1 /*
2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33 #include <rdma/ib_umem.h>
34 #include <rdma/ib_umem_odp.h>
35 #include <linux/kernel.h>
36 #include <linux/dma-buf.h>
37 #include <linux/dma-resv.h>
38
39 #include "mlx5_ib.h"
40 #include "cmd.h"
41 #include "qp.h"
42
43 #include <linux/mlx5/eq.h>
44
45 /* Contains the details of a pagefault. */
46 struct mlx5_pagefault {
47 u32 bytes_committed;
48 u32 token;
49 u8 event_subtype;
50 u8 type;
51 union {
52 /* Initiator or send message responder pagefault details. */
53 struct {
54 /* Received packet size, only valid for responders. */
55 u32 packet_size;
56 /*
57 * Number of resource holding WQE, depends on type.
58 */
59 u32 wq_num;
60 /*
61 * WQE index. Refers to either the send queue or
62 * receive queue, according to event_subtype.
63 */
64 u16 wqe_index;
65 } wqe;
66 /* RDMA responder pagefault details */
67 struct {
68 u32 r_key;
69 /*
70 * Received packet size, minimal size page fault
71 * resolution required for forward progress.
72 */
73 u32 packet_size;
74 u32 rdma_op_len;
75 u64 rdma_va;
76 } rdma;
77 };
78
79 struct mlx5_ib_pf_eq *eq;
80 struct work_struct work;
81 };
82
83 #define MAX_PREFETCH_LEN (4*1024*1024U)
84
85 /* Timeout in ms to wait for an active mmu notifier to complete when handling
86 * a pagefault. */
87 #define MMU_NOTIFIER_TIMEOUT 1000
88
89 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
90 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
91 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
92 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
93 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
94
95 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
96
97 static u64 mlx5_imr_ksm_entries;
98
populate_klm(struct mlx5_klm * pklm,size_t idx,size_t nentries,struct mlx5_ib_mr * imr,int flags)99 static void populate_klm(struct mlx5_klm *pklm, size_t idx, size_t nentries,
100 struct mlx5_ib_mr *imr, int flags)
101 {
102 struct mlx5_klm *end = pklm + nentries;
103
104 if (flags & MLX5_IB_UPD_XLT_ZAP) {
105 for (; pklm != end; pklm++, idx++) {
106 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
107 pklm->key = cpu_to_be32(mr_to_mdev(imr)->null_mkey);
108 pklm->va = 0;
109 }
110 return;
111 }
112
113 /*
114 * The locking here is pretty subtle. Ideally the implicit_children
115 * xarray would be protected by the umem_mutex, however that is not
116 * possible. Instead this uses a weaker update-then-lock pattern:
117 *
118 * xa_store()
119 * mutex_lock(umem_mutex)
120 * mlx5_ib_update_xlt()
121 * mutex_unlock(umem_mutex)
122 * destroy lkey
123 *
124 * ie any change the xarray must be followed by the locked update_xlt
125 * before destroying.
126 *
127 * The umem_mutex provides the acquire/release semantic needed to make
128 * the xa_store() visible to a racing thread.
129 */
130 lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex);
131
132 for (; pklm != end; pklm++, idx++) {
133 struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx);
134
135 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
136 if (mtt) {
137 pklm->key = cpu_to_be32(mtt->ibmr.lkey);
138 pklm->va = cpu_to_be64(idx * MLX5_IMR_MTT_SIZE);
139 } else {
140 pklm->key = cpu_to_be32(mr_to_mdev(imr)->null_mkey);
141 pklm->va = 0;
142 }
143 }
144 }
145
umem_dma_to_mtt(dma_addr_t umem_dma)146 static u64 umem_dma_to_mtt(dma_addr_t umem_dma)
147 {
148 u64 mtt_entry = umem_dma & ODP_DMA_ADDR_MASK;
149
150 if (umem_dma & ODP_READ_ALLOWED_BIT)
151 mtt_entry |= MLX5_IB_MTT_READ;
152 if (umem_dma & ODP_WRITE_ALLOWED_BIT)
153 mtt_entry |= MLX5_IB_MTT_WRITE;
154
155 return mtt_entry;
156 }
157
populate_mtt(__be64 * pas,size_t idx,size_t nentries,struct mlx5_ib_mr * mr,int flags)158 static void populate_mtt(__be64 *pas, size_t idx, size_t nentries,
159 struct mlx5_ib_mr *mr, int flags)
160 {
161 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
162 dma_addr_t pa;
163 size_t i;
164
165 if (flags & MLX5_IB_UPD_XLT_ZAP)
166 return;
167
168 for (i = 0; i < nentries; i++) {
169 pa = odp->dma_list[idx + i];
170 pas[i] = cpu_to_be64(umem_dma_to_mtt(pa));
171 }
172 }
173
mlx5_odp_populate_xlt(void * xlt,size_t idx,size_t nentries,struct mlx5_ib_mr * mr,int flags)174 void mlx5_odp_populate_xlt(void *xlt, size_t idx, size_t nentries,
175 struct mlx5_ib_mr *mr, int flags)
176 {
177 if (flags & MLX5_IB_UPD_XLT_INDIRECT) {
178 populate_klm(xlt, idx, nentries, mr, flags);
179 } else {
180 populate_mtt(xlt, idx, nentries, mr, flags);
181 }
182 }
183
184 /*
185 * This must be called after the mr has been removed from implicit_children.
186 * NOTE: The MR does not necessarily have to be
187 * empty here, parallel page faults could have raced with the free process and
188 * added pages to it.
189 */
free_implicit_child_mr_work(struct work_struct * work)190 static void free_implicit_child_mr_work(struct work_struct *work)
191 {
192 struct mlx5_ib_mr *mr =
193 container_of(work, struct mlx5_ib_mr, odp_destroy.work);
194 struct mlx5_ib_mr *imr = mr->parent;
195 struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
196 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
197
198 mlx5r_deref_wait_odp_mkey(&mr->mmkey);
199
200 mutex_lock(&odp_imr->umem_mutex);
201 mlx5_ib_update_xlt(mr->parent, ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT,
202 1, 0,
203 MLX5_IB_UPD_XLT_INDIRECT | MLX5_IB_UPD_XLT_ATOMIC);
204 mutex_unlock(&odp_imr->umem_mutex);
205 mlx5_ib_dereg_mr(&mr->ibmr, NULL);
206
207 mlx5r_deref_odp_mkey(&imr->mmkey);
208 }
209
destroy_unused_implicit_child_mr(struct mlx5_ib_mr * mr)210 static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr)
211 {
212 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
213 unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
214 struct mlx5_ib_mr *imr = mr->parent;
215
216 if (!refcount_inc_not_zero(&imr->mmkey.usecount))
217 return;
218
219 xa_erase(&imr->implicit_children, idx);
220
221 /* Freeing a MR is a sleeping operation, so bounce to a work queue */
222 INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work);
223 queue_work(system_unbound_wq, &mr->odp_destroy.work);
224 }
225
mlx5_ib_invalidate_range(struct mmu_interval_notifier * mni,const struct mmu_notifier_range * range,unsigned long cur_seq)226 static bool mlx5_ib_invalidate_range(struct mmu_interval_notifier *mni,
227 const struct mmu_notifier_range *range,
228 unsigned long cur_seq)
229 {
230 struct ib_umem_odp *umem_odp =
231 container_of(mni, struct ib_umem_odp, notifier);
232 struct mlx5_ib_mr *mr;
233 const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
234 sizeof(struct mlx5_mtt)) - 1;
235 u64 idx = 0, blk_start_idx = 0;
236 u64 invalidations = 0;
237 unsigned long start;
238 unsigned long end;
239 int in_block = 0;
240 u64 addr;
241
242 if (!mmu_notifier_range_blockable(range))
243 return false;
244
245 mutex_lock(&umem_odp->umem_mutex);
246 mmu_interval_set_seq(mni, cur_seq);
247 /*
248 * If npages is zero then umem_odp->private may not be setup yet. This
249 * does not complete until after the first page is mapped for DMA.
