_type type,
6614 u16 rif, u16 vr_id, u16 mtu)
6615 {
6616 bool op = enable ? MLXSW_REG_RITR_RIF_CREATE : MLXSW_REG_RITR_RIF_DEL;
6617
6618 MLXSW_REG_ZERO(ritr, payload);
6619 mlxsw_reg_ritr_enable_set(payload, enable);
6620 mlxsw_reg_ritr_ipv4_set(payload, 1);
6621 mlxsw_reg_ritr_ipv6_set(payload, 1);
6622 mlxsw_reg_ritr_ipv4_mc_set(payload, 1);
6623 mlxsw_reg_ritr_ipv6_mc_set(payload, 1);
6624 mlxsw_reg_ritr_type_set(payload, type);
6625 mlxsw_reg_ritr_op_set(payload, op);
6626 mlxsw_reg_ritr_rif_set(payload, rif);
6627 mlxsw_reg_ritr_ipv4_fe_set(payload, 1);
6628 mlxsw_reg_ritr_ipv6_fe_set(payload, 1);
6629 mlxsw_reg_ritr_ipv4_mc_fe_set(payload, 1);
6630 mlxsw_reg_ritr_ipv6_mc_fe_set(payload, 1);
6631 mlxsw_reg_ritr_lb_en_set(payload, 1);
6632 mlxsw_reg_ritr_virtual_router_set(payload, vr_id);
6633 mlxsw_reg_ritr_mtu_set(payload, mtu);
6634 }
6635
mlxsw_reg_ritr_mac_pack(char * payload,const char * mac)6636 static inline void mlxsw_reg_ritr_mac_pack(char *payload, const char *mac)
6637 {
6638 mlxsw_reg_ritr_if_mac_memcpy_to(payload, mac);
6639 }
6640
6641 static inline void
mlxsw_reg_ritr_loopback_ipip_common_pack(char * payload,enum mlxsw_reg_ritr_loopback_ipip_type ipip_type,enum mlxsw_reg_ritr_loopback_ipip_options options,u16 uvr_id,u16 underlay_rif,u32 gre_key)6642 mlxsw_reg_ritr_loopback_ipip_common_pack(char *payload,
6643 enum mlxsw_reg_ritr_loopback_ipip_type ipip_type,
6644 enum mlxsw_reg_ritr_loopback_ipip_options options,
6645 u16 uvr_id, u16 underlay_rif, u32 gre_key)
6646 {
6647 mlxsw_reg_ritr_loopback_ipip_type_set(payload, ipip_type);
6648 mlxsw_reg_ritr_loopback_ipip_options_set(payload, options);
6649 mlxsw_reg_ritr_loopback_ipip_uvr_set(payload, uvr_id);
6650 mlxsw_reg_ritr_loopback_ipip_underlay_rif_set(payload, underlay_rif);
6651 mlxsw_reg_ritr_loopback_ipip_gre_key_set(payload, gre_key);
6652 }
6653
6654 static inline void
mlxsw_reg_ritr_loopback_ipip4_pack(char * payload,enum mlxsw_reg_ritr_loopback_ipip_type ipip_type,enum mlxsw_reg_ritr_loopback_ipip_options options,u16 uvr_id,u16 underlay_rif,u32 usip,u32 gre_key)6655 mlxsw_reg_ritr_loopback_ipip4_pack(char *payload,
6656 enum mlxsw_reg_ritr_loopback_ipip_type ipip_type,
6657 enum mlxsw_reg_ritr_loopback_ipip_options options,
6658 u16 uvr_id, u16 underlay_rif, u32 usip, u32 gre_key)
6659 {
6660 mlxsw_reg_ritr_loopback_protocol_set(payload,
6661 MLXSW_REG_RITR_LOOPBACK_PROTOCOL_IPIP_IPV4);
6662 mlxsw_reg_ritr_loopback_ipip_common_pack(payload, ipip_type, options,
6663 uvr_id, underlay_rif, gre_key);
6664 mlxsw_reg_ritr_loopback_ipip_usip4_set(payload, usip);
6665 }
6666
6667 /* RTAR - Router TCAM Allocation Register
6668 * --------------------------------------
6669 * This register is used for allocation of regions in the TCAM table.
6670 */
6671 #define MLXSW_REG_RTAR_ID 0x8004
6672 #define MLXSW_REG_RTAR_LEN 0x20
6673
6674 MLXSW_REG_DEFINE(rtar, MLXSW_REG_RTAR_ID, MLXSW_REG_RTAR_LEN);
6675
6676 enum mlxsw_reg_rtar_op {
6677 MLXSW_REG_RTAR_OP_ALLOCATE,
6678 MLXSW_REG_RTAR_OP_RESIZE,
6679 MLXSW_REG_RTAR_OP_DEALLOCATE,
6680 };
6681
6682 /* reg_rtar_op
6683 * Access: WO
6684 */
6685 MLXSW_ITEM32(reg, rtar, op, 0x00, 28, 4);
6686
6687 enum mlxsw_reg_rtar_key_type {
6688 MLXSW_REG_RTAR_KEY_TYPE_IPV4_MULTICAST = 1,
6689 MLXSW_REG_RTAR_KEY_TYPE_IPV6_MULTICAST = 3
6690 };
6691
6692 /* reg_rtar_key_type
6693 * TCAM key type for the region.
6694 * Access: WO
6695 */
6696 MLXSW_ITEM32(reg, rtar, key_type, 0x00, 0, 8);
6697
6698 /* reg_rtar_region_size
6699 * TCAM region size. When allocating/resizing this is the requested
6700 * size, the response is the actual size.
6701 * Note: Actual size may be larger than requested.
6702 * Reserved for op = Deallocate
6703 * Access: WO
6704 */
6705 MLXSW_ITEM32(reg, rtar, region_size, 0x04, 0, 16);
6706
mlxsw_reg_rtar_pack(char * payload,enum mlxsw_reg_rtar_op op,enum mlxsw_reg_rtar_key_type key_type,u16 region_size)6707 static inline void mlxsw_reg_rtar_pack(char *payload,
6708 enum mlxsw_reg_rtar_op op,
6709 enum mlxsw_reg_rtar_key_type key_type,
6710 u16 region_size)
6711 {
6712 MLXSW_REG_ZERO(rtar, payload);
6713 mlxsw_reg_rtar_op_set(payload, op);
6714 mlxsw_reg_rtar_key_type_set(payload, key_type);
6715 mlxsw_reg_rtar_region_size_set(payload, region_size);
6716 }
6717
6718 /* RATR - Router Adjacency Table Register
6719 * --------------------------------------
6720 * The RATR register is used to configure the Router Adjacency (next-hop)
6721 * Table.
6722 */
6723 #define MLXSW_REG_RATR_ID 0x8008
6724 #define MLXSW_REG_RATR_LEN 0x2C
6725
6726 MLXSW_REG_DEFINE(ratr, MLXSW_REG_RATR_ID, MLXSW_REG_RATR_LEN);
6727
6728 enum mlxsw_reg_ratr_op {
6729 /* Read */
6730 MLXSW_REG_RATR_OP_QUERY_READ = 0,
6731 /* Read and clear activity */
6732 MLXSW_REG_RATR_OP_QUERY_READ_CLEAR = 2,
6733 /* Write Adjacency entry */
6734 MLXSW_REG_RATR_OP_WRITE_WRITE_ENTRY = 1,
6735 /* Write Adjacency entry only if the activity is cleared.
6736 * The write may not succeed if the activity is set. There is not
6737 * direct feedback if the write has succeeded or not, however
6738 * the get will reveal the actual entry (SW can compare the get
6739 * response to the set command).
6740 */
6741 MLXSW_REG_RATR_OP_WRITE_WRITE_ENTRY_ON_ACTIVITY = 3,
6742 };
6743
6744 /* reg_ratr_op
6745 * Note that Write operation may also be used for updating
6746 * counter_set_type and counter_index. In this case all other
6747 * fields must not be updated.
6748 * Access: OP
6749 */
6750 MLXSW_ITEM32(reg, ratr, op, 0x00, 28, 4);
6751
6752 /* reg_ratr_v
6753 * Valid bit. Indicates if the adjacency entry is valid.
6754 * Note: the device may need some time before reusing an invalidated
6755 * entry. During this time the entry can not be reused. It is
6756 * recommended to use another entry before reusing an invalidated
6757 * entry (e.g. software can put it at the end of the list for
6758 * reusing). Trying to access an invalidated entry not yet cleared
6759 * by the device results with failure indicating "Try Again" status.
6760 * When valid is '0' then egress_router_interface,trap_action,
6761 * adjacency_parameters and counters are reserved
6762 * Access: RW
6763 */
6764 MLXSW_ITEM32(reg, ratr, v, 0x00, 24, 1);
6765
6766 /* reg_ratr_a
6767 * Activity. Set for new entries. Set if a packet lookup has hit on
6768 * the specific entry. To clear the a bit, use "clear activity".
6769 * Access: RO
6770 */
6771 MLXSW_ITEM32(reg, ratr, a, 0x00, 16, 1);
6772
6773 enum mlxsw_reg_ratr_type {
6774 /* Ethernet */
6775 MLXSW_REG_RATR_TYPE_ETHERNET,
6776 /* IPoIB Unicast without GRH.
6777 * Reserved for Spectrum.
6778 */
6779 MLXSW_REG_RATR_TYPE_IPOIB_UC,
6780 /* IPoIB Unicast with GRH. Supported only in table 0 (Ethernet unicast
6781 * adjacency).
6782 * Reserved for Spectrum.
6783 */
6784 MLXSW_REG_RATR_TYPE_IPOIB_UC_W_GRH,
6785 /* IPoIB Multicast.
6786 * Reserved for Spectrum.
6787 */
6788 MLXSW_REG_RATR_TYPE_IPOIB_MC,
6789 /* MPLS.
6790 * Reserved for SwitchX/-2.
6791 */
6792 MLXSW_REG_RATR_TYPE_MPLS,
6793 /* IPinIP Encap.
6794 * Reserved for SwitchX/-2.
6795 */
6796 MLXSW_REG_RATR_TYPE_IPIP,
6797 };
6798
6799 /* reg_ratr_type
6800 * Adjacency entry type.
6801 * Access: RW
6802 */
6803 MLXSW_ITEM32(reg, ratr, type, 0x04, 28, 4);
6804
6805 /* reg_ratr_adjacency_index_low
6806 * Bits 15:0 of index into the adjacency table.
6807 * For SwitchX and SwitchX-2, the adjacency table is linear and
6808 * used for adjacency entries only.
6809 * For Spectrum, the index is to the KVD linear.
6810 * Access: Index
6811 */
6812 MLXSW_ITEM32(reg, ratr, adjacency_index_low, 0x04, 0, 16);
6813
6814 /* reg_ratr_egress_router_interface
6815 * Range is 0 .. cap_max_router_interfaces - 1
6816 * Access: RW
6817 */
6818 MLXSW_ITEM32(reg, ratr, egress_router_interface, 0x08, 0, 16);
6819
6820 enum mlxsw_reg_ratr_trap_action {
6821 MLXSW_REG_RATR_TRAP_ACTION_NOP,
6822 MLXSW_REG_RATR_TRAP_ACTION_TRAP,
6823 MLXSW_REG_RATR_TRAP_ACTION_MIRROR_TO_CPU,
6824 MLXSW_REG_RATR_TRAP_ACTION_MIRROR,
6825 MLXSW_REG_RATR_TRAP_ACTION_DISCARD_ERRORS,
6826 };
6827
6828 /* reg_ratr_trap_action
6829 * see mlxsw_reg_ratr_trap_action
6830 * Access: RW
6831 */
6832 MLXSW_ITEM32(reg, ratr, trap_action, 0x0C, 28, 4);
6833
6834 /* reg_ratr_adjacency_index_high
6835 * Bits 23:16 of the adjacency_index.
6836 * Access: Index
6837 */
6838 MLXSW_ITEM32(reg, ratr, adjacency_index_high, 0x0C, 16, 8);
6839
6840 enum mlxsw_reg_ratr_trap_id {
6841 MLXSW_REG_RATR_TRAP_ID_RTR_EGRESS0,
6842 MLXSW_REG_RATR_TRAP_ID_RTR_EGRESS1,
6843 };
6844
6845 /* reg_ratr_trap_id
6846 * Trap ID to be reported to CPU.
6847 * Trap-ID is RTR_EGRESS0 or RTR_EGRESS1.
6848 * For trap_action of NOP, MIRROR and DISCARD_ERROR
6849 * Access: RW
6850 */
6851 MLXSW_ITEM32(reg, ratr, trap_id, 0x0C, 0, 8);
6852
6853 /* reg_ratr_eth_destination_mac
6854 * MAC address of the destination next-hop.
6855 * Access: RW
6856 */
6857 MLXSW_ITEM_BUF(reg, ratr, eth_destination_mac, 0x12, 6);
6858
6859 enum mlxsw_reg_ratr_ipip_type {
6860 /* IPv4, address set by mlxsw_reg_ratr_ipip_ipv4_udip. */
6861 MLXSW_REG_RATR_IPIP_TYPE_IPV4,
6862 /* IPv6, address set by mlxsw_reg_ratr_ipip_ipv6_ptr. */
6863 MLXSW_REG_RATR_IPIP_TYPE_IPV6,
6864 };
6865
6866 /* reg_ratr_ipip_type
6867 * Underlay destination ip type.
6868 * Note: the type field must match the protocol of the router interface.
6869 * Access: RW
6870 */
6871 MLXSW_ITEM32(reg, ratr, ipip_type, 0x10, 16, 4);
6872
6873 /* reg_ratr_ipip_ipv4_udip
6874 * Underlay ipv4 dip.
6875 * Reserved when ipip_type is IPv6.
6876 * Access: RW
6877 */
6878 MLXSW_ITEM32(reg, ratr, ipip_ipv4_udip, 0x18, 0, 32);
6879
6880 /* reg_ratr_ipip_ipv6_ptr
6881 * Pointer to IPv6 underlay destination ip address.
6882 * For Spectrum: Pointer to KVD linear space.
6883 * Access: RW
6884 */
6885 MLXSW_ITEM32(reg, ratr, ipip_ipv6_ptr, 0x1C, 0, 24);
6886
6887 enum mlxsw_reg_flow_counter_set_type {
6888 /* No count */
6889 MLXSW_REG_FLOW_COUNTER_SET_TYPE_NO_COUNT = 0x00,
6890 /* Count packets and bytes */
6891 MLXSW_REG_FLOW_COUNTER_SET_TYPE_PACKETS_BYTES = 0x03,
6892 /* Count only packets */
6893 MLXSW_REG_FLOW_COUNTER_SET_TYPE_PACKETS = 0x05,
6894 };
6895
6896 /* reg_ratr_counter_set_type
6897 * Counter set type for flow counters
6898 * Access: RW
6899 */
6900 MLXSW_ITEM32(reg, ratr, counter_set_type, 0x28, 24, 8);
6901
6902 /* reg_ratr_counter_index
6903 * Counter index for flow counters
6904 * Access: RW
6905 */
6906 MLXSW_ITEM32(reg, ratr, counter_index, 0x28, 0, 24);
6907
6908 static inline void
mlxsw_reg_ratr_pack(char * payload,enum mlxsw_reg_ratr_op op,bool valid,enum mlxsw_reg_ratr_type type,u32 adjacency_index,u16 egress_rif)6909 mlxsw_reg_ratr_pack(char *payload,
6910 enum mlxsw_reg_ratr_op op, bool valid,
6911 enum mlxsw_reg_ratr_type type,
6912 u32 adjacency_index, u16 egress_rif)
6913 {
6914 MLXSW_REG_ZERO(ratr, payload);
6915 mlxsw_reg_ratr_op_set(payload, op);
6916 mlxsw_reg_ratr_v_set(payload, valid);
6917 mlxsw_reg_ratr_type_set(payload, type);
6918 mlxsw_reg_ratr_adjacency_index_low_set(payload, adjacency_index);
6919 mlxsw_reg_ratr_adjacency_index_high_set(payload, adjacency_index >> 16);
6920 mlxsw_reg_ratr_egress_router_interface_set(payload, egress_rif);
6921 }
6922
mlxsw_reg_ratr_eth_entry_pack(char * payload,const char * dest_mac)6923 static inline void mlxsw_reg_ratr_eth_entry_pack(char *payload,
6924 const char *dest_mac)
6925 {
6926 mlxsw_reg_ratr_eth_destination_mac_memcpy_to(payload, dest_mac);
6927 }
6928
mlxsw_reg_ratr_ipip4_entry_pack(char * payload,u32 ipv4_udip)6929 static inline void mlxsw_reg_ratr_ipip4_entry_pack(char *payload, u32 ipv4_udip)
6930 {
6931 mlxsw_reg_ratr_ipip_type_set(payload, MLXSW_REG_RATR_IPIP_TYPE_IPV4);
6932 mlxsw_reg_ratr_ipip_ipv4_udip_set(payload, ipv4_udip);
6933 }
6934
mlxsw_reg_ratr_counter_pack(char * payload,u64 counter_index,bool counter_enable)6935 static inline void mlxsw_reg_ratr_counter_pack(char *payload, u64 counter_index,
6936 bool counter_enable)
6937 {
6938 enum mlxsw_reg_flow_counter_set_type set_type;
6939
6940 if (counter_enable)
6941 set_type = MLXSW_REG_FLOW_COUNTER_SET_TYPE_PACKETS_BYTES;
6942 else
6943 set_type = MLXSW_REG_FLOW_COUNTER_SET_TYPE_NO_COUNT;
6944
6945 mlxsw_reg_ratr_counter_index_set(payload, counter_index);
6946 mlxsw_reg_ratr_counter_set_type_set(payload, set_type);
6947 }
6948
6949 /* RDPM - Router DSCP to Priority Mapping
6950 * --------------------------------------
6951 * Controls the mapping from DSCP field to switch priority on routed packets
6952 */
6953 #define MLXSW_REG_RDPM_ID 0x8009
6954 #define MLXSW_REG_RDPM_BASE_LEN 0x00
6955 #define MLXSW_REG_RDPM_DSCP_ENTRY_REC_LEN 0x01
6956 #define MLXSW_REG_RDPM_DSCP_ENTRY_REC_MAX_COUNT 64
6957 #define MLXSW_REG_RDPM_LEN 0x40
6958 #define MLXSW_REG_RDPM_LAST_ENTRY (MLXSW_REG_RDPM_BASE_LEN + \
6959 MLXSW_REG_RDPM_LEN - \
6960 MLXSW_REG_RDPM_DSCP_ENTRY_REC_LEN)
6961
6962 MLXSW_REG_DEFINE(rdpm, MLXSW_REG_RDPM_ID, MLXSW_REG_RDPM_LEN);
6963
6964 /* reg_dscp_entry_e
6965 * Enable update of the specific entry
6966 * Access: Index
6967 */
6968 MLXSW_ITEM8_INDEXED(reg, rdpm, dscp_entry_e, MLXSW_REG_RDPM_LAST_ENTRY, 7, 1,
6969 -MLXSW_REG_RDPM_DSCP_ENTRY_REC_LEN, 0x00, false);
6970
6971 /* reg_dscp_entry_prio
6972 * Switch Priority
6973 * Access: RW
6974 */
6975 MLXSW_ITEM8_INDEXED(reg, rdpm, dscp_entry_prio, MLXSW_REG_RDPM_LAST_ENTRY, 0, 4,
6976 -MLXSW_REG_RDPM_DSCP_ENTRY_REC_LEN, 0x00, false);
6977
mlxsw_reg_rdpm_pack(char * payload,unsigned short index,u8 prio)6978 static inline void mlxsw_reg_rdpm_pack(char *payload, unsigned short index,
6979 u8 prio)
6980 {
6981 mlxsw_reg_rdpm_dscp_entry_e_set(payload, index, 1);
6982 mlxsw_reg_rdpm_dscp_entry_prio_set(payload, index, prio);
6983 }
6984
6985 /* RICNT - Router Interface Counter Register
6986 * -----------------------------------------
6987 * The RICNT register retrieves per port performance counters
6988 */
6989 #define MLXSW_REG_RICNT_ID 0x800B
6990 #define MLXSW_REG_RICNT_LEN 0x100
6991
6992 MLXSW_REG_DEFINE(ricnt, MLXSW_REG_RICNT_ID, MLXSW_REG_RICNT_LEN);
6993
6994 /* reg_ricnt_counter_index
6995 * Counter index
6996 * Access: RW
6997 */
6998 MLXSW_ITEM32(reg, ricnt, counter_index, 0x04, 0, 24);
6999
7000 enum mlxsw_reg_ricnt_counter_set_type {
7001 /* No Count. */
7002 MLXSW_REG_RICNT_COUNTER_SET_TYPE_NO_COUNT = 0x00,
7003 /* Basic. Used for router interfaces, counting the following:
7004 * - Error and Discard counters.
7005 * - Unicast, Multicast and Broadcast counters. Sharing the
7006 * same set of counters for the different type of traffic
7007 * (IPv4, IPv6 and mpls).
7008 */
7009 MLXSW_REG_RICNT_COUNTER_SET_TYPE_BASIC = 0x09,
7010 };
7011
7012 /* reg_ricnt_counter_set_type
7013 * Counter Set Type for router interface counter
7014 * Access: RW
7015 */
7016 MLXSW_ITEM32(reg, ricnt, counter_set_type, 0x04, 24, 8);
7017
7018 enum mlxsw_reg_ricnt_opcode {
7019 /* Nop. Supported only for read access*/
7020 MLXSW_REG_RICNT_OPCODE_NOP = 0x00,
7021 /* Clear. Setting the clr bit will reset the counter value for
7022 * all counters of the specified Router Interface.
7023 */
7024 MLXSW_REG_RICNT_OPCODE_CLEAR = 0x08,
7025 };
7026
7027 /* reg_ricnt_opcode
7028 * Opcode
7029 * Access: RW
7030 */
7031 MLXSW_ITEM32(reg, ricnt, op, 0x00, 28, 4);
7032
7033 /* reg_ricnt_good_unicast_packets
7034 * good unicast packets.
7035 * Access: RW
7036 */
7037 MLXSW_ITEM64(reg, ricnt, good_unicast_packets, 0x08, 0, 64);
7038
7039 /* reg_ricnt_good_multicast_packets
7040 * good multicast packets.
7041 * Access: RW
7042 */
7043 MLXSW_ITEM64(reg, ricnt, good_multicast_packets, 0x10, 0, 64);
7044
7045 /* reg_ricnt_good_broadcast_packets
7046 * good broadcast packets
7047 * Access: RW
7048 */
7049 MLXSW_ITEM64(reg, ricnt, good_broadcast_packets, 0x18, 0, 64);
7050
7051 /* reg_ricnt_good_unicast_bytes
7052 * A count of L3 data and padding octets not including L2 headers
7053 * for good unicast frames.
7054 * Access: RW
7055 */
7056 MLXSW_ITEM64(reg, ricnt, good_unicast_bytes, 0x20, 0, 64);
7057
7058 /* reg_ricnt_good_multicast_bytes
7059 * A count of L3 data and padding octets not including L2 headers
7060 * for good multicast frames.
7061 * Access: RW
7062 */
7063 MLXSW_ITEM64(reg, ricnt, good_multicast_bytes, 0x28, 0, 64);
7064
7065 /* reg_ritr_good_broadcast_bytes
7066 * A count of L3 data and padding octets not including L2 headers
7067 * for good broadcast frames.
7068 * Access: RW
7069 */
7070 MLXSW_ITEM64(reg, ricnt, good_broadcast_bytes, 0x30, 0, 64);
7071
7072 /* reg_ricnt_error_packets
7073 * A count of errored frames that do not pass the router checks.
7074 * Access: RW
7075 */
7076 MLXSW_ITEM64(reg, ricnt, error_packets, 0x38, 0, 64);
7077
7078 /* reg_ricnt_discrad_packets
7079 * A count of non-errored frames that do not pass the router checks.
7080 * Access: RW
7081 */
7082 MLXSW_ITEM64(reg, ricnt, discard_packets, 0x40, 0, 64);
7083
7084 /* reg_ricnt_error_bytes
7085 * A count of L3 data and padding octets not including L2 headers
7086 * for errored frames.
7087 * Access: RW
7088 */
7089 MLXSW_ITEM64(reg, ricnt, error_bytes, 0x48, 0, 64);
7090
7091 /* reg_ricnt_discard_bytes
7092 * A count of L3 data and padding octets not including L2 headers
7093 * for non-errored frames that do not pass the router checks.
7094 * Access: RW
7095 */
7096 MLXSW_ITEM64(reg, ricnt, discard_bytes, 0x50, 0, 64);
7097
mlxsw_reg_ricnt_pack(char * payload,u32 index,enum mlxsw_reg_ricnt_opcode op)7098 static inline void mlxsw_reg_ricnt_pack(char *payload, u32 index,
7099 enum mlxsw_reg_ricnt_opcode op)
7100 {
7101 MLXSW_REG_ZERO(ricnt, payload);
7102 mlxsw_reg_ricnt_op_set(payload, op);
7103 mlxsw_reg_ricnt_counter_index_set(payload, index);
7104 mlxsw_reg_ricnt_counter_set_type_set(payload,
7105 MLXSW_REG_RICNT_COUNTER_SET_TYPE_BASIC);
7106 }
7107
7108 /* RRCR - Router Rules Copy Register Layout
7109 * ----------------------------------------
7110 * This register is used for moving and copying route entry rules.
7111 */
7112 #define MLXSW_REG_RRCR_ID 0x800F
7113 #define MLXSW_REG_RRCR_LEN 0x24
7114
7115 MLXSW_REG_DEFINE(rrcr, MLXSW_REG_RRCR_ID, MLXSW_REG_RRCR_LEN);
7116
7117 enum mlxsw_reg_rrcr_op {
7118 /* Move rules */
7119 MLXSW_REG_RRCR_OP_MOVE,
7120 /* Copy rules */
7121 MLXSW_REG_RRCR_OP_COPY,
7122 };
7123
7124 /* reg_rrcr_op
7125 * Access: WO
7126 */
7127 MLXSW_ITEM32(reg, rrcr, op, 0x00, 28, 4);
7128
7129 /* reg_rrcr_offset
7130 * Offset within the region from which to copy/move.
7131 * Access: Index
7132 */
7133 MLXSW_ITEM32(reg, rrcr, offset, 0x00, 0, 16);
7134
7135 /* reg_rrcr_size
7136 * The number of rules to copy/move.
7137 * Access: WO
7138 */
7139 MLXSW_ITEM32(reg, rrcr, size, 0x04, 0, 16);
7140
7141 /* reg_rrcr_table_id
7142 * Identifier of the table on which to perform the operation. Encoding is the
7143 * same as in RTAR.key_type
7144 * Access: Index
7145 */
7146 MLXSW_ITEM32(reg, rrcr, table_id, 0x10, 0, 4);
7147
7148 /* reg_rrcr_dest_offset
7149 * Offset within the region to which to copy/move
7150 * Access: Index
7151 */
7152 MLXSW_ITEM32(reg, rrcr, dest_offset, 0x20, 0, 16);
7153
mlxsw_reg_rrcr_pack(char * payload,enum mlxsw_reg_rrcr_op op,u16 offset,u16 size,enum mlxsw_reg_rtar_key_type table_id,u16 dest_offset)7154 static inline void mlxsw_reg_rrcr_pack(char *payload, enum mlxsw_reg_rrcr_op op,
7155 u16 offset, u16 size,
7156 enum mlxsw_reg_rtar_key_type table_id,
7157 u16 dest_offset)
7158 {
7159 MLXSW_REG_ZERO(rrcr, payload);
7160 mlxsw_reg_rrcr_op_set(payload, op);
7161 mlxsw_reg_rrcr_offset_set(payload, offset);
7162 mlxsw_reg_rrcr_size_set(payload, size);
7163 mlxsw_reg_rrcr_table_id_set(payload, table_id);
7164 mlxsw_reg_rrcr_dest_offset_set(payload, dest_offset);
7165 }
7166
7167 /* RALTA - Router Algorithmic LPM Tree Allocation Register
7168 * -------------------------------------------------------
7169 * RALTA is used to allocate the LPM trees of the SHSPM method.
7170 */
7171 #define MLXSW_REG_RALTA_ID 0x8010
7172 #define MLXSW_REG_RALTA_LEN 0x04
7173
7174 MLXSW_REG_DEFINE(ralta, MLXSW_REG_RALTA_ID, MLXSW_REG_RALTA_LEN);
7175
7176 /* reg_ralta_op
7177 * opcode (valid for Write, must be 0 on Read)
7178 * 0 - allocate a tree
7179 * 1 - deallocate a tree
7180 * Access: OP
7181 */
7182 MLXSW_ITEM32(reg, ralta, op, 0x00, 28, 2);
7183
7184 enum mlxsw_reg_ralxx_protocol {
7185 MLXSW_REG_RALXX_PROTOCOL_IPV4,
7186 MLXSW_REG_RALXX_PROTOCOL_IPV6,
7187 };
7188
7189 /* reg_ralta_protocol
7190 * Protocol.
7191 * Deallocation opcode: Reserved.
7192 * Access: RW
7193 */
7194 MLXSW_ITEM32(reg, ralta, protocol, 0x00, 24, 4);
7195
7196 /* reg_ralta_tree_id
7197 * An identifier (numbered from 1..cap_shspm_max_trees-1) representing
7198 * the tree identifier (managed by software).
7199 * Note that tree_id 0 is allocated for a default-route tree.
7200 * Access: Index
7201 */
7202 MLXSW_ITEM32(reg, ralta, tree_id, 0x00, 0, 8);
7203
mlxsw_reg_ralta_pack(char * payload,bool alloc,enum mlxsw_reg_ralxx_protocol protocol,u8 tree_id)7204 static inline void mlxsw_reg_ralta_pack(char *payload, bool alloc,
7205 enum mlxsw_reg_ralxx_protocol protocol,
7206 u8 tree_id)
7207 {
7208 MLXSW_REG_ZERO(ralta, payload);
7209 mlxsw_reg_ralta_op_set(payload, !alloc);
7210 mlxsw_reg_ralta_protocol_set(payload, protocol);
7211 mlxsw_reg_ralta_tree_id_set(payload, tree_id);
7212 }
7213
7214 /* RALST - Router Algorithmic LPM Structure Tree Register
7215 * ------------------------------------------------------
7216 * RALST is used to set and query the structure of an LPM tree.
7217 * The structure of the tree must be sorted as a sorted binary tree, while
7218 * each node is a bin that is tagged as the length of the prefixes the lookup
7219 * will refer to. Therefore, bin X refers to a set of entries with prefixes
7220 * of X bits to match with the destination address. The bin 0 indicates
7221 * the default action, when there is no match of any prefix.
7222 */
7223 #define MLXSW_REG_RALST_ID 0x8011
7224 #define MLXSW_REG_RALST_LEN 0x104
7225
7226 MLXSW_REG_DEFINE(ralst, MLXSW_REG_RALST_ID, MLXSW_REG_RALST_LEN);
7227
7228 /* reg_ralst_root_bin
7229 * The bin number of the root bin.
7230 * 0<root_bin=<(length of IP address)
7231 * For a default-route tree configure 0xff
7232 * Access: RW
7233 */
7234 MLXSW_ITEM32(reg, ralst, root_bin, 0x00, 16, 8);
7235
7236 /* reg_ralst_tree_id
7237 * Tree identifier numbered from 1..(cap_shspm_max_trees-1).
7238 * Access: Index
7239 */
7240 MLXSW_ITEM32(reg, ralst, tree_id, 0x00, 0, 8);
7241
7242 #define MLXSW_REG_RALST_BIN_NO_CHILD 0xff
7243 #define MLXSW_REG_RALST_BIN_OFFSET 0x04
7244 #define MLXSW_REG_RALST_BIN_COUNT 128
7245
7246 /* reg_ralst_left_child_bin
7247 * Holding the children of the bin according to the stored tree's structure.
7248 * For trees composed of less than 4 blocks, the bins in excess are reserved.
7249 * Note that tree_id 0 is allocated for a default-route tree, bins are 0xff
7250 * Access: RW
7251 */
7252 MLXSW_ITEM16_INDEXED(reg, ralst, left_child_bin, 0x04, 8, 8, 0x02, 0x00, false);
7253
7254 /* reg_ralst_right_child_bin
7255 * Holding the children of the bin according to the stored tree's structure.
7256 * For trees composed of less than 4 blocks, the bins in excess are reserved.
7257 * Note that tree_id 0 is allocated for a default-route tree, bins are 0xff
7258 * Access: RW
7259 */
7260 MLXSW_ITEM16_INDEXED(reg, ralst, right_child_bin, 0x04, 0, 8, 0x02, 0x00,
7261 false);
7262
mlxsw_reg_ralst_pack(char * payload,u8 root_bin,u8 tree_id)7263 static inline void mlxsw_reg_ralst_pack(char *payload, u8 root_bin, u8 tree_id)
7264 {
7265 MLXSW_REG_ZERO(ralst, payload);
7266
7267 /* Initialize all bins to have no left or right child */
7268 memset(payload + MLXSW_REG_RALST_BIN_OFFSET,
7269 MLXSW_REG_RALST_BIN_NO_CHILD, MLXSW_REG_RALST_BIN_COUNT * 2);
7270
7271 mlxsw_reg_ralst_root_bin_set(payload, root_bin);
7272 mlxsw_reg_ralst_tree_id_set(payload, tree_id);
7273 }
7274
mlxsw_reg_ralst_bin_pack(char * payload,u8 bin_number,u8 left_child_bin,u8 right_child_bin)7275 static inline void mlxsw_reg_ralst_bin_pack(char *payload, u8 bin_number,
7276 u8 left_child_bin,
7277 u8 right_child_bin)
7278 {
7279 int bin_index = bin_number - 1;
7280
7281 mlxsw_reg_ralst_left_child_bin_set(payload, bin_index, left_child_bin);
7282 mlxsw_reg_ralst_right_child_bin_set(payload, bin_index,
7283 right_child_bin);
7284 }
7285
7286 /* RALTB - Router Algorithmic LPM Tree Binding Register
7287 * ----------------------------------------------------
7288 * RALTB is used to bind virtual router and protocol to an allocated LPM tree.
7289 */
7290 #define MLXSW_REG_RALTB_ID 0x8012
7291 #define MLXSW_REG_RALTB_LEN 0x04
7292
7293 MLXSW_REG_DEFINE(raltb, MLXSW_REG_RALTB_ID, MLXSW_REG_RALTB_LEN);
7294
7295 /* reg_raltb_virtual_router
7296 * Virtual Router ID
7297 * Range is 0..cap_max_virtual_routers-1
7298 * Access: Index
7299 */
7300 MLXSW_ITEM32(reg, raltb, virtual_router, 0x00, 16, 16);
7301
7302 /* reg_raltb_protocol
7303 * Protocol.
7304 * Access: Index
7305 */
7306 MLXSW_ITEM32(reg, raltb, protocol, 0x00, 12, 4);
7307
7308 /* reg_raltb_tree_id
7309 * Tree to be used for the {virtual_router, protocol}
7310 * Tree identifier numbered from 1..(cap_shspm_max_trees-1).
7311 * By default, all Unicast IPv4 and IPv6 are bound to tree_id 0.
7312 * Access: RW
7313 */
7314 MLXSW_ITEM32(reg, raltb, tree_id, 0x00, 0, 8);
7315
mlxsw_reg_raltb_pack(char * payload,u16 virtual_router,enum mlxsw_reg_ralxx_protocol protocol,u8 tree_id)7316 static inline void mlxsw_reg_raltb_pack(char *payload, u16 virtual_router,
7317 enum mlxsw_reg_ralxx_protocol protocol,
7318 u8 tree_id)
7319 {
7320 MLXSW_REG_ZERO(raltb, payload);
7321 mlxsw_reg_raltb_virtual_router_set(payload, virtual_router);
7322 mlxsw_reg_raltb_protocol_set(payload, protocol);
7323 mlxsw_reg_raltb_tree_id_set(payload, tree_id);
7324 }
7325
7326 /* RALUE - Router Algorithmic LPM Unicast Entry Register
7327 * -----------------------------------------------------
7328 * RALUE is used to configure and query LPM entries that serve
7329 * the Unicast protocols.
7330 */
7331 #define MLXSW_REG_RALUE_ID 0x8013
7332 #define MLXSW_REG_RALUE_LEN 0x38
7333
7334 MLXSW_REG_DEFINE(ralue, MLXSW_REG_RALUE_ID, MLXSW_REG_RALUE_LEN);
7335
7336 /* reg_ralue_protocol
7337 * Protocol.
