1 /*
2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33
34 #include <linux/kref.h>
35 #include <linux/random.h>
36 #include <linux/debugfs.h>
37 #include <linux/export.h>
38 #include <linux/delay.h>
39 #include <rdma/ib_umem.h>
40 #include <rdma/ib_umem_odp.h>
41 #include <rdma/ib_verbs.h>
42 #include "mlx5_ib.h"
43
44 enum {
45 MAX_PENDING_REG_MR = 8,
46 };
47
48 #define MLX5_UMR_ALIGN 2048
49
50 static void
51 create_mkey_callback(int status, struct mlx5_async_work *context);
52
set_mkc_access_pd_addr_fields(void * mkc,int acc,u64 start_addr,struct ib_pd * pd)53 static void set_mkc_access_pd_addr_fields(void *mkc, int acc, u64 start_addr,
54 struct ib_pd *pd)
55 {
56 struct mlx5_ib_dev *dev = to_mdev(pd->device);
57
58 MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
59 MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
60 MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
61 MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
62 MLX5_SET(mkc, mkc, lr, 1);
63
64 if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write))
65 MLX5_SET(mkc, mkc, relaxed_ordering_write,
66 !!(acc & IB_ACCESS_RELAXED_ORDERING));
67 if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read))
68 MLX5_SET(mkc, mkc, relaxed_ordering_read,
69 !!(acc & IB_ACCESS_RELAXED_ORDERING));
70
71 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
72 MLX5_SET(mkc, mkc, qpn, 0xffffff);
73 MLX5_SET64(mkc, mkc, start_addr, start_addr);
74 }
75
76 static void
assign_mkey_variant(struct mlx5_ib_dev * dev,struct mlx5_core_mkey * mkey,u32 * in)77 assign_mkey_variant(struct mlx5_ib_dev *dev, struct mlx5_core_mkey *mkey,
78 u32 *in)
79 {
80 u8 key = atomic_inc_return(&dev->mkey_var);
81 void *mkc;
82
83 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
84 MLX5_SET(mkc, mkc, mkey_7_0, key);
85 mkey->key = key;
86 }
87
88 static int
mlx5_ib_create_mkey(struct mlx5_ib_dev * dev,struct mlx5_core_mkey * mkey,u32 * in,int inlen)89 mlx5_ib_create_mkey(struct mlx5_ib_dev *dev, struct mlx5_core_mkey *mkey,
90 u32 *in, int inlen)
91 {
92 assign_mkey_variant(dev, mkey, in);
93 return mlx5_core_create_mkey(dev->mdev, mkey, in, inlen);
94 }
95
96 static int
mlx5_ib_create_mkey_cb(struct mlx5_ib_dev * dev,struct mlx5_core_mkey * mkey,struct mlx5_async_ctx * async_ctx,u32 * in,int inlen,u32 * out,int outlen,struct mlx5_async_work * context)97 mlx5_ib_create_mkey_cb(struct mlx5_ib_dev *dev,
98 struct mlx5_core_mkey *mkey,
99 struct mlx5_async_ctx *async_ctx,
100 u32 *in, int inlen, u32 *out, int outlen,
101 struct mlx5_async_work *context)
102 {
103 MLX5_SET(create_mkey_in, in, opcode, MLX5_CMD_OP_CREATE_MKEY);
104 assign_mkey_variant(dev, mkey, in);
105 return mlx5_cmd_exec_cb(async_ctx, in, inlen, out, outlen,
106 create_mkey_callback, context);
107 }
108
109 static void clean_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr);
110 static void dereg_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr);
111 static int mr_cache_max_order(struct mlx5_ib_dev *dev);
112 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent);
113
umr_can_use_indirect_mkey(struct mlx5_ib_dev * dev)114 static bool umr_can_use_indirect_mkey(struct mlx5_ib_dev *dev)
115 {
116 return !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled);
117 }
118
destroy_mkey(struct mlx5_ib_dev * dev,struct mlx5_ib_mr * mr)119 static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
120 {
121 WARN_ON(xa_load(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)));
122
123 return mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
124 }
125
mlx5_ib_pas_fits_in_mr(struct mlx5_ib_mr * mr,u64 start,u64 length)126 static inline bool mlx5_ib_pas_fits_in_mr(struct mlx5_ib_mr *mr, u64 start,
127 u64 length)
128 {
129 return ((u64)1 << mr->order) * MLX5_ADAPTER_PAGE_SIZE >=
130 length + (start & (MLX5_ADAPTER_PAGE_SIZE - 1));
131 }
132
create_mkey_callback(int status,struct mlx5_async_work * context)133 static void create_mkey_callback(int status, struct mlx5_async_work *context)
134 {
135 struct mlx5_ib_mr *mr =
136 container_of(context, struct mlx5_ib_mr, cb_work);
137 struct mlx5_ib_dev *dev = mr->dev;
138 struct mlx5_cache_ent *ent = mr->cache_ent;
139 unsigned long flags;
140
141 if (status) {
142 mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status);
143 kfree(mr);
144 spin_lock_irqsave(&ent->lock, flags);
145 ent->pending--;
146 WRITE_ONCE(dev->fill_delay, 1);
147 spin_unlock_irqrestore(&ent->lock, flags);
148 mod_timer(&dev->delay_timer, jiffies + HZ);
149 return;
150 }
151
152 mr->mmkey.type = MLX5_MKEY_MR;
153 mr->mmkey.key |= mlx5_idx_to_mkey(
154 MLX5_GET(create_mkey_out, mr->out, mkey_index));
155
156 WRITE_ONCE(dev->cache.last_add, jiffies);
157
158 spin_lock_irqsave(&ent->lock, flags);
159 list_add_tail(&mr->list, &ent->head);
160 ent->available_mrs++;
161 ent->total_mrs++;
162 /* If we are doing fill_to_high_water then keep going. */
163 queue_adjust_cache_locked(ent);
164 ent->pending--;
165 spin_unlock_irqrestore(&ent->lock, flags);
166 }
167
alloc_cache_mr(struct mlx5_cache_ent * ent,void * mkc)168 static struct mlx5_ib_mr *alloc_cache_mr(struct mlx5_cache_ent *ent, void *mkc)
169 {
170 struct mlx5_ib_mr *mr;
171
172 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
173 if (!mr)
174 return NULL;
175 mr->order = ent->order;
176 mr->cache_ent = ent;
177 mr->dev = ent->dev;
178
179 set_mkc_access_pd_addr_fields(mkc, 0, 0, ent->dev->umrc.pd);
180 MLX5_SET(mkc, mkc, free, 1);
181 MLX5_SET(mkc, mkc, umr_en, 1);
182 MLX5_SET(mkc, mkc, access_mode_1_0, ent->access_mode & 0x3);
183 MLX5_SET(mkc, mkc, access_mode_4_2, (ent->access_mode >> 2) & 0x7);
184
185 MLX5_SET(mkc, mkc, translations_octword_size, ent->xlt);
186 MLX5_SET(mkc, mkc, log_page_size, ent->page);
187 return mr;
188 }
189
190 /* Asynchronously schedule new MRs to be populated in the cache. */
add_keys(struct mlx5_cache_ent * ent,unsigned int num)191 static int add_keys(struct mlx5_cache_ent *ent, unsigned int num)
192 {
193 size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
194 struct mlx5_ib_mr *mr;
195 void *mkc;
196 u32 *in;
197 int err = 0;
198 int i;
199
200 in = kzalloc(inlen, GFP_KERNEL);
201 if (!in)
202 return -ENOMEM;
203
204 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
205 for (i = 0; i < num; i++) {
206 mr = alloc_cache_mr(ent, mkc);
207 if (!mr) {
208 err = -ENOMEM;
209 break;
210 }
211 spin_lock_irq(&ent->lock);
212 if (ent->pending >= MAX_PENDING_REG_MR) {
213 err = -EAGAIN;
214 spin_unlock_irq(&ent->lock);
215 kfree(mr);
216 break;
217 }
218 ent->pending++;
219 spin_unlock_irq(&ent->lock);
220 err = mlx5_ib_create_mkey_cb(ent->dev, &mr->mmkey,
221 &ent->dev->async_ctx, in, inlen,
222 mr->out, sizeof(mr->out),
223 &mr->cb_work);
224 if (err) {
225 spin_lock_irq(&ent->lock);
226 ent->pending--;
227 spin_unlock_irq(&ent->lock);
228 mlx5_ib_warn(ent->dev, "create mkey failed %d\n", err);
229 kfree(mr);
230 break;
231 }
232 }
233
234 kfree(in);
235 return err;
236 }
237
238 /* Synchronously create a MR in the cache */
create_cache_mr(struct mlx5_cache_ent * ent)239 static struct mlx5_ib_mr *create_cache_mr(struct mlx5_cache_ent *ent)
240 {
241 size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
242 struct mlx5_ib_mr *mr;
243 void *mkc;
244 u32 *in;
245 int err;
246
247 in = kzalloc(inlen, GFP_KERNEL);
248 if (!in)
249 return ERR_PTR(-ENOMEM);
250 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
251
252 mr = alloc_cache_mr(ent, mkc);
253 if (!mr) {
254 err = -ENOMEM;
255 goto free_in;
256 }
257
258 err = mlx5_core_create_mkey(ent->dev->mdev, &mr->mmkey, in, inlen);
259 if (err)
260 goto free_mr;
261
262 mr->mmkey.type = MLX5_MKEY_MR;
263 WRITE_ONCE(ent->dev->cache.last_add, jiffies);
264 spin_lock_irq(&ent->lock);
265 ent->total_mrs++;
266 spin_unlock_irq(&ent->lock);
267 kfree(in);
268 return mr;
269 free_mr:
270 kfree(mr);
271 free_in:
272 kfree(in);
273 return ERR_PTR(err);
274 }
275
remove_cache_mr_locked(struct mlx5_cache_ent * ent)276 static void remove_cache_mr_locked(struct mlx5_cache_ent *ent)
277 {
278 struct mlx5_ib_mr *mr;
279
280 lockdep_assert_held(&ent->lock);
281 if (list_empty(&ent->head))
282 return;
283 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
284 list_del(&mr->list);
285 ent->available_mrs--;
286 ent->total_mrs--;
287 spin_unlock_irq(&ent->lock);
288 mlx5_core_destroy_mkey(ent->dev->mdev, &mr->mmkey);
289 kfree(mr);
290 spin_lock_irq(&ent->lock);
291 }
292
resize_available_mrs(struct mlx5_cache_ent * ent,unsigned int target,bool limit_fill)293 static int resize_available_mrs(struct mlx5_cache_ent *ent, unsigned int target,
294 bool limit_fill)
295 {
296 int err;
297
298 lockdep_assert_held(&ent->lock);
299
300 while (true) {
301 if (limit_fill)
302 target = ent->limit * 2;
303 if (target == ent->available_mrs + ent->pending)
304 return 0;
305 if (target > ent->available_mrs + ent->pending) {
306 u32 todo = target - (ent->available_mrs + ent->pending);
307
308 spin_unlock_irq(&ent->lock);
309 err = add_keys(ent, todo);
310 if (err == -EAGAIN)
311 usleep_range(3000, 5000);
312 spin_lock_irq(&ent->lock);
313 if (err) {
314 if (err != -EAGAIN)
315 return err;
316 } else
317 return 0;
318 } else {
319 remove_cache_mr_locked(ent);
320 }
321 }
322 }
323
size_write(struct file * filp,const char __user * buf,size_t count,loff_t * pos)324 static ssize_t size_write(struct file *filp, const char __user *buf,
325 size_t count, loff_t *pos)
326 {
327 struct mlx5_cache_ent *ent = filp->private_data;
328 u32 target;
329 int err;
330
331 err = kstrtou32_from_user(buf, count, 0, &target);
332 if (err)
333 return err;
334
335 /*
336 * Target is the new value of total_mrs the user requests, however we
337 * cannot free MRs that are in use. Compute the target value for
338 * available_mrs.