250 */
251 if (!umem_odp->npages)
252 goto out;
253 mr = umem_odp->private;
254
255 start = max_t(u64, ib_umem_start(umem_odp), range->start);
256 end = min_t(u64, ib_umem_end(umem_odp), range->end);
257
258 /*
259 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
260 * while we are doing the invalidation, no page fault will attempt to
261 * overwrite the same MTTs. Concurent invalidations might race us,
262 * but they will write 0s as well, so no difference in the end result.
263 */
264 for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) {
265 idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
266 /*
267 * Strive to write the MTTs in chunks, but avoid overwriting
268 * non-existing MTTs. The huristic here can be improved to
269 * estimate the cost of another UMR vs. the cost of bigger
270 * UMR.
271 */
272 if (umem_odp->dma_list[idx] &
273 (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
274 if (!in_block) {
275 blk_start_idx = idx;
276 in_block = 1;
277 }
278
279 /* Count page invalidations */
280 invalidations += idx - blk_start_idx + 1;
281 } else {
282 u64 umr_offset = idx & umr_block_mask;
283
284 if (in_block && umr_offset == 0) {
285 mlx5_ib_update_xlt(mr, blk_start_idx,
286 idx - blk_start_idx, 0,
287 MLX5_IB_UPD_XLT_ZAP |
288 MLX5_IB_UPD_XLT_ATOMIC);
289 in_block = 0;
290 }
291 }
292 }
293 if (in_block)
294 mlx5_ib_update_xlt(mr, blk_start_idx,
295 idx - blk_start_idx + 1, 0,
296 MLX5_IB_UPD_XLT_ZAP |
297 MLX5_IB_UPD_XLT_ATOMIC);
298
299 mlx5_update_odp_stats(mr, invalidations, invalidations);
300
301 /*
302 * We are now sure that the device will not access the
303 * memory. We can safely unmap it, and mark it as dirty if
304 * needed.
305 */
306
307 ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
308
309 if (unlikely(!umem_odp->npages && mr->parent))
310 destroy_unused_implicit_child_mr(mr);
311 out:
312 mutex_unlock(&umem_odp->umem_mutex);
313 return true;
314 }
315
316 const struct mmu_interval_notifier_ops mlx5_mn_ops = {
317 .invalidate = mlx5_ib_invalidate_range,
318 };
319
internal_fill_odp_caps(struct mlx5_ib_dev * dev)320 static void internal_fill_odp_caps(struct mlx5_ib_dev *dev)
321 {
322 struct ib_odp_caps *caps = &dev->odp_caps;
323
324 memset(caps, 0, sizeof(*caps));
325
326 if (!MLX5_CAP_GEN(dev->mdev, pg) ||
327 !mlx5_ib_can_load_pas_with_umr(dev, 0))
328 return;
329
330 caps->general_caps = IB_ODP_SUPPORT;
331
332 if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
333 dev->odp_max_size = U64_MAX;
334 else
335 dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
336
337 if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
338 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
339
340 if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.srq_receive))
341 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
342
343 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
344 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
345
346 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
347 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
348
349 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
350 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
351
352 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
353 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
354
355 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
356 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
357
358 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.srq_receive))
359 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
360
361 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.send))
362 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND;
363
364 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.receive))
365 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV;
366
367 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.write))
368 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE;
369
370 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.read))
371 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ;
372
373 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.atomic))
374 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
375
376 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.srq_receive))
377 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
378
379 if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
380 MLX5_CAP_GEN(dev->mdev, null_mkey) &&
381 MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) &&
382 !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled))
383 caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
384 }
385
mlx5_ib_page_fault_resume(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault,int error)386 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
387 struct mlx5_pagefault *pfault,
388 int error)
389 {
390 int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
391 pfault->wqe.wq_num : pfault->token;
392 u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = {};
393 int err;
394
395 MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
396 MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type);
397 MLX5_SET(page_fault_resume_in, in, token, pfault->token);
398 MLX5_SET(page_fault_resume_in, in, wq_number, wq_num);
399 MLX5_SET(page_fault_resume_in, in, error, !!error);
400
401 err = mlx5_cmd_exec_in(dev->mdev, page_fault_resume, in);
402 if (err)
403 mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
404 wq_num, err);
405 }
406
implicit_get_child_mr(struct mlx5_ib_mr * imr,unsigned long idx)407 static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr,
408 unsigned long idx)
409 {
410 struct ib_umem_odp *odp;
411 struct mlx5_ib_mr *mr;
412 struct mlx5_ib_mr *ret;
413 int err;
414
415 odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem),
416 idx * MLX5_IMR_MTT_SIZE,
417 MLX5_IMR_MTT_SIZE, &mlx5_mn_ops);
418 if (IS_ERR(odp))
419 return ERR_CAST(odp);
420
421 mr = mlx5_mr_cache_alloc(
422 mr_to_mdev(imr), MLX5_IMR_MTT_CACHE_ENTRY, imr->access_flags);
423 if (IS_ERR(mr)) {
424 ib_umem_odp_release(odp);
425 return mr;
426 }
427
428 mr->ibmr.pd = imr->ibmr.pd;
429 mr->ibmr.device = &mr_to_mdev(imr)->ib_dev;
430 mr->umem = &odp->umem;
431 mr->ibmr.lkey = mr->mmkey.key;
432 mr->ibmr.rkey = mr->mmkey.key;
433 mr->mmkey.iova = idx * MLX5_IMR_MTT_SIZE;
434 mr->parent = imr;
435 odp->private = mr;
436
437 /*
438 * First refcount is owned by the xarray and second refconut
439 * is returned to the caller.
440 */
441 refcount_set(&mr->mmkey.usecount, 2);
442
443 err = mlx5_ib_update_xlt(mr, 0,
444 MLX5_IMR_MTT_ENTRIES,
445 PAGE_SHIFT,
446 MLX5_IB_UPD_XLT_ZAP |
447 MLX5_IB_UPD_XLT_ENABLE);
448 if (err) {
449 ret = ERR_PTR(err);
450 goto out_mr;
451 }
452
453 xa_lock(&imr->implicit_children);
454 ret = __xa_cmpxchg(&imr->implicit_children, idx, NULL, mr,
455 GFP_KERNEL);
456 if (unlikely(ret)) {
457 if (xa_is_err(ret)) {
458 ret = ERR_PTR(xa_err(ret));
459 goto out_lock;
460 }
461 /*
462 * Another thread beat us to creating the child mr, use
463 * theirs.
