1 /*
2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33
34 #include <linux/kref.h>
35 #include <linux/random.h>
36 #include <linux/debugfs.h>
37 #include <linux/export.h>
38 #include <linux/delay.h>
39 #include <rdma/ib_umem.h>
40 #include <rdma/ib_umem_odp.h>
41 #include <rdma/ib_verbs.h>
42 #include "mlx5_ib.h"
43
44 enum {
45 MAX_PENDING_REG_MR = 8,
46 };
47
48 #define MLX5_UMR_ALIGN 2048
49
50 static void clean_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr);
51 static void dereg_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr);
52 static int mr_cache_max_order(struct mlx5_ib_dev *dev);
53 static int unreg_umr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr);
54
umr_can_use_indirect_mkey(struct mlx5_ib_dev * dev)55 static bool umr_can_use_indirect_mkey(struct mlx5_ib_dev *dev)
56 {
57 return !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled);
58 }
59
destroy_mkey(struct mlx5_ib_dev * dev,struct mlx5_ib_mr * mr)60 static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
61 {
62 int err = mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
63
64 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
65 /* Wait until all page fault handlers using the mr complete. */
66 synchronize_srcu(&dev->mr_srcu);
67
68 return err;
69 }
70
order2idx(struct mlx5_ib_dev * dev,int order)71 static int order2idx(struct mlx5_ib_dev *dev, int order)
72 {
73 struct mlx5_mr_cache *cache = &dev->cache;
74
75 if (order < cache->ent[0].order)
76 return 0;
77 else
78 return order - cache->ent[0].order;
79 }
80
use_umr_mtt_update(struct mlx5_ib_mr * mr,u64 start,u64 length)81 static bool use_umr_mtt_update(struct mlx5_ib_mr *mr, u64 start, u64 length)
82 {
83 return ((u64)1 << mr->order) * MLX5_ADAPTER_PAGE_SIZE >=
84 length + (start & (MLX5_ADAPTER_PAGE_SIZE - 1));
85 }
86
reg_mr_callback(int status,struct mlx5_async_work * context)87 static void reg_mr_callback(int status, struct mlx5_async_work *context)
88 {
89 struct mlx5_ib_mr *mr =
90 container_of(context, struct mlx5_ib_mr, cb_work);
91 struct mlx5_ib_dev *dev = mr->dev;
92 struct mlx5_mr_cache *cache = &dev->cache;
93 int c = order2idx(dev, mr->order);
94 struct mlx5_cache_ent *ent = &cache->ent[c];
95 u8 key;
96 unsigned long flags;
97 struct xarray *mkeys = &dev->mdev->priv.mkey_table;
98 int err;
99
100 spin_lock_irqsave(&ent->lock, flags);
101 ent->pending--;
102 spin_unlock_irqrestore(&ent->lock, flags);
103 if (status) {
104 mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status);
105 kfree(mr);
106 dev->fill_delay = 1;
107 mod_timer(&dev->delay_timer, jiffies + HZ);
108 return;
109 }
110
111 mr->mmkey.type = MLX5_MKEY_MR;
112 spin_lock_irqsave(&dev->mdev->priv.mkey_lock, flags);
113 key = dev->mdev->priv.mkey_key++;
114 spin_unlock_irqrestore(&dev->mdev->priv.mkey_lock, flags);
115 mr->mmkey.key = mlx5_idx_to_mkey(MLX5_GET(create_mkey_out, mr->out, mkey_index)) | key;
116
117 cache->last_add = jiffies;
118
119 spin_lock_irqsave(&ent->lock, flags);
120 list_add_tail(&mr->list, &ent->head);
121 ent->cur++;
122 ent->size++;
123 spin_unlock_irqrestore(&ent->lock, flags);
124
125 xa_lock_irqsave(mkeys, flags);
126 err = xa_err(__xa_store(mkeys, mlx5_base_mkey(mr->mmkey.key),
127 &mr->mmkey, GFP_ATOMIC));
128 xa_unlock_irqrestore(mkeys, flags);
129 if (err)
130 pr_err("Error inserting to mkey tree. 0x%x\n", -err);
131
132 if (!completion_done(&ent->compl))
133 complete(&ent->compl);
134 }
135
add_keys(struct mlx5_ib_dev * dev,int c,int num)136 static int add_keys(struct mlx5_ib_dev *dev, int c, int num)
137 {
138 struct mlx5_mr_cache *cache = &dev->cache;
139 struct mlx5_cache_ent *ent = &cache->ent[c];
140 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
141 struct mlx5_ib_mr *mr;
142 void *mkc;
143 u32 *in;
144 int err = 0;
145 int i;
146
147 in = kzalloc(inlen, GFP_KERNEL);
148 if (!in)
149 return -ENOMEM;
150
151 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
152 for (i = 0; i < num; i++) {
153 if (ent->pending >= MAX_PENDING_REG_MR) {
154 err = -EAGAIN;
155 break;
156 }
157
158 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
159 if (!mr) {
160 err = -ENOMEM;
161 break;
162 }
163 mr->order = ent->order;
164 mr->allocated_from_cache = 1;
165 mr->dev = dev;
166
167 MLX5_SET(mkc, mkc, free, 1);
168 MLX5_SET(mkc, mkc, umr_en, 1);
169 MLX5_SET(mkc, mkc, access_mode_1_0, ent->access_mode & 0x3);
170 MLX5_SET(mkc, mkc, access_mode_4_2,
171 (ent->access_mode >> 2) & 0x7);
172
173 MLX5_SET(mkc, mkc, qpn, 0xffffff);
174 MLX5_SET(mkc, mkc, translations_octword_size, ent->xlt);
175 MLX5_SET(mkc, mkc, log_page_size, ent->page);
176
177 spin_lock_irq(&ent->lock);
178 ent->pending++;
179 spin_unlock_irq(&ent->lock);
180 err = mlx5_core_create_mkey_cb(dev->mdev, &mr->mmkey,
181 &dev->async_ctx, in, inlen,
182 mr->out, sizeof(mr->out),
183 reg_mr_callback, &mr->cb_work);
184 if (err) {
185 spin_lock_irq(&ent->lock);
186 ent->pending--;
187 spin_unlock_irq(&ent->lock);
188 mlx5_ib_warn(dev, "create mkey failed %d\n", err);
189 kfree(mr);
190 break;
191 }
192 }
193
194 kfree(in);
195 return err;
196 }
197
remove_keys(struct mlx5_ib_dev * dev,int c,int num)198 static void remove_keys(struct mlx5_ib_dev *dev, int c, int num)
199 {
200 struct mlx5_mr_cache *cache = &dev->cache;
201 struct mlx5_cache_ent *ent = &cache->ent[c];
202 struct mlx5_ib_mr *tmp_mr;
203 struct mlx5_ib_mr *mr;
204 LIST_HEAD(del_list);
205 int i;
206
207 for (i = 0; i < num; i++) {
208 spin_lock_irq(&ent->lock);
209 if (list_empty(&ent->head)) {
210 spin_unlock_irq(&ent->lock);
211 break;
212 }
213 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
214 list_move(&mr->list, &del_list);
215 ent->cur--;
216 ent->size--;
217 spin_unlock_irq(&ent->lock);
218 mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
219 }
220
221 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
222 synchronize_srcu(&dev->mr_srcu);
223
224 list_for_each_entry_safe(mr, tmp_mr, &del_list, list) {
225 list_del(&mr->list);
226 kfree(mr);
227 }
228 }
229
size_write(struct file * filp,const char __user * buf,size_t count,loff_t * pos)230 static ssize_t size_write(struct file *filp, const char __user *buf,
231 size_t count, loff_t *pos)
232 {
233 struct mlx5_cache_ent *ent = filp->private_data;
234 struct mlx5_ib_dev *dev = ent->dev;
235 char lbuf[20] = {0};
236 u32 var;
237 int err;
238 int c;
239
240 count = min(count, sizeof(lbuf) - 1);
241 if (copy_from_user(lbuf, buf, count))
242 return -EFAULT;
243
244 c = order2idx(dev, ent->order);
245
246 if (sscanf(lbuf, "%u", &var) != 1)
247 return -EINVAL;
248
249 if (var < ent->limit)
250 return -EINVAL;
251
252 if (var > ent->size) {
253 do {
254 err = add_keys(dev, c, var - ent->size);
255 if (err && err != -EAGAIN)
256 return err;
257
258 usleep_range(3000, 5000);
259 } while (err);
260 } else if (var < ent->size) {
261 remove_keys(dev, c, ent->size - var);
262 }
263
264 return count;
265 }
266
size_read(struct file * filp,char __user * buf,size_t count,loff_t * pos)267 static ssize_t size_read(struct file *filp, char __user *buf, size_t count,
268 loff_t *pos)
269 {
270 struct mlx5_cache_ent *ent = filp->private_data;
271 char lbuf[20];
272 int err;
273
274 err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->size);
275 if (err < 0)
276 return err;
277
278 return simple_read_from_buffer(buf, count, pos, lbuf, err);
279 }
280
281 static const struct file_operations size_fops = {
282 .owner = THIS_MODULE,
283 .open = simple_open,
284 .write = size_write,
285 .read = size_read,
286 };
287
limit_write(struct file * filp,const char __user * buf,size_t count,loff_t * pos)288 static ssize_t limit_write(struct file *filp, const char __user *buf,
289 size_t count, loff_t *pos)
290 {
291 struct mlx5_cache_ent *ent = filp->private_data;
292 struct mlx5_ib_dev *dev = ent->dev;
293 char lbuf[20] = {0};
294 u32 var;
295 int err;
296 int c;
297
298 count = min(count, sizeof(lbuf) - 1);
299 if (copy_from_user(lbuf, buf, count))
300 return -EFAULT;
301
302 c = order2idx(dev, ent->order);
303
304 if (sscanf(lbuf, "%u", &var) != 1)
305 return -EINVAL;
306
307 if (var > ent->size)
308 return -EINVAL;
309
310 ent->limit = var;
311
312 if (ent->cur < ent->limit) {
313 err = add_keys(dev, c, 2 * ent->limit - ent->cur);
314 if (err)
315 return err;
316 }
317
318 return count;
319 }
320
limit_read(struct file * filp,char __user * buf,size_t count,loff_t * pos)321 static ssize_t limit_read(struct file *filp, char __user *buf, size_t count,
322 loff_t *pos)
323 {
324 struct mlx5_cache_ent *ent = filp->private_data;
325 char lbuf[20];
326 int err;
327
328 err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit);
329 if (err < 0)
330 return err;
331
332 return simple_read_from_buffer(buf, count, pos, lbuf, err);
333 }
334
335 static const struct file_operations limit_fops = {
336 .owner = THIS_MODULE,
337 .open = simple_open,
338 .write = limit_write,
339 .read = limit_read,
340 };
341
someone_adding(struct mlx5_mr_cache * cache)342 static int someone_adding(struct mlx5_mr_cache *cache)
343 {
344 int i;
345
346 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
347 if (cache->ent[i].cur < cache->ent[i].limit)
348 return 1;
349 }
350
351 return 0;
352 }
353
__cache_work_func(struct mlx5_cache_ent * ent)354 static void __cache_work_func(struct mlx5_cache_ent *ent)
355 {
356 struct mlx5_ib_dev *dev = ent->dev;
357 struct mlx5_mr_cache *cache = &dev->cache;
358 int i = order2idx(dev, ent->order);
359 int err;
360
361 if (cache->stopped)
362 return;
363
364 ent = &dev->cache.ent[i];
365 if (ent->cur < 2 * ent->limit && !dev->fill_delay) {
366 err = add_keys(dev, i, 1);
367 if (ent->cur < 2 * ent->limit) {
368 if (err == -EAGAIN) {
369 mlx5_ib_dbg(dev, "returned eagain, order %d\n",
370 i + 2);
371 queue_delayed_work(cache->wq, &ent->dwork,
372 msecs_to_jiffies(3));
373 } else if (err) {
374 mlx5_ib_warn(dev, "command failed order %d, err %d\n",
375 i + 2, err);
376 queue_delayed_work(cache->wq, &ent->dwork,
377 msecs_to_jiffies(1000));
378 } else {
379 queue_work(cache->wq, &ent->work);
380 }
381 }
382 } else if (ent->cur > 2 * ent->limit) {
383 /*
384 * The remove_keys() logic is performed as garbage collection
385 * task. Such task is intended to be run when no other active
386 * processes are running.