339 */
340 spin_lock_irq(&ent->lock);
341 if (target < ent->total_mrs - ent->available_mrs) {
342 err = -EINVAL;
343 goto err_unlock;
344 }
345 target = target - (ent->total_mrs - ent->available_mrs);
346 if (target < ent->limit || target > ent->limit*2) {
347 err = -EINVAL;
348 goto err_unlock;
349 }
350 err = resize_available_mrs(ent, target, false);
351 if (err)
352 goto err_unlock;
353 spin_unlock_irq(&ent->lock);
354
355 return count;
356
357 err_unlock:
358 spin_unlock_irq(&ent->lock);
359 return err;
360 }
361
size_read(struct file * filp,char __user * buf,size_t count,loff_t * pos)362 static ssize_t size_read(struct file *filp, char __user *buf, size_t count,
363 loff_t *pos)
364 {
365 struct mlx5_cache_ent *ent = filp->private_data;
366 char lbuf[20];
367 int err;
368
369 err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->total_mrs);
370 if (err < 0)
371 return err;
372
373 return simple_read_from_buffer(buf, count, pos, lbuf, err);
374 }
375
376 static const struct file_operations size_fops = {
377 .owner = THIS_MODULE,
378 .open = simple_open,
379 .write = size_write,
380 .read = size_read,
381 };
382
limit_write(struct file * filp,const char __user * buf,size_t count,loff_t * pos)383 static ssize_t limit_write(struct file *filp, const char __user *buf,
384 size_t count, loff_t *pos)
385 {
386 struct mlx5_cache_ent *ent = filp->private_data;
387 u32 var;
388 int err;
389
390 err = kstrtou32_from_user(buf, count, 0, &var);
391 if (err)
392 return err;
393
394 /*
395 * Upon set we immediately fill the cache to high water mark implied by
396 * the limit.
397 */
398 spin_lock_irq(&ent->lock);
399 ent->limit = var;
400 err = resize_available_mrs(ent, 0, true);
401 spin_unlock_irq(&ent->lock);
402 if (err)
403 return err;
404 return count;
405 }
406
limit_read(struct file * filp,char __user * buf,size_t count,loff_t * pos)407 static ssize_t limit_read(struct file *filp, char __user *buf, size_t count,
408 loff_t *pos)
409 {
410 struct mlx5_cache_ent *ent = filp->private_data;
411 char lbuf[20];
412 int err;
413
414 err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit);
415 if (err < 0)
416 return err;
417
418 return simple_read_from_buffer(buf, count, pos, lbuf, err);
419 }
420
421 static const struct file_operations limit_fops = {
422 .owner = THIS_MODULE,
423 .open = simple_open,
424 .write = limit_write,
425 .read = limit_read,
426 };
427
someone_adding(struct mlx5_mr_cache * cache)428 static bool someone_adding(struct mlx5_mr_cache *cache)
429 {
430 unsigned int i;
431
432 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
433 struct mlx5_cache_ent *ent = &cache->ent[i];
434 bool ret;
435
436 spin_lock_irq(&ent->lock);
437 ret = ent->available_mrs < ent->limit;
438 spin_unlock_irq(&ent->lock);
439 if (ret)
440 return true;
441 }
442 return false;
443 }
444
445 /*
446 * Check if the bucket is outside the high/low water mark and schedule an async
447 * update. The cache refill has hysteresis, once the low water mark is hit it is
448 * refilled up to the high mark.
449 */
queue_adjust_cache_locked(struct mlx5_cache_ent * ent)450 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent)
451 {
452 lockdep_assert_held(&ent->lock);
453
454 if (ent->disabled || READ_ONCE(ent->dev->fill_delay))
455 return;
456 if (ent->available_mrs < ent->limit) {
457 ent->fill_to_high_water = true;
458 queue_work(ent->dev->cache.wq, &ent->work);
459 } else if (ent->fill_to_high_water &&
460 ent->available_mrs + ent->pending < 2 * ent->limit) {
461 /*
462 * Once we start populating due to hitting a low water mark
463 * continue until we pass the high water mark.
464 */
465 queue_work(ent->dev->cache.wq, &ent->work);
466 } else if (ent->available_mrs == 2 * ent->limit) {
467 ent->fill_to_high_water = false;
468 } else if (ent->available_mrs > 2 * ent->limit) {
469 /* Queue deletion of excess entries */
470 ent->fill_to_high_water = false;
471 if (ent->pending)
472 queue_delayed_work(ent->dev->cache.wq, &ent->dwork,
473 msecs_to_jiffies(1000));
474 else
475 queue_work(ent->dev->cache.wq, &ent->work);
476 }
477 }
478
__cache_work_func(struct mlx5_cache_ent * ent)479 static void __cache_work_func(struct mlx5_cache_ent *ent)
480 {
481 struct mlx5_ib_dev *dev = ent->dev;
482 struct mlx5_mr_cache *cache = &dev->cache;
483 int err;
484
485 spin_lock_irq(&ent->lock);
486 if (ent->disabled)
487 goto out;
488
489 if (ent->fill_to_high_water &&
490 ent->available_mrs + ent->pending < 2 * ent->limit &&
491 !READ_ONCE(dev->fill_delay)) {
492 spin_unlock_irq(&ent->lock);
493 err = add_keys(ent, 1);
494 spin_lock_irq(&ent->lock);
495 if (ent->disabled)
496 goto out;
497 if (err) {
498 /*
499 * EAGAIN only happens if pending is positive, so we
500 * will be rescheduled from reg_mr_callback(). The only
501 * failure path here is ENOMEM.
502 */
503 if (err != -EAGAIN) {
504 mlx5_ib_warn(
505 dev,
506 "command failed order %d, err %d\n",
507 ent->order, err);
508 queue_delayed_work(cache->wq, &ent->dwork,
509 msecs_to_jiffies(1000));
510 }
511 }
512 } else if (ent->available_mrs > 2 * ent->limit) {
513 bool need_delay;
514
515 /*
516 * The remove_cache_mr() logic is performed as garbage
517 * collection task. Such task is intended to be run when no
518 * other active processes are running.
519 *
520 * The need_resched() will return TRUE if there are user tasks
521 * to be activated in near future.
522 *
523 * In such case, we don't execute remove_cache_mr() and postpone
524 * the garbage collection work to try to run in next cycle, in
525 * order to free CPU resources to other tasks.
526 */
527 spin_unlock_irq(&ent->lock);
528 need_delay = need_resched() || someone_adding(cache) ||
529 time_after(jiffies,
530 READ_ONCE(cache->last_add) + 300 * HZ);
531 spin_lock_irq(&ent->lock);
532 if (ent->disabled)
533 goto out;
534 if (need_delay)
535 queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ);
536 remove_cache_mr_locked(ent);
537 queue_adjust_cache_locked(ent);
538 }
539 out:
540 spin_unlock_irq(&ent->lock);
541 }
542
delayed_cache_work_func(struct work_struct * work)543 static void delayed_cache_work_func(struct work_struct *work)
544 {
545 struct mlx5_cache_ent *ent;
546
547 ent = container_of(work, struct mlx5_cache_ent, dwork.work);
548 __cache_work_func(ent);
549 }
550
cache_work_func(struct work_struct * work)551 static void cache_work_func(struct work_struct *work)
552 {
553 struct mlx5_cache_ent *ent;
554
555 ent = container_of(work, struct mlx5_cache_ent, work);
556 __cache_work_func(ent);
557 }
558
559 /* Allocate a special entry from the cache */
mlx5_mr_cache_alloc(struct mlx5_ib_dev * dev,unsigned int entry,int access_flags)560 struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
561 unsigned int entry, int access_flags)
562 {
563 struct mlx5_mr_cache *cache = &dev->cache;
564 struct mlx5_cache_ent *ent;
565 struct mlx5_ib_mr *mr;
566
567 if (WARN_ON(entry <= MR_CACHE_LAST_STD_ENTRY ||
568 entry >= ARRAY_SIZE(cache->ent)))
569 return ERR_PTR(-EINVAL);
570
571 /* Matches access in alloc_cache_mr() */
572 if (!mlx5_ib_can_reconfig_with_umr(dev, 0, access_flags))
573 return ERR_PTR(-EOPNOTSUPP);
574
575 ent = &cache->ent[entry];
576 spin_lock_irq(&ent->lock);
577 if (list_empty(&ent->head)) {
578 spin_unlock_irq(&ent->lock);
579 mr = create_cache_mr(ent);
580 if (IS_ERR(mr))
581 return mr;
582 } else {
583 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
584 list_del(&mr->list);
585 ent->available_mrs--;
586 queue_adjust_cache_locked(ent);
587 spin_unlock_irq(&ent->lock);
588 }
589 mr->access_flags = access_flags;
590 return mr;
591 }
592
593 /* Return a MR already available in the cache */
get_cache_mr(struct mlx5_cache_ent * req_ent)594 static struct mlx5_ib_mr *get_cache_mr(struct mlx5_cache_ent *req_ent)
595 {
596 struct mlx5_ib_dev *dev = req_ent->dev;
597 struct mlx5_ib_mr *mr = NULL;
598 struct mlx5_cache_ent *ent = req_ent;
599
600 /* Try larger MR pools from the cache to satisfy the allocation */
601 for (; ent != &dev->cache.ent[MR_CACHE_LAST_STD_ENTRY + 1]; ent++) {
602 mlx5_ib_dbg(dev, "order %u, cache index %zu\n", ent->order,
603 ent - dev->cache.ent);
604
605 spin_lock_irq(&ent->lock);
606 if (!list_empty(&ent->head)) {
607 mr = list_first_entry(&ent->head, struct mlx5_ib_mr,
608 list);
609 list_del(&mr->list);