464 */
465 refcount_inc(&ret->mmkey.usecount);
466 goto out_lock;
467 }
468 xa_unlock(&imr->implicit_children);
469
470 mlx5_ib_dbg(mr_to_mdev(imr), "key %x mr %p\n", mr->mmkey.key, mr);
471 return mr;
472
473 out_lock:
474 xa_unlock(&imr->implicit_children);
475 out_mr:
476 mlx5_ib_dereg_mr(&mr->ibmr, NULL);
477 return ret;
478 }
479
mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd * pd,int access_flags)480 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
481 int access_flags)
482 {
483 struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device);
484 struct ib_umem_odp *umem_odp;
485 struct mlx5_ib_mr *imr;
486 int err;
487
488 if (!mlx5_ib_can_load_pas_with_umr(dev,
489 MLX5_IMR_MTT_ENTRIES * PAGE_SIZE))
490 return ERR_PTR(-EOPNOTSUPP);
491
492 umem_odp = ib_umem_odp_alloc_implicit(&dev->ib_dev, access_flags);
493 if (IS_ERR(umem_odp))
494 return ERR_CAST(umem_odp);
495
496 imr = mlx5_mr_cache_alloc(dev, MLX5_IMR_KSM_CACHE_ENTRY, access_flags);
497 if (IS_ERR(imr)) {
498 ib_umem_odp_release(umem_odp);
499 return imr;
500 }
501
502 imr->ibmr.pd = &pd->ibpd;
503 imr->mmkey.iova = 0;
504 imr->umem = &umem_odp->umem;
505 imr->ibmr.lkey = imr->mmkey.key;
506 imr->ibmr.rkey = imr->mmkey.key;
507 imr->ibmr.device = &dev->ib_dev;
508 imr->umem = &umem_odp->umem;
509 imr->is_odp_implicit = true;
510 xa_init(&imr->implicit_children);
511
512 err = mlx5_ib_update_xlt(imr, 0,
513 mlx5_imr_ksm_entries,
514 MLX5_KSM_PAGE_SHIFT,
515 MLX5_IB_UPD_XLT_INDIRECT |
516 MLX5_IB_UPD_XLT_ZAP |
517 MLX5_IB_UPD_XLT_ENABLE);
518 if (err)
519 goto out_mr;
520
521 err = mlx5r_store_odp_mkey(dev, &imr->mmkey);
522 if (err)
523 goto out_mr;
524
525 mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr);
526 return imr;
527 out_mr:
528 mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
529 mlx5_ib_dereg_mr(&imr->ibmr, NULL);
530 return ERR_PTR(err);
531 }
532
mlx5_ib_free_odp_mr(struct mlx5_ib_mr * mr)533 void mlx5_ib_free_odp_mr(struct mlx5_ib_mr *mr)
534 {
535 struct mlx5_ib_mr *mtt;
536 unsigned long idx;
537
538 /*
539 * If this is an implicit MR it is already invalidated so we can just
540 * delete the children mkeys.
541 */
542 xa_for_each(&mr->implicit_children, idx, mtt) {
543 xa_erase(&mr->implicit_children, idx);
544 mlx5_ib_dereg_mr(&mtt->ibmr, NULL);
545 }
546 }
547
548 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1)
549 #define MLX5_PF_FLAGS_SNAPSHOT BIT(2)
550 #define MLX5_PF_FLAGS_ENABLE BIT(3)
pagefault_real_mr(struct mlx5_ib_mr * mr,struct ib_umem_odp * odp,u64 user_va,size_t bcnt,u32 * bytes_mapped,u32 flags)551 static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp,
552 u64 user_va, size_t bcnt, u32 *bytes_mapped,
553 u32 flags)
554 {
555 int page_shift, ret, np;
556 bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE;
557 u64 access_mask;
558 u64 start_idx;
559 bool fault = !(flags & MLX5_PF_FLAGS_SNAPSHOT);
560 u32 xlt_flags = MLX5_IB_UPD_XLT_ATOMIC;
561
562 if (flags & MLX5_PF_FLAGS_ENABLE)
563 xlt_flags |= MLX5_IB_UPD_XLT_ENABLE;
564
565 page_shift = odp->page_shift;
566 start_idx = (user_va - ib_umem_start(odp)) >> page_shift;
567 access_mask = ODP_READ_ALLOWED_BIT;
568
569 if (odp->umem.writable && !downgrade)
570 access_mask |= ODP_WRITE_ALLOWED_BIT;
571
572 np = ib_umem_odp_map_dma_and_lock(odp, user_va, bcnt, access_mask, fault);
573 if (np < 0)
574 return np;
575
576 /*
577 * No need to check whether the MTTs really belong to this MR, since
578 * ib_umem_odp_map_dma_and_lock already checks this.
579 */
580 ret = mlx5_ib_update_xlt(mr, start_idx, np, page_shift, xlt_flags);
581 mutex_unlock(&odp->umem_mutex);
582
583 if (ret < 0) {
584 if (ret != -EAGAIN)
585 mlx5_ib_err(mr_to_mdev(mr),
586 "Failed to update mkey page tables\n");
587 goto out;
588 }
589
590 if (bytes_mapped) {
591 u32 new_mappings = (np << page_shift) -
592 (user_va - round_down(user_va, 1 << page_shift));
593
594 *bytes_mapped += min_t(u32, new_mappings, bcnt);
595 }
596
597 return np << (page_shift - PAGE_SHIFT);
598
599 out:
600 return ret;
601 }
602
pagefault_implicit_mr(struct mlx5_ib_mr * imr,struct ib_umem_odp * odp_imr,u64 user_va,size_t bcnt,u32 * bytes_mapped,u32 flags)603 static int pagefault_implicit_mr(struct mlx5_ib_mr *imr,
604 struct ib_umem_odp *odp_imr, u64 user_va,
605 size_t bcnt, u32 *bytes_mapped, u32 flags)
606 {
607 unsigned long end_idx = (user_va + bcnt - 1) >> MLX5_IMR_MTT_SHIFT;
608 unsigned long upd_start_idx = end_idx + 1;
609 unsigned long upd_len = 0;
610 unsigned long npages = 0;
611 int err;
612 int ret;
613
614 if (unlikely(user_va >= mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE ||
615 mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE - user_va < bcnt))
616 return -EFAULT;
617
618 /* Fault each child mr that intersects with our interval. */
619 while (bcnt) {
620 unsigned long idx = user_va >> MLX5_IMR_MTT_SHIFT;
621 struct ib_umem_odp *umem_odp;
622 struct mlx5_ib_mr *mtt;
623 u64 len;
624
625 xa_lock(&imr->implicit_children);
626 mtt = xa_load(&imr->implicit_children, idx);
627 if (unlikely(!mtt)) {
628 xa_unlock(&imr->implicit_children);
629 mtt = implicit_get_child_mr(imr, idx);
630 if (IS_ERR(mtt)) {
631 ret = PTR_ERR(mtt);
632 goto out;
633 }
634 upd_start_idx = min(upd_start_idx, idx);
635 upd_len = idx - upd_start_idx + 1;
636 } else {
637 refcount_inc(&mtt->mmkey.usecount);
638 xa_unlock(&imr->implicit_children);
639 }
640
641 umem_odp = to_ib_umem_odp(mtt->umem);
642 len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) -
643 user_va;
644
645 ret = pagefault_real_mr(mtt, umem_odp, user_va, len,
646 bytes_mapped, flags);
647
648 mlx5r_deref_odp_mkey(&mtt->mmkey);
649
650 if (ret < 0)
651 goto out;
652 user_va += len;
653 bcnt -= len;
654 npages += ret;
655 }
656
657 ret = npages;
658
659 /*
660 * Any time the implicit_children are changed we must perform an
661 * update of the xlt before exiting to ensure the HW and the
662 * implicit_children remains synchronized.
663 */
664 out:
665 if (likely(!upd_len))
666 return ret;
667
668 /*
669 * Notice this is not strictly ordered right, the KSM is updated after
670 * the implicit_children is updated, so a parallel page fault could
671 * see a MR that is not yet visible in the KSM. This is similar to a
672 * parallel page fault seeing a MR that is being concurrently removed
673 * from the KSM. Both of these improbable situations are resolved
674 * safely by resuming the HW and then taking another page fault. The
675 * next pagefault handler will see the new information.