7338 * Access: Index
7339 */
7340 MLXSW_ITEM32(reg, ralue, protocol, 0x00, 24, 4);
7341
7342 enum mlxsw_reg_ralue_op {
7343 /* Read operation. If entry doesn't exist, the operation fails. */
7344 MLXSW_REG_RALUE_OP_QUERY_READ = 0,
7345 /* Clear on read operation. Used to read entry and
7346 * clear Activity bit.
7347 */
7348 MLXSW_REG_RALUE_OP_QUERY_CLEAR = 1,
7349 /* Write operation. Used to write a new entry to the table. All RW
7350 * fields are written for new entry. Activity bit is set
7351 * for new entries.
7352 */
7353 MLXSW_REG_RALUE_OP_WRITE_WRITE = 0,
7354 /* Update operation. Used to update an existing route entry and
7355 * only update the RW fields that are detailed in the field
7356 * op_u_mask. If entry doesn't exist, the operation fails.
7357 */
7358 MLXSW_REG_RALUE_OP_WRITE_UPDATE = 1,
7359 /* Clear activity. The Activity bit (the field a) is cleared
7360 * for the entry.
7361 */
7362 MLXSW_REG_RALUE_OP_WRITE_CLEAR = 2,
7363 /* Delete operation. Used to delete an existing entry. If entry
7364 * doesn't exist, the operation fails.
7365 */
7366 MLXSW_REG_RALUE_OP_WRITE_DELETE = 3,
7367 };
7368
7369 /* reg_ralue_op
7370 * Operation.
7371 * Access: OP
7372 */
7373 MLXSW_ITEM32(reg, ralue, op, 0x00, 20, 3);
7374
7375 /* reg_ralue_a
7376 * Activity. Set for new entries. Set if a packet lookup has hit on the
7377 * specific entry, only if the entry is a route. To clear the a bit, use
7378 * "clear activity" op.
7379 * Enabled by activity_dis in RGCR
7380 * Access: RO
7381 */
7382 MLXSW_ITEM32(reg, ralue, a, 0x00, 16, 1);
7383
7384 /* reg_ralue_virtual_router
7385 * Virtual Router ID
7386 * Range is 0..cap_max_virtual_routers-1
7387 * Access: Index
7388 */
7389 MLXSW_ITEM32(reg, ralue, virtual_router, 0x04, 16, 16);
7390
7391 #define MLXSW_REG_RALUE_OP_U_MASK_ENTRY_TYPE BIT(0)
7392 #define MLXSW_REG_RALUE_OP_U_MASK_BMP_LEN BIT(1)
7393 #define MLXSW_REG_RALUE_OP_U_MASK_ACTION BIT(2)
7394
7395 /* reg_ralue_op_u_mask
7396 * opcode update mask.
7397 * On read operation, this field is reserved.
7398 * This field is valid for update opcode, otherwise - reserved.
7399 * This field is a bitmask of the fields that should be updated.
7400 * Access: WO
7401 */
7402 MLXSW_ITEM32(reg, ralue, op_u_mask, 0x04, 8, 3);
7403
7404 /* reg_ralue_prefix_len
7405 * Number of bits in the prefix of the LPM route.
7406 * Note that for IPv6 prefixes, if prefix_len>64 the entry consumes
7407 * two entries in the physical HW table.
7408 * Access: Index
7409 */
7410 MLXSW_ITEM32(reg, ralue, prefix_len, 0x08, 0, 8);
7411
7412 /* reg_ralue_dip*
7413 * The prefix of the route or of the marker that the object of the LPM
7414 * is compared with. The most significant bits of the dip are the prefix.
7415 * The least significant bits must be '0' if the prefix_len is smaller
7416 * than 128 for IPv6 or smaller than 32 for IPv4.
7417 * IPv4 address uses bits dip[31:0] and bits dip[127:32] are reserved.
7418 * Access: Index
7419 */
7420 MLXSW_ITEM32(reg, ralue, dip4, 0x18, 0, 32);
7421 MLXSW_ITEM_BUF(reg, ralue, dip6, 0x0C, 16);
7422
7423 enum mlxsw_reg_ralue_entry_type {
7424 MLXSW_REG_RALUE_ENTRY_TYPE_MARKER_ENTRY = 1,
7425 MLXSW_REG_RALUE_ENTRY_TYPE_ROUTE_ENTRY = 2,
7426 MLXSW_REG_RALUE_ENTRY_TYPE_MARKER_AND_ROUTE_ENTRY = 3,
7427 };
7428
7429 /* reg_ralue_entry_type
7430 * Entry type.
7431 * Note - for Marker entries, the action_type and action fields are reserved.
7432 * Access: RW
7433 */
7434 MLXSW_ITEM32(reg, ralue, entry_type, 0x1C, 30, 2);
7435
7436 /* reg_ralue_bmp_len
7437 * The best match prefix length in the case that there is no match for
7438 * longer prefixes.
7439 * If (entry_type != MARKER_ENTRY), bmp_len must be equal to prefix_len
7440 * Note for any update operation with entry_type modification this
7441 * field must be set.
7442 * Access: RW
7443 */
7444 MLXSW_ITEM32(reg, ralue, bmp_len, 0x1C, 16, 8);
7445
7446 enum mlxsw_reg_ralue_action_type {
7447 MLXSW_REG_RALUE_ACTION_TYPE_REMOTE,
7448 MLXSW_REG_RALUE_ACTION_TYPE_LOCAL,
7449 MLXSW_REG_RALUE_ACTION_TYPE_IP2ME,
7450 };
7451
7452 /* reg_ralue_action_type
7453 * Action Type
7454 * Indicates how the IP address is connected.
7455 * It can be connected to a local subnet through local_erif or can be
7456 * on a remote subnet connected through a next-hop router,
7457 * or transmitted to the CPU.
7458 * Reserved when entry_type = MARKER_ENTRY
7459 * Access: RW
7460 */
7461 MLXSW_ITEM32(reg, ralue, action_type, 0x1C, 0, 2);
7462
7463 enum mlxsw_reg_ralue_trap_action {
7464 MLXSW_REG_RALUE_TRAP_ACTION_NOP,
7465 MLXSW_REG_RALUE_TRAP_ACTION_TRAP,
7466 MLXSW_REG_RALUE_TRAP_ACTION_MIRROR_TO_CPU,
7467 MLXSW_REG_RALUE_TRAP_ACTION_MIRROR,
7468 MLXSW_REG_RALUE_TRAP_ACTION_DISCARD_ERROR,
7469 };
7470
7471 /* reg_ralue_trap_action
7472 * Trap action.
7473 * For IP2ME action, only NOP and MIRROR are possible.
7474 * Access: RW
7475 */
7476 MLXSW_ITEM32(reg, ralue, trap_action, 0x20, 28, 4);
7477
7478 /* reg_ralue_trap_id
7479 * Trap ID to be reported to CPU.
7480 * Trap ID is RTR_INGRESS0 or RTR_INGRESS1.
7481 * For trap_action of NOP, MIRROR and DISCARD_ERROR, trap_id is reserved.
7482 * Access: RW
7483 */
7484 MLXSW_ITEM32(reg, ralue, trap_id, 0x20, 0, 9);
7485
7486 /* reg_ralue_adjacency_index
7487 * Points to the first entry of the group-based ECMP.
7488 * Only relevant in case of REMOTE action.
7489 * Access: RW
7490 */
7491 MLXSW_ITEM32(reg, ralue, adjacency_index, 0x24, 0, 24);
7492
7493 /* reg_ralue_ecmp_size
7494 * Amount of sequential entries starting
7495 * from the adjacency_index (the number of ECMPs).
7496 * The valid range is 1-64, 512, 1024, 2048 and 4096.
7497 * Reserved when trap_action is TRAP or DISCARD_ERROR.
7498 * Only relevant in case of REMOTE action.
7499 * Access: RW
7500 */
7501 MLXSW_ITEM32(reg, ralue, ecmp_size, 0x28, 0, 13);
7502
7503 /* reg_ralue_local_erif
7504 * Egress Router Interface.
7505 * Only relevant in case of LOCAL action.
7506 * Access: RW
7507 */
7508 MLXSW_ITEM32(reg, ralue, local_erif, 0x24, 0, 16);
7509
7510 /* reg_ralue_ip2me_v
7511 * Valid bit for the tunnel_ptr field.
7512 * If valid = 0 then trap to CPU as IP2ME trap ID.
7513 * If valid = 1 and the packet format allows NVE or IPinIP tunnel
7514 * decapsulation then tunnel decapsulation is done.
7515 * If valid = 1 and packet format does not allow NVE or IPinIP tunnel
7516 * decapsulation then trap as IP2ME trap ID.
7517 * Only relevant in case of IP2ME action.
7518 * Access: RW
7519 */
7520 MLXSW_ITEM32(reg, ralue, ip2me_v, 0x24, 31, 1);
7521
7522 /* reg_ralue_ip2me_tunnel_ptr
7523 * Tunnel Pointer for NVE or IPinIP tunnel decapsulation.
7524 * For Spectrum, pointer to KVD Linear.
7525 * Only relevant in case of IP2ME action.
7526 * Access: RW
7527 */
7528 MLXSW_ITEM32(reg, ralue, ip2me_tunnel_ptr, 0x24, 0, 24);
7529
mlxsw_reg_ralue_pack(char * payload,enum mlxsw_reg_ralxx_protocol protocol,enum mlxsw_reg_ralue_op op,u16 virtual_router,u8 prefix_len)7530 static inline void mlxsw_reg_ralue_pack(char *payload,
7531 enum mlxsw_reg_ralxx_protocol protocol,
7532 enum mlxsw_reg_ralue_op op,
7533 u16 virtual_router, u8 prefix_len)
7534 {
7535 MLXSW_REG_ZERO(ralue, payload);
7536 mlxsw_reg_ralue_protocol_set(payload, protocol);
7537 mlxsw_reg_ralue_op_set(payload, op);
7538 mlxsw_reg_ralue_virtual_router_set(payload, virtual_router);
7539 mlxsw_reg_ralue_prefix_len_set(payload, prefix_len);
7540 mlxsw_reg_ralue_entry_type_set(payload,
7541 MLXSW_REG_RALUE_ENTRY_TYPE_ROUTE_ENTRY);
7542 mlxsw_reg_ralue_bmp_len_set(payload, prefix_len);
7543 }
7544
mlxsw_reg_ralue_pack4(char * payload,enum mlxsw_reg_ralxx_protocol protocol,enum mlxsw_reg_ralue_op op,u16 virtual_router,u8 prefix_len,u32 * dip)7545 static inline void mlxsw_reg_ralue_pack4(char *payload,
7546 enum mlxsw_reg_ralxx_protocol protocol,
7547 enum mlxsw_reg_ralue_op op,
7548 u16 virtual_router, u8 prefix_len,
7549 u32 *dip)
7550 {
7551 mlxsw_reg_ralue_pack(payload, protocol, op, virtual_router, prefix_len);
7552 if (dip)
7553 mlxsw_reg_ralue_dip4_set(payload, *dip);
7554 }
7555
mlxsw_reg_ralue_pack6(char * payload,enum mlxsw_reg_ralxx_protocol protocol,enum mlxsw_reg_ralue_op op,u16 virtual_router,u8 prefix_len,const void * dip)7556 static inline void mlxsw_reg_ralue_pack6(char *payload,
7557 enum mlxsw_reg_ralxx_protocol protocol,
7558 enum mlxsw_reg_ralue_op op,
7559 u16 virtual_router, u8 prefix_len,
7560 const void *dip)
7561 {
7562 mlxsw_reg_ralue_pack(payload, protocol, op, virtual_router, prefix_len);
7563 if (dip)
7564 mlxsw_reg_ralue_dip6_memcpy_to(payload, dip);
7565 }
7566
7567 static inline void
mlxsw_reg_ralue_act_remote_pack(char * payload,enum mlxsw_reg_ralue_trap_action trap_action,u16 trap_id,u32 adjacency_index,u16 ecmp_size)7568 mlxsw_reg_ralue_act_remote_pack(char *payload,
7569 enum mlxsw_reg_ralue_trap_action trap_action,
7570 u16 trap_id, u32 adjacency_index, u16 ecmp_size)
7571 {
7572 mlxsw_reg_ralue_action_type_set(payload,
7573 MLXSW_REG_RALUE_ACTION_TYPE_REMOTE);
7574 mlxsw_reg_ralue_trap_action_set(payload, trap_action);
7575 mlxsw_reg_ralue_trap_id_set(payload, trap_id);
7576 mlxsw_reg_ralue_adjacency_index_set(payload, adjacency_index);
7577 mlxsw_reg_ralue_ecmp_size_set(payload, ecmp_size);
7578 }
7579
7580 static inline void
mlxsw_reg_ralue_act_local_pack(char * payload,enum mlxsw_reg_ralue_trap_action trap_action,u16 trap_id,u16 local_erif)7581 mlxsw_reg_ralue_act_local_pack(char *payload,
7582 enum mlxsw_reg_ralue_trap_action trap_action,
7583 u16 trap_id, u16 local_erif)
7584 {
7585 mlxsw_reg_ralue_action_type_set(payload,
7586 MLXSW_REG_RALUE_ACTION_TYPE_LOCAL);
7587 mlxsw_reg_ralue_trap_action_set(payload, trap_action);
7588 mlxsw_reg_ralue_trap_id_set(payload, trap_id);
7589 mlxsw_reg_ralue_local_erif_set(payload, local_erif);
7590 }
7591
7592 static inline void
mlxsw_reg_ralue_act_ip2me_pack(char * payload)7593 mlxsw_reg_ralue_act_ip2me_pack(char *payload)
7594 {
7595 mlxsw_reg_ralue_action_type_set(payload,
7596 MLXSW_REG_RALUE_ACTION_TYPE_IP2ME);
7597 }
7598
7599 static inline void
mlxsw_reg_ralue_act_ip2me_tun_pack(char * payload,u32 tunnel_ptr)7600 mlxsw_reg_ralue_act_ip2me_tun_pack(char *payload, u32 tunnel_ptr)
7601 {
7602 mlxsw_reg_ralue_action_type_set(payload,
7603 MLXSW_REG_RALUE_ACTION_TYPE_IP2ME);
7604 mlxsw_reg_ralue_ip2me_v_set(payload, 1);
7605 mlxsw_reg_ralue_ip2me_tunnel_ptr_set(payload, tunnel_ptr);
7606 }
7607
7608 /* RAUHT - Router Algorithmic LPM Unicast Host Table Register
7609 * ----------------------------------------------------------
7610 * The RAUHT register is used to configure and query the Unicast Host table in
7611 * devices that implement the Algorithmic LPM.
7612 */
7613 #define MLXSW_REG_RAUHT_ID 0x8014
7614 #define MLXSW_REG_RAUHT_LEN 0x74
7615
7616 MLXSW_REG_DEFINE(rauht, MLXSW_REG_RAUHT_ID, MLXSW_REG_RAUHT_LEN);
7617
7618 enum mlxsw_reg_rauht_type {
7619 MLXSW_REG_RAUHT_TYPE_IPV4,
7620 MLXSW_REG_RAUHT_TYPE_IPV6,
7621 };
7622
7623 /* reg_rauht_type
7624 * Access: Index
7625 */
7626 MLXSW_ITEM32(reg, rauht, type, 0x00, 24, 2);
7627
7628 enum mlxsw_reg_rauht_op {
7629 MLXSW_REG_RAUHT_OP_QUERY_READ = 0,
7630 /* Read operation */
7631 MLXSW_REG_RAUHT_OP_QUERY_CLEAR_ON_READ = 1,
7632 /* Clear on read operation. Used to read entry and clear
7633 * activity bit.
7634 */
7635 MLXSW_REG_RAUHT_OP_WRITE_ADD = 0,
7636 /* Add. Used to write a new entry to the table. All R/W fields are
7637 * relevant for new entry. Activity bit is set for new entries.
7638 */
7639 MLXSW_REG_RAUHT_OP_WRITE_UPDATE = 1,
7640 /* Update action. Used to update an existing route entry and
7641 * only update the following fields:
7642 * trap_action, trap_id, mac, counter_set_type, counter_index
7643 */
7644 MLXSW_REG_RAUHT_OP_WRITE_CLEAR_ACTIVITY = 2,
7645 /* Clear activity. A bit is cleared for the entry. */
7646 MLXSW_REG_RAUHT_OP_WRITE_DELETE = 3,
7647 /* Delete entry */
7648 MLXSW_REG_RAUHT_OP_WRITE_DELETE_ALL = 4,
7649 /* Delete all host entries on a RIF. In this command, dip
7650 * field is reserved.
7651 */
7652 };
7653
7654 /* reg_rauht_op
7655 * Access: OP
7656 */
7657 MLXSW_ITEM32(reg, rauht, op, 0x00, 20, 3);
7658
7659 /* reg_rauht_a
7660 * Activity. Set for new entries. Set if a packet lookup has hit on
7661 * the specific entry.
7662 * To clear the a bit, use "clear activity" op.
7663 * Enabled by activity_dis in RGCR
7664 * Access: RO
7665 */
7666 MLXSW_ITEM32(reg, rauht, a, 0x00, 16, 1);
7667
7668 /* reg_rauht_rif
7669 * Router Interface
7670 * Access: Index
7671 */
7672 MLXSW_ITEM32(reg, rauht, rif, 0x00, 0, 16);
7673
7674 /* reg_rauht_dip*
7675 * Destination address.
7676 * Access: Index
7677 */
7678 MLXSW_ITEM32(reg, rauht, dip4, 0x1C, 0x0, 32);
7679 MLXSW_ITEM_BUF(reg, rauht, dip6, 0x10, 16);
7680
7681 enum mlxsw_reg_rauht_trap_action {
7682 MLXSW_REG_RAUHT_TRAP_ACTION_NOP,
7683 MLXSW_REG_RAUHT_TRAP_ACTION_TRAP,
7684 MLXSW_REG_RAUHT_TRAP_ACTION_MIRROR_TO_CPU,
7685 MLXSW_REG_RAUHT_TRAP_ACTION_MIRROR,
7686 MLXSW_REG_RAUHT_TRAP_ACTION_DISCARD_ERRORS,
7687 };
7688
7689 /* reg_rauht_trap_action
7690 * Access: RW
7691 */
7692 MLXSW_ITEM32(reg, rauht, trap_action, 0x60, 28, 4);
7693
7694 enum mlxsw_reg_rauht_trap_id {
7695 MLXSW_REG_RAUHT_TRAP_ID_RTR_EGRESS0,
7696 MLXSW_REG_RAUHT_TRAP_ID_RTR_EGRESS1,
7697 };
7698
7699 /* reg_rauht_trap_id
7700 * Trap ID to be reported to CPU.
7701 * Trap-ID is RTR_EGRESS0 or RTR_EGRESS1.
7702 * For trap_action of NOP, MIRROR and DISCARD_ERROR,
7703 * trap_id is reserved.
7704 * Access: RW
7705 */
7706 MLXSW_ITEM32(reg, rauht, trap_id, 0x60, 0, 9);
7707
7708 /* reg_rauht_counter_set_type
7709 * Counter set type for flow counters
7710 * Access: RW
7711 */
7712 MLXSW_ITEM32(reg, rauht, counter_set_type, 0x68, 24, 8);
7713
7714 /* reg_rauht_counter_index
7715 * Counter index for flow counters
7716 * Access: RW
7717 */
7718 MLXSW_ITEM32(reg, rauht, counter_index, 0x68, 0, 24);
7719
7720 /* reg_rauht_mac
7721 * MAC address.
7722 * Access: RW
7723 */
7724 MLXSW_ITEM_BUF(reg, rauht, mac, 0x6E, 6);
7725
mlxsw_reg_rauht_pack(char * payload,enum mlxsw_reg_rauht_op op,u16 rif,const char * mac)7726 static inline void mlxsw_reg_rauht_pack(char *payload,
7727 enum mlxsw_reg_rauht_op op, u16 rif,
7728 const char *mac)
7729 {
7730 MLXSW_REG_ZERO(rauht, payload);
7731 mlxsw_reg_rauht_op_set(payload, op);
7732 mlxsw_reg_rauht_rif_set(payload, rif);
7733 mlxsw_reg_rauht_mac_memcpy_to(payload, mac);
7734 }
7735
mlxsw_reg_rauht_pack4(char * payload,enum mlxsw_reg_rauht_op op,u16 rif,const char * mac,u32 dip)7736 static inline void mlxsw_reg_rauht_pack4(char *payload,
7737 enum mlxsw_reg_rauht_op op, u16 rif,
7738 const char *mac, u32 dip)
7739 {
7740 mlxsw_reg_rauht_pack(payload, op, rif, mac);
7741 mlxsw_reg_rauht_dip4_set(payload, dip);
7742 }
7743
mlxsw_reg_rauht_pack6(char * payload,enum mlxsw_reg_rauht_op op,u16 rif,const char * mac,const char * dip)7744 static inline void mlxsw_reg_rauht_pack6(char *payload,
7745 enum mlxsw_reg_rauht_op op, u16 rif,
7746 const char *mac, const char *dip)
7747 {
7748 mlxsw_reg_rauht_pack(payload, op, rif, mac);
7749 mlxsw_reg_rauht_type_set(payload, MLXSW_REG_RAUHT_TYPE_IPV6);
7750 mlxsw_reg_rauht_dip6_memcpy_to(payload, dip);
7751 }
7752
mlxsw_reg_rauht_pack_counter(char * payload,u64 counter_index)7753 static inline void mlxsw_reg_rauht_pack_counter(char *payload,
7754 u64 counter_index)
7755 {
7756 mlxsw_reg_rauht_counter_index_set(payload, counter_index);
7757 mlxsw_reg_rauht_counter_set_type_set(payload,
7758 MLXSW_REG_FLOW_COUNTER_SET_TYPE_PACKETS_BYTES);
7759 }
7760
7761 /* RALEU - Router Algorithmic LPM ECMP Update Register
7762 * ---------------------------------------------------
7763 * The register enables updating the ECMP section in the action for multiple
7764 * LPM Unicast entries in a single operation. The update is executed to
7765 * all entries of a {virtual router, protocol} tuple using the same ECMP group.
7766 */
7767 #define MLXSW_REG_RALEU_ID 0x8015
7768 #define MLXSW_REG_RALEU_LEN 0x28
7769
7770 MLXSW_REG_DEFINE(raleu, MLXSW_REG_RALEU_ID, MLXSW_REG_RALEU_LEN);
7771
7772 /* reg_raleu_protocol
7773 * Protocol.
7774 * Access: Index
7775 */
7776 MLXSW_ITEM32(reg, raleu, protocol, 0x00, 24, 4);
7777
7778 /* reg_raleu_virtual_router
7779 * Virtual Router ID
7780 * Range is 0..cap_max_virtual_routers-1
7781 * Access: Index
7782 */
7783 MLXSW_ITEM32(reg, raleu, virtual_router, 0x00, 0, 16);
7784
7785 /* reg_raleu_adjacency_index
7786 * Adjacency Index used for matching on the existing entries.
7787 * Access: Index
7788 */
7789 MLXSW_ITEM32(reg, raleu, adjacency_index, 0x10, 0, 24);
7790
7791 /* reg_raleu_ecmp_size
7792 * ECMP Size used for matching on the existing entries.
7793 * Access: Index
7794 */
7795 MLXSW_ITEM32(reg, raleu, ecmp_size, 0x14, 0, 13);
7796
7797 /* reg_raleu_new_adjacency_index
7798 * New Adjacency Index.
7799 * Access: WO
7800 */
7801 MLXSW_ITEM32(reg, raleu, new_adjacency_index, 0x20, 0, 24);
7802
7803 /* reg_raleu_new_ecmp_size
7804 * New ECMP Size.
7805 * Access: WO
7806 */
7807 MLXSW_ITEM32(reg, raleu, new_ecmp_size, 0x24, 0, 13);
7808
mlxsw_reg_raleu_pack(char * payload,enum mlxsw_reg_ralxx_protocol protocol,u16 virtual_router,u32 adjacency_index,u16 ecmp_size,u32 new_adjacency_index,u16 new_ecmp_size)7809 static inline void mlxsw_reg_raleu_pack(char *payload,
7810 enum mlxsw_reg_ralxx_protocol protocol,
7811 u16 virtual_router,
7812 u32 adjacency_index, u16 ecmp_size,
7813 u32 new_adjacency_index,
7814 u16 new_ecmp_size)
7815 {
7816 MLXSW_REG_ZERO(raleu, payload);
7817 mlxsw_reg_raleu_protocol_set(payload, protocol);
7818 mlxsw_reg_raleu_virtual_router_set(payload, virtual_router);
7819 mlxsw_reg_raleu_adjacency_index_set(payload, adjacency_index);
7820 mlxsw_reg_raleu_ecmp_size_set(payload, ecmp_size);
7821 mlxsw_reg_raleu_new_adjacency_index_set(payload, new_adjacency_index);
7822 mlxsw_reg_raleu_new_ecmp_size_set(payload, new_ecmp_size);
7823 }
7824
7825 /* RAUHTD - Router Algorithmic LPM Unicast Host Table Dump Register
7826 * ----------------------------------------------------------------
7827 * The RAUHTD register allows dumping entries from the Router Unicast Host
7828 * Table. For a given session an entry is dumped no more than one time. The
7829 * first RAUHTD access after reset is a new session. A session ends when the
7830 * num_rec response is smaller than num_rec request or for IPv4 when the
7831 * num_entries is smaller than 4. The clear activity affect the current session
7832 * or the last session if a new session has not started.
7833 */
7834 #define MLXSW_REG_RAUHTD_ID 0x8018
7835 #define MLXSW_REG_RAUHTD_BASE_LEN 0x20
7836 #define MLXSW_REG_RAUHTD_REC_LEN 0x20
7837 #define MLXSW_REG_RAUHTD_REC_MAX_NUM 32
7838 #define MLXSW_REG_RAUHTD_LEN (MLXSW_REG_RAUHTD_BASE_LEN + \
7839 MLXSW_REG_RAUHTD_REC_MAX_NUM * MLXSW_REG_RAUHTD_REC_LEN)
7840 #define MLXSW_REG_RAUHTD_IPV4_ENT_PER_REC 4
7841
7842 MLXSW_REG_DEFINE(rauhtd, MLXSW_REG_RAUHTD_ID, MLXSW_REG_RAUHTD_LEN);
7843
7844 #define MLXSW_REG_RAUHTD_FILTER_A BIT(0)
7845 #define MLXSW_REG_RAUHTD_FILTER_RIF BIT(3)
7846
7847 /* reg_rauhtd_filter_fields
7848 * if a bit is '0' then the relevant field is ignored and dump is done
7849 * regardless of the field value
7850 * Bit0 - filter by activity: entry_a
7851 * Bit3 - filter by entry rip: entry_rif
7852 * Access: Index
7853 */
7854 MLXSW_ITEM32(reg, rauhtd, filter_fields, 0x00, 0, 8);
7855
7856 enum mlxsw_reg_rauhtd_op {
7857 MLXSW_REG_RAUHTD_OP_DUMP,
7858 MLXSW_REG_RAUHTD_OP_DUMP_AND_CLEAR,
7859 };
7860
7861 /* reg_rauhtd_op
7862 * Access: OP
7863 */
7864 MLXSW_ITEM32(reg, rauhtd, op, 0x04, 24, 2);
7865
7866 /* reg_rauhtd_num_rec
7867 * At request: number of records requested
7868 * At response: number of records dumped
7869 * For IPv4, each record has 4 entries at request and up to 4 entries
7870 * at response
7871 * Range is 0..MLXSW_REG_RAUHTD_REC_MAX_NUM
7872 * Access: Index
7873 */
7874 MLXSW_ITEM32(reg, rauhtd, num_rec, 0x04, 0, 8);
7875
7876 /* reg_rauhtd_entry_a
7877 * Dump only if activity has value of entry_a
7878 * Reserved if filter_fields bit0 is '0'
7879 * Access: Index
7880 */
7881 MLXSW_ITEM32(reg, rauhtd, entry_a, 0x08, 16, 1);
7882
7883 enum mlxsw_reg_rauhtd_type {
7884 MLXSW_REG_RAUHTD_TYPE_IPV4,
7885 MLXSW_REG_RAUHTD_TYPE_IPV6,
7886 };
7887
7888 /* reg_rauhtd_type
7889 * Dump only if record type is:
7890 * 0 - IPv4
7891 * 1 - IPv6
7892 * Access: Index
7893 */
7894 MLXSW_ITEM32(reg, rauhtd, type, 0x08, 0, 4);
7895
7896 /* reg_rauhtd_entry_rif
7897 * Dump only if RIF has value of entry_rif
7898 * Reserved if filter_fields bit3 is '0'
7899 * Access: Index
7900 */
7901 MLXSW_ITEM32(reg, rauhtd, entry_rif, 0x0C, 0, 16);
7902
mlxsw_reg_rauhtd_pack(char * payload,enum mlxsw_reg_rauhtd_type type)7903 static inline void mlxsw_reg_rauhtd_pack(char *payload,
7904 enum mlxsw_reg_rauhtd_type type)
7905 {
7906 MLXSW_REG_ZERO(rauhtd, payload);
7907 mlxsw_reg_rauhtd_filter_fields_set(payload, MLXSW_REG_RAUHTD_FILTER_A);
7908 mlxsw_reg_rauhtd_op_set(payload, MLXSW_REG_RAUHTD_OP_DUMP_AND_CLEAR);
7909 mlxsw_reg_rauhtd_num_rec_set(payload, MLXSW_REG_RAUHTD_REC_MAX_NUM);
7910 mlxsw_reg_rauhtd_entry_a_set(payload, 1);
7911 mlxsw_reg_rauhtd_type_set(payload, type);
7912 }
7913
7914 /* reg_rauhtd_ipv4_rec_num_entries
7915 * Number of valid entries in this record:
7916 * 0 - 1 valid entry
7917 * 1 - 2 valid entries
7918 * 2 - 3 valid entries
7919 * 3 - 4 valid entries
7920 * Access: RO
7921 */
7922 MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv4_rec_num_entries,
7923 MLXSW_REG_RAUHTD_BASE_LEN, 28, 2,
7924 MLXSW_REG_RAUHTD_REC_LEN, 0x00, false);
7925
7926 /* reg_rauhtd_rec_type
7927 * Record type.
7928 * 0 - IPv4
7929 * 1 - IPv6
7930 * Access: RO
7931 */
7932 MLXSW_ITEM32_INDEXED(reg, rauhtd, rec_type, MLXSW_REG_RAUHTD_BASE_LEN, 24, 2,
7933 MLXSW_REG_RAUHTD_REC_LEN, 0x00, false);
7934
7935 #define MLXSW_REG_RAUHTD_IPV4_ENT_LEN 0x8
7936
7937 /* reg_rauhtd_ipv4_ent_a
7938 * Activity. Set for new entries. Set if a packet lookup has hit on the
7939 * specific entry.
7940 * Access: RO
7941 */
7942 MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv4_ent_a, MLXSW_REG_RAUHTD_BASE_LEN, 16, 1,
7943 MLXSW_REG_RAUHTD_IPV4_ENT_LEN, 0x00, false);
7944
7945 /* reg_rauhtd_ipv4_ent_rif
7946 * Router interface.
7947 * Access: RO
7948 */
7949 MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv4_ent_rif, MLXSW_REG_RAUHTD_BASE_LEN, 0,
7950 16, MLXSW_REG_RAUHTD_IPV4_ENT_LEN, 0x00, false);
7951
7952 /* reg_rauhtd_ipv4_ent_dip
7953 * Destination IPv4 address.
7954 * Access: RO
7955 */
7956 MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv4_ent_dip, MLXSW_REG_RAUHTD_BASE_LEN, 0,
7957 32, MLXSW_REG_RAUHTD_IPV4_ENT_LEN, 0x04, false);
7958
7959 #define MLXSW_REG_RAUHTD_IPV6_ENT_LEN 0x20
7960
7961 /* reg_rauhtd_ipv6_ent_a
7962 * Activity. Set for new entries. Set if a packet lookup has hit on the
7963 * specific entry.
7964 * Access: RO
7965 */
7966 MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv6_ent_a, MLXSW_REG_RAUHTD_BASE_LEN, 16, 1,
7967 MLXSW_REG_RAUHTD_IPV6_ENT_LEN, 0x00, false);
7968
7969 /* reg_rauhtd_ipv6_ent_rif
7970 * Router interface.
7971 * Access: RO
7972 */
7973 MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv6_ent_rif, MLXSW_REG_RAUHTD_BASE_LEN, 0,
7974 16, MLXSW_REG_RAUHTD_IPV6_ENT_LEN, 0x00, false);
7975
7976 /* reg_rauhtd_ipv6_ent_dip
7977 * Destination IPv6 address.
7978 * Access: RO
7979 */
7980 MLXSW_ITEM_BUF_INDEXED(reg, rauhtd, ipv6_ent_dip, MLXSW_REG_RAUHTD_BASE_LEN,
7981 16, MLXSW_REG_RAUHTD_IPV6_ENT_LEN, 0x10);
7982
mlxsw_reg_rauhtd_ent_ipv4_unpack(char * payload,int ent_index,u16 * p_rif,u32 * p_dip)7983 static inline void mlxsw_reg_rauhtd_ent_ipv4_unpack(char *payload,
7984 int ent_index, u16 *p_rif,
7985 u32 *p_dip)
7986 {
7987 *p_rif = mlxsw_reg_rauhtd_ipv4_ent_rif_get(payload, ent_index);
7988 *p_dip = mlxsw_reg_rauhtd_ipv4_ent_dip_get(payload, ent_index);
7989 }
7990
mlxsw_reg_rauhtd_ent_ipv6_unpack(char * payload,int rec_index,u16 * p_rif,char * p_dip)7991 static inline void mlxsw_reg_rauhtd_ent_ipv6_unpack(char *payload,
7992 int rec_index, u16 *p_rif,
7993 char *p_dip)
7994 {
7995 *p_rif = mlxsw_reg_rauhtd_ipv6_ent_rif_get(payload, rec_index);
7996 mlxsw_reg_rauhtd_ipv6_ent_dip_memcpy_from(payload, rec_index, p_dip);
7997 }
7998
7999 /* RTDP - Routing Tunnel Decap Properties Register
8000 * -----------------------------------------------
8001 * The RTDP register is used for configuring the tunnel decap properties of NVE
8002 * and IPinIP.
8003 */
8004 #define MLXSW_REG_RTDP_ID 0x8020
8005 #define MLXSW_REG_RTDP_LEN 0x44
8006
8007 MLXSW_REG_DEFINE(rtdp, MLXSW_REG_RTDP_ID, MLXSW_REG_RTDP_LEN);
8008
8009 enum mlxsw_reg_rtdp_type {
8010 MLXSW_REG_RTDP_TYPE_NVE,
8011 MLXSW_REG_RTDP_TYPE_IPIP,
8012 };
8013
8014 /* reg_rtdp_type
8015 * Type of the RTDP entry as per enum mlxsw_reg_rtdp_type.
8016 * Access: RW
8017 */
8018 MLXSW_ITEM32(reg, rtdp, type, 0x00, 28, 4);
8019
8020 /* reg_rtdp_tunnel_index
8021 * Index to the Decap entry.
8022 * For Spectrum, Index to KVD Linear.
8023 * Access: Index
8024 */
8025 MLXSW_ITEM32(reg, rtdp, tunnel_index, 0x00, 0, 24);
8026
8027 /* reg_rtdp_egress_router_interface
8028 * Underlay egress router interface.
8029 * Valid range is from 0 to cap_max_router_interfaces - 1
8030 * Access: RW
8031 */
8032 MLXSW_ITEM32(reg, rtdp, egress_router_interface, 0x40, 0, 16);
8033
8034 /* IPinIP */
8035
8036 /* reg_rtdp_ipip_irif
8037 * Ingress Router Interface for the overlay router
8038 * Access: RW
8039 */
8040 MLXSW_ITEM32(reg, rtdp, ipip_irif, 0x04, 16, 16);
8041
8042 enum mlxsw_reg_rtdp_ipip_sip_check {
8043 /* No sip checks. */
8044 MLXSW_REG_RTDP_IPIP_SIP_CHECK_NO,
8045 /* Filter packet if underlay is not IPv4 or if underlay SIP does not
8046 * equal ipv4_usip.
8047 */
8048 MLXSW_REG_RTDP_IPIP_SIP_CHECK_FILTER_IPV4,
8049 /* Filter packet if underlay is not IPv6 or if underlay SIP does not
8050 * equal ipv6_usip.