610 ent->available_mrs--;
611 queue_adjust_cache_locked(ent);
612 spin_unlock_irq(&ent->lock);
613 break;
614 }
615 queue_adjust_cache_locked(ent);
616 spin_unlock_irq(&ent->lock);
617 }
618
619 if (!mr)
620 req_ent->miss++;
621
622 return mr;
623 }
624
detach_mr_from_cache(struct mlx5_ib_mr * mr)625 static void detach_mr_from_cache(struct mlx5_ib_mr *mr)
626 {
627 struct mlx5_cache_ent *ent = mr->cache_ent;
628
629 mr->cache_ent = NULL;
630 spin_lock_irq(&ent->lock);
631 ent->total_mrs--;
632 spin_unlock_irq(&ent->lock);
633 }
634
mlx5_mr_cache_free(struct mlx5_ib_dev * dev,struct mlx5_ib_mr * mr)635 void mlx5_mr_cache_free(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
636 {
637 struct mlx5_cache_ent *ent = mr->cache_ent;
638
639 if (!ent)
640 return;
641
642 if (mlx5_mr_cache_invalidate(mr)) {
643 detach_mr_from_cache(mr);
644 destroy_mkey(dev, mr);
645 return;
646 }
647
648 spin_lock_irq(&ent->lock);
649 list_add_tail(&mr->list, &ent->head);
650 ent->available_mrs++;
651 queue_adjust_cache_locked(ent);
652 spin_unlock_irq(&ent->lock);
653 }
654
clean_keys(struct mlx5_ib_dev * dev,int c)655 static void clean_keys(struct mlx5_ib_dev *dev, int c)
656 {
657 struct mlx5_mr_cache *cache = &dev->cache;
658 struct mlx5_cache_ent *ent = &cache->ent[c];
659 struct mlx5_ib_mr *tmp_mr;
660 struct mlx5_ib_mr *mr;
661 LIST_HEAD(del_list);
662
663 cancel_delayed_work(&ent->dwork);
664 while (1) {
665 spin_lock_irq(&ent->lock);
666 if (list_empty(&ent->head)) {
667 spin_unlock_irq(&ent->lock);
668 break;
669 }
670 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
671 list_move(&mr->list, &del_list);
672 ent->available_mrs--;
673 ent->total_mrs--;
674 spin_unlock_irq(&ent->lock);
675 mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
676 }
677
678 list_for_each_entry_safe(mr, tmp_mr, &del_list, list) {
679 list_del(&mr->list);
680 kfree(mr);
681 }
682 }
683
mlx5_mr_cache_debugfs_cleanup(struct mlx5_ib_dev * dev)684 static void mlx5_mr_cache_debugfs_cleanup(struct mlx5_ib_dev *dev)
685 {
686 if (!mlx5_debugfs_root || dev->is_rep)
687 return;
688
689 debugfs_remove_recursive(dev->cache.root);
690 dev->cache.root = NULL;
691 }
692
mlx5_mr_cache_debugfs_init(struct mlx5_ib_dev * dev)693 static void mlx5_mr_cache_debugfs_init(struct mlx5_ib_dev *dev)
694 {
695 struct mlx5_mr_cache *cache = &dev->cache;
696 struct mlx5_cache_ent *ent;
697 struct dentry *dir;
698 int i;
699
700 if (!mlx5_debugfs_root || dev->is_rep)
701 return;
702
703 cache->root = debugfs_create_dir("mr_cache", dev->mdev->priv.dbg_root);
704
705 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
706 ent = &cache->ent[i];
707 sprintf(ent->name, "%d", ent->order);
708 dir = debugfs_create_dir(ent->name, cache->root);
709 debugfs_create_file("size", 0600, dir, ent, &size_fops);
710 debugfs_create_file("limit", 0600, dir, ent, &limit_fops);
711 debugfs_create_u32("cur", 0400, dir, &ent->available_mrs);
712 debugfs_create_u32("miss", 0600, dir, &ent->miss);
713 }
714 }
715
delay_time_func(struct timer_list * t)716 static void delay_time_func(struct timer_list *t)
717 {
718 struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer);
719
720 WRITE_ONCE(dev->fill_delay, 0);
721 }
722
mlx5_mr_cache_init(struct mlx5_ib_dev * dev)723 int mlx5_mr_cache_init(struct mlx5_ib_dev *dev)
724 {
725 struct mlx5_mr_cache *cache = &dev->cache;
726 struct mlx5_cache_ent *ent;
727 int i;
728
729 mutex_init(&dev->slow_path_mutex);
730 cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM);
731 if (!cache->wq) {
732 mlx5_ib_warn(dev, "failed to create work queue\n");
733 return -ENOMEM;
734 }
735
736 mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx);
737 timer_setup(&dev->delay_timer, delay_time_func, 0);
738 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
739 ent = &cache->ent[i];
740 INIT_LIST_HEAD(&ent->head);
741 spin_lock_init(&ent->lock);
742 ent->order = i + 2;
743 ent->dev = dev;
744 ent->limit = 0;
745
746 INIT_WORK(&ent->work, cache_work_func);
747 INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func);
748
749 if (i > MR_CACHE_LAST_STD_ENTRY) {
750 mlx5_odp_init_mr_cache_entry(ent);
751 continue;
752 }
753
754 if (ent->order > mr_cache_max_order(dev))
755 continue;
756
757 ent->page = PAGE_SHIFT;
758 ent->xlt = (1 << ent->order) * sizeof(struct mlx5_mtt) /
759 MLX5_IB_UMR_OCTOWORD;
760 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
761 if ((dev->mdev->profile->mask & MLX5_PROF_MASK_MR_CACHE) &&
762 !dev->is_rep && mlx5_core_is_pf(dev->mdev) &&
763 mlx5_ib_can_load_pas_with_umr(dev, 0))
764 ent->limit = dev->mdev->profile->mr_cache[i].limit;
765 else
766 ent->limit = 0;
767 spin_lock_irq(&ent->lock);
768 queue_adjust_cache_locked(ent);
769 spin_unlock_irq(&ent->lock);
770 }
771
772 mlx5_mr_cache_debugfs_init(dev);
773
774 return 0;
775 }
776
mlx5_mr_cache_cleanup(struct mlx5_ib_dev * dev)777 int mlx5_mr_cache_cleanup(struct mlx5_ib_dev *dev)
778 {
779 unsigned int i;
780
781 if (!dev->cache.wq)
782 return 0;
783
784 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
785 struct mlx5_cache_ent *ent = &dev->cache.ent[i];
786
787 spin_lock_irq(&ent->lock);
788 ent->disabled = true;
789 spin_unlock_irq(&ent->lock);
790 cancel_work_sync(&ent->work);
791 cancel_delayed_work_sync(&ent->dwork);
792 }
793
794 mlx5_mr_cache_debugfs_cleanup(dev);
795 mlx5_cmd_cleanup_async_ctx(&dev->async_ctx);
796
797 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++)
798 clean_keys(dev, i);
799
800 destroy_workqueue(dev->cache.wq);
801 del_timer_sync(&dev->delay_timer);
802
803 return 0;
804 }
805
mlx5_ib_get_dma_mr(struct ib_pd * pd,int acc)806 struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc)
807 {
808 struct mlx5_ib_dev *dev = to_mdev(pd->device);
809 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
810 struct mlx5_ib_mr *mr;
811 void *mkc;
812 u32 *in;
813 int err;
814
815 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
816 if (!mr)
817 return ERR_PTR(-ENOMEM);
818
819 in = kzalloc(inlen, GFP_KERNEL);
820 if (!in) {
821 err = -ENOMEM;
822 goto err_free;
823 }
824
825 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
826
827 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA);
828 MLX5_SET(mkc, mkc, length64, 1);
829 set_mkc_access_pd_addr_fields(mkc, acc, 0, pd);
830
831 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
832 if (err)
833 goto err_in;
834
835 kfree(in);
836 mr->mmkey.type = MLX5_MKEY_MR;
837 mr->ibmr.lkey = mr->mmkey.key;
838 mr->ibmr.rkey = mr->mmkey.key;
839 mr->umem = NULL;
840
841 return &mr->ibmr;
842
843 err_in:
844 kfree(in);
845
846 err_free:
847 kfree(mr);
848
849 return ERR_PTR(err);
850 }
851
get_octo_len(u64 addr,u64 len,int page_shift)852 static int get_octo_len(u64 addr, u64 len, int page_shift)
853 {
854 u64 page_size = 1ULL << page_shift;
855 u64 offset;
856 int npages;
857
858 offset = addr & (page_size - 1);
859 npages = ALIGN(len + offset, page_size) >> page_shift;
860 return (npages + 1) / 2;
861 }
862
mr_cache_max_order(struct mlx5_ib_dev * dev)863 static int mr_cache_max_order(struct mlx5_ib_dev *dev)
864 {
865 if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
866 return MR_CACHE_LAST_STD_ENTRY + 2;
867 return MLX5_MAX_UMR_SHIFT;
868 }
869
mr_umem_get(struct mlx5_ib_dev * dev,u64 start,u64 length,int access_flags,struct ib_umem ** umem,int * npages,int * page_shift,int * ncont,int * order)870 static int mr_umem_get(struct mlx5_ib_dev *dev, u64 start, u64 length,
871 int access_flags, struct ib_umem **umem, int *npages,
872 int *page_shift, int *ncont, int *order)
873 {
874 struct ib_umem *u;
875
876 *umem = NULL;
877
878 if (access_flags & IB_ACCESS_ON_DEMAND) {
879 struct ib_umem_odp *odp;
880
881 odp = ib_umem_odp_get(&dev->ib_dev, start, length, access_flags,
882 &mlx5_mn_ops);
883 if (IS_ERR(odp)) {
884 mlx5_ib_dbg(dev, "umem get failed (%ld)\n",
885 PTR_ERR(odp));
886 return PTR_ERR(odp);
887 }
888
889 u = &odp->umem;
890
891 *page_shift = odp->page_shift;
892 *ncont = ib_umem_odp_num_pages(odp);
893 *npages = *ncont << (*page_shift - PAGE_SHIFT);
894 if (order)
895 *order = ilog2(roundup_pow_of_two(*ncont));
896 } else {
897 u = ib_umem_get(&dev->ib_dev, start, length, access_flags);
898 if (IS_ERR(u)) {
899 mlx5_ib_dbg(dev, "umem get failed (%ld)\n", PTR_ERR(u));
900 return PTR_ERR(u);
