1 /* SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0 */
2 /* Copyright (c) 2015-2018 Mellanox Technologies. All rights reserved */
3
4 #ifndef _MLXSW_CMD_H
5 #define _MLXSW_CMD_H
6
7 #include "item.h"
8
9 #define MLXSW_CMD_MBOX_SIZE 4096
10
mlxsw_cmd_mbox_alloc(void)11 static inline char *mlxsw_cmd_mbox_alloc(void)
12 {
13 return kzalloc(MLXSW_CMD_MBOX_SIZE, GFP_KERNEL);
14 }
15
mlxsw_cmd_mbox_free(char * mbox)16 static inline void mlxsw_cmd_mbox_free(char *mbox)
17 {
18 kfree(mbox);
19 }
20
mlxsw_cmd_mbox_zero(char * mbox)21 static inline void mlxsw_cmd_mbox_zero(char *mbox)
22 {
23 memset(mbox, 0, MLXSW_CMD_MBOX_SIZE);
24 }
25
26 struct mlxsw_core;
27
28 int mlxsw_cmd_exec(struct mlxsw_core *mlxsw_core, u16 opcode, u8 opcode_mod,
29 u32 in_mod, bool out_mbox_direct, bool reset_ok,
30 char *in_mbox, size_t in_mbox_size,
31 char *out_mbox, size_t out_mbox_size);
32
mlxsw_cmd_exec_in(struct mlxsw_core * mlxsw_core,u16 opcode,u8 opcode_mod,u32 in_mod,char * in_mbox,size_t in_mbox_size)33 static inline int mlxsw_cmd_exec_in(struct mlxsw_core *mlxsw_core, u16 opcode,
34 u8 opcode_mod, u32 in_mod, char *in_mbox,
35 size_t in_mbox_size)
36 {
37 return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod, false,
38 false, in_mbox, in_mbox_size, NULL, 0);
39 }
40
mlxsw_cmd_exec_out(struct mlxsw_core * mlxsw_core,u16 opcode,u8 opcode_mod,u32 in_mod,bool out_mbox_direct,char * out_mbox,size_t out_mbox_size)41 static inline int mlxsw_cmd_exec_out(struct mlxsw_core *mlxsw_core, u16 opcode,
42 u8 opcode_mod, u32 in_mod,
43 bool out_mbox_direct,
44 char *out_mbox, size_t out_mbox_size)
45 {
46 return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod,
47 out_mbox_direct, false, NULL, 0,
48 out_mbox, out_mbox_size);
49 }
50
mlxsw_cmd_exec_none(struct mlxsw_core * mlxsw_core,u16 opcode,u8 opcode_mod,u32 in_mod)51 static inline int mlxsw_cmd_exec_none(struct mlxsw_core *mlxsw_core, u16 opcode,
52 u8 opcode_mod, u32 in_mod)
53 {
54 return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod, false,
55 false, NULL, 0, NULL, 0);
56 }
57
58 enum mlxsw_cmd_opcode {
59 MLXSW_CMD_OPCODE_QUERY_FW = 0x004,
60 MLXSW_CMD_OPCODE_QUERY_BOARDINFO = 0x006,
61 MLXSW_CMD_OPCODE_QUERY_AQ_CAP = 0x003,
62 MLXSW_CMD_OPCODE_MAP_FA = 0xFFF,
63 MLXSW_CMD_OPCODE_UNMAP_FA = 0xFFE,
64 MLXSW_CMD_OPCODE_CONFIG_PROFILE = 0x100,
65 MLXSW_CMD_OPCODE_ACCESS_REG = 0x040,
66 MLXSW_CMD_OPCODE_SW2HW_DQ = 0x201,
67 MLXSW_CMD_OPCODE_HW2SW_DQ = 0x202,
68 MLXSW_CMD_OPCODE_2ERR_DQ = 0x01E,
69 MLXSW_CMD_OPCODE_QUERY_DQ = 0x022,
70 MLXSW_CMD_OPCODE_SW2HW_CQ = 0x016,
71 MLXSW_CMD_OPCODE_HW2SW_CQ = 0x017,
72 MLXSW_CMD_OPCODE_QUERY_CQ = 0x018,
73 MLXSW_CMD_OPCODE_SW2HW_EQ = 0x013,
74 MLXSW_CMD_OPCODE_HW2SW_EQ = 0x014,
75 MLXSW_CMD_OPCODE_QUERY_EQ = 0x015,
76 MLXSW_CMD_OPCODE_QUERY_RESOURCES = 0x101,
77 };
78
mlxsw_cmd_opcode_str(u16 opcode)79 static inline const char *mlxsw_cmd_opcode_str(u16 opcode)
80 {
81 switch (opcode) {
82 case MLXSW_CMD_OPCODE_QUERY_FW:
83 return "QUERY_FW";
84 case MLXSW_CMD_OPCODE_QUERY_BOARDINFO:
85 return "QUERY_BOARDINFO";
86 case MLXSW_CMD_OPCODE_QUERY_AQ_CAP:
87 return "QUERY_AQ_CAP";
88 case MLXSW_CMD_OPCODE_MAP_FA:
89 return "MAP_FA";
90 case MLXSW_CMD_OPCODE_UNMAP_FA:
91 return "UNMAP_FA";
92 case MLXSW_CMD_OPCODE_CONFIG_PROFILE:
93 return "CONFIG_PROFILE";
94 case MLXSW_CMD_OPCODE_ACCESS_REG:
95 return "ACCESS_REG";
96 case MLXSW_CMD_OPCODE_SW2HW_DQ:
97 return "SW2HW_DQ";
98 case MLXSW_CMD_OPCODE_HW2SW_DQ:
99 return "HW2SW_DQ";
100 case MLXSW_CMD_OPCODE_2ERR_DQ:
101 return "2ERR_DQ";
102 case MLXSW_CMD_OPCODE_QUERY_DQ:
103 return "QUERY_DQ";
104 case MLXSW_CMD_OPCODE_SW2HW_CQ:
105 return "SW2HW_CQ";
106 case MLXSW_CMD_OPCODE_HW2SW_CQ:
107 return "HW2SW_CQ";
108 case MLXSW_CMD_OPCODE_QUERY_CQ:
109 return "QUERY_CQ";
110 case MLXSW_CMD_OPCODE_SW2HW_EQ:
111 return "SW2HW_EQ";
112 case MLXSW_CMD_OPCODE_HW2SW_EQ:
113 return "HW2SW_EQ";
114 case MLXSW_CMD_OPCODE_QUERY_EQ:
115 return "QUERY_EQ";
116 case MLXSW_CMD_OPCODE_QUERY_RESOURCES:
117 return "QUERY_RESOURCES";
118 default:
119 return "*UNKNOWN*";
120 }
121 }
122
123 enum mlxsw_cmd_status {
124 /* Command execution succeeded. */
125 MLXSW_CMD_STATUS_OK = 0x00,
126 /* Internal error (e.g. bus error) occurred while processing command. */
127 MLXSW_CMD_STATUS_INTERNAL_ERR = 0x01,
128 /* Operation/command not supported or opcode modifier not supported. */
129 MLXSW_CMD_STATUS_BAD_OP = 0x02,
130 /* Parameter not supported, parameter out of range. */
131 MLXSW_CMD_STATUS_BAD_PARAM = 0x03,
132 /* System was not enabled or bad system state. */
133 MLXSW_CMD_STATUS_BAD_SYS_STATE = 0x04,
134 /* Attempt to access reserved or unallocated resource, or resource in
135 * inappropriate ownership.