676 */
677 mutex_lock(&odp_imr->umem_mutex);
678 err = mlx5_ib_update_xlt(imr, upd_start_idx, upd_len, 0,
679 MLX5_IB_UPD_XLT_INDIRECT |
680 MLX5_IB_UPD_XLT_ATOMIC);
681 mutex_unlock(&odp_imr->umem_mutex);
682 if (err) {
683 mlx5_ib_err(mr_to_mdev(imr), "Failed to update PAS\n");
684 return err;
685 }
686 return ret;
687 }
688
pagefault_dmabuf_mr(struct mlx5_ib_mr * mr,size_t bcnt,u32 * bytes_mapped,u32 flags)689 static int pagefault_dmabuf_mr(struct mlx5_ib_mr *mr, size_t bcnt,
690 u32 *bytes_mapped, u32 flags)
691 {
692 struct ib_umem_dmabuf *umem_dmabuf = to_ib_umem_dmabuf(mr->umem);
693 u32 xlt_flags = 0;
694 int err;
695 unsigned int page_size;
696
697 if (flags & MLX5_PF_FLAGS_ENABLE)
698 xlt_flags |= MLX5_IB_UPD_XLT_ENABLE;
699
700 dma_resv_lock(umem_dmabuf->attach->dmabuf->resv, NULL);
701 err = ib_umem_dmabuf_map_pages(umem_dmabuf);
702 if (err) {
703 dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv);
704 return err;
705 }
706
707 page_size = mlx5_umem_find_best_pgsz(&umem_dmabuf->umem, mkc,
708 log_page_size, 0,
709 umem_dmabuf->umem.iova);
710 if (unlikely(page_size < PAGE_SIZE)) {
711 ib_umem_dmabuf_unmap_pages(umem_dmabuf);
712 err = -EINVAL;
713 } else {
714 err = mlx5_ib_update_mr_pas(mr, xlt_flags);
715 }
716 dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv);
717
718 if (err)
719 return err;
720
721 if (bytes_mapped)
722 *bytes_mapped += bcnt;
723
724 return ib_umem_num_pages(mr->umem);
725 }
726
727 /*
728 * Returns:
729 * -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are
730 * not accessible, or the MR is no longer valid.
731 * -EAGAIN/-ENOMEM: The operation should be retried
732 *
733 * -EINVAL/others: General internal malfunction
734 * >0: Number of pages mapped
735 */
pagefault_mr(struct mlx5_ib_mr * mr,u64 io_virt,size_t bcnt,u32 * bytes_mapped,u32 flags)736 static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt,
737 u32 *bytes_mapped, u32 flags)
738 {
739 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
740
741 if (unlikely(io_virt < mr->mmkey.iova))
742 return -EFAULT;
743
744 if (mr->umem->is_dmabuf)
745 return pagefault_dmabuf_mr(mr, bcnt, bytes_mapped, flags);
746
747 if (!odp->is_implicit_odp) {
748 u64 user_va;
749
750 if (check_add_overflow(io_virt - mr->mmkey.iova,
751 (u64)odp->umem.address, &user_va))
752 return -EFAULT;
753 if (unlikely(user_va >= ib_umem_end(odp) ||
754 ib_umem_end(odp) - user_va < bcnt))
755 return -EFAULT;
756 return pagefault_real_mr(mr, odp, user_va, bcnt, bytes_mapped,
757 flags);
758 }
759 return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped,
760 flags);
761 }
762
mlx5_ib_init_odp_mr(struct mlx5_ib_mr * mr)763 int mlx5_ib_init_odp_mr(struct mlx5_ib_mr *mr)
764 {
765 int ret;
766
767 ret = pagefault_real_mr(mr, to_ib_umem_odp(mr->umem), mr->umem->address,
768 mr->umem->length, NULL,
769 MLX5_PF_FLAGS_SNAPSHOT | MLX5_PF_FLAGS_ENABLE);
770 return ret >= 0 ? 0 : ret;
771 }
772
mlx5_ib_init_dmabuf_mr(struct mlx5_ib_mr * mr)773 int mlx5_ib_init_dmabuf_mr(struct mlx5_ib_mr *mr)
774 {
775 int ret;
776
777 ret = pagefault_dmabuf_mr(mr, mr->umem->length, NULL,
778 MLX5_PF_FLAGS_ENABLE);
779
780 return ret >= 0 ? 0 : ret;
781 }
782
783 struct pf_frame {
784 struct pf_frame *next;
785 u32 key;
786 u64 io_virt;
787 size_t bcnt;
788 int depth;
789 };
790
mkey_is_eq(struct mlx5_core_mkey * mmkey,u32 key)791 static bool mkey_is_eq(struct mlx5_core_mkey *mmkey, u32 key)
792 {
793 if (!mmkey)
794 return false;
795 if (mmkey->type == MLX5_MKEY_MW)
796 return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key);
797 return mmkey->key == key;
798 }
799
get_indirect_num_descs(struct mlx5_core_mkey * mmkey)800 static int get_indirect_num_descs(struct mlx5_core_mkey *mmkey)
801 {
802 struct mlx5_ib_mw *mw;
803 struct mlx5_ib_devx_mr *devx_mr;
804
805 if (mmkey->type == MLX5_MKEY_MW) {
806 mw = container_of(mmkey, struct mlx5_ib_mw, mmkey);
807 return mw->ndescs;
808 }
809
810 devx_mr = container_of(mmkey, struct mlx5_ib_devx_mr,
811 mmkey);
812 return devx_mr->ndescs;
813 }
814
815 /*
816 * Handle a single data segment in a page-fault WQE or RDMA region.
817 *
818 * Returns number of OS pages retrieved on success. The caller may continue to
819 * the next data segment.
820 * Can return the following error codes:
821 * -EAGAIN to designate a temporary error. The caller will abort handling the
822 * page fault and resolve it.
823 * -EFAULT when there's an error mapping the requested pages. The caller will
824 * abort the page fault handling.
825 */
pagefault_single_data_segment(struct mlx5_ib_dev * dev,struct ib_pd * pd,u32 key,u64 io_virt,size_t bcnt,u32 * bytes_committed,u32 * bytes_mapped)826 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
827 struct ib_pd *pd, u32 key,
828 u64 io_virt, size_t bcnt,
829 u32 *bytes_committed,
830 u32 *bytes_mapped)
831 {
832 int npages = 0, ret, i, outlen, cur_outlen = 0, depth = 0;
833 struct pf_frame *head = NULL, *frame;
834 struct mlx5_core_mkey *mmkey;
835 struct mlx5_ib_mr *mr;
836 struct mlx5_klm *pklm;
837 u32 *out = NULL;
838 size_t offset;
839 int ndescs;
840
841 io_virt += *bytes_committed;
842 bcnt -= *bytes_committed;
843
844 next_mr:
845 xa_lock(&dev->odp_mkeys);
846 mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key));
847 if (!mmkey) {
848 xa_unlock(&dev->odp_mkeys);
849 mlx5_ib_dbg(
850 dev,
851 "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
852 key);
853 if (bytes_mapped)
854 *bytes_mapped += bcnt;
855 /*
856 * The user could specify a SGL with multiple lkeys and only
857 * some of them are ODP. Treat the non-ODP ones as fully
858 * faulted.
859 */
860 ret = 0;
861 goto end;
862 }
863 refcount_inc(&mmkey->usecount);
864 xa_unlock(&dev->odp_mkeys);
865
866 if (!mkey_is_eq(mmkey, key)) {
867 mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
868 ret = -EFAULT;
869 goto end;
870 }
871
872 switch (mmkey->type) {
873 case MLX5_MKEY_MR:
874 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
875
876 ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0);
877 if (ret < 0)
878 goto end;
879
880 mlx5_update_odp_stats(mr, faults, ret);
881
882 npages += ret;
883 ret = 0;
884 break;
885
886 case MLX5_MKEY_MW:
887 case MLX5_MKEY_INDIRECT_DEVX:
888 ndescs = get_indirect_num_descs(mmkey);
889
890 if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
891 mlx5_ib_dbg(dev, "indirection level exceeded\n");
892 ret = -EFAULT;
893 goto end;
894 }
895
896 outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
897 sizeof(*pklm) * (ndescs - 2);
898
899 if (outlen > cur_outlen) {
900 kfree(out);
901 out = kzalloc(outlen, GFP_KERNEL);
902 if (!out) {
903 ret = -ENOMEM;
904 goto end;
905 }
906 cur_outlen = outlen;
907 }
908
909 pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
910 bsf0_klm0_pas_mtt0_1);
911
912 ret = mlx5_core_query_mkey(dev->mdev, mmkey, out, outlen);
913 if (ret)
914 goto end;
915
916 offset = io_virt - MLX5_GET64(query_mkey_out, out,
917 memory_key_mkey_entry.start_addr);
918
919 for (i = 0; bcnt && i < ndescs; i++, pklm++) {
920 if (offset >= be32_to_cpu(pklm->bcount)) {
921 offset -= be32_to_cpu(pklm->bcount);
922 continue;
923 }
924
925 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
926 if (!frame) {
927 ret = -ENOMEM;
928 goto end;
929 }
930
931 frame->key = be32_to_cpu(pklm->key);
932 frame->io_virt = be64_to_cpu(pklm->va) + offset;
933 frame->bcnt = min_t(size_t, bcnt,
934 be32_to_cpu(pklm->bcount) - offset);
935 frame->depth = depth + 1;
936 frame->next = head;
937 head = frame;
938
939 bcnt -= frame->bcnt;
940 offset = 0;
941 }
942 break;
943
944 default:
945 mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
946 ret = -EFAULT;
947 goto end;
948 }
949
950 if (head) {
951 frame = head;
952 head = frame->next;
953
954 key = frame->key;
955 io_virt = frame->io_virt;
956 bcnt = frame->bcnt;
957 depth = frame->depth;
958 kfree(frame);
959
960 mlx5r_deref_odp_mkey(mmkey);
961 goto next_mr;
962 }
963
964 end:
965 if (mmkey)
966 mlx5r_deref_odp_mkey(mmkey);
967 while (head) {
968 frame = head;
969 head = frame->next;
970 kfree(frame);
971 }
972 kfree(out);
973
974 *bytes_committed = 0;
975 return ret ? ret : npages;
976 }
977
978 /*
979 * Parse a series of data segments for page fault handling.
