1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS MMU handling in the KVM module.
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11 
12 #include <linux/highmem.h>
13 #include <linux/kvm_host.h>
14 #include <linux/uaccess.h>
15 #include <asm/mmu_context.h>
16 #include <asm/pgalloc.h>
17 
18 /*
19  * KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels
20  * for which pages need to be cached.
21  */
22 #if defined(__PAGETABLE_PMD_FOLDED)
23 #define KVM_MMU_CACHE_MIN_PAGES 1
24 #else
25 #define KVM_MMU_CACHE_MIN_PAGES 2
26 #endif
27 
mmu_topup_memory_cache(struct kvm_mmu_memory_cache * cache,int min,int max)28 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
29 				  int min, int max)
30 {
31 	void *page;
32 
33 	BUG_ON(max > KVM_NR_MEM_OBJS);
34 	if (cache->nobjs >= min)
35 		return 0;
36 	while (cache->nobjs < max) {
37 		page = (void *)__get_free_page(GFP_KERNEL);
38 		if (!page)
39 			return -ENOMEM;
40 		cache->objects[cache->nobjs++] = page;
41 	}
42 	return 0;
43 }
44 
mmu_free_memory_cache(struct kvm_mmu_memory_cache * mc)45 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
46 {
47 	while (mc->nobjs)
48 		free_page((unsigned long)mc->objects[--mc->nobjs]);
49 }
50 
mmu_memory_cache_alloc(struct kvm_mmu_memory_cache * mc)51 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
52 {
53 	void *p;
54 
55 	BUG_ON(!mc || !mc->nobjs);
56 	p = mc->objects[--mc->nobjs];
57 	return p;
58 }
59 
kvm_mmu_free_memory_caches(struct kvm_vcpu * vcpu)60 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
61 {
62 	mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
63 }
64 
65 /**
66  * kvm_pgd_init() - Initialise KVM GPA page directory.
67  * @page:	Pointer to page directory (PGD) for KVM GPA.
68  *
69  * Initialise a KVM GPA page directory with pointers to the invalid table, i.e.
70  * representing no mappings. This is similar to pgd_init(), however it
71  * initialises all the page directory pointers, not just the ones corresponding
72  * to the userland address space (since it is for the guest physical address
73  * space rather than a virtual address space).
74  */
kvm_pgd_init(void * page)75 static void kvm_pgd_init(void *page)
76 {
77 	unsigned long *p, *end;
78 	unsigned long entry;
79 
80 #ifdef __PAGETABLE_PMD_FOLDED
81 	entry = (unsigned long)invalid_pte_table;
82 #else
83 	entry = (unsigned long)invalid_pmd_table;
84 #endif
85 
86 	p = (unsigned long *)page;
87 	end = p + PTRS_PER_PGD;
88 
89 	do {
90 		p[0] = entry;
91 		p[1] = entry;
92 		p[2] = entry;
93 		p[3] = entry;
94 		p[4] = entry;
95 		p += 8;
96 		p[-3] = entry;
97 		p[-2] = entry;
98 		p[-1] = entry;
99 	} while (p != end);
100 }
101 
102 /**
103  * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory.
104  *
105  * Allocate a blank KVM GPA page directory (PGD) for representing guest physical
106  * to host physical page mappings.
107  *
108  * Returns:	Pointer to new KVM GPA page directory.
109  *		NULL on allocation failure.
110  */
kvm_pgd_alloc(void)111 pgd_t *kvm_pgd_alloc(void)
112 {
113 	pgd_t *ret;
114 
115 	ret = (pgd_t *)__get_free_pages(GFP_KERNEL, PGD_ORDER);
116 	if (ret)
117 		kvm_pgd_init(ret);
118 
119 	return ret;
120 }
121 
122 /**
123  * kvm_mips_walk_pgd() - Walk page table with optional allocation.
124  * @pgd:	Page directory pointer.
125  * @addr:	Address to index page table using.
126  * @cache:	MMU page cache to allocate new page tables from, or NULL.
127  *
128  * Walk the page tables pointed to by @pgd to find the PTE corresponding to the
129  * address @addr. If page tables don't exist for @addr, they will be created
130  * from the MMU cache if @cache is not NULL.
131  *
132  * Returns:	Pointer to pte_t corresponding to @addr.
133  *		NULL if a page table doesn't exist for @addr and !@cache.
134  *		NULL if a page table allocation failed.
135  */
kvm_mips_walk_pgd(pgd_t * pgd,struct kvm_mmu_memory_cache * cache,unsigned long addr)136 static pte_t *kvm_mips_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache,
137 				unsigned long addr)
138 {
139 	pud_t *pud;
140 	pmd_t *pmd;
141 
142 	pgd += pgd_index(addr);
143 	if (pgd_none(*pgd)) {
144 		/* Not used on MIPS yet */
145 		BUG();
146 		return NULL;
147 	}
148 	pud = pud_offset(pgd, addr);
149 	if (pud_none(*pud)) {
150 		pmd_t *new_pmd;
151 
152 		if (!cache)
153 			return NULL;
154 		new_pmd = mmu_memory_cache_alloc(cache);
155 		pmd_init((unsigned long)new_pmd,
156 			 (unsigned long)invalid_pte_table);
157 		pud_populate(NULL, pud, new_pmd);
158 	}
159 	pmd = pmd_offset(pud, addr);
160 	if (pmd_none(*pmd)) {
161 		pte_t *new_pte;
162 
163 		if (!cache)
164 			return NULL;
165 		new_pte = mmu_memory_cache_alloc(cache);
166 		clear_page(new_pte);
167 		pmd_populate_kernel(NULL, pmd, new_pte);
168 	}
169 	return pte_offset(pmd, addr);
170 }
171 
172 /* Caller must hold kvm->mm_lock */
kvm_mips_pte_for_gpa(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,unsigned long addr)173 static pte_t *kvm_mips_pte_for_gpa(struct kvm *kvm,
174 				   struct kvm_mmu_memory_cache *cache,
175 				   unsigned long addr)
176 {
177 	return kvm_mips_walk_pgd(kvm->arch.gpa_mm.pgd, cache, addr);
178 }
179 
180 /*
181  * kvm_mips_flush_gpa_{pte,pmd,pud,pgd,pt}.
182  * Flush a range of guest physical address space from the VM's GPA page tables.