136 */
137 MLXSW_CMD_STATUS_BAD_RESOURCE = 0x05,
138 /* Requested resource is currently executing a command. */
139 MLXSW_CMD_STATUS_RESOURCE_BUSY = 0x06,
140 /* Required capability exceeds device limits. */
141 MLXSW_CMD_STATUS_EXCEED_LIM = 0x08,
142 /* Resource is not in the appropriate state or ownership. */
143 MLXSW_CMD_STATUS_BAD_RES_STATE = 0x09,
144 /* Index out of range (might be beyond table size or attempt to
145 * access a reserved resource).
146 */
147 MLXSW_CMD_STATUS_BAD_INDEX = 0x0A,
148 /* NVMEM checksum/CRC failed. */
149 MLXSW_CMD_STATUS_BAD_NVMEM = 0x0B,
150 /* Device is currently running reset */
151 MLXSW_CMD_STATUS_RUNNING_RESET = 0x26,
152 /* Bad management packet (silently discarded). */
153 MLXSW_CMD_STATUS_BAD_PKT = 0x30,
154 };
155
mlxsw_cmd_status_str(u8 status)156 static inline const char *mlxsw_cmd_status_str(u8 status)
157 {
158 switch (status) {
159 case MLXSW_CMD_STATUS_OK:
160 return "OK";
161 case MLXSW_CMD_STATUS_INTERNAL_ERR:
162 return "INTERNAL_ERR";
163 case MLXSW_CMD_STATUS_BAD_OP:
164 return "BAD_OP";
165 case MLXSW_CMD_STATUS_BAD_PARAM:
166 return "BAD_PARAM";
167 case MLXSW_CMD_STATUS_BAD_SYS_STATE:
168 return "BAD_SYS_STATE";
169 case MLXSW_CMD_STATUS_BAD_RESOURCE:
170 return "BAD_RESOURCE";
171 case MLXSW_CMD_STATUS_RESOURCE_BUSY:
172 return "RESOURCE_BUSY";
173 case MLXSW_CMD_STATUS_EXCEED_LIM:
174 return "EXCEED_LIM";
175 case MLXSW_CMD_STATUS_BAD_RES_STATE:
176 return "BAD_RES_STATE";
177 case MLXSW_CMD_STATUS_BAD_INDEX:
178 return "BAD_INDEX";
179 case MLXSW_CMD_STATUS_BAD_NVMEM:
180 return "BAD_NVMEM";
181 case MLXSW_CMD_STATUS_RUNNING_RESET:
182 return "RUNNING_RESET";
183 case MLXSW_CMD_STATUS_BAD_PKT:
184 return "BAD_PKT";
185 default:
186 return "*UNKNOWN*";
187 }
188 }
189
190 /* QUERY_FW - Query Firmware
191 * -------------------------
192 * OpMod == 0, INMmod == 0
193 * -----------------------
194 * The QUERY_FW command retrieves information related to firmware, command
195 * interface version and the amount of resources that should be allocated to
196 * the firmware.
197 */
198
mlxsw_cmd_query_fw(struct mlxsw_core * mlxsw_core,char * out_mbox)199 static inline int mlxsw_cmd_query_fw(struct mlxsw_core *mlxsw_core,
200 char *out_mbox)
201 {
202 return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_FW,
203 0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE);
204 }
205
206 /* cmd_mbox_query_fw_fw_pages
207 * Amount of physical memory to be allocatedfor firmware usage in 4KB pages.
208 */
209 MLXSW_ITEM32(cmd_mbox, query_fw, fw_pages, 0x00, 16, 16);
210
211 /* cmd_mbox_query_fw_fw_rev_major
212 * Firmware Revision - Major
213 */
214 MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_major, 0x00, 0, 16);
215
216 /* cmd_mbox_query_fw_fw_rev_subminor
217 * Firmware Sub-minor version (Patch level)
218 */
219 MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_subminor, 0x04, 16, 16);
220
221 /* cmd_mbox_query_fw_fw_rev_minor
222 * Firmware Revision - Minor
223 */
224 MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_minor, 0x04, 0, 16);
225
226 /* cmd_mbox_query_fw_core_clk
227 * Internal Clock Frequency (in MHz)
228 */
229 MLXSW_ITEM32(cmd_mbox, query_fw, core_clk, 0x08, 16, 16);
230
231 /* cmd_mbox_query_fw_cmd_interface_rev
232 * Command Interface Interpreter Revision ID. This number is bumped up
233 * every time a non-backward-compatible change is done for the command
234 * interface. The current cmd_interface_rev is 1.
235 */
236 MLXSW_ITEM32(cmd_mbox, query_fw, cmd_interface_rev, 0x08, 0, 16);
237
238 /* cmd_mbox_query_fw_dt
239 * If set, Debug Trace is supported
240 */
241 MLXSW_ITEM32(cmd_mbox, query_fw, dt, 0x0C, 31, 1);
242
243 /* cmd_mbox_query_fw_api_version
244 * Indicates the version of the API, to enable software querying
245 * for compatibility. The current api_version is 1.
246 */
247 MLXSW_ITEM32(cmd_mbox, query_fw, api_version, 0x0C, 0, 16);
248
249 /* cmd_mbox_query_fw_fw_hour
250 * Firmware timestamp - hour
251 */
252 MLXSW_ITEM32(cmd_mbox, query_fw, fw_hour, 0x10, 24, 8);
253
254 /* cmd_mbox_query_fw_fw_minutes
255 * Firmware timestamp - minutes
256 */
257 MLXSW_ITEM32(cmd_mbox, query_fw, fw_minutes, 0x10, 16, 8);
258
259 /* cmd_mbox_query_fw_fw_seconds
260 * Firmware timestamp - seconds
261 */
262 MLXSW_ITEM32(cmd_mbox, query_fw, fw_seconds, 0x10, 8, 8);
263
264 /* cmd_mbox_query_fw_fw_year
265 * Firmware timestamp - year
266 */
267 MLXSW_ITEM32(cmd_mbox, query_fw, fw_year, 0x14, 16, 16);
268
269 /* cmd_mbox_query_fw_fw_month
270 * Firmware timestamp - month
271 */
272 MLXSW_ITEM32(cmd_mbox, query_fw, fw_month, 0x14, 8, 8);
273
274 /* cmd_mbox_query_fw_fw_day
275 * Firmware timestamp - day
276 */
277 MLXSW_ITEM32(cmd_mbox, query_fw, fw_day, 0x14, 0, 8);
278
279 /* cmd_mbox_query_fw_clr_int_base_offset
280 * Clear Interrupt register's offset from clr_int_bar register
281 * in PCI address space.
282 */
283 MLXSW_ITEM64(cmd_mbox, query_fw, clr_int_base_offset, 0x20, 0, 64);
284
285 /* cmd_mbox_query_fw_clr_int_bar
286 * PCI base address register (BAR) where clr_int register is located.