8051 */
8052 MLXSW_REG_RTDP_IPIP_SIP_CHECK_FILTER_IPV6 = 3,
8053 };
8054
8055 /* reg_rtdp_ipip_sip_check
8056 * SIP check to perform. If decapsulation failed due to these configurations
8057 * then trap_id is IPIP_DECAP_ERROR.
8058 * Access: RW
8059 */
8060 MLXSW_ITEM32(reg, rtdp, ipip_sip_check, 0x04, 0, 3);
8061
8062 /* If set, allow decapsulation of IPinIP (without GRE). */
8063 #define MLXSW_REG_RTDP_IPIP_TYPE_CHECK_ALLOW_IPIP BIT(0)
8064 /* If set, allow decapsulation of IPinGREinIP without a key. */
8065 #define MLXSW_REG_RTDP_IPIP_TYPE_CHECK_ALLOW_GRE BIT(1)
8066 /* If set, allow decapsulation of IPinGREinIP with a key. */
8067 #define MLXSW_REG_RTDP_IPIP_TYPE_CHECK_ALLOW_GRE_KEY BIT(2)
8068
8069 /* reg_rtdp_ipip_type_check
8070 * Flags as per MLXSW_REG_RTDP_IPIP_TYPE_CHECK_*. If decapsulation failed due to
8071 * these configurations then trap_id is IPIP_DECAP_ERROR.
8072 * Access: RW
8073 */
8074 MLXSW_ITEM32(reg, rtdp, ipip_type_check, 0x08, 24, 3);
8075
8076 /* reg_rtdp_ipip_gre_key_check
8077 * Whether GRE key should be checked. When check is enabled:
8078 * - A packet received as IPinIP (without GRE) will always pass.
8079 * - A packet received as IPinGREinIP without a key will not pass the check.
8080 * - A packet received as IPinGREinIP with a key will pass the check only if the
8081 * key in the packet is equal to expected_gre_key.
8082 * If decapsulation failed due to GRE key then trap_id is IPIP_DECAP_ERROR.
8083 * Access: RW
8084 */
8085 MLXSW_ITEM32(reg, rtdp, ipip_gre_key_check, 0x08, 23, 1);
8086
8087 /* reg_rtdp_ipip_ipv4_usip
8088 * Underlay IPv4 address for ipv4 source address check.
8089 * Reserved when sip_check is not '1'.
8090 * Access: RW
8091 */
8092 MLXSW_ITEM32(reg, rtdp, ipip_ipv4_usip, 0x0C, 0, 32);
8093
8094 /* reg_rtdp_ipip_ipv6_usip_ptr
8095 * This field is valid when sip_check is "sipv6 check explicitly". This is a
8096 * pointer to the IPv6 DIP which is configured by RIPS. For Spectrum, the index
8097 * is to the KVD linear.
8098 * Reserved when sip_check is not MLXSW_REG_RTDP_IPIP_SIP_CHECK_FILTER_IPV6.
8099 * Access: RW
8100 */
8101 MLXSW_ITEM32(reg, rtdp, ipip_ipv6_usip_ptr, 0x10, 0, 24);
8102
8103 /* reg_rtdp_ipip_expected_gre_key
8104 * GRE key for checking.
8105 * Reserved when gre_key_check is '0'.
8106 * Access: RW
8107 */
8108 MLXSW_ITEM32(reg, rtdp, ipip_expected_gre_key, 0x14, 0, 32);
8109
mlxsw_reg_rtdp_pack(char * payload,enum mlxsw_reg_rtdp_type type,u32 tunnel_index)8110 static inline void mlxsw_reg_rtdp_pack(char *payload,
8111 enum mlxsw_reg_rtdp_type type,
8112 u32 tunnel_index)
8113 {
8114 MLXSW_REG_ZERO(rtdp, payload);
8115 mlxsw_reg_rtdp_type_set(payload, type);
8116 mlxsw_reg_rtdp_tunnel_index_set(payload, tunnel_index);
8117 }
8118
8119 static inline void
mlxsw_reg_rtdp_ipip4_pack(char * payload,u16 irif,enum mlxsw_reg_rtdp_ipip_sip_check sip_check,unsigned int type_check,bool gre_key_check,u32 ipv4_usip,u32 expected_gre_key)8120 mlxsw_reg_rtdp_ipip4_pack(char *payload, u16 irif,
8121 enum mlxsw_reg_rtdp_ipip_sip_check sip_check,
8122 unsigned int type_check, bool gre_key_check,
8123 u32 ipv4_usip, u32 expected_gre_key)
8124 {
8125 mlxsw_reg_rtdp_ipip_irif_set(payload, irif);
8126 mlxsw_reg_rtdp_ipip_sip_check_set(payload, sip_check);
8127 mlxsw_reg_rtdp_ipip_type_check_set(payload, type_check);
8128 mlxsw_reg_rtdp_ipip_gre_key_check_set(payload, gre_key_check);
8129 mlxsw_reg_rtdp_ipip_ipv4_usip_set(payload, ipv4_usip);
8130 mlxsw_reg_rtdp_ipip_expected_gre_key_set(payload, expected_gre_key);
8131 }
8132
8133 /* RATRAD - Router Adjacency Table Activity Dump Register
8134 * ------------------------------------------------------
8135 * The RATRAD register is used to dump and optionally clear activity bits of
8136 * router adjacency table entries.
8137 */
8138 #define MLXSW_REG_RATRAD_ID 0x8022
8139 #define MLXSW_REG_RATRAD_LEN 0x210
8140
8141 MLXSW_REG_DEFINE(ratrad, MLXSW_REG_RATRAD_ID, MLXSW_REG_RATRAD_LEN);
8142
8143 enum {
8144 /* Read activity */
8145 MLXSW_REG_RATRAD_OP_READ_ACTIVITY,
8146 /* Read and clear activity */
8147 MLXSW_REG_RATRAD_OP_READ_CLEAR_ACTIVITY,
8148 };
8149
8150 /* reg_ratrad_op
8151 * Access: Operation
8152 */
8153 MLXSW_ITEM32(reg, ratrad, op, 0x00, 30, 2);
8154
8155 /* reg_ratrad_ecmp_size
8156 * ecmp_size is the amount of sequential entries from adjacency_index. Valid
8157 * ranges:
8158 * Spectrum-1: 32-64, 512, 1024, 2048, 4096
8159 * Spectrum-2/3: 32-128, 256, 512, 1024, 2048, 4096
8160 * Access: Index
8161 */
8162 MLXSW_ITEM32(reg, ratrad, ecmp_size, 0x00, 0, 13);
8163
8164 /* reg_ratrad_adjacency_index
8165 * Index into the adjacency table.
8166 * Access: Index
8167 */
8168 MLXSW_ITEM32(reg, ratrad, adjacency_index, 0x04, 0, 24);
8169
8170 /* reg_ratrad_activity_vector
8171 * Activity bit per adjacency index.
8172 * Bits higher than ecmp_size are reserved.
8173 * Access: RO
8174 */
8175 MLXSW_ITEM_BIT_ARRAY(reg, ratrad, activity_vector, 0x10, 0x200, 1);
8176
mlxsw_reg_ratrad_pack(char * payload,u32 adjacency_index,u16 ecmp_size)8177 static inline void mlxsw_reg_ratrad_pack(char *payload, u32 adjacency_index,
8178 u16 ecmp_size)
8179 {
8180 MLXSW_REG_ZERO(ratrad, payload);
8181 mlxsw_reg_ratrad_op_set(payload,
8182 MLXSW_REG_RATRAD_OP_READ_CLEAR_ACTIVITY);
8183 mlxsw_reg_ratrad_ecmp_size_set(payload, ecmp_size);
8184 mlxsw_reg_ratrad_adjacency_index_set(payload, adjacency_index);
8185 }
8186
8187 /* RIGR-V2 - Router Interface Group Register Version 2
8188 * ---------------------------------------------------
8189 * The RIGR_V2 register is used to add, remove and query egress interface list
8190 * of a multicast forwarding entry.
8191 */
8192 #define MLXSW_REG_RIGR2_ID 0x8023
8193 #define MLXSW_REG_RIGR2_LEN 0xB0
8194
8195 #define MLXSW_REG_RIGR2_MAX_ERIFS 32
8196
8197 MLXSW_REG_DEFINE(rigr2, MLXSW_REG_RIGR2_ID, MLXSW_REG_RIGR2_LEN);
8198
8199 /* reg_rigr2_rigr_index
8200 * KVD Linear index.
8201 * Access: Index
8202 */
8203 MLXSW_ITEM32(reg, rigr2, rigr_index, 0x04, 0, 24);
8204
8205 /* reg_rigr2_vnext
8206 * Next RIGR Index is valid.
8207 * Access: RW
8208 */
8209 MLXSW_ITEM32(reg, rigr2, vnext, 0x08, 31, 1);
8210
8211 /* reg_rigr2_next_rigr_index
8212 * Next RIGR Index. The index is to the KVD linear.
8213 * Reserved when vnxet = '0'.
8214 * Access: RW
8215 */
8216 MLXSW_ITEM32(reg, rigr2, next_rigr_index, 0x08, 0, 24);
8217
8218 /* reg_rigr2_vrmid
8219 * RMID Index is valid.
8220 * Access: RW
8221 */
8222 MLXSW_ITEM32(reg, rigr2, vrmid, 0x20, 31, 1);
8223
8224 /* reg_rigr2_rmid_index
8225 * RMID Index.
8226 * Range 0 .. max_mid - 1
8227 * Reserved when vrmid = '0'.
8228 * The index is to the Port Group Table (PGT)
8229 * Access: RW
8230 */
8231 MLXSW_ITEM32(reg, rigr2, rmid_index, 0x20, 0, 16);
8232
8233 /* reg_rigr2_erif_entry_v
8234 * Egress Router Interface is valid.
8235 * Note that low-entries must be set if high-entries are set. For
8236 * example: if erif_entry[2].v is set then erif_entry[1].v and
8237 * erif_entry[0].v must be set.
8238 * Index can be from 0 to cap_mc_erif_list_entries-1
8239 * Access: RW
8240 */
8241 MLXSW_ITEM32_INDEXED(reg, rigr2, erif_entry_v, 0x24, 31, 1, 4, 0, false);
8242
8243 /* reg_rigr2_erif_entry_erif
8244 * Egress Router Interface.
8245 * Valid range is from 0 to cap_max_router_interfaces - 1
8246 * Index can be from 0 to MLXSW_REG_RIGR2_MAX_ERIFS - 1
8247 * Access: RW
8248 */
8249 MLXSW_ITEM32_INDEXED(reg, rigr2, erif_entry_erif, 0x24, 0, 16, 4, 0, false);
8250
mlxsw_reg_rigr2_pack(char * payload,u32 rigr_index,bool vnext,u32 next_rigr_index)8251 static inline void mlxsw_reg_rigr2_pack(char *payload, u32 rigr_index,
8252 bool vnext, u32 next_rigr_index)
8253 {
8254 MLXSW_REG_ZERO(rigr2, payload);
8255 mlxsw_reg_rigr2_rigr_index_set(payload, rigr_index);
8256 mlxsw_reg_rigr2_vnext_set(payload, vnext);
8257 mlxsw_reg_rigr2_next_rigr_index_set(payload, next_rigr_index);
8258 mlxsw_reg_rigr2_vrmid_set(payload, 0);
8259 mlxsw_reg_rigr2_rmid_index_set(payload, 0);
8260 }
8261
mlxsw_reg_rigr2_erif_entry_pack(char * payload,int index,bool v,u16 erif)8262 static inline void mlxsw_reg_rigr2_erif_entry_pack(char *payload, int index,
8263 bool v, u16 erif)
8264 {
8265 mlxsw_reg_rigr2_erif_entry_v_set(payload, index, v);
8266 mlxsw_reg_rigr2_erif_entry_erif_set(payload, index, erif);
8267 }
8268
8269 /* RECR-V2 - Router ECMP Configuration Version 2 Register
8270 * ------------------------------------------------------
8271 */
8272 #define MLXSW_REG_RECR2_ID 0x8025
8273 #define MLXSW_REG_RECR2_LEN 0x38
8274
8275 MLXSW_REG_DEFINE(recr2, MLXSW_REG_RECR2_ID, MLXSW_REG_RECR2_LEN);
8276
8277 /* reg_recr2_pp
8278 * Per-port configuration
8279 * Access: Index
8280 */
8281 MLXSW_ITEM32(reg, recr2, pp, 0x00, 24, 1);
8282
8283 /* reg_recr2_sh
8284 * Symmetric hash
8285 * Access: RW
8286 */
8287 MLXSW_ITEM32(reg, recr2, sh, 0x00, 8, 1);
8288
8289 /* reg_recr2_seed
8290 * Seed
8291 * Access: RW
8292 */
8293 MLXSW_ITEM32(reg, recr2, seed, 0x08, 0, 32);
8294
8295 enum {
8296 /* Enable IPv4 fields if packet is not TCP and not UDP */
8297 MLXSW_REG_RECR2_IPV4_EN_NOT_TCP_NOT_UDP = 3,
8298 /* Enable IPv4 fields if packet is TCP or UDP */
8299 MLXSW_REG_RECR2_IPV4_EN_TCP_UDP = 4,
8300 /* Enable IPv6 fields if packet is not TCP and not UDP */
8301 MLXSW_REG_RECR2_IPV6_EN_NOT_TCP_NOT_UDP = 5,
8302 /* Enable IPv6 fields if packet is TCP or UDP */
8303 MLXSW_REG_RECR2_IPV6_EN_TCP_UDP = 6,
8304 /* Enable TCP/UDP header fields if packet is IPv4 */
8305 MLXSW_REG_RECR2_TCP_UDP_EN_IPV4 = 7,
8306 /* Enable TCP/UDP header fields if packet is IPv6 */
8307 MLXSW_REG_RECR2_TCP_UDP_EN_IPV6 = 8,
8308
8309 __MLXSW_REG_RECR2_HEADER_CNT,
8310 };
8311
8312 /* reg_recr2_outer_header_enables
8313 * Bit mask where each bit enables a specific layer to be included in
8314 * the hash calculation.
8315 * Access: RW
8316 */
8317 MLXSW_ITEM_BIT_ARRAY(reg, recr2, outer_header_enables, 0x10, 0x04, 1);
8318
8319 enum {
8320 /* IPv4 Source IP */
8321 MLXSW_REG_RECR2_IPV4_SIP0 = 9,
8322 MLXSW_REG_RECR2_IPV4_SIP3 = 12,
8323 /* IPv4 Destination IP */
8324 MLXSW_REG_RECR2_IPV4_DIP0 = 13,
8325 MLXSW_REG_RECR2_IPV4_DIP3 = 16,
8326 /* IP Protocol */
8327 MLXSW_REG_RECR2_IPV4_PROTOCOL = 17,
8328 /* IPv6 Source IP */
8329 MLXSW_REG_RECR2_IPV6_SIP0_7 = 21,
8330 MLXSW_REG_RECR2_IPV6_SIP8 = 29,
8331 MLXSW_REG_RECR2_IPV6_SIP15 = 36,
8332 /* IPv6 Destination IP */
8333 MLXSW_REG_RECR2_IPV6_DIP0_7 = 37,
8334 MLXSW_REG_RECR2_IPV6_DIP8 = 45,
8335 MLXSW_REG_RECR2_IPV6_DIP15 = 52,
8336 /* IPv6 Next Header */
8337 MLXSW_REG_RECR2_IPV6_NEXT_HEADER = 53,
8338 /* IPv6 Flow Label */
8339 MLXSW_REG_RECR2_IPV6_FLOW_LABEL = 57,
8340 /* TCP/UDP Source Port */
8341 MLXSW_REG_RECR2_TCP_UDP_SPORT = 74,
8342 /* TCP/UDP Destination Port */
8343 MLXSW_REG_RECR2_TCP_UDP_DPORT = 75,
8344
8345 __MLXSW_REG_RECR2_FIELD_CNT,
8346 };
8347
8348 /* reg_recr2_outer_header_fields_enable
8349 * Packet fields to enable for ECMP hash subject to outer_header_enable.
8350 * Access: RW
8351 */
8352 MLXSW_ITEM_BIT_ARRAY(reg, recr2, outer_header_fields_enable, 0x14, 0x14, 1);
8353
8354 /* reg_recr2_inner_header_enables
8355 * Bit mask where each bit enables a specific inner layer to be included in the
8356 * hash calculation. Same values as reg_recr2_outer_header_enables.
8357 * Access: RW
8358 */
8359 MLXSW_ITEM_BIT_ARRAY(reg, recr2, inner_header_enables, 0x2C, 0x04, 1);
8360
8361 enum {
8362 /* Inner IPv4 Source IP */
8363 MLXSW_REG_RECR2_INNER_IPV4_SIP0 = 3,
8364 MLXSW_REG_RECR2_INNER_IPV4_SIP3 = 6,
8365 /* Inner IPv4 Destination IP */
8366 MLXSW_REG_RECR2_INNER_IPV4_DIP0 = 7,
8367 MLXSW_REG_RECR2_INNER_IPV4_DIP3 = 10,
8368 /* Inner IP Protocol */
8369 MLXSW_REG_RECR2_INNER_IPV4_PROTOCOL = 11,
8370 /* Inner IPv6 Source IP */
8371 MLXSW_REG_RECR2_INNER_IPV6_SIP0_7 = 12,
8372 MLXSW_REG_RECR2_INNER_IPV6_SIP8 = 20,
8373 MLXSW_REG_RECR2_INNER_IPV6_SIP15 = 27,
8374 /* Inner IPv6 Destination IP */
8375 MLXSW_REG_RECR2_INNER_IPV6_DIP0_7 = 28,
8376 MLXSW_REG_RECR2_INNER_IPV6_DIP8 = 36,
8377 MLXSW_REG_RECR2_INNER_IPV6_DIP15 = 43,
8378 /* Inner IPv6 Next Header */
8379 MLXSW_REG_RECR2_INNER_IPV6_NEXT_HEADER = 44,
8380 /* Inner IPv6 Flow Label */
8381 MLXSW_REG_RECR2_INNER_IPV6_FLOW_LABEL = 45,
8382 /* Inner TCP/UDP Source Port */
8383 MLXSW_REG_RECR2_INNER_TCP_UDP_SPORT = 46,
8384 /* Inner TCP/UDP Destination Port */
8385 MLXSW_REG_RECR2_INNER_TCP_UDP_DPORT = 47,
8386
8387 __MLXSW_REG_RECR2_INNER_FIELD_CNT,
8388 };
8389
8390 /* reg_recr2_inner_header_fields_enable
8391 * Inner packet fields to enable for ECMP hash subject to inner_header_enables.
8392 * Access: RW
8393 */
8394 MLXSW_ITEM_BIT_ARRAY(reg, recr2, inner_header_fields_enable, 0x30, 0x08, 1);
8395
mlxsw_reg_recr2_pack(char * payload,u32 seed)8396 static inline void mlxsw_reg_recr2_pack(char *payload, u32 seed)
8397 {
8398 MLXSW_REG_ZERO(recr2, payload);
8399 mlxsw_reg_recr2_pp_set(payload, false);
8400 mlxsw_reg_recr2_sh_set(payload, true);
8401 mlxsw_reg_recr2_seed_set(payload, seed);
8402 }
8403
8404 /* RMFT-V2 - Router Multicast Forwarding Table Version 2 Register
8405 * --------------------------------------------------------------
8406 * The RMFT_V2 register is used to configure and query the multicast table.
8407 */
8408 #define MLXSW_REG_RMFT2_ID 0x8027
8409 #define MLXSW_REG_RMFT2_LEN 0x174
8410
8411 MLXSW_REG_DEFINE(rmft2, MLXSW_REG_RMFT2_ID, MLXSW_REG_RMFT2_LEN);
8412
8413 /* reg_rmft2_v
8414 * Valid
8415 * Access: RW
8416 */
8417 MLXSW_ITEM32(reg, rmft2, v, 0x00, 31, 1);
8418
8419 enum mlxsw_reg_rmft2_type {
8420 MLXSW_REG_RMFT2_TYPE_IPV4,
8421 MLXSW_REG_RMFT2_TYPE_IPV6
8422 };
8423
8424 /* reg_rmft2_type
8425 * Access: Index
8426 */
8427 MLXSW_ITEM32(reg, rmft2, type, 0x00, 28, 2);
8428
8429 enum mlxsw_sp_reg_rmft2_op {
8430 /* For Write:
8431 * Write operation. Used to write a new entry to the table. All RW
8432 * fields are relevant for new entry. Activity bit is set for new
8433 * entries - Note write with v (Valid) 0 will delete the entry.
8434 * For Query:
8435 * Read operation
8436 */
8437 MLXSW_REG_RMFT2_OP_READ_WRITE,
8438 };
8439
8440 /* reg_rmft2_op
8441 * Operation.
8442 * Access: OP
8443 */
8444 MLXSW_ITEM32(reg, rmft2, op, 0x00, 20, 2);
8445
8446 /* reg_rmft2_a
8447 * Activity. Set for new entries. Set if a packet lookup has hit on the specific
8448 * entry.
8449 * Access: RO
8450 */
8451 MLXSW_ITEM32(reg, rmft2, a, 0x00, 16, 1);
8452
8453 /* reg_rmft2_offset
8454 * Offset within the multicast forwarding table to write to.
8455 * Access: Index
8456 */
8457 MLXSW_ITEM32(reg, rmft2, offset, 0x00, 0, 16);
8458
8459 /* reg_rmft2_virtual_router
8460 * Virtual Router ID. Range from 0..cap_max_virtual_routers-1
8461 * Access: RW
8462 */
8463 MLXSW_ITEM32(reg, rmft2, virtual_router, 0x04, 0, 16);
8464
8465 enum mlxsw_reg_rmft2_irif_mask {
8466 MLXSW_REG_RMFT2_IRIF_MASK_IGNORE,
8467 MLXSW_REG_RMFT2_IRIF_MASK_COMPARE
8468 };
8469
8470 /* reg_rmft2_irif_mask
8471 * Ingress RIF mask.
8472 * Access: RW
8473 */
8474 MLXSW_ITEM32(reg, rmft2, irif_mask, 0x08, 24, 1);
8475
8476 /* reg_rmft2_irif
8477 * Ingress RIF index.
8478 * Access: RW
8479 */
8480 MLXSW_ITEM32(reg, rmft2, irif, 0x08, 0, 16);
8481
8482 /* reg_rmft2_dip{4,6}
8483 * Destination IPv4/6 address
8484 * Access: RW
8485 */
8486 MLXSW_ITEM_BUF(reg, rmft2, dip6, 0x10, 16);
8487 MLXSW_ITEM32(reg, rmft2, dip4, 0x1C, 0, 32);
8488
8489 /* reg_rmft2_dip{4,6}_mask
8490 * A bit that is set directs the TCAM to compare the corresponding bit in key. A
8491 * bit that is clear directs the TCAM to ignore the corresponding bit in key.
8492 * Access: RW
8493 */
8494 MLXSW_ITEM_BUF(reg, rmft2, dip6_mask, 0x20, 16);
8495 MLXSW_ITEM32(reg, rmft2, dip4_mask, 0x2C, 0, 32);
8496
8497 /* reg_rmft2_sip{4,6}
8498 * Source IPv4/6 address
8499 * Access: RW
8500 */
8501 MLXSW_ITEM_BUF(reg, rmft2, sip6, 0x30, 16);
8502 MLXSW_ITEM32(reg, rmft2, sip4, 0x3C, 0, 32);
8503
8504 /* reg_rmft2_sip{4,6}_mask
8505 * A bit that is set directs the TCAM to compare the corresponding bit in key. A
8506 * bit that is clear directs the TCAM to ignore the corresponding bit in key.
8507 * Access: RW
8508 */
8509 MLXSW_ITEM_BUF(reg, rmft2, sip6_mask, 0x40, 16);
8510 MLXSW_ITEM32(reg, rmft2, sip4_mask, 0x4C, 0, 32);
8511
8512 /* reg_rmft2_flexible_action_set
8513 * ACL action set. The only supported action types in this field and in any
8514 * action-set pointed from here are as follows:
8515 * 00h: ACTION_NULL
8516 * 01h: ACTION_MAC_TTL, only TTL configuration is supported.
8517 * 03h: ACTION_TRAP
8518 * 06h: ACTION_QOS
8519 * 08h: ACTION_POLICING_MONITORING
8520 * 10h: ACTION_ROUTER_MC
8521 * Access: RW
8522 */
8523 MLXSW_ITEM_BUF(reg, rmft2, flexible_action_set, 0x80,
8524 MLXSW_REG_FLEX_ACTION_SET_LEN);
8525
8526 static inline void
mlxsw_reg_rmft2_common_pack(char * payload,bool v,u16 offset,u16 virtual_router,enum mlxsw_reg_rmft2_irif_mask irif_mask,u16 irif,const char * flex_action_set)8527 mlxsw_reg_rmft2_common_pack(char *payload, bool v, u16 offset,
8528 u16 virtual_router,
8529 enum mlxsw_reg_rmft2_irif_mask irif_mask, u16 irif,
8530 const char *flex_action_set)
8531 {
8532 MLXSW_REG_ZERO(rmft2, payload);
8533 mlxsw_reg_rmft2_v_set(payload, v);
8534 mlxsw_reg_rmft2_op_set(payload, MLXSW_REG_RMFT2_OP_READ_WRITE);
8535 mlxsw_reg_rmft2_offset_set(payload, offset);
8536 mlxsw_reg_rmft2_virtual_router_set(payload, virtual_router);
8537 mlxsw_reg_rmft2_irif_mask_set(payload, irif_mask);
8538 mlxsw_reg_rmft2_irif_set(payload, irif);
8539 if (flex_action_set)
8540 mlxsw_reg_rmft2_flexible_action_set_memcpy_to(payload,
8541 flex_action_set);
8542 }
8543
8544 static inline void
mlxsw_reg_rmft2_ipv4_pack(char * payload,bool v,u16 offset,u16 virtual_router,enum mlxsw_reg_rmft2_irif_mask irif_mask,u16 irif,u32 dip4,u32 dip4_mask,u32 sip4,u32 sip4_mask,const char * flexible_action_set)8545 mlxsw_reg_rmft2_ipv4_pack(char *payload, bool v, u16 offset, u16 virtual_router,
8546 enum mlxsw_reg_rmft2_irif_mask irif_mask, u16 irif,
8547 u32 dip4, u32 dip4_mask, u32 sip4, u32 sip4_mask,
8548 const char *flexible_action_set)
8549 {
8550 mlxsw_reg_rmft2_common_pack(payload, v, offset, virtual_router,
8551 irif_mask, irif, flexible_action_set);
8552 mlxsw_reg_rmft2_type_set(payload, MLXSW_REG_RMFT2_TYPE_IPV4);
8553 mlxsw_reg_rmft2_dip4_set(payload, dip4);
8554 mlxsw_reg_rmft2_dip4_mask_set(payload, dip4_mask);
8555 mlxsw_reg_rmft2_sip4_set(payload, sip4);
8556 mlxsw_reg_rmft2_sip4_mask_set(payload, sip4_mask);
8557 }
8558
8559 static inline void
mlxsw_reg_rmft2_ipv6_pack(char * payload,bool v,u16 offset,u16 virtual_router,enum mlxsw_reg_rmft2_irif_mask irif_mask,u16 irif,struct in6_addr dip6,struct in6_addr dip6_mask,struct in6_addr sip6,struct in6_addr sip6_mask,const char * flexible_action_set)8560 mlxsw_reg_rmft2_ipv6_pack(char *payload, bool v, u16 offset, u16 virtual_router,
8561 enum mlxsw_reg_rmft2_irif_mask irif_mask, u16 irif,
8562 struct in6_addr dip6, struct in6_addr dip6_mask,
8563 struct in6_addr sip6, struct in6_addr sip6_mask,
8564 const char *flexible_action_set)
8565 {
8566 mlxsw_reg_rmft2_common_pack(payload, v, offset, virtual_router,
8567 irif_mask, irif, flexible_action_set);
8568 mlxsw_reg_rmft2_type_set(payload, MLXSW_REG_RMFT2_TYPE_IPV6);
8569 mlxsw_reg_rmft2_dip6_memcpy_to(payload, (void *)&dip6);
8570 mlxsw_reg_rmft2_dip6_mask_memcpy_to(payload, (void *)&dip6_mask);
8571 mlxsw_reg_rmft2_sip6_memcpy_to(payload, (void *)&sip6);
8572 mlxsw_reg_rmft2_sip6_mask_memcpy_to(payload, (void *)&sip6_mask);
8573 }
8574
8575 /* RXLTE - Router XLT Enable Register
8576 * ----------------------------------
8577 * The RXLTE enables XLT (eXtended Lookup Table) LPM lookups if a capable
8578 * XM is present on the system.
8579 */
8580
8581 #define MLXSW_REG_RXLTE_ID 0x8050
8582 #define MLXSW_REG_RXLTE_LEN 0x0C
8583
8584 MLXSW_REG_DEFINE(rxlte, MLXSW_REG_RXLTE_ID, MLXSW_REG_RXLTE_LEN);
8585
8586 /* reg_rxlte_virtual_router
8587 * Virtual router ID associated with the router interface.
8588 * Range is 0..cap_max_virtual_routers-1
8589 * Access: Index
8590 */
8591 MLXSW_ITEM32(reg, rxlte, virtual_router, 0x00, 0, 16);
8592
8593 enum mlxsw_reg_rxlte_protocol {
8594 MLXSW_REG_RXLTE_PROTOCOL_IPV4,
8595 MLXSW_REG_RXLTE_PROTOCOL_IPV6,
8596 };
8597
8598 /* reg_rxlte_protocol
8599 * Access: Index
8600 */
8601 MLXSW_ITEM32(reg, rxlte, protocol, 0x04, 0, 4);
8602
8603 /* reg_rxlte_lpm_xlt_en
8604 * Access: RW
8605 */
8606 MLXSW_ITEM32(reg, rxlte, lpm_xlt_en, 0x08, 0, 1);
8607
mlxsw_reg_rxlte_pack(char * payload,u16 virtual_router,enum mlxsw_reg_rxlte_protocol protocol,bool lpm_xlt_en)8608 static inline void mlxsw_reg_rxlte_pack(char *payload, u16 virtual_router,
8609 enum mlxsw_reg_rxlte_protocol protocol,
8610 bool lpm_xlt_en)
8611 {
8612 MLXSW_REG_ZERO(rxlte, payload);
8613 mlxsw_reg_rxlte_virtual_router_set(payload, virtual_router);
8614 mlxsw_reg_rxlte_protocol_set(payload, protocol);
8615 mlxsw_reg_rxlte_lpm_xlt_en_set(payload, lpm_xlt_en);
8616 }
8617
8618 /* RXLTM - Router XLT M select Register
8619 * ------------------------------------
8620 * The RXLTM configures and selects the M for the XM lookups.
8621 */
8622
8623 #define MLXSW_REG_RXLTM_ID 0x8051
8624 #define MLXSW_REG_RXLTM_LEN 0x14
8625
8626 MLXSW_REG_DEFINE(rxltm, MLXSW_REG_RXLTM_ID, MLXSW_REG_RXLTM_LEN);
8627
8628 /* reg_rxltm_m0_val_v6
8629 * Global M0 value For IPv6.
8630 * Range 0..128
8631 * Access: RW
8632 */
8633 MLXSW_ITEM32(reg, rxltm, m0_val_v6, 0x10, 16, 8);
8634
8635 /* reg_rxltm_m0_val_v4
8636 * Global M0 value For IPv4.
8637 * Range 0..32
8638 * Access: RW
8639 */
8640 MLXSW_ITEM32(reg, rxltm, m0_val_v4, 0x10, 0, 6);
8641
mlxsw_reg_rxltm_pack(char * payload,u8 m0_val_v4,u8 m0_val_v6)8642 static inline void mlxsw_reg_rxltm_pack(char *payload, u8 m0_val_v4, u8 m0_val_v6)
8643 {
8644 MLXSW_REG_ZERO(rxltm, payload);
8645 mlxsw_reg_rxltm_m0_val_v6_set(payload, m0_val_v6);
8646 mlxsw_reg_rxltm_m0_val_v4_set(payload, m0_val_v4);
8647 }
8648
8649 /* RLCMLD - Router LPM Cache ML Delete Register
8650 * --------------------------------------------
8651 * The RLCMLD register is used to bulk delete the XLT-LPM cache ML entries.
8652 * This can be used by SW when L is increased or decreased, thus need to
8653 * remove entries with old ML values.
8654 */
8655
8656 #define MLXSW_REG_RLCMLD_ID 0x8055
8657 #define MLXSW_REG_RLCMLD_LEN 0x30
8658
8659 MLXSW_REG_DEFINE(rlcmld, MLXSW_REG_RLCMLD_ID, MLXSW_REG_RLCMLD_LEN);
8660
8661 enum mlxsw_reg_rlcmld_select {
8662 MLXSW_REG_RLCMLD_SELECT_ML_ENTRIES,
8663 MLXSW_REG_RLCMLD_SELECT_M_ENTRIES,
8664 MLXSW_REG_RLCMLD_SELECT_M_AND_ML_ENTRIES,
8665 };
8666
8667 /* reg_rlcmld_select
8668 * Which entries to delete.
8669 * Access: Index
8670 */
8671 MLXSW_ITEM32(reg, rlcmld, select, 0x00, 16, 2);
8672
8673 enum mlxsw_reg_rlcmld_filter_fields {
8674 MLXSW_REG_RLCMLD_FILTER_FIELDS_BY_PROTOCOL = 0x04,
8675 MLXSW_REG_RLCMLD_FILTER_FIELDS_BY_VIRTUAL_ROUTER = 0x08,
8676 MLXSW_REG_RLCMLD_FILTER_FIELDS_BY_DIP = 0x10,
8677 };
8678
8679 /* reg_rlcmld_filter_fields
8680 * If a bit is '0' then the relevant field is ignored.
8681 * Access: Index
8682 */
8683 MLXSW_ITEM32(reg, rlcmld, filter_fields, 0x00, 0, 8);
8684
8685 enum mlxsw_reg_rlcmld_protocol {
8686 MLXSW_REG_RLCMLD_PROTOCOL_UC_IPV4,
8687 MLXSW_REG_RLCMLD_PROTOCOL_UC_IPV6,
8688 };
8689
8690 /* reg_rlcmld_protocol
8691 * Access: Index
8692 */
8693 MLXSW_ITEM32(reg, rlcmld, protocol, 0x08, 0, 4);
8694
8695 /* reg_rlcmld_virtual_router
8696 * Virtual router ID.
8697 * Range is 0..cap_max_virtual_routers-1
8698 * Access: Index
8699 */
8700 MLXSW_ITEM32(reg, rlcmld, virtual_router, 0x0C, 0, 16);
8701
8702 /* reg_rlcmld_dip
8703 * The prefix of the route or of the marker that the object of the LPM
8704 * is compared with. The most significant bits of the dip are the prefix.