183  */
184 
kvm_mips_flush_gpa_pte(pte_t * pte,unsigned long start_gpa,unsigned long end_gpa)185 static bool kvm_mips_flush_gpa_pte(pte_t *pte, unsigned long start_gpa,
186 				   unsigned long end_gpa)
187 {
188 	int i_min = __pte_offset(start_gpa);
189 	int i_max = __pte_offset(end_gpa);
190 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
191 	int i;
192 
193 	for (i = i_min; i <= i_max; ++i) {
194 		if (!pte_present(pte[i]))
195 			continue;
196 
197 		set_pte(pte + i, __pte(0));
198 	}
199 	return safe_to_remove;
200 }
201 
kvm_mips_flush_gpa_pmd(pmd_t * pmd,unsigned long start_gpa,unsigned long end_gpa)202 static bool kvm_mips_flush_gpa_pmd(pmd_t *pmd, unsigned long start_gpa,
203 				   unsigned long end_gpa)
204 {
205 	pte_t *pte;
206 	unsigned long end = ~0ul;
207 	int i_min = __pmd_offset(start_gpa);
208 	int i_max = __pmd_offset(end_gpa);
209 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
210 	int i;
211 
212 	for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
213 		if (!pmd_present(pmd[i]))
214 			continue;
215 
216 		pte = pte_offset(pmd + i, 0);
217 		if (i == i_max)
218 			end = end_gpa;
219 
220 		if (kvm_mips_flush_gpa_pte(pte, start_gpa, end)) {
221 			pmd_clear(pmd + i);
222 			pte_free_kernel(NULL, pte);
223 		} else {
224 			safe_to_remove = false;
225 		}
226 	}
227 	return safe_to_remove;
228 }
229 
kvm_mips_flush_gpa_pud(pud_t * pud,unsigned long start_gpa,unsigned long end_gpa)230 static bool kvm_mips_flush_gpa_pud(pud_t *pud, unsigned long start_gpa,
231 				   unsigned long end_gpa)
232 {
233 	pmd_t *pmd;
234 	unsigned long end = ~0ul;
235 	int i_min = __pud_offset(start_gpa);
236 	int i_max = __pud_offset(end_gpa);
237 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
238 	int i;
239 
240 	for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
241 		if (!pud_present(pud[i]))
242 			continue;
243 
244 		pmd = pmd_offset(pud + i, 0);
245 		if (i == i_max)
246 			end = end_gpa;
247 
248 		if (kvm_mips_flush_gpa_pmd(pmd, start_gpa, end)) {
249 			pud_clear(pud + i);
250 			pmd_free(NULL, pmd);
251 		} else {
252 			safe_to_remove = false;
253 		}
254 	}
255 	return safe_to_remove;
256 }
257 
kvm_mips_flush_gpa_pgd(pgd_t * pgd,unsigned long start_gpa,unsigned long end_gpa)258 static bool kvm_mips_flush_gpa_pgd(pgd_t *pgd, unsigned long start_gpa,
259 				   unsigned long end_gpa)
260 {
261 	pud_t *pud;
262 	unsigned long end = ~0ul;
263 	int i_min = pgd_index(start_gpa);
264 	int i_max = pgd_index(end_gpa);
265 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
266 	int i;
267 
268 	for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
269 		if (!pgd_present(pgd[i]))
270 			continue;
271 
272 		pud = pud_offset(pgd + i, 0);
273 		if (i == i_max)
274 			end = end_gpa;
275 
276 		if (kvm_mips_flush_gpa_pud(pud, start_gpa, end)) {
277 			pgd_clear(pgd + i);
278 			pud_free(NULL, pud);
279 		} else {
280 			safe_to_remove = false;
281 		}
282 	}
283 	return safe_to_remove;
284 }
285 
286 /**
287  * kvm_mips_flush_gpa_pt() - Flush a range of guest physical addresses.
288  * @kvm:	KVM pointer.
289  * @start_gfn:	Guest frame number of first page in GPA range to flush.
290  * @end_gfn:	Guest frame number of last page in GPA range to flush.
291  *
292  * Flushes a range of GPA mappings from the GPA page tables.
293  *
294  * The caller must hold the @kvm->mmu_lock spinlock.
295  *
296  * Returns:	Whether its safe to remove the top level page directory because
297  *		all lower levels have been removed.
298  */
kvm_mips_flush_gpa_pt(struct kvm * kvm,gfn_t start_gfn,gfn_t end_gfn)299 bool kvm_mips_flush_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
300 {
301 	return kvm_mips_flush_gpa_pgd(kvm->arch.gpa_mm.pgd,
302 				      start_gfn << PAGE_SHIFT,
303 				      end_gfn << PAGE_SHIFT);
304 }
305 
306 #define BUILD_PTE_RANGE_OP(name, op)					\
307 static int kvm_mips_##name##_pte(pte_t *pte, unsigned long start,	\
308 				 unsigned long end)			\
309 {									\
310 	int ret = 0;							\
311 	int i_min = __pte_offset(start);				\
312 	int i_max = __pte_offset(end);					\
313 	int i;								\
314 	pte_t old, new;							\
315 									\
316 	for (i = i_min; i <= i_max; ++i) {				\
317 		if (!pte_present(pte[i]))				\
318 			continue;					\
319 									\
320 		old = pte[i];						\
321 		new = op(old);						\
322 		if (pte_val(new) == pte_val(old))			\
323 			continue;					\
324 		set_pte(pte + i, new);					\
325 		ret = 1;						\
326 	}								\
327 	return ret;							\
328 }									\
329 									\
330 /* returns true if anything was done */					\
331 static int kvm_mips_##name##_pmd(pmd_t *pmd, unsigned long start,	\
332 				 unsigned long end)			\
333 {									\
334 	int ret = 0;							\
335 	pte_t *pte;							\
336 	unsigned long cur_end = ~0ul;					\
337 	int i_min = __pmd_offset(start);				\
338 	int i_max = __pmd_offset(end);					\
339 	int i;								\
340 									\
341 	for (i = i_min; i <= i_max; ++i, start = 0) {			\
342 		if (!pmd_present(pmd[i]))				\
343 			continue;					\
344 									\
345 		pte = pte_offset(pmd + i, 0);				\
346 		if (i == i_max)						\
347 			cur_end = end;					\
348 									\
349 		ret |= kvm_mips_##name##_pte(pte, start, cur_end);	\
350 	}								\
351 	return ret;							\
352 }									\
353 									\
354 static int kvm_mips_##name##_pud(pud_t *pud, unsigned long start,	\
355 				 unsigned long end)			\
356 {									\
357 	int ret = 0;							\
358 	pmd_t *pmd;							\
359 	unsigned long cur_end = ~0ul;					\
360 	int i_min = __pud_offset(start);				\
361 	int i_max = __pud_offset(end);					\
362 	int i;								\
363 									\
364 	for (i = i_min; i <= i_max; ++i, start = 0) {			\
365 		if (!pud_present(pud[i]))				\
366 			continue;					\
367 									\
368 		pmd = pmd_offset(pud + i, 0);				\
369 		if (i == i_max)						\
370 			cur_end = end;					\
371 									\
372 		ret |= kvm_mips_##name##_pmd(pmd, start, cur_end);	\
373 	}								\
374 	return ret;							\
375 }									\
376 									\
377 static int kvm_mips_##name##_pgd(pgd_t *pgd, unsigned long start,	\
378 				 unsigned long end)			\
379 {									\
380 	int ret = 0;							\
381 	pud_t *pud;							\
382 	unsigned long cur_end = ~0ul;					\
383 	int i_min = pgd_index(start);					\
384 	int i_max = pgd_index(end);					\
385 	int i;								\
386 									\
387 	for (i = i_min; i <= i_max; ++i, start = 0) {			\
388 		if (!pgd_present(pgd[i]))				\
389 			continue;					\
390 									\
391 		pud = pud_offset(pgd + i, 0);				\
392 		if (i == i_max)						\
393 			cur_end = end;					\
394 									\
395 		ret |= kvm_mips_##name##_pud(pud, start, cur_end);	\
396 	}								\
397 	return ret;							\
398 }
399 
400 /*
401  * kvm_mips_mkclean_gpa_pt.