980 *
981 * @dev: Pointer to mlx5 IB device
982 * @pfault: contains page fault information.
983 * @wqe: points at the first data segment in the WQE.
984 * @wqe_end: points after the end of the WQE.
985 * @bytes_mapped: receives the number of bytes that the function was able to
986 * map. This allows the caller to decide intelligently whether
987 * enough memory was mapped to resolve the page fault
988 * successfully (e.g. enough for the next MTU, or the entire
989 * WQE).
990 * @total_wqe_bytes: receives the total data size of this WQE in bytes (minus
991 * the committed bytes).
992 * @receive_queue: receive WQE end of sg list
993 *
994 * Returns the number of pages loaded if positive, zero for an empty WQE, or a
995 * negative error code.
996 */
pagefault_data_segments(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault,void * wqe,void * wqe_end,u32 * bytes_mapped,u32 * total_wqe_bytes,bool receive_queue)997 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
998 struct mlx5_pagefault *pfault,
999 void *wqe,
1000 void *wqe_end, u32 *bytes_mapped,
1001 u32 *total_wqe_bytes, bool receive_queue)
1002 {
1003 int ret = 0, npages = 0;
1004 u64 io_virt;
1005 u32 key;
1006 u32 byte_count;
1007 size_t bcnt;
1008 int inline_segment;
1009
1010 if (bytes_mapped)
1011 *bytes_mapped = 0;
1012 if (total_wqe_bytes)
1013 *total_wqe_bytes = 0;
1014
1015 while (wqe < wqe_end) {
1016 struct mlx5_wqe_data_seg *dseg = wqe;
1017
1018 io_virt = be64_to_cpu(dseg->addr);
1019 key = be32_to_cpu(dseg->lkey);
1020 byte_count = be32_to_cpu(dseg->byte_count);
1021 inline_segment = !!(byte_count & MLX5_INLINE_SEG);
1022 bcnt = byte_count & ~MLX5_INLINE_SEG;
1023
1024 if (inline_segment) {
1025 bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
1026 wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
1027 16);
1028 } else {
1029 wqe += sizeof(*dseg);
1030 }
1031
1032 /* receive WQE end of sg list. */
1033 if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
1034 io_virt == 0)
1035 break;
1036
1037 if (!inline_segment && total_wqe_bytes) {
1038 *total_wqe_bytes += bcnt - min_t(size_t, bcnt,
1039 pfault->bytes_committed);
1040 }
1041
1042 /* A zero length data segment designates a length of 2GB. */
1043 if (bcnt == 0)
1044 bcnt = 1U << 31;
1045
1046 if (inline_segment || bcnt <= pfault->bytes_committed) {
1047 pfault->bytes_committed -=
1048 min_t(size_t, bcnt,
1049 pfault->bytes_committed);
1050 continue;
1051 }
1052
1053 ret = pagefault_single_data_segment(dev, NULL, key,
1054 io_virt, bcnt,
1055 &pfault->bytes_committed,
1056 bytes_mapped);
1057 if (ret < 0)
1058 break;
1059 npages += ret;
1060 }
1061
1062 return ret < 0 ? ret : npages;
1063 }
1064
1065 /*
1066 * Parse initiator WQE. Advances the wqe pointer to point at the
1067 * scatter-gather list, and set wqe_end to the end of the WQE.
1068 */
mlx5_ib_mr_initiator_pfault_handler(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault,struct mlx5_ib_qp * qp,void ** wqe,void ** wqe_end,int wqe_length)1069 static int mlx5_ib_mr_initiator_pfault_handler(
1070 struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
1071 struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
1072 {
1073 struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
1074 u16 wqe_index = pfault->wqe.wqe_index;
1075 struct mlx5_base_av *av;
1076 unsigned ds, opcode;
1077 u32 qpn = qp->trans_qp.base.mqp.qpn;
1078
1079 ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
1080 if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
1081 mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
1082 ds, wqe_length);
1083 return -EFAULT;
1084 }
1085
1086 if (ds == 0) {
1087 mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
1088 wqe_index, qpn);
1089 return -EFAULT;
1090 }
1091
1092 *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
1093 *wqe += sizeof(*ctrl);
1094
1095 opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
1096 MLX5_WQE_CTRL_OPCODE_MASK;
1097
1098 if (qp->type == IB_QPT_XRC_INI)
1099 *wqe += sizeof(struct mlx5_wqe_xrc_seg);
1100
1101 if (qp->type == IB_QPT_UD || qp->type == MLX5_IB_QPT_DCI) {
1102 av = *wqe;
1103 if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
1104 *wqe += sizeof(struct mlx5_av);
1105 else
1106 *wqe += sizeof(struct mlx5_base_av);
1107 }
1108
1109 switch (opcode) {
1110 case MLX5_OPCODE_RDMA_WRITE:
1111 case MLX5_OPCODE_RDMA_WRITE_IMM:
1112 case MLX5_OPCODE_RDMA_READ:
1113 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
1114 break;
1115 case MLX5_OPCODE_ATOMIC_CS:
1116 case MLX5_OPCODE_ATOMIC_FA:
1117 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
1118 *wqe += sizeof(struct mlx5_wqe_atomic_seg);
1119 break;
1120 }
1121
1122 return 0;
1123 }
1124
1125 /*
1126 * Parse responder WQE and set wqe_end to the end of the WQE.