387 *
388 * The need_resched() will return TRUE if there are user tasks
389 * to be activated in near future.
390 *
391 * In such case, we don't execute remove_keys() and postpone
392 * the garbage collection work to try to run in next cycle,
393 * in order to free CPU resources to other tasks.
394 */
395 if (!need_resched() && !someone_adding(cache) &&
396 time_after(jiffies, cache->last_add + 300 * HZ)) {
397 remove_keys(dev, i, 1);
398 if (ent->cur > ent->limit)
399 queue_work(cache->wq, &ent->work);
400 } else {
401 queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ);
402 }
403 }
404 }
405
delayed_cache_work_func(struct work_struct * work)406 static void delayed_cache_work_func(struct work_struct *work)
407 {
408 struct mlx5_cache_ent *ent;
409
410 ent = container_of(work, struct mlx5_cache_ent, dwork.work);
411 __cache_work_func(ent);
412 }
413
cache_work_func(struct work_struct * work)414 static void cache_work_func(struct work_struct *work)
415 {
416 struct mlx5_cache_ent *ent;
417
418 ent = container_of(work, struct mlx5_cache_ent, work);
419 __cache_work_func(ent);
420 }
421
mlx5_mr_cache_alloc(struct mlx5_ib_dev * dev,int entry)422 struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev, int entry)
423 {
424 struct mlx5_mr_cache *cache = &dev->cache;
425 struct mlx5_cache_ent *ent;
426 struct mlx5_ib_mr *mr;
427 int err;
428
429 if (entry < 0 || entry >= MAX_MR_CACHE_ENTRIES) {
430 mlx5_ib_err(dev, "cache entry %d is out of range\n", entry);
431 return NULL;
432 }
433
434 ent = &cache->ent[entry];
435 while (1) {
436 spin_lock_irq(&ent->lock);
437 if (list_empty(&ent->head)) {
438 spin_unlock_irq(&ent->lock);
439
440 err = add_keys(dev, entry, 1);
441 if (err && err != -EAGAIN)
442 return ERR_PTR(err);
443
444 wait_for_completion(&ent->compl);
445 } else {
446 mr = list_first_entry(&ent->head, struct mlx5_ib_mr,
447 list);
448 list_del(&mr->list);
449 ent->cur--;
450 spin_unlock_irq(&ent->lock);
451 if (ent->cur < ent->limit)
452 queue_work(cache->wq, &ent->work);
453 return mr;
454 }
455 }
456 }
457
alloc_cached_mr(struct mlx5_ib_dev * dev,int order)458 static struct mlx5_ib_mr *alloc_cached_mr(struct mlx5_ib_dev *dev, int order)
459 {
460 struct mlx5_mr_cache *cache = &dev->cache;
461 struct mlx5_ib_mr *mr = NULL;
462 struct mlx5_cache_ent *ent;
463 int last_umr_cache_entry;
464 int c;
465 int i;
466
467 c = order2idx(dev, order);
468 last_umr_cache_entry = order2idx(dev, mr_cache_max_order(dev));
469 if (c < 0 || c > last_umr_cache_entry) {
470 mlx5_ib_warn(dev, "order %d, cache index %d\n", order, c);
471 return NULL;
472 }
473
474 for (i = c; i <= last_umr_cache_entry; i++) {
475 ent = &cache->ent[i];
476
477 mlx5_ib_dbg(dev, "order %d, cache index %d\n", ent->order, i);
478
479 spin_lock_irq(&ent->lock);
480 if (!list_empty(&ent->head)) {
481 mr = list_first_entry(&ent->head, struct mlx5_ib_mr,
482 list);
483 list_del(&mr->list);
484 ent->cur--;
485 spin_unlock_irq(&ent->lock);
486 if (ent->cur < ent->limit)
487 queue_work(cache->wq, &ent->work);
488 break;
489 }
490 spin_unlock_irq(&ent->lock);
491
492 queue_work(cache->wq, &ent->work);
493 }
494
495 if (!mr)
496 cache->ent[c].miss++;
497
498 return mr;
499 }
500
mlx5_mr_cache_free(struct mlx5_ib_dev * dev,struct mlx5_ib_mr * mr)501 void mlx5_mr_cache_free(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
502 {
503 struct mlx5_mr_cache *cache = &dev->cache;
504 struct mlx5_cache_ent *ent;
505 int shrink = 0;
506 int c;
507
508 if (!mr->allocated_from_cache)
509 return;
510
511 c = order2idx(dev, mr->order);
512 WARN_ON(c < 0 || c >= MAX_MR_CACHE_ENTRIES);
513
514 if (unreg_umr(dev, mr)) {
515 mr->allocated_from_cache = false;
516 destroy_mkey(dev, mr);
517 ent = &cache->ent[c];
518 if (ent->cur < ent->limit)
519 queue_work(cache->wq, &ent->work);
520 return;
521 }
522
523 ent = &cache->ent[c];
524 spin_lock_irq(&ent->lock);
525 list_add_tail(&mr->list, &ent->head);
526 ent->cur++;
527 if (ent->cur > 2 * ent->limit)
528 shrink = 1;
529 spin_unlock_irq(&ent->lock);
530
531 if (shrink)
532 queue_work(cache->wq, &ent->work);
533 }
534
clean_keys(struct mlx5_ib_dev * dev,int c)535 static void clean_keys(struct mlx5_ib_dev *dev, int c)
536 {
537 struct mlx5_mr_cache *cache = &dev->cache;
538 struct mlx5_cache_ent *ent = &cache->ent[c];
539 struct mlx5_ib_mr *tmp_mr;
540 struct mlx5_ib_mr *mr;
541 LIST_HEAD(del_list);
542
543 cancel_delayed_work(&ent->dwork);
544 while (1) {
545 spin_lock_irq(&ent->lock);
546 if (list_empty(&ent->head)) {
547 spin_unlock_irq(&ent->lock);
548 break;
549 }
550 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
551 list_move(&mr->list, &del_list);
552 ent->cur--;
553 ent->size--;
554 spin_unlock_irq(&ent->lock);
555 mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
556 }
557
558 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
559 synchronize_srcu(&dev->mr_srcu);
560 #endif
561
562 list_for_each_entry_safe(mr, tmp_mr, &del_list, list) {
563 list_del(&mr->list);
564 kfree(mr);
565 }
566 }
567
mlx5_mr_cache_debugfs_cleanup(struct mlx5_ib_dev * dev)568 static void mlx5_mr_cache_debugfs_cleanup(struct mlx5_ib_dev *dev)
569 {
570 if (!mlx5_debugfs_root || dev->is_rep)
571 return;
572
573 debugfs_remove_recursive(dev->cache.root);
574 dev->cache.root = NULL;
575 }
576
mlx5_mr_cache_debugfs_init(struct mlx5_ib_dev * dev)577 static void mlx5_mr_cache_debugfs_init(struct mlx5_ib_dev *dev)
578 {
579 struct mlx5_mr_cache *cache = &dev->cache;
580 struct mlx5_cache_ent *ent;
581 struct dentry *dir;
582 int i;
583
584 if (!mlx5_debugfs_root || dev->is_rep)
585 return;
586
587 cache->root = debugfs_create_dir("mr_cache", dev->mdev->priv.dbg_root);
588
589 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
590 ent = &cache->ent[i];
591 sprintf(ent->name, "%d", ent->order);
592 dir = debugfs_create_dir(ent->name, cache->root);
593 debugfs_create_file("size", 0600, dir, ent, &size_fops);
594 debugfs_create_file("limit", 0600, dir, ent, &limit_fops);
595 debugfs_create_u32("cur", 0400, dir, &ent->cur);
596 debugfs_create_u32("miss", 0600, dir, &ent->miss);
597 }
598 }
599
delay_time_func(struct timer_list * t)600 static void delay_time_func(struct timer_list *t)
601 {
602 struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer);
603
604 dev->fill_delay = 0;
605 }
606
mlx5_mr_cache_init(struct mlx5_ib_dev * dev)607 int mlx5_mr_cache_init(struct mlx5_ib_dev *dev)
608 {
609 struct mlx5_mr_cache *cache = &dev->cache;
610 struct mlx5_cache_ent *ent;
611 int i;
612
613 mutex_init(&dev->slow_path_mutex);
614 cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM);
615 if (!cache->wq) {
616 mlx5_ib_warn(dev, "failed to create work queue\n");
617 return -ENOMEM;
618 }
619
620 mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx);
621 timer_setup(&dev->delay_timer, delay_time_func, 0);
622 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
623 ent = &cache->ent[i];
624 INIT_LIST_HEAD(&ent->head);
625 spin_lock_init(&ent->lock);
626 ent->order = i + 2;
627 ent->dev = dev;
628 ent->limit = 0;
629
630 init_completion(&ent->compl);
631 INIT_WORK(&ent->work, cache_work_func);
632 INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func);
633
634 if (i > MR_CACHE_LAST_STD_ENTRY) {
635 mlx5_odp_init_mr_cache_entry(ent);
636 continue;
637 }
638
639 if (ent->order > mr_cache_max_order(dev))
640 continue;
641
642 ent->page = PAGE_SHIFT;
643 ent->xlt = (1 << ent->order) * sizeof(struct mlx5_mtt) /
644 MLX5_IB_UMR_OCTOWORD;
645 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