287 * 00 - BAR 0-1 (64 bit BAR)
288 */
289 MLXSW_ITEM32(cmd_mbox, query_fw, clr_int_bar, 0x28, 30, 2);
290
291 /* cmd_mbox_query_fw_error_buf_offset
292 * Read Only buffer for internal error reports of offset
293 * from error_buf_bar register in PCI address space).
294 */
295 MLXSW_ITEM64(cmd_mbox, query_fw, error_buf_offset, 0x30, 0, 64);
296
297 /* cmd_mbox_query_fw_error_buf_size
298 * Internal error buffer size in DWORDs
299 */
300 MLXSW_ITEM32(cmd_mbox, query_fw, error_buf_size, 0x38, 0, 32);
301
302 /* cmd_mbox_query_fw_error_int_bar
303 * PCI base address register (BAR) where error buffer
304 * register is located.
305 * 00 - BAR 0-1 (64 bit BAR)
306 */
307 MLXSW_ITEM32(cmd_mbox, query_fw, error_int_bar, 0x3C, 30, 2);
308
309 /* cmd_mbox_query_fw_doorbell_page_offset
310 * Offset of the doorbell page
311 */
312 MLXSW_ITEM64(cmd_mbox, query_fw, doorbell_page_offset, 0x40, 0, 64);
313
314 /* cmd_mbox_query_fw_doorbell_page_bar
315 * PCI base address register (BAR) of the doorbell page
316 * 00 - BAR 0-1 (64 bit BAR)
317 */
318 MLXSW_ITEM32(cmd_mbox, query_fw, doorbell_page_bar, 0x48, 30, 2);
319
320 /* QUERY_BOARDINFO - Query Board Information
321 * -----------------------------------------
322 * OpMod == 0 (N/A), INMmod == 0 (N/A)
323 * -----------------------------------
324 * The QUERY_BOARDINFO command retrieves adapter specific parameters.
325 */
326
mlxsw_cmd_boardinfo(struct mlxsw_core * mlxsw_core,char * out_mbox)327 static inline int mlxsw_cmd_boardinfo(struct mlxsw_core *mlxsw_core,
328 char *out_mbox)
329 {
330 return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_BOARDINFO,
331 0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE);
332 }
333
334 /* cmd_mbox_boardinfo_intapin
335 * When PCIe interrupt messages are being used, this value is used for clearing
336 * an interrupt. When using MSI-X, this register is not used.
337 */
338 MLXSW_ITEM32(cmd_mbox, boardinfo, intapin, 0x10, 24, 8);
339
340 /* cmd_mbox_boardinfo_vsd_vendor_id
341 * PCISIG Vendor ID (www.pcisig.com/membership/vid_search) of the vendor
342 * specifying/formatting the VSD. The vsd_vendor_id identifies the management
343 * domain of the VSD/PSID data. Different vendors may choose different VSD/PSID
344 * format and encoding as long as they use their assigned vsd_vendor_id.
345 */
346 MLXSW_ITEM32(cmd_mbox, boardinfo, vsd_vendor_id, 0x1C, 0, 16);
347
348 /* cmd_mbox_boardinfo_vsd
349 * Vendor Specific Data. The VSD string that is burnt to the Flash
350 * with the firmware.
351 */
352 #define MLXSW_CMD_BOARDINFO_VSD_LEN 208
353 MLXSW_ITEM_BUF(cmd_mbox, boardinfo, vsd, 0x20, MLXSW_CMD_BOARDINFO_VSD_LEN);
354
355 /* cmd_mbox_boardinfo_psid
356 * The PSID field is a 16-ascii (byte) character string which acts as
357 * the board ID. The PSID format is used in conjunction with
358 * Mellanox vsd_vendor_id (15B3h).
359 */
360 #define MLXSW_CMD_BOARDINFO_PSID_LEN 16
361 MLXSW_ITEM_BUF(cmd_mbox, boardinfo, psid, 0xF0, MLXSW_CMD_BOARDINFO_PSID_LEN);
362
363 /* QUERY_AQ_CAP - Query Asynchronous Queues Capabilities
364 * -----------------------------------------------------
365 * OpMod == 0 (N/A), INMmod == 0 (N/A)
366 * -----------------------------------
367 * The QUERY_AQ_CAP command returns the device asynchronous queues
368 * capabilities supported.
369 */
370
mlxsw_cmd_query_aq_cap(struct mlxsw_core * mlxsw_core,char * out_mbox)371 static inline int mlxsw_cmd_query_aq_cap(struct mlxsw_core *mlxsw_core,
372 char *out_mbox)
373 {
374 return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_AQ_CAP,
375 0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE);
376 }
377
378 /* cmd_mbox_query_aq_cap_log_max_sdq_sz
379 * Log (base 2) of max WQEs allowed on SDQ.
380 */
381 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_sdq_sz, 0x00, 24, 8);
382
383 /* cmd_mbox_query_aq_cap_max_num_sdqs
384 * Maximum number of SDQs.
385 */
386 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_sdqs, 0x00, 0, 8);
387
388 /* cmd_mbox_query_aq_cap_log_max_rdq_sz
389 * Log (base 2) of max WQEs allowed on RDQ.
390 */
391 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_rdq_sz, 0x04, 24, 8);
392
393 /* cmd_mbox_query_aq_cap_max_num_rdqs
394 * Maximum number of RDQs.
395 */
396 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_rdqs, 0x04, 0, 8);
397
398 /* cmd_mbox_query_aq_cap_log_max_cq_sz
399 * Log (base 2) of the Maximum CQEs allowed in a CQ for CQEv0 and CQEv1.
400 */
401 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_cq_sz, 0x08, 24, 8);
402
403 /* cmd_mbox_query_aq_cap_log_max_cqv2_sz
404 * Log (base 2) of the Maximum CQEs allowed in a CQ for CQEv2.
405 */
406 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_cqv2_sz, 0x08, 16, 8);
407
408 /* cmd_mbox_query_aq_cap_max_num_cqs
409 * Maximum number of CQs.
410 */
411 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_cqs, 0x08, 0, 8);
412
413 /* cmd_mbox_query_aq_cap_log_max_eq_sz
414 * Log (base 2) of max EQEs allowed on EQ.
415 */
416 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_eq_sz, 0x0C, 24, 8);
417
418 /* cmd_mbox_query_aq_cap_max_num_eqs
419 * Maximum number of EQs.
420 */
421 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_eqs, 0x0C, 0, 8);
422
423 /* cmd_mbox_query_aq_cap_max_sg_sq
424 * The maximum S/G list elements in an DSQ. DSQ must not contain
425 * more S/G entries than indicated here.
426 */
427 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_sg_sq, 0x10, 8, 8);
428
429 /* cmd_mbox_query_aq_cap_
430 * The maximum S/G list elements in an DRQ. DRQ must not contain
431 * more S/G entries than indicated here.