1127 */
mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev * dev,struct mlx5_ib_srq * srq,void ** wqe,void ** wqe_end,int wqe_length)1128 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev,
1129 struct mlx5_ib_srq *srq,
1130 void **wqe, void **wqe_end,
1131 int wqe_length)
1132 {
1133 int wqe_size = 1 << srq->msrq.wqe_shift;
1134
1135 if (wqe_size > wqe_length) {
1136 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1137 return -EFAULT;
1138 }
1139
1140 *wqe_end = *wqe + wqe_size;
1141 *wqe += sizeof(struct mlx5_wqe_srq_next_seg);
1142
1143 return 0;
1144 }
1145
mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev * dev,struct mlx5_ib_qp * qp,void * wqe,void ** wqe_end,int wqe_length)1146 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev,
1147 struct mlx5_ib_qp *qp,
1148 void *wqe, void **wqe_end,
1149 int wqe_length)
1150 {
1151 struct mlx5_ib_wq *wq = &qp->rq;
1152 int wqe_size = 1 << wq->wqe_shift;
1153
1154 if (qp->flags_en & MLX5_QP_FLAG_SIGNATURE) {
1155 mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
1156 return -EFAULT;
1157 }
1158
1159 if (wqe_size > wqe_length) {
1160 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1161 return -EFAULT;
1162 }
1163
1164 *wqe_end = wqe + wqe_size;
1165
1166 return 0;
1167 }
1168
odp_get_rsc(struct mlx5_ib_dev * dev,u32 wq_num,int pf_type)1169 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
1170 u32 wq_num, int pf_type)
1171 {
1172 struct mlx5_core_rsc_common *common = NULL;
1173 struct mlx5_core_srq *srq;
1174
1175 switch (pf_type) {
1176 case MLX5_WQE_PF_TYPE_RMP:
1177 srq = mlx5_cmd_get_srq(dev, wq_num);
1178 if (srq)
1179 common = &srq->common;
1180 break;
1181 case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
1182 case MLX5_WQE_PF_TYPE_RESP:
1183 case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
1184 common = mlx5_core_res_hold(dev, wq_num, MLX5_RES_QP);
1185 break;
1186 default:
1187 break;
1188 }
1189
1190 return common;
1191 }
1192
res_to_qp(struct mlx5_core_rsc_common * res)1193 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
1194 {
1195 struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
1196
1197 return to_mibqp(mqp);
1198 }
1199
res_to_srq(struct mlx5_core_rsc_common * res)1200 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res)
1201 {
1202 struct mlx5_core_srq *msrq =
1203 container_of(res, struct mlx5_core_srq, common);
1204
1205 return to_mibsrq(msrq);
1206 }
1207
mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault)1208 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1209 struct mlx5_pagefault *pfault)
1210 {
1211 bool sq = pfault->type & MLX5_PFAULT_REQUESTOR;
1212 u16 wqe_index = pfault->wqe.wqe_index;
1213 void *wqe, *wqe_start = NULL, *wqe_end = NULL;
1214 u32 bytes_mapped, total_wqe_bytes;
1215 struct mlx5_core_rsc_common *res;
1216 int resume_with_error = 1;
1217 struct mlx5_ib_qp *qp;
1218 size_t bytes_copied;
1219 int ret = 0;
1220
1221 res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
1222 if (!res) {
1223 mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
1224 return;
1225 }
1226
1227 if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ &&
1228 res->res != MLX5_RES_XSRQ) {
1229 mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n",
1230 pfault->type);
1231 goto resolve_page_fault;
1232 }
1233
1234 wqe_start = (void *)__get_free_page(GFP_KERNEL);
1235 if (!wqe_start) {
1236 mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1237 goto resolve_page_fault;
1238 }
1239
1240 wqe = wqe_start;
1241 qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL;
1242 if (qp && sq) {
1243 ret = mlx5_ib_read_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE,
1244 &bytes_copied);
1245 if (ret)
1246 goto read_user;
1247 ret = mlx5_ib_mr_initiator_pfault_handler(
1248 dev, pfault, qp, &wqe, &wqe_end, bytes_copied);
1249 } else if (qp && !sq) {
1250 ret = mlx5_ib_read_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE,
1251 &bytes_copied);
1252 if (ret)
1253 goto read_user;
1254 ret = mlx5_ib_mr_responder_pfault_handler_rq(
1255 dev, qp, wqe, &wqe_end, bytes_copied);
1256 } else if (!qp) {
1257 struct mlx5_ib_srq *srq = res_to_srq(res);
1258
1259 ret = mlx5_ib_read_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE,
1260 &bytes_copied);
1261 if (ret)
1262 goto read_user;
1263 ret = mlx5_ib_mr_responder_pfault_handler_srq(
1264 dev, srq, &wqe, &wqe_end, bytes_copied);
1265 }
1266
1267 if (ret < 0 || wqe >= wqe_end)
1268 goto resolve_page_fault;
1269
1270 ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped,
1271 &total_wqe_bytes, !sq);
1272 if (ret == -EAGAIN)
1273 goto out;
1274
1275 if (ret < 0 || total_wqe_bytes > bytes_mapped)
1276 goto resolve_page_fault;
1277
1278 out:
1279 ret = 0;
1280 resume_with_error = 0;
1281
1282 read_user:
1283 if (ret)
1284 mlx5_ib_err(
1285 dev,
1286 "Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %x\n",
1287 ret, wqe_index, pfault->token);
1288
1289 resolve_page_fault:
1290 mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1291 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1292 pfault->wqe.wq_num, resume_with_error,
1293 pfault->type);
1294 mlx5_core_res_put(res);
1295 free_page((unsigned long)wqe_start);
1296 }
1297
pages_in_range(u64 address,u32 length)1298 static int pages_in_range(u64 address, u32 length)
1299 {
1300 return (ALIGN(address + length, PAGE_SIZE) -
1301 (address & PAGE_MASK)) >> PAGE_SHIFT;
1302 }
1303
mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault)1304 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1305 struct mlx5_pagefault *pfault)
1306 {
1307 u64 address;
1308 u32 length;
1309 u32 prefetch_len = pfault->bytes_committed;
1310 int prefetch_activated = 0;
1311 u32 rkey = pfault->rdma.r_key;
1312 int ret;
1313
1314 /* The RDMA responder handler handles the page fault in two parts.
1315 * First it brings the necessary pages for the current packet
1316 * (and uses the pfault context), and then (after resuming the QP)
1317 * prefetches more pages. The second operation cannot use the pfault
1318 * context and therefore uses the dummy_pfault context allocated on
1319 * the stack */
1320 pfault->rdma.rdma_va += pfault->bytes_committed;
1321 pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1322 pfault->rdma.rdma_op_len);
1323 pfault->bytes_committed = 0;
1324
1325 address = pfault->rdma.rdma_va;
1326 length = pfault->rdma.rdma_op_len;
1327
1328 /* For some operations, the hardware cannot tell the exact message
1329 * length, and in those cases it reports zero. Use prefetch
1330 * logic. */
1331 if (length == 0) {
1332 prefetch_activated = 1;
1333 length = pfault->rdma.packet_size;
1334 prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1335 }
1336
1337 ret = pagefault_single_data_segment(dev, NULL, rkey, address, length,
1338 &pfault->bytes_committed, NULL);
1339 if (ret == -EAGAIN) {
1340 /* We're racing with an invalidation, don't prefetch */
1341 prefetch_activated = 0;
1342 } else if (ret < 0 || pages_in_range(address, length) > ret) {
1343 mlx5_ib_page_fault_resume(dev, pfault, 1);
1344 if (ret != -ENOENT)
1345 mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
1346 ret, pfault->token, pfault->type);
1347 return;
1348 }
1349
1350 mlx5_ib_page_fault_resume(dev, pfault, 0);
1351 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
1352 pfault->token, pfault->type,