646 if ((dev->mdev->profile->mask & MLX5_PROF_MASK_MR_CACHE) &&
647 !dev->is_rep &&
648 mlx5_core_is_pf(dev->mdev))
649 ent->limit = dev->mdev->profile->mr_cache[i].limit;
650 else
651 ent->limit = 0;
652 queue_work(cache->wq, &ent->work);
653 }
654
655 mlx5_mr_cache_debugfs_init(dev);
656
657 return 0;
658 }
659
mlx5_mr_cache_cleanup(struct mlx5_ib_dev * dev)660 int mlx5_mr_cache_cleanup(struct mlx5_ib_dev *dev)
661 {
662 int i;
663
664 if (!dev->cache.wq)
665 return 0;
666
667 dev->cache.stopped = 1;
668 flush_workqueue(dev->cache.wq);
669
670 mlx5_mr_cache_debugfs_cleanup(dev);
671 mlx5_cmd_cleanup_async_ctx(&dev->async_ctx);
672
673 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++)
674 clean_keys(dev, i);
675
676 destroy_workqueue(dev->cache.wq);
677 del_timer_sync(&dev->delay_timer);
678
679 return 0;
680 }
681
mlx5_ib_get_dma_mr(struct ib_pd * pd,int acc)682 struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc)
683 {
684 struct mlx5_ib_dev *dev = to_mdev(pd->device);
685 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
686 struct mlx5_core_dev *mdev = dev->mdev;
687 struct mlx5_ib_mr *mr;
688 void *mkc;
689 u32 *in;
690 int err;
691
692 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
693 if (!mr)
694 return ERR_PTR(-ENOMEM);
695
696 in = kzalloc(inlen, GFP_KERNEL);
697 if (!in) {
698 err = -ENOMEM;
699 goto err_free;
700 }
701
702 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
703
704 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA);
705 MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
706 MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
707 MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
708 MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
709 MLX5_SET(mkc, mkc, lr, 1);
710
711 MLX5_SET(mkc, mkc, length64, 1);
712 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
713 MLX5_SET(mkc, mkc, qpn, 0xffffff);
714 MLX5_SET64(mkc, mkc, start_addr, 0);
715
716 err = mlx5_core_create_mkey(mdev, &mr->mmkey, in, inlen);
717 if (err)
718 goto err_in;
719
720 kfree(in);
721 mr->mmkey.type = MLX5_MKEY_MR;
722 mr->ibmr.lkey = mr->mmkey.key;
723 mr->ibmr.rkey = mr->mmkey.key;
724 mr->umem = NULL;
725
726 return &mr->ibmr;
727
728 err_in:
729 kfree(in);
730
731 err_free:
732 kfree(mr);
733
734 return ERR_PTR(err);
735 }
736
get_octo_len(u64 addr,u64 len,int page_shift)737 static int get_octo_len(u64 addr, u64 len, int page_shift)
738 {
739 u64 page_size = 1ULL << page_shift;
740 u64 offset;
741 int npages;
742
743 offset = addr & (page_size - 1);
744 npages = ALIGN(len + offset, page_size) >> page_shift;
745 return (npages + 1) / 2;
746 }
747
mr_cache_max_order(struct mlx5_ib_dev * dev)748 static int mr_cache_max_order(struct mlx5_ib_dev *dev)
749 {
750 if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
751 return MR_CACHE_LAST_STD_ENTRY + 2;
752 return MLX5_MAX_UMR_SHIFT;
753 }
754
mr_umem_get(struct mlx5_ib_dev * dev,struct ib_udata * udata,u64 start,u64 length,int access_flags,struct ib_umem ** umem,int * npages,int * page_shift,int * ncont,int * order)755 static int mr_umem_get(struct mlx5_ib_dev *dev, struct ib_udata *udata,
756 u64 start, u64 length, int access_flags,
757 struct ib_umem **umem, int *npages, int *page_shift,
758 int *ncont, int *order)
759 {
760 struct ib_umem *u;
761
762 *umem = NULL;
763
764 if (access_flags & IB_ACCESS_ON_DEMAND) {
765 struct ib_umem_odp *odp;
766
767 odp = ib_umem_odp_get(udata, start, length, access_flags);
768 if (IS_ERR(odp)) {
769 mlx5_ib_dbg(dev, "umem get failed (%ld)\n",
770 PTR_ERR(odp));
771 return PTR_ERR(odp);
772 }
773
774 u = &odp->umem;
775
776 *page_shift = odp->page_shift;
777 *ncont = ib_umem_odp_num_pages(odp);
778 *npages = *ncont << (*page_shift - PAGE_SHIFT);
779 if (order)
780 *order = ilog2(roundup_pow_of_two(*ncont));
781 } else {
782 u = ib_umem_get(udata, start, length, access_flags, 0);
783 if (IS_ERR(u)) {
784 mlx5_ib_dbg(dev, "umem get failed (%ld)\n", PTR_ERR(u));
785 return PTR_ERR(u);
786 }
787
788 mlx5_ib_cont_pages(u, start, MLX5_MKEY_PAGE_SHIFT_MASK, npages,
789 page_shift, ncont, order);
790 }
791
792 if (!*npages) {
793 mlx5_ib_warn(dev, "avoid zero region\n");
794 ib_umem_release(u);
795 return -EINVAL;
796 }
797
798 *umem = u;
799
800 mlx5_ib_dbg(dev, "npages %d, ncont %d, order %d, page_shift %d\n",
801 *npages, *ncont, *order, *page_shift);
802
803 return 0;
804 }
805
mlx5_ib_umr_done(struct ib_cq * cq,struct ib_wc * wc)806 static void mlx5_ib_umr_done(struct ib_cq *cq, struct ib_wc *wc)
807 {
808 struct mlx5_ib_umr_context *context =
809 container_of(wc->wr_cqe, struct mlx5_ib_umr_context, cqe);
810
811 context->status = wc->status;
812 complete(&context->done);
813 }
814
mlx5_ib_init_umr_context(struct mlx5_ib_umr_context * context)815 static inline void mlx5_ib_init_umr_context(struct mlx5_ib_umr_context *context)
816 {
817 context->cqe.done = mlx5_ib_umr_done;
818 context->status = -1;
819 init_completion(&context->done);
820 }
821
mlx5_ib_post_send_wait(struct mlx5_ib_dev * dev,struct mlx5_umr_wr * umrwr)822 static int mlx5_ib_post_send_wait(struct mlx5_ib_dev *dev,
823 struct mlx5_umr_wr *umrwr)
824 {
825 struct umr_common *umrc = &dev->umrc;
826 const struct ib_send_wr *bad;
827 int err;
828 struct mlx5_ib_umr_context umr_context;
829
830 mlx5_ib_init_umr_context(&umr_context);
831 umrwr->wr.wr_cqe = &umr_context.cqe;
832
833 down(&umrc->sem);
834 err = ib_post_send(umrc->qp, &umrwr->wr, &bad);
835 if (err) {
836 mlx5_ib_warn(dev, "UMR post send failed, err %d\n", err);
837 } else {
838 wait_for_completion(&umr_context.done);
839 if (umr_context.status != IB_WC_SUCCESS) {
840 mlx5_ib_warn(dev, "reg umr failed (%u)\n",
841 umr_context.status);
842 err = -EFAULT;
843 }
844 }
845 up(&umrc->sem);
846 return err;
847 }
848
alloc_mr_from_cache(struct ib_pd * pd,struct ib_umem * umem,u64 virt_addr,u64 len,int npages,int page_shift,int order,int access_flags)849 static struct mlx5_ib_mr *alloc_mr_from_cache(
850 struct ib_pd *pd, struct ib_umem *umem,
851 u64 virt_addr, u64 len, int npages,
852 int page_shift, int order, int access_flags)
853 {
854 struct mlx5_ib_dev *dev = to_mdev(pd->device);
855 struct mlx5_ib_mr *mr;
856 int err = 0;
857 int i;
858
859 for (i = 0; i < 1; i++) {
860 mr = alloc_cached_mr(dev, order);
861 if (mr)
862 break;
863
864 err = add_keys(dev, order2idx(dev, order), 1);
865 if (err && err != -EAGAIN) {
866 mlx5_ib_warn(dev, "add_keys failed, err %d\n", err);
867 break;
868 }
869 }
870
871 if (!mr)
872 return ERR_PTR(-EAGAIN);
873
874 mr->ibmr.pd = pd;
875 mr->umem = umem;
876 mr->access_flags = access_flags;
877 mr->desc_size = sizeof(struct mlx5_mtt);
878 mr->mmkey.iova = virt_addr;
879 mr->mmkey.size = len;
880 mr->mmkey.pd = to_mpd(pd)->pdn;
881
882 return mr;
883 }
884
populate_xlt(struct mlx5_ib_mr * mr,int idx,int npages,void * xlt,int page_shift,size_t size,int flags)885 static inline int populate_xlt(struct mlx5_ib_mr *mr, int idx, int npages,
886 void *xlt, int page_shift, size_t size,
887 int flags)
888 {
889 struct mlx5_ib_dev *dev = mr->dev;
890 struct ib_umem *umem = mr->umem;
891
892 if (flags & MLX5_IB_UPD_XLT_INDIRECT) {
893 if (!umr_can_use_indirect_mkey(dev))
894 return -EPERM;
895 mlx5_odp_populate_klm(xlt, idx, npages, mr, flags);
896 return npages;
897 }
898
899 npages = min_t(size_t, npages, ib_umem_num_pages(umem) - idx);
900
901 if (!(flags & MLX5_IB_UPD_XLT_ZAP)) {
902 __mlx5_ib_populate_pas(dev, umem, page_shift,
903 idx, npages, xlt,
904 MLX5_IB_MTT_PRESENT);
905 /* Clear padding after the pages
906 * brought from the umem.