8705 * Access: Index
8706 */
8707 MLXSW_ITEM32(reg, rlcmld, dip4, 0x1C, 0, 32);
8708 MLXSW_ITEM_BUF(reg, rlcmld, dip6, 0x10, 16);
8709
8710 /* reg_rlcmld_dip_mask
8711 * per bit:
8712 * 0: no match
8713 * 1: match
8714 * Access: Index
8715 */
8716 MLXSW_ITEM32(reg, rlcmld, dip_mask4, 0x2C, 0, 32);
8717 MLXSW_ITEM_BUF(reg, rlcmld, dip_mask6, 0x20, 16);
8718
__mlxsw_reg_rlcmld_pack(char * payload,enum mlxsw_reg_rlcmld_select select,enum mlxsw_reg_rlcmld_protocol protocol,u16 virtual_router)8719 static inline void __mlxsw_reg_rlcmld_pack(char *payload,
8720 enum mlxsw_reg_rlcmld_select select,
8721 enum mlxsw_reg_rlcmld_protocol protocol,
8722 u16 virtual_router)
8723 {
8724 u8 filter_fields = MLXSW_REG_RLCMLD_FILTER_FIELDS_BY_PROTOCOL |
8725 MLXSW_REG_RLCMLD_FILTER_FIELDS_BY_VIRTUAL_ROUTER |
8726 MLXSW_REG_RLCMLD_FILTER_FIELDS_BY_DIP;
8727
8728 MLXSW_REG_ZERO(rlcmld, payload);
8729 mlxsw_reg_rlcmld_select_set(payload, select);
8730 mlxsw_reg_rlcmld_filter_fields_set(payload, filter_fields);
8731 mlxsw_reg_rlcmld_protocol_set(payload, protocol);
8732 mlxsw_reg_rlcmld_virtual_router_set(payload, virtual_router);
8733 }
8734
mlxsw_reg_rlcmld_pack4(char * payload,enum mlxsw_reg_rlcmld_select select,u16 virtual_router,u32 dip,u32 dip_mask)8735 static inline void mlxsw_reg_rlcmld_pack4(char *payload,
8736 enum mlxsw_reg_rlcmld_select select,
8737 u16 virtual_router,
8738 u32 dip, u32 dip_mask)
8739 {
8740 __mlxsw_reg_rlcmld_pack(payload, select,
8741 MLXSW_REG_RLCMLD_PROTOCOL_UC_IPV4,
8742 virtual_router);
8743 mlxsw_reg_rlcmld_dip4_set(payload, dip);
8744 mlxsw_reg_rlcmld_dip_mask4_set(payload, dip_mask);
8745 }
8746
mlxsw_reg_rlcmld_pack6(char * payload,enum mlxsw_reg_rlcmld_select select,u16 virtual_router,const void * dip,const void * dip_mask)8747 static inline void mlxsw_reg_rlcmld_pack6(char *payload,
8748 enum mlxsw_reg_rlcmld_select select,
8749 u16 virtual_router,
8750 const void *dip, const void *dip_mask)
8751 {
8752 __mlxsw_reg_rlcmld_pack(payload, select,
8753 MLXSW_REG_RLCMLD_PROTOCOL_UC_IPV6,
8754 virtual_router);
8755 mlxsw_reg_rlcmld_dip6_memcpy_to(payload, dip);
8756 mlxsw_reg_rlcmld_dip_mask6_memcpy_to(payload, dip_mask);
8757 }
8758
8759 /* RLPMCE - Router LPM Cache Enable Register
8760 * -----------------------------------------
8761 * Allows disabling the LPM cache. Can be changed on the fly.
8762 */
8763
8764 #define MLXSW_REG_RLPMCE_ID 0x8056
8765 #define MLXSW_REG_RLPMCE_LEN 0x4
8766
8767 MLXSW_REG_DEFINE(rlpmce, MLXSW_REG_RLPMCE_ID, MLXSW_REG_RLPMCE_LEN);
8768
8769 /* reg_rlpmce_flush
8770 * Flush:
8771 * 0: do not flush the cache (default)
8772 * 1: flush (clear) the cache
8773 * Access: WO
8774 */
8775 MLXSW_ITEM32(reg, rlpmce, flush, 0x00, 4, 1);
8776
8777 /* reg_rlpmce_disable
8778 * LPM cache:
8779 * 0: enabled (default)
8780 * 1: disabled
8781 * Access: RW
8782 */
8783 MLXSW_ITEM32(reg, rlpmce, disable, 0x00, 0, 1);
8784
mlxsw_reg_rlpmce_pack(char * payload,bool flush,bool disable)8785 static inline void mlxsw_reg_rlpmce_pack(char *payload, bool flush,
8786 bool disable)
8787 {
8788 MLXSW_REG_ZERO(rlpmce, payload);
8789 mlxsw_reg_rlpmce_flush_set(payload, flush);
8790 mlxsw_reg_rlpmce_disable_set(payload, disable);
8791 }
8792
8793 /* Note that XLTQ, XMDR, XRMT and XRALXX register positions violate the rule
8794 * of ordering register definitions by the ID. However, XRALXX pack helpers are
8795 * using RALXX pack helpers, RALXX registers have higher IDs.
8796 * Also XMDR is using RALUE enums. XLRQ and XRMT are just put alongside with the
8797 * related registers.
8798 */
8799
8800 /* XLTQ - XM Lookup Table Query Register
8801 * -------------------------------------
8802 */
8803 #define MLXSW_REG_XLTQ_ID 0x7802
8804 #define MLXSW_REG_XLTQ_LEN 0x2C
8805
8806 MLXSW_REG_DEFINE(xltq, MLXSW_REG_XLTQ_ID, MLXSW_REG_XLTQ_LEN);
8807
8808 enum mlxsw_reg_xltq_xm_device_id {
8809 MLXSW_REG_XLTQ_XM_DEVICE_ID_UNKNOWN,
8810 MLXSW_REG_XLTQ_XM_DEVICE_ID_XLT = 0xCF71,
8811 };
8812
8813 /* reg_xltq_xm_device_id
8814 * XM device ID.
8815 * Access: RO
8816 */
8817 MLXSW_ITEM32(reg, xltq, xm_device_id, 0x04, 0, 16);
8818
8819 /* reg_xltq_xlt_cap_ipv4_lpm
8820 * Access: RO
8821 */
8822 MLXSW_ITEM32(reg, xltq, xlt_cap_ipv4_lpm, 0x10, 0, 1);
8823
8824 /* reg_xltq_xlt_cap_ipv6_lpm
8825 * Access: RO
8826 */
8827 MLXSW_ITEM32(reg, xltq, xlt_cap_ipv6_lpm, 0x10, 1, 1);
8828
8829 /* reg_xltq_cap_xlt_entries
8830 * Number of XLT entries
8831 * Note: SW must not fill more than 80% in order to avoid overflow
8832 * Access: RO
8833 */
8834 MLXSW_ITEM32(reg, xltq, cap_xlt_entries, 0x20, 0, 32);
8835
8836 /* reg_xltq_cap_xlt_mtable
8837 * XLT M-Table max size
8838 * Access: RO
8839 */
8840 MLXSW_ITEM32(reg, xltq, cap_xlt_mtable, 0x24, 0, 32);
8841
mlxsw_reg_xltq_pack(char * payload)8842 static inline void mlxsw_reg_xltq_pack(char *payload)
8843 {
8844 MLXSW_REG_ZERO(xltq, payload);
8845 }
8846
mlxsw_reg_xltq_unpack(char * payload,u16 * xm_device_id,bool * xlt_cap_ipv4_lpm,bool * xlt_cap_ipv6_lpm,u32 * cap_xlt_entries,u32 * cap_xlt_mtable)8847 static inline void mlxsw_reg_xltq_unpack(char *payload, u16 *xm_device_id, bool *xlt_cap_ipv4_lpm,
8848 bool *xlt_cap_ipv6_lpm, u32 *cap_xlt_entries,
8849 u32 *cap_xlt_mtable)
8850 {
8851 *xm_device_id = mlxsw_reg_xltq_xm_device_id_get(payload);
8852 *xlt_cap_ipv4_lpm = mlxsw_reg_xltq_xlt_cap_ipv4_lpm_get(payload);
8853 *xlt_cap_ipv6_lpm = mlxsw_reg_xltq_xlt_cap_ipv6_lpm_get(payload);
8854 *cap_xlt_entries = mlxsw_reg_xltq_cap_xlt_entries_get(payload);
8855 *cap_xlt_mtable = mlxsw_reg_xltq_cap_xlt_mtable_get(payload);
8856 }
8857
8858 /* XMDR - XM Direct Register
8859 * -------------------------
8860 * The XMDR allows direct access to the XM device via the switch.
8861 * Working in synchronous mode. FW waits for response from the XLT
8862 * for each command. FW acks the XMDR accordingly.
8863 */
8864 #define MLXSW_REG_XMDR_ID 0x7803
8865 #define MLXSW_REG_XMDR_BASE_LEN 0x20
8866 #define MLXSW_REG_XMDR_TRANS_LEN 0x80
8867 #define MLXSW_REG_XMDR_LEN (MLXSW_REG_XMDR_BASE_LEN + \
8868 MLXSW_REG_XMDR_TRANS_LEN)
8869
8870 MLXSW_REG_DEFINE(xmdr, MLXSW_REG_XMDR_ID, MLXSW_REG_XMDR_LEN);
8871
8872 /* reg_xmdr_bulk_entry
8873 * Bulk_entry
8874 * 0: Last entry - immediate flush of XRT-cache
8875 * 1: Bulk entry - do not flush the XRT-cache
8876 * Access: OP
8877 */
8878 MLXSW_ITEM32(reg, xmdr, bulk_entry, 0x04, 8, 1);
8879
8880 /* reg_xmdr_num_rec
8881 * Number of records for Direct access to XM
8882 * Supported: 0..4 commands (except NOP which is a filler)
8883 * 0 commands is reserved when bulk_entry = 1.
8884 * 0 commands is allowed when bulk_entry = 0 for immediate XRT-cache flush.
8885 * Access: OP
8886 */
8887 MLXSW_ITEM32(reg, xmdr, num_rec, 0x04, 0, 4);
8888
8889 /* reg_xmdr_reply_vect
8890 * Reply Vector
8891 * Bit i for command index i+1
8892 * values per bit:
8893 * 0: failed
8894 * 1: succeeded
8895 * e.g. if commands 1, 2, 4 succeeded and command 3 failed then binary
8896 * value will be 0b1011
8897 * Access: RO
8898 */
8899 MLXSW_ITEM_BIT_ARRAY(reg, xmdr, reply_vect, 0x08, 4, 1);
8900
mlxsw_reg_xmdr_pack(char * payload,bool bulk_entry)8901 static inline void mlxsw_reg_xmdr_pack(char *payload, bool bulk_entry)
8902 {
8903 MLXSW_REG_ZERO(xmdr, payload);
8904 mlxsw_reg_xmdr_bulk_entry_set(payload, bulk_entry);
8905 }
8906
8907 enum mlxsw_reg_xmdr_c_cmd_id {
8908 MLXSW_REG_XMDR_C_CMD_ID_LT_ROUTE_V4 = 0x30,
8909 MLXSW_REG_XMDR_C_CMD_ID_LT_ROUTE_V6 = 0x31,
8910 };
8911
8912 #define MLXSW_REG_XMDR_C_LT_ROUTE_V4_LEN 32
8913 #define MLXSW_REG_XMDR_C_LT_ROUTE_V6_LEN 48
8914
8915 /* reg_xmdr_c_cmd_id
8916 */
8917 MLXSW_ITEM32(reg, xmdr_c, cmd_id, 0x00, 24, 8);
8918
8919 /* reg_xmdr_c_seq_number
8920 */
8921 MLXSW_ITEM32(reg, xmdr_c, seq_number, 0x00, 12, 12);
8922
8923 enum mlxsw_reg_xmdr_c_ltr_op {
8924 /* Activity is set */
8925 MLXSW_REG_XMDR_C_LTR_OP_WRITE = 0,
8926 /* There is no update mask. All fields are updated. */
8927 MLXSW_REG_XMDR_C_LTR_OP_UPDATE = 1,
8928 MLXSW_REG_XMDR_C_LTR_OP_DELETE = 2,
8929 };
8930
8931 /* reg_xmdr_c_ltr_op
8932 * Operation.
8933 */
8934 MLXSW_ITEM32(reg, xmdr_c, ltr_op, 0x04, 24, 8);
8935
8936 /* reg_xmdr_c_ltr_trap_action
8937 * Trap action.
8938 * Values are defined in enum mlxsw_reg_ralue_trap_action.
8939 */
8940 MLXSW_ITEM32(reg, xmdr_c, ltr_trap_action, 0x04, 20, 4);
8941
8942 enum mlxsw_reg_xmdr_c_ltr_trap_id_num {
8943 MLXSW_REG_XMDR_C_LTR_TRAP_ID_NUM_RTR_INGRESS0,
8944 MLXSW_REG_XMDR_C_LTR_TRAP_ID_NUM_RTR_INGRESS1,
8945 MLXSW_REG_XMDR_C_LTR_TRAP_ID_NUM_RTR_INGRESS2,
8946 MLXSW_REG_XMDR_C_LTR_TRAP_ID_NUM_RTR_INGRESS3,
8947 };
8948
8949 /* reg_xmdr_c_ltr_trap_id_num
8950 * Trap-ID number.
8951 */
8952 MLXSW_ITEM32(reg, xmdr_c, ltr_trap_id_num, 0x04, 16, 4);
8953
8954 /* reg_xmdr_c_ltr_virtual_router
8955 * Virtual Router ID.
8956 * Range is 0..cap_max_virtual_routers-1
8957 */
8958 MLXSW_ITEM32(reg, xmdr_c, ltr_virtual_router, 0x04, 0, 16);
8959
8960 /* reg_xmdr_c_ltr_prefix_len
8961 * Number of bits in the prefix of the LPM route.
8962 */
8963 MLXSW_ITEM32(reg, xmdr_c, ltr_prefix_len, 0x08, 24, 8);
8964
8965 /* reg_xmdr_c_ltr_bmp_len
8966 * The best match prefix length in the case that there is no match for
8967 * longer prefixes.
8968 * If (entry_type != MARKER_ENTRY), bmp_len must be equal to prefix_len
8969 */
8970 MLXSW_ITEM32(reg, xmdr_c, ltr_bmp_len, 0x08, 16, 8);
8971
8972 /* reg_xmdr_c_ltr_entry_type
8973 * Entry type.
8974 * Values are defined in enum mlxsw_reg_ralue_entry_type.
8975 */
8976 MLXSW_ITEM32(reg, xmdr_c, ltr_entry_type, 0x08, 4, 4);
8977
8978 enum mlxsw_reg_xmdr_c_ltr_action_type {
8979 MLXSW_REG_XMDR_C_LTR_ACTION_TYPE_LOCAL,
8980 MLXSW_REG_XMDR_C_LTR_ACTION_TYPE_REMOTE,
8981 MLXSW_REG_XMDR_C_LTR_ACTION_TYPE_IP2ME,
8982 };
8983
8984 /* reg_xmdr_c_ltr_action_type
8985 * Action Type.
8986 */
8987 MLXSW_ITEM32(reg, xmdr_c, ltr_action_type, 0x08, 0, 4);
8988
8989 /* reg_xmdr_c_ltr_erif
8990 * Egress Router Interface.
8991 * Only relevant in case of LOCAL action.
8992 */
8993 MLXSW_ITEM32(reg, xmdr_c, ltr_erif, 0x10, 0, 16);
8994
8995 /* reg_xmdr_c_ltr_adjacency_index
8996 * Points to the first entry of the group-based ECMP.
8997 * Only relevant in case of REMOTE action.
8998 */
8999 MLXSW_ITEM32(reg, xmdr_c, ltr_adjacency_index, 0x10, 0, 24);
9000
9001 #define MLXSW_REG_XMDR_C_LTR_POINTER_TO_TUNNEL_DISABLED_MAGIC 0xFFFFFF
9002
9003 /* reg_xmdr_c_ltr_pointer_to_tunnel
9004 * Only relevant in case of IP2ME action.
9005 */
9006 MLXSW_ITEM32(reg, xmdr_c, ltr_pointer_to_tunnel, 0x10, 0, 24);
9007
9008 /* reg_xmdr_c_ltr_ecmp_size
9009 * Amount of sequential entries starting
9010 * from the adjacency_index (the number of ECMPs).
9011 * The valid range is 1-64, 512, 1024, 2048 and 4096.
9012 * Only relevant in case of REMOTE action.
9013 */
9014 MLXSW_ITEM32(reg, xmdr_c, ltr_ecmp_size, 0x14, 0, 32);
9015
9016 /* reg_xmdr_c_ltr_dip*
9017 * The prefix of the route or of the marker that the object of the LPM
9018 * is compared with. The most significant bits of the dip are the prefix.
9019 * The least significant bits must be '0' if the prefix_len is smaller
9020 * than 128 for IPv6 or smaller than 32 for IPv4.
9021 */
9022 MLXSW_ITEM32(reg, xmdr_c, ltr_dip4, 0x1C, 0, 32);
9023 MLXSW_ITEM_BUF(reg, xmdr_c, ltr_dip6, 0x1C, 16);
9024
9025 static inline void
mlxsw_reg_xmdr_c_ltr_pack(char * xmdr_payload,unsigned int trans_offset,enum mlxsw_reg_xmdr_c_cmd_id cmd_id,u16 seq_number,enum mlxsw_reg_xmdr_c_ltr_op op,u16 virtual_router,u8 prefix_len)9026 mlxsw_reg_xmdr_c_ltr_pack(char *xmdr_payload, unsigned int trans_offset,
9027 enum mlxsw_reg_xmdr_c_cmd_id cmd_id, u16 seq_number,
9028 enum mlxsw_reg_xmdr_c_ltr_op op, u16 virtual_router,
9029 u8 prefix_len)
9030 {
9031 char *payload = xmdr_payload + MLXSW_REG_XMDR_BASE_LEN + trans_offset;
9032 u8 num_rec = mlxsw_reg_xmdr_num_rec_get(xmdr_payload);
9033
9034 mlxsw_reg_xmdr_num_rec_set(xmdr_payload, num_rec + 1);
9035
9036 mlxsw_reg_xmdr_c_cmd_id_set(payload, cmd_id);
9037 mlxsw_reg_xmdr_c_seq_number_set(payload, seq_number);
9038 mlxsw_reg_xmdr_c_ltr_op_set(payload, op);
9039 mlxsw_reg_xmdr_c_ltr_virtual_router_set(payload, virtual_router);
9040 mlxsw_reg_xmdr_c_ltr_prefix_len_set(payload, prefix_len);
9041 mlxsw_reg_xmdr_c_ltr_entry_type_set(payload,
9042 MLXSW_REG_RALUE_ENTRY_TYPE_ROUTE_ENTRY);
9043 mlxsw_reg_xmdr_c_ltr_bmp_len_set(payload, prefix_len);
9044 }
9045
9046 static inline unsigned int
mlxsw_reg_xmdr_c_ltr_pack4(char * xmdr_payload,unsigned int trans_offset,u16 seq_number,enum mlxsw_reg_xmdr_c_ltr_op op,u16 virtual_router,u8 prefix_len,u32 * dip)9047 mlxsw_reg_xmdr_c_ltr_pack4(char *xmdr_payload, unsigned int trans_offset,
9048 u16 seq_number, enum mlxsw_reg_xmdr_c_ltr_op op,
9049 u16 virtual_router, u8 prefix_len, u32 *dip)
9050 {
9051 char *payload = xmdr_payload + MLXSW_REG_XMDR_BASE_LEN + trans_offset;
9052
9053 mlxsw_reg_xmdr_c_ltr_pack(xmdr_payload, trans_offset,
9054 MLXSW_REG_XMDR_C_CMD_ID_LT_ROUTE_V4,
9055 seq_number, op, virtual_router, prefix_len);
9056 if (dip)
9057 mlxsw_reg_xmdr_c_ltr_dip4_set(payload, *dip);
9058 return MLXSW_REG_XMDR_C_LT_ROUTE_V4_LEN;
9059 }
9060
9061 static inline unsigned int
mlxsw_reg_xmdr_c_ltr_pack6(char * xmdr_payload,unsigned int trans_offset,u16 seq_number,enum mlxsw_reg_xmdr_c_ltr_op op,u16 virtual_router,u8 prefix_len,const void * dip)9062 mlxsw_reg_xmdr_c_ltr_pack6(char *xmdr_payload, unsigned int trans_offset,
9063 u16 seq_number, enum mlxsw_reg_xmdr_c_ltr_op op,
9064 u16 virtual_router, u8 prefix_len, const void *dip)
9065 {
9066 char *payload = xmdr_payload + MLXSW_REG_XMDR_BASE_LEN + trans_offset;
9067
9068 mlxsw_reg_xmdr_c_ltr_pack(xmdr_payload, trans_offset,
9069 MLXSW_REG_XMDR_C_CMD_ID_LT_ROUTE_V6,
9070 seq_number, op, virtual_router, prefix_len);
9071 if (dip)
9072 mlxsw_reg_xmdr_c_ltr_dip6_memcpy_to(payload, dip);
9073 return MLXSW_REG_XMDR_C_LT_ROUTE_V6_LEN;
9074 }
9075
9076 static inline void
mlxsw_reg_xmdr_c_ltr_act_remote_pack(char * xmdr_payload,unsigned int trans_offset,enum mlxsw_reg_ralue_trap_action trap_action,enum mlxsw_reg_xmdr_c_ltr_trap_id_num trap_id_num,u32 adjacency_index,u16 ecmp_size)9077 mlxsw_reg_xmdr_c_ltr_act_remote_pack(char *xmdr_payload, unsigned int trans_offset,
9078 enum mlxsw_reg_ralue_trap_action trap_action,
9079 enum mlxsw_reg_xmdr_c_ltr_trap_id_num trap_id_num,
9080 u32 adjacency_index, u16 ecmp_size)
9081 {
9082 char *payload = xmdr_payload + MLXSW_REG_XMDR_BASE_LEN + trans_offset;
9083
9084 mlxsw_reg_xmdr_c_ltr_action_type_set(payload, MLXSW_REG_XMDR_C_LTR_ACTION_TYPE_REMOTE);
9085 mlxsw_reg_xmdr_c_ltr_trap_action_set(payload, trap_action);
9086 mlxsw_reg_xmdr_c_ltr_trap_id_num_set(payload, trap_id_num);
9087 mlxsw_reg_xmdr_c_ltr_adjacency_index_set(payload, adjacency_index);
9088 mlxsw_reg_xmdr_c_ltr_ecmp_size_set(payload, ecmp_size);
9089 }
9090
9091 static inline void
mlxsw_reg_xmdr_c_ltr_act_local_pack(char * xmdr_payload,unsigned int trans_offset,enum mlxsw_reg_ralue_trap_action trap_action,enum mlxsw_reg_xmdr_c_ltr_trap_id_num trap_id_num,u16 erif)9092 mlxsw_reg_xmdr_c_ltr_act_local_pack(char *xmdr_payload, unsigned int trans_offset,
9093 enum mlxsw_reg_ralue_trap_action trap_action,
9094 enum mlxsw_reg_xmdr_c_ltr_trap_id_num trap_id_num, u16 erif)
9095 {
9096 char *payload = xmdr_payload + MLXSW_REG_XMDR_BASE_LEN + trans_offset;
9097
9098 mlxsw_reg_xmdr_c_ltr_action_type_set(payload, MLXSW_REG_XMDR_C_LTR_ACTION_TYPE_LOCAL);
9099 mlxsw_reg_xmdr_c_ltr_trap_action_set(payload, trap_action);
9100 mlxsw_reg_xmdr_c_ltr_trap_id_num_set(payload, trap_id_num);
9101 mlxsw_reg_xmdr_c_ltr_erif_set(payload, erif);
9102 }
9103
mlxsw_reg_xmdr_c_ltr_act_ip2me_pack(char * xmdr_payload,unsigned int trans_offset)9104 static inline void mlxsw_reg_xmdr_c_ltr_act_ip2me_pack(char *xmdr_payload,
9105 unsigned int trans_offset)
9106 {
9107 char *payload = xmdr_payload + MLXSW_REG_XMDR_BASE_LEN + trans_offset;
9108
9109 mlxsw_reg_xmdr_c_ltr_action_type_set(payload, MLXSW_REG_XMDR_C_LTR_ACTION_TYPE_IP2ME);
9110 mlxsw_reg_xmdr_c_ltr_pointer_to_tunnel_set(payload,
9111 MLXSW_REG_XMDR_C_LTR_POINTER_TO_TUNNEL_DISABLED_MAGIC);
9112 }
9113
mlxsw_reg_xmdr_c_ltr_act_ip2me_tun_pack(char * xmdr_payload,unsigned int trans_offset,u32 pointer_to_tunnel)9114 static inline void mlxsw_reg_xmdr_c_ltr_act_ip2me_tun_pack(char *xmdr_payload,
9115 unsigned int trans_offset,
9116 u32 pointer_to_tunnel)
9117 {
9118 char *payload = xmdr_payload + MLXSW_REG_XMDR_BASE_LEN + trans_offset;
9119
9120 mlxsw_reg_xmdr_c_ltr_action_type_set(payload, MLXSW_REG_XMDR_C_LTR_ACTION_TYPE_IP2ME);
9121 mlxsw_reg_xmdr_c_ltr_pointer_to_tunnel_set(payload, pointer_to_tunnel);
9122 }
9123
9124 /* XRMT - XM Router M Table Register
9125 * ---------------------------------
9126 * The XRMT configures the M-Table for the XLT-LPM.
9127 */
9128 #define MLXSW_REG_XRMT_ID 0x7810
9129 #define MLXSW_REG_XRMT_LEN 0x14
9130
9131 MLXSW_REG_DEFINE(xrmt, MLXSW_REG_XRMT_ID, MLXSW_REG_XRMT_LEN);
9132
9133 /* reg_xrmt_index
9134 * Index in M-Table.
9135 * Range 0..cap_xlt_mtable-1
9136 * Access: Index
9137 */
9138 MLXSW_ITEM32(reg, xrmt, index, 0x04, 0, 20);
9139
9140 /* reg_xrmt_l0_val
9141 * Access: RW
9142 */
9143 MLXSW_ITEM32(reg, xrmt, l0_val, 0x10, 24, 8);
9144
mlxsw_reg_xrmt_pack(char * payload,u32 index,u8 l0_val)9145 static inline void mlxsw_reg_xrmt_pack(char *payload, u32 index, u8 l0_val)
9146 {
9147 MLXSW_REG_ZERO(xrmt, payload);
9148 mlxsw_reg_xrmt_index_set(payload, index);
9149 mlxsw_reg_xrmt_l0_val_set(payload, l0_val);
9150 }
9151
9152 /* XRALTA - XM Router Algorithmic LPM Tree Allocation Register
9153 * -----------------------------------------------------------
9154 * The XRALTA is used to allocate the XLT LPM trees.
9155 *
9156 * This register embeds original RALTA register.
9157 */
9158 #define MLXSW_REG_XRALTA_ID 0x7811
9159 #define MLXSW_REG_XRALTA_LEN 0x08
9160 #define MLXSW_REG_XRALTA_RALTA_OFFSET 0x04
9161
9162 MLXSW_REG_DEFINE(xralta, MLXSW_REG_XRALTA_ID, MLXSW_REG_XRALTA_LEN);
9163
mlxsw_reg_xralta_pack(char * payload,bool alloc,enum mlxsw_reg_ralxx_protocol protocol,u8 tree_id)9164 static inline void mlxsw_reg_xralta_pack(char *payload, bool alloc,
9165 enum mlxsw_reg_ralxx_protocol protocol,
9166 u8 tree_id)
9167 {
9168 char *ralta_payload = payload + MLXSW_REG_XRALTA_RALTA_OFFSET;
9169
9170 MLXSW_REG_ZERO(xralta, payload);
9171 mlxsw_reg_ralta_pack(ralta_payload, alloc, protocol, tree_id);
9172 }
9173
9174 /* XRALST - XM Router Algorithmic LPM Structure Tree Register
9175 * ----------------------------------------------------------
9176 * The XRALST is used to set and query the structure of an XLT LPM tree.
9177 *
9178 * This register embeds original RALST register.
9179 */
9180 #define MLXSW_REG_XRALST_ID 0x7812
9181 #define MLXSW_REG_XRALST_LEN 0x108
9182 #define MLXSW_REG_XRALST_RALST_OFFSET 0x04
9183
9184 MLXSW_REG_DEFINE(xralst, MLXSW_REG_XRALST_ID, MLXSW_REG_XRALST_LEN);
9185
mlxsw_reg_xralst_pack(char * payload,u8 root_bin,u8 tree_id)9186 static inline void mlxsw_reg_xralst_pack(char *payload, u8 root_bin, u8 tree_id)
9187 {
9188 char *ralst_payload = payload + MLXSW_REG_XRALST_RALST_OFFSET;
9189
9190 MLXSW_REG_ZERO(xralst, payload);
9191 mlxsw_reg_ralst_pack(ralst_payload, root_bin, tree_id);
9192 }
9193
mlxsw_reg_xralst_bin_pack(char * payload,u8 bin_number,u8 left_child_bin,u8 right_child_bin)9194 static inline void mlxsw_reg_xralst_bin_pack(char *payload, u8 bin_number,
9195 u8 left_child_bin,
9196 u8 right_child_bin)
9197 {
9198 char *ralst_payload = payload + MLXSW_REG_XRALST_RALST_OFFSET;
9199
9200 mlxsw_reg_ralst_bin_pack(ralst_payload, bin_number, left_child_bin,
9201 right_child_bin);
9202 }
9203
9204 /* XRALTB - XM Router Algorithmic LPM Tree Binding Register
9205 * --------------------------------------------------------
9206 * The XRALTB register is used to bind virtual router and protocol
9207 * to an allocated LPM tree.
9208 *
9209 * This register embeds original RALTB register.
9210 */
9211 #define MLXSW_REG_XRALTB_ID 0x7813
9212 #define MLXSW_REG_XRALTB_LEN 0x08
9213 #define MLXSW_REG_XRALTB_RALTB_OFFSET 0x04
9214
9215 MLXSW_REG_DEFINE(xraltb, MLXSW_REG_XRALTB_ID, MLXSW_REG_XRALTB_LEN);
9216
mlxsw_reg_xraltb_pack(char * payload,u16 virtual_router,enum mlxsw_reg_ralxx_protocol protocol,u8 tree_id)9217 static inline void mlxsw_reg_xraltb_pack(char *payload, u16 virtual_router,
9218 enum mlxsw_reg_ralxx_protocol protocol,
9219 u8 tree_id)
9220 {
9221 char *raltb_payload = payload + MLXSW_REG_XRALTB_RALTB_OFFSET;
9222
9223 MLXSW_REG_ZERO(xraltb, payload);
9224 mlxsw_reg_raltb_pack(raltb_payload, virtual_router, protocol, tree_id);
9225 }
9226
9227 /* MFCR - Management Fan Control Register
9228 * --------------------------------------
9229 * This register controls the settings of the Fan Speed PWM mechanism.
9230 */
9231 #define MLXSW_REG_MFCR_ID 0x9001
9232 #define MLXSW_REG_MFCR_LEN 0x08
9233
9234 MLXSW_REG_DEFINE(mfcr, MLXSW_REG_MFCR_ID, MLXSW_REG_MFCR_LEN);
9235
9236 enum mlxsw_reg_mfcr_pwm_frequency {
9237 MLXSW_REG_MFCR_PWM_FEQ_11HZ = 0x00,
9238 MLXSW_REG_MFCR_PWM_FEQ_14_7HZ = 0x01,
9239 MLXSW_REG_MFCR_PWM_FEQ_22_1HZ = 0x02,
9240 MLXSW_REG_MFCR_PWM_FEQ_1_4KHZ = 0x40,
9241 MLXSW_REG_MFCR_PWM_FEQ_5KHZ = 0x41,
9242 MLXSW_REG_MFCR_PWM_FEQ_20KHZ = 0x42,
9243 MLXSW_REG_MFCR_PWM_FEQ_22_5KHZ = 0x43,
9244 MLXSW_REG_MFCR_PWM_FEQ_25KHZ = 0x44,
9245 };
9246
9247 /* reg_mfcr_pwm_frequency
9248 * Controls the frequency of the PWM signal.
9249 * Access: RW
9250 */
9251 MLXSW_ITEM32(reg, mfcr, pwm_frequency, 0x00, 0, 7);
9252
9253 #define MLXSW_MFCR_TACHOS_MAX 10
9254
9255 /* reg_mfcr_tacho_active
9256 * Indicates which of the tachometer is active (bit per tachometer).
9257 * Access: RO
9258 */
9259 MLXSW_ITEM32(reg, mfcr, tacho_active, 0x04, 16, MLXSW_MFCR_TACHOS_MAX);
9260
9261 #define MLXSW_MFCR_PWMS_MAX 5
9262
9263 /* reg_mfcr_pwm_active
9264 * Indicates which of the PWM control is active (bit per PWM).
9265 * Access: RO
9266 */
9267 MLXSW_ITEM32(reg, mfcr, pwm_active, 0x04, 0, MLXSW_MFCR_PWMS_MAX);
9268
9269 static inline void
mlxsw_reg_mfcr_pack(char * payload,enum mlxsw_reg_mfcr_pwm_frequency pwm_frequency)9270 mlxsw_reg_mfcr_pack(char *payload,
9271 enum mlxsw_reg_mfcr_pwm_frequency pwm_frequency)
9272 {
9273 MLXSW_REG_ZERO(mfcr, payload);
9274 mlxsw_reg_mfcr_pwm_frequency_set(payload, pwm_frequency);
9275 }
9276
9277 static inline void
mlxsw_reg_mfcr_unpack(char * payload,enum mlxsw_reg_mfcr_pwm_frequency * p_pwm_frequency,u16 * p_tacho_active,u8 * p_pwm_active)9278 mlxsw_reg_mfcr_unpack(char *payload,
9279 enum mlxsw_reg_mfcr_pwm_frequency *p_pwm_frequency,
9280 u16 *p_tacho_active, u8 *p_pwm_active)
9281 {
9282 *p_pwm_frequency = mlxsw_reg_mfcr_pwm_frequency_get(payload);
9283 *p_tacho_active = mlxsw_reg_mfcr_tacho_active_get(payload);
9284 *p_pwm_active = mlxsw_reg_mfcr_pwm_active_get(payload);
9285 }
9286
9287 /* MFSC - Management Fan Speed Control Register
9288 * --------------------------------------------
9289 * This register controls the settings of the Fan Speed PWM mechanism.
9290 */
9291 #define MLXSW_REG_MFSC_ID 0x9002
9292 #define MLXSW_REG_MFSC_LEN 0x08
9293
9294 MLXSW_REG_DEFINE(mfsc, MLXSW_REG_MFSC_ID, MLXSW_REG_MFSC_LEN);
9295
9296 /* reg_mfsc_pwm
9297 * Fan pwm to control / monitor.
9298 * Access: Index
9299 */
9300 MLXSW_ITEM32(reg, mfsc, pwm, 0x00, 24, 3);
9301
9302 /* reg_mfsc_pwm_duty_cycle
9303 * Controls the duty cycle of the PWM. Value range from 0..255 to
9304 * represent duty cycle of 0%...100%.
9305 * Access: RW
9306 */
9307 MLXSW_ITEM32(reg, mfsc, pwm_duty_cycle, 0x04, 0, 8);
9308
mlxsw_reg_mfsc_pack(char * payload,u8 pwm,u8 pwm_duty_cycle)9309 static inline void mlxsw_reg_mfsc_pack(char *payload, u8 pwm,
9310 u8 pwm_duty_cycle)
9311 {
9312 MLXSW_REG_ZERO(mfsc, payload);
9313 mlxsw_reg_mfsc_pwm_set(payload, pwm);
9314 mlxsw_reg_mfsc_pwm_duty_cycle_set(payload, pwm_duty_cycle);
9315 }
9316
9317 /* MFSM - Management Fan Speed Measurement
9318 * ---------------------------------------
9319 * This register controls the settings of the Tacho measurements and
9320 * enables reading the Tachometer measurements.
9321 */
9322 #define MLXSW_REG_MFSM_ID 0x9003
9323 #define MLXSW_REG_MFSM_LEN 0x08
9324
9325 MLXSW_REG_DEFINE(mfsm, MLXSW_REG_MFSM_ID, MLXSW_REG_MFSM_LEN);
9326
9327 /* reg_mfsm_tacho
9328 * Fan tachometer index.
9329 * Access: Index
9330 */
9331 MLXSW_ITEM32(reg, mfsm, tacho, 0x00, 24, 4);
9332
9333 /* reg_mfsm_rpm
9334 * Fan speed (round per minute).
9335 * Access: RO
9336 */
9337 MLXSW_ITEM32(reg, mfsm, rpm, 0x04, 0, 16);
9338
mlxsw_reg_mfsm_pack(char * payload,u8 tacho)9339 static inline void mlxsw_reg_mfsm_pack(char *payload, u8 tacho)
9340 {
9341 MLXSW_REG_ZERO(mfsm, payload);
9342 mlxsw_reg_mfsm_tacho_set(payload, tacho);
9343 }
9344
9345 /* MFSL - Management Fan Speed Limit Register
9346 * ------------------------------------------
9347 * The Fan Speed Limit register is used to configure the fan speed
9348 * event / interrupt notification mechanism. Fan speed threshold are
9349 * defined for both under-speed and over-speed.
9350 */
9351 #define MLXSW_REG_MFSL_ID 0x9004
9352 #define MLXSW_REG_MFSL_LEN 0x0C
9353
9354 MLXSW_REG_DEFINE(mfsl, MLXSW_REG_MFSL_ID, MLXSW_REG_MFSL_LEN);
9355
9356 /* reg_mfsl_tacho
9357 * Fan tachometer index.
9358 * Access: Index
9359 */
9360 MLXSW_ITEM32(reg, mfsl, tacho, 0x00, 24, 4);
9361
9362 /* reg_mfsl_tach_min
9363 * Tachometer minimum value (minimum RPM).