901 }
902
903 mlx5_ib_cont_pages(u, start, MLX5_MKEY_PAGE_SHIFT_MASK, npages,
904 page_shift, ncont, order);
905 }
906
907 if (!*npages) {
908 mlx5_ib_warn(dev, "avoid zero region\n");
909 ib_umem_release(u);
910 return -EINVAL;
911 }
912
913 *umem = u;
914
915 mlx5_ib_dbg(dev, "npages %d, ncont %d, order %d, page_shift %d\n",
916 *npages, *ncont, *order, *page_shift);
917
918 return 0;
919 }
920
mlx5_ib_umr_done(struct ib_cq * cq,struct ib_wc * wc)921 static void mlx5_ib_umr_done(struct ib_cq *cq, struct ib_wc *wc)
922 {
923 struct mlx5_ib_umr_context *context =
924 container_of(wc->wr_cqe, struct mlx5_ib_umr_context, cqe);
925
926 context->status = wc->status;
927 complete(&context->done);
928 }
929
mlx5_ib_init_umr_context(struct mlx5_ib_umr_context * context)930 static inline void mlx5_ib_init_umr_context(struct mlx5_ib_umr_context *context)
931 {
932 context->cqe.done = mlx5_ib_umr_done;
933 context->status = -1;
934 init_completion(&context->done);
935 }
936
mlx5_ib_post_send_wait(struct mlx5_ib_dev * dev,struct mlx5_umr_wr * umrwr)937 static int mlx5_ib_post_send_wait(struct mlx5_ib_dev *dev,
938 struct mlx5_umr_wr *umrwr)
939 {
940 struct umr_common *umrc = &dev->umrc;
941 const struct ib_send_wr *bad;
942 int err;
943 struct mlx5_ib_umr_context umr_context;
944
945 mlx5_ib_init_umr_context(&umr_context);
946 umrwr->wr.wr_cqe = &umr_context.cqe;
947
948 down(&umrc->sem);
949 err = ib_post_send(umrc->qp, &umrwr->wr, &bad);
950 if (err) {
951 mlx5_ib_warn(dev, "UMR post send failed, err %d\n", err);
952 } else {
953 wait_for_completion(&umr_context.done);
954 if (umr_context.status != IB_WC_SUCCESS) {
955 mlx5_ib_warn(dev, "reg umr failed (%u)\n",
956 umr_context.status);
957 err = -EFAULT;
958 }
959 }
960 up(&umrc->sem);
961 return err;
962 }
963
mr_cache_ent_from_order(struct mlx5_ib_dev * dev,unsigned int order)964 static struct mlx5_cache_ent *mr_cache_ent_from_order(struct mlx5_ib_dev *dev,
965 unsigned int order)
966 {
967 struct mlx5_mr_cache *cache = &dev->cache;
968
969 if (order < cache->ent[0].order)
970 return &cache->ent[0];
971 order = order - cache->ent[0].order;
972 if (order > MR_CACHE_LAST_STD_ENTRY)
973 return NULL;
974 return &cache->ent[order];
975 }
976
977 static struct mlx5_ib_mr *
alloc_mr_from_cache(struct ib_pd * pd,struct ib_umem * umem,u64 virt_addr,u64 len,int npages,int page_shift,unsigned int order,int access_flags)978 alloc_mr_from_cache(struct ib_pd *pd, struct ib_umem *umem, u64 virt_addr,
979 u64 len, int npages, int page_shift, unsigned int order,
980 int access_flags)
981 {
982 struct mlx5_ib_dev *dev = to_mdev(pd->device);
983 struct mlx5_cache_ent *ent = mr_cache_ent_from_order(dev, order);
984 struct mlx5_ib_mr *mr;
985
986 if (!ent)
987 return ERR_PTR(-E2BIG);
988
989 /* Matches access in alloc_cache_mr() */
990 if (!mlx5_ib_can_reconfig_with_umr(dev, 0, access_flags))
991 return ERR_PTR(-EOPNOTSUPP);
992
993 mr = get_cache_mr(ent);
994 if (!mr) {
995 mr = create_cache_mr(ent);
996 if (IS_ERR(mr))
997 return mr;
998 }
999
1000 mr->ibmr.pd = pd;
1001 mr->umem = umem;
1002 mr->access_flags = access_flags;
1003 mr->desc_size = sizeof(struct mlx5_mtt);
1004 mr->mmkey.iova = virt_addr;
1005 mr->mmkey.size = len;
1006 mr->mmkey.pd = to_mpd(pd)->pdn;
1007
1008 return mr;
1009 }
1010
1011 #define MLX5_MAX_UMR_CHUNK ((1 << (MLX5_MAX_UMR_SHIFT + 4)) - \
1012 MLX5_UMR_MTT_ALIGNMENT)
1013 #define MLX5_SPARE_UMR_CHUNK 0x10000
1014
mlx5_ib_update_xlt(struct mlx5_ib_mr * mr,u64 idx,int npages,int page_shift,int flags)1015 int mlx5_ib_update_xlt(struct mlx5_ib_mr *mr, u64 idx, int npages,
1016 int page_shift, int flags)
1017 {
1018 struct mlx5_ib_dev *dev = mr->dev;
1019 struct device *ddev = dev->ib_dev.dev.parent;
1020 int size;
1021 void *xlt;
1022 dma_addr_t dma;
1023 struct mlx5_umr_wr wr;
1024 struct ib_sge sg;
1025 int err = 0;
1026 int desc_size = (flags & MLX5_IB_UPD_XLT_INDIRECT)
1027 ? sizeof(struct mlx5_klm)
1028 : sizeof(struct mlx5_mtt);
1029 const int page_align = MLX5_UMR_MTT_ALIGNMENT / desc_size;
1030 const int page_mask = page_align - 1;
1031 size_t pages_mapped = 0;
1032 size_t pages_to_map = 0;
1033 size_t pages_iter = 0;
1034 size_t size_to_map = 0;
1035 gfp_t gfp;
1036 bool use_emergency_page = false;
1037
1038 if ((flags & MLX5_IB_UPD_XLT_INDIRECT) &&
1039 !umr_can_use_indirect_mkey(dev))
1040 return -EPERM;
1041
1042 /* UMR copies MTTs in units of MLX5_UMR_MTT_ALIGNMENT bytes,
1043 * so we need to align the offset and length accordingly
1044 */
1045 if (idx & page_mask) {
1046 npages += idx & page_mask;
1047 idx &= ~page_mask;
1048 }
1049
1050 gfp = flags & MLX5_IB_UPD_XLT_ATOMIC ? GFP_ATOMIC : GFP_KERNEL;
1051 gfp |= __GFP_ZERO | __GFP_NOWARN;
1052
1053 pages_to_map = ALIGN(npages, page_align);
1054 size = desc_size * pages_to_map;
1055 size = min_t(int, size, MLX5_MAX_UMR_CHUNK);
1056
1057 xlt = (void *)__get_free_pages(gfp, get_order(size));
1058 if (!xlt && size > MLX5_SPARE_UMR_CHUNK) {
1059 mlx5_ib_dbg(dev, "Failed to allocate %d bytes of order %d. fallback to spare UMR allocation od %d bytes\n",
1060 size, get_order(size), MLX5_SPARE_UMR_CHUNK);
1061
1062 size = MLX5_SPARE_UMR_CHUNK;
1063 xlt = (void *)__get_free_pages(gfp, get_order(size));
1064 }
1065
1066 if (!xlt) {
1067 mlx5_ib_warn(dev, "Using XLT emergency buffer\n");
1068 xlt = (void *)mlx5_ib_get_xlt_emergency_page();
1069 size = PAGE_SIZE;
1070 memset(xlt, 0, size);
1071 use_emergency_page = true;
1072 }
1073 pages_iter = size / desc_size;
1074 dma = dma_map_single(ddev, xlt, size, DMA_TO_DEVICE);
1075 if (dma_mapping_error(ddev, dma)) {
1076 mlx5_ib_err(dev, "unable to map DMA during XLT update.\n");
1077 err = -ENOMEM;
1078 goto free_xlt;
1079 }
1080
1081 if (mr->umem->is_odp) {
1082 if (!(flags & MLX5_IB_UPD_XLT_INDIRECT)) {
1083 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
1084 size_t max_pages = ib_umem_odp_num_pages(odp) - idx;
1085
1086 pages_to_map = min_t(size_t, pages_to_map, max_pages);
1087 }
1088 }
1089
1090 sg.addr = dma;
1091 sg.lkey = dev->umrc.pd->local_dma_lkey;
1092
1093 memset(&wr, 0, sizeof(wr));
1094 wr.wr.send_flags = MLX5_IB_SEND_UMR_UPDATE_XLT;
1095 if (!(flags & MLX5_IB_UPD_XLT_ENABLE))
1096 wr.wr.send_flags |= MLX5_IB_SEND_UMR_FAIL_IF_FREE;
1097 wr.wr.sg_list = &sg;
1098 wr.wr.num_sge = 1;
1099 wr.wr.opcode = MLX5_IB_WR_UMR;
1100
1101 wr.pd = mr->ibmr.pd;
1102 wr.mkey = mr->mmkey.key;
1103 wr.length = mr->mmkey.size;
1104 wr.virt_addr = mr->mmkey.iova;
1105 wr.access_flags = mr->access_flags;
1106 wr.page_shift = page_shift;
1107
1108 for (pages_mapped = 0;
1109 pages_mapped < pages_to_map && !err;
1110 pages_mapped += pages_iter, idx += pages_iter) {
1111 npages = min_t(int, pages_iter, pages_to_map - pages_mapped);
1112 size_to_map = npages * desc_size;
1113 dma_sync_single_for_cpu(ddev, dma, size, DMA_TO_DEVICE);
1114 if (mr->umem->is_odp) {
1115 mlx5_odp_populate_xlt(xlt, idx, npages, mr, flags);
1116 } else {
1117 __mlx5_ib_populate_pas(dev, mr->umem, page_shift, idx,
1118 npages, xlt,
1119 MLX5_IB_MTT_PRESENT);
1120 /* Clear padding after the pages
1121 * brought from the umem.
1122 */
1123 memset(xlt + size_to_map, 0, size - size_to_map);
1124 }
1125 dma_sync_single_for_device(ddev, dma, size, DMA_TO_DEVICE);
1126
1127 sg.length = ALIGN(size_to_map, MLX5_UMR_MTT_ALIGNMENT);
1128
1129 if (pages_mapped + pages_iter >= pages_to_map) {
1130 if (flags & MLX5_IB_UPD_XLT_ENABLE)
1131 wr.wr.send_flags |=
1132 MLX5_IB_SEND_UMR_ENABLE_MR |
1133 MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS |
1134 MLX5_IB_SEND_UMR_UPDATE_TRANSLATION;
1135 if (flags & MLX5_IB_UPD_XLT_PD ||
1136 flags & MLX5_IB_UPD_XLT_ACCESS)
1137 wr.wr.send_flags |=
1138 MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
1139 if (flags & MLX5_IB_UPD_XLT_ADDR)
1140 wr.wr.send_flags |=
1141 MLX5_IB_SEND_UMR_UPDATE_TRANSLATION;
1142 }
1143
1144 wr.offset = idx * desc_size;
1145 wr.xlt_size = sg.length;
1146
1147 err = mlx5_ib_post_send_wait(dev, &wr);
1148 }
1149 dma_unmap_single(ddev, dma, size, DMA_TO_DEVICE);
1150
1151 free_xlt:
1152 if (use_emergency_page)
1153 mlx5_ib_put_xlt_emergency_page();
1154 else
1155 free_pages((unsigned long)xlt, get_order(size));
1156
1157 return err;
1158 }
1159
1160 /*
1161 * If ibmr is NULL it will be allocated by reg_create.
1162 * Else, the given ibmr will be used.