907 */
908 memset(xlt + (npages * sizeof(struct mlx5_mtt)), 0,
909 size - npages * sizeof(struct mlx5_mtt));
910 }
911
912 return npages;
913 }
914
915 #define MLX5_MAX_UMR_CHUNK ((1 << (MLX5_MAX_UMR_SHIFT + 4)) - \
916 MLX5_UMR_MTT_ALIGNMENT)
917 #define MLX5_SPARE_UMR_CHUNK 0x10000
918
mlx5_ib_update_xlt(struct mlx5_ib_mr * mr,u64 idx,int npages,int page_shift,int flags)919 int mlx5_ib_update_xlt(struct mlx5_ib_mr *mr, u64 idx, int npages,
920 int page_shift, int flags)
921 {
922 struct mlx5_ib_dev *dev = mr->dev;
923 struct device *ddev = dev->ib_dev.dev.parent;
924 int size;
925 void *xlt;
926 dma_addr_t dma;
927 struct mlx5_umr_wr wr;
928 struct ib_sge sg;
929 int err = 0;
930 int desc_size = (flags & MLX5_IB_UPD_XLT_INDIRECT)
931 ? sizeof(struct mlx5_klm)
932 : sizeof(struct mlx5_mtt);
933 const int page_align = MLX5_UMR_MTT_ALIGNMENT / desc_size;
934 const int page_mask = page_align - 1;
935 size_t pages_mapped = 0;
936 size_t pages_to_map = 0;
937 size_t pages_iter = 0;
938 gfp_t gfp;
939 bool use_emergency_page = false;
940
941 if ((flags & MLX5_IB_UPD_XLT_INDIRECT) &&
942 !umr_can_use_indirect_mkey(dev))
943 return -EPERM;
944
945 /* UMR copies MTTs in units of MLX5_UMR_MTT_ALIGNMENT bytes,
946 * so we need to align the offset and length accordingly
947 */
948 if (idx & page_mask) {
949 npages += idx & page_mask;
950 idx &= ~page_mask;
951 }
952
953 gfp = flags & MLX5_IB_UPD_XLT_ATOMIC ? GFP_ATOMIC : GFP_KERNEL;
954 gfp |= __GFP_ZERO | __GFP_NOWARN;
955
956 pages_to_map = ALIGN(npages, page_align);
957 size = desc_size * pages_to_map;
958 size = min_t(int, size, MLX5_MAX_UMR_CHUNK);
959
960 xlt = (void *)__get_free_pages(gfp, get_order(size));
961 if (!xlt && size > MLX5_SPARE_UMR_CHUNK) {
962 mlx5_ib_dbg(dev, "Failed to allocate %d bytes of order %d. fallback to spare UMR allocation od %d bytes\n",
963 size, get_order(size), MLX5_SPARE_UMR_CHUNK);
964
965 size = MLX5_SPARE_UMR_CHUNK;
966 xlt = (void *)__get_free_pages(gfp, get_order(size));
967 }
968
969 if (!xlt) {
970 mlx5_ib_warn(dev, "Using XLT emergency buffer\n");
971 xlt = (void *)mlx5_ib_get_xlt_emergency_page();
972 size = PAGE_SIZE;
973 memset(xlt, 0, size);
974 use_emergency_page = true;
975 }
976 pages_iter = size / desc_size;
977 dma = dma_map_single(ddev, xlt, size, DMA_TO_DEVICE);
978 if (dma_mapping_error(ddev, dma)) {
979 mlx5_ib_err(dev, "unable to map DMA during XLT update.\n");
980 err = -ENOMEM;
981 goto free_xlt;
982 }
983
984 sg.addr = dma;
985 sg.lkey = dev->umrc.pd->local_dma_lkey;
986
987 memset(&wr, 0, sizeof(wr));
988 wr.wr.send_flags = MLX5_IB_SEND_UMR_UPDATE_XLT;
989 if (!(flags & MLX5_IB_UPD_XLT_ENABLE))
990 wr.wr.send_flags |= MLX5_IB_SEND_UMR_FAIL_IF_FREE;
991 wr.wr.sg_list = &sg;
992 wr.wr.num_sge = 1;
993 wr.wr.opcode = MLX5_IB_WR_UMR;
994
995 wr.pd = mr->ibmr.pd;
996 wr.mkey = mr->mmkey.key;
997 wr.length = mr->mmkey.size;
998 wr.virt_addr = mr->mmkey.iova;
999 wr.access_flags = mr->access_flags;
1000 wr.page_shift = page_shift;
1001
1002 for (pages_mapped = 0;
1003 pages_mapped < pages_to_map && !err;
1004 pages_mapped += pages_iter, idx += pages_iter) {
1005 npages = min_t(int, pages_iter, pages_to_map - pages_mapped);
1006 dma_sync_single_for_cpu(ddev, dma, size, DMA_TO_DEVICE);
1007 npages = populate_xlt(mr, idx, npages, xlt,
1008 page_shift, size, flags);
1009
1010 dma_sync_single_for_device(ddev, dma, size, DMA_TO_DEVICE);
1011
1012 sg.length = ALIGN(npages * desc_size,
1013 MLX5_UMR_MTT_ALIGNMENT);
1014
1015 if (pages_mapped + pages_iter >= pages_to_map) {
1016 if (flags & MLX5_IB_UPD_XLT_ENABLE)
1017 wr.wr.send_flags |=
1018 MLX5_IB_SEND_UMR_ENABLE_MR |
1019 MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS |
1020 MLX5_IB_SEND_UMR_UPDATE_TRANSLATION;
1021 if (flags & MLX5_IB_UPD_XLT_PD ||
1022 flags & MLX5_IB_UPD_XLT_ACCESS)
1023 wr.wr.send_flags |=
1024 MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
1025 if (flags & MLX5_IB_UPD_XLT_ADDR)
1026 wr.wr.send_flags |=
1027 MLX5_IB_SEND_UMR_UPDATE_TRANSLATION;
1028 }
1029
1030 wr.offset = idx * desc_size;
1031 wr.xlt_size = sg.length;
1032
1033 err = mlx5_ib_post_send_wait(dev, &wr);
1034 }
1035 dma_unmap_single(ddev, dma, size, DMA_TO_DEVICE);
1036
1037 free_xlt:
1038 if (use_emergency_page)
1039 mlx5_ib_put_xlt_emergency_page();
1040 else
1041 free_pages((unsigned long)xlt, get_order(size));
1042
1043 return err;
1044 }
1045
1046 /*
1047 * If ibmr is NULL it will be allocated by reg_create.
1048 * Else, the given ibmr will be used.
1049 */
reg_create(struct ib_mr * ibmr,struct ib_pd * pd,u64 virt_addr,u64 length,struct ib_umem * umem,int npages,int page_shift,int access_flags,bool populate)1050 static struct mlx5_ib_mr *reg_create(struct ib_mr *ibmr, struct ib_pd *pd,
1051 u64 virt_addr, u64 length,
1052 struct ib_umem *umem, int npages,
1053 int page_shift, int access_flags,
1054 bool populate)
1055 {
1056 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1057 struct mlx5_ib_mr *mr;
1058 __be64 *pas;
1059 void *mkc;
1060 int inlen;
1061 u32 *in;
1062 int err;
1063 bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg));
1064
1065 mr = ibmr ? to_mmr(ibmr) : kzalloc(sizeof(*mr), GFP_KERNEL);
1066 if (!mr)
1067 return ERR_PTR(-ENOMEM);
1068
1069 mr->ibmr.pd = pd;
1070 mr->access_flags = access_flags;
1071
1072 inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1073 if (populate)
1074 inlen += sizeof(*pas) * roundup(npages, 2);
1075 in = kvzalloc(inlen, GFP_KERNEL);
1076 if (!in) {
1077 err = -ENOMEM;
1078 goto err_1;
1079 }
1080 pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt);
1081 if (populate && !(access_flags & IB_ACCESS_ON_DEMAND))
1082 mlx5_ib_populate_pas(dev, umem, page_shift, pas,
1083 pg_cap ? MLX5_IB_MTT_PRESENT : 0);
1084
1085 /* The pg_access bit allows setting the access flags
1086 * in the page list submitted with the command. */
1087 MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap));
1088
1089 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1090 MLX5_SET(mkc, mkc, free, !populate);
1091 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT);
1092 MLX5_SET(mkc, mkc, a, !!(access_flags & IB_ACCESS_REMOTE_ATOMIC));
1093 MLX5_SET(mkc, mkc, rw, !!(access_flags & IB_ACCESS_REMOTE_WRITE));
1094 MLX5_SET(mkc, mkc, rr, !!(access_flags & IB_ACCESS_REMOTE_READ));
1095 MLX5_SET(mkc, mkc, lw, !!(access_flags & IB_ACCESS_LOCAL_WRITE));
1096 MLX5_SET(mkc, mkc, lr, 1);
1097 MLX5_SET(mkc, mkc, umr_en, 1);
1098
1099 MLX5_SET64(mkc, mkc, start_addr, virt_addr);
1100 MLX5_SET64(mkc, mkc, len, length);
1101 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
1102 MLX5_SET(mkc, mkc, bsf_octword_size, 0);
1103 MLX5_SET(mkc, mkc, translations_octword_size,
1104 get_octo_len(virt_addr, length, page_shift));
1105 MLX5_SET(mkc, mkc, log_page_size, page_shift);
1106 MLX5_SET(mkc, mkc, qpn, 0xffffff);
1107 if (populate) {
1108 MLX5_SET(create_mkey_in, in, translations_octword_actual_size,
1109 get_octo_len(virt_addr, length, page_shift));
1110 }
1111
1112 err = mlx5_core_create_mkey(dev->mdev, &mr->mmkey, in, inlen);
1113 if (err) {
1114 mlx5_ib_warn(dev, "create mkey failed\n");
1115 goto err_2;
1116 }
1117 mr->mmkey.type = MLX5_MKEY_MR;
1118 mr->desc_size = sizeof(struct mlx5_mtt);
1119 mr->dev = dev;
1120 kvfree(in);
1121
1122 mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key);
1123
1124 return mr;
1125
1126 err_2:
1127 kvfree(in);
1128
1129 err_1:
1130 if (!ibmr)
1131 kfree(mr);
1132
1133 return ERR_PTR(err);
1134 }
1135
set_mr_fields(struct mlx5_ib_dev * dev,struct mlx5_ib_mr * mr,int npages,u64 length,int access_flags)1136 static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
1137 int npages, u64 length, int access_flags)
1138 {
1139 mr->npages = npages;
1140 atomic_add(npages, &dev->mdev->priv.reg_pages);
1141 mr->ibmr.lkey = mr->mmkey.key;
1142 mr->ibmr.rkey = mr->mmkey.key;
1143 mr->ibmr.length = length;
1144 mr->access_flags = access_flags;
1145 }
1146
mlx5_ib_get_dm_mr(struct ib_pd * pd,u64 start_addr,u64 length,int acc,int mode)1147 static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr,
1148 u64 length, int acc, int mode)
1149 {
1150 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1151 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1152 struct mlx5_core_dev *mdev = dev->mdev;
1153 struct mlx5_ib_mr *mr;
1154 void *mkc;
1155 u32 *in;
1156 int err;
1157
1158 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1159 if (!mr)
1160 return ERR_PTR(-ENOMEM);
1161
1162 in = kzalloc(inlen, GFP_KERNEL);
1163 if (!in) {
1164 err = -ENOMEM;
1165 goto err_free;
1166 }
1167
1168 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1169
1170 MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3);
1171 MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7);