402  * Mark a range of guest physical address space clean (writes fault) in the VM's
403  * GPA page table to allow dirty page tracking.
404  */
405 
BUILD_PTE_RANGE_OP(mkclean,pte_mkclean)406 BUILD_PTE_RANGE_OP(mkclean, pte_mkclean)
407 
408 /**
409  * kvm_mips_mkclean_gpa_pt() - Make a range of guest physical addresses clean.
410  * @kvm:	KVM pointer.
411  * @start_gfn:	Guest frame number of first page in GPA range to flush.
412  * @end_gfn:	Guest frame number of last page in GPA range to flush.
413  *
414  * Make a range of GPA mappings clean so that guest writes will fault and
415  * trigger dirty page logging.
416  *
417  * The caller must hold the @kvm->mmu_lock spinlock.
418  *
419  * Returns:	Whether any GPA mappings were modified, which would require
420  *		derived mappings (GVA page tables & TLB enties) to be
421  *		invalidated.
422  */
423 int kvm_mips_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
424 {
425 	return kvm_mips_mkclean_pgd(kvm->arch.gpa_mm.pgd,
426 				    start_gfn << PAGE_SHIFT,
427 				    end_gfn << PAGE_SHIFT);
428 }
429 
430 /**
431  * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages
432  * @kvm:	The KVM pointer
433  * @slot:	The memory slot associated with mask
434  * @gfn_offset:	The gfn offset in memory slot
435  * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
436  *		slot to be write protected
437  *
438  * Walks bits set in mask write protects the associated pte's. Caller must
439  * acquire @kvm->mmu_lock.
440  */
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)441 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
442 		struct kvm_memory_slot *slot,
443 		gfn_t gfn_offset, unsigned long mask)
444 {
445 	gfn_t base_gfn = slot->base_gfn + gfn_offset;
446 	gfn_t start = base_gfn +  __ffs(mask);
447 	gfn_t end = base_gfn + __fls(mask);
448 
449 	kvm_mips_mkclean_gpa_pt(kvm, start, end);
450 }
451 
452 /*
453  * kvm_mips_mkold_gpa_pt.
454  * Mark a range of guest physical address space old (all accesses fault) in the
455  * VM's GPA page table to allow detection of commonly used pages.
456  */
457 
BUILD_PTE_RANGE_OP(mkold,pte_mkold)458 BUILD_PTE_RANGE_OP(mkold, pte_mkold)
459 
460 static int kvm_mips_mkold_gpa_pt(struct kvm *kvm, gfn_t start_gfn,
461 				 gfn_t end_gfn)
462 {
463 	return kvm_mips_mkold_pgd(kvm->arch.gpa_mm.pgd,
464 				  start_gfn << PAGE_SHIFT,
465 				  end_gfn << PAGE_SHIFT);
466 }
467 
handle_hva_to_gpa(struct kvm * kvm,unsigned long start,unsigned long end,int (* handler)(struct kvm * kvm,gfn_t gfn,gpa_t gfn_end,struct kvm_memory_slot * memslot,void * data),void * data)468 static int handle_hva_to_gpa(struct kvm *kvm,
469 			     unsigned long start,
470 			     unsigned long end,
471 			     int (*handler)(struct kvm *kvm, gfn_t gfn,
472 					    gpa_t gfn_end,
473 					    struct kvm_memory_slot *memslot,
474 					    void *data),
475 			     void *data)
476 {
477 	struct kvm_memslots *slots;
478 	struct kvm_memory_slot *memslot;
479 	int ret = 0;
480 
481 	slots = kvm_memslots(kvm);
482 
483 	/* we only care about the pages that the guest sees */
484 	kvm_for_each_memslot(memslot, slots) {
485 		unsigned long hva_start, hva_end;
486 		gfn_t gfn, gfn_end;
487 
488 		hva_start = max(start, memslot->userspace_addr);
489 		hva_end = min(end, memslot->userspace_addr +
490 					(memslot->npages << PAGE_SHIFT));
491 		if (hva_start >= hva_end)
492 			continue;
493 
494 		/*
495 		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
496 		 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
497 		 */
498 		gfn = hva_to_gfn_memslot(hva_start, memslot);
499 		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
500 
501 		ret |= handler(kvm, gfn, gfn_end, memslot, data);
502 	}
503 
504 	return ret;
505 }
506 
507 
kvm_unmap_hva_handler(struct kvm * kvm,gfn_t gfn,gfn_t gfn_end,struct kvm_memory_slot * memslot,void * data)508 static int kvm_unmap_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
509 				 struct kvm_memory_slot *memslot, void *data)
510 {
511 	kvm_mips_flush_gpa_pt(kvm, gfn, gfn_end);
512 	return 1;
513 }
514 
kvm_unmap_hva_range(struct kvm * kvm,unsigned long start,unsigned long end)515 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
516 {
517 	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
518 
519 	kvm_mips_callbacks->flush_shadow_all(kvm);
520 	return 0;
521 }
522 
kvm_set_spte_handler(struct kvm * kvm,gfn_t gfn,gfn_t gfn_end,struct kvm_memory_slot * memslot,void * data)523 static int kvm_set_spte_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
524 				struct kvm_memory_slot *memslot, void *data)
525 {
526 	gpa_t gpa = gfn << PAGE_SHIFT;
527 	pte_t hva_pte = *(pte_t *)data;
528 	pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
529 	pte_t old_pte;
530 
531 	if (!gpa_pte)
532 		return 0;
533 
534 	/* Mapping may need adjusting depending on memslot flags */
535 	old_pte = *gpa_pte;