432 */
433 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_sg_rq, 0x10, 0, 8);
434
435 /* MAP_FA - Map Firmware Area
436 * --------------------------
437 * OpMod == 0 (N/A), INMmod == Number of VPM entries
438 * -------------------------------------------------
439 * The MAP_FA command passes physical pages to the switch. These pages
440 * are used to store the device firmware. MAP_FA can be executed multiple
441 * times until all the firmware area is mapped (the size that should be
442 * mapped is retrieved through the QUERY_FW command). All required pages
443 * must be mapped to finish the initialization phase. Physical memory
444 * passed in this command must be pinned.
445 */
446
447 #define MLXSW_CMD_MAP_FA_VPM_ENTRIES_MAX 32
448
mlxsw_cmd_map_fa(struct mlxsw_core * mlxsw_core,char * in_mbox,u32 vpm_entries_count)449 static inline int mlxsw_cmd_map_fa(struct mlxsw_core *mlxsw_core,
450 char *in_mbox, u32 vpm_entries_count)
451 {
452 return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_MAP_FA,
453 0, vpm_entries_count,
454 in_mbox, MLXSW_CMD_MBOX_SIZE);
455 }
456
457 /* cmd_mbox_map_fa_pa
458 * Physical Address.
459 */
460 MLXSW_ITEM64_INDEXED(cmd_mbox, map_fa, pa, 0x00, 12, 52, 0x08, 0x00, true);
461
462 /* cmd_mbox_map_fa_log2size
463 * Log (base 2) of the size in 4KB pages of the physical and contiguous memory
464 * that starts at PA_L/H.
465 */
466 MLXSW_ITEM32_INDEXED(cmd_mbox, map_fa, log2size, 0x00, 0, 5, 0x08, 0x04, false);
467
468 /* UNMAP_FA - Unmap Firmware Area
469 * ------------------------------
470 * OpMod == 0 (N/A), INMmod == 0 (N/A)
471 * -----------------------------------
472 * The UNMAP_FA command unload the firmware and unmaps all the
473 * firmware area. After this command is completed the device will not access
474 * the pages that were mapped to the firmware area. After executing UNMAP_FA
475 * command, software reset must be done prior to execution of MAP_FW command.
476 */
477
mlxsw_cmd_unmap_fa(struct mlxsw_core * mlxsw_core)478 static inline int mlxsw_cmd_unmap_fa(struct mlxsw_core *mlxsw_core)
479 {
480 return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_UNMAP_FA, 0, 0);
481 }
482
483 /* QUERY_RESOURCES - Query chip resources
484 * --------------------------------------
485 * OpMod == 0 (N/A) , INMmod is index
486 * ----------------------------------
487 * The QUERY_RESOURCES command retrieves information related to chip resources
488 * by resource ID. Every command returns 32 entries. INmod is being use as base.
489 * for example, index 1 will return entries 32-63. When the tables end and there
490 * are no more sources in the table, will return resource id 0xFFF to indicate
491 * it.
492 */
493
494 #define MLXSW_CMD_QUERY_RESOURCES_TABLE_END_ID 0xffff
495 #define MLXSW_CMD_QUERY_RESOURCES_MAX_QUERIES 100
496 #define MLXSW_CMD_QUERY_RESOURCES_PER_QUERY 32
497
mlxsw_cmd_query_resources(struct mlxsw_core * mlxsw_core,char * out_mbox,int index)498 static inline int mlxsw_cmd_query_resources(struct mlxsw_core *mlxsw_core,
499 char *out_mbox, int index)
500 {
501 return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_RESOURCES,
502 0, index, false, out_mbox,
503 MLXSW_CMD_MBOX_SIZE);
504 }
505
506 /* cmd_mbox_query_resource_id
507 * The resource id. 0xFFFF indicates table's end.
508 */
509 MLXSW_ITEM32_INDEXED(cmd_mbox, query_resource, id, 0x00, 16, 16, 0x8, 0, false);
510
511 /* cmd_mbox_query_resource_data
512 * The resource
513 */
514 MLXSW_ITEM64_INDEXED(cmd_mbox, query_resource, data,
515 0x00, 0, 40, 0x8, 0, false);
516
517 /* CONFIG_PROFILE (Set) - Configure Switch Profile
518 * ------------------------------
519 * OpMod == 1 (Set), INMmod == 0 (N/A)
520 * -----------------------------------
521 * The CONFIG_PROFILE command sets the switch profile. The command can be
522 * executed on the device only once at startup in order to allocate and
523 * configure all switch resources and prepare it for operational mode.
524 * It is not possible to change the device profile after the chip is
525 * in operational mode.
526 * Failure of the CONFIG_PROFILE command leaves the hardware in an indeterminate
527 * state therefore it is required to perform software reset to the device
528 * following an unsuccessful completion of the command. It is required
529 * to perform software reset to the device to change an existing profile.
530 */
531
mlxsw_cmd_config_profile_set(struct mlxsw_core * mlxsw_core,char * in_mbox)532 static inline int mlxsw_cmd_config_profile_set(struct mlxsw_core *mlxsw_core,
533 char *in_mbox)
534 {
535 return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_CONFIG_PROFILE,
536 1, 0, in_mbox, MLXSW_CMD_MBOX_SIZE);
537 }
538
539 /* cmd_mbox_config_profile_set_max_vepa_channels
540 * Capability bit. Setting a bit to 1 configures the profile
541 * according to the mailbox contents.
542 */
543 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_vepa_channels, 0x0C, 0, 1);
544
545 /* cmd_mbox_config_profile_set_max_lag
546 * Capability bit. Setting a bit to 1 configures the profile
547 * according to the mailbox contents.
548 */
549 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_lag, 0x0C, 1, 1);
550
551 /* cmd_mbox_config_profile_set_max_port_per_lag
552 * Capability bit. Setting a bit to 1 configures the profile
553 * according to the mailbox contents.
554 */
555 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_port_per_lag, 0x0C, 2, 1);
556
557 /* cmd_mbox_config_profile_set_max_mid
558 * Capability bit. Setting a bit to 1 configures the profile
559 * according to the mailbox contents.
560 */
561 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_mid, 0x0C, 3, 1);
562
563 /* cmd_mbox_config_profile_set_max_pgt
564 * Capability bit. Setting a bit to 1 configures the profile
565 * according to the mailbox contents.
566 */
567 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_pgt, 0x0C, 4, 1);
568
569 /* cmd_mbox_config_profile_set_max_system_port
570 * Capability bit. Setting a bit to 1 configures the profile
571 * according to the mailbox contents.
572 */
573 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_system_port, 0x0C, 5, 1);
574
575 /* cmd_mbox_config_profile_set_max_vlan_groups
576 * Capability bit. Setting a bit to 1 configures the profile
577 * according to the mailbox contents.
578 */
579 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_vlan_groups, 0x0C, 6, 1);
580
581 /* cmd_mbox_config_profile_set_max_regions
582 * Capability bit. Setting a bit to 1 configures the profile
583 * according to the mailbox contents.
584 */
585 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_regions, 0x0C, 7, 1);
586
587 /* cmd_mbox_config_profile_set_flood_mode
588 * Capability bit. Setting a bit to 1 configures the profile
589 * according to the mailbox contents.
590 */
591 MLXSW_ITEM32(cmd_mbox, config_profile, set_flood_mode, 0x0C, 8, 1);
592
593 /* cmd_mbox_config_profile_set_max_flood_tables
594 * Capability bit. Setting a bit to 1 configures the profile
595 * according to the mailbox contents.