1172 MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
1173 MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
1174 MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
1175 MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
1176 MLX5_SET(mkc, mkc, lr, 1);
1177
1178 MLX5_SET64(mkc, mkc, len, length);
1179 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
1180 MLX5_SET(mkc, mkc, qpn, 0xffffff);
1181 MLX5_SET64(mkc, mkc, start_addr, start_addr);
1182
1183 err = mlx5_core_create_mkey(mdev, &mr->mmkey, in, inlen);
1184 if (err)
1185 goto err_in;
1186
1187 kfree(in);
1188
1189 mr->umem = NULL;
1190 set_mr_fields(dev, mr, 0, length, acc);
1191
1192 return &mr->ibmr;
1193
1194 err_in:
1195 kfree(in);
1196
1197 err_free:
1198 kfree(mr);
1199
1200 return ERR_PTR(err);
1201 }
1202
mlx5_ib_advise_mr(struct ib_pd * pd,enum ib_uverbs_advise_mr_advice advice,u32 flags,struct ib_sge * sg_list,u32 num_sge,struct uverbs_attr_bundle * attrs)1203 int mlx5_ib_advise_mr(struct ib_pd *pd,
1204 enum ib_uverbs_advise_mr_advice advice,
1205 u32 flags,
1206 struct ib_sge *sg_list,
1207 u32 num_sge,
1208 struct uverbs_attr_bundle *attrs)
1209 {
1210 if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH &&
1211 advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE)
1212 return -EOPNOTSUPP;
1213
1214 return mlx5_ib_advise_mr_prefetch(pd, advice, flags,
1215 sg_list, num_sge);
1216 }
1217
mlx5_ib_reg_dm_mr(struct ib_pd * pd,struct ib_dm * dm,struct ib_dm_mr_attr * attr,struct uverbs_attr_bundle * attrs)1218 struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm,
1219 struct ib_dm_mr_attr *attr,
1220 struct uverbs_attr_bundle *attrs)
1221 {
1222 struct mlx5_ib_dm *mdm = to_mdm(dm);
1223 struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev;
1224 u64 start_addr = mdm->dev_addr + attr->offset;
1225 int mode;
1226
1227 switch (mdm->type) {
1228 case MLX5_IB_UAPI_DM_TYPE_MEMIC:
1229 if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS)
1230 return ERR_PTR(-EINVAL);
1231
1232 mode = MLX5_MKC_ACCESS_MODE_MEMIC;
1233 start_addr -= pci_resource_start(dev->pdev, 0);
1234 break;
1235 case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM:
1236 case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM:
1237 if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS)
1238 return ERR_PTR(-EINVAL);
1239
1240 mode = MLX5_MKC_ACCESS_MODE_SW_ICM;
1241 break;
1242 default:
1243 return ERR_PTR(-EINVAL);
1244 }
1245
1246 return mlx5_ib_get_dm_mr(pd, start_addr, attr->length,
1247 attr->access_flags, mode);
1248 }
1249
mlx5_ib_reg_user_mr(struct ib_pd * pd,u64 start,u64 length,u64 virt_addr,int access_flags,struct ib_udata * udata)1250 struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
1251 u64 virt_addr, int access_flags,
1252 struct ib_udata *udata)
1253 {
1254 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1255 struct mlx5_ib_mr *mr = NULL;
1256 bool use_umr;
1257 struct ib_umem *umem;
1258 int page_shift;
1259 int npages;
1260 int ncont;
1261 int order;
1262 int err;
1263
1264 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1265 return ERR_PTR(-EOPNOTSUPP);
1266
1267 mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n",
1268 start, virt_addr, length, access_flags);
1269
1270 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) && !start &&
1271 length == U64_MAX) {
1272 if (!(access_flags & IB_ACCESS_ON_DEMAND) ||
1273 !(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1274 return ERR_PTR(-EINVAL);
1275
1276 mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), udata, access_flags);
1277 if (IS_ERR(mr))
1278 return ERR_CAST(mr);
1279 return &mr->ibmr;
1280 }
1281
1282 err = mr_umem_get(dev, udata, start, length, access_flags, &umem,
1283 &npages, &page_shift, &ncont, &order);
1284
1285 if (err < 0)
1286 return ERR_PTR(err);
1287
1288 use_umr = mlx5_ib_can_use_umr(dev, true);
1289
1290 if (order <= mr_cache_max_order(dev) && use_umr) {
1291 mr = alloc_mr_from_cache(pd, umem, virt_addr, length, ncont,
1292 page_shift, order, access_flags);
1293 if (PTR_ERR(mr) == -EAGAIN) {
1294 mlx5_ib_dbg(dev, "cache empty for order %d\n", order);
1295 mr = NULL;
1296 }
1297 } else if (!MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) {
1298 if (access_flags & IB_ACCESS_ON_DEMAND) {
1299 err = -EINVAL;
1300 pr_err("Got MR registration for ODP MR > 512MB, not supported for Connect-IB\n");
1301 goto error;
1302 }
1303 use_umr = false;
1304 }
1305
1306 if (!mr) {
1307 mutex_lock(&dev->slow_path_mutex);
1308 mr = reg_create(NULL, pd, virt_addr, length, umem, ncont,
1309 page_shift, access_flags, !use_umr);
1310 mutex_unlock(&dev->slow_path_mutex);
1311 }
1312
1313 if (IS_ERR(mr)) {
1314 err = PTR_ERR(mr);
1315 goto error;
1316 }
1317
1318 mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1319
1320 mr->umem = umem;
1321 set_mr_fields(dev, mr, npages, length, access_flags);
1322
1323 if (use_umr) {
1324 int update_xlt_flags = MLX5_IB_UPD_XLT_ENABLE;
1325
1326 if (access_flags & IB_ACCESS_ON_DEMAND)
1327 update_xlt_flags |= MLX5_IB_UPD_XLT_ZAP;
1328
1329 err = mlx5_ib_update_xlt(mr, 0, ncont, page_shift,
1330 update_xlt_flags);
1331
1332 if (err) {
1333 dereg_mr(dev, mr);
1334 return ERR_PTR(err);
1335 }
1336 }
1337
1338 if (is_odp_mr(mr)) {
1339 to_ib_umem_odp(mr->umem)->private = mr;
1340 atomic_set(&mr->num_pending_prefetch, 0);
1341 }
1342 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1343 smp_store_release(&mr->live, 1);
1344
1345 return &mr->ibmr;
1346 error:
1347 ib_umem_release(umem);
1348 return ERR_PTR(err);
1349 }
1350
unreg_umr(struct mlx5_ib_dev * dev,struct mlx5_ib_mr * mr)1351 static int unreg_umr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
1352 {
1353 struct mlx5_core_dev *mdev = dev->mdev;
1354 struct mlx5_umr_wr umrwr = {};
1355
1356 if (mdev->state == MLX5_DEVICE_STATE_INTERNAL_ERROR)
1357 return 0;
1358
1359 umrwr.wr.send_flags = MLX5_IB_SEND_UMR_DISABLE_MR |
1360 MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
1361 umrwr.wr.opcode = MLX5_IB_WR_UMR;
1362 umrwr.pd = dev->umrc.pd;
1363 umrwr.mkey = mr->mmkey.key;
1364 umrwr.ignore_free_state = 1;
1365
1366 return mlx5_ib_post_send_wait(dev, &umrwr);
1367 }
1368
rereg_umr(struct ib_pd * pd,struct mlx5_ib_mr * mr,int access_flags,int flags)1369 static int rereg_umr(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1370 int access_flags, int flags)
1371 {
1372 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1373 struct mlx5_umr_wr umrwr = {};
1374 int err;
1375
1376 umrwr.wr.send_flags = MLX5_IB_SEND_UMR_FAIL_IF_FREE;
1377
1378 umrwr.wr.opcode = MLX5_IB_WR_UMR;
1379 umrwr.mkey = mr->mmkey.key;
1380
1381 if (flags & IB_MR_REREG_PD || flags & IB_MR_REREG_ACCESS) {
1382 umrwr.pd = pd;
1383 umrwr.access_flags = access_flags;
1384 umrwr.wr.send_flags |= MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
1385 }
1386
1387 err = mlx5_ib_post_send_wait(dev, &umrwr);
1388
1389 return err;
1390 }
1391
mlx5_ib_rereg_user_mr(struct ib_mr * ib_mr,int flags,u64 start,u64 length,u64 virt_addr,int new_access_flags,struct ib_pd * new_pd,struct ib_udata * udata)1392 int mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start,
1393 u64 length, u64 virt_addr, int new_access_flags,
1394 struct ib_pd *new_pd, struct ib_udata *udata)
1395 {
1396 struct mlx5_ib_dev *dev = to_mdev(ib_mr->device);
1397 struct mlx5_ib_mr *mr = to_mmr(ib_mr);
1398 struct ib_pd *pd = (flags & IB_MR_REREG_PD) ? new_pd : ib_mr->pd;
1399 int access_flags = flags & IB_MR_REREG_ACCESS ?
1400 new_access_flags :
1401 mr->access_flags;
1402 int page_shift = 0;
1403 int upd_flags = 0;
1404 int npages = 0;
1405 int ncont = 0;
1406 int order = 0;
1407 u64 addr, len;
1408 int err;
1409
1410 mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n",
1411 start, virt_addr, length, access_flags);
1412
1413 atomic_sub(mr->npages, &dev->mdev->priv.reg_pages);
1414
1415 if (!mr->umem)
1416 return -EINVAL;
1417
1418 if (is_odp_mr(mr))
1419 return -EOPNOTSUPP;
1420
1421 if (flags & IB_MR_REREG_TRANS) {
1422 addr = virt_addr;
1423 len = length;
1424 } else {
1425 addr = mr->umem->address;
1426 len = mr->umem->length;
1427 }
1428
1429 if (flags != IB_MR_REREG_PD) {
1430 /*
1431 * Replace umem. This needs to be done whether or not UMR is
1432 * used.
1433 */
1434 flags |= IB_MR_REREG_TRANS;
1435 ib_umem_release(mr->umem);
1436 mr->umem = NULL;
1437 err = mr_umem_get(dev, udata, addr, len, access_flags,
1438 &mr->umem, &npages, &page_shift, &ncont,
1439 &order);
1440 if (err)
1441 goto err;
1442 }
1443
1444 if (!mlx5_ib_can_use_umr(dev, true) ||
1445 (flags & IB_MR_REREG_TRANS && !use_umr_mtt_update(mr, addr, len))) {
1446 /*
1447 * UMR can't be used - MKey needs to be replaced.