536 	if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES && !pte_dirty(old_pte))
537 		hva_pte = pte_mkclean(hva_pte);
538 	else if (memslot->flags & KVM_MEM_READONLY)
539 		hva_pte = pte_wrprotect(hva_pte);
540 
541 	set_pte(gpa_pte, hva_pte);
542 
543 	/* Replacing an absent or old page doesn't need flushes */
544 	if (!pte_present(old_pte) || !pte_young(old_pte))
545 		return 0;
546 
547 	/* Pages swapped, aged, moved, or cleaned require flushes */
548 	return !pte_present(hva_pte) ||
549 	       !pte_young(hva_pte) ||
550 	       pte_pfn(old_pte) != pte_pfn(hva_pte) ||
551 	       (pte_dirty(old_pte) && !pte_dirty(hva_pte));
552 }
553 
kvm_set_spte_hva(struct kvm * kvm,unsigned long hva,pte_t pte)554 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
555 {
556 	unsigned long end = hva + PAGE_SIZE;
557 	int ret;
558 
559 	ret = handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &pte);
560 	if (ret)
561 		kvm_mips_callbacks->flush_shadow_all(kvm);
562 }
563 
kvm_age_hva_handler(struct kvm * kvm,gfn_t gfn,gfn_t gfn_end,struct kvm_memory_slot * memslot,void * data)564 static int kvm_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
565 			       struct kvm_memory_slot *memslot, void *data)
566 {
567 	return kvm_mips_mkold_gpa_pt(kvm, gfn, gfn_end);
568 }
569 
kvm_test_age_hva_handler(struct kvm * kvm,gfn_t gfn,gfn_t gfn_end,struct kvm_memory_slot * memslot,void * data)570 static int kvm_test_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
571 				    struct kvm_memory_slot *memslot, void *data)
572 {
573 	gpa_t gpa = gfn << PAGE_SHIFT;
574 	pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
575 
576 	if (!gpa_pte)
577 		return 0;
578 	return pte_young(*gpa_pte);
579 }
580 
kvm_age_hva(struct kvm * kvm,unsigned long start,unsigned long end)581 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
582 {
583 	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
584 }
585 
kvm_test_age_hva(struct kvm * kvm,unsigned long hva)586 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
587 {
588 	return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
589 }
590 
591 /**
592  * _kvm_mips_map_page_fast() - Fast path GPA fault handler.
593  * @vcpu:		VCPU pointer.
594  * @gpa:		Guest physical address of fault.
595  * @write_fault:	Whether the fault was due to a write.
596  * @out_entry:		New PTE for @gpa (written on success unless NULL).
597  * @out_buddy:		New PTE for @gpa's buddy (written on success unless
598  *			NULL).
599  *
600  * Perform fast path GPA fault handling, doing all that can be done without
601  * calling into KVM. This handles marking old pages young (for idle page
602  * tracking), and dirtying of clean pages (for dirty page logging).
603  *
604  * Returns:	0 on success, in which case we can update derived mappings and
605  *		resume guest execution.
606  *		-EFAULT on failure due to absent GPA mapping or write to
607  *		read-only page, in which case KVM must be consulted.
608  */
_kvm_mips_map_page_fast(struct kvm_vcpu * vcpu,unsigned long gpa,bool write_fault,pte_t * out_entry,pte_t * out_buddy)609 static int _kvm_mips_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa,
610 				   bool write_fault,
611 				   pte_t *out_entry, pte_t *out_buddy)
612 {
613 	struct kvm *kvm = vcpu->kvm;
614 	gfn_t gfn = gpa >> PAGE_SHIFT;
615 	pte_t *ptep;
616 	kvm_pfn_t pfn = 0;	/* silence bogus GCC warning */
617 	bool pfn_valid = false;
618 	int ret = 0;
619 
620 	spin_lock(&kvm->mmu_lock);
621 
622 	/* Fast path - just check GPA page table for an existing entry */
623 	ptep = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
624 	if (!ptep || !pte_present(*ptep)) {
625 		ret = -EFAULT;
626 		goto out;
627 	}
628 
629 	/* Track access to pages marked old */
630 	if (!pte_young(*ptep)) {
631 		set_pte(ptep, pte_mkyoung(*ptep));
632 		pfn = pte_pfn(*ptep);
633 		pfn_valid = true;
634 		/* call kvm_set_pfn_accessed() after unlock */
635 	}
636 	if (write_fault && !pte_dirty(*ptep)) {
637 		if (!pte_write(*ptep)) {
638 			ret = -EFAULT;
639 			goto out;
640 		}
641 
642 		/* Track dirtying of writeable pages */
643 		set_pte(ptep, pte_mkdirty(*ptep));
644 		pfn = pte_pfn(*ptep);
645 		mark_page_dirty(kvm, gfn);
646 		kvm_set_pfn_dirty(pfn);
647 	}
648 
649 	if (out_entry)
650 		*out_entry = *ptep;
651 	if (out_buddy)
652 		*out_buddy = *ptep_buddy(ptep);
653 
654 out:
655 	spin_unlock(&kvm->mmu_lock);
656 	if (pfn_valid)
657 		kvm_set_pfn_accessed(pfn);
658 	return ret;
659 }
660 
661 /**
662  * kvm_mips_map_page() - Map a guest physical page.
663  * @vcpu:		VCPU pointer.
664  * @gpa:		Guest physical address of fault.
665  * @write_fault:	Whether the fault was due to a write.
666  * @out_entry:		New PTE for @gpa (written on success unless NULL).
667  * @out_buddy:		New PTE for @gpa's buddy (written on success unless
668  *			NULL).
669  *
670  * Handle GPA faults by creating a new GPA mapping (or updating an existing
671  * one).