596 */
597 MLXSW_ITEM32(cmd_mbox, config_profile, set_flood_tables, 0x0C, 9, 1);
598
599 /* cmd_mbox_config_profile_set_max_ib_mc
600 * Capability bit. Setting a bit to 1 configures the profile
601 * according to the mailbox contents.
602 */
603 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_ib_mc, 0x0C, 12, 1);
604
605 /* cmd_mbox_config_profile_set_max_pkey
606 * Capability bit. Setting a bit to 1 configures the profile
607 * according to the mailbox contents.
608 */
609 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_pkey, 0x0C, 13, 1);
610
611 /* cmd_mbox_config_profile_set_adaptive_routing_group_cap
612 * Capability bit. Setting a bit to 1 configures the profile
613 * according to the mailbox contents.
614 */
615 MLXSW_ITEM32(cmd_mbox, config_profile,
616 set_adaptive_routing_group_cap, 0x0C, 14, 1);
617
618 /* cmd_mbox_config_profile_set_ar_sec
619 * Capability bit. Setting a bit to 1 configures the profile
620 * according to the mailbox contents.
621 */
622 MLXSW_ITEM32(cmd_mbox, config_profile, set_ar_sec, 0x0C, 15, 1);
623
624 /* cmd_mbox_config_set_kvd_linear_size
625 * Capability bit. Setting a bit to 1 configures the profile
626 * according to the mailbox contents.
627 */
628 MLXSW_ITEM32(cmd_mbox, config_profile, set_kvd_linear_size, 0x0C, 24, 1);
629
630 /* cmd_mbox_config_set_kvd_hash_single_size
631 * Capability bit. Setting a bit to 1 configures the profile
632 * according to the mailbox contents.
633 */
634 MLXSW_ITEM32(cmd_mbox, config_profile, set_kvd_hash_single_size, 0x0C, 25, 1);
635
636 /* cmd_mbox_config_set_kvd_hash_double_size
637 * Capability bit. Setting a bit to 1 configures the profile
638 * according to the mailbox contents.
639 */
640 MLXSW_ITEM32(cmd_mbox, config_profile, set_kvd_hash_double_size, 0x0C, 26, 1);
641
642 /* cmd_mbox_config_set_cqe_version
643 * Capability bit. Setting a bit to 1 configures the profile
644 * according to the mailbox contents.
645 */
646 MLXSW_ITEM32(cmd_mbox, config_profile, set_cqe_version, 0x08, 0, 1);
647
648 /* cmd_mbox_config_profile_max_vepa_channels
649 * Maximum number of VEPA channels per port (0 through 16)
650 * 0 - multi-channel VEPA is disabled
651 */
652 MLXSW_ITEM32(cmd_mbox, config_profile, max_vepa_channels, 0x10, 0, 8);
653
654 /* cmd_mbox_config_profile_max_lag
655 * Maximum number of LAG IDs requested.
656 */
657 MLXSW_ITEM32(cmd_mbox, config_profile, max_lag, 0x14, 0, 16);
658
659 /* cmd_mbox_config_profile_max_port_per_lag
660 * Maximum number of ports per LAG requested.
661 */
662 MLXSW_ITEM32(cmd_mbox, config_profile, max_port_per_lag, 0x18, 0, 16);
663
664 /* cmd_mbox_config_profile_max_mid
665 * Maximum Multicast IDs.
666 * Multicast IDs are allocated from 0 to max_mid-1
667 */
668 MLXSW_ITEM32(cmd_mbox, config_profile, max_mid, 0x1C, 0, 16);
669
670 /* cmd_mbox_config_profile_max_pgt
671 * Maximum records in the Port Group Table per Switch Partition.
672 * Port Group Table indexes are from 0 to max_pgt-1
673 */
674 MLXSW_ITEM32(cmd_mbox, config_profile, max_pgt, 0x20, 0, 16);
675
676 /* cmd_mbox_config_profile_max_system_port
677 * The maximum number of system ports that can be allocated.
678 */
679 MLXSW_ITEM32(cmd_mbox, config_profile, max_system_port, 0x24, 0, 16);
680
681 /* cmd_mbox_config_profile_max_vlan_groups
682 * Maximum number VLAN Groups for VLAN binding.
683 */
684 MLXSW_ITEM32(cmd_mbox, config_profile, max_vlan_groups, 0x28, 0, 12);
685
686 /* cmd_mbox_config_profile_max_regions
687 * Maximum number of TCAM Regions.
688 */
689 MLXSW_ITEM32(cmd_mbox, config_profile, max_regions, 0x2C, 0, 16);
690
691 /* cmd_mbox_config_profile_max_flood_tables
692 * Maximum number of single-entry flooding tables. Different flooding tables
693 * can be associated with different packet types.
694 */
695 MLXSW_ITEM32(cmd_mbox, config_profile, max_flood_tables, 0x30, 16, 4);
696
697 /* cmd_mbox_config_profile_max_vid_flood_tables
698 * Maximum number of per-vid flooding tables. Flooding tables are associated
699 * to the different packet types for the different switch partitions.
700 * Table size is 4K entries covering all VID space.
701 */
702 MLXSW_ITEM32(cmd_mbox, config_profile, max_vid_flood_tables, 0x30, 8, 4);
703
704 /* cmd_mbox_config_profile_flood_mode
705 * Flooding mode to use.
706 * 0-2 - Backward compatible modes for SwitchX devices.
707 * 3 - Mixed mode, where:
708 * max_flood_tables indicates the number of single-entry tables.
709 * max_vid_flood_tables indicates the number of per-VID tables.
710 * max_fid_offset_flood_tables indicates the number of FID-offset tables.
711 * max_fid_flood_tables indicates the number of per-FID tables.
712 */
713 MLXSW_ITEM32(cmd_mbox, config_profile, flood_mode, 0x30, 0, 2);
714
715 /* cmd_mbox_config_profile_max_fid_offset_flood_tables
716 * Maximum number of FID-offset flooding tables.
717 */
718 MLXSW_ITEM32(cmd_mbox, config_profile,
719 max_fid_offset_flood_tables, 0x34, 24, 4);
720
721 /* cmd_mbox_config_profile_fid_offset_flood_table_size
722 * The size (number of entries) of each FID-offset flood table.
723 */
724 MLXSW_ITEM32(cmd_mbox, config_profile,
725 fid_offset_flood_table_size, 0x34, 0, 16);
726
727 /* cmd_mbox_config_profile_max_fid_flood_tables
728 * Maximum number of per-FID flooding tables.
729 *
730 * Note: This flooding tables cover special FIDs only (vFIDs), starting at
731 * FID value 4K and higher.
732 */
733 MLXSW_ITEM32(cmd_mbox, config_profile, max_fid_flood_tables, 0x38, 24, 4);
734
735 /* cmd_mbox_config_profile_fid_flood_table_size
736 * The size (number of entries) of each per-FID table.
737 */
738 MLXSW_ITEM32(cmd_mbox, config_profile, fid_flood_table_size, 0x38, 0, 16);
739
740 /* cmd_mbox_config_profile_max_ib_mc
741 * Maximum number of multicast FDB records for InfiniBand
742 * FDB (in 512 chunks) per InfiniBand switch partition.