1448 */
1449 if (mr->allocated_from_cache)
1450 err = unreg_umr(dev, mr);
1451 else
1452 err = destroy_mkey(dev, mr);
1453 if (err)
1454 goto err;
1455
1456 mr = reg_create(ib_mr, pd, addr, len, mr->umem, ncont,
1457 page_shift, access_flags, true);
1458
1459 if (IS_ERR(mr)) {
1460 err = PTR_ERR(mr);
1461 mr = to_mmr(ib_mr);
1462 goto err;
1463 }
1464
1465 mr->allocated_from_cache = 0;
1466 } else {
1467 /*
1468 * Send a UMR WQE
1469 */
1470 mr->ibmr.pd = pd;
1471 mr->access_flags = access_flags;
1472 mr->mmkey.iova = addr;
1473 mr->mmkey.size = len;
1474 mr->mmkey.pd = to_mpd(pd)->pdn;
1475
1476 if (flags & IB_MR_REREG_TRANS) {
1477 upd_flags = MLX5_IB_UPD_XLT_ADDR;
1478 if (flags & IB_MR_REREG_PD)
1479 upd_flags |= MLX5_IB_UPD_XLT_PD;
1480 if (flags & IB_MR_REREG_ACCESS)
1481 upd_flags |= MLX5_IB_UPD_XLT_ACCESS;
1482 err = mlx5_ib_update_xlt(mr, 0, npages, page_shift,
1483 upd_flags);
1484 } else {
1485 err = rereg_umr(pd, mr, access_flags, flags);
1486 }
1487
1488 if (err)
1489 goto err;
1490 }
1491
1492 set_mr_fields(dev, mr, npages, len, access_flags);
1493
1494 return 0;
1495
1496 err:
1497 ib_umem_release(mr->umem);
1498 mr->umem = NULL;
1499
1500 clean_mr(dev, mr);
1501 return err;
1502 }
1503
1504 static int
mlx5_alloc_priv_descs(struct ib_device * device,struct mlx5_ib_mr * mr,int ndescs,int desc_size)1505 mlx5_alloc_priv_descs(struct ib_device *device,
1506 struct mlx5_ib_mr *mr,
1507 int ndescs,
1508 int desc_size)
1509 {
1510 int size = ndescs * desc_size;
1511 int add_size;
1512 int ret;
1513
1514 add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0);
1515
1516 mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL);
1517 if (!mr->descs_alloc)
1518 return -ENOMEM;
1519
1520 mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN);
1521
1522 mr->desc_map = dma_map_single(device->dev.parent, mr->descs,
1523 size, DMA_TO_DEVICE);
1524 if (dma_mapping_error(device->dev.parent, mr->desc_map)) {
1525 ret = -ENOMEM;
1526 goto err;
1527 }
1528
1529 return 0;
1530 err:
1531 kfree(mr->descs_alloc);
1532
1533 return ret;
1534 }
1535
1536 static void
mlx5_free_priv_descs(struct mlx5_ib_mr * mr)1537 mlx5_free_priv_descs(struct mlx5_ib_mr *mr)
1538 {
1539 if (mr->descs) {
1540 struct ib_device *device = mr->ibmr.device;
1541 int size = mr->max_descs * mr->desc_size;
1542
1543 dma_unmap_single(device->dev.parent, mr->desc_map,
1544 size, DMA_TO_DEVICE);
1545 kfree(mr->descs_alloc);
1546 mr->descs = NULL;
1547 }
1548 }
1549
clean_mr(struct mlx5_ib_dev * dev,struct mlx5_ib_mr * mr)1550 static void clean_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
1551 {
1552 int allocated_from_cache = mr->allocated_from_cache;
1553
1554 if (mr->sig) {
1555 if (mlx5_core_destroy_psv(dev->mdev,
1556 mr->sig->psv_memory.psv_idx))
1557 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1558 mr->sig->psv_memory.psv_idx);
1559 if (mlx5_core_destroy_psv(dev->mdev,
1560 mr->sig->psv_wire.psv_idx))
1561 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1562 mr->sig->psv_wire.psv_idx);
1563 kfree(mr->sig);
1564 mr->sig = NULL;
1565 }
1566
1567 if (!allocated_from_cache) {
1568 destroy_mkey(dev, mr);
1569 mlx5_free_priv_descs(mr);
1570 }
1571 }
1572
dereg_mr(struct mlx5_ib_dev * dev,struct mlx5_ib_mr * mr)1573 static void dereg_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
1574 {
1575 int npages = mr->npages;
1576 struct ib_umem *umem = mr->umem;
1577
1578 if (is_odp_mr(mr)) {
1579 struct ib_umem_odp *umem_odp = to_ib_umem_odp(umem);
1580
1581 /* Prevent new page faults and
1582 * prefetch requests from succeeding
1583 */
1584 WRITE_ONCE(mr->live, 0);
1585
1586 /* Wait for all running page-fault handlers to finish. */
1587 synchronize_srcu(&dev->mr_srcu);
1588
1589 /* dequeue pending prefetch requests for the mr */
1590 if (atomic_read(&mr->num_pending_prefetch))
1591 flush_workqueue(system_unbound_wq);
1592 WARN_ON(atomic_read(&mr->num_pending_prefetch));
1593
1594 /* Destroy all page mappings */
1595 if (!umem_odp->is_implicit_odp)
1596 mlx5_ib_invalidate_range(umem_odp,
1597 ib_umem_start(umem_odp),
1598 ib_umem_end(umem_odp));
1599 else
1600 mlx5_ib_free_implicit_mr(mr);
1601 /*
1602 * We kill the umem before the MR for ODP,
1603 * so that there will not be any invalidations in
1604 * flight, looking at the *mr struct.
1605 */
1606 ib_umem_odp_release(umem_odp);
1607 atomic_sub(npages, &dev->mdev->priv.reg_pages);
1608
1609 /* Avoid double-freeing the umem. */
1610 umem = NULL;
1611 }
1612
1613 clean_mr(dev, mr);
1614
1615 /*
1616 * We should unregister the DMA address from the HCA before
1617 * remove the DMA mapping.
1618 */
1619 mlx5_mr_cache_free(dev, mr);
1620 ib_umem_release(umem);
1621 if (umem)
1622 atomic_sub(npages, &dev->mdev->priv.reg_pages);
1623
1624 if (!mr->allocated_from_cache)
1625 kfree(mr);
1626 }
1627
mlx5_ib_dereg_mr(struct ib_mr * ibmr,struct ib_udata * udata)1628 int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
1629 {
1630 struct mlx5_ib_mr *mmr = to_mmr(ibmr);
1631
1632 if (ibmr->type == IB_MR_TYPE_INTEGRITY) {
1633 dereg_mr(to_mdev(mmr->mtt_mr->ibmr.device), mmr->mtt_mr);
1634 dereg_mr(to_mdev(mmr->klm_mr->ibmr.device), mmr->klm_mr);
1635 }
1636
1637 dereg_mr(to_mdev(ibmr->device), mmr);
1638
1639 return 0;
1640 }
1641
mlx5_set_umr_free_mkey(struct ib_pd * pd,u32 * in,int ndescs,int access_mode,int page_shift)1642 static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs,
1643 int access_mode, int page_shift)
1644 {
1645 void *mkc;
1646
1647 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1648
1649 MLX5_SET(mkc, mkc, free, 1);
1650 MLX5_SET(mkc, mkc, qpn, 0xffffff);
1651 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
1652 MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
1653 MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3);
1654 MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7);
1655 MLX5_SET(mkc, mkc, umr_en, 1);
1656 MLX5_SET(mkc, mkc, log_page_size, page_shift);
1657 }
1658
_mlx5_alloc_mkey_descs(struct ib_pd * pd,struct mlx5_ib_mr * mr,int ndescs,int desc_size,int page_shift,int access_mode,u32 * in,int inlen)1659 static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1660 int ndescs, int desc_size, int page_shift,
1661 int access_mode, u32 *in, int inlen)
1662 {
1663 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1664 int err;
1665
1666 mr->access_mode = access_mode;
1667 mr->desc_size = desc_size;
1668 mr->max_descs = ndescs;
1669
1670 err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size);
1671 if (err)
1672 return err;
1673
1674 mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift);
1675
1676 err = mlx5_core_create_mkey(dev->mdev, &mr->mmkey, in, inlen);
1677 if (err)
1678 goto err_free_descs;
1679
1680 mr->mmkey.type = MLX5_MKEY_MR;
1681 mr->ibmr.lkey = mr->mmkey.key;
1682 mr->ibmr.rkey = mr->mmkey.key;
1683
1684 return 0;
1685
1686 err_free_descs:
1687 mlx5_free_priv_descs(mr);
1688 return err;
1689 }
1690
mlx5_ib_alloc_pi_mr(struct ib_pd * pd,u32 max_num_sg,u32 max_num_meta_sg,int desc_size,int access_mode)1691 static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd,
1692 u32 max_num_sg, u32 max_num_meta_sg,
1693 int desc_size, int access_mode)
1694 {
1695 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1696 int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4);
1697 int page_shift = 0;
1698 struct mlx5_ib_mr *mr;
1699 u32 *in;
1700 int err;
1701
1702 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1703 if (!mr)
1704 return ERR_PTR(-ENOMEM);
1705
1706 mr->ibmr.pd = pd;
1707 mr->ibmr.device = pd->device;
1708
1709 in = kzalloc(inlen, GFP_KERNEL);
1710 if (!in) {
1711 err = -ENOMEM;
1712 goto err_free;
1713 }
1714
1715 if (access_mode == MLX5_MKC_ACCESS_MODE_MTT)
1716 page_shift = PAGE_SHIFT;
1717
1718 err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift,
1719 access_mode, in, inlen);
1720 if (err)
1721 goto err_free_in;
1722
1723 mr->umem = NULL;