672  *
673  * This takes care of marking pages young or dirty (idle/dirty page tracking),
674  * asking KVM for the corresponding PFN, and creating a mapping in the GPA page
675  * tables. Derived mappings (GVA page tables and TLBs) must be handled by the
676  * caller.
677  *
678  * Returns:	0 on success, in which case the caller may use the @out_entry
679  *		and @out_buddy PTEs to update derived mappings and resume guest
680  *		execution.
681  *		-EFAULT if there is no memory region at @gpa or a write was
682  *		attempted to a read-only memory region. This is usually handled
683  *		as an MMIO access.
684  */
kvm_mips_map_page(struct kvm_vcpu * vcpu,unsigned long gpa,bool write_fault,pte_t * out_entry,pte_t * out_buddy)685 static int kvm_mips_map_page(struct kvm_vcpu *vcpu, unsigned long gpa,
686 			     bool write_fault,
687 			     pte_t *out_entry, pte_t *out_buddy)
688 {
689 	struct kvm *kvm = vcpu->kvm;
690 	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
691 	gfn_t gfn = gpa >> PAGE_SHIFT;
692 	int srcu_idx, err;
693 	kvm_pfn_t pfn;
694 	pte_t *ptep, entry, old_pte;
695 	bool writeable;
696 	unsigned long prot_bits;
697 	unsigned long mmu_seq;
698 
699 	/* Try the fast path to handle old / clean pages */
700 	srcu_idx = srcu_read_lock(&kvm->srcu);
701 	err = _kvm_mips_map_page_fast(vcpu, gpa, write_fault, out_entry,
702 				      out_buddy);
703 	if (!err)
704 		goto out;
705 
706 	/* We need a minimum of cached pages ready for page table creation */
707 	err = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
708 				     KVM_NR_MEM_OBJS);
709 	if (err)
710 		goto out;
711 
712 retry:
713 	/*
714 	 * Used to check for invalidations in progress, of the pfn that is
715 	 * returned by pfn_to_pfn_prot below.
716 	 */
717 	mmu_seq = kvm->mmu_notifier_seq;
718 	/*
719 	 * Ensure the read of mmu_notifier_seq isn't reordered with PTE reads in
720 	 * gfn_to_pfn_prot() (which calls get_user_pages()), so that we don't
721 	 * risk the page we get a reference to getting unmapped before we have a
722 	 * chance to grab the mmu_lock without mmu_notifier_retry() noticing.
723 	 *
724 	 * This smp_rmb() pairs with the effective smp_wmb() of the combination
725 	 * of the pte_unmap_unlock() after the PTE is zapped, and the
726 	 * spin_lock() in kvm_mmu_notifier_invalidate_<page|range_end>() before
727 	 * mmu_notifier_seq is incremented.
728 	 */
729 	smp_rmb();
730 
731 	/* Slow path - ask KVM core whether we can access this GPA */
732 	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writeable);
733 	if (is_error_noslot_pfn(pfn)) {
734 		err = -EFAULT;
735 		goto out;
736 	}
737 
738 	spin_lock(&kvm->mmu_lock);
739 	/* Check if an invalidation has taken place since we got pfn */
740 	if (mmu_notifier_retry(kvm, mmu_seq)) {
741 		/*
742 		 * This can happen when mappings are changed asynchronously, but
743 		 * also synchronously if a COW is triggered by
744 		 * gfn_to_pfn_prot().
745 		 */
746 		spin_unlock(&kvm->mmu_lock);
747 		kvm_release_pfn_clean(pfn);
748 		goto retry;
749 	}
750 
751 	/* Ensure page tables are allocated */
752 	ptep = kvm_mips_pte_for_gpa(kvm, memcache, gpa);
753 
754 	/* Set up the PTE */
755 	prot_bits = _PAGE_PRESENT | __READABLE | _page_cachable_default;
756 	if (writeable) {
757 		prot_bits |= _PAGE_WRITE;
758 		if (write_fault) {
759 			prot_bits |= __WRITEABLE;
760 			mark_page_dirty(kvm, gfn);
761 			kvm_set_pfn_dirty(pfn);
762 		}
763 	}
764 	entry = pfn_pte(pfn, __pgprot(prot_bits));
765 
766 	/* Write the PTE */
767 	old_pte = *ptep;
768 	set_pte(ptep, entry);
769 
770 	err = 0;
771 	if (out_entry)
772 		*out_entry = *ptep;
773 	if (out_buddy)
774 		*out_buddy = *ptep_buddy(ptep);
775 
776 	spin_unlock(&kvm->mmu_lock);
777 	kvm_release_pfn_clean(pfn);
778 	kvm_set_pfn_accessed(pfn);
779 out:
780 	srcu_read_unlock(&kvm->srcu, srcu_idx);
781 	return err;
782 }
783 
kvm_trap_emul_pte_for_gva(struct kvm_vcpu * vcpu,unsigned long addr)784 static pte_t *kvm_trap_emul_pte_for_gva(struct kvm_vcpu *vcpu,
785 					unsigned long addr)
786 {
787 	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
788 	pgd_t *pgdp;
789 	int ret;
790 
791 	/* We need a minimum of cached pages ready for page table creation */
792 	ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
793 				     KVM_NR_MEM_OBJS);
794 	if (ret)
795 		return NULL;
796 
797 	if (KVM_GUEST_KERNEL_MODE(vcpu))
798 		pgdp = vcpu->arch.guest_kernel_mm.pgd;
799 	else
800 		pgdp = vcpu->arch.guest_user_mm.pgd;
801 
802 	return kvm_mips_walk_pgd(pgdp, memcache, addr);
803 }
804 
kvm_trap_emul_invalidate_gva(struct kvm_vcpu * vcpu,unsigned long addr,bool user)805 void kvm_trap_emul_invalidate_gva(struct kvm_vcpu *vcpu, unsigned long addr,
806 				  bool user)
807 {
808 	pgd_t *pgdp;
809 	pte_t *ptep;
810 
811 	addr &= PAGE_MASK << 1;
812 
813 	pgdp = vcpu->arch.guest_kernel_mm.pgd;
814 	ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
815 	if (ptep) {
816 		ptep[0] = pfn_pte(0, __pgprot(0));
817 		ptep[1] = pfn_pte(0, __pgprot(0));
818 	}
819 
820 	if (user) {
821 		pgdp = vcpu->arch.guest_user_mm.pgd;
822 		ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
823 		if (ptep) {
824 			ptep[0] = pfn_pte(0, __pgprot(0));
825 			ptep[1] = pfn_pte(0, __pgprot(0));
826 		}
827 	}
828 }
829 
830 /*
831  * kvm_mips_flush_gva_{pte,pmd,pud,pgd,pt}.