9364 * Access: RW
9365 */
9366 MLXSW_ITEM32(reg, mfsl, tach_min, 0x04, 0, 16);
9367
9368 /* reg_mfsl_tach_max
9369 * Tachometer maximum value (maximum RPM).
9370 * Access: RW
9371 */
9372 MLXSW_ITEM32(reg, mfsl, tach_max, 0x08, 0, 16);
9373
mlxsw_reg_mfsl_pack(char * payload,u8 tacho,u16 tach_min,u16 tach_max)9374 static inline void mlxsw_reg_mfsl_pack(char *payload, u8 tacho,
9375 u16 tach_min, u16 tach_max)
9376 {
9377 MLXSW_REG_ZERO(mfsl, payload);
9378 mlxsw_reg_mfsl_tacho_set(payload, tacho);
9379 mlxsw_reg_mfsl_tach_min_set(payload, tach_min);
9380 mlxsw_reg_mfsl_tach_max_set(payload, tach_max);
9381 }
9382
mlxsw_reg_mfsl_unpack(char * payload,u8 tacho,u16 * p_tach_min,u16 * p_tach_max)9383 static inline void mlxsw_reg_mfsl_unpack(char *payload, u8 tacho,
9384 u16 *p_tach_min, u16 *p_tach_max)
9385 {
9386 if (p_tach_min)
9387 *p_tach_min = mlxsw_reg_mfsl_tach_min_get(payload);
9388
9389 if (p_tach_max)
9390 *p_tach_max = mlxsw_reg_mfsl_tach_max_get(payload);
9391 }
9392
9393 /* FORE - Fan Out of Range Event Register
9394 * --------------------------------------
9395 * This register reports the status of the controlled fans compared to the
9396 * range defined by the MFSL register.
9397 */
9398 #define MLXSW_REG_FORE_ID 0x9007
9399 #define MLXSW_REG_FORE_LEN 0x0C
9400
9401 MLXSW_REG_DEFINE(fore, MLXSW_REG_FORE_ID, MLXSW_REG_FORE_LEN);
9402
9403 /* fan_under_limit
9404 * Fan speed is below the low limit defined in MFSL register. Each bit relates
9405 * to a single tachometer and indicates the specific tachometer reading is
9406 * below the threshold.
9407 * Access: RO
9408 */
9409 MLXSW_ITEM32(reg, fore, fan_under_limit, 0x00, 16, 10);
9410
mlxsw_reg_fore_unpack(char * payload,u8 tacho,bool * fault)9411 static inline void mlxsw_reg_fore_unpack(char *payload, u8 tacho,
9412 bool *fault)
9413 {
9414 u16 limit;
9415
9416 if (fault) {
9417 limit = mlxsw_reg_fore_fan_under_limit_get(payload);
9418 *fault = limit & BIT(tacho);
9419 }
9420 }
9421
9422 /* MTCAP - Management Temperature Capabilities
9423 * -------------------------------------------
9424 * This register exposes the capabilities of the device and
9425 * system temperature sensing.
9426 */
9427 #define MLXSW_REG_MTCAP_ID 0x9009
9428 #define MLXSW_REG_MTCAP_LEN 0x08
9429
9430 MLXSW_REG_DEFINE(mtcap, MLXSW_REG_MTCAP_ID, MLXSW_REG_MTCAP_LEN);
9431
9432 /* reg_mtcap_sensor_count
9433 * Number of sensors supported by the device.
9434 * This includes the QSFP module sensors (if exists in the QSFP module).
9435 * Access: RO
9436 */
9437 MLXSW_ITEM32(reg, mtcap, sensor_count, 0x00, 0, 7);
9438
9439 /* MTMP - Management Temperature
9440 * -----------------------------
9441 * This register controls the settings of the temperature measurements
9442 * and enables reading the temperature measurements. Note that temperature
9443 * is in 0.125 degrees Celsius.
9444 */
9445 #define MLXSW_REG_MTMP_ID 0x900A
9446 #define MLXSW_REG_MTMP_LEN 0x20
9447
9448 MLXSW_REG_DEFINE(mtmp, MLXSW_REG_MTMP_ID, MLXSW_REG_MTMP_LEN);
9449
9450 #define MLXSW_REG_MTMP_MODULE_INDEX_MIN 64
9451 #define MLXSW_REG_MTMP_GBOX_INDEX_MIN 256
9452 /* reg_mtmp_sensor_index
9453 * Sensors index to access.
9454 * 64-127 of sensor_index are mapped to the SFP+/QSFP modules sequentially
9455 * (module 0 is mapped to sensor_index 64).
9456 * Access: Index
9457 */
9458 MLXSW_ITEM32(reg, mtmp, sensor_index, 0x00, 0, 12);
9459
9460 /* Convert to milli degrees Celsius */
9461 #define MLXSW_REG_MTMP_TEMP_TO_MC(val) ({ typeof(val) v_ = (val); \
9462 ((v_) >= 0) ? ((v_) * 125) : \
9463 ((s16)((GENMASK(15, 0) + (v_) + 1) \
9464 * 125)); })
9465
9466 /* reg_mtmp_max_operational_temperature
9467 * The highest temperature in the nominal operational range. Reading is in
9468 * 0.125 Celsius degrees units.
9469 * In case of module this is SFF critical temperature threshold.
9470 * Access: RO
9471 */
9472 MLXSW_ITEM32(reg, mtmp, max_operational_temperature, 0x04, 16, 16);
9473
9474 /* reg_mtmp_temperature
9475 * Temperature reading from the sensor. Reading is in 0.125 Celsius
9476 * degrees units.
9477 * Access: RO
9478 */
9479 MLXSW_ITEM32(reg, mtmp, temperature, 0x04, 0, 16);
9480
9481 /* reg_mtmp_mte
9482 * Max Temperature Enable - enables measuring the max temperature on a sensor.
9483 * Access: RW
9484 */
9485 MLXSW_ITEM32(reg, mtmp, mte, 0x08, 31, 1);
9486
9487 /* reg_mtmp_mtr
9488 * Max Temperature Reset - clears the value of the max temperature register.
9489 * Access: WO
9490 */
9491 MLXSW_ITEM32(reg, mtmp, mtr, 0x08, 30, 1);
9492
9493 /* reg_mtmp_max_temperature
9494 * The highest measured temperature from the sensor.
9495 * When the bit mte is cleared, the field max_temperature is reserved.
9496 * Access: RO
9497 */
9498 MLXSW_ITEM32(reg, mtmp, max_temperature, 0x08, 0, 16);
9499
9500 /* reg_mtmp_tee
9501 * Temperature Event Enable.
9502 * 0 - Do not generate event
9503 * 1 - Generate event
9504 * 2 - Generate single event
9505 * Access: RW
9506 */
9507
9508 enum mlxsw_reg_mtmp_tee {
9509 MLXSW_REG_MTMP_TEE_NO_EVENT,
9510 MLXSW_REG_MTMP_TEE_GENERATE_EVENT,
9511 MLXSW_REG_MTMP_TEE_GENERATE_SINGLE_EVENT,
9512 };
9513
9514 MLXSW_ITEM32(reg, mtmp, tee, 0x0C, 30, 2);
9515
9516 #define MLXSW_REG_MTMP_THRESH_HI 0x348 /* 105 Celsius */
9517
9518 /* reg_mtmp_temperature_threshold_hi
9519 * High threshold for Temperature Warning Event. In 0.125 Celsius.
9520 * Access: RW
9521 */
9522 MLXSW_ITEM32(reg, mtmp, temperature_threshold_hi, 0x0C, 0, 16);
9523
9524 #define MLXSW_REG_MTMP_HYSTERESIS_TEMP 0x28 /* 5 Celsius */
9525 /* reg_mtmp_temperature_threshold_lo
9526 * Low threshold for Temperature Warning Event. In 0.125 Celsius.
9527 * Access: RW
9528 */
9529 MLXSW_ITEM32(reg, mtmp, temperature_threshold_lo, 0x10, 0, 16);
9530
9531 #define MLXSW_REG_MTMP_SENSOR_NAME_SIZE 8
9532
9533 /* reg_mtmp_sensor_name
9534 * Sensor Name
9535 * Access: RO
9536 */
9537 MLXSW_ITEM_BUF(reg, mtmp, sensor_name, 0x18, MLXSW_REG_MTMP_SENSOR_NAME_SIZE);
9538
mlxsw_reg_mtmp_pack(char * payload,u16 sensor_index,bool max_temp_enable,bool max_temp_reset)9539 static inline void mlxsw_reg_mtmp_pack(char *payload, u16 sensor_index,
9540 bool max_temp_enable,
9541 bool max_temp_reset)
9542 {
9543 MLXSW_REG_ZERO(mtmp, payload);
9544 mlxsw_reg_mtmp_sensor_index_set(payload, sensor_index);
9545 mlxsw_reg_mtmp_mte_set(payload, max_temp_enable);
9546 mlxsw_reg_mtmp_mtr_set(payload, max_temp_reset);
9547 mlxsw_reg_mtmp_temperature_threshold_hi_set(payload,
9548 MLXSW_REG_MTMP_THRESH_HI);
9549 }
9550
mlxsw_reg_mtmp_unpack(char * payload,int * p_temp,int * p_max_temp,int * p_temp_hi,int * p_max_oper_temp,char * sensor_name)9551 static inline void mlxsw_reg_mtmp_unpack(char *payload, int *p_temp,
9552 int *p_max_temp, int *p_temp_hi,
9553 int *p_max_oper_temp,
9554 char *sensor_name)
9555 {
9556 s16 temp;
9557
9558 if (p_temp) {
9559 temp = mlxsw_reg_mtmp_temperature_get(payload);
9560 *p_temp = MLXSW_REG_MTMP_TEMP_TO_MC(temp);
9561 }
9562 if (p_max_temp) {
9563 temp = mlxsw_reg_mtmp_max_temperature_get(payload);
9564 *p_max_temp = MLXSW_REG_MTMP_TEMP_TO_MC(temp);
9565 }
9566 if (p_temp_hi) {
9567 temp = mlxsw_reg_mtmp_temperature_threshold_hi_get(payload);
9568 *p_temp_hi = MLXSW_REG_MTMP_TEMP_TO_MC(temp);
9569 }
9570 if (p_max_oper_temp) {
9571 temp = mlxsw_reg_mtmp_max_operational_temperature_get(payload);
9572 *p_max_oper_temp = MLXSW_REG_MTMP_TEMP_TO_MC(temp);
9573 }
9574 if (sensor_name)
9575 mlxsw_reg_mtmp_sensor_name_memcpy_from(payload, sensor_name);
9576 }
9577
9578 /* MTWE - Management Temperature Warning Event
9579 * -------------------------------------------
9580 * This register is used for over temperature warning.
9581 */
9582 #define MLXSW_REG_MTWE_ID 0x900B
9583 #define MLXSW_REG_MTWE_LEN 0x10
9584
9585 MLXSW_REG_DEFINE(mtwe, MLXSW_REG_MTWE_ID, MLXSW_REG_MTWE_LEN);
9586
9587 /* reg_mtwe_sensor_warning
9588 * Bit vector indicating which of the sensor reading is above threshold.
9589 * Address 00h bit31 is sensor_warning[127].
9590 * Address 0Ch bit0 is sensor_warning[0].
9591 * Access: RO
9592 */
9593 MLXSW_ITEM_BIT_ARRAY(reg, mtwe, sensor_warning, 0x0, 0x10, 1);
9594
9595 /* MTBR - Management Temperature Bulk Register
9596 * -------------------------------------------
9597 * This register is used for bulk temperature reading.
9598 */
9599 #define MLXSW_REG_MTBR_ID 0x900F
9600 #define MLXSW_REG_MTBR_BASE_LEN 0x10 /* base length, without records */
9601 #define MLXSW_REG_MTBR_REC_LEN 0x04 /* record length */
9602 #define MLXSW_REG_MTBR_REC_MAX_COUNT 47 /* firmware limitation */
9603 #define MLXSW_REG_MTBR_LEN (MLXSW_REG_MTBR_BASE_LEN + \
9604 MLXSW_REG_MTBR_REC_LEN * \
9605 MLXSW_REG_MTBR_REC_MAX_COUNT)
9606
9607 MLXSW_REG_DEFINE(mtbr, MLXSW_REG_MTBR_ID, MLXSW_REG_MTBR_LEN);
9608
9609 /* reg_mtbr_base_sensor_index
9610 * Base sensors index to access (0 - ASIC sensor, 1-63 - ambient sensors,
9611 * 64-127 are mapped to the SFP+/QSFP modules sequentially).
9612 * Access: Index
9613 */
9614 MLXSW_ITEM32(reg, mtbr, base_sensor_index, 0x00, 0, 12);
9615
9616 /* reg_mtbr_num_rec
9617 * Request: Number of records to read
9618 * Response: Number of records read
9619 * See above description for more details.
9620 * Range 1..255
9621 * Access: RW
9622 */
9623 MLXSW_ITEM32(reg, mtbr, num_rec, 0x04, 0, 8);
9624
9625 /* reg_mtbr_rec_max_temp
9626 * The highest measured temperature from the sensor.
9627 * When the bit mte is cleared, the field max_temperature is reserved.
9628 * Access: RO
9629 */
9630 MLXSW_ITEM32_INDEXED(reg, mtbr, rec_max_temp, MLXSW_REG_MTBR_BASE_LEN, 16,
9631 16, MLXSW_REG_MTBR_REC_LEN, 0x00, false);
9632
9633 /* reg_mtbr_rec_temp
9634 * Temperature reading from the sensor. Reading is in 0..125 Celsius
9635 * degrees units.
9636 * Access: RO
9637 */
9638 MLXSW_ITEM32_INDEXED(reg, mtbr, rec_temp, MLXSW_REG_MTBR_BASE_LEN, 0, 16,
9639 MLXSW_REG_MTBR_REC_LEN, 0x00, false);
9640
mlxsw_reg_mtbr_pack(char * payload,u16 base_sensor_index,u8 num_rec)9641 static inline void mlxsw_reg_mtbr_pack(char *payload, u16 base_sensor_index,
9642 u8 num_rec)
9643 {
9644 MLXSW_REG_ZERO(mtbr, payload);
9645 mlxsw_reg_mtbr_base_sensor_index_set(payload, base_sensor_index);
9646 mlxsw_reg_mtbr_num_rec_set(payload, num_rec);
9647 }
9648
9649 /* Error codes from temperatute reading */
9650 enum mlxsw_reg_mtbr_temp_status {
9651 MLXSW_REG_MTBR_NO_CONN = 0x8000,
9652 MLXSW_REG_MTBR_NO_TEMP_SENS = 0x8001,
9653 MLXSW_REG_MTBR_INDEX_NA = 0x8002,
9654 MLXSW_REG_MTBR_BAD_SENS_INFO = 0x8003,
9655 };
9656
9657 /* Base index for reading modules temperature */
9658 #define MLXSW_REG_MTBR_BASE_MODULE_INDEX 64
9659
mlxsw_reg_mtbr_temp_unpack(char * payload,int rec_ind,u16 * p_temp,u16 * p_max_temp)9660 static inline void mlxsw_reg_mtbr_temp_unpack(char *payload, int rec_ind,
9661 u16 *p_temp, u16 *p_max_temp)
9662 {
9663 if (p_temp)
9664 *p_temp = mlxsw_reg_mtbr_rec_temp_get(payload, rec_ind);
9665 if (p_max_temp)
9666 *p_max_temp = mlxsw_reg_mtbr_rec_max_temp_get(payload, rec_ind);
9667 }
9668
9669 /* MCIA - Management Cable Info Access
9670 * -----------------------------------
9671 * MCIA register is used to access the SFP+ and QSFP connector's EPROM.
9672 */
9673
9674 #define MLXSW_REG_MCIA_ID 0x9014
9675 #define MLXSW_REG_MCIA_LEN 0x40
9676
9677 MLXSW_REG_DEFINE(mcia, MLXSW_REG_MCIA_ID, MLXSW_REG_MCIA_LEN);
9678
9679 /* reg_mcia_l
9680 * Lock bit. Setting this bit will lock the access to the specific
9681 * cable. Used for updating a full page in a cable EPROM. Any access
9682 * other then subsequence writes will fail while the port is locked.
9683 * Access: RW
9684 */
9685 MLXSW_ITEM32(reg, mcia, l, 0x00, 31, 1);
9686
9687 /* reg_mcia_module
9688 * Module number.
9689 * Access: Index
9690 */
9691 MLXSW_ITEM32(reg, mcia, module, 0x00, 16, 8);
9692
9693 enum {
9694 MLXSW_REG_MCIA_STATUS_GOOD = 0,
9695 /* No response from module's EEPROM. */
9696 MLXSW_REG_MCIA_STATUS_NO_EEPROM_MODULE = 1,
9697 /* Module type not supported by the device. */
9698 MLXSW_REG_MCIA_STATUS_MODULE_NOT_SUPPORTED = 2,
9699 /* No module present indication. */
9700 MLXSW_REG_MCIA_STATUS_MODULE_NOT_CONNECTED = 3,
9701 /* Error occurred while trying to access module's EEPROM using I2C. */
9702 MLXSW_REG_MCIA_STATUS_I2C_ERROR = 9,
9703 /* Module is disabled. */
9704 MLXSW_REG_MCIA_STATUS_MODULE_DISABLED = 16,
9705 };
9706
9707 /* reg_mcia_status
9708 * Module status.
9709 * Access: RO
9710 */
9711 MLXSW_ITEM32(reg, mcia, status, 0x00, 0, 8);
9712
9713 /* reg_mcia_i2c_device_address
9714 * I2C device address.
9715 * Access: RW
9716 */
9717 MLXSW_ITEM32(reg, mcia, i2c_device_address, 0x04, 24, 8);
9718
9719 /* reg_mcia_page_number
9720 * Page number.
9721 * Access: RW
9722 */
9723 MLXSW_ITEM32(reg, mcia, page_number, 0x04, 16, 8);
9724
9725 /* reg_mcia_device_address
9726 * Device address.
9727 * Access: RW
9728 */
9729 MLXSW_ITEM32(reg, mcia, device_address, 0x04, 0, 16);
9730
9731 /* reg_mcia_bank_number
9732 * Bank number.
9733 * Access: Index
9734 */
9735 MLXSW_ITEM32(reg, mcia, bank_number, 0x08, 16, 8);
9736
9737 /* reg_mcia_size
9738 * Number of bytes to read/write (up to 48 bytes).
9739 * Access: RW
9740 */
9741 MLXSW_ITEM32(reg, mcia, size, 0x08, 0, 16);
9742
9743 #define MLXSW_REG_MCIA_EEPROM_PAGE_LENGTH 256
9744 #define MLXSW_REG_MCIA_EEPROM_UP_PAGE_LENGTH 128
9745 #define MLXSW_REG_MCIA_EEPROM_SIZE 48
9746 #define MLXSW_REG_MCIA_I2C_ADDR_LOW 0x50
9747 #define MLXSW_REG_MCIA_I2C_ADDR_HIGH 0x51
9748 #define MLXSW_REG_MCIA_PAGE0_LO_OFF 0xa0
9749 #define MLXSW_REG_MCIA_TH_ITEM_SIZE 2
9750 #define MLXSW_REG_MCIA_TH_PAGE_NUM 3
9751 #define MLXSW_REG_MCIA_TH_PAGE_CMIS_NUM 2
9752 #define MLXSW_REG_MCIA_PAGE0_LO 0
9753 #define MLXSW_REG_MCIA_TH_PAGE_OFF 0x80
9754 #define MLXSW_REG_MCIA_EEPROM_CMIS_FLAT_MEMORY BIT(7)
9755
9756 enum mlxsw_reg_mcia_eeprom_module_info_rev_id {
9757 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_REV_ID_UNSPC = 0x00,
9758 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_REV_ID_8436 = 0x01,
9759 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_REV_ID_8636 = 0x03,
9760 };
9761
9762 enum mlxsw_reg_mcia_eeprom_module_info_id {
9763 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID_SFP = 0x03,
9764 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID_QSFP = 0x0C,
9765 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID_QSFP_PLUS = 0x0D,
9766 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID_QSFP28 = 0x11,
9767 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID_QSFP_DD = 0x18,
9768 };
9769
9770 enum mlxsw_reg_mcia_eeprom_module_info {
9771 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID,
9772 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_REV_ID,
9773 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_TYPE_ID,
9774 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_SIZE,
9775 };
9776
9777 /* reg_mcia_eeprom
9778 * Bytes to read/write.
9779 * Access: RW
9780 */
9781 MLXSW_ITEM_BUF(reg, mcia, eeprom, 0x10, MLXSW_REG_MCIA_EEPROM_SIZE);
9782
9783 /* This is used to access the optional upper pages (1-3) in the QSFP+
9784 * memory map. Page 1 is available on offset 256 through 383, page 2 -
9785 * on offset 384 through 511, page 3 - on offset 512 through 639.
9786 */
9787 #define MLXSW_REG_MCIA_PAGE_GET(off) (((off) - \
9788 MLXSW_REG_MCIA_EEPROM_PAGE_LENGTH) / \
9789 MLXSW_REG_MCIA_EEPROM_UP_PAGE_LENGTH + 1)
9790
mlxsw_reg_mcia_pack(char * payload,u8 module,u8 lock,u8 page_number,u16 device_addr,u8 size,u8 i2c_device_addr)9791 static inline void mlxsw_reg_mcia_pack(char *payload, u8 module, u8 lock,
9792 u8 page_number, u16 device_addr,
9793 u8 size, u8 i2c_device_addr)
9794 {
9795 MLXSW_REG_ZERO(mcia, payload);
9796 mlxsw_reg_mcia_module_set(payload, module);
9797 mlxsw_reg_mcia_l_set(payload, lock);
9798 mlxsw_reg_mcia_page_number_set(payload, page_number);
9799 mlxsw_reg_mcia_device_address_set(payload, device_addr);
9800 mlxsw_reg_mcia_size_set(payload, size);
9801 mlxsw_reg_mcia_i2c_device_address_set(payload, i2c_device_addr);
9802 }
9803
9804 /* MPAT - Monitoring Port Analyzer Table
9805 * -------------------------------------
9806 * MPAT Register is used to query and configure the Switch PortAnalyzer Table.
9807 * For an enabled analyzer, all fields except e (enable) cannot be modified.
9808 */
9809 #define MLXSW_REG_MPAT_ID 0x901A
9810 #define MLXSW_REG_MPAT_LEN 0x78
9811
9812 MLXSW_REG_DEFINE(mpat, MLXSW_REG_MPAT_ID, MLXSW_REG_MPAT_LEN);
9813
9814 /* reg_mpat_pa_id
9815 * Port Analyzer ID.
9816 * Access: Index
9817 */
9818 MLXSW_ITEM32(reg, mpat, pa_id, 0x00, 28, 4);
9819
9820 /* reg_mpat_session_id
9821 * Mirror Session ID.
9822 * Used for MIRROR_SESSION<i> trap.
9823 * Access: RW
9824 */
9825 MLXSW_ITEM32(reg, mpat, session_id, 0x00, 24, 4);
9826
9827 /* reg_mpat_system_port
9828 * A unique port identifier for the final destination of the packet.
9829 * Access: RW
9830 */
9831 MLXSW_ITEM32(reg, mpat, system_port, 0x00, 0, 16);
9832
9833 /* reg_mpat_e
9834 * Enable. Indicating the Port Analyzer is enabled.
9835 * Access: RW
9836 */
9837 MLXSW_ITEM32(reg, mpat, e, 0x04, 31, 1);
9838
9839 /* reg_mpat_qos
9840 * Quality Of Service Mode.
9841 * 0: CONFIGURED - QoS parameters (Switch Priority, and encapsulation
9842 * PCP, DEI, DSCP or VL) are configured.
9843 * 1: MAINTAIN - QoS parameters (Switch Priority, Color) are the
9844 * same as in the original packet that has triggered the mirroring. For
9845 * SPAN also the pcp,dei are maintained.
9846 * Access: RW
9847 */
9848 MLXSW_ITEM32(reg, mpat, qos, 0x04, 26, 1);
9849
9850 /* reg_mpat_be
9851 * Best effort mode. Indicates mirroring traffic should not cause packet
9852 * drop or back pressure, but will discard the mirrored packets. Mirrored
9853 * packets will be forwarded on a best effort manner.
9854 * 0: Do not discard mirrored packets
9855 * 1: Discard mirrored packets if causing congestion
9856 * Access: RW
9857 */
9858 MLXSW_ITEM32(reg, mpat, be, 0x04, 25, 1);
9859
9860 enum mlxsw_reg_mpat_span_type {
9861 /* Local SPAN Ethernet.
9862 * The original packet is not encapsulated.
9863 */
9864 MLXSW_REG_MPAT_SPAN_TYPE_LOCAL_ETH = 0x0,
9865
9866 /* Remote SPAN Ethernet VLAN.
9867 * The packet is forwarded to the monitoring port on the monitoring
9868 * VLAN.
9869 */
9870 MLXSW_REG_MPAT_SPAN_TYPE_REMOTE_ETH = 0x1,
9871
9872 /* Encapsulated Remote SPAN Ethernet L3 GRE.
9873 * The packet is encapsulated with GRE header.
9874 */
9875 MLXSW_REG_MPAT_SPAN_TYPE_REMOTE_ETH_L3 = 0x3,
9876 };
9877
9878 /* reg_mpat_span_type
9879 * SPAN type.
9880 * Access: RW
9881 */
9882 MLXSW_ITEM32(reg, mpat, span_type, 0x04, 0, 4);
9883
9884 /* reg_mpat_pide
9885 * Policer enable.
9886 * Access: RW
9887 */
9888 MLXSW_ITEM32(reg, mpat, pide, 0x0C, 15, 1);
9889
9890 /* reg_mpat_pid
9891 * Policer ID.
9892 * Access: RW
9893 */
9894 MLXSW_ITEM32(reg, mpat, pid, 0x0C, 0, 14);
9895
9896 /* Remote SPAN - Ethernet VLAN
9897 * - - - - - - - - - - - - - -
9898 */
9899
9900 /* reg_mpat_eth_rspan_vid
9901 * Encapsulation header VLAN ID.
9902 * Access: RW
9903 */
9904 MLXSW_ITEM32(reg, mpat, eth_rspan_vid, 0x18, 0, 12);
9905
9906 /* Encapsulated Remote SPAN - Ethernet L2
9907 * - - - - - - - - - - - - - - - - - - -
9908 */
9909
9910 enum mlxsw_reg_mpat_eth_rspan_version {
9911 MLXSW_REG_MPAT_ETH_RSPAN_VERSION_NO_HEADER = 15,
9912 };
9913
9914 /* reg_mpat_eth_rspan_version
9915 * RSPAN mirror header version.
9916 * Access: RW
9917 */
9918 MLXSW_ITEM32(reg, mpat, eth_rspan_version, 0x10, 18, 4);
9919
9920 /* reg_mpat_eth_rspan_mac
9921 * Destination MAC address.
9922 * Access: RW
9923 */
9924 MLXSW_ITEM_BUF(reg, mpat, eth_rspan_mac, 0x12, 6);
9925
9926 /* reg_mpat_eth_rspan_tp
9927 * Tag Packet. Indicates whether the mirroring header should be VLAN tagged.
9928 * Access: RW
9929 */
9930 MLXSW_ITEM32(reg, mpat, eth_rspan_tp, 0x18, 16, 1);
9931
9932 /* Encapsulated Remote SPAN - Ethernet L3
9933 * - - - - - - - - - - - - - - - - - - -
9934 */
9935
9936 enum mlxsw_reg_mpat_eth_rspan_protocol {
9937 MLXSW_REG_MPAT_ETH_RSPAN_PROTOCOL_IPV4,
9938 MLXSW_REG_MPAT_ETH_RSPAN_PROTOCOL_IPV6,
9939 };
9940
9941 /* reg_mpat_eth_rspan_protocol
9942 * SPAN encapsulation protocol.
9943 * Access: RW
9944 */
9945 MLXSW_ITEM32(reg, mpat, eth_rspan_protocol, 0x18, 24, 4);
9946
9947 /* reg_mpat_eth_rspan_ttl
9948 * Encapsulation header Time-to-Live/HopLimit.
9949 * Access: RW
9950 */
9951 MLXSW_ITEM32(reg, mpat, eth_rspan_ttl, 0x1C, 4, 8);
9952
9953 /* reg_mpat_eth_rspan_smac
9954 * Source MAC address
9955 * Access: RW
9956 */
9957 MLXSW_ITEM_BUF(reg, mpat, eth_rspan_smac, 0x22, 6);
9958
9959 /* reg_mpat_eth_rspan_dip*
9960 * Destination IP address. The IP version is configured by protocol.
9961 * Access: RW
9962 */
9963 MLXSW_ITEM32(reg, mpat, eth_rspan_dip4, 0x4C, 0, 32);
9964 MLXSW_ITEM_BUF(reg, mpat, eth_rspan_dip6, 0x40, 16);
9965
9966 /* reg_mpat_eth_rspan_sip*
9967 * Source IP address. The IP version is configured by protocol.
9968 * Access: RW
9969 */
9970 MLXSW_ITEM32(reg, mpat, eth_rspan_sip4, 0x5C, 0, 32);
9971 MLXSW_ITEM_BUF(reg, mpat, eth_rspan_sip6, 0x50, 16);
9972
mlxsw_reg_mpat_pack(char * payload,u8 pa_id,u16 system_port,bool e,enum mlxsw_reg_mpat_span_type span_type)9973 static inline void mlxsw_reg_mpat_pack(char *payload, u8 pa_id,
9974 u16 system_port, bool e,
9975 enum mlxsw_reg_mpat_span_type span_type)
9976 {
9977 MLXSW_REG_ZERO(mpat, payload);
9978 mlxsw_reg_mpat_pa_id_set(payload, pa_id);
9979 mlxsw_reg_mpat_system_port_set(payload, system_port);
9980 mlxsw_reg_mpat_e_set(payload, e);
9981 mlxsw_reg_mpat_qos_set(payload, 1);
9982 mlxsw_reg_mpat_be_set(payload, 1);
9983 mlxsw_reg_mpat_span_type_set(payload, span_type);
9984 }
9985
mlxsw_reg_mpat_eth_rspan_pack(char * payload,u16 vid)9986 static inline void mlxsw_reg_mpat_eth_rspan_pack(char *payload, u16 vid)
9987 {
9988 mlxsw_reg_mpat_eth_rspan_vid_set(payload, vid);
9989 }
9990
9991 static inline void
mlxsw_reg_mpat_eth_rspan_l2_pack(char * payload,enum mlxsw_reg_mpat_eth_rspan_version version,const char * mac,bool tp)9992 mlxsw_reg_mpat_eth_rspan_l2_pack(char *payload,
9993 enum mlxsw_reg_mpat_eth_rspan_version version,
9994 const char *mac,
9995 bool tp)
9996 {
9997 mlxsw_reg_mpat_eth_rspan_version_set(payload, version);
9998 mlxsw_reg_mpat_eth_rspan_mac_memcpy_to(payload, mac);
9999 mlxsw_reg_mpat_eth_rspan_tp_set(payload, tp);
10000 }
10001
10002 static inline void
mlxsw_reg_mpat_eth_rspan_l3_ipv4_pack(char * payload,u8 ttl,const char * smac,u32 sip,u32 dip)10003 mlxsw_reg_mpat_eth_rspan_l3_ipv4_pack(char *payload, u8 ttl,
10004 const char *smac,
10005 u32 sip, u32 dip)
10006 {
10007 mlxsw_reg_mpat_eth_rspan_ttl_set(payload, ttl);
10008 mlxsw_reg_mpat_eth_rspan_smac_memcpy_to(payload, smac);
10009 mlxsw_reg_mpat_eth_rspan_protocol_set(payload,
10010 MLXSW_REG_MPAT_ETH_RSPAN_PROTOCOL_IPV4);
10011 mlxsw_reg_mpat_eth_rspan_sip4_set(payload, sip);
10012 mlxsw_reg_mpat_eth_rspan_dip4_set(payload, dip);
10013 }
10014
10015 static inline void
mlxsw_reg_mpat_eth_rspan_l3_ipv6_pack(char * payload,u8 ttl,const char * smac,struct in6_addr sip,struct in6_addr dip)10016 mlxsw_reg_mpat_eth_rspan_l3_ipv6_pack(char *payload, u8 ttl,
10017 const char *smac,
10018 struct in6_addr sip, struct in6_addr dip)
10019 {
10020 mlxsw_reg_mpat_eth_rspan_ttl_set(payload, ttl);
10021 mlxsw_reg_mpat_eth_rspan_smac_memcpy_to(payload, smac);
10022 mlxsw_reg_mpat_eth_rspan_protocol_set(payload,
10023 MLXSW_REG_MPAT_ETH_RSPAN_PROTOCOL_IPV6);
10024 mlxsw_reg_mpat_eth_rspan_sip6_memcpy_to(payload, (void *)&sip);
10025 mlxsw_reg_mpat_eth_rspan_dip6_memcpy_to(payload, (void *)&dip);
10026 }
10027
10028 /* MPAR - Monitoring Port Analyzer Register
10029 * ----------------------------------------
10030 * MPAR register is used to query and configure the port analyzer port mirroring
10031 * properties.
10032 */
10033 #define MLXSW_REG_MPAR_ID 0x901B
10034 #define MLXSW_REG_MPAR_LEN 0x0C
10035
10036 MLXSW_REG_DEFINE(mpar, MLXSW_REG_MPAR_ID, MLXSW_REG_MPAR_LEN);
10037
10038 /* reg_mpar_local_port
10039 * The local port to mirror the packets from.
10040 * Access: Index
10041 */
10042 MLXSW_ITEM32(reg, mpar, local_port, 0x00, 16, 8);
10043
10044 enum mlxsw_reg_mpar_i_e {
10045 MLXSW_REG_MPAR_TYPE_EGRESS,
10046 MLXSW_REG_MPAR_TYPE_INGRESS,
10047 };
10048
10049 /* reg_mpar_i_e
10050 * Ingress/Egress
10051 * Access: Index
10052 */
10053 MLXSW_ITEM32(reg, mpar, i_e, 0x00, 0, 4);
10054
10055 /* reg_mpar_enable
10056 * Enable mirroring
10057 * By default, port mirroring is disabled for all ports.
10058 * Access: RW
10059 */
10060 MLXSW_ITEM32(reg, mpar, enable, 0x04, 31, 1);
10061
10062 /* reg_mpar_pa_id
10063 * Port Analyzer ID.
10064 * Access: RW
10065 */
10066 MLXSW_ITEM32(reg, mpar, pa_id, 0x04, 0, 4);
10067
10068 #define MLXSW_REG_MPAR_RATE_MAX 3500000000UL
10069
10070 /* reg_mpar_probability_rate
10071 * Sampling rate.
10072 * Valid values are: 1 to 3.5*10^9
10073 * Value of 1 means "sample all". Default is 1.
10074 * Reserved when Spectrum-1.
10075 * Access: RW
10076 */
10077 MLXSW_ITEM32(reg, mpar, probability_rate, 0x08, 0, 32);
10078
mlxsw_reg_mpar_pack(char * payload,u8 local_port,enum mlxsw_reg_mpar_i_e i_e,bool enable,u8 pa_id,u32 probability_rate)10079 static inline void mlxsw_reg_mpar_pack(char *payload, u8 local_port,
10080 enum mlxsw_reg_mpar_i_e i_e,
10081 bool enable, u8 pa_id,
10082 u32 probability_rate)
10083 {
10084 MLXSW_REG_ZERO(mpar, payload);
10085 mlxsw_reg_mpar_local_port_set(payload, local_port);
10086 mlxsw_reg_mpar_enable_set(payload, enable);
10087 mlxsw_reg_mpar_i_e_set(payload, i_e);
10088 mlxsw_reg_mpar_pa_id_set(payload, pa_id);
10089 mlxsw_reg_mpar_probability_rate_set(payload, probability_rate);
10090 }
10091
10092 /* MGIR - Management General Information Register
10093 * ----------------------------------------------
10094 * MGIR register allows software to query the hardware and firmware general
10095 * information.
10096 */
10097 #define MLXSW_REG_MGIR_ID 0x9020
10098 #define MLXSW_REG_MGIR_LEN 0x9C
10099
10100 MLXSW_REG_DEFINE(mgir, MLXSW_REG_MGIR_ID, MLXSW_REG_MGIR_LEN);
10101
10102 /* reg_mgir_hw_info_device_hw_revision
10103 * Access: RO
10104 */
10105 MLXSW_ITEM32(reg, mgir, hw_info_device_hw_revision, 0x0, 16, 16);
10106
10107 #define MLXSW_REG_MGIR_FW_INFO_PSID_SIZE 16
10108
10109 /* reg_mgir_fw_info_psid
10110 * PSID (ASCII string).