1163 */
reg_create(struct ib_mr * ibmr,struct ib_pd * pd,u64 virt_addr,u64 length,struct ib_umem * umem,int npages,int page_shift,int access_flags,bool populate)1164 static struct mlx5_ib_mr *reg_create(struct ib_mr *ibmr, struct ib_pd *pd,
1165 u64 virt_addr, u64 length,
1166 struct ib_umem *umem, int npages,
1167 int page_shift, int access_flags,
1168 bool populate)
1169 {
1170 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1171 struct mlx5_ib_mr *mr;
1172 __be64 *pas;
1173 void *mkc;
1174 int inlen;
1175 u32 *in;
1176 int err;
1177 bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg));
1178
1179 mr = ibmr ? to_mmr(ibmr) : kzalloc(sizeof(*mr), GFP_KERNEL);
1180 if (!mr)
1181 return ERR_PTR(-ENOMEM);
1182
1183 mr->ibmr.pd = pd;
1184 mr->access_flags = access_flags;
1185
1186 inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1187 if (populate)
1188 inlen += sizeof(*pas) * roundup(npages, 2);
1189 in = kvzalloc(inlen, GFP_KERNEL);
1190 if (!in) {
1191 err = -ENOMEM;
1192 goto err_1;
1193 }
1194 pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt);
1195 if (populate) {
1196 if (WARN_ON(access_flags & IB_ACCESS_ON_DEMAND)) {
1197 err = -EINVAL;
1198 goto err_2;
1199 }
1200 mlx5_ib_populate_pas(dev, umem, page_shift, pas,
1201 pg_cap ? MLX5_IB_MTT_PRESENT : 0);
1202 }
1203
1204 /* The pg_access bit allows setting the access flags
1205 * in the page list submitted with the command. */
1206 MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap));
1207
1208 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1209 set_mkc_access_pd_addr_fields(mkc, access_flags, virt_addr,
1210 populate ? pd : dev->umrc.pd);
1211 MLX5_SET(mkc, mkc, free, !populate);
1212 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT);
1213 MLX5_SET(mkc, mkc, umr_en, 1);
1214
1215 MLX5_SET64(mkc, mkc, len, length);
1216 MLX5_SET(mkc, mkc, bsf_octword_size, 0);
1217 MLX5_SET(mkc, mkc, translations_octword_size,
1218 get_octo_len(virt_addr, length, page_shift));
1219 MLX5_SET(mkc, mkc, log_page_size, page_shift);
1220 if (populate) {
1221 MLX5_SET(create_mkey_in, in, translations_octword_actual_size,
1222 get_octo_len(virt_addr, length, page_shift));
1223 }
1224
1225 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1226 if (err) {
1227 mlx5_ib_warn(dev, "create mkey failed\n");
1228 goto err_2;
1229 }
1230 mr->mmkey.type = MLX5_MKEY_MR;
1231 mr->desc_size = sizeof(struct mlx5_mtt);
1232 mr->dev = dev;
1233 kvfree(in);
1234
1235 mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key);
1236
1237 return mr;
1238
1239 err_2:
1240 kvfree(in);
1241
1242 err_1:
1243 if (!ibmr)
1244 kfree(mr);
1245
1246 return ERR_PTR(err);
1247 }
1248
set_mr_fields(struct mlx5_ib_dev * dev,struct mlx5_ib_mr * mr,int npages,u64 length,int access_flags)1249 static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
1250 int npages, u64 length, int access_flags)
1251 {
1252 mr->npages = npages;
1253 atomic_add(npages, &dev->mdev->priv.reg_pages);
1254 mr->ibmr.lkey = mr->mmkey.key;
1255 mr->ibmr.rkey = mr->mmkey.key;
1256 mr->ibmr.length = length;
1257 mr->access_flags = access_flags;
1258 }
1259
mlx5_ib_get_dm_mr(struct ib_pd * pd,u64 start_addr,u64 length,int acc,int mode)1260 static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr,
1261 u64 length, int acc, int mode)
1262 {
1263 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1264 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1265 struct mlx5_ib_mr *mr;
1266 void *mkc;
1267 u32 *in;
1268 int err;
1269
1270 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1271 if (!mr)
1272 return ERR_PTR(-ENOMEM);
1273
1274 in = kzalloc(inlen, GFP_KERNEL);
1275 if (!in) {
1276 err = -ENOMEM;
1277 goto err_free;
1278 }
1279
1280 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1281
1282 MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3);
1283 MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7);
1284 MLX5_SET64(mkc, mkc, len, length);
1285 set_mkc_access_pd_addr_fields(mkc, acc, start_addr, pd);
1286
1287 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1288 if (err)
1289 goto err_in;
1290
1291 kfree(in);
1292
1293 mr->umem = NULL;
1294 set_mr_fields(dev, mr, 0, length, acc);
1295
1296 return &mr->ibmr;
1297
1298 err_in:
1299 kfree(in);
1300
1301 err_free:
1302 kfree(mr);
1303
1304 return ERR_PTR(err);
1305 }
1306
mlx5_ib_advise_mr(struct ib_pd * pd,enum ib_uverbs_advise_mr_advice advice,u32 flags,struct ib_sge * sg_list,u32 num_sge,struct uverbs_attr_bundle * attrs)1307 int mlx5_ib_advise_mr(struct ib_pd *pd,
1308 enum ib_uverbs_advise_mr_advice advice,
1309 u32 flags,
1310 struct ib_sge *sg_list,
1311 u32 num_sge,
1312 struct uverbs_attr_bundle *attrs)
1313 {
1314 if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH &&
1315 advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1316 advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
1317 return -EOPNOTSUPP;
1318
1319 return mlx5_ib_advise_mr_prefetch(pd, advice, flags,
1320 sg_list, num_sge);
1321 }
1322
mlx5_ib_reg_dm_mr(struct ib_pd * pd,struct ib_dm * dm,struct ib_dm_mr_attr * attr,struct uverbs_attr_bundle * attrs)1323 struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm,
1324 struct ib_dm_mr_attr *attr,
1325 struct uverbs_attr_bundle *attrs)
1326 {
1327 struct mlx5_ib_dm *mdm = to_mdm(dm);
1328 struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev;
1329 u64 start_addr = mdm->dev_addr + attr->offset;
1330 int mode;
1331
1332 switch (mdm->type) {
1333 case MLX5_IB_UAPI_DM_TYPE_MEMIC:
1334 if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS)
1335 return ERR_PTR(-EINVAL);
1336
1337 mode = MLX5_MKC_ACCESS_MODE_MEMIC;
1338 start_addr -= pci_resource_start(dev->pdev, 0);
1339 break;
1340 case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM:
1341 case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM:
1342 if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS)
1343 return ERR_PTR(-EINVAL);
1344
1345 mode = MLX5_MKC_ACCESS_MODE_SW_ICM;
1346 break;
1347 default:
1348 return ERR_PTR(-EINVAL);
1349 }
1350
1351 return mlx5_ib_get_dm_mr(pd, start_addr, attr->length,
1352 attr->access_flags, mode);
1353 }
1354
mlx5_ib_reg_user_mr(struct ib_pd * pd,u64 start,u64 length,u64 virt_addr,int access_flags,struct ib_udata * udata)1355 struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
1356 u64 virt_addr, int access_flags,
1357 struct ib_udata *udata)
1358 {
1359 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1360 struct mlx5_ib_mr *mr = NULL;
1361 bool xlt_with_umr;
1362 struct ib_umem *umem;
1363 int page_shift;
1364 int npages;
1365 int ncont;
1366 int order;
1367 int err;
1368
1369 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1370 return ERR_PTR(-EOPNOTSUPP);
1371
1372 mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n",
1373 start, virt_addr, length, access_flags);
1374
1375 xlt_with_umr = mlx5_ib_can_load_pas_with_umr(dev, length);
1376 /* ODP requires xlt update via umr to work. */
1377 if (!xlt_with_umr && (access_flags & IB_ACCESS_ON_DEMAND))
1378 return ERR_PTR(-EINVAL);
1379
1380 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) && !start &&
1381 length == U64_MAX) {
1382 if (virt_addr != start)
1383 return ERR_PTR(-EINVAL);
1384 if (!(access_flags & IB_ACCESS_ON_DEMAND) ||
1385 !(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1386 return ERR_PTR(-EINVAL);
1387
1388 mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), udata, access_flags);
1389 if (IS_ERR(mr))
1390 return ERR_CAST(mr);
1391 return &mr->ibmr;
1392 }
1393
1394 err = mr_umem_get(dev, start, length, access_flags, &umem,
1395 &npages, &page_shift, &ncont, &order);
1396
1397 if (err < 0)
1398 return ERR_PTR(err);
1399
1400 if (xlt_with_umr) {
1401 mr = alloc_mr_from_cache(pd, umem, virt_addr, length, ncont,
1402 page_shift, order, access_flags);
1403 if (IS_ERR(mr))
1404 mr = NULL;
1405 }
1406
1407 if (!mr) {
1408 mutex_lock(&dev->slow_path_mutex);
1409 mr = reg_create(NULL, pd, virt_addr, length, umem, ncont,
1410 page_shift, access_flags, !xlt_with_umr);
1411 mutex_unlock(&dev->slow_path_mutex);
1412 }
1413
1414 if (IS_ERR(mr)) {
1415 err = PTR_ERR(mr);
1416 goto error;
1417 }
1418
1419 mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1420
1421 mr->umem = umem;
1422 set_mr_fields(dev, mr, npages, length, access_flags);
1423
1424 if (xlt_with_umr && !(access_flags & IB_ACCESS_ON_DEMAND)) {
1425 /*
1426 * If the MR was created with reg_create then it will be
1427 * configured properly but left disabled. It is safe to go ahead
1428 * and configure it again via UMR while enabling it.
1429 */
1430 int update_xlt_flags = MLX5_IB_UPD_XLT_ENABLE;
1431
1432 err = mlx5_ib_update_xlt(mr, 0, ncont, page_shift,
1433 update_xlt_flags);
1434 if (err) {
1435 dereg_mr(dev, mr);
1436 return ERR_PTR(err);
1437 }
1438 }
1439
1440 if (is_odp_mr(mr)) {
1441 to_ib_umem_odp(mr->umem)->private = mr;
1442 init_waitqueue_head(&mr->q_deferred_work);
1443 atomic_set(&mr->num_deferred_work, 0);
1444 err = xa_err(xa_store(&dev->odp_mkeys,
1445 mlx5_base_mkey(mr->mmkey.key), &mr->mmkey,
1446 GFP_KERNEL));
1447 if (err) {
1448 dereg_mr(dev, mr);
1449 return ERR_PTR(err);
1450 }
1451
1452 err = mlx5_ib_init_odp_mr(mr, xlt_with_umr);
1453 if (err) {
1454 dereg_mr(dev, mr);
1455 return ERR_PTR(err);
1456 }
1457 }
1458
1459 return &mr->ibmr;
1460 error:
1461 ib_umem_release(umem);
1462 return ERR_PTR(err);
1463 }
1464
1465 /**
1466 * mlx5_mr_cache_invalidate - Fence all DMA on the MR
1467 * @mr: The MR to fence
1468 *
1469 * Upon return the NIC will not be doing any DMA to the pages under the MR,
1470 * and any DMA inprogress will be completed. Failure of this function
1471 * indicates the HW has failed catastrophically.
1472 */
mlx5_mr_cache_invalidate(struct mlx5_ib_mr * mr)1473 int mlx5_mr_cache_invalidate(struct mlx5_ib_mr *mr)
1474 {
1475 struct mlx5_umr_wr umrwr = {};
1476
1477 if (mr->dev->mdev->state == MLX5_DEVICE_STATE_INTERNAL_ERROR)
1478 return 0;
1479
1480 umrwr.wr.send_flags = MLX5_IB_SEND_UMR_DISABLE_MR |
1481 MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
1482 umrwr.wr.opcode = MLX5_IB_WR_UMR;
1483 umrwr.pd = mr->dev->umrc.pd;
1484 umrwr.mkey = mr->mmkey.key;
1485 umrwr.ignore_free_state = 1;
1486
1487 return mlx5_ib_post_send_wait(mr->dev, &umrwr);
1488 }
1489
rereg_umr(struct ib_pd * pd,struct mlx5_ib_mr * mr,int access_flags,int flags)1490 static int rereg_umr(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1491 int access_flags, int flags)
1492 {
1493 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1494 struct mlx5_umr_wr umrwr = {};
1495 int err;
1496
1497 umrwr.wr.send_flags = MLX5_IB_SEND_UMR_FAIL_IF_FREE;
1498
1499 umrwr.wr.opcode = MLX5_IB_WR_UMR;
1500 umrwr.mkey = mr->mmkey.key;
1501
1502 if (flags & IB_MR_REREG_PD || flags & IB_MR_REREG_ACCESS) {
1503 umrwr.pd = pd;
1504 umrwr.access_flags = access_flags;
1505 umrwr.wr.send_flags |= MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
1506 }
1507
1508 err = mlx5_ib_post_send_wait(dev, &umrwr);
1509
1510 return err;
1511 }
1512
mlx5_ib_rereg_user_mr(struct ib_mr * ib_mr,int flags,u64 start,u64 length,u64 virt_addr,int new_access_flags,struct ib_pd * new_pd,struct ib_udata * udata)1513 int mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start,
1514 u64 length, u64 virt_addr, int new_access_flags,
1515 struct ib_pd *new_pd, struct ib_udata *udata)
1516 {
1517 struct mlx5_ib_dev *dev = to_mdev(ib_mr->device);
1518 struct mlx5_ib_mr *mr = to_mmr(ib_mr);
1519 struct ib_pd *pd = (flags & IB_MR_REREG_PD) ? new_pd : ib_mr->pd;
1520 int access_flags = flags & IB_MR_REREG_ACCESS ?