1724 kfree(in);
1725
1726 return mr;
1727
1728 err_free_in:
1729 kfree(in);
1730 err_free:
1731 kfree(mr);
1732 return ERR_PTR(err);
1733 }
1734
mlx5_alloc_mem_reg_descs(struct ib_pd * pd,struct mlx5_ib_mr * mr,int ndescs,u32 * in,int inlen)1735 static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1736 int ndescs, u32 *in, int inlen)
1737 {
1738 return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt),
1739 PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in,
1740 inlen);
1741 }
1742
mlx5_alloc_sg_gaps_descs(struct ib_pd * pd,struct mlx5_ib_mr * mr,int ndescs,u32 * in,int inlen)1743 static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1744 int ndescs, u32 *in, int inlen)
1745 {
1746 return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm),
1747 0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
1748 }
1749
mlx5_alloc_integrity_descs(struct ib_pd * pd,struct mlx5_ib_mr * mr,int max_num_sg,int max_num_meta_sg,u32 * in,int inlen)1750 static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1751 int max_num_sg, int max_num_meta_sg,
1752 u32 *in, int inlen)
1753 {
1754 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1755 u32 psv_index[2];
1756 void *mkc;
1757 int err;
1758
1759 mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL);
1760 if (!mr->sig)
1761 return -ENOMEM;
1762
1763 /* create mem & wire PSVs */
1764 err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index);
1765 if (err)
1766 goto err_free_sig;
1767
1768 mr->sig->psv_memory.psv_idx = psv_index[0];
1769 mr->sig->psv_wire.psv_idx = psv_index[1];
1770
1771 mr->sig->sig_status_checked = true;
1772 mr->sig->sig_err_exists = false;
1773 /* Next UMR, Arm SIGERR */
1774 ++mr->sig->sigerr_count;
1775 mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
1776 sizeof(struct mlx5_klm),
1777 MLX5_MKC_ACCESS_MODE_KLMS);
1778 if (IS_ERR(mr->klm_mr)) {
1779 err = PTR_ERR(mr->klm_mr);
1780 goto err_destroy_psv;
1781 }
1782 mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
1783 sizeof(struct mlx5_mtt),
1784 MLX5_MKC_ACCESS_MODE_MTT);
1785 if (IS_ERR(mr->mtt_mr)) {
1786 err = PTR_ERR(mr->mtt_mr);
1787 goto err_free_klm_mr;
1788 }
1789
1790 /* Set bsf descriptors for mkey */
1791 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1792 MLX5_SET(mkc, mkc, bsf_en, 1);
1793 MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE);
1794
1795 err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0,
1796 MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
1797 if (err)
1798 goto err_free_mtt_mr;
1799
1800 return 0;
1801
1802 err_free_mtt_mr:
1803 dereg_mr(to_mdev(mr->mtt_mr->ibmr.device), mr->mtt_mr);
1804 mr->mtt_mr = NULL;
1805 err_free_klm_mr:
1806 dereg_mr(to_mdev(mr->klm_mr->ibmr.device), mr->klm_mr);
1807 mr->klm_mr = NULL;
1808 err_destroy_psv:
1809 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx))
1810 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1811 mr->sig->psv_memory.psv_idx);
1812 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
1813 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1814 mr->sig->psv_wire.psv_idx);
1815 err_free_sig:
1816 kfree(mr->sig);
1817
1818 return err;
1819 }
1820
__mlx5_ib_alloc_mr(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_num_sg,u32 max_num_meta_sg)1821 static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd,
1822 enum ib_mr_type mr_type, u32 max_num_sg,
1823 u32 max_num_meta_sg)
1824 {
1825 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1826 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1827 int ndescs = ALIGN(max_num_sg, 4);
1828 struct mlx5_ib_mr *mr;
1829 u32 *in;
1830 int err;
1831
1832 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1833 if (!mr)
1834 return ERR_PTR(-ENOMEM);
1835
1836 in = kzalloc(inlen, GFP_KERNEL);
1837 if (!in) {
1838 err = -ENOMEM;
1839 goto err_free;
1840 }
1841
1842 mr->ibmr.device = pd->device;
1843 mr->umem = NULL;
1844
1845 switch (mr_type) {
1846 case IB_MR_TYPE_MEM_REG:
1847 err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen);
1848 break;
1849 case IB_MR_TYPE_SG_GAPS:
1850 err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen);
1851 break;
1852 case IB_MR_TYPE_INTEGRITY:
1853 err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg,
1854 max_num_meta_sg, in, inlen);
1855 break;
1856 default:
1857 mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type);
1858 err = -EINVAL;
1859 }
1860
1861 if (err)
1862 goto err_free_in;
1863
1864 kfree(in);
1865
1866 return &mr->ibmr;
1867
1868 err_free_in:
1869 kfree(in);
1870 err_free:
1871 kfree(mr);
1872 return ERR_PTR(err);
1873 }
1874
mlx5_ib_alloc_mr(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_num_sg,struct ib_udata * udata)1875 struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
1876 u32 max_num_sg, struct ib_udata *udata)
1877 {
1878 return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0);
1879 }
1880
mlx5_ib_alloc_mr_integrity(struct ib_pd * pd,u32 max_num_sg,u32 max_num_meta_sg)1881 struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd,
1882 u32 max_num_sg, u32 max_num_meta_sg)
1883 {
1884 return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg,
1885 max_num_meta_sg);
1886 }
1887
mlx5_ib_alloc_mw(struct ib_pd * pd,enum ib_mw_type type,struct ib_udata * udata)1888 struct ib_mw *mlx5_ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type,
1889 struct ib_udata *udata)
1890 {
1891 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1892 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1893 struct mlx5_ib_mw *mw = NULL;
1894 u32 *in = NULL;
1895 void *mkc;
1896 int ndescs;
1897 int err;
1898 struct mlx5_ib_alloc_mw req = {};
1899 struct {
1900 __u32 comp_mask;
1901 __u32 response_length;
1902 } resp = {};
1903
1904 err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req)));
1905 if (err)
1906 return ERR_PTR(err);
1907
1908 if (req.comp_mask || req.reserved1 || req.reserved2)
1909 return ERR_PTR(-EOPNOTSUPP);
1910
1911 if (udata->inlen > sizeof(req) &&
1912 !ib_is_udata_cleared(udata, sizeof(req),
1913 udata->inlen - sizeof(req)))
1914 return ERR_PTR(-EOPNOTSUPP);
1915
1916 ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4);
1917
1918 mw = kzalloc(sizeof(*mw), GFP_KERNEL);
1919 in = kzalloc(inlen, GFP_KERNEL);
1920 if (!mw || !in) {
1921 err = -ENOMEM;
1922 goto free;
1923 }
1924
1925 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1926
1927 MLX5_SET(mkc, mkc, free, 1);
1928 MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
1929 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
1930 MLX5_SET(mkc, mkc, umr_en, 1);
1931 MLX5_SET(mkc, mkc, lr, 1);
1932 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS);
1933 MLX5_SET(mkc, mkc, en_rinval, !!((type == IB_MW_TYPE_2)));
1934 MLX5_SET(mkc, mkc, qpn, 0xffffff);
1935
1936 err = mlx5_core_create_mkey(dev->mdev, &mw->mmkey, in, inlen);
1937 if (err)
1938 goto free;
1939
1940 mw->mmkey.type = MLX5_MKEY_MW;
1941 mw->ibmw.rkey = mw->mmkey.key;
1942 mw->ndescs = ndescs;
1943
1944 resp.response_length = min(offsetof(typeof(resp), response_length) +
1945 sizeof(resp.response_length), udata->outlen);
1946 if (resp.response_length) {
1947 err = ib_copy_to_udata(udata, &resp, resp.response_length);
1948 if (err) {
1949 mlx5_core_destroy_mkey(dev->mdev, &mw->mmkey);
1950 goto free;
1951 }
1952 }
1953
1954 kfree(in);
1955 return &mw->ibmw;
1956
1957 free:
1958 kfree(mw);
1959 kfree(in);
1960 return ERR_PTR(err);
1961 }
1962
mlx5_ib_dealloc_mw(struct ib_mw * mw)1963 int mlx5_ib_dealloc_mw(struct ib_mw *mw)
1964 {
1965 struct mlx5_ib_dev *dev = to_mdev(mw->device);
1966 struct mlx5_ib_mw *mmw = to_mmw(mw);
1967 int err;
1968
1969 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
1970 xa_erase_irq(&dev->mdev->priv.mkey_table,
1971 mlx5_base_mkey(mmw->mmkey.key));
1972 /*
1973 * pagefault_single_data_segment() may be accessing mmw under
1974 * SRCU if the user bound an ODP MR to this MW.