743 */
744 MLXSW_ITEM32(cmd_mbox, config_profile, max_ib_mc, 0x40, 0, 15);
745
746 /* cmd_mbox_config_profile_max_pkey
747 * Maximum per port PKEY table size (for PKEY enforcement)
748 */
749 MLXSW_ITEM32(cmd_mbox, config_profile, max_pkey, 0x44, 0, 15);
750
751 /* cmd_mbox_config_profile_ar_sec
752 * Primary/secondary capability
753 * Describes the number of adaptive routing sub-groups
754 * 0 - disable primary/secondary (single group)
755 * 1 - enable primary/secondary (2 sub-groups)
756 * 2 - 3 sub-groups: Not supported in SwitchX, SwitchX-2
757 * 3 - 4 sub-groups: Not supported in SwitchX, SwitchX-2
758 */
759 MLXSW_ITEM32(cmd_mbox, config_profile, ar_sec, 0x4C, 24, 2);
760
761 /* cmd_mbox_config_profile_adaptive_routing_group_cap
762 * Adaptive Routing Group Capability. Indicates the number of AR groups
763 * supported. Note that when Primary/secondary is enabled, each
764 * primary/secondary couple consumes 2 adaptive routing entries.
765 */
766 MLXSW_ITEM32(cmd_mbox, config_profile, adaptive_routing_group_cap, 0x4C, 0, 16);
767
768 /* cmd_mbox_config_profile_arn
769 * Adaptive Routing Notification Enable
770 * Not supported in SwitchX, SwitchX-2
771 */
772 MLXSW_ITEM32(cmd_mbox, config_profile, arn, 0x50, 31, 1);
773
774 /* cmd_mbox_config_kvd_linear_size
775 * KVD Linear Size
776 * Valid for Spectrum only
777 * Allowed values are 128*N where N=0 or higher
778 */
779 MLXSW_ITEM32(cmd_mbox, config_profile, kvd_linear_size, 0x54, 0, 24);
780
781 /* cmd_mbox_config_kvd_hash_single_size
782 * KVD Hash single-entries size
783 * Valid for Spectrum only
784 * Allowed values are 128*N where N=0 or higher
785 * Must be greater or equal to cap_min_kvd_hash_single_size
786 * Must be smaller or equal to cap_kvd_size - kvd_linear_size
787 */
788 MLXSW_ITEM32(cmd_mbox, config_profile, kvd_hash_single_size, 0x58, 0, 24);
789
790 /* cmd_mbox_config_kvd_hash_double_size
791 * KVD Hash double-entries size (units of single-size entries)
792 * Valid for Spectrum only
793 * Allowed values are 128*N where N=0 or higher
794 * Must be either 0 or greater or equal to cap_min_kvd_hash_double_size
795 * Must be smaller or equal to cap_kvd_size - kvd_linear_size
796 */
797 MLXSW_ITEM32(cmd_mbox, config_profile, kvd_hash_double_size, 0x5C, 0, 24);
798
799 /* cmd_mbox_config_profile_swid_config_mask
800 * Modify Switch Partition Configuration mask. When set, the configu-
801 * ration value for the Switch Partition are taken from the mailbox.
802 * When clear, the current configuration values are used.
803 * Bit 0 - set type
804 * Bit 1 - properties
805 * Other - reserved
806 */
807 MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_mask,
808 0x60, 24, 8, 0x08, 0x00, false);
809
810 /* cmd_mbox_config_profile_swid_config_type
811 * Switch Partition type.
812 * 0000 - disabled (Switch Partition does not exist)
813 * 0001 - InfiniBand
814 * 0010 - Ethernet
815 * 1000 - router port (SwitchX-2 only)
816 * Other - reserved
817 */
818 MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_type,
819 0x60, 20, 4, 0x08, 0x00, false);
820
821 /* cmd_mbox_config_profile_swid_config_properties
822 * Switch Partition properties.
823 */
824 MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_properties,
825 0x60, 0, 8, 0x08, 0x00, false);
826
827 /* cmd_mbox_config_profile_cqe_version
828 * CQE version:
829 * 0: CQE version is 0
830 * 1: CQE version is either 1 or 2
831 * CQE ver 1 or 2 is configured by Completion Queue Context field cqe_ver.
832 */
833 MLXSW_ITEM32(cmd_mbox, config_profile, cqe_version, 0xB0, 0, 8);
834
835 /* ACCESS_REG - Access EMAD Supported Register
836 * ----------------------------------
837 * OpMod == 0 (N/A), INMmod == 0 (N/A)
838 * -------------------------------------
839 * The ACCESS_REG command supports accessing device registers. This access
840 * is mainly used for bootstrapping.
841 */
842
mlxsw_cmd_access_reg(struct mlxsw_core * mlxsw_core,bool reset_ok,char * in_mbox,char * out_mbox)843 static inline int mlxsw_cmd_access_reg(struct mlxsw_core *mlxsw_core,
844 bool reset_ok,
845 char *in_mbox, char *out_mbox)
846 {
847 return mlxsw_cmd_exec(mlxsw_core, MLXSW_CMD_OPCODE_ACCESS_REG,
848 0, 0, false, reset_ok,
849 in_mbox, MLXSW_CMD_MBOX_SIZE,
850 out_mbox, MLXSW_CMD_MBOX_SIZE);
851 }
852
853 /* SW2HW_DQ - Software to Hardware DQ
854 * ----------------------------------
855 * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
856 * INMmod == DQ number
857 * ----------------------------------------------
858 * The SW2HW_DQ command transitions a descriptor queue from software to
859 * hardware ownership. The command enables posting WQEs and ringing DoorBells
860 * on the descriptor queue.
861 */
862
__mlxsw_cmd_sw2hw_dq(struct mlxsw_core * mlxsw_core,char * in_mbox,u32 dq_number,u8 opcode_mod)863 static inline int __mlxsw_cmd_sw2hw_dq(struct mlxsw_core *mlxsw_core,
864 char *in_mbox, u32 dq_number,
865 u8 opcode_mod)
866 {
867 return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_DQ,
868 opcode_mod, dq_number,
869 in_mbox, MLXSW_CMD_MBOX_SIZE);
870 }
871
872 enum {
873 MLXSW_CMD_OPCODE_MOD_SDQ = 0,
874 MLXSW_CMD_OPCODE_MOD_RDQ = 1,
875 };
876
mlxsw_cmd_sw2hw_sdq(struct mlxsw_core * mlxsw_core,char * in_mbox,u32 dq_number)877 static inline int mlxsw_cmd_sw2hw_sdq(struct mlxsw_core *mlxsw_core,
878 char *in_mbox, u32 dq_number)
879 {
880 return __mlxsw_cmd_sw2hw_dq(mlxsw_core, in_mbox, dq_number,
881 MLXSW_CMD_OPCODE_MOD_SDQ);
882 }
883
mlxsw_cmd_sw2hw_rdq(struct mlxsw_core * mlxsw_core,char * in_mbox,u32 dq_number)884 static inline int mlxsw_cmd_sw2hw_rdq(struct mlxsw_core *mlxsw_core,
885 char *in_mbox, u32 dq_number)
886 {
887 return __mlxsw_cmd_sw2hw_dq(mlxsw_core, in_mbox, dq_number,
888 MLXSW_CMD_OPCODE_MOD_RDQ);
889 }
890
891 /* cmd_mbox_sw2hw_dq_cq
892 * Number of the CQ that this Descriptor Queue reports completions to.