10111 * Access: RO
10112 */
10113 MLXSW_ITEM_BUF(reg, mgir, fw_info_psid, 0x30, MLXSW_REG_MGIR_FW_INFO_PSID_SIZE);
10114
10115 /* reg_mgir_fw_info_extended_major
10116 * Access: RO
10117 */
10118 MLXSW_ITEM32(reg, mgir, fw_info_extended_major, 0x44, 0, 32);
10119
10120 /* reg_mgir_fw_info_extended_minor
10121 * Access: RO
10122 */
10123 MLXSW_ITEM32(reg, mgir, fw_info_extended_minor, 0x48, 0, 32);
10124
10125 /* reg_mgir_fw_info_extended_sub_minor
10126 * Access: RO
10127 */
10128 MLXSW_ITEM32(reg, mgir, fw_info_extended_sub_minor, 0x4C, 0, 32);
10129
mlxsw_reg_mgir_pack(char * payload)10130 static inline void mlxsw_reg_mgir_pack(char *payload)
10131 {
10132 MLXSW_REG_ZERO(mgir, payload);
10133 }
10134
10135 static inline void
mlxsw_reg_mgir_unpack(char * payload,u32 * hw_rev,char * fw_info_psid,u32 * fw_major,u32 * fw_minor,u32 * fw_sub_minor)10136 mlxsw_reg_mgir_unpack(char *payload, u32 *hw_rev, char *fw_info_psid,
10137 u32 *fw_major, u32 *fw_minor, u32 *fw_sub_minor)
10138 {
10139 *hw_rev = mlxsw_reg_mgir_hw_info_device_hw_revision_get(payload);
10140 mlxsw_reg_mgir_fw_info_psid_memcpy_from(payload, fw_info_psid);
10141 *fw_major = mlxsw_reg_mgir_fw_info_extended_major_get(payload);
10142 *fw_minor = mlxsw_reg_mgir_fw_info_extended_minor_get(payload);
10143 *fw_sub_minor = mlxsw_reg_mgir_fw_info_extended_sub_minor_get(payload);
10144 }
10145
10146 /* MRSR - Management Reset and Shutdown Register
10147 * ---------------------------------------------
10148 * MRSR register is used to reset or shutdown the switch or
10149 * the entire system (when applicable).
10150 */
10151 #define MLXSW_REG_MRSR_ID 0x9023
10152 #define MLXSW_REG_MRSR_LEN 0x08
10153
10154 MLXSW_REG_DEFINE(mrsr, MLXSW_REG_MRSR_ID, MLXSW_REG_MRSR_LEN);
10155
10156 /* reg_mrsr_command
10157 * Reset/shutdown command
10158 * 0 - do nothing
10159 * 1 - software reset
10160 * Access: WO
10161 */
10162 MLXSW_ITEM32(reg, mrsr, command, 0x00, 0, 4);
10163
mlxsw_reg_mrsr_pack(char * payload)10164 static inline void mlxsw_reg_mrsr_pack(char *payload)
10165 {
10166 MLXSW_REG_ZERO(mrsr, payload);
10167 mlxsw_reg_mrsr_command_set(payload, 1);
10168 }
10169
10170 /* MLCR - Management LED Control Register
10171 * --------------------------------------
10172 * Controls the system LEDs.
10173 */
10174 #define MLXSW_REG_MLCR_ID 0x902B
10175 #define MLXSW_REG_MLCR_LEN 0x0C
10176
10177 MLXSW_REG_DEFINE(mlcr, MLXSW_REG_MLCR_ID, MLXSW_REG_MLCR_LEN);
10178
10179 /* reg_mlcr_local_port
10180 * Local port number.
10181 * Access: RW
10182 */
10183 MLXSW_ITEM32(reg, mlcr, local_port, 0x00, 16, 8);
10184
10185 #define MLXSW_REG_MLCR_DURATION_MAX 0xFFFF
10186
10187 /* reg_mlcr_beacon_duration
10188 * Duration of the beacon to be active, in seconds.
10189 * 0x0 - Will turn off the beacon.
10190 * 0xFFFF - Will turn on the beacon until explicitly turned off.
10191 * Access: RW
10192 */
10193 MLXSW_ITEM32(reg, mlcr, beacon_duration, 0x04, 0, 16);
10194
10195 /* reg_mlcr_beacon_remain
10196 * Remaining duration of the beacon, in seconds.
10197 * 0xFFFF indicates an infinite amount of time.
10198 * Access: RO
10199 */
10200 MLXSW_ITEM32(reg, mlcr, beacon_remain, 0x08, 0, 16);
10201
mlxsw_reg_mlcr_pack(char * payload,u8 local_port,bool active)10202 static inline void mlxsw_reg_mlcr_pack(char *payload, u8 local_port,
10203 bool active)
10204 {
10205 MLXSW_REG_ZERO(mlcr, payload);
10206 mlxsw_reg_mlcr_local_port_set(payload, local_port);
10207 mlxsw_reg_mlcr_beacon_duration_set(payload, active ?
10208 MLXSW_REG_MLCR_DURATION_MAX : 0);
10209 }
10210
10211 /* MTPPS - Management Pulse Per Second Register
10212 * --------------------------------------------
10213 * This register provides the device PPS capabilities, configure the PPS in and
10214 * out modules and holds the PPS in time stamp.
10215 */
10216 #define MLXSW_REG_MTPPS_ID 0x9053
10217 #define MLXSW_REG_MTPPS_LEN 0x3C
10218
10219 MLXSW_REG_DEFINE(mtpps, MLXSW_REG_MTPPS_ID, MLXSW_REG_MTPPS_LEN);
10220
10221 /* reg_mtpps_enable
10222 * Enables the PPS functionality the specific pin.
10223 * A boolean variable.
10224 * Access: RW
10225 */
10226 MLXSW_ITEM32(reg, mtpps, enable, 0x20, 31, 1);
10227
10228 enum mlxsw_reg_mtpps_pin_mode {
10229 MLXSW_REG_MTPPS_PIN_MODE_VIRTUAL_PIN = 0x2,
10230 };
10231
10232 /* reg_mtpps_pin_mode
10233 * Pin mode to be used. The mode must comply with the supported modes of the
10234 * requested pin.
10235 * Access: RW
10236 */
10237 MLXSW_ITEM32(reg, mtpps, pin_mode, 0x20, 8, 4);
10238
10239 #define MLXSW_REG_MTPPS_PIN_SP_VIRTUAL_PIN 7
10240
10241 /* reg_mtpps_pin
10242 * Pin to be configured or queried out of the supported pins.
10243 * Access: Index
10244 */
10245 MLXSW_ITEM32(reg, mtpps, pin, 0x20, 0, 8);
10246
10247 /* reg_mtpps_time_stamp
10248 * When pin_mode = pps_in, the latched device time when it was triggered from
10249 * the external GPIO pin.
10250 * When pin_mode = pps_out or virtual_pin or pps_out_and_virtual_pin, the target
10251 * time to generate next output signal.
10252 * Time is in units of device clock.
10253 * Access: RW
10254 */
10255 MLXSW_ITEM64(reg, mtpps, time_stamp, 0x28, 0, 64);
10256
10257 static inline void
mlxsw_reg_mtpps_vpin_pack(char * payload,u64 time_stamp)10258 mlxsw_reg_mtpps_vpin_pack(char *payload, u64 time_stamp)
10259 {
10260 MLXSW_REG_ZERO(mtpps, payload);
10261 mlxsw_reg_mtpps_pin_set(payload, MLXSW_REG_MTPPS_PIN_SP_VIRTUAL_PIN);
10262 mlxsw_reg_mtpps_pin_mode_set(payload,
10263 MLXSW_REG_MTPPS_PIN_MODE_VIRTUAL_PIN);
10264 mlxsw_reg_mtpps_enable_set(payload, true);
10265 mlxsw_reg_mtpps_time_stamp_set(payload, time_stamp);
10266 }
10267
10268 /* MTUTC - Management UTC Register
10269 * -------------------------------
10270 * Configures the HW UTC counter.
10271 */
10272 #define MLXSW_REG_MTUTC_ID 0x9055
10273 #define MLXSW_REG_MTUTC_LEN 0x1C
10274
10275 MLXSW_REG_DEFINE(mtutc, MLXSW_REG_MTUTC_ID, MLXSW_REG_MTUTC_LEN);
10276
10277 enum mlxsw_reg_mtutc_operation {
10278 MLXSW_REG_MTUTC_OPERATION_SET_TIME_AT_NEXT_SEC = 0,
10279 MLXSW_REG_MTUTC_OPERATION_ADJUST_FREQ = 3,
10280 };
10281
10282 /* reg_mtutc_operation
10283 * Operation.
10284 * Access: OP
10285 */
10286 MLXSW_ITEM32(reg, mtutc, operation, 0x00, 0, 4);
10287
10288 /* reg_mtutc_freq_adjustment
10289 * Frequency adjustment: Every PPS the HW frequency will be
10290 * adjusted by this value. Units of HW clock, where HW counts
10291 * 10^9 HW clocks for 1 HW second.
10292 * Access: RW
10293 */
10294 MLXSW_ITEM32(reg, mtutc, freq_adjustment, 0x04, 0, 32);
10295
10296 /* reg_mtutc_utc_sec
10297 * UTC seconds.
10298 * Access: WO
10299 */
10300 MLXSW_ITEM32(reg, mtutc, utc_sec, 0x10, 0, 32);
10301
10302 static inline void
mlxsw_reg_mtutc_pack(char * payload,enum mlxsw_reg_mtutc_operation oper,u32 freq_adj,u32 utc_sec)10303 mlxsw_reg_mtutc_pack(char *payload, enum mlxsw_reg_mtutc_operation oper,
10304 u32 freq_adj, u32 utc_sec)
10305 {
10306 MLXSW_REG_ZERO(mtutc, payload);
10307 mlxsw_reg_mtutc_operation_set(payload, oper);
10308 mlxsw_reg_mtutc_freq_adjustment_set(payload, freq_adj);
10309 mlxsw_reg_mtutc_utc_sec_set(payload, utc_sec);
10310 }
10311
10312 /* MCQI - Management Component Query Information
10313 * ---------------------------------------------
10314 * This register allows querying information about firmware components.
10315 */
10316 #define MLXSW_REG_MCQI_ID 0x9061
10317 #define MLXSW_REG_MCQI_BASE_LEN 0x18
10318 #define MLXSW_REG_MCQI_CAP_LEN 0x14
10319 #define MLXSW_REG_MCQI_LEN (MLXSW_REG_MCQI_BASE_LEN + MLXSW_REG_MCQI_CAP_LEN)
10320
10321 MLXSW_REG_DEFINE(mcqi, MLXSW_REG_MCQI_ID, MLXSW_REG_MCQI_LEN);
10322
10323 /* reg_mcqi_component_index
10324 * Index of the accessed component.
10325 * Access: Index
10326 */
10327 MLXSW_ITEM32(reg, mcqi, component_index, 0x00, 0, 16);
10328
10329 enum mlxfw_reg_mcqi_info_type {
10330 MLXSW_REG_MCQI_INFO_TYPE_CAPABILITIES,
10331 };
10332
10333 /* reg_mcqi_info_type
10334 * Component properties set.
10335 * Access: RW
10336 */
10337 MLXSW_ITEM32(reg, mcqi, info_type, 0x08, 0, 5);
10338
10339 /* reg_mcqi_offset
10340 * The requested/returned data offset from the section start, given in bytes.
10341 * Must be DWORD aligned.
10342 * Access: RW
10343 */
10344 MLXSW_ITEM32(reg, mcqi, offset, 0x10, 0, 32);
10345
10346 /* reg_mcqi_data_size
10347 * The requested/returned data size, given in bytes. If data_size is not DWORD
10348 * aligned, the last bytes are zero padded.
10349 * Access: RW
10350 */
10351 MLXSW_ITEM32(reg, mcqi, data_size, 0x14, 0, 16);
10352
10353 /* reg_mcqi_cap_max_component_size
10354 * Maximum size for this component, given in bytes.
10355 * Access: RO
10356 */
10357 MLXSW_ITEM32(reg, mcqi, cap_max_component_size, 0x20, 0, 32);
10358
10359 /* reg_mcqi_cap_log_mcda_word_size
10360 * Log 2 of the access word size in bytes. Read and write access must be aligned
10361 * to the word size. Write access must be done for an integer number of words.
10362 * Access: RO
10363 */
10364 MLXSW_ITEM32(reg, mcqi, cap_log_mcda_word_size, 0x24, 28, 4);
10365
10366 /* reg_mcqi_cap_mcda_max_write_size
10367 * Maximal write size for MCDA register
10368 * Access: RO
10369 */
10370 MLXSW_ITEM32(reg, mcqi, cap_mcda_max_write_size, 0x24, 0, 16);
10371
mlxsw_reg_mcqi_pack(char * payload,u16 component_index)10372 static inline void mlxsw_reg_mcqi_pack(char *payload, u16 component_index)
10373 {
10374 MLXSW_REG_ZERO(mcqi, payload);
10375 mlxsw_reg_mcqi_component_index_set(payload, component_index);
10376 mlxsw_reg_mcqi_info_type_set(payload,
10377 MLXSW_REG_MCQI_INFO_TYPE_CAPABILITIES);
10378 mlxsw_reg_mcqi_offset_set(payload, 0);
10379 mlxsw_reg_mcqi_data_size_set(payload, MLXSW_REG_MCQI_CAP_LEN);
10380 }
10381
mlxsw_reg_mcqi_unpack(char * payload,u32 * p_cap_max_component_size,u8 * p_cap_log_mcda_word_size,u16 * p_cap_mcda_max_write_size)10382 static inline void mlxsw_reg_mcqi_unpack(char *payload,
10383 u32 *p_cap_max_component_size,
10384 u8 *p_cap_log_mcda_word_size,
10385 u16 *p_cap_mcda_max_write_size)
10386 {
10387 *p_cap_max_component_size =
10388 mlxsw_reg_mcqi_cap_max_component_size_get(payload);
10389 *p_cap_log_mcda_word_size =
10390 mlxsw_reg_mcqi_cap_log_mcda_word_size_get(payload);
10391 *p_cap_mcda_max_write_size =
10392 mlxsw_reg_mcqi_cap_mcda_max_write_size_get(payload);
10393 }
10394
10395 /* MCC - Management Component Control
10396 * ----------------------------------
10397 * Controls the firmware component and updates the FSM.
10398 */
10399 #define MLXSW_REG_MCC_ID 0x9062
10400 #define MLXSW_REG_MCC_LEN 0x1C
10401
10402 MLXSW_REG_DEFINE(mcc, MLXSW_REG_MCC_ID, MLXSW_REG_MCC_LEN);
10403
10404 enum mlxsw_reg_mcc_instruction {
10405 MLXSW_REG_MCC_INSTRUCTION_LOCK_UPDATE_HANDLE = 0x01,
10406 MLXSW_REG_MCC_INSTRUCTION_RELEASE_UPDATE_HANDLE = 0x02,
10407 MLXSW_REG_MCC_INSTRUCTION_UPDATE_COMPONENT = 0x03,
10408 MLXSW_REG_MCC_INSTRUCTION_VERIFY_COMPONENT = 0x04,
10409 MLXSW_REG_MCC_INSTRUCTION_ACTIVATE = 0x06,
10410 MLXSW_REG_MCC_INSTRUCTION_CANCEL = 0x08,
10411 };
10412
10413 /* reg_mcc_instruction
10414 * Command to be executed by the FSM.
10415 * Applicable for write operation only.
10416 * Access: RW
10417 */
10418 MLXSW_ITEM32(reg, mcc, instruction, 0x00, 0, 8);
10419
10420 /* reg_mcc_component_index
10421 * Index of the accessed component. Applicable only for commands that
10422 * refer to components. Otherwise, this field is reserved.
10423 * Access: Index
10424 */
10425 MLXSW_ITEM32(reg, mcc, component_index, 0x04, 0, 16);
10426
10427 /* reg_mcc_update_handle
10428 * Token representing the current flow executed by the FSM.
10429 * Access: WO
10430 */
10431 MLXSW_ITEM32(reg, mcc, update_handle, 0x08, 0, 24);
10432
10433 /* reg_mcc_error_code
10434 * Indicates the successful completion of the instruction, or the reason it
10435 * failed
10436 * Access: RO
10437 */
10438 MLXSW_ITEM32(reg, mcc, error_code, 0x0C, 8, 8);
10439
10440 /* reg_mcc_control_state
10441 * Current FSM state
10442 * Access: RO
10443 */
10444 MLXSW_ITEM32(reg, mcc, control_state, 0x0C, 0, 4);
10445
10446 /* reg_mcc_component_size
10447 * Component size in bytes. Valid for UPDATE_COMPONENT instruction. Specifying
10448 * the size may shorten the update time. Value 0x0 means that size is
10449 * unspecified.
10450 * Access: WO
10451 */
10452 MLXSW_ITEM32(reg, mcc, component_size, 0x10, 0, 32);
10453
mlxsw_reg_mcc_pack(char * payload,enum mlxsw_reg_mcc_instruction instr,u16 component_index,u32 update_handle,u32 component_size)10454 static inline void mlxsw_reg_mcc_pack(char *payload,
10455 enum mlxsw_reg_mcc_instruction instr,
10456 u16 component_index, u32 update_handle,
10457 u32 component_size)
10458 {
10459 MLXSW_REG_ZERO(mcc, payload);
10460 mlxsw_reg_mcc_instruction_set(payload, instr);
10461 mlxsw_reg_mcc_component_index_set(payload, component_index);
10462 mlxsw_reg_mcc_update_handle_set(payload, update_handle);
10463 mlxsw_reg_mcc_component_size_set(payload, component_size);
10464 }
10465
mlxsw_reg_mcc_unpack(char * payload,u32 * p_update_handle,u8 * p_error_code,u8 * p_control_state)10466 static inline void mlxsw_reg_mcc_unpack(char *payload, u32 *p_update_handle,
10467 u8 *p_error_code, u8 *p_control_state)
10468 {
10469 if (p_update_handle)
10470 *p_update_handle = mlxsw_reg_mcc_update_handle_get(payload);
10471 if (p_error_code)
10472 *p_error_code = mlxsw_reg_mcc_error_code_get(payload);
10473 if (p_control_state)
10474 *p_control_state = mlxsw_reg_mcc_control_state_get(payload);
10475 }
10476
10477 /* MCDA - Management Component Data Access
10478 * ---------------------------------------
10479 * This register allows reading and writing a firmware component.
10480 */
10481 #define MLXSW_REG_MCDA_ID 0x9063
10482 #define MLXSW_REG_MCDA_BASE_LEN 0x10
10483 #define MLXSW_REG_MCDA_MAX_DATA_LEN 0x80
10484 #define MLXSW_REG_MCDA_LEN \
10485 (MLXSW_REG_MCDA_BASE_LEN + MLXSW_REG_MCDA_MAX_DATA_LEN)
10486
10487 MLXSW_REG_DEFINE(mcda, MLXSW_REG_MCDA_ID, MLXSW_REG_MCDA_LEN);
10488
10489 /* reg_mcda_update_handle
10490 * Token representing the current flow executed by the FSM.
10491 * Access: RW
10492 */
10493 MLXSW_ITEM32(reg, mcda, update_handle, 0x00, 0, 24);
10494
10495 /* reg_mcda_offset
10496 * Offset of accessed address relative to component start. Accesses must be in
10497 * accordance to log_mcda_word_size in MCQI reg.
10498 * Access: RW
10499 */
10500 MLXSW_ITEM32(reg, mcda, offset, 0x04, 0, 32);
10501
10502 /* reg_mcda_size
10503 * Size of the data accessed, given in bytes.
10504 * Access: RW
10505 */
10506 MLXSW_ITEM32(reg, mcda, size, 0x08, 0, 16);
10507
10508 /* reg_mcda_data
10509 * Data block accessed.
10510 * Access: RW
10511 */
10512 MLXSW_ITEM32_INDEXED(reg, mcda, data, 0x10, 0, 32, 4, 0, false);
10513
mlxsw_reg_mcda_pack(char * payload,u32 update_handle,u32 offset,u16 size,u8 * data)10514 static inline void mlxsw_reg_mcda_pack(char *payload, u32 update_handle,
10515 u32 offset, u16 size, u8 *data)
10516 {
10517 int i;
10518
10519 MLXSW_REG_ZERO(mcda, payload);
10520 mlxsw_reg_mcda_update_handle_set(payload, update_handle);
10521 mlxsw_reg_mcda_offset_set(payload, offset);
10522 mlxsw_reg_mcda_size_set(payload, size);
10523
10524 for (i = 0; i < size / 4; i++)
10525 mlxsw_reg_mcda_data_set(payload, i, *(u32 *) &data[i * 4]);
10526 }
10527
10528 /* MPSC - Monitoring Packet Sampling Configuration Register
10529 * --------------------------------------------------------
10530 * MPSC Register is used to configure the Packet Sampling mechanism.
10531 */
10532 #define MLXSW_REG_MPSC_ID 0x9080
10533 #define MLXSW_REG_MPSC_LEN 0x1C
10534
10535 MLXSW_REG_DEFINE(mpsc, MLXSW_REG_MPSC_ID, MLXSW_REG_MPSC_LEN);
10536
10537 /* reg_mpsc_local_port
10538 * Local port number
10539 * Not supported for CPU port
10540 * Access: Index
10541 */
10542 MLXSW_ITEM32(reg, mpsc, local_port, 0x00, 16, 8);
10543
10544 /* reg_mpsc_e
10545 * Enable sampling on port local_port
10546 * Access: RW
10547 */
10548 MLXSW_ITEM32(reg, mpsc, e, 0x04, 30, 1);
10549
10550 #define MLXSW_REG_MPSC_RATE_MAX 3500000000UL
10551
10552 /* reg_mpsc_rate
10553 * Sampling rate = 1 out of rate packets (with randomization around
10554 * the point). Valid values are: 1 to MLXSW_REG_MPSC_RATE_MAX
10555 * Access: RW
10556 */
10557 MLXSW_ITEM32(reg, mpsc, rate, 0x08, 0, 32);
10558
mlxsw_reg_mpsc_pack(char * payload,u8 local_port,bool e,u32 rate)10559 static inline void mlxsw_reg_mpsc_pack(char *payload, u8 local_port, bool e,
10560 u32 rate)
10561 {
10562 MLXSW_REG_ZERO(mpsc, payload);
10563 mlxsw_reg_mpsc_local_port_set(payload, local_port);
10564 mlxsw_reg_mpsc_e_set(payload, e);
10565 mlxsw_reg_mpsc_rate_set(payload, rate);
10566 }
10567
10568 /* MGPC - Monitoring General Purpose Counter Set Register
10569 * The MGPC register retrieves and sets the General Purpose Counter Set.
10570 */
10571 #define MLXSW_REG_MGPC_ID 0x9081
10572 #define MLXSW_REG_MGPC_LEN 0x18
10573
10574 MLXSW_REG_DEFINE(mgpc, MLXSW_REG_MGPC_ID, MLXSW_REG_MGPC_LEN);
10575
10576 /* reg_mgpc_counter_set_type
10577 * Counter set type.
10578 * Access: OP
10579 */
10580 MLXSW_ITEM32(reg, mgpc, counter_set_type, 0x00, 24, 8);
10581
10582 /* reg_mgpc_counter_index
10583 * Counter index.
10584 * Access: Index
10585 */
10586 MLXSW_ITEM32(reg, mgpc, counter_index, 0x00, 0, 24);
10587
10588 enum mlxsw_reg_mgpc_opcode {
10589 /* Nop */
10590 MLXSW_REG_MGPC_OPCODE_NOP = 0x00,
10591 /* Clear counters */
10592 MLXSW_REG_MGPC_OPCODE_CLEAR = 0x08,
10593 };
10594
10595 /* reg_mgpc_opcode
10596 * Opcode.
10597 * Access: OP
10598 */
10599 MLXSW_ITEM32(reg, mgpc, opcode, 0x04, 28, 4);
10600
10601 /* reg_mgpc_byte_counter
10602 * Byte counter value.
10603 * Access: RW
10604 */
10605 MLXSW_ITEM64(reg, mgpc, byte_counter, 0x08, 0, 64);
10606
10607 /* reg_mgpc_packet_counter
10608 * Packet counter value.
10609 * Access: RW
10610 */
10611 MLXSW_ITEM64(reg, mgpc, packet_counter, 0x10, 0, 64);
10612
mlxsw_reg_mgpc_pack(char * payload,u32 counter_index,enum mlxsw_reg_mgpc_opcode opcode,enum mlxsw_reg_flow_counter_set_type set_type)10613 static inline void mlxsw_reg_mgpc_pack(char *payload, u32 counter_index,
10614 enum mlxsw_reg_mgpc_opcode opcode,
10615 enum mlxsw_reg_flow_counter_set_type set_type)
10616 {
10617 MLXSW_REG_ZERO(mgpc, payload);
10618 mlxsw_reg_mgpc_counter_index_set(payload, counter_index);
10619 mlxsw_reg_mgpc_counter_set_type_set(payload, set_type);
10620 mlxsw_reg_mgpc_opcode_set(payload, opcode);
10621 }
10622
10623 /* MPRS - Monitoring Parsing State Register
10624 * ----------------------------------------
10625 * The MPRS register is used for setting up the parsing for hash,
10626 * policy-engine and routing.
10627 */
10628 #define MLXSW_REG_MPRS_ID 0x9083
10629 #define MLXSW_REG_MPRS_LEN 0x14
10630
10631 MLXSW_REG_DEFINE(mprs, MLXSW_REG_MPRS_ID, MLXSW_REG_MPRS_LEN);
10632
10633 /* reg_mprs_parsing_depth
10634 * Minimum parsing depth.
10635 * Need to enlarge parsing depth according to L3, MPLS, tunnels, ACL
10636 * rules, traps, hash, etc. Default is 96 bytes. Reserved when SwitchX-2.
10637 * Access: RW
10638 */
10639 MLXSW_ITEM32(reg, mprs, parsing_depth, 0x00, 0, 16);
10640
10641 /* reg_mprs_parsing_en
10642 * Parsing enable.
10643 * Bit 0 - Enable parsing of NVE of types VxLAN, VxLAN-GPE, GENEVE and
10644 * NVGRE. Default is enabled. Reserved when SwitchX-2.
10645 * Access: RW
10646 */
10647 MLXSW_ITEM32(reg, mprs, parsing_en, 0x04, 0, 16);
10648
10649 /* reg_mprs_vxlan_udp_dport
10650 * VxLAN UDP destination port.
10651 * Used for identifying VxLAN packets and for dport field in
10652 * encapsulation. Default is 4789.
10653 * Access: RW
10654 */
10655 MLXSW_ITEM32(reg, mprs, vxlan_udp_dport, 0x10, 0, 16);
10656
mlxsw_reg_mprs_pack(char * payload,u16 parsing_depth,u16 vxlan_udp_dport)10657 static inline void mlxsw_reg_mprs_pack(char *payload, u16 parsing_depth,
10658 u16 vxlan_udp_dport)
10659 {
10660 MLXSW_REG_ZERO(mprs, payload);
10661 mlxsw_reg_mprs_parsing_depth_set(payload, parsing_depth);
10662 mlxsw_reg_mprs_parsing_en_set(payload, true);
10663 mlxsw_reg_mprs_vxlan_udp_dport_set(payload, vxlan_udp_dport);
10664 }
10665
10666 /* MOGCR - Monitoring Global Configuration Register
10667 * ------------------------------------------------
10668 */
10669 #define MLXSW_REG_MOGCR_ID 0x9086
10670 #define MLXSW_REG_MOGCR_LEN 0x20
10671
10672 MLXSW_REG_DEFINE(mogcr, MLXSW_REG_MOGCR_ID, MLXSW_REG_MOGCR_LEN);
10673
10674 /* reg_mogcr_ptp_iftc
10675 * PTP Ingress FIFO Trap Clear
10676 * The PTP_ING_FIFO trap provides MTPPTR with clr according
10677 * to this value. Default 0.
10678 * Reserved when IB switches and when SwitchX/-2, Spectrum-2
10679 * Access: RW
10680 */
10681 MLXSW_ITEM32(reg, mogcr, ptp_iftc, 0x00, 1, 1);
10682
10683 /* reg_mogcr_ptp_eftc
10684 * PTP Egress FIFO Trap Clear
10685 * The PTP_EGR_FIFO trap provides MTPPTR with clr according
10686 * to this value. Default 0.
10687 * Reserved when IB switches and when SwitchX/-2, Spectrum-2
10688 * Access: RW
10689 */
10690 MLXSW_ITEM32(reg, mogcr, ptp_eftc, 0x00, 0, 1);
10691
10692 /* reg_mogcr_mirroring_pid_base
10693 * Base policer id for mirroring policers.
10694 * Must have an even value (e.g. 1000, not 1001).
10695 * Reserved when SwitchX/-2, Switch-IB/2, Spectrum-1 and Quantum.
10696 * Access: RW
10697 */
10698 MLXSW_ITEM32(reg, mogcr, mirroring_pid_base, 0x0C, 0, 14);
10699
10700 /* MPAGR - Monitoring Port Analyzer Global Register
10701 * ------------------------------------------------
10702 * This register is used for global port analyzer configurations.
10703 * Note: This register is not supported by current FW versions for Spectrum-1.
10704 */
10705 #define MLXSW_REG_MPAGR_ID 0x9089
10706 #define MLXSW_REG_MPAGR_LEN 0x0C
10707
10708 MLXSW_REG_DEFINE(mpagr, MLXSW_REG_MPAGR_ID, MLXSW_REG_MPAGR_LEN);
10709
10710 enum mlxsw_reg_mpagr_trigger {
10711 MLXSW_REG_MPAGR_TRIGGER_EGRESS,
10712 MLXSW_REG_MPAGR_TRIGGER_INGRESS,
10713 MLXSW_REG_MPAGR_TRIGGER_INGRESS_WRED,
10714 MLXSW_REG_MPAGR_TRIGGER_INGRESS_SHARED_BUFFER,
10715 MLXSW_REG_MPAGR_TRIGGER_INGRESS_ING_CONG,
10716 MLXSW_REG_MPAGR_TRIGGER_INGRESS_EGR_CONG,
10717 MLXSW_REG_MPAGR_TRIGGER_EGRESS_ECN,
10718 MLXSW_REG_MPAGR_TRIGGER_EGRESS_HIGH_LATENCY,
10719 };
10720
10721 /* reg_mpagr_trigger
10722 * Mirror trigger.
10723 * Access: Index
10724 */
10725 MLXSW_ITEM32(reg, mpagr, trigger, 0x00, 0, 4);
10726
10727 /* reg_mpagr_pa_id
10728 * Port analyzer ID.
10729 * Access: RW
10730 */
10731 MLXSW_ITEM32(reg, mpagr, pa_id, 0x04, 0, 4);
10732
10733 #define MLXSW_REG_MPAGR_RATE_MAX 3500000000UL
10734
10735 /* reg_mpagr_probability_rate
10736 * Sampling rate.
10737 * Valid values are: 1 to 3.5*10^9
10738 * Value of 1 means "sample all". Default is 1.
10739 * Access: RW
10740 */
10741 MLXSW_ITEM32(reg, mpagr, probability_rate, 0x08, 0, 32);
10742
mlxsw_reg_mpagr_pack(char * payload,enum mlxsw_reg_mpagr_trigger trigger,u8 pa_id,u32 probability_rate)10743 static inline void mlxsw_reg_mpagr_pack(char *payload,
10744 enum mlxsw_reg_mpagr_trigger trigger,
10745 u8 pa_id, u32 probability_rate)
10746 {
10747 MLXSW_REG_ZERO(mpagr, payload);
10748 mlxsw_reg_mpagr_trigger_set(payload, trigger);
10749 mlxsw_reg_mpagr_pa_id_set(payload, pa_id);
10750 mlxsw_reg_mpagr_probability_rate_set(payload, probability_rate);
10751 }
10752
10753 /* MOMTE - Monitoring Mirror Trigger Enable Register
10754 * -------------------------------------------------
10755 * This register is used to configure the mirror enable for different mirror
10756 * reasons.
10757 */
10758 #define MLXSW_REG_MOMTE_ID 0x908D
10759 #define MLXSW_REG_MOMTE_LEN 0x10
10760
10761 MLXSW_REG_DEFINE(momte, MLXSW_REG_MOMTE_ID, MLXSW_REG_MOMTE_LEN);
10762
10763 /* reg_momte_local_port
10764 * Local port number.
10765 * Access: Index
10766 */
10767 MLXSW_ITEM32(reg, momte, local_port, 0x00, 16, 8);
10768
10769 enum mlxsw_reg_momte_type {
10770 MLXSW_REG_MOMTE_TYPE_WRED = 0x20,
10771 MLXSW_REG_MOMTE_TYPE_SHARED_BUFFER_TCLASS = 0x31,
10772 MLXSW_REG_MOMTE_TYPE_SHARED_BUFFER_TCLASS_DESCRIPTORS = 0x32,
10773 MLXSW_REG_MOMTE_TYPE_SHARED_BUFFER_EGRESS_PORT = 0x33,
10774 MLXSW_REG_MOMTE_TYPE_ING_CONG = 0x40,
10775 MLXSW_REG_MOMTE_TYPE_EGR_CONG = 0x50,
10776 MLXSW_REG_MOMTE_TYPE_ECN = 0x60,
10777 MLXSW_REG_MOMTE_TYPE_HIGH_LATENCY = 0x70,
10778 };
10779
10780 /* reg_momte_type
10781 * Type of mirroring.
10782 * Access: Index
10783 */
10784 MLXSW_ITEM32(reg, momte, type, 0x04, 0, 8);
10785
10786 /* reg_momte_tclass_en
10787 * TClass/PG mirror enable. Each bit represents corresponding tclass.
10788 * 0: disable (default)
10789 * 1: enable
10790 * Access: RW
10791 */
10792 MLXSW_ITEM_BIT_ARRAY(reg, momte, tclass_en, 0x08, 0x08, 1);
10793
mlxsw_reg_momte_pack(char * payload,u8 local_port,enum mlxsw_reg_momte_type type)10794 static inline void mlxsw_reg_momte_pack(char *payload, u8 local_port,
10795 enum mlxsw_reg_momte_type type)
10796 {
10797 MLXSW_REG_ZERO(momte, payload);
10798 mlxsw_reg_momte_local_port_set(payload, local_port);
10799 mlxsw_reg_momte_type_set(payload, type);
10800 }
10801
10802 /* MTPPPC - Time Precision Packet Port Configuration
10803 * -------------------------------------------------
10804 * This register serves for configuration of which PTP messages should be
10805 * timestamped. This is a global configuration, despite the register name.
10806 *
10807 * Reserved when Spectrum-2.
10808 */
10809 #define MLXSW_REG_MTPPPC_ID 0x9090
10810 #define MLXSW_REG_MTPPPC_LEN 0x28
10811
10812 MLXSW_REG_DEFINE(mtpppc, MLXSW_REG_MTPPPC_ID, MLXSW_REG_MTPPPC_LEN);
10813
10814 /* reg_mtpppc_ing_timestamp_message_type
10815 * Bitwise vector of PTP message types to timestamp at ingress.
10816 * MessageType field as defined by IEEE 1588
10817 * Each bit corresponds to a value (e.g. Bit0: Sync, Bit1: Delay_Req)
10818 * Default all 0
10819 * Access: RW
10820 */
10821 MLXSW_ITEM32(reg, mtpppc, ing_timestamp_message_type, 0x08, 0, 16);
10822
10823 /* reg_mtpppc_egr_timestamp_message_type
10824 * Bitwise vector of PTP message types to timestamp at egress.
10825 * MessageType field as defined by IEEE 1588
10826 * Each bit corresponds to a value (e.g. Bit0: Sync, Bit1: Delay_Req)
10827 * Default all 0
10828 * Access: RW
10829 */
10830 MLXSW_ITEM32(reg, mtpppc, egr_timestamp_message_type, 0x0C, 0, 16);
10831
mlxsw_reg_mtpppc_pack(char * payload,u16 ing,u16 egr)10832 static inline void mlxsw_reg_mtpppc_pack(char *payload, u16 ing, u16 egr)
10833 {
10834 MLXSW_REG_ZERO(mtpppc, payload);
10835 mlxsw_reg_mtpppc_ing_timestamp_message_type_set(payload, ing);
10836 mlxsw_reg_mtpppc_egr_timestamp_message_type_set(payload, egr);
10837 }
10838
10839 /* MTPPTR - Time Precision Packet Timestamping Reading
10840 * ---------------------------------------------------
10841 * The MTPPTR is used for reading the per port PTP timestamp FIFO.