1975 */
1976 synchronize_srcu(&dev->mr_srcu);
1977 }
1978
1979 err = mlx5_core_destroy_mkey(dev->mdev, &mmw->mmkey);
1980 if (err)
1981 return err;
1982 kfree(mmw);
1983 return 0;
1984 }
1985
mlx5_ib_check_mr_status(struct ib_mr * ibmr,u32 check_mask,struct ib_mr_status * mr_status)1986 int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask,
1987 struct ib_mr_status *mr_status)
1988 {
1989 struct mlx5_ib_mr *mmr = to_mmr(ibmr);
1990 int ret = 0;
1991
1992 if (check_mask & ~IB_MR_CHECK_SIG_STATUS) {
1993 pr_err("Invalid status check mask\n");
1994 ret = -EINVAL;
1995 goto done;
1996 }
1997
1998 mr_status->fail_status = 0;
1999 if (check_mask & IB_MR_CHECK_SIG_STATUS) {
2000 if (!mmr->sig) {
2001 ret = -EINVAL;
2002 pr_err("signature status check requested on a non-signature enabled MR\n");
2003 goto done;
2004 }
2005
2006 mmr->sig->sig_status_checked = true;
2007 if (!mmr->sig->sig_err_exists)
2008 goto done;
2009
2010 if (ibmr->lkey == mmr->sig->err_item.key)
2011 memcpy(&mr_status->sig_err, &mmr->sig->err_item,
2012 sizeof(mr_status->sig_err));
2013 else {
2014 mr_status->sig_err.err_type = IB_SIG_BAD_GUARD;
2015 mr_status->sig_err.sig_err_offset = 0;
2016 mr_status->sig_err.key = mmr->sig->err_item.key;
2017 }
2018
2019 mmr->sig->sig_err_exists = false;
2020 mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS;
2021 }
2022
2023 done:
2024 return ret;
2025 }
2026
2027 static int
mlx5_ib_map_pa_mr_sg_pi(struct ib_mr * ibmr,struct scatterlist * data_sg,int data_sg_nents,unsigned int * data_sg_offset,struct scatterlist * meta_sg,int meta_sg_nents,unsigned int * meta_sg_offset)2028 mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2029 int data_sg_nents, unsigned int *data_sg_offset,
2030 struct scatterlist *meta_sg, int meta_sg_nents,
2031 unsigned int *meta_sg_offset)
2032 {
2033 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2034 unsigned int sg_offset = 0;
2035 int n = 0;
2036
2037 mr->meta_length = 0;
2038 if (data_sg_nents == 1) {
2039 n++;
2040 mr->ndescs = 1;
2041 if (data_sg_offset)
2042 sg_offset = *data_sg_offset;
2043 mr->data_length = sg_dma_len(data_sg) - sg_offset;
2044 mr->data_iova = sg_dma_address(data_sg) + sg_offset;
2045 if (meta_sg_nents == 1) {
2046 n++;
2047 mr->meta_ndescs = 1;
2048 if (meta_sg_offset)
2049 sg_offset = *meta_sg_offset;
2050 else
2051 sg_offset = 0;
2052 mr->meta_length = sg_dma_len(meta_sg) - sg_offset;
2053 mr->pi_iova = sg_dma_address(meta_sg) + sg_offset;
2054 }
2055 ibmr->length = mr->data_length + mr->meta_length;
2056 }
2057
2058 return n;
2059 }
2060
2061 static int
mlx5_ib_sg_to_klms(struct mlx5_ib_mr * mr,struct scatterlist * sgl,unsigned short sg_nents,unsigned int * sg_offset_p,struct scatterlist * meta_sgl,unsigned short meta_sg_nents,unsigned int * meta_sg_offset_p)2062 mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr,
2063 struct scatterlist *sgl,
2064 unsigned short sg_nents,
2065 unsigned int *sg_offset_p,
2066 struct scatterlist *meta_sgl,
2067 unsigned short meta_sg_nents,
2068 unsigned int *meta_sg_offset_p)
2069 {
2070 struct scatterlist *sg = sgl;
2071 struct mlx5_klm *klms = mr->descs;
2072 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2073 u32 lkey = mr->ibmr.pd->local_dma_lkey;
2074 int i, j = 0;
2075
2076 mr->ibmr.iova = sg_dma_address(sg) + sg_offset;
2077 mr->ibmr.length = 0;
2078
2079 for_each_sg(sgl, sg, sg_nents, i) {
2080 if (unlikely(i >= mr->max_descs))
2081 break;
2082 klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset);
2083 klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset);
2084 klms[i].key = cpu_to_be32(lkey);
2085 mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2086
2087 sg_offset = 0;
2088 }
2089
2090 if (sg_offset_p)
2091 *sg_offset_p = sg_offset;
2092
2093 mr->ndescs = i;
2094 mr->data_length = mr->ibmr.length;
2095
2096 if (meta_sg_nents) {
2097 sg = meta_sgl;
2098 sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0;
2099 for_each_sg(meta_sgl, sg, meta_sg_nents, j) {
2100 if (unlikely(i + j >= mr->max_descs))
2101 break;
2102 klms[i + j].va = cpu_to_be64(sg_dma_address(sg) +
2103 sg_offset);
2104 klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) -
2105 sg_offset);
2106 klms[i + j].key = cpu_to_be32(lkey);
2107 mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2108
2109 sg_offset = 0;
2110 }
2111 if (meta_sg_offset_p)
2112 *meta_sg_offset_p = sg_offset;
2113
2114 mr->meta_ndescs = j;
2115 mr->meta_length = mr->ibmr.length - mr->data_length;
2116 }
2117
2118 return i + j;
2119 }
2120
mlx5_set_page(struct ib_mr * ibmr,u64 addr)2121 static int mlx5_set_page(struct ib_mr *ibmr, u64 addr)
2122 {
2123 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2124 __be64 *descs;
2125
2126 if (unlikely(mr->ndescs == mr->max_descs))
2127 return -ENOMEM;
2128
2129 descs = mr->descs;
2130 descs[mr->ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2131
2132 return 0;
2133 }
2134
mlx5_set_page_pi(struct ib_mr * ibmr,u64 addr)2135 static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr)
2136 {
2137 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2138 __be64 *descs;
2139
2140 if (unlikely(mr->ndescs + mr->meta_ndescs == mr->max_descs))
2141 return -ENOMEM;
2142
2143 descs = mr->descs;
2144 descs[mr->ndescs + mr->meta_ndescs++] =
2145 cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2146
2147 return 0;
2148 }
2149
2150 static int
mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr * ibmr,struct scatterlist * data_sg,int data_sg_nents,unsigned int * data_sg_offset,struct scatterlist * meta_sg,int meta_sg_nents,unsigned int * meta_sg_offset)2151 mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2152 int data_sg_nents, unsigned int *data_sg_offset,
2153 struct scatterlist *meta_sg, int meta_sg_nents,
2154 unsigned int *meta_sg_offset)
2155 {
2156 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2157 struct mlx5_ib_mr *pi_mr = mr->mtt_mr;
2158 int n;
2159
2160 pi_mr->ndescs = 0;
2161 pi_mr->meta_ndescs = 0;
2162 pi_mr->meta_length = 0;
2163
2164 ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2165 pi_mr->desc_size * pi_mr->max_descs,
2166 DMA_TO_DEVICE);
2167
2168 pi_mr->ibmr.page_size = ibmr->page_size;
2169 n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset,
2170 mlx5_set_page);
2171 if (n != data_sg_nents)
2172 return n;
2173
2174 pi_mr->data_iova = pi_mr->ibmr.iova;
2175 pi_mr->data_length = pi_mr->ibmr.length;
2176 pi_mr->ibmr.length = pi_mr->data_length;
2177 ibmr->length = pi_mr->data_length;
2178
2179 if (meta_sg_nents) {
2180 u64 page_mask = ~((u64)ibmr->page_size - 1);
2181 u64 iova = pi_mr->data_iova;
2182
2183 n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents,
2184 meta_sg_offset, mlx5_set_page_pi);
2185
2186 pi_mr->meta_length = pi_mr->ibmr.length;
2187 /*
2188 * PI address for the HW is the offset of the metadata address
2189 * relative to the first data page address.
2190 * It equals to first data page address + size of data pages +
2191 * metadata offset at the first metadata page
2192 */
2193 pi_mr->pi_iova = (iova & page_mask) +
2194 pi_mr->ndescs * ibmr->page_size +
2195 (pi_mr->ibmr.iova & ~page_mask);
2196 /*
2197 * In order to use one MTT MR for data and metadata, we register
2198 * also the gaps between the end of the data and the start of
2199 * the metadata (the sig MR will verify that the HW will access
2200 * to right addresses). This mapping is safe because we use
2201 * internal mkey for the registration.
2202 */
2203 pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova;
2204 pi_mr->ibmr.iova = iova;
2205 ibmr->length += pi_mr->meta_length;
2206 }
2207
2208 ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2209 pi_mr->desc_size * pi_mr->max_descs,
2210 DMA_TO_DEVICE);
2211
2212 return n;
2213 }
2214
2215 static int
mlx5_ib_map_klm_mr_sg_pi(struct ib_mr * ibmr,struct scatterlist * data_sg,int data_sg_nents,unsigned int * data_sg_offset,struct scatterlist * meta_sg,int meta_sg_nents,unsigned int * meta_sg_offset)2216 mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2217 int data_sg_nents, unsigned int *data_sg_offset,
2218 struct scatterlist *meta_sg, int meta_sg_nents,
2219 unsigned int *meta_sg_offset)
2220 {
2221 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2222 struct mlx5_ib_mr *pi_mr = mr->klm_mr;
2223 int n;
2224
2225 pi_mr->ndescs = 0;
2226 pi_mr->meta_ndescs = 0;
2227 pi_mr->meta_length = 0;
2228
2229 ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2230 pi_mr->desc_size * pi_mr->max_descs,
2231 DMA_TO_DEVICE);
2232
2233 n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset,
2234 meta_sg, meta_sg_nents, meta_sg_offset);
2235
2236 ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2237 pi_mr->desc_size * pi_mr->max_descs,
2238 DMA_TO_DEVICE);
2239
2240 /* This is zero-based memory region */
2241 pi_mr->data_iova = 0;
2242 pi_mr->ibmr.iova = 0;
2243 pi_mr->pi_iova = pi_mr->data_length;
2244 ibmr->length = pi_mr->ibmr.length;
2245
2246 return n;
2247 }
2248
mlx5_ib_map_mr_sg_pi(struct ib_mr * ibmr,struct scatterlist * data_sg,int data_sg_nents,unsigned int * data_sg_offset,struct scatterlist * meta_sg,int meta_sg_nents,unsigned int * meta_sg_offset)2249 int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2250 int data_sg_nents, unsigned int *data_sg_offset,
2251 struct scatterlist *meta_sg, int meta_sg_nents,
2252 unsigned int *meta_sg_offset)
2253 {
2254 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2255 struct mlx5_ib_mr *pi_mr = NULL;
2256 int n;
2257
2258 WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY);
2259
2260 mr->ndescs = 0;
2261 mr->data_length = 0;
2262 mr->data_iova = 0;
2263 mr->meta_ndescs = 0;
2264 mr->pi_iova = 0;
2265 /*
2266 * As a performance optimization, if possible, there is no need to
2267 * perform UMR operation to register the data/metadata buffers.
2268 * First try to map the sg lists to PA descriptors with local_dma_lkey.
2269 * Fallback to UMR only in case of a failure.
2270 */
2271 n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2272 data_sg_offset, meta_sg, meta_sg_nents,
2273 meta_sg_offset);
2274 if (n == data_sg_nents + meta_sg_nents)
2275 goto out;
2276 /*
2277 * As a performance optimization, if possible, there is no need to map
2278 * the sg lists to KLM descriptors. First try to map the sg lists to MTT
2279 * descriptors and fallback to KLM only in case of a failure.
2280 * It's more efficient for the HW to work with MTT descriptors
2281 * (especially in high load).
2282 * Use KLM (indirect access) only if it's mandatory.
2283 */
2284 pi_mr = mr->mtt_mr;
2285 n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2286 data_sg_offset, meta_sg, meta_sg_nents,
2287 meta_sg_offset);
2288 if (n == data_sg_nents + meta_sg_nents)
2289 goto out;
2290
2291 pi_mr = mr->klm_mr;
2292 n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2293 data_sg_offset, meta_sg, meta_sg_nents,
2294 meta_sg_offset);
2295 if (unlikely(n != data_sg_nents + meta_sg_nents))
2296 return -ENOMEM;
2297
2298 out:
2299 /* This is zero-based memory region */
2300 ibmr->iova = 0;
2301 mr->pi_mr = pi_mr;
2302 if (pi_mr)
2303 ibmr->sig_attrs->meta_length = pi_mr->meta_length;
2304 else
2305 ibmr->sig_attrs->meta_length = mr->meta_length;
2306
2307 return 0;
2308 }
2309
mlx5_ib_map_mr_sg(struct ib_mr * ibmr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset)2310 int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
2311 unsigned int *sg_offset)
2312 {
2313 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2314 int n;
2315
2316 mr->ndescs = 0;
2317
2318 ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map,
2319 mr->desc_size * mr->max_descs,
2320 DMA_TO_DEVICE);
2321
2322 if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS)
2323 n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0,
2324 NULL);
2325 else
2326 n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
2327 mlx5_set_page);
2328
2329 ib_dma_sync_single_for_device(ibmr->device, mr->desc_map,
2330 mr->desc_size * mr->max_descs,
2331 DMA_TO_DEVICE);
2332
2333 return n;
2334 }
2335