1521 new_access_flags :
1522 mr->access_flags;
1523 int page_shift = 0;
1524 int upd_flags = 0;
1525 int npages = 0;
1526 int ncont = 0;
1527 int order = 0;
1528 u64 addr, len;
1529 int err;
1530
1531 mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n",
1532 start, virt_addr, length, access_flags);
1533
1534 atomic_sub(mr->npages, &dev->mdev->priv.reg_pages);
1535
1536 if (!mr->umem)
1537 return -EINVAL;
1538
1539 if (is_odp_mr(mr))
1540 return -EOPNOTSUPP;
1541
1542 if (flags & IB_MR_REREG_TRANS) {
1543 addr = virt_addr;
1544 len = length;
1545 } else {
1546 addr = mr->umem->address;
1547 len = mr->umem->length;
1548 }
1549
1550 if (flags != IB_MR_REREG_PD) {
1551 /*
1552 * Replace umem. This needs to be done whether or not UMR is
1553 * used.
1554 */
1555 flags |= IB_MR_REREG_TRANS;
1556 ib_umem_release(mr->umem);
1557 mr->umem = NULL;
1558 err = mr_umem_get(dev, addr, len, access_flags, &mr->umem,
1559 &npages, &page_shift, &ncont, &order);
1560 if (err)
1561 goto err;
1562 }
1563
1564 if (!mlx5_ib_can_reconfig_with_umr(dev, mr->access_flags,
1565 access_flags) ||
1566 !mlx5_ib_can_load_pas_with_umr(dev, len) ||
1567 (flags & IB_MR_REREG_TRANS &&
1568 !mlx5_ib_pas_fits_in_mr(mr, addr, len))) {
1569 /*
1570 * UMR can't be used - MKey needs to be replaced.
1571 */
1572 if (mr->cache_ent)
1573 detach_mr_from_cache(mr);
1574 err = destroy_mkey(dev, mr);
1575 if (err)
1576 goto err;
1577
1578 mr = reg_create(ib_mr, pd, addr, len, mr->umem, ncont,
1579 page_shift, access_flags, true);
1580
1581 if (IS_ERR(mr)) {
1582 err = PTR_ERR(mr);
1583 mr = to_mmr(ib_mr);
1584 goto err;
1585 }
1586 } else {
1587 /*
1588 * Send a UMR WQE
1589 */
1590 mr->ibmr.pd = pd;
1591 mr->access_flags = access_flags;
1592 mr->mmkey.iova = addr;
1593 mr->mmkey.size = len;
1594 mr->mmkey.pd = to_mpd(pd)->pdn;
1595
1596 if (flags & IB_MR_REREG_TRANS) {
1597 upd_flags = MLX5_IB_UPD_XLT_ADDR;
1598 if (flags & IB_MR_REREG_PD)
1599 upd_flags |= MLX5_IB_UPD_XLT_PD;
1600 if (flags & IB_MR_REREG_ACCESS)
1601 upd_flags |= MLX5_IB_UPD_XLT_ACCESS;
1602 err = mlx5_ib_update_xlt(mr, 0, npages, page_shift,
1603 upd_flags);
1604 } else {
1605 err = rereg_umr(pd, mr, access_flags, flags);
1606 }
1607
1608 if (err)
1609 goto err;
1610 }
1611
1612 set_mr_fields(dev, mr, npages, len, access_flags);
1613
1614 return 0;
1615
1616 err:
1617 ib_umem_release(mr->umem);
1618 mr->umem = NULL;
1619
1620 clean_mr(dev, mr);
1621 return err;
1622 }
1623
1624 static int
mlx5_alloc_priv_descs(struct ib_device * device,struct mlx5_ib_mr * mr,int ndescs,int desc_size)1625 mlx5_alloc_priv_descs(struct ib_device *device,
1626 struct mlx5_ib_mr *mr,
1627 int ndescs,
1628 int desc_size)
1629 {
1630 int size = ndescs * desc_size;
1631 int add_size;
1632 int ret;
1633
1634 add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0);
1635
1636 mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL);
1637 if (!mr->descs_alloc)
1638 return -ENOMEM;
1639
1640 mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN);
1641
1642 mr->desc_map = dma_map_single(device->dev.parent, mr->descs,
1643 size, DMA_TO_DEVICE);
1644 if (dma_mapping_error(device->dev.parent, mr->desc_map)) {
1645 ret = -ENOMEM;
1646 goto err;
1647 }
1648
1649 return 0;
1650 err:
1651 kfree(mr->descs_alloc);
1652
1653 return ret;
1654 }
1655
1656 static void
mlx5_free_priv_descs(struct mlx5_ib_mr * mr)1657 mlx5_free_priv_descs(struct mlx5_ib_mr *mr)
1658 {
1659 if (mr->descs) {
1660 struct ib_device *device = mr->ibmr.device;
1661 int size = mr->max_descs * mr->desc_size;
1662
1663 dma_unmap_single(device->dev.parent, mr->desc_map,
1664 size, DMA_TO_DEVICE);
1665 kfree(mr->descs_alloc);
1666 mr->descs = NULL;
1667 }
1668 }
1669
clean_mr(struct mlx5_ib_dev * dev,struct mlx5_ib_mr * mr)1670 static void clean_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
1671 {
1672 if (mr->sig) {
1673 if (mlx5_core_destroy_psv(dev->mdev,
1674 mr->sig->psv_memory.psv_idx))
1675 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1676 mr->sig->psv_memory.psv_idx);
1677 if (mlx5_core_destroy_psv(dev->mdev,
1678 mr->sig->psv_wire.psv_idx))
1679 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1680 mr->sig->psv_wire.psv_idx);
1681 xa_erase(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key));
1682 kfree(mr->sig);
1683 mr->sig = NULL;
1684 }
1685
1686 if (!mr->cache_ent) {
1687 destroy_mkey(dev, mr);
1688 mlx5_free_priv_descs(mr);
1689 }
1690 }
1691
dereg_mr(struct mlx5_ib_dev * dev,struct mlx5_ib_mr * mr)1692 static void dereg_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
1693 {
1694 int npages = mr->npages;
1695 struct ib_umem *umem = mr->umem;
1696
1697 /* Stop all DMA */
1698 if (is_odp_mr(mr))
1699 mlx5_ib_fence_odp_mr(mr);
1700 else
1701 clean_mr(dev, mr);
1702
1703 if (mr->cache_ent)
1704 mlx5_mr_cache_free(dev, mr);
1705 else
1706 kfree(mr);
1707
1708 ib_umem_release(umem);
1709 atomic_sub(npages, &dev->mdev->priv.reg_pages);
1710
1711 }
1712
mlx5_ib_dereg_mr(struct ib_mr * ibmr,struct ib_udata * udata)1713 int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
1714 {
1715 struct mlx5_ib_mr *mmr = to_mmr(ibmr);
1716
1717 if (ibmr->type == IB_MR_TYPE_INTEGRITY) {
1718 dereg_mr(to_mdev(mmr->mtt_mr->ibmr.device), mmr->mtt_mr);
1719 dereg_mr(to_mdev(mmr->klm_mr->ibmr.device), mmr->klm_mr);
1720 }
1721
1722 if (is_odp_mr(mmr) && to_ib_umem_odp(mmr->umem)->is_implicit_odp) {
1723 mlx5_ib_free_implicit_mr(mmr);
1724 return 0;
1725 }
1726
1727 dereg_mr(to_mdev(ibmr->device), mmr);
1728
1729 return 0;
1730 }
1731
mlx5_set_umr_free_mkey(struct ib_pd * pd,u32 * in,int ndescs,int access_mode,int page_shift)1732 static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs,
1733 int access_mode, int page_shift)
1734 {
1735 void *mkc;
1736
1737 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1738
1739 /* This is only used from the kernel, so setting the PD is OK. */
1740 set_mkc_access_pd_addr_fields(mkc, 0, 0, pd);
1741 MLX5_SET(mkc, mkc, free, 1);
1742 MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
1743 MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3);
1744 MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7);
1745 MLX5_SET(mkc, mkc, umr_en, 1);
1746 MLX5_SET(mkc, mkc, log_page_size, page_shift);
1747 }
1748
_mlx5_alloc_mkey_descs(struct ib_pd * pd,struct mlx5_ib_mr * mr,int ndescs,int desc_size,int page_shift,int access_mode,u32 * in,int inlen)1749 static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1750 int ndescs, int desc_size, int page_shift,
1751 int access_mode, u32 *in, int inlen)
1752 {
1753 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1754 int err;
1755
1756 mr->access_mode = access_mode;
1757 mr->desc_size = desc_size;
1758 mr->max_descs = ndescs;
1759
1760 err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size);
1761 if (err)
1762 return err;
1763
1764 mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift);
1765
1766 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1767 if (err)
1768 goto err_free_descs;
1769
1770 mr->mmkey.type = MLX5_MKEY_MR;
1771 mr->ibmr.lkey = mr->mmkey.key;
1772 mr->ibmr.rkey = mr->mmkey.key;
1773
1774 return 0;
1775
1776 err_free_descs:
1777 mlx5_free_priv_descs(mr);
1778 return err;
1779 }
1780
mlx5_ib_alloc_pi_mr(struct ib_pd * pd,u32 max_num_sg,u32 max_num_meta_sg,int desc_size,int access_mode)1781 static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd,
1782 u32 max_num_sg, u32 max_num_meta_sg,
1783 int desc_size, int access_mode)
1784 {
1785 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1786 int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4);
1787 int page_shift = 0;
1788 struct mlx5_ib_mr *mr;
1789 u32 *in;
1790 int err;
1791
1792 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1793 if (!mr)
1794 return ERR_PTR(-ENOMEM);
1795
1796 mr->ibmr.pd = pd;
1797 mr->ibmr.device = pd->device;
1798
1799 in = kzalloc(inlen, GFP_KERNEL);
1800 if (!in) {
1801 err = -ENOMEM;
1802 goto err_free;
1803 }
1804
1805 if (access_mode == MLX5_MKC_ACCESS_MODE_MTT)
1806 page_shift = PAGE_SHIFT;
1807
1808 err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift,
1809 access_mode, in, inlen);