832  * Flush a range of guest physical address space from the VM's GPA page tables.
833  */
834 
kvm_mips_flush_gva_pte(pte_t * pte,unsigned long start_gva,unsigned long end_gva)835 static bool kvm_mips_flush_gva_pte(pte_t *pte, unsigned long start_gva,
836 				   unsigned long end_gva)
837 {
838 	int i_min = __pte_offset(start_gva);
839 	int i_max = __pte_offset(end_gva);
840 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
841 	int i;
842 
843 	/*
844 	 * There's no freeing to do, so there's no point clearing individual
845 	 * entries unless only part of the last level page table needs flushing.
846 	 */
847 	if (safe_to_remove)
848 		return true;
849 
850 	for (i = i_min; i <= i_max; ++i) {
851 		if (!pte_present(pte[i]))
852 			continue;
853 
854 		set_pte(pte + i, __pte(0));
855 	}
856 	return false;
857 }
858 
kvm_mips_flush_gva_pmd(pmd_t * pmd,unsigned long start_gva,unsigned long end_gva)859 static bool kvm_mips_flush_gva_pmd(pmd_t *pmd, unsigned long start_gva,
860 				   unsigned long end_gva)
861 {
862 	pte_t *pte;
863 	unsigned long end = ~0ul;
864 	int i_min = __pmd_offset(start_gva);
865 	int i_max = __pmd_offset(end_gva);
866 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
867 	int i;
868 
869 	for (i = i_min; i <= i_max; ++i, start_gva = 0) {
870 		if (!pmd_present(pmd[i]))
871 			continue;
872 
873 		pte = pte_offset(pmd + i, 0);
874 		if (i == i_max)
875 			end = end_gva;
876 
877 		if (kvm_mips_flush_gva_pte(pte, start_gva, end)) {
878 			pmd_clear(pmd + i);
879 			pte_free_kernel(NULL, pte);
880 		} else {
881 			safe_to_remove = false;
882 		}
883 	}
884 	return safe_to_remove;
885 }
886 
kvm_mips_flush_gva_pud(pud_t * pud,unsigned long start_gva,unsigned long end_gva)887 static bool kvm_mips_flush_gva_pud(pud_t *pud, unsigned long start_gva,
888 				   unsigned long end_gva)
889 {
890 	pmd_t *pmd;
891 	unsigned long end = ~0ul;
892 	int i_min = __pud_offset(start_gva);
893 	int i_max = __pud_offset(end_gva);
894 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
895 	int i;
896 
897 	for (i = i_min; i <= i_max; ++i, start_gva = 0) {
898 		if (!pud_present(pud[i]))
899 			continue;
900 
901 		pmd = pmd_offset(pud + i, 0);
902 		if (i == i_max)
903 			end = end_gva;
904 
905 		if (kvm_mips_flush_gva_pmd(pmd, start_gva, end)) {
906 			pud_clear(pud + i);
907 			pmd_free(NULL, pmd);
908 		} else {
909 			safe_to_remove = false;
910 		}
911 	}
912 	return safe_to_remove;
913 }
914 
kvm_mips_flush_gva_pgd(pgd_t * pgd,unsigned long start_gva,unsigned long end_gva)915 static bool kvm_mips_flush_gva_pgd(pgd_t *pgd, unsigned long start_gva,
916 				   unsigned long end_gva)
917 {
918 	pud_t *pud;
919 	unsigned long end = ~0ul;
920 	int i_min = pgd_index(start_gva);
921 	int i_max = pgd_index(end_gva);
922 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
923 	int i;
924 
925 	for (i = i_min; i <= i_max; ++i, start_gva = 0) {
926 		if (!pgd_present(pgd[i]))
927 			continue;
928 
929 		pud = pud_offset(pgd + i, 0);
930 		if (i == i_max)
931 			end = end_gva;
932 
933 		if (kvm_mips_flush_gva_pud(pud, start_gva, end)) {
934 			pgd_clear(pgd + i);
935 			pud_free(NULL, pud);
936 		} else {
937 			safe_to_remove = false;
938 		}
939 	}
940 	return safe_to_remove;
941 }
942 
kvm_mips_flush_gva_pt(pgd_t * pgd,enum kvm_mips_flush flags)943 void kvm_mips_flush_gva_pt(pgd_t *pgd, enum kvm_mips_flush flags)
944 {
945 	if (flags & KMF_GPA) {
946 		/* all of guest virtual address space could be affected */
947 		if (flags & KMF_KERN)
948 			/* useg, kseg0, seg2/3 */
949 			kvm_mips_flush_gva_pgd(pgd, 0, 0x7fffffff);
950 		else
951 			/* useg */
952 			kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
953 	} else {
954 		/* useg */
955 		kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
956 
957 		/* kseg2/3 */
958 		if (flags & KMF_KERN)
959 			kvm_mips_flush_gva_pgd(pgd, 0x60000000, 0x7fffffff);
960 	}
961 }
962 
kvm_mips_gpa_pte_to_gva_unmapped(pte_t pte)963 static pte_t kvm_mips_gpa_pte_to_gva_unmapped(pte_t pte)
964 {
965 	/*
966 	 * Don't leak writeable but clean entries from GPA page tables. We don't
967 	 * want the normal Linux tlbmod handler to handle dirtying when KVM
968 	 * accesses guest memory.