1353 prefetch_activated);
1354
1355 /* At this point, there might be a new pagefault already arriving in
1356 * the eq, switch to the dummy pagefault for the rest of the
1357 * processing. We're still OK with the objects being alive as the
1358 * work-queue is being fenced. */
1359
1360 if (prefetch_activated) {
1361 u32 bytes_committed = 0;
1362
1363 ret = pagefault_single_data_segment(dev, NULL, rkey, address,
1364 prefetch_len,
1365 &bytes_committed, NULL);
1366 if (ret < 0 && ret != -EAGAIN) {
1367 mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
1368 ret, pfault->token, address, prefetch_len);
1369 }
1370 }
1371 }
1372
mlx5_ib_pfault(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault)1373 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
1374 {
1375 u8 event_subtype = pfault->event_subtype;
1376
1377 switch (event_subtype) {
1378 case MLX5_PFAULT_SUBTYPE_WQE:
1379 mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1380 break;
1381 case MLX5_PFAULT_SUBTYPE_RDMA:
1382 mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1383 break;
1384 default:
1385 mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1386 event_subtype);
1387 mlx5_ib_page_fault_resume(dev, pfault, 1);
1388 }
1389 }
1390
mlx5_ib_eqe_pf_action(struct work_struct * work)1391 static void mlx5_ib_eqe_pf_action(struct work_struct *work)
1392 {
1393 struct mlx5_pagefault *pfault = container_of(work,
1394 struct mlx5_pagefault,
1395 work);
1396 struct mlx5_ib_pf_eq *eq = pfault->eq;
1397
1398 mlx5_ib_pfault(eq->dev, pfault);
1399 mempool_free(pfault, eq->pool);
1400 }
1401
mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq * eq)1402 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
1403 {
1404 struct mlx5_eqe_page_fault *pf_eqe;
1405 struct mlx5_pagefault *pfault;
1406 struct mlx5_eqe *eqe;
1407 int cc = 0;
1408
1409 while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
1410 pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
1411 if (!pfault) {
1412 schedule_work(&eq->work);
1413 break;
1414 }
1415
1416 pf_eqe = &eqe->data.page_fault;
1417 pfault->event_subtype = eqe->sub_type;
1418 pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed);
1419
1420 mlx5_ib_dbg(eq->dev,
1421 "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n",
1422 eqe->sub_type, pfault->bytes_committed);
1423
1424 switch (eqe->sub_type) {
1425 case MLX5_PFAULT_SUBTYPE_RDMA:
1426 /* RDMA based event */
1427 pfault->type =
1428 be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
1429 pfault->token =
1430 be32_to_cpu(pf_eqe->rdma.pftype_token) &
1431 MLX5_24BIT_MASK;
1432 pfault->rdma.r_key =
1433 be32_to_cpu(pf_eqe->rdma.r_key);
1434 pfault->rdma.packet_size =
1435 be16_to_cpu(pf_eqe->rdma.packet_length);
1436 pfault->rdma.rdma_op_len =
1437 be32_to_cpu(pf_eqe->rdma.rdma_op_len);
1438 pfault->rdma.rdma_va =
1439 be64_to_cpu(pf_eqe->rdma.rdma_va);
1440 mlx5_ib_dbg(eq->dev,
1441 "PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n",
1442 pfault->type, pfault->token,
1443 pfault->rdma.r_key);
1444 mlx5_ib_dbg(eq->dev,
1445 "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
1446 pfault->rdma.rdma_op_len,
1447 pfault->rdma.rdma_va);
1448 break;
1449
1450 case MLX5_PFAULT_SUBTYPE_WQE:
1451 /* WQE based event */
1452 pfault->type =
1453 (be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
1454 pfault->token =
1455 be32_to_cpu(pf_eqe->wqe.token);
1456 pfault->wqe.wq_num =
1457 be32_to_cpu(pf_eqe->wqe.pftype_wq) &
1458 MLX5_24BIT_MASK;
1459 pfault->wqe.wqe_index =
1460 be16_to_cpu(pf_eqe->wqe.wqe_index);
1461 pfault->wqe.packet_size =
1462 be16_to_cpu(pf_eqe->wqe.packet_length);
1463 mlx5_ib_dbg(eq->dev,
1464 "PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n",
1465 pfault->type, pfault->token,
1466 pfault->wqe.wq_num,
1467 pfault->wqe.wqe_index);
1468 break;
1469
1470 default:
1471 mlx5_ib_warn(eq->dev,
1472 "Unsupported page fault event sub-type: 0x%02hhx\n",
1473 eqe->sub_type);
1474 /* Unsupported page faults should still be
1475 * resolved by the page fault handler
1476 */
1477 }
1478
1479 pfault->eq = eq;
1480 INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
1481 queue_work(eq->wq, &pfault->work);
1482
1483 cc = mlx5_eq_update_cc(eq->core, ++cc);
1484 }
1485
1486 mlx5_eq_update_ci(eq->core, cc, 1);
1487 }
1488
mlx5_ib_eq_pf_int(struct notifier_block * nb,unsigned long type,void * data)1489 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type,
1490 void *data)
1491 {
1492 struct mlx5_ib_pf_eq *eq =
1493 container_of(nb, struct mlx5_ib_pf_eq, irq_nb);
1494 unsigned long flags;
1495
1496 if (spin_trylock_irqsave(&eq->lock, flags)) {
1497 mlx5_ib_eq_pf_process(eq);
1498 spin_unlock_irqrestore(&eq->lock, flags);
1499 } else {
1500 schedule_work(&eq->work);
1501 }
1502
1503 return IRQ_HANDLED;
1504 }
1505
1506 /* mempool_refill() was proposed but unfortunately wasn't accepted
1507 * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
1508 * Cheap workaround.
1509 */
mempool_refill(mempool_t * pool)1510 static void mempool_refill(mempool_t *pool)
1511 {
1512 while (pool->curr_nr < pool->min_nr)
1513 mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
1514 }
1515
mlx5_ib_eq_pf_action(struct work_struct * work)1516 static void mlx5_ib_eq_pf_action(struct work_struct *work)
1517 {
1518 struct mlx5_ib_pf_eq *eq =
1519 container_of(work, struct mlx5_ib_pf_eq, work);
1520
1521 mempool_refill(eq->pool);
1522
1523 spin_lock_irq(&eq->lock);
1524 mlx5_ib_eq_pf_process(eq);
1525 spin_unlock_irq(&eq->lock);
1526 }
1527
1528 enum {
1529 MLX5_IB_NUM_PF_EQE = 0x1000,
1530 MLX5_IB_NUM_PF_DRAIN = 64,
1531 };
1532
mlx5r_odp_create_eq(struct mlx5_ib_dev * dev,struct mlx5_ib_pf_eq * eq)1533 int mlx5r_odp_create_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1534 {
1535 struct mlx5_eq_param param = {};
1536 int err = 0;
1537
1538 mutex_lock(&dev->odp_eq_mutex);
1539 if (eq->core)
1540 goto unlock;
1541 INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
1542 spin_lock_init(&eq->lock);
1543 eq->dev = dev;
1544
1545 eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
1546 sizeof(struct mlx5_pagefault));
1547 if (!eq->pool) {
1548 err = -ENOMEM;
1549 goto unlock;
1550 }
1551
1552 eq->wq = alloc_workqueue("mlx5_ib_page_fault",
1553 WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
1554 MLX5_NUM_CMD_EQE);
1555 if (!eq->wq) {
1556 err = -ENOMEM;
1557 goto err_mempool;
1558 }
1559
1560 eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int;
1561 param = (struct mlx5_eq_param) {
1562 .nent = MLX5_IB_NUM_PF_EQE,
1563 };
1564 param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT;
1565 if (!zalloc_cpumask_var(¶m.affinity, GFP_KERNEL)) {
1566 err = -ENOMEM;
1567 goto err_wq;
1568 }
1569 eq->core = mlx5_eq_create_generic(dev->mdev, ¶m);
1570 free_cpumask_var(param.affinity);
1571 if (IS_ERR(eq->core)) {
1572 err = PTR_ERR(eq->core);
1573 goto err_wq;
1574 }
1575 err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb);
1576 if (err) {
1577 mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err);
1578 goto err_eq;
1579 }
1580
1581 mutex_unlock(&dev->odp_eq_mutex);
1582 return 0;
1583 err_eq:
1584 mlx5_eq_destroy_generic(dev->mdev, eq->core);
1585 err_wq:
1586 eq->core = NULL;
1587 destroy_workqueue(eq->wq);
1588 err_mempool:
1589 mempool_destroy(eq->pool);
1590 unlock:
1591 mutex_unlock(&dev->odp_eq_mutex);