1810 if (err)
1811 goto err_free_in;
1812
1813 mr->umem = NULL;
1814 kfree(in);
1815
1816 return mr;
1817
1818 err_free_in:
1819 kfree(in);
1820 err_free:
1821 kfree(mr);
1822 return ERR_PTR(err);
1823 }
1824
mlx5_alloc_mem_reg_descs(struct ib_pd * pd,struct mlx5_ib_mr * mr,int ndescs,u32 * in,int inlen)1825 static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1826 int ndescs, u32 *in, int inlen)
1827 {
1828 return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt),
1829 PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in,
1830 inlen);
1831 }
1832
mlx5_alloc_sg_gaps_descs(struct ib_pd * pd,struct mlx5_ib_mr * mr,int ndescs,u32 * in,int inlen)1833 static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1834 int ndescs, u32 *in, int inlen)
1835 {
1836 return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm),
1837 0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
1838 }
1839
mlx5_alloc_integrity_descs(struct ib_pd * pd,struct mlx5_ib_mr * mr,int max_num_sg,int max_num_meta_sg,u32 * in,int inlen)1840 static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1841 int max_num_sg, int max_num_meta_sg,
1842 u32 *in, int inlen)
1843 {
1844 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1845 u32 psv_index[2];
1846 void *mkc;
1847 int err;
1848
1849 mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL);
1850 if (!mr->sig)
1851 return -ENOMEM;
1852
1853 /* create mem & wire PSVs */
1854 err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index);
1855 if (err)
1856 goto err_free_sig;
1857
1858 mr->sig->psv_memory.psv_idx = psv_index[0];
1859 mr->sig->psv_wire.psv_idx = psv_index[1];
1860
1861 mr->sig->sig_status_checked = true;
1862 mr->sig->sig_err_exists = false;
1863 /* Next UMR, Arm SIGERR */
1864 ++mr->sig->sigerr_count;
1865 mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
1866 sizeof(struct mlx5_klm),
1867 MLX5_MKC_ACCESS_MODE_KLMS);
1868 if (IS_ERR(mr->klm_mr)) {
1869 err = PTR_ERR(mr->klm_mr);
1870 goto err_destroy_psv;
1871 }
1872 mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
1873 sizeof(struct mlx5_mtt),
1874 MLX5_MKC_ACCESS_MODE_MTT);
1875 if (IS_ERR(mr->mtt_mr)) {
1876 err = PTR_ERR(mr->mtt_mr);
1877 goto err_free_klm_mr;
1878 }
1879
1880 /* Set bsf descriptors for mkey */
1881 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1882 MLX5_SET(mkc, mkc, bsf_en, 1);
1883 MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE);
1884
1885 err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0,
1886 MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
1887 if (err)
1888 goto err_free_mtt_mr;
1889
1890 err = xa_err(xa_store(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
1891 mr->sig, GFP_KERNEL));
1892 if (err)
1893 goto err_free_descs;
1894 return 0;
1895
1896 err_free_descs:
1897 destroy_mkey(dev, mr);
1898 mlx5_free_priv_descs(mr);
1899 err_free_mtt_mr:
1900 dereg_mr(to_mdev(mr->mtt_mr->ibmr.device), mr->mtt_mr);
1901 mr->mtt_mr = NULL;
1902 err_free_klm_mr:
1903 dereg_mr(to_mdev(mr->klm_mr->ibmr.device), mr->klm_mr);
1904 mr->klm_mr = NULL;
1905 err_destroy_psv:
1906 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx))
1907 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1908 mr->sig->psv_memory.psv_idx);
1909 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
1910 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1911 mr->sig->psv_wire.psv_idx);
1912 err_free_sig:
1913 kfree(mr->sig);
1914
1915 return err;
1916 }
1917
__mlx5_ib_alloc_mr(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_num_sg,u32 max_num_meta_sg)1918 static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd,
1919 enum ib_mr_type mr_type, u32 max_num_sg,
1920 u32 max_num_meta_sg)
1921 {
1922 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1923 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1924 int ndescs = ALIGN(max_num_sg, 4);
1925 struct mlx5_ib_mr *mr;
1926 u32 *in;
1927 int err;
1928
1929 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1930 if (!mr)
1931 return ERR_PTR(-ENOMEM);
1932
1933 in = kzalloc(inlen, GFP_KERNEL);
1934 if (!in) {
1935 err = -ENOMEM;
1936 goto err_free;
1937 }
1938
1939 mr->ibmr.device = pd->device;
1940 mr->umem = NULL;
1941
1942 switch (mr_type) {
1943 case IB_MR_TYPE_MEM_REG:
1944 err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen);
1945 break;
1946 case IB_MR_TYPE_SG_GAPS:
1947 err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen);
1948 break;
1949 case IB_MR_TYPE_INTEGRITY:
1950 err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg,
1951 max_num_meta_sg, in, inlen);
1952 break;
1953 default:
1954 mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type);
1955 err = -EINVAL;
1956 }
1957
1958 if (err)
1959 goto err_free_in;
1960
1961 kfree(in);
1962
1963 return &mr->ibmr;
1964
1965 err_free_in:
1966 kfree(in);
1967 err_free:
1968 kfree(mr);
1969 return ERR_PTR(err);
1970 }
1971
mlx5_ib_alloc_mr(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_num_sg)1972 struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
1973 u32 max_num_sg)
1974 {
1975 return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0);
1976 }
1977
mlx5_ib_alloc_mr_integrity(struct ib_pd * pd,u32 max_num_sg,u32 max_num_meta_sg)1978 struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd,
1979 u32 max_num_sg, u32 max_num_meta_sg)
1980 {
1981 return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg,
1982 max_num_meta_sg);
1983 }
1984
mlx5_ib_alloc_mw(struct ib_mw * ibmw,struct ib_udata * udata)1985 int mlx5_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
1986 {
1987 struct mlx5_ib_dev *dev = to_mdev(ibmw->device);
1988 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1989 struct mlx5_ib_mw *mw = to_mmw(ibmw);
1990 u32 *in = NULL;
1991 void *mkc;
1992 int ndescs;
1993 int err;
1994 struct mlx5_ib_alloc_mw req = {};
1995 struct {
1996 __u32 comp_mask;
1997 __u32 response_length;
1998 } resp = {};
1999
2000 err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req)));
2001 if (err)
2002 return err;
2003
2004 if (req.comp_mask || req.reserved1 || req.reserved2)
2005 return -EOPNOTSUPP;
2006
2007 if (udata->inlen > sizeof(req) &&
2008 !ib_is_udata_cleared(udata, sizeof(req),
2009 udata->inlen - sizeof(req)))
2010 return -EOPNOTSUPP;
2011
2012 ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4);
2013
2014 in = kzalloc(inlen, GFP_KERNEL);
2015 if (!in) {
2016 err = -ENOMEM;
2017 goto free;
2018 }
2019
2020 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2021
2022 MLX5_SET(mkc, mkc, free, 1);
2023 MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
2024 MLX5_SET(mkc, mkc, pd, to_mpd(ibmw->pd)->pdn);
2025 MLX5_SET(mkc, mkc, umr_en, 1);
2026 MLX5_SET(mkc, mkc, lr, 1);
2027 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS);
2028 MLX5_SET(mkc, mkc, en_rinval, !!((ibmw->type == IB_MW_TYPE_2)));
2029 MLX5_SET(mkc, mkc, qpn, 0xffffff);
2030
2031 err = mlx5_ib_create_mkey(dev, &mw->mmkey, in, inlen);
2032 if (err)
2033 goto free;
2034
2035 mw->mmkey.type = MLX5_MKEY_MW;
2036 ibmw->rkey = mw->mmkey.key;
2037 mw->ndescs = ndescs;
2038
2039 resp.response_length =
2040 min(offsetofend(typeof(resp), response_length), udata->outlen);
2041 if (resp.response_length) {
2042 err = ib_copy_to_udata(udata, &resp, resp.response_length);
2043 if (err)
2044 goto free_mkey;
2045 }
2046
2047 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
2048 err = xa_err(xa_store(&dev->odp_mkeys,
2049 mlx5_base_mkey(mw->mmkey.key), &mw->mmkey,
2050 GFP_KERNEL));
2051 if (err)
2052 goto free_mkey;
2053 }
2054
2055 kfree(in);
2056 return 0;
2057
2058 free_mkey:
2059 mlx5_core_destroy_mkey(dev->mdev, &mw->mmkey);
2060 free:
2061 kfree(in);
2062 return err;
2063 }
2064
mlx5_ib_dealloc_mw(struct ib_mw * mw)2065 int mlx5_ib_dealloc_mw(struct ib_mw *mw)
2066 {
2067 struct mlx5_ib_dev *dev = to_mdev(mw->device);
2068 struct mlx5_ib_mw *mmw = to_mmw(mw);
2069
2070 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
2071 xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mmw->mmkey.key));
2072 /*
2073 * pagefault_single_data_segment() may be accessing mmw under
2074 * SRCU if the user bound an ODP MR to this MW.