10842 * There is a trap for packets which are latched to the timestamp FIFO, thus the
10843 * SW knows which FIFO to read. Note that packets enter the FIFO before been
10844 * trapped. The sequence number is used to synchronize the timestamp FIFO
10845 * entries and the trapped packets.
10846 * Reserved when Spectrum-2.
10847 */
10848
10849 #define MLXSW_REG_MTPPTR_ID 0x9091
10850 #define MLXSW_REG_MTPPTR_BASE_LEN 0x10 /* base length, without records */
10851 #define MLXSW_REG_MTPPTR_REC_LEN 0x10 /* record length */
10852 #define MLXSW_REG_MTPPTR_REC_MAX_COUNT 4
10853 #define MLXSW_REG_MTPPTR_LEN (MLXSW_REG_MTPPTR_BASE_LEN + \
10854 MLXSW_REG_MTPPTR_REC_LEN * MLXSW_REG_MTPPTR_REC_MAX_COUNT)
10855
10856 MLXSW_REG_DEFINE(mtpptr, MLXSW_REG_MTPPTR_ID, MLXSW_REG_MTPPTR_LEN);
10857
10858 /* reg_mtpptr_local_port
10859 * Not supported for CPU port.
10860 * Access: Index
10861 */
10862 MLXSW_ITEM32(reg, mtpptr, local_port, 0x00, 16, 8);
10863
10864 enum mlxsw_reg_mtpptr_dir {
10865 MLXSW_REG_MTPPTR_DIR_INGRESS,
10866 MLXSW_REG_MTPPTR_DIR_EGRESS,
10867 };
10868
10869 /* reg_mtpptr_dir
10870 * Direction.
10871 * Access: Index
10872 */
10873 MLXSW_ITEM32(reg, mtpptr, dir, 0x00, 0, 1);
10874
10875 /* reg_mtpptr_clr
10876 * Clear the records.
10877 * Access: OP
10878 */
10879 MLXSW_ITEM32(reg, mtpptr, clr, 0x04, 31, 1);
10880
10881 /* reg_mtpptr_num_rec
10882 * Number of valid records in the response
10883 * Range 0.. cap_ptp_timestamp_fifo
10884 * Access: RO
10885 */
10886 MLXSW_ITEM32(reg, mtpptr, num_rec, 0x08, 0, 4);
10887
10888 /* reg_mtpptr_rec_message_type
10889 * MessageType field as defined by IEEE 1588 Each bit corresponds to a value
10890 * (e.g. Bit0: Sync, Bit1: Delay_Req)
10891 * Access: RO
10892 */
10893 MLXSW_ITEM32_INDEXED(reg, mtpptr, rec_message_type,
10894 MLXSW_REG_MTPPTR_BASE_LEN, 8, 4,
10895 MLXSW_REG_MTPPTR_REC_LEN, 0, false);
10896
10897 /* reg_mtpptr_rec_domain_number
10898 * DomainNumber field as defined by IEEE 1588
10899 * Access: RO
10900 */
10901 MLXSW_ITEM32_INDEXED(reg, mtpptr, rec_domain_number,
10902 MLXSW_REG_MTPPTR_BASE_LEN, 0, 8,
10903 MLXSW_REG_MTPPTR_REC_LEN, 0, false);
10904
10905 /* reg_mtpptr_rec_sequence_id
10906 * SequenceId field as defined by IEEE 1588
10907 * Access: RO
10908 */
10909 MLXSW_ITEM32_INDEXED(reg, mtpptr, rec_sequence_id,
10910 MLXSW_REG_MTPPTR_BASE_LEN, 0, 16,
10911 MLXSW_REG_MTPPTR_REC_LEN, 0x4, false);
10912
10913 /* reg_mtpptr_rec_timestamp_high
10914 * Timestamp of when the PTP packet has passed through the port Units of PLL
10915 * clock time.
10916 * For Spectrum-1 the PLL clock is 156.25Mhz and PLL clock time is 6.4nSec.
10917 * Access: RO
10918 */
10919 MLXSW_ITEM32_INDEXED(reg, mtpptr, rec_timestamp_high,
10920 MLXSW_REG_MTPPTR_BASE_LEN, 0, 32,
10921 MLXSW_REG_MTPPTR_REC_LEN, 0x8, false);
10922
10923 /* reg_mtpptr_rec_timestamp_low
10924 * See rec_timestamp_high.
10925 * Access: RO
10926 */
10927 MLXSW_ITEM32_INDEXED(reg, mtpptr, rec_timestamp_low,
10928 MLXSW_REG_MTPPTR_BASE_LEN, 0, 32,
10929 MLXSW_REG_MTPPTR_REC_LEN, 0xC, false);
10930
mlxsw_reg_mtpptr_unpack(const char * payload,unsigned int rec,u8 * p_message_type,u8 * p_domain_number,u16 * p_sequence_id,u64 * p_timestamp)10931 static inline void mlxsw_reg_mtpptr_unpack(const char *payload,
10932 unsigned int rec,
10933 u8 *p_message_type,
10934 u8 *p_domain_number,
10935 u16 *p_sequence_id,
10936 u64 *p_timestamp)
10937 {
10938 u32 timestamp_high, timestamp_low;
10939
10940 *p_message_type = mlxsw_reg_mtpptr_rec_message_type_get(payload, rec);
10941 *p_domain_number = mlxsw_reg_mtpptr_rec_domain_number_get(payload, rec);
10942 *p_sequence_id = mlxsw_reg_mtpptr_rec_sequence_id_get(payload, rec);
10943 timestamp_high = mlxsw_reg_mtpptr_rec_timestamp_high_get(payload, rec);
10944 timestamp_low = mlxsw_reg_mtpptr_rec_timestamp_low_get(payload, rec);
10945 *p_timestamp = (u64)timestamp_high << 32 | timestamp_low;
10946 }
10947
10948 /* MTPTPT - Monitoring Precision Time Protocol Trap Register
10949 * ---------------------------------------------------------
10950 * This register is used for configuring under which trap to deliver PTP
10951 * packets depending on type of the packet.
10952 */
10953 #define MLXSW_REG_MTPTPT_ID 0x9092
10954 #define MLXSW_REG_MTPTPT_LEN 0x08
10955
10956 MLXSW_REG_DEFINE(mtptpt, MLXSW_REG_MTPTPT_ID, MLXSW_REG_MTPTPT_LEN);
10957
10958 enum mlxsw_reg_mtptpt_trap_id {
10959 MLXSW_REG_MTPTPT_TRAP_ID_PTP0,
10960 MLXSW_REG_MTPTPT_TRAP_ID_PTP1,
10961 };
10962
10963 /* reg_mtptpt_trap_id
10964 * Trap id.
10965 * Access: Index
10966 */
10967 MLXSW_ITEM32(reg, mtptpt, trap_id, 0x00, 0, 4);
10968
10969 /* reg_mtptpt_message_type
10970 * Bitwise vector of PTP message types to trap. This is a necessary but
10971 * non-sufficient condition since need to enable also per port. See MTPPPC.
10972 * Message types are defined by IEEE 1588 Each bit corresponds to a value (e.g.
10973 * Bit0: Sync, Bit1: Delay_Req)
10974 */
10975 MLXSW_ITEM32(reg, mtptpt, message_type, 0x04, 0, 16);
10976
mlxsw_reg_mtptptp_pack(char * payload,enum mlxsw_reg_mtptpt_trap_id trap_id,u16 message_type)10977 static inline void mlxsw_reg_mtptptp_pack(char *payload,
10978 enum mlxsw_reg_mtptpt_trap_id trap_id,
10979 u16 message_type)
10980 {
10981 MLXSW_REG_ZERO(mtptpt, payload);
10982 mlxsw_reg_mtptpt_trap_id_set(payload, trap_id);
10983 mlxsw_reg_mtptpt_message_type_set(payload, message_type);
10984 }
10985
10986 /* MFGD - Monitoring FW General Debug Register
10987 * -------------------------------------------
10988 */
10989 #define MLXSW_REG_MFGD_ID 0x90F0
10990 #define MLXSW_REG_MFGD_LEN 0x0C
10991
10992 MLXSW_REG_DEFINE(mfgd, MLXSW_REG_MFGD_ID, MLXSW_REG_MFGD_LEN);
10993
10994 /* reg_mfgd_fw_fatal_event_mode
10995 * 0 - don't check FW fatal (default)
10996 * 1 - check FW fatal - enable MFDE trap
10997 * Access: RW
10998 */
10999 MLXSW_ITEM32(reg, mfgd, fatal_event_mode, 0x00, 9, 2);
11000
11001 /* reg_mfgd_trigger_test
11002 * Access: WO
11003 */
11004 MLXSW_ITEM32(reg, mfgd, trigger_test, 0x00, 11, 1);
11005
11006 /* MGPIR - Management General Peripheral Information Register
11007 * ----------------------------------------------------------
11008 * MGPIR register allows software to query the hardware and
11009 * firmware general information of peripheral entities.
11010 */
11011 #define MLXSW_REG_MGPIR_ID 0x9100
11012 #define MLXSW_REG_MGPIR_LEN 0xA0
11013
11014 MLXSW_REG_DEFINE(mgpir, MLXSW_REG_MGPIR_ID, MLXSW_REG_MGPIR_LEN);
11015
11016 enum mlxsw_reg_mgpir_device_type {
11017 MLXSW_REG_MGPIR_DEVICE_TYPE_NONE,
11018 MLXSW_REG_MGPIR_DEVICE_TYPE_GEARBOX_DIE,
11019 };
11020
11021 /* device_type
11022 * Access: RO
11023 */
11024 MLXSW_ITEM32(reg, mgpir, device_type, 0x00, 24, 4);
11025
11026 /* devices_per_flash
11027 * Number of devices of device_type per flash (can be shared by few devices).
11028 * Access: RO
11029 */
11030 MLXSW_ITEM32(reg, mgpir, devices_per_flash, 0x00, 16, 8);
11031
11032 /* num_of_devices
11033 * Number of devices of device_type.
11034 * Access: RO
11035 */
11036 MLXSW_ITEM32(reg, mgpir, num_of_devices, 0x00, 0, 8);
11037
11038 /* num_of_modules
11039 * Number of modules.
11040 * Access: RO
11041 */
11042 MLXSW_ITEM32(reg, mgpir, num_of_modules, 0x04, 0, 8);
11043
mlxsw_reg_mgpir_pack(char * payload)11044 static inline void mlxsw_reg_mgpir_pack(char *payload)
11045 {
11046 MLXSW_REG_ZERO(mgpir, payload);
11047 }
11048
11049 static inline void
mlxsw_reg_mgpir_unpack(char * payload,u8 * num_of_devices,enum mlxsw_reg_mgpir_device_type * device_type,u8 * devices_per_flash,u8 * num_of_modules)11050 mlxsw_reg_mgpir_unpack(char *payload, u8 *num_of_devices,
11051 enum mlxsw_reg_mgpir_device_type *device_type,
11052 u8 *devices_per_flash, u8 *num_of_modules)
11053 {
11054 if (num_of_devices)
11055 *num_of_devices = mlxsw_reg_mgpir_num_of_devices_get(payload);
11056 if (device_type)
11057 *device_type = mlxsw_reg_mgpir_device_type_get(payload);
11058 if (devices_per_flash)
11059 *devices_per_flash =
11060 mlxsw_reg_mgpir_devices_per_flash_get(payload);
11061 if (num_of_modules)
11062 *num_of_modules = mlxsw_reg_mgpir_num_of_modules_get(payload);
11063 }
11064
11065 /* MFDE - Monitoring FW Debug Register
11066 * -----------------------------------
11067 */
11068 #define MLXSW_REG_MFDE_ID 0x9200
11069 #define MLXSW_REG_MFDE_LEN 0x18
11070
11071 MLXSW_REG_DEFINE(mfde, MLXSW_REG_MFDE_ID, MLXSW_REG_MFDE_LEN);
11072
11073 /* reg_mfde_irisc_id
11074 * Which irisc triggered the event
11075 * Access: RO
11076 */
11077 MLXSW_ITEM32(reg, mfde, irisc_id, 0x00, 24, 8);
11078
11079 enum mlxsw_reg_mfde_event_id {
11080 MLXSW_REG_MFDE_EVENT_ID_CRSPACE_TO = 1,
11081 /* KVD insertion machine stopped */
11082 MLXSW_REG_MFDE_EVENT_ID_KVD_IM_STOP,
11083 };
11084
11085 /* reg_mfde_event_id
11086 * Access: RO
11087 */
11088 MLXSW_ITEM32(reg, mfde, event_id, 0x00, 0, 16);
11089
11090 enum mlxsw_reg_mfde_method {
11091 MLXSW_REG_MFDE_METHOD_QUERY,
11092 MLXSW_REG_MFDE_METHOD_WRITE,
11093 };
11094
11095 /* reg_mfde_method
11096 * Access: RO
11097 */
11098 MLXSW_ITEM32(reg, mfde, method, 0x04, 29, 1);
11099
11100 /* reg_mfde_long_process
11101 * Indicates if the command is in long_process mode.
11102 * Access: RO
11103 */
11104 MLXSW_ITEM32(reg, mfde, long_process, 0x04, 28, 1);
11105
11106 enum mlxsw_reg_mfde_command_type {
11107 MLXSW_REG_MFDE_COMMAND_TYPE_MAD,
11108 MLXSW_REG_MFDE_COMMAND_TYPE_EMAD,
11109 MLXSW_REG_MFDE_COMMAND_TYPE_CMDIF,
11110 };
11111
11112 /* reg_mfde_command_type
11113 * Access: RO
11114 */
11115 MLXSW_ITEM32(reg, mfde, command_type, 0x04, 24, 2);
11116
11117 /* reg_mfde_reg_attr_id
11118 * EMAD - register id, MAD - attibute id
11119 * Access: RO
11120 */
11121 MLXSW_ITEM32(reg, mfde, reg_attr_id, 0x04, 0, 16);
11122
11123 /* reg_mfde_log_address
11124 * crspace address accessed, which resulted in timeout.
11125 * Valid in case event_id == MLXSW_REG_MFDE_EVENT_ID_CRSPACE_TO
11126 * Access: RO
11127 */
11128 MLXSW_ITEM32(reg, mfde, log_address, 0x10, 0, 32);
11129
11130 /* reg_mfde_log_id
11131 * Which irisc triggered the timeout.
11132 * Valid in case event_id == MLXSW_REG_MFDE_EVENT_ID_CRSPACE_TO
11133 * Access: RO
11134 */
11135 MLXSW_ITEM32(reg, mfde, log_id, 0x14, 0, 4);
11136
11137 /* reg_mfde_log_ip
11138 * IP (instruction pointer) that triggered the timeout.
11139 * Valid in case event_id == MLXSW_REG_MFDE_EVENT_ID_CRSPACE_TO
11140 * Access: RO
11141 */
11142 MLXSW_ITEM64(reg, mfde, log_ip, 0x18, 0, 64);
11143
11144 /* reg_mfde_pipes_mask
11145 * Bit per kvh pipe.
11146 * Access: RO
11147 */
11148 MLXSW_ITEM32(reg, mfde, pipes_mask, 0x10, 0, 16);
11149
11150 /* TNGCR - Tunneling NVE General Configuration Register
11151 * ----------------------------------------------------
11152 * The TNGCR register is used for setting up the NVE Tunneling configuration.
11153 */
11154 #define MLXSW_REG_TNGCR_ID 0xA001
11155 #define MLXSW_REG_TNGCR_LEN 0x44
11156
11157 MLXSW_REG_DEFINE(tngcr, MLXSW_REG_TNGCR_ID, MLXSW_REG_TNGCR_LEN);
11158
11159 enum mlxsw_reg_tngcr_type {
11160 MLXSW_REG_TNGCR_TYPE_VXLAN,
11161 MLXSW_REG_TNGCR_TYPE_VXLAN_GPE,
11162 MLXSW_REG_TNGCR_TYPE_GENEVE,
11163 MLXSW_REG_TNGCR_TYPE_NVGRE,
11164 };
11165
11166 /* reg_tngcr_type
11167 * Tunnel type for encapsulation and decapsulation. The types are mutually
11168 * exclusive.
11169 * Note: For Spectrum the NVE parsing must be enabled in MPRS.
11170 * Access: RW
11171 */
11172 MLXSW_ITEM32(reg, tngcr, type, 0x00, 0, 4);
11173
11174 /* reg_tngcr_nve_valid
11175 * The VTEP is valid. Allows adding FDB entries for tunnel encapsulation.
11176 * Access: RW
11177 */
11178 MLXSW_ITEM32(reg, tngcr, nve_valid, 0x04, 31, 1);
11179
11180 /* reg_tngcr_nve_ttl_uc
11181 * The TTL for NVE tunnel encapsulation underlay unicast packets.
11182 * Access: RW
11183 */
11184 MLXSW_ITEM32(reg, tngcr, nve_ttl_uc, 0x04, 0, 8);
11185
11186 /* reg_tngcr_nve_ttl_mc
11187 * The TTL for NVE tunnel encapsulation underlay multicast packets.
11188 * Access: RW
11189 */
11190 MLXSW_ITEM32(reg, tngcr, nve_ttl_mc, 0x08, 0, 8);
11191
11192 enum {
11193 /* Do not copy flow label. Calculate flow label using nve_flh. */
11194 MLXSW_REG_TNGCR_FL_NO_COPY,
11195 /* Copy flow label from inner packet if packet is IPv6 and
11196 * encapsulation is by IPv6. Otherwise, calculate flow label using
11197 * nve_flh.
11198 */
11199 MLXSW_REG_TNGCR_FL_COPY,
11200 };
11201
11202 /* reg_tngcr_nve_flc
11203 * For NVE tunnel encapsulation: Flow label copy from inner packet.
11204 * Access: RW
11205 */
11206 MLXSW_ITEM32(reg, tngcr, nve_flc, 0x0C, 25, 1);
11207
11208 enum {
11209 /* Flow label is static. In Spectrum this means '0'. Spectrum-2
11210 * uses {nve_fl_prefix, nve_fl_suffix}.
11211 */
11212 MLXSW_REG_TNGCR_FL_NO_HASH,
11213 /* 8 LSBs of the flow label are calculated from ECMP hash of the
11214 * inner packet. 12 MSBs are configured by nve_fl_prefix.
11215 */
11216 MLXSW_REG_TNGCR_FL_HASH,
11217 };
11218
11219 /* reg_tngcr_nve_flh
11220 * NVE flow label hash.
11221 * Access: RW
11222 */
11223 MLXSW_ITEM32(reg, tngcr, nve_flh, 0x0C, 24, 1);
11224
11225 /* reg_tngcr_nve_fl_prefix
11226 * NVE flow label prefix. Constant 12 MSBs of the flow label.
11227 * Access: RW
11228 */
11229 MLXSW_ITEM32(reg, tngcr, nve_fl_prefix, 0x0C, 8, 12);
11230
11231 /* reg_tngcr_nve_fl_suffix
11232 * NVE flow label suffix. Constant 8 LSBs of the flow label.
11233 * Reserved when nve_flh=1 and for Spectrum.
11234 * Access: RW
11235 */
11236 MLXSW_ITEM32(reg, tngcr, nve_fl_suffix, 0x0C, 0, 8);
11237
11238 enum {
11239 /* Source UDP port is fixed (default '0') */
11240 MLXSW_REG_TNGCR_UDP_SPORT_NO_HASH,
11241 /* Source UDP port is calculated based on hash */
11242 MLXSW_REG_TNGCR_UDP_SPORT_HASH,
11243 };
11244
11245 /* reg_tngcr_nve_udp_sport_type
11246 * NVE UDP source port type.
11247 * Spectrum uses LAG hash (SLCRv2). Spectrum-2 uses ECMP hash (RECRv2).
11248 * When the source UDP port is calculated based on hash, then the 8 LSBs
11249 * are calculated from hash the 8 MSBs are configured by
11250 * nve_udp_sport_prefix.
11251 * Access: RW
11252 */
11253 MLXSW_ITEM32(reg, tngcr, nve_udp_sport_type, 0x10, 24, 1);
11254
11255 /* reg_tngcr_nve_udp_sport_prefix
11256 * NVE UDP source port prefix. Constant 8 MSBs of the UDP source port.
11257 * Reserved when NVE type is NVGRE.
11258 * Access: RW
11259 */
11260 MLXSW_ITEM32(reg, tngcr, nve_udp_sport_prefix, 0x10, 8, 8);
11261
11262 /* reg_tngcr_nve_group_size_mc
11263 * The amount of sequential linked lists of MC entries. The first linked
11264 * list is configured by SFD.underlay_mc_ptr.
11265 * Valid values: 1, 2, 4, 8, 16, 32, 64
11266 * The linked list are configured by TNUMT.
11267 * The hash is set by LAG hash.
11268 * Access: RW
11269 */
11270 MLXSW_ITEM32(reg, tngcr, nve_group_size_mc, 0x18, 0, 8);
11271
11272 /* reg_tngcr_nve_group_size_flood
11273 * The amount of sequential linked lists of flooding entries. The first
11274 * linked list is configured by SFMR.nve_tunnel_flood_ptr
11275 * Valid values: 1, 2, 4, 8, 16, 32, 64
11276 * The linked list are configured by TNUMT.
11277 * The hash is set by LAG hash.
11278 * Access: RW
11279 */
11280 MLXSW_ITEM32(reg, tngcr, nve_group_size_flood, 0x1C, 0, 8);
11281
11282 /* reg_tngcr_learn_enable
11283 * During decapsulation, whether to learn from NVE port.
11284 * Reserved when Spectrum-2. See TNPC.
11285 * Access: RW
11286 */
11287 MLXSW_ITEM32(reg, tngcr, learn_enable, 0x20, 31, 1);
11288
11289 /* reg_tngcr_underlay_virtual_router
11290 * Underlay virtual router.
11291 * Reserved when Spectrum-2.
11292 * Access: RW
11293 */
11294 MLXSW_ITEM32(reg, tngcr, underlay_virtual_router, 0x20, 0, 16);
11295
11296 /* reg_tngcr_underlay_rif
11297 * Underlay ingress router interface. RIF type should be loopback generic.
11298 * Reserved when Spectrum.
11299 * Access: RW
11300 */
11301 MLXSW_ITEM32(reg, tngcr, underlay_rif, 0x24, 0, 16);
11302
11303 /* reg_tngcr_usipv4
11304 * Underlay source IPv4 address of the NVE.
11305 * Access: RW
11306 */
11307 MLXSW_ITEM32(reg, tngcr, usipv4, 0x28, 0, 32);
11308
11309 /* reg_tngcr_usipv6
11310 * Underlay source IPv6 address of the NVE. For Spectrum, must not be
11311 * modified under traffic of NVE tunneling encapsulation.
11312 * Access: RW
11313 */
11314 MLXSW_ITEM_BUF(reg, tngcr, usipv6, 0x30, 16);
11315
mlxsw_reg_tngcr_pack(char * payload,enum mlxsw_reg_tngcr_type type,bool valid,u8 ttl)11316 static inline void mlxsw_reg_tngcr_pack(char *payload,
11317 enum mlxsw_reg_tngcr_type type,
11318 bool valid, u8 ttl)
11319 {
11320 MLXSW_REG_ZERO(tngcr, payload);
11321 mlxsw_reg_tngcr_type_set(payload, type);
11322 mlxsw_reg_tngcr_nve_valid_set(payload, valid);
11323 mlxsw_reg_tngcr_nve_ttl_uc_set(payload, ttl);
11324 mlxsw_reg_tngcr_nve_ttl_mc_set(payload, ttl);
11325 mlxsw_reg_tngcr_nve_flc_set(payload, MLXSW_REG_TNGCR_FL_NO_COPY);
11326 mlxsw_reg_tngcr_nve_flh_set(payload, 0);
11327 mlxsw_reg_tngcr_nve_udp_sport_type_set(payload,
11328 MLXSW_REG_TNGCR_UDP_SPORT_HASH);
11329 mlxsw_reg_tngcr_nve_udp_sport_prefix_set(payload, 0);
11330 mlxsw_reg_tngcr_nve_group_size_mc_set(payload, 1);
11331 mlxsw_reg_tngcr_nve_group_size_flood_set(payload, 1);
11332 }
11333
11334 /* TNUMT - Tunneling NVE Underlay Multicast Table Register
11335 * -------------------------------------------------------
11336 * The TNUMT register is for building the underlay MC table. It is used
11337 * for MC, flooding and BC traffic into the NVE tunnel.
11338 */
11339 #define MLXSW_REG_TNUMT_ID 0xA003
11340 #define MLXSW_REG_TNUMT_LEN 0x20
11341
11342 MLXSW_REG_DEFINE(tnumt, MLXSW_REG_TNUMT_ID, MLXSW_REG_TNUMT_LEN);
11343
11344 enum mlxsw_reg_tnumt_record_type {
11345 MLXSW_REG_TNUMT_RECORD_TYPE_IPV4,
11346 MLXSW_REG_TNUMT_RECORD_TYPE_IPV6,
11347 MLXSW_REG_TNUMT_RECORD_TYPE_LABEL,
11348 };
11349
11350 /* reg_tnumt_record_type
11351 * Record type.
11352 * Access: RW
11353 */
11354 MLXSW_ITEM32(reg, tnumt, record_type, 0x00, 28, 4);
11355
11356 /* reg_tnumt_tunnel_port
11357 * Tunnel port.
11358 * Access: RW
11359 */
11360 MLXSW_ITEM32(reg, tnumt, tunnel_port, 0x00, 24, 4);
11361
11362 /* reg_tnumt_underlay_mc_ptr
11363 * Index to the underlay multicast table.
11364 * For Spectrum the index is to the KVD linear.
11365 * Access: Index
11366 */
11367 MLXSW_ITEM32(reg, tnumt, underlay_mc_ptr, 0x00, 0, 24);
11368
11369 /* reg_tnumt_vnext
11370 * The next_underlay_mc_ptr is valid.
11371 * Access: RW
11372 */
11373 MLXSW_ITEM32(reg, tnumt, vnext, 0x04, 31, 1);
11374
11375 /* reg_tnumt_next_underlay_mc_ptr
11376 * The next index to the underlay multicast table.
11377 * Access: RW
11378 */
11379 MLXSW_ITEM32(reg, tnumt, next_underlay_mc_ptr, 0x04, 0, 24);
11380
11381 /* reg_tnumt_record_size
11382 * Number of IP addresses in the record.
11383 * Range is 1..cap_max_nve_mc_entries_ipv{4,6}
11384 * Access: RW
11385 */
11386 MLXSW_ITEM32(reg, tnumt, record_size, 0x08, 0, 3);
11387
11388 /* reg_tnumt_udip
11389 * The underlay IPv4 addresses. udip[i] is reserved if i >= size
11390 * Access: RW
11391 */
11392 MLXSW_ITEM32_INDEXED(reg, tnumt, udip, 0x0C, 0, 32, 0x04, 0x00, false);
11393
11394 /* reg_tnumt_udip_ptr
11395 * The pointer to the underlay IPv6 addresses. udip_ptr[i] is reserved if
11396 * i >= size. The IPv6 addresses are configured by RIPS.
11397 * Access: RW
11398 */
11399 MLXSW_ITEM32_INDEXED(reg, tnumt, udip_ptr, 0x0C, 0, 24, 0x04, 0x00, false);
11400
mlxsw_reg_tnumt_pack(char * payload,enum mlxsw_reg_tnumt_record_type type,enum mlxsw_reg_tunnel_port tport,u32 underlay_mc_ptr,bool vnext,u32 next_underlay_mc_ptr,u8 record_size)11401 static inline void mlxsw_reg_tnumt_pack(char *payload,
11402 enum mlxsw_reg_tnumt_record_type type,
11403 enum mlxsw_reg_tunnel_port tport,
11404 u32 underlay_mc_ptr, bool vnext,
11405 u32 next_underlay_mc_ptr,
11406 u8 record_size)
11407 {
11408 MLXSW_REG_ZERO(tnumt, payload);
11409 mlxsw_reg_tnumt_record_type_set(payload, type);
11410 mlxsw_reg_tnumt_tunnel_port_set(payload, tport);
11411 mlxsw_reg_tnumt_underlay_mc_ptr_set(payload, underlay_mc_ptr);
11412 mlxsw_reg_tnumt_vnext_set(payload, vnext);
11413 mlxsw_reg_tnumt_next_underlay_mc_ptr_set(payload, next_underlay_mc_ptr);
11414 mlxsw_reg_tnumt_record_size_set(payload, record_size);
11415 }
11416
11417 /* TNQCR - Tunneling NVE QoS Configuration Register
11418 * ------------------------------------------------
11419 * The TNQCR register configures how QoS is set in encapsulation into the
11420 * underlay network.
11421 */
11422 #define MLXSW_REG_TNQCR_ID 0xA010
11423 #define MLXSW_REG_TNQCR_LEN 0x0C
11424
11425 MLXSW_REG_DEFINE(tnqcr, MLXSW_REG_TNQCR_ID, MLXSW_REG_TNQCR_LEN);
11426
11427 /* reg_tnqcr_enc_set_dscp
11428 * For encapsulation: How to set DSCP field:
11429 * 0 - Copy the DSCP from the overlay (inner) IP header to the underlay
11430 * (outer) IP header. If there is no IP header, use TNQDR.dscp
11431 * 1 - Set the DSCP field as TNQDR.dscp
11432 * Access: RW
11433 */
11434 MLXSW_ITEM32(reg, tnqcr, enc_set_dscp, 0x04, 28, 1);
11435
mlxsw_reg_tnqcr_pack(char * payload)11436 static inline void mlxsw_reg_tnqcr_pack(char *payload)
11437 {
11438 MLXSW_REG_ZERO(tnqcr, payload);
11439 mlxsw_reg_tnqcr_enc_set_dscp_set(payload, 0);
11440 }
11441
11442 /* TNQDR - Tunneling NVE QoS Default Register
11443 * ------------------------------------------
11444 * The TNQDR register configures the default QoS settings for NVE
11445 * encapsulation.
11446 */
11447 #define MLXSW_REG_TNQDR_ID 0xA011
11448 #define MLXSW_REG_TNQDR_LEN 0x08
11449
11450 MLXSW_REG_DEFINE(tnqdr, MLXSW_REG_TNQDR_ID, MLXSW_REG_TNQDR_LEN);
11451
11452 /* reg_tnqdr_local_port
11453 * Local port number (receive port). CPU port is supported.
11454 * Access: Index
11455 */
11456 MLXSW_ITEM32(reg, tnqdr, local_port, 0x00, 16, 8);
11457
11458 /* reg_tnqdr_dscp
11459 * For encapsulation, the default DSCP.
11460 * Access: RW
11461 */
11462 MLXSW_ITEM32(reg, tnqdr, dscp, 0x04, 0, 6);
11463
mlxsw_reg_tnqdr_pack(char * payload,u8 local_port)11464 static inline void mlxsw_reg_tnqdr_pack(char *payload, u8 local_port)
11465 {
11466 MLXSW_REG_ZERO(tnqdr, payload);
11467 mlxsw_reg_tnqdr_local_port_set(payload, local_port);
11468 mlxsw_reg_tnqdr_dscp_set(payload, 0);
11469 }
11470
11471 /* TNEEM - Tunneling NVE Encapsulation ECN Mapping Register
11472 * --------------------------------------------------------
11473 * The TNEEM register maps ECN of the IP header at the ingress to the
11474 * encapsulation to the ECN of the underlay network.
11475 */
11476 #define MLXSW_REG_TNEEM_ID 0xA012
11477 #define MLXSW_REG_TNEEM_LEN 0x0C
11478
11479 MLXSW_REG_DEFINE(tneem, MLXSW_REG_TNEEM_ID, MLXSW_REG_TNEEM_LEN);
11480
11481 /* reg_tneem_overlay_ecn
11482 * ECN of the IP header in the overlay network.
11483 * Access: Index
11484 */
11485 MLXSW_ITEM32(reg, tneem, overlay_ecn, 0x04, 24, 2);
11486
11487 /* reg_tneem_underlay_ecn
11488 * ECN of the IP header in the underlay network.
11489 * Access: RW
11490 */
11491 MLXSW_ITEM32(reg, tneem, underlay_ecn, 0x04, 16, 2);
11492
mlxsw_reg_tneem_pack(char * payload,u8 overlay_ecn,u8 underlay_ecn)11493 static inline void mlxsw_reg_tneem_pack(char *payload, u8 overlay_ecn,
11494 u8 underlay_ecn)
11495 {
11496 MLXSW_REG_ZERO(tneem, payload);
11497 mlxsw_reg_tneem_overlay_ecn_set(payload, overlay_ecn);
11498 mlxsw_reg_tneem_underlay_ecn_set(payload, underlay_ecn);
11499 }
11500
11501 /* TNDEM - Tunneling NVE Decapsulation ECN Mapping Register
11502 * --------------------------------------------------------
11503 * The TNDEM register configures the actions that are done in the
11504 * decapsulation.
11505 */
11506 #define MLXSW_REG_TNDEM_ID 0xA013
11507 #define MLXSW_REG_TNDEM_LEN 0x0C
11508
11509 MLXSW_REG_DEFINE(tndem, MLXSW_REG_TNDEM_ID, MLXSW_REG_TNDEM_LEN);
11510
11511 /* reg_tndem_underlay_ecn
11512 * ECN field of the IP header in the underlay network.
11513 * Access: Index
11514 */
11515 MLXSW_ITEM32(reg, tndem, underlay_ecn, 0x04, 24, 2);
11516
11517 /* reg_tndem_overlay_ecn
11518 * ECN field of the IP header in the overlay network.
11519 * Access: Index
11520 */
11521 MLXSW_ITEM32(reg, tndem, overlay_ecn, 0x04, 16, 2);
11522
11523 /* reg_tndem_eip_ecn
11524 * Egress IP ECN. ECN field of the IP header of the packet which goes out
11525 * from the decapsulation.
11526 * Access: RW
11527 */
11528 MLXSW_ITEM32(reg, tndem, eip_ecn, 0x04, 8, 2);
11529
11530 /* reg_tndem_trap_en
11531 * Trap enable:
11532 * 0 - No trap due to decap ECN
11533 * 1 - Trap enable with trap_id
11534 * Access: RW
11535 */
11536 MLXSW_ITEM32(reg, tndem, trap_en, 0x08, 28, 4);
11537
11538 /* reg_tndem_trap_id
11539 * Trap ID. Either DECAP_ECN0 or DECAP_ECN1.
11540 * Reserved when trap_en is '0'.
11541 * Access: RW
11542 */
11543 MLXSW_ITEM32(reg, tndem, trap_id, 0x08, 0, 9);
11544
mlxsw_reg_tndem_pack(char * payload,u8 underlay_ecn,u8 overlay_ecn,u8 ecn,bool trap_en,u16 trap_id)11545 static inline void mlxsw_reg_tndem_pack(char *payload, u8 underlay_ecn,
11546 u8 overlay_ecn, u8 ecn, bool trap_en,
11547 u16 trap_id)
11548 {
11549 MLXSW_REG_ZERO(tndem, payload);
11550 mlxsw_reg_tndem_underlay_ecn_set(payload, underlay_ecn);
11551 mlxsw_reg_tndem_overlay_ecn_set(payload, overlay_ecn);
11552 mlxsw_reg_tndem_eip_ecn_set(payload, ecn);
11553 mlxsw_reg_tndem_trap_en_set(payload, trap_en);
11554 mlxsw_reg_tndem_trap_id_set(payload, trap_id);
11555 }
11556
11557 /* TNPC - Tunnel Port Configuration Register
11558 * -----------------------------------------
11559 * The TNPC register is used for tunnel port configuration.
11560 * Reserved when Spectrum.
11561 */
11562 #define MLXSW_REG_TNPC_ID 0xA020
11563 #define MLXSW_REG_TNPC_LEN 0x18
11564
11565 MLXSW_REG_DEFINE(tnpc, MLXSW_REG_TNPC_ID, MLXSW_REG_TNPC_LEN);
11566
11567 /* reg_tnpc_tunnel_port
11568 * Tunnel port.