893 */
894 MLXSW_ITEM32(cmd_mbox, sw2hw_dq, cq, 0x00, 24, 8);
895
896 /* cmd_mbox_sw2hw_dq_sdq_tclass
897 * SDQ: CPU Egress TClass
898 * RDQ: Reserved
899 */
900 MLXSW_ITEM32(cmd_mbox, sw2hw_dq, sdq_tclass, 0x00, 16, 6);
901
902 /* cmd_mbox_sw2hw_dq_log2_dq_sz
903 * Log (base 2) of the Descriptor Queue size in 4KB pages.
904 */
905 MLXSW_ITEM32(cmd_mbox, sw2hw_dq, log2_dq_sz, 0x00, 0, 6);
906
907 /* cmd_mbox_sw2hw_dq_pa
908 * Physical Address.
909 */
910 MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_dq, pa, 0x10, 12, 52, 0x08, 0x00, true);
911
912 /* HW2SW_DQ - Hardware to Software DQ
913 * ----------------------------------
914 * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
915 * INMmod == DQ number
916 * ----------------------------------------------
917 * The HW2SW_DQ command transitions a descriptor queue from hardware to
918 * software ownership. Incoming packets on the DQ are silently discarded,
919 * SW should not post descriptors on nonoperational DQs.
920 */
921
__mlxsw_cmd_hw2sw_dq(struct mlxsw_core * mlxsw_core,u32 dq_number,u8 opcode_mod)922 static inline int __mlxsw_cmd_hw2sw_dq(struct mlxsw_core *mlxsw_core,
923 u32 dq_number, u8 opcode_mod)
924 {
925 return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_DQ,
926 opcode_mod, dq_number);
927 }
928
mlxsw_cmd_hw2sw_sdq(struct mlxsw_core * mlxsw_core,u32 dq_number)929 static inline int mlxsw_cmd_hw2sw_sdq(struct mlxsw_core *mlxsw_core,
930 u32 dq_number)
931 {
932 return __mlxsw_cmd_hw2sw_dq(mlxsw_core, dq_number,
933 MLXSW_CMD_OPCODE_MOD_SDQ);
934 }
935
mlxsw_cmd_hw2sw_rdq(struct mlxsw_core * mlxsw_core,u32 dq_number)936 static inline int mlxsw_cmd_hw2sw_rdq(struct mlxsw_core *mlxsw_core,
937 u32 dq_number)
938 {
939 return __mlxsw_cmd_hw2sw_dq(mlxsw_core, dq_number,
940 MLXSW_CMD_OPCODE_MOD_RDQ);
941 }
942
943 /* 2ERR_DQ - To Error DQ
944 * ---------------------
945 * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
946 * INMmod == DQ number
947 * ----------------------------------------------
948 * The 2ERR_DQ command transitions the DQ into the error state from the state
949 * in which it has been. While the command is executed, some in-process
950 * descriptors may complete. Once the DQ transitions into the error state,
951 * if there are posted descriptors on the RDQ/SDQ, the hardware writes
952 * a completion with error (flushed) for all descriptors posted in the RDQ/SDQ.
953 * When the command is completed successfully, the DQ is already in
954 * the error state.
955 */
956
__mlxsw_cmd_2err_dq(struct mlxsw_core * mlxsw_core,u32 dq_number,u8 opcode_mod)957 static inline int __mlxsw_cmd_2err_dq(struct mlxsw_core *mlxsw_core,
958 u32 dq_number, u8 opcode_mod)
959 {
960 return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_2ERR_DQ,
961 opcode_mod, dq_number);
962 }
963
mlxsw_cmd_2err_sdq(struct mlxsw_core * mlxsw_core,u32 dq_number)964 static inline int mlxsw_cmd_2err_sdq(struct mlxsw_core *mlxsw_core,
965 u32 dq_number)
966 {
967 return __mlxsw_cmd_2err_dq(mlxsw_core, dq_number,
968 MLXSW_CMD_OPCODE_MOD_SDQ);
969 }
970
mlxsw_cmd_2err_rdq(struct mlxsw_core * mlxsw_core,u32 dq_number)971 static inline int mlxsw_cmd_2err_rdq(struct mlxsw_core *mlxsw_core,
972 u32 dq_number)
973 {
974 return __mlxsw_cmd_2err_dq(mlxsw_core, dq_number,
975 MLXSW_CMD_OPCODE_MOD_RDQ);
976 }
977
978 /* QUERY_DQ - Query DQ
979 * ---------------------
980 * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
981 * INMmod == DQ number
982 * ----------------------------------------------
983 * The QUERY_DQ command retrieves a snapshot of DQ parameters from the hardware.
984 *
985 * Note: Output mailbox has the same format as SW2HW_DQ.
986 */
987
__mlxsw_cmd_query_dq(struct mlxsw_core * mlxsw_core,char * out_mbox,u32 dq_number,u8 opcode_mod)988 static inline int __mlxsw_cmd_query_dq(struct mlxsw_core *mlxsw_core,
989 char *out_mbox, u32 dq_number,
990 u8 opcode_mod)
991 {
992 return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_2ERR_DQ,
993 opcode_mod, dq_number, false,
994 out_mbox, MLXSW_CMD_MBOX_SIZE);
995 }
996
mlxsw_cmd_query_sdq(struct mlxsw_core * mlxsw_core,char * out_mbox,u32 dq_number)997 static inline int mlxsw_cmd_query_sdq(struct mlxsw_core *mlxsw_core,
998 char *out_mbox, u32 dq_number)
999 {
1000 return __mlxsw_cmd_query_dq(mlxsw_core, out_mbox, dq_number,
1001 MLXSW_CMD_OPCODE_MOD_SDQ);
1002 }
1003
mlxsw_cmd_query_rdq(struct mlxsw_core * mlxsw_core,char * out_mbox,u32 dq_number)1004 static inline int mlxsw_cmd_query_rdq(struct mlxsw_core *mlxsw_core,
1005 char *out_mbox, u32 dq_number)
1006 {
1007 return __mlxsw_cmd_query_dq(mlxsw_core, out_mbox, dq_number,
1008 MLXSW_CMD_OPCODE_MOD_RDQ);
1009 }
1010
1011 /* SW2HW_CQ - Software to Hardware CQ
1012 * ----------------------------------
1013 * OpMod == 0 (N/A), INMmod == CQ number
1014 * -------------------------------------
1015 * The SW2HW_CQ command transfers ownership of a CQ context entry from software
1016 * to hardware. The command takes the CQ context entry from the input mailbox
1017 * and stores it in the CQC in the ownership of the hardware. The command fails
1018 * if the requested CQC entry is already in the ownership of the hardware.