2075 */
2076 synchronize_srcu(&dev->odp_srcu);
2077 }
2078
2079 return mlx5_core_destroy_mkey(dev->mdev, &mmw->mmkey);
2080 }
2081
mlx5_ib_check_mr_status(struct ib_mr * ibmr,u32 check_mask,struct ib_mr_status * mr_status)2082 int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask,
2083 struct ib_mr_status *mr_status)
2084 {
2085 struct mlx5_ib_mr *mmr = to_mmr(ibmr);
2086 int ret = 0;
2087
2088 if (check_mask & ~IB_MR_CHECK_SIG_STATUS) {
2089 pr_err("Invalid status check mask\n");
2090 ret = -EINVAL;
2091 goto done;
2092 }
2093
2094 mr_status->fail_status = 0;
2095 if (check_mask & IB_MR_CHECK_SIG_STATUS) {
2096 if (!mmr->sig) {
2097 ret = -EINVAL;
2098 pr_err("signature status check requested on a non-signature enabled MR\n");
2099 goto done;
2100 }
2101
2102 mmr->sig->sig_status_checked = true;
2103 if (!mmr->sig->sig_err_exists)
2104 goto done;
2105
2106 if (ibmr->lkey == mmr->sig->err_item.key)
2107 memcpy(&mr_status->sig_err, &mmr->sig->err_item,
2108 sizeof(mr_status->sig_err));
2109 else {
2110 mr_status->sig_err.err_type = IB_SIG_BAD_GUARD;
2111 mr_status->sig_err.sig_err_offset = 0;
2112 mr_status->sig_err.key = mmr->sig->err_item.key;
2113 }
2114
2115 mmr->sig->sig_err_exists = false;
2116 mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS;
2117 }
2118
2119 done:
2120 return ret;
2121 }
2122
2123 static int
mlx5_ib_map_pa_mr_sg_pi(struct ib_mr * ibmr,struct scatterlist * data_sg,int data_sg_nents,unsigned int * data_sg_offset,struct scatterlist * meta_sg,int meta_sg_nents,unsigned int * meta_sg_offset)2124 mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2125 int data_sg_nents, unsigned int *data_sg_offset,
2126 struct scatterlist *meta_sg, int meta_sg_nents,
2127 unsigned int *meta_sg_offset)
2128 {
2129 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2130 unsigned int sg_offset = 0;
2131 int n = 0;
2132
2133 mr->meta_length = 0;
2134 if (data_sg_nents == 1) {
2135 n++;
2136 mr->ndescs = 1;
2137 if (data_sg_offset)
2138 sg_offset = *data_sg_offset;
2139 mr->data_length = sg_dma_len(data_sg) - sg_offset;
2140 mr->data_iova = sg_dma_address(data_sg) + sg_offset;
2141 if (meta_sg_nents == 1) {
2142 n++;
2143 mr->meta_ndescs = 1;
2144 if (meta_sg_offset)
2145 sg_offset = *meta_sg_offset;
2146 else
2147 sg_offset = 0;
2148 mr->meta_length = sg_dma_len(meta_sg) - sg_offset;
2149 mr->pi_iova = sg_dma_address(meta_sg) + sg_offset;
2150 }
2151 ibmr->length = mr->data_length + mr->meta_length;
2152 }
2153
2154 return n;
2155 }
2156
2157 static int
mlx5_ib_sg_to_klms(struct mlx5_ib_mr * mr,struct scatterlist * sgl,unsigned short sg_nents,unsigned int * sg_offset_p,struct scatterlist * meta_sgl,unsigned short meta_sg_nents,unsigned int * meta_sg_offset_p)2158 mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr,
2159 struct scatterlist *sgl,
2160 unsigned short sg_nents,
2161 unsigned int *sg_offset_p,
2162 struct scatterlist *meta_sgl,
2163 unsigned short meta_sg_nents,
2164 unsigned int *meta_sg_offset_p)
2165 {
2166 struct scatterlist *sg = sgl;
2167 struct mlx5_klm *klms = mr->descs;
2168 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2169 u32 lkey = mr->ibmr.pd->local_dma_lkey;
2170 int i, j = 0;
2171
2172 mr->ibmr.iova = sg_dma_address(sg) + sg_offset;
2173 mr->ibmr.length = 0;
2174
2175 for_each_sg(sgl, sg, sg_nents, i) {
2176 if (unlikely(i >= mr->max_descs))
2177 break;
2178 klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset);
2179 klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset);
2180 klms[i].key = cpu_to_be32(lkey);
2181 mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2182
2183 sg_offset = 0;
2184 }
2185
2186 if (sg_offset_p)
2187 *sg_offset_p = sg_offset;
2188
2189 mr->ndescs = i;
2190 mr->data_length = mr->ibmr.length;
2191
2192 if (meta_sg_nents) {
2193 sg = meta_sgl;
2194 sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0;
2195 for_each_sg(meta_sgl, sg, meta_sg_nents, j) {
2196 if (unlikely(i + j >= mr->max_descs))
2197 break;
2198 klms[i + j].va = cpu_to_be64(sg_dma_address(sg) +
2199 sg_offset);
2200 klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) -
2201 sg_offset);
2202 klms[i + j].key = cpu_to_be32(lkey);
2203 mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2204
2205 sg_offset = 0;
2206 }
2207 if (meta_sg_offset_p)
2208 *meta_sg_offset_p = sg_offset;
2209
2210 mr->meta_ndescs = j;
2211 mr->meta_length = mr->ibmr.length - mr->data_length;
2212 }
2213
2214 return i + j;
2215 }
2216
mlx5_set_page(struct ib_mr * ibmr,u64 addr)2217 static int mlx5_set_page(struct ib_mr *ibmr, u64 addr)
2218 {
2219 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2220 __be64 *descs;
2221
2222 if (unlikely(mr->ndescs == mr->max_descs))
2223 return -ENOMEM;
2224
2225 descs = mr->descs;
2226 descs[mr->ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2227
2228 return 0;
2229 }
2230
mlx5_set_page_pi(struct ib_mr * ibmr,u64 addr)2231 static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr)
2232 {
2233 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2234 __be64 *descs;
2235
2236 if (unlikely(mr->ndescs + mr->meta_ndescs == mr->max_descs))
2237 return -ENOMEM;
2238
2239 descs = mr->descs;
2240 descs[mr->ndescs + mr->meta_ndescs++] =
2241 cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2242
2243 return 0;
2244 }
2245
2246 static int
mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr * ibmr,struct scatterlist * data_sg,int data_sg_nents,unsigned int * data_sg_offset,struct scatterlist * meta_sg,int meta_sg_nents,unsigned int * meta_sg_offset)2247 mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2248 int data_sg_nents, unsigned int *data_sg_offset,
2249 struct scatterlist *meta_sg, int meta_sg_nents,
2250 unsigned int *meta_sg_offset)
2251 {
2252 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2253 struct mlx5_ib_mr *pi_mr = mr->mtt_mr;
2254 int n;
2255
2256 pi_mr->ndescs = 0;
2257 pi_mr->meta_ndescs = 0;
2258 pi_mr->meta_length = 0;
2259
2260 ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2261 pi_mr->desc_size * pi_mr->max_descs,
2262 DMA_TO_DEVICE);
2263
2264 pi_mr->ibmr.page_size = ibmr->page_size;
2265 n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset,
2266 mlx5_set_page);
2267 if (n != data_sg_nents)
2268 return n;
2269
2270 pi_mr->data_iova = pi_mr->ibmr.iova;
2271 pi_mr->data_length = pi_mr->ibmr.length;
2272 pi_mr->ibmr.length = pi_mr->data_length;
2273 ibmr->length = pi_mr->data_length;
2274
2275 if (meta_sg_nents) {
2276 u64 page_mask = ~((u64)ibmr->page_size - 1);
2277 u64 iova = pi_mr->data_iova;
2278
2279 n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents,
2280 meta_sg_offset, mlx5_set_page_pi);
2281
2282 pi_mr->meta_length = pi_mr->ibmr.length;
2283 /*
2284 * PI address for the HW is the offset of the metadata address
2285 * relative to the first data page address.
2286 * It equals to first data page address + size of data pages +
2287 * metadata offset at the first metadata page
2288 */
2289 pi_mr->pi_iova = (iova & page_mask) +
2290 pi_mr->ndescs * ibmr->page_size +
2291 (pi_mr->ibmr.iova & ~page_mask);
2292 /*
2293 * In order to use one MTT MR for data and metadata, we register
2294 * also the gaps between the end of the data and the start of
2295 * the metadata (the sig MR will verify that the HW will access
2296 * to right addresses). This mapping is safe because we use
2297 * internal mkey for the registration.
2298 */
2299 pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova;
2300 pi_mr->ibmr.iova = iova;
2301 ibmr->length += pi_mr->meta_length;
2302 }
2303
2304 ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2305 pi_mr->desc_size * pi_mr->max_descs,
2306 DMA_TO_DEVICE);
2307
2308 return n;
2309 }
2310
2311 static int
mlx5_ib_map_klm_mr_sg_pi(struct ib_mr * ibmr,struct scatterlist * data_sg,int data_sg_nents,unsigned int * data_sg_offset,struct scatterlist * meta_sg,int meta_sg_nents,unsigned int * meta_sg_offset)2312 mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2313 int data_sg_nents, unsigned int *data_sg_offset,
2314 struct scatterlist *meta_sg, int meta_sg_nents,
2315 unsigned int *meta_sg_offset)
2316 {
2317 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2318 struct mlx5_ib_mr *pi_mr = mr->klm_mr;
2319 int n;
2320
2321 pi_mr->ndescs = 0;
2322 pi_mr->meta_ndescs = 0;
2323 pi_mr->meta_length = 0;
2324
2325 ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2326 pi_mr->desc_size * pi_mr->max_descs,
2327 DMA_TO_DEVICE);
2328
2329 n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset,
2330 meta_sg, meta_sg_nents, meta_sg_offset);
2331
2332 ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2333 pi_mr->desc_size * pi_mr->max_descs,
2334 DMA_TO_DEVICE);
2335
2336 /* This is zero-based memory region */
2337 pi_mr->data_iova = 0;
2338 pi_mr->ibmr.iova = 0;
2339 pi_mr->pi_iova = pi_mr->data_length;
2340 ibmr->length = pi_mr->ibmr.length;
2341
2342 return n;
2343 }
2344
mlx5_ib_map_mr_sg_pi(struct ib_mr * ibmr,struct scatterlist * data_sg,int data_sg_nents,unsigned int * data_sg_offset,struct scatterlist * meta_sg,int meta_sg_nents,unsigned int * meta_sg_offset)2345 int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2346 int data_sg_nents, unsigned int *data_sg_offset,
2347 struct scatterlist *meta_sg, int meta_sg_nents,
2348 unsigned int *meta_sg_offset)
2349 {
2350 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2351 struct mlx5_ib_mr *pi_mr = NULL;
2352 int n;
2353
2354 WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY);
2355
2356 mr->ndescs = 0;
2357 mr->data_length = 0;
2358 mr->data_iova = 0;
2359 mr->meta_ndescs = 0;
2360 mr->pi_iova = 0;
2361 /*
2362 * As a performance optimization, if possible, there is no need to
2363 * perform UMR operation to register the data/metadata buffers.
2364 * First try to map the sg lists to PA descriptors with local_dma_lkey.
2365 * Fallback to UMR only in case of a failure.
2366 */
2367 n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2368 data_sg_offset, meta_sg, meta_sg_nents,
2369 meta_sg_offset);
2370 if (n == data_sg_nents + meta_sg_nents)
2371 goto out;
2372 /*
2373 * As a performance optimization, if possible, there is no need to map
2374 * the sg lists to KLM descriptors. First try to map the sg lists to MTT
2375 * descriptors and fallback to KLM only in case of a failure.
2376 * It's more efficient for the HW to work with MTT descriptors
2377 * (especially in high load).
2378 * Use KLM (indirect access) only if it's mandatory.
2379 */
2380 pi_mr = mr->mtt_mr;
2381 n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2382 data_sg_offset, meta_sg, meta_sg_nents,
2383 meta_sg_offset);
2384 if (n == data_sg_nents + meta_sg_nents)
2385 goto out;
2386
2387 pi_mr = mr->klm_mr;
2388 n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2389 data_sg_offset, meta_sg, meta_sg_nents,
2390 meta_sg_offset);
2391 if (unlikely(n != data_sg_nents + meta_sg_nents))
2392 return -ENOMEM;
2393
2394 out:
2395 /* This is zero-based memory region */
2396 ibmr->iova = 0;
2397 mr->pi_mr = pi_mr;
2398 if (pi_mr)
2399 ibmr->sig_attrs->meta_length = pi_mr->meta_length;
2400 else
2401 ibmr->sig_attrs->meta_length = mr->meta_length;
2402
2403 return 0;
2404 }
2405
mlx5_ib_map_mr_sg(struct ib_mr * ibmr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset)2406 int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
2407 unsigned int *sg_offset)
2408 {
2409 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2410 int n;
2411
2412 mr->ndescs = 0;
2413
2414 ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map,
2415 mr->desc_size * mr->max_descs,
2416 DMA_TO_DEVICE);
2417
2418 if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS)
2419 n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0,
2420 NULL);
2421 else
2422 n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
2423 mlx5_set_page);
2424
2425 ib_dma_sync_single_for_device(ibmr->device, mr->desc_map,
2426 mr->desc_size * mr->max_descs,
2427 DMA_TO_DEVICE);
2428
2429 return n;
2430 }
2431