969 	 */
970 	if (!pte_dirty(pte))
971 		pte = pte_wrprotect(pte);
972 
973 	return pte;
974 }
975 
kvm_mips_gpa_pte_to_gva_mapped(pte_t pte,long entrylo)976 static pte_t kvm_mips_gpa_pte_to_gva_mapped(pte_t pte, long entrylo)
977 {
978 	/* Guest EntryLo overrides host EntryLo */
979 	if (!(entrylo & ENTRYLO_D))
980 		pte = pte_mkclean(pte);
981 
982 	return kvm_mips_gpa_pte_to_gva_unmapped(pte);
983 }
984 
985 #ifdef CONFIG_KVM_MIPS_VZ
kvm_mips_handle_vz_root_tlb_fault(unsigned long badvaddr,struct kvm_vcpu * vcpu,bool write_fault)986 int kvm_mips_handle_vz_root_tlb_fault(unsigned long badvaddr,
987 				      struct kvm_vcpu *vcpu,
988 				      bool write_fault)
989 {
990 	int ret;
991 
992 	ret = kvm_mips_map_page(vcpu, badvaddr, write_fault, NULL, NULL);
993 	if (ret)
994 		return ret;
995 
996 	/* Invalidate this entry in the TLB */
997 	return kvm_vz_host_tlb_inv(vcpu, badvaddr);
998 }
999 #endif
1000 
1001 /* XXXKYMA: Must be called with interrupts disabled */
kvm_mips_handle_kseg0_tlb_fault(unsigned long badvaddr,struct kvm_vcpu * vcpu,bool write_fault)1002 int kvm_mips_handle_kseg0_tlb_fault(unsigned long badvaddr,
1003 				    struct kvm_vcpu *vcpu,
1004 				    bool write_fault)
1005 {
1006 	unsigned long gpa;
1007 	pte_t pte_gpa[2], *ptep_gva;
1008 	int idx;
1009 
1010 	if (KVM_GUEST_KSEGX(badvaddr) != KVM_GUEST_KSEG0) {
1011 		kvm_err("%s: Invalid BadVaddr: %#lx\n", __func__, badvaddr);
1012 		kvm_mips_dump_host_tlbs();
1013 		return -1;
1014 	}
1015 
1016 	/* Get the GPA page table entry */
1017 	gpa = KVM_GUEST_CPHYSADDR(badvaddr);
1018 	idx = (badvaddr >> PAGE_SHIFT) & 1;
1019 	if (kvm_mips_map_page(vcpu, gpa, write_fault, &pte_gpa[idx],
1020 			      &pte_gpa[!idx]) < 0)
1021 		return -1;
1022 
1023 	/* Get the GVA page table entry */
1024 	ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, badvaddr & ~PAGE_SIZE);
1025 	if (!ptep_gva) {
1026 		kvm_err("No ptep for gva %lx\n", badvaddr);
1027 		return -1;
1028 	}
1029 
1030 	/* Copy a pair of entries from GPA page table to GVA page table */
1031 	ptep_gva[0] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[0]);
1032 	ptep_gva[1] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[1]);
1033 
1034 	/* Invalidate this entry in the TLB, guest kernel ASID only */
1035 	kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true);
1036 	return 0;
1037 }
1038 
kvm_mips_handle_mapped_seg_tlb_fault(struct kvm_vcpu * vcpu,struct kvm_mips_tlb * tlb,unsigned long gva,bool write_fault)1039 int kvm_mips_handle_mapped_seg_tlb_fault(struct kvm_vcpu *vcpu,
1040 					 struct kvm_mips_tlb *tlb,
1041 					 unsigned long gva,
1042 					 bool write_fault)
1043 {
1044 	struct kvm *kvm = vcpu->kvm;
1045 	long tlb_lo[2];
1046 	pte_t pte_gpa[2], *ptep_buddy, *ptep_gva;
1047 	unsigned int idx = TLB_LO_IDX(*tlb, gva);
1048 	bool kernel = KVM_GUEST_KERNEL_MODE(vcpu);
1049 
1050 	tlb_lo[0] = tlb->tlb_lo[0];
1051 	tlb_lo[1] = tlb->tlb_lo[1];
1052 
1053 	/*
1054 	 * The commpage address must not be mapped to anything else if the guest
1055 	 * TLB contains entries nearby, or commpage accesses will break.
1056 	 */
1057 	if (!((gva ^ KVM_GUEST_COMMPAGE_ADDR) & VPN2_MASK & (PAGE_MASK << 1)))
1058 		tlb_lo[TLB_LO_IDX(*tlb, KVM_GUEST_COMMPAGE_ADDR)] = 0;
1059 
1060 	/* Get the GPA page table entry */
1061 	if (kvm_mips_map_page(vcpu, mips3_tlbpfn_to_paddr(tlb_lo[idx]),
1062 			      write_fault, &pte_gpa[idx], NULL) < 0)
1063 		return -1;
1064 
1065 	/* And its GVA buddy's GPA page table entry if it also exists */
1066 	pte_gpa[!idx] = pfn_pte(0, __pgprot(0));
1067 	if (tlb_lo[!idx] & ENTRYLO_V) {
1068 		spin_lock(&kvm->mmu_lock);
1069 		ptep_buddy = kvm_mips_pte_for_gpa(kvm, NULL,
1070 					mips3_tlbpfn_to_paddr(tlb_lo[!idx]));
1071 		if (ptep_buddy)
1072 			pte_gpa[!idx] = *ptep_buddy;
1073 		spin_unlock(&kvm->mmu_lock);
1074 	}
1075 
1076 	/* Get the GVA page table entry pair */
1077 	ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, gva & ~PAGE_SIZE);
1078 	if (!ptep_gva) {
1079 		kvm_err("No ptep for gva %lx\n", gva);
1080 		return -1;
1081 	}
1082 
1083 	/* Copy a pair of entries from GPA page table to GVA page table */
1084 	ptep_gva[0] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[0], tlb_lo[0]);
1085 	ptep_gva[1] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[1], tlb_lo[1]);
1086 
1087 	/* Invalidate this entry in the TLB, current guest mode ASID only */
1088 	kvm_mips_host_tlb_inv(vcpu, gva, !kernel, kernel);
1089 
1090 	kvm_debug("@ %#lx tlb_lo0: 0x%08lx tlb_lo1: 0x%08lx\n", vcpu->arch.pc,
1091 		  tlb->tlb_lo[0], tlb->tlb_lo[1]);
1092 
1093 	return 0;
1094 }
1095 
kvm_mips_handle_commpage_tlb_fault(unsigned long badvaddr,struct kvm_vcpu * vcpu)1096 int kvm_mips_handle_commpage_tlb_fault(unsigned long badvaddr,
1097 				       struct kvm_vcpu *vcpu)
1098 {
1099 	kvm_pfn_t pfn;
1100 	pte_t *ptep;
1101 
1102 	ptep = kvm_trap_emul_pte_for_gva(vcpu, badvaddr);
1103 	if (!ptep) {
1104 		kvm_err("No ptep for commpage %lx\n", badvaddr);
1105 		return -1;
1106 	}
1107 
1108 	pfn = PFN_DOWN(virt_to_phys(vcpu->arch.kseg0_commpage));
1109 	/* Also set valid and dirty, so refill handler doesn't have to */
1110 	*ptep = pte_mkyoung(pte_mkdirty(pfn_pte(pfn, PAGE_SHARED)));
1111 
1112 	/* Invalidate this entry in the TLB, guest kernel ASID only */
1113 	kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true);
1114 	return 0;
1115 }
1116 
1117 /**
1118  * kvm_mips_migrate_count() - Migrate timer.