11569 * Access: Index
11570 */
11571 MLXSW_ITEM32(reg, tnpc, tunnel_port, 0x00, 0, 4);
11572
11573 /* reg_tnpc_learn_enable_v6
11574 * During IPv6 underlay decapsulation, whether to learn from tunnel port.
11575 * Access: RW
11576 */
11577 MLXSW_ITEM32(reg, tnpc, learn_enable_v6, 0x04, 1, 1);
11578
11579 /* reg_tnpc_learn_enable_v4
11580 * During IPv4 underlay decapsulation, whether to learn from tunnel port.
11581 * Access: RW
11582 */
11583 MLXSW_ITEM32(reg, tnpc, learn_enable_v4, 0x04, 0, 1);
11584
mlxsw_reg_tnpc_pack(char * payload,enum mlxsw_reg_tunnel_port tport,bool learn_enable)11585 static inline void mlxsw_reg_tnpc_pack(char *payload,
11586 enum mlxsw_reg_tunnel_port tport,
11587 bool learn_enable)
11588 {
11589 MLXSW_REG_ZERO(tnpc, payload);
11590 mlxsw_reg_tnpc_tunnel_port_set(payload, tport);
11591 mlxsw_reg_tnpc_learn_enable_v4_set(payload, learn_enable);
11592 mlxsw_reg_tnpc_learn_enable_v6_set(payload, learn_enable);
11593 }
11594
11595 /* TIGCR - Tunneling IPinIP General Configuration Register
11596 * -------------------------------------------------------
11597 * The TIGCR register is used for setting up the IPinIP Tunnel configuration.
11598 */
11599 #define MLXSW_REG_TIGCR_ID 0xA801
11600 #define MLXSW_REG_TIGCR_LEN 0x10
11601
11602 MLXSW_REG_DEFINE(tigcr, MLXSW_REG_TIGCR_ID, MLXSW_REG_TIGCR_LEN);
11603
11604 /* reg_tigcr_ipip_ttlc
11605 * For IPinIP Tunnel encapsulation: whether to copy the ttl from the packet
11606 * header.
11607 * Access: RW
11608 */
11609 MLXSW_ITEM32(reg, tigcr, ttlc, 0x04, 8, 1);
11610
11611 /* reg_tigcr_ipip_ttl_uc
11612 * The TTL for IPinIP Tunnel encapsulation of unicast packets if
11613 * reg_tigcr_ipip_ttlc is unset.
11614 * Access: RW
11615 */
11616 MLXSW_ITEM32(reg, tigcr, ttl_uc, 0x04, 0, 8);
11617
mlxsw_reg_tigcr_pack(char * payload,bool ttlc,u8 ttl_uc)11618 static inline void mlxsw_reg_tigcr_pack(char *payload, bool ttlc, u8 ttl_uc)
11619 {
11620 MLXSW_REG_ZERO(tigcr, payload);
11621 mlxsw_reg_tigcr_ttlc_set(payload, ttlc);
11622 mlxsw_reg_tigcr_ttl_uc_set(payload, ttl_uc);
11623 }
11624
11625 /* TIEEM - Tunneling IPinIP Encapsulation ECN Mapping Register
11626 * -----------------------------------------------------------
11627 * The TIEEM register maps ECN of the IP header at the ingress to the
11628 * encapsulation to the ECN of the underlay network.
11629 */
11630 #define MLXSW_REG_TIEEM_ID 0xA812
11631 #define MLXSW_REG_TIEEM_LEN 0x0C
11632
11633 MLXSW_REG_DEFINE(tieem, MLXSW_REG_TIEEM_ID, MLXSW_REG_TIEEM_LEN);
11634
11635 /* reg_tieem_overlay_ecn
11636 * ECN of the IP header in the overlay network.
11637 * Access: Index
11638 */
11639 MLXSW_ITEM32(reg, tieem, overlay_ecn, 0x04, 24, 2);
11640
11641 /* reg_tineem_underlay_ecn
11642 * ECN of the IP header in the underlay network.
11643 * Access: RW
11644 */
11645 MLXSW_ITEM32(reg, tieem, underlay_ecn, 0x04, 16, 2);
11646
mlxsw_reg_tieem_pack(char * payload,u8 overlay_ecn,u8 underlay_ecn)11647 static inline void mlxsw_reg_tieem_pack(char *payload, u8 overlay_ecn,
11648 u8 underlay_ecn)
11649 {
11650 MLXSW_REG_ZERO(tieem, payload);
11651 mlxsw_reg_tieem_overlay_ecn_set(payload, overlay_ecn);
11652 mlxsw_reg_tieem_underlay_ecn_set(payload, underlay_ecn);
11653 }
11654
11655 /* TIDEM - Tunneling IPinIP Decapsulation ECN Mapping Register
11656 * -----------------------------------------------------------
11657 * The TIDEM register configures the actions that are done in the
11658 * decapsulation.
11659 */
11660 #define MLXSW_REG_TIDEM_ID 0xA813
11661 #define MLXSW_REG_TIDEM_LEN 0x0C
11662
11663 MLXSW_REG_DEFINE(tidem, MLXSW_REG_TIDEM_ID, MLXSW_REG_TIDEM_LEN);
11664
11665 /* reg_tidem_underlay_ecn
11666 * ECN field of the IP header in the underlay network.
11667 * Access: Index
11668 */
11669 MLXSW_ITEM32(reg, tidem, underlay_ecn, 0x04, 24, 2);
11670
11671 /* reg_tidem_overlay_ecn
11672 * ECN field of the IP header in the overlay network.
11673 * Access: Index
11674 */
11675 MLXSW_ITEM32(reg, tidem, overlay_ecn, 0x04, 16, 2);
11676
11677 /* reg_tidem_eip_ecn
11678 * Egress IP ECN. ECN field of the IP header of the packet which goes out
11679 * from the decapsulation.
11680 * Access: RW
11681 */
11682 MLXSW_ITEM32(reg, tidem, eip_ecn, 0x04, 8, 2);
11683
11684 /* reg_tidem_trap_en
11685 * Trap enable:
11686 * 0 - No trap due to decap ECN
11687 * 1 - Trap enable with trap_id
11688 * Access: RW
11689 */
11690 MLXSW_ITEM32(reg, tidem, trap_en, 0x08, 28, 4);
11691
11692 /* reg_tidem_trap_id
11693 * Trap ID. Either DECAP_ECN0 or DECAP_ECN1.
11694 * Reserved when trap_en is '0'.
11695 * Access: RW
11696 */
11697 MLXSW_ITEM32(reg, tidem, trap_id, 0x08, 0, 9);
11698
mlxsw_reg_tidem_pack(char * payload,u8 underlay_ecn,u8 overlay_ecn,u8 eip_ecn,bool trap_en,u16 trap_id)11699 static inline void mlxsw_reg_tidem_pack(char *payload, u8 underlay_ecn,
11700 u8 overlay_ecn, u8 eip_ecn,
11701 bool trap_en, u16 trap_id)
11702 {
11703 MLXSW_REG_ZERO(tidem, payload);
11704 mlxsw_reg_tidem_underlay_ecn_set(payload, underlay_ecn);
11705 mlxsw_reg_tidem_overlay_ecn_set(payload, overlay_ecn);
11706 mlxsw_reg_tidem_eip_ecn_set(payload, eip_ecn);
11707 mlxsw_reg_tidem_trap_en_set(payload, trap_en);
11708 mlxsw_reg_tidem_trap_id_set(payload, trap_id);
11709 }
11710
11711 /* SBPR - Shared Buffer Pools Register
11712 * -----------------------------------
11713 * The SBPR configures and retrieves the shared buffer pools and configuration.
11714 */
11715 #define MLXSW_REG_SBPR_ID 0xB001
11716 #define MLXSW_REG_SBPR_LEN 0x14
11717
11718 MLXSW_REG_DEFINE(sbpr, MLXSW_REG_SBPR_ID, MLXSW_REG_SBPR_LEN);
11719
11720 /* shared direstion enum for SBPR, SBCM, SBPM */
11721 enum mlxsw_reg_sbxx_dir {
11722 MLXSW_REG_SBXX_DIR_INGRESS,
11723 MLXSW_REG_SBXX_DIR_EGRESS,
11724 };
11725
11726 /* reg_sbpr_dir
11727 * Direction.
11728 * Access: Index
11729 */
11730 MLXSW_ITEM32(reg, sbpr, dir, 0x00, 24, 2);
11731
11732 /* reg_sbpr_pool
11733 * Pool index.
11734 * Access: Index
11735 */
11736 MLXSW_ITEM32(reg, sbpr, pool, 0x00, 0, 4);
11737
11738 /* reg_sbpr_infi_size
11739 * Size is infinite.
11740 * Access: RW
11741 */
11742 MLXSW_ITEM32(reg, sbpr, infi_size, 0x04, 31, 1);
11743
11744 /* reg_sbpr_size
11745 * Pool size in buffer cells.
11746 * Reserved when infi_size = 1.
11747 * Access: RW
11748 */
11749 MLXSW_ITEM32(reg, sbpr, size, 0x04, 0, 24);
11750
11751 enum mlxsw_reg_sbpr_mode {
11752 MLXSW_REG_SBPR_MODE_STATIC,
11753 MLXSW_REG_SBPR_MODE_DYNAMIC,
11754 };
11755
11756 /* reg_sbpr_mode
11757 * Pool quota calculation mode.
11758 * Access: RW
11759 */
11760 MLXSW_ITEM32(reg, sbpr, mode, 0x08, 0, 4);
11761
mlxsw_reg_sbpr_pack(char * payload,u8 pool,enum mlxsw_reg_sbxx_dir dir,enum mlxsw_reg_sbpr_mode mode,u32 size,bool infi_size)11762 static inline void mlxsw_reg_sbpr_pack(char *payload, u8 pool,
11763 enum mlxsw_reg_sbxx_dir dir,
11764 enum mlxsw_reg_sbpr_mode mode, u32 size,
11765 bool infi_size)
11766 {
11767 MLXSW_REG_ZERO(sbpr, payload);
11768 mlxsw_reg_sbpr_pool_set(payload, pool);
11769 mlxsw_reg_sbpr_dir_set(payload, dir);
11770 mlxsw_reg_sbpr_mode_set(payload, mode);
11771 mlxsw_reg_sbpr_size_set(payload, size);
11772 mlxsw_reg_sbpr_infi_size_set(payload, infi_size);
11773 }
11774
11775 /* SBCM - Shared Buffer Class Management Register
11776 * ----------------------------------------------
11777 * The SBCM register configures and retrieves the shared buffer allocation
11778 * and configuration according to Port-PG, including the binding to pool
11779 * and definition of the associated quota.
11780 */
11781 #define MLXSW_REG_SBCM_ID 0xB002
11782 #define MLXSW_REG_SBCM_LEN 0x28
11783
11784 MLXSW_REG_DEFINE(sbcm, MLXSW_REG_SBCM_ID, MLXSW_REG_SBCM_LEN);
11785
11786 /* reg_sbcm_local_port
11787 * Local port number.
11788 * For Ingress: excludes CPU port and Router port
11789 * For Egress: excludes IP Router
11790 * Access: Index
11791 */
11792 MLXSW_ITEM32(reg, sbcm, local_port, 0x00, 16, 8);
11793
11794 /* reg_sbcm_pg_buff
11795 * PG buffer - Port PG (dir=ingress) / traffic class (dir=egress)
11796 * For PG buffer: range is 0..cap_max_pg_buffers - 1
11797 * For traffic class: range is 0..cap_max_tclass - 1
11798 * Note that when traffic class is in MC aware mode then the traffic
11799 * classes which are MC aware cannot be configured.
11800 * Access: Index
11801 */
11802 MLXSW_ITEM32(reg, sbcm, pg_buff, 0x00, 8, 6);
11803
11804 /* reg_sbcm_dir
11805 * Direction.
11806 * Access: Index
11807 */
11808 MLXSW_ITEM32(reg, sbcm, dir, 0x00, 0, 2);
11809
11810 /* reg_sbcm_min_buff
11811 * Minimum buffer size for the limiter, in cells.
11812 * Access: RW
11813 */
11814 MLXSW_ITEM32(reg, sbcm, min_buff, 0x18, 0, 24);
11815
11816 /* shared max_buff limits for dynamic threshold for SBCM, SBPM */
11817 #define MLXSW_REG_SBXX_DYN_MAX_BUFF_MIN 1
11818 #define MLXSW_REG_SBXX_DYN_MAX_BUFF_MAX 14
11819
11820 /* reg_sbcm_infi_max
11821 * Max buffer is infinite.
11822 * Access: RW
11823 */
11824 MLXSW_ITEM32(reg, sbcm, infi_max, 0x1C, 31, 1);
11825
11826 /* reg_sbcm_max_buff
11827 * When the pool associated to the port-pg/tclass is configured to
11828 * static, Maximum buffer size for the limiter configured in cells.
11829 * When the pool associated to the port-pg/tclass is configured to
11830 * dynamic, the max_buff holds the "alpha" parameter, supporting
11831 * the following values:
11832 * 0: 0
11833 * i: (1/128)*2^(i-1), for i=1..14
11834 * 0xFF: Infinity
11835 * Reserved when infi_max = 1.
11836 * Access: RW
11837 */
11838 MLXSW_ITEM32(reg, sbcm, max_buff, 0x1C, 0, 24);
11839
11840 /* reg_sbcm_pool
11841 * Association of the port-priority to a pool.
11842 * Access: RW
11843 */
11844 MLXSW_ITEM32(reg, sbcm, pool, 0x24, 0, 4);
11845
mlxsw_reg_sbcm_pack(char * payload,u8 local_port,u8 pg_buff,enum mlxsw_reg_sbxx_dir dir,u32 min_buff,u32 max_buff,bool infi_max,u8 pool)11846 static inline void mlxsw_reg_sbcm_pack(char *payload, u8 local_port, u8 pg_buff,
11847 enum mlxsw_reg_sbxx_dir dir,
11848 u32 min_buff, u32 max_buff,
11849 bool infi_max, u8 pool)
11850 {
11851 MLXSW_REG_ZERO(sbcm, payload);
11852 mlxsw_reg_sbcm_local_port_set(payload, local_port);
11853 mlxsw_reg_sbcm_pg_buff_set(payload, pg_buff);
11854 mlxsw_reg_sbcm_dir_set(payload, dir);
11855 mlxsw_reg_sbcm_min_buff_set(payload, min_buff);
11856 mlxsw_reg_sbcm_max_buff_set(payload, max_buff);
11857 mlxsw_reg_sbcm_infi_max_set(payload, infi_max);
11858 mlxsw_reg_sbcm_pool_set(payload, pool);
11859 }
11860
11861 /* SBPM - Shared Buffer Port Management Register
11862 * ---------------------------------------------
11863 * The SBPM register configures and retrieves the shared buffer allocation
11864 * and configuration according to Port-Pool, including the definition
11865 * of the associated quota.
11866 */
11867 #define MLXSW_REG_SBPM_ID 0xB003
11868 #define MLXSW_REG_SBPM_LEN 0x28
11869
11870 MLXSW_REG_DEFINE(sbpm, MLXSW_REG_SBPM_ID, MLXSW_REG_SBPM_LEN);
11871
11872 /* reg_sbpm_local_port
11873 * Local port number.
11874 * For Ingress: excludes CPU port and Router port
11875 * For Egress: excludes IP Router
11876 * Access: Index
11877 */
11878 MLXSW_ITEM32(reg, sbpm, local_port, 0x00, 16, 8);
11879
11880 /* reg_sbpm_pool
11881 * The pool associated to quota counting on the local_port.
11882 * Access: Index
11883 */
11884 MLXSW_ITEM32(reg, sbpm, pool, 0x00, 8, 4);
11885
11886 /* reg_sbpm_dir
11887 * Direction.
11888 * Access: Index
11889 */
11890 MLXSW_ITEM32(reg, sbpm, dir, 0x00, 0, 2);
11891
11892 /* reg_sbpm_buff_occupancy
11893 * Current buffer occupancy in cells.
11894 * Access: RO
11895 */
11896 MLXSW_ITEM32(reg, sbpm, buff_occupancy, 0x10, 0, 24);
11897
11898 /* reg_sbpm_clr
11899 * Clear Max Buffer Occupancy
11900 * When this bit is set, max_buff_occupancy field is cleared (and a
11901 * new max value is tracked from the time the clear was performed).
11902 * Access: OP
11903 */
11904 MLXSW_ITEM32(reg, sbpm, clr, 0x14, 31, 1);
11905
11906 /* reg_sbpm_max_buff_occupancy
11907 * Maximum value of buffer occupancy in cells monitored. Cleared by
11908 * writing to the clr field.
11909 * Access: RO
11910 */
11911 MLXSW_ITEM32(reg, sbpm, max_buff_occupancy, 0x14, 0, 24);
11912
11913 /* reg_sbpm_min_buff
11914 * Minimum buffer size for the limiter, in cells.
11915 * Access: RW
11916 */
11917 MLXSW_ITEM32(reg, sbpm, min_buff, 0x18, 0, 24);
11918
11919 /* reg_sbpm_max_buff
11920 * When the pool associated to the port-pg/tclass is configured to
11921 * static, Maximum buffer size for the limiter configured in cells.
11922 * When the pool associated to the port-pg/tclass is configured to
11923 * dynamic, the max_buff holds the "alpha" parameter, supporting
11924 * the following values:
11925 * 0: 0
11926 * i: (1/128)*2^(i-1), for i=1..14
11927 * 0xFF: Infinity
11928 * Access: RW
11929 */
11930 MLXSW_ITEM32(reg, sbpm, max_buff, 0x1C, 0, 24);
11931
mlxsw_reg_sbpm_pack(char * payload,u8 local_port,u8 pool,enum mlxsw_reg_sbxx_dir dir,bool clr,u32 min_buff,u32 max_buff)11932 static inline void mlxsw_reg_sbpm_pack(char *payload, u8 local_port, u8 pool,
11933 enum mlxsw_reg_sbxx_dir dir, bool clr,
11934 u32 min_buff, u32 max_buff)
11935 {
11936 MLXSW_REG_ZERO(sbpm, payload);
11937 mlxsw_reg_sbpm_local_port_set(payload, local_port);
11938 mlxsw_reg_sbpm_pool_set(payload, pool);
11939 mlxsw_reg_sbpm_dir_set(payload, dir);
11940 mlxsw_reg_sbpm_clr_set(payload, clr);
11941 mlxsw_reg_sbpm_min_buff_set(payload, min_buff);
11942 mlxsw_reg_sbpm_max_buff_set(payload, max_buff);
11943 }
11944
mlxsw_reg_sbpm_unpack(char * payload,u32 * p_buff_occupancy,u32 * p_max_buff_occupancy)11945 static inline void mlxsw_reg_sbpm_unpack(char *payload, u32 *p_buff_occupancy,
11946 u32 *p_max_buff_occupancy)
11947 {
11948 *p_buff_occupancy = mlxsw_reg_sbpm_buff_occupancy_get(payload);
11949 *p_max_buff_occupancy = mlxsw_reg_sbpm_max_buff_occupancy_get(payload);
11950 }
11951
11952 /* SBMM - Shared Buffer Multicast Management Register
11953 * --------------------------------------------------
11954 * The SBMM register configures and retrieves the shared buffer allocation
11955 * and configuration for MC packets according to Switch-Priority, including
11956 * the binding to pool and definition of the associated quota.
11957 */
11958 #define MLXSW_REG_SBMM_ID 0xB004
11959 #define MLXSW_REG_SBMM_LEN 0x28
11960
11961 MLXSW_REG_DEFINE(sbmm, MLXSW_REG_SBMM_ID, MLXSW_REG_SBMM_LEN);
11962
11963 /* reg_sbmm_prio
11964 * Switch Priority.
11965 * Access: Index
11966 */
11967 MLXSW_ITEM32(reg, sbmm, prio, 0x00, 8, 4);
11968
11969 /* reg_sbmm_min_buff
11970 * Minimum buffer size for the limiter, in cells.
11971 * Access: RW
11972 */
11973 MLXSW_ITEM32(reg, sbmm, min_buff, 0x18, 0, 24);
11974
11975 /* reg_sbmm_max_buff
11976 * When the pool associated to the port-pg/tclass is configured to
11977 * static, Maximum buffer size for the limiter configured in cells.
11978 * When the pool associated to the port-pg/tclass is configured to
11979 * dynamic, the max_buff holds the "alpha" parameter, supporting
11980 * the following values:
11981 * 0: 0
11982 * i: (1/128)*2^(i-1), for i=1..14
11983 * 0xFF: Infinity
11984 * Access: RW
11985 */
11986 MLXSW_ITEM32(reg, sbmm, max_buff, 0x1C, 0, 24);
11987
11988 /* reg_sbmm_pool
11989 * Association of the port-priority to a pool.
11990 * Access: RW
11991 */
11992 MLXSW_ITEM32(reg, sbmm, pool, 0x24, 0, 4);
11993
mlxsw_reg_sbmm_pack(char * payload,u8 prio,u32 min_buff,u32 max_buff,u8 pool)11994 static inline void mlxsw_reg_sbmm_pack(char *payload, u8 prio, u32 min_buff,
11995 u32 max_buff, u8 pool)
11996 {
11997 MLXSW_REG_ZERO(sbmm, payload);
11998 mlxsw_reg_sbmm_prio_set(payload, prio);
11999 mlxsw_reg_sbmm_min_buff_set(payload, min_buff);
12000 mlxsw_reg_sbmm_max_buff_set(payload, max_buff);
12001 mlxsw_reg_sbmm_pool_set(payload, pool);
12002 }
12003
12004 /* SBSR - Shared Buffer Status Register
12005 * ------------------------------------
12006 * The SBSR register retrieves the shared buffer occupancy according to
12007 * Port-Pool. Note that this register enables reading a large amount of data.
12008 * It is the user's responsibility to limit the amount of data to ensure the
12009 * response can match the maximum transfer unit. In case the response exceeds
12010 * the maximum transport unit, it will be truncated with no special notice.
12011 */
12012 #define MLXSW_REG_SBSR_ID 0xB005
12013 #define MLXSW_REG_SBSR_BASE_LEN 0x5C /* base length, without records */
12014 #define MLXSW_REG_SBSR_REC_LEN 0x8 /* record length */
12015 #define MLXSW_REG_SBSR_REC_MAX_COUNT 120
12016 #define MLXSW_REG_SBSR_LEN (MLXSW_REG_SBSR_BASE_LEN + \
12017 MLXSW_REG_SBSR_REC_LEN * \
12018 MLXSW_REG_SBSR_REC_MAX_COUNT)
12019
12020 MLXSW_REG_DEFINE(sbsr, MLXSW_REG_SBSR_ID, MLXSW_REG_SBSR_LEN);
12021
12022 /* reg_sbsr_clr
12023 * Clear Max Buffer Occupancy. When this bit is set, the max_buff_occupancy
12024 * field is cleared (and a new max value is tracked from the time the clear
12025 * was performed).
12026 * Access: OP
12027 */
12028 MLXSW_ITEM32(reg, sbsr, clr, 0x00, 31, 1);
12029
12030 /* reg_sbsr_ingress_port_mask
12031 * Bit vector for all ingress network ports.
12032 * Indicates which of the ports (for which the relevant bit is set)
12033 * are affected by the set operation. Configuration of any other port
12034 * does not change.
12035 * Access: Index
12036 */
12037 MLXSW_ITEM_BIT_ARRAY(reg, sbsr, ingress_port_mask, 0x10, 0x20, 1);
12038
12039 /* reg_sbsr_pg_buff_mask
12040 * Bit vector for all switch priority groups.
12041 * Indicates which of the priorities (for which the relevant bit is set)
12042 * are affected by the set operation. Configuration of any other priority
12043 * does not change.
12044 * Range is 0..cap_max_pg_buffers - 1
12045 * Access: Index
12046 */
12047 MLXSW_ITEM_BIT_ARRAY(reg, sbsr, pg_buff_mask, 0x30, 0x4, 1);
12048
12049 /* reg_sbsr_egress_port_mask
12050 * Bit vector for all egress network ports.
12051 * Indicates which of the ports (for which the relevant bit is set)
12052 * are affected by the set operation. Configuration of any other port
12053 * does not change.
12054 * Access: Index
12055 */
12056 MLXSW_ITEM_BIT_ARRAY(reg, sbsr, egress_port_mask, 0x34, 0x20, 1);
12057
12058 /* reg_sbsr_tclass_mask
12059 * Bit vector for all traffic classes.
12060 * Indicates which of the traffic classes (for which the relevant bit is
12061 * set) are affected by the set operation. Configuration of any other
12062 * traffic class does not change.
12063 * Range is 0..cap_max_tclass - 1
12064 * Access: Index
12065 */
12066 MLXSW_ITEM_BIT_ARRAY(reg, sbsr, tclass_mask, 0x54, 0x8, 1);
12067
mlxsw_reg_sbsr_pack(char * payload,bool clr)12068 static inline void mlxsw_reg_sbsr_pack(char *payload, bool clr)
12069 {
12070 MLXSW_REG_ZERO(sbsr, payload);
12071 mlxsw_reg_sbsr_clr_set(payload, clr);
12072 }
12073
12074 /* reg_sbsr_rec_buff_occupancy
12075 * Current buffer occupancy in cells.
12076 * Access: RO
12077 */
12078 MLXSW_ITEM32_INDEXED(reg, sbsr, rec_buff_occupancy, MLXSW_REG_SBSR_BASE_LEN,
12079 0, 24, MLXSW_REG_SBSR_REC_LEN, 0x00, false);
12080
12081 /* reg_sbsr_rec_max_buff_occupancy
12082 * Maximum value of buffer occupancy in cells monitored. Cleared by
12083 * writing to the clr field.
12084 * Access: RO
12085 */
12086 MLXSW_ITEM32_INDEXED(reg, sbsr, rec_max_buff_occupancy, MLXSW_REG_SBSR_BASE_LEN,
12087 0, 24, MLXSW_REG_SBSR_REC_LEN, 0x04, false);
12088
mlxsw_reg_sbsr_rec_unpack(char * payload,int rec_index,u32 * p_buff_occupancy,u32 * p_max_buff_occupancy)12089 static inline void mlxsw_reg_sbsr_rec_unpack(char *payload, int rec_index,
12090 u32 *p_buff_occupancy,
12091 u32 *p_max_buff_occupancy)
12092 {
12093 *p_buff_occupancy =
12094 mlxsw_reg_sbsr_rec_buff_occupancy_get(payload, rec_index);
12095 *p_max_buff_occupancy =
12096 mlxsw_reg_sbsr_rec_max_buff_occupancy_get(payload, rec_index);
12097 }
12098
12099 /* SBIB - Shared Buffer Internal Buffer Register
12100 * ---------------------------------------------
12101 * The SBIB register configures per port buffers for internal use. The internal
12102 * buffers consume memory on the port buffers (note that the port buffers are
12103 * used also by PBMC).
12104 *
12105 * For Spectrum this is used for egress mirroring.
12106 */
12107 #define MLXSW_REG_SBIB_ID 0xB006
12108 #define MLXSW_REG_SBIB_LEN 0x10
12109
12110 MLXSW_REG_DEFINE(sbib, MLXSW_REG_SBIB_ID, MLXSW_REG_SBIB_LEN);
12111
12112 /* reg_sbib_local_port
12113 * Local port number
12114 * Not supported for CPU port and router port
12115 * Access: Index
12116 */
12117 MLXSW_ITEM32(reg, sbib, local_port, 0x00, 16, 8);
12118
12119 /* reg_sbib_buff_size
12120 * Units represented in cells
12121 * Allowed range is 0 to (cap_max_headroom_size - 1)
12122 * Default is 0
12123 * Access: RW
12124 */
12125 MLXSW_ITEM32(reg, sbib, buff_size, 0x08, 0, 24);
12126
mlxsw_reg_sbib_pack(char * payload,u8 local_port,u32 buff_size)12127 static inline void mlxsw_reg_sbib_pack(char *payload, u8 local_port,
12128 u32 buff_size)
12129 {
12130 MLXSW_REG_ZERO(sbib, payload);
12131 mlxsw_reg_sbib_local_port_set(payload, local_port);
12132 mlxsw_reg_sbib_buff_size_set(payload, buff_size);
12133 }
12134
12135 static const struct mlxsw_reg_info *mlxsw_reg_infos[] = {
12136 MLXSW_REG(sgcr),
12137 MLXSW_REG(spad),
12138 MLXSW_REG(smid),
12139 MLXSW_REG(sspr),
12140 MLXSW_REG(sfdat),
12141 MLXSW_REG(sfd),
12142 MLXSW_REG(sfn),
12143 MLXSW_REG(spms),
12144 MLXSW_REG(spvid),
12145 MLXSW_REG(spvm),
12146 MLXSW_REG(spaft),
12147 MLXSW_REG(sfgc),
12148 MLXSW_REG(sftr),
12149 MLXSW_REG(sfdf),
12150 MLXSW_REG(sldr),
12151 MLXSW_REG(slcr),
12152 MLXSW_REG(slcor),
12153 MLXSW_REG(spmlr),
12154 MLXSW_REG(svfa),
12155 MLXSW_REG(spvtr),
12156 MLXSW_REG(svpe),
12157 MLXSW_REG(sfmr),
12158 MLXSW_REG(spvmlr),
12159 MLXSW_REG(spvc),
12160 MLXSW_REG(spevet),
12161 MLXSW_REG(cwtp),
12162 MLXSW_REG(cwtpm),
12163 MLXSW_REG(pgcr),
12164 MLXSW_REG(ppbt),
12165 MLXSW_REG(pacl),
12166 MLXSW_REG(pagt),
12167 MLXSW_REG(ptar),
12168 MLXSW_REG(ppbs),
12169 MLXSW_REG(prcr),
12170 MLXSW_REG(pefa),
12171 MLXSW_REG(pemrbt),
12172 MLXSW_REG(ptce2),
12173 MLXSW_REG(perpt),
12174 MLXSW_REG(peabfe),
12175 MLXSW_REG(perar),
12176 MLXSW_REG(ptce3),
12177 MLXSW_REG(percr),
12178 MLXSW_REG(pererp),
12179 MLXSW_REG(iedr),
12180 MLXSW_REG(qpts),
12181 MLXSW_REG(qpcr),
12182 MLXSW_REG(qtct),
12183 MLXSW_REG(qeec),
12184 MLXSW_REG(qrwe),
12185 MLXSW_REG(qpdsm),
12186 MLXSW_REG(qpdp),
12187 MLXSW_REG(qpdpm),
12188 MLXSW_REG(qtctm),
12189 MLXSW_REG(qpsc),
12190 MLXSW_REG(pmlp),
12191 MLXSW_REG(pmtu),
12192 MLXSW_REG(ptys),
12193 MLXSW_REG(ppad),
12194 MLXSW_REG(paos),
12195 MLXSW_REG(pfcc),
12196 MLXSW_REG(ppcnt),
12197 MLXSW_REG(plib),
12198 MLXSW_REG(pptb),
12199 MLXSW_REG(pbmc),
12200 MLXSW_REG(pspa),
12201 MLXSW_REG(pmaos),
12202 MLXSW_REG(pplr),
12203 MLXSW_REG(pmpe),
12204 MLXSW_REG(pddr),
12205 MLXSW_REG(pmtm),
12206 MLXSW_REG(htgt),
12207 MLXSW_REG(hpkt),
12208 MLXSW_REG(rgcr),
12209 MLXSW_REG(ritr),
12210 MLXSW_REG(rtar),
12211 MLXSW_REG(ratr),
12212 MLXSW_REG(rtdp),
12213 MLXSW_REG(ratrad),
12214 MLXSW_REG(rdpm),
12215 MLXSW_REG(ricnt),
12216 MLXSW_REG(rrcr),
12217 MLXSW_REG(ralta),
12218 MLXSW_REG(ralst),
12219 MLXSW_REG(raltb),
12220 MLXSW_REG(ralue),
12221 MLXSW_REG(rauht),
12222 MLXSW_REG(raleu),
12223 MLXSW_REG(rauhtd),
12224 MLXSW_REG(rigr2),
12225 MLXSW_REG(recr2),
12226 MLXSW_REG(rmft2),
12227 MLXSW_REG(rxlte),
12228 MLXSW_REG(rxltm),
12229 MLXSW_REG(rlcmld),
12230 MLXSW_REG(rlpmce),
12231 MLXSW_REG(xltq),
12232 MLXSW_REG(xmdr),
12233 MLXSW_REG(xrmt),
12234 MLXSW_REG(xralta),
12235 MLXSW_REG(xralst),
12236 MLXSW_REG(xraltb),
12237 MLXSW_REG(mfcr),
12238 MLXSW_REG(mfsc),
12239 MLXSW_REG(mfsm),
12240 MLXSW_REG(mfsl),
12241 MLXSW_REG(fore),
12242 MLXSW_REG(mtcap),
12243 MLXSW_REG(mtmp),
12244 MLXSW_REG(mtwe),
12245 MLXSW_REG(mtbr),
12246 MLXSW_REG(mcia),
12247 MLXSW_REG(mpat),
12248 MLXSW_REG(mpar),
12249 MLXSW_REG(mgir),
12250 MLXSW_REG(mrsr),
12251 MLXSW_REG(mlcr),
12252 MLXSW_REG(mtpps),
12253 MLXSW_REG(mtutc),
12254 MLXSW_REG(mpsc),
12255 MLXSW_REG(mcqi),
12256 MLXSW_REG(mcc),
12257 MLXSW_REG(mcda),
12258 MLXSW_REG(mgpc),
12259 MLXSW_REG(mprs),
12260 MLXSW_REG(mogcr),
12261 MLXSW_REG(mpagr),
12262 MLXSW_REG(momte),
12263 MLXSW_REG(mtpppc),
12264 MLXSW_REG(mtpptr),
12265 MLXSW_REG(mtptpt),
12266 MLXSW_REG(mfgd),
12267 MLXSW_REG(mgpir),
12268 MLXSW_REG(mfde),
12269 MLXSW_REG(tngcr),
12270 MLXSW_REG(tnumt),
12271 MLXSW_REG(tnqcr),
12272 MLXSW_REG(tnqdr),
12273 MLXSW_REG(tneem),
12274 MLXSW_REG(tndem),
12275 MLXSW_REG(tnpc),
12276 MLXSW_REG(tigcr),
12277 MLXSW_REG(tieem),
12278 MLXSW_REG(tidem),
12279 MLXSW_REG(sbpr),
12280 MLXSW_REG(sbcm),
12281 MLXSW_REG(sbpm),
12282 MLXSW_REG(sbmm),
12283 MLXSW_REG(sbsr),
12284 MLXSW_REG(sbib),
12285 };
12286
mlxsw_reg_id_str(u16 reg_id)12287 static inline const char *mlxsw_reg_id_str(u16 reg_id)
12288 {
12289 const struct mlxsw_reg_info *reg_info;
12290 int i;
12291
12292 for (i = 0; i < ARRAY_SIZE(mlxsw_reg_infos); i++) {
12293 reg_info = mlxsw_reg_infos[i];
12294 if (reg_info->id == reg_id)
12295 return reg_info->name;
12296 }
12297 return "*UNKNOWN*";
12298 }
12299
12300 /* PUDE - Port Up / Down Event
12301 * ---------------------------
12302 * Reports the operational state change of a port.
12303 */
12304 #define MLXSW_REG_PUDE_LEN 0x10
12305
12306 /* reg_pude_swid
12307 * Switch partition ID with which to associate the port.
12308 * Access: Index
12309 */
12310 MLXSW_ITEM32(reg, pude, swid, 0x00, 24, 8);
12311
12312 /* reg_pude_local_port
12313 * Local port number.
12314 * Access: Index
12315 */
12316 MLXSW_ITEM32(reg, pude, local_port, 0x00, 16, 8);
12317
12318 /* reg_pude_admin_status
12319 * Port administrative state (the desired state).
12320 * 1 - Up.
12321 * 2 - Down.
12322 * 3 - Up once. This means that in case of link failure, the port won't go
12323 * into polling mode, but will wait to be re-enabled by software.
12324 * 4 - Disabled by system. Can only be set by hardware.
12325 * Access: RO
12326 */
12327 MLXSW_ITEM32(reg, pude, admin_status, 0x00, 8, 4);
12328
12329 /* reg_pude_oper_status
12330 * Port operatioanl state.
12331 * 1 - Up.
12332 * 2 - Down.
12333 * 3 - Down by port failure. This means that the device will not let the
12334 * port up again until explicitly specified by software.
12335 * Access: RO
12336 */
12337 MLXSW_ITEM32(reg, pude, oper_status, 0x00, 0, 4);
12338
12339 #endif
12340