1019 */
1020
mlxsw_cmd_sw2hw_cq(struct mlxsw_core * mlxsw_core,char * in_mbox,u32 cq_number)1021 static inline int mlxsw_cmd_sw2hw_cq(struct mlxsw_core *mlxsw_core,
1022 char *in_mbox, u32 cq_number)
1023 {
1024 return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_CQ,
1025 0, cq_number, in_mbox, MLXSW_CMD_MBOX_SIZE);
1026 }
1027
1028 enum mlxsw_cmd_mbox_sw2hw_cq_cqe_ver {
1029 MLXSW_CMD_MBOX_SW2HW_CQ_CQE_VER_1,
1030 MLXSW_CMD_MBOX_SW2HW_CQ_CQE_VER_2,
1031 };
1032
1033 /* cmd_mbox_sw2hw_cq_cqe_ver
1034 * CQE Version.
1035 */
1036 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, cqe_ver, 0x00, 28, 4);
1037
1038 /* cmd_mbox_sw2hw_cq_c_eqn
1039 * Event Queue this CQ reports completion events to.
1040 */
1041 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, c_eqn, 0x00, 24, 1);
1042
1043 /* cmd_mbox_sw2hw_cq_st
1044 * Event delivery state machine
1045 * 0x0 - FIRED
1046 * 0x1 - ARMED (Request for Notification)
1047 */
1048 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, st, 0x00, 8, 1);
1049
1050 /* cmd_mbox_sw2hw_cq_log_cq_size
1051 * Log (base 2) of the CQ size (in entries).
1052 */
1053 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, log_cq_size, 0x00, 0, 4);
1054
1055 /* cmd_mbox_sw2hw_cq_producer_counter
1056 * Producer Counter. The counter is incremented for each CQE that is
1057 * written by the HW to the CQ.
1058 * Maintained by HW (valid for the QUERY_CQ command only)
1059 */
1060 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, producer_counter, 0x04, 0, 16);
1061
1062 /* cmd_mbox_sw2hw_cq_pa
1063 * Physical Address.
1064 */
1065 MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_cq, pa, 0x10, 11, 53, 0x08, 0x00, true);
1066
1067 /* HW2SW_CQ - Hardware to Software CQ
1068 * ----------------------------------
1069 * OpMod == 0 (N/A), INMmod == CQ number
1070 * -------------------------------------
1071 * The HW2SW_CQ command transfers ownership of a CQ context entry from hardware
1072 * to software. The CQC entry is invalidated as a result of this command.
1073 */
1074
mlxsw_cmd_hw2sw_cq(struct mlxsw_core * mlxsw_core,u32 cq_number)1075 static inline int mlxsw_cmd_hw2sw_cq(struct mlxsw_core *mlxsw_core,
1076 u32 cq_number)
1077 {
1078 return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_CQ,
1079 0, cq_number);
1080 }
1081
1082 /* QUERY_CQ - Query CQ
1083 * ----------------------------------
1084 * OpMod == 0 (N/A), INMmod == CQ number
1085 * -------------------------------------
1086 * The QUERY_CQ command retrieves a snapshot of the current CQ context entry.
1087 * The command stores the snapshot in the output mailbox in the software format.
1088 * Note that the CQ context state and values are not affected by the QUERY_CQ
1089 * command. The QUERY_CQ command is for debug purposes only.
1090 *
1091 * Note: Output mailbox has the same format as SW2HW_CQ.
1092 */
1093
mlxsw_cmd_query_cq(struct mlxsw_core * mlxsw_core,char * out_mbox,u32 cq_number)1094 static inline int mlxsw_cmd_query_cq(struct mlxsw_core *mlxsw_core,
1095 char *out_mbox, u32 cq_number)
1096 {
1097 return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_CQ,
1098 0, cq_number, false,
1099 out_mbox, MLXSW_CMD_MBOX_SIZE);
1100 }
1101
1102 /* SW2HW_EQ - Software to Hardware EQ
1103 * ----------------------------------
1104 * OpMod == 0 (N/A), INMmod == EQ number
1105 * -------------------------------------
1106 * The SW2HW_EQ command transfers ownership of an EQ context entry from software
1107 * to hardware. The command takes the EQ context entry from the input mailbox
1108 * and stores it in the EQC in the ownership of the hardware. The command fails
1109 * if the requested EQC entry is already in the ownership of the hardware.
1110 */
1111
mlxsw_cmd_sw2hw_eq(struct mlxsw_core * mlxsw_core,char * in_mbox,u32 eq_number)1112 static inline int mlxsw_cmd_sw2hw_eq(struct mlxsw_core *mlxsw_core,
1113 char *in_mbox, u32 eq_number)
1114 {
1115 return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_EQ,
1116 0, eq_number, in_mbox, MLXSW_CMD_MBOX_SIZE);
1117 }
1118
1119 /* cmd_mbox_sw2hw_eq_int_msix
1120 * When set, MSI-X cycles will be generated by this EQ.
1121 * When cleared, an interrupt will be generated by this EQ.
1122 */
1123 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, int_msix, 0x00, 24, 1);
1124
1125 /* cmd_mbox_sw2hw_eq_st
1126 * Event delivery state machine
1127 * 0x0 - FIRED
1128 * 0x1 - ARMED (Request for Notification)
1129 * 0x11 - Always ARMED
1130 * other - reserved
1131 */
1132 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, st, 0x00, 8, 2);
1133
1134 /* cmd_mbox_sw2hw_eq_log_eq_size
1135 * Log (base 2) of the EQ size (in entries).
1136 */
1137 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, log_eq_size, 0x00, 0, 4);
1138
1139 /* cmd_mbox_sw2hw_eq_producer_counter
1140 * Producer Counter. The counter is incremented for each EQE that is written
1141 * by the HW to the EQ.
1142 * Maintained by HW (valid for the QUERY_EQ command only)
1143 */
1144 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, producer_counter, 0x04, 0, 16);
1145
1146 /* cmd_mbox_sw2hw_eq_pa
1147 * Physical Address.
1148 */
1149 MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_eq, pa, 0x10, 11, 53, 0x08, 0x00, true);
1150
1151 /* HW2SW_EQ - Hardware to Software EQ
1152 * ----------------------------------
1153 * OpMod == 0 (N/A), INMmod == EQ number
1154 * -------------------------------------
1155 */
1156
mlxsw_cmd_hw2sw_eq(struct mlxsw_core * mlxsw_core,u32 eq_number)1157 static inline int mlxsw_cmd_hw2sw_eq(struct mlxsw_core *mlxsw_core,
1158 u32 eq_number)
1159 {
1160 return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_EQ,
1161 0, eq_number);
1162 }
1163
1164 /* QUERY_EQ - Query EQ
1165 * ----------------------------------
1166 * OpMod == 0 (N/A), INMmod == EQ number
1167 * -------------------------------------
1168 *
1169 * Note: Output mailbox has the same format as SW2HW_EQ.
1170 */
1171
mlxsw_cmd_query_eq(struct mlxsw_core * mlxsw_core,char * out_mbox,u32 eq_number)1172 static inline int mlxsw_cmd_query_eq(struct mlxsw_core *mlxsw_core,
1173 char *out_mbox, u32 eq_number)
1174 {
1175 return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_EQ,
1176 0, eq_number, false,
1177 out_mbox, MLXSW_CMD_MBOX_SIZE);
1178 }
1179
1180 #endif
1181