1119  * @vcpu:	Virtual CPU.
1120  *
1121  * Migrate CP0_Count hrtimer to the current CPU by cancelling and restarting it
1122  * if it was running prior to being cancelled.
1123  *
1124  * Must be called when the VCPU is migrated to a different CPU to ensure that
1125  * timer expiry during guest execution interrupts the guest and causes the
1126  * interrupt to be delivered in a timely manner.
1127  */
kvm_mips_migrate_count(struct kvm_vcpu * vcpu)1128 static void kvm_mips_migrate_count(struct kvm_vcpu *vcpu)
1129 {
1130 	if (hrtimer_cancel(&vcpu->arch.comparecount_timer))
1131 		hrtimer_restart(&vcpu->arch.comparecount_timer);
1132 }
1133 
1134 /* Restore ASID once we are scheduled back after preemption */
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1135 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1136 {
1137 	unsigned long flags;
1138 
1139 	kvm_debug("%s: vcpu %p, cpu: %d\n", __func__, vcpu, cpu);
1140 
1141 	local_irq_save(flags);
1142 
1143 	vcpu->cpu = cpu;
1144 	if (vcpu->arch.last_sched_cpu != cpu) {
1145 		kvm_debug("[%d->%d]KVM VCPU[%d] switch\n",
1146 			  vcpu->arch.last_sched_cpu, cpu, vcpu->vcpu_id);
1147 		/*
1148 		 * Migrate the timer interrupt to the current CPU so that it
1149 		 * always interrupts the guest and synchronously triggers a
1150 		 * guest timer interrupt.
1151 		 */
1152 		kvm_mips_migrate_count(vcpu);
1153 	}
1154 
1155 	/* restore guest state to registers */
1156 	kvm_mips_callbacks->vcpu_load(vcpu, cpu);
1157 
1158 	local_irq_restore(flags);
1159 }
1160 
1161 /* ASID can change if another task is scheduled during preemption */
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)1162 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1163 {
1164 	unsigned long flags;
1165 	int cpu;
1166 
1167 	local_irq_save(flags);
1168 
1169 	cpu = smp_processor_id();
1170 	vcpu->arch.last_sched_cpu = cpu;
1171 	vcpu->cpu = -1;
1172 
1173 	/* save guest state in registers */
1174 	kvm_mips_callbacks->vcpu_put(vcpu, cpu);
1175 
1176 	local_irq_restore(flags);
1177 }
1178 
1179 /**
1180  * kvm_trap_emul_gva_fault() - Safely attempt to handle a GVA access fault.
1181  * @vcpu:	Virtual CPU.
1182  * @gva:	Guest virtual address to be accessed.
1183  * @write:	True if write attempted (must be dirtied and made writable).
1184  *
1185  * Safely attempt to handle a GVA fault, mapping GVA pages if necessary, and
1186  * dirtying the page if @write so that guest instructions can be modified.
1187  *
1188  * Returns:	KVM_MIPS_MAPPED on success.
1189  *		KVM_MIPS_GVA if bad guest virtual address.
1190  *		KVM_MIPS_GPA if bad guest physical address.
1191  *		KVM_MIPS_TLB if guest TLB not present.
1192  *		KVM_MIPS_TLBINV if guest TLB present but not valid.
1193  *		KVM_MIPS_TLBMOD if guest TLB read only.
1194  */
kvm_trap_emul_gva_fault(struct kvm_vcpu * vcpu,unsigned long gva,bool write)1195 enum kvm_mips_fault_result kvm_trap_emul_gva_fault(struct kvm_vcpu *vcpu,
1196 						   unsigned long gva,
1197 						   bool write)
1198 {
1199 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1200 	struct kvm_mips_tlb *tlb;
1201 	int index;
1202 
1203 	if (KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG0) {
1204 		if (kvm_mips_handle_kseg0_tlb_fault(gva, vcpu, write) < 0)
1205 			return KVM_MIPS_GPA;
1206 	} else if ((KVM_GUEST_KSEGX(gva) < KVM_GUEST_KSEG0) ||
1207 		   KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG23) {
1208 		/* Address should be in the guest TLB */
1209 		index = kvm_mips_guest_tlb_lookup(vcpu, (gva & VPN2_MASK) |
1210 			  (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID));
1211 		if (index < 0)
1212 			return KVM_MIPS_TLB;
1213 		tlb = &vcpu->arch.guest_tlb[index];
1214 
1215 		/* Entry should be valid, and dirty for writes */
1216 		if (!TLB_IS_VALID(*tlb, gva))
1217 			return KVM_MIPS_TLBINV;
1218 		if (write && !TLB_IS_DIRTY(*tlb, gva))
1219 			return KVM_MIPS_TLBMOD;
1220 
1221 		if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, gva, write))
1222 			return KVM_MIPS_GPA;
1223 	} else {
1224 		return KVM_MIPS_GVA;
1225 	}
1226 
1227 	return KVM_MIPS_MAPPED;
1228 }
1229 
kvm_get_inst(u32 * opc,struct kvm_vcpu * vcpu,u32 * out)1230 int kvm_get_inst(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
1231 {
1232 	int err;
1233 
1234 	if (WARN(IS_ENABLED(CONFIG_KVM_MIPS_VZ),
1235 		 "Expect BadInstr/BadInstrP registers to be used with VZ\n"))
1236 		return -EINVAL;
1237 
1238 retry:
1239 	kvm_trap_emul_gva_lockless_begin(vcpu);
1240 	err = get_user(*out, opc);
1241 	kvm_trap_emul_gva_lockless_end(vcpu);
1242 
1243 	if (unlikely(err)) {
1244 		/*
1245 		 * Try to handle the fault, maybe we just raced with a GVA
1246 		 * invalidation.
1247 		 */
1248 		err = kvm_trap_emul_gva_fault(vcpu, (unsigned long)opc,
1249 					      false);
1250 		if (unlikely(err)) {
1251 			kvm_err("%s: illegal address: %p\n",
1252 				__func__, opc);
1253 			return -EFAULT;
1254 		}
1255 
1256 		/* Hopefully it'll work now */
1257 		goto retry;
1258 	}
1259 	return 0;
1260 }
1261