1592 return err;
1593 }
1594
1595 static int
mlx5_ib_odp_destroy_eq(struct mlx5_ib_dev * dev,struct mlx5_ib_pf_eq * eq)1596 mlx5_ib_odp_destroy_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1597 {
1598 int err;
1599
1600 if (!eq->core)
1601 return 0;
1602 mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb);
1603 err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
1604 cancel_work_sync(&eq->work);
1605 destroy_workqueue(eq->wq);
1606 mempool_destroy(eq->pool);
1607
1608 return err;
1609 }
1610
mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent * ent)1611 void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
1612 {
1613 if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1614 return;
1615
1616 switch (ent->order - 2) {
1617 case MLX5_IMR_MTT_CACHE_ENTRY:
1618 ent->page = PAGE_SHIFT;
1619 ent->xlt = MLX5_IMR_MTT_ENTRIES *
1620 sizeof(struct mlx5_mtt) /
1621 MLX5_IB_UMR_OCTOWORD;
1622 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
1623 ent->limit = 0;
1624 break;
1625
1626 case MLX5_IMR_KSM_CACHE_ENTRY:
1627 ent->page = MLX5_KSM_PAGE_SHIFT;
1628 ent->xlt = mlx5_imr_ksm_entries *
1629 sizeof(struct mlx5_klm) /
1630 MLX5_IB_UMR_OCTOWORD;
1631 ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
1632 ent->limit = 0;
1633 break;
1634 }
1635 }
1636
1637 static const struct ib_device_ops mlx5_ib_dev_odp_ops = {
1638 .advise_mr = mlx5_ib_advise_mr,
1639 };
1640
mlx5_ib_odp_init_one(struct mlx5_ib_dev * dev)1641 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1642 {
1643 int ret = 0;
1644
1645 internal_fill_odp_caps(dev);
1646
1647 if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1648 return ret;
1649
1650 ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops);
1651
1652 if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
1653 ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
1654 if (ret) {
1655 mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
1656 return ret;
1657 }
1658 }
1659
1660 mutex_init(&dev->odp_eq_mutex);
1661 return ret;
1662 }
1663
mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev * dev)1664 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
1665 {
1666 if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1667 return;
1668
1669 mlx5_ib_odp_destroy_eq(dev, &dev->odp_pf_eq);
1670 }
1671
mlx5_ib_odp_init(void)1672 int mlx5_ib_odp_init(void)
1673 {
1674 mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1675 MLX5_IMR_MTT_BITS);
1676
1677 return 0;
1678 }
1679
1680 struct prefetch_mr_work {
1681 struct work_struct work;
1682 u32 pf_flags;
1683 u32 num_sge;
1684 struct {
1685 u64 io_virt;
1686 struct mlx5_ib_mr *mr;
1687 size_t length;
1688 } frags[];
1689 };
1690
destroy_prefetch_work(struct prefetch_mr_work * work)1691 static void destroy_prefetch_work(struct prefetch_mr_work *work)
1692 {
1693 u32 i;
1694
1695 for (i = 0; i < work->num_sge; ++i)
1696 mlx5r_deref_odp_mkey(&work->frags[i].mr->mmkey);
1697
1698 kvfree(work);
1699 }
1700
1701 static struct mlx5_ib_mr *
get_prefetchable_mr(struct ib_pd * pd,enum ib_uverbs_advise_mr_advice advice,u32 lkey)1702 get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
1703 u32 lkey)
1704 {
1705 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1706 struct mlx5_core_mkey *mmkey;
1707 struct mlx5_ib_mr *mr = NULL;
1708
1709 xa_lock(&dev->odp_mkeys);
1710 mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey));
1711 if (!mmkey || mmkey->key != lkey || mmkey->type != MLX5_MKEY_MR)
1712 goto end;
1713
1714 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1715
1716 if (mr->ibmr.pd != pd) {
1717 mr = NULL;
1718 goto end;
1719 }
1720
1721 /* prefetch with write-access must be supported by the MR */
1722 if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1723 !mr->umem->writable) {
1724 mr = NULL;
1725 goto end;
1726 }
1727
1728 refcount_inc(&mmkey->usecount);
1729 end:
1730 xa_unlock(&dev->odp_mkeys);
1731 return mr;
1732 }
1733
mlx5_ib_prefetch_mr_work(struct work_struct * w)1734 static void mlx5_ib_prefetch_mr_work(struct work_struct *w)
1735 {
1736 struct prefetch_mr_work *work =
1737 container_of(w, struct prefetch_mr_work, work);
1738 u32 bytes_mapped = 0;
1739 int ret;
1740 u32 i;
1741
1742 /* We rely on IB/core that work is executed if we have num_sge != 0 only. */
1743 WARN_ON(!work->num_sge);
1744 for (i = 0; i < work->num_sge; ++i) {
1745 ret = pagefault_mr(work->frags[i].mr, work->frags[i].io_virt,
1746 work->frags[i].length, &bytes_mapped,
1747 work->pf_flags);
1748 if (ret <= 0)
1749 continue;
1750 mlx5_update_odp_stats(work->frags[i].mr, prefetch, ret);
1751 }
1752
1753 destroy_prefetch_work(work);
1754 }
1755
init_prefetch_work(struct ib_pd * pd,enum ib_uverbs_advise_mr_advice advice,u32 pf_flags,struct prefetch_mr_work * work,struct ib_sge * sg_list,u32 num_sge)1756 static bool init_prefetch_work(struct ib_pd *pd,
1757 enum ib_uverbs_advise_mr_advice advice,
1758 u32 pf_flags, struct prefetch_mr_work *work,
1759 struct ib_sge *sg_list, u32 num_sge)
1760 {
1761 u32 i;
1762
1763 INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work);
1764 work->pf_flags = pf_flags;
1765
1766 for (i = 0; i < num_sge; ++i) {
1767 work->frags[i].io_virt = sg_list[i].addr;
1768 work->frags[i].length = sg_list[i].length;
1769 work->frags[i].mr =
1770 get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1771 if (!work->frags[i].mr) {
1772 work->num_sge = i;
1773 return false;
1774 }
1775 }
1776 work->num_sge = num_sge;
1777 return true;
1778 }
1779
mlx5_ib_prefetch_sg_list(struct ib_pd * pd,enum ib_uverbs_advise_mr_advice advice,u32 pf_flags,struct ib_sge * sg_list,u32 num_sge)1780 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd,
1781 enum ib_uverbs_advise_mr_advice advice,
1782 u32 pf_flags, struct ib_sge *sg_list,
1783 u32 num_sge)
1784 {
1785 u32 bytes_mapped = 0;
1786 int ret = 0;
1787 u32 i;
1788
1789 for (i = 0; i < num_sge; ++i) {
1790 struct mlx5_ib_mr *mr;
1791
1792 mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1793 if (!mr)
1794 return -ENOENT;
1795 ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length,
1796 &bytes_mapped, pf_flags);
1797 if (ret < 0) {
1798 mlx5r_deref_odp_mkey(&mr->mmkey);
1799 return ret;
1800 }
1801 mlx5_update_odp_stats(mr, prefetch, ret);
1802 mlx5r_deref_odp_mkey(&mr->mmkey);
1803 }
1804
1805 return 0;
1806 }
1807
mlx5_ib_advise_mr_prefetch(struct ib_pd * pd,enum ib_uverbs_advise_mr_advice advice,u32 flags,struct ib_sge * sg_list,u32 num_sge)1808 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd,
1809 enum ib_uverbs_advise_mr_advice advice,
1810 u32 flags, struct ib_sge *sg_list, u32 num_sge)
1811 {
1812 u32 pf_flags = 0;
1813 struct prefetch_mr_work *work;
1814
1815 if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH)
1816 pf_flags |= MLX5_PF_FLAGS_DOWNGRADE;
1817
1818 if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
1819 pf_flags |= MLX5_PF_FLAGS_SNAPSHOT;
1820
1821 if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH)
1822 return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list,
1823 num_sge);
1824
1825 work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL);
1826 if (!work)
1827 return -ENOMEM;
1828
1829 if (!init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge)) {
1830 destroy_prefetch_work(work);
1831 return -EINVAL;
1832 }
1833 queue_work(system_unbound_wq, &work->work);
1834 return 0;
1835 }
1836