1  /*
2   * This file is part of the Chelsio T4 Ethernet driver for Linux.
3   *
4   * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5   *
6   * This software is available to you under a choice of one of two
7   * licenses.  You may choose to be licensed under the terms of the GNU
8   * General Public License (GPL) Version 2, available from the file
9   * COPYING in the main directory of this source tree, or the
10   * OpenIB.org BSD license below:
11   *
12   *     Redistribution and use in source and binary forms, with or
13   *     without modification, are permitted provided that the following
14   *     conditions are met:
15   *
16   *      - Redistributions of source code must retain the above
17   *        copyright notice, this list of conditions and the following
18   *        disclaimer.
19   *
20   *      - Redistributions in binary form must reproduce the above
21   *        copyright notice, this list of conditions and the following
22   *        disclaimer in the documentation and/or other materials
23   *        provided with the distribution.
24   *
25   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26   * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27   * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28   * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29   * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30   * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31   * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32   * SOFTWARE.
33   */
34  
35  #include <linux/delay.h>
36  #include "cxgb4.h"
37  #include "t4_regs.h"
38  #include "t4_values.h"
39  #include "t4fw_api.h"
40  #include "t4fw_version.h"
41  
42  /**
43   *	t4_wait_op_done_val - wait until an operation is completed
44   *	@adapter: the adapter performing the operation
45   *	@reg: the register to check for completion
46   *	@mask: a single-bit field within @reg that indicates completion
47   *	@polarity: the value of the field when the operation is completed
48   *	@attempts: number of check iterations
49   *	@delay: delay in usecs between iterations
50   *	@valp: where to store the value of the register at completion time
51   *
52   *	Wait until an operation is completed by checking a bit in a register
53   *	up to @attempts times.  If @valp is not NULL the value of the register
54   *	at the time it indicated completion is stored there.  Returns 0 if the
55   *	operation completes and	-EAGAIN	otherwise.
56   */
t4_wait_op_done_val(struct adapter * adapter,int reg,u32 mask,int polarity,int attempts,int delay,u32 * valp)57  static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58  			       int polarity, int attempts, int delay, u32 *valp)
59  {
60  	while (1) {
61  		u32 val = t4_read_reg(adapter, reg);
62  
63  		if (!!(val & mask) == polarity) {
64  			if (valp)
65  				*valp = val;
66  			return 0;
67  		}
68  		if (--attempts == 0)
69  			return -EAGAIN;
70  		if (delay)
71  			udelay(delay);
72  	}
73  }
74  
t4_wait_op_done(struct adapter * adapter,int reg,u32 mask,int polarity,int attempts,int delay)75  static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76  				  int polarity, int attempts, int delay)
77  {
78  	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79  				   delay, NULL);
80  }
81  
82  /**
83   *	t4_set_reg_field - set a register field to a value
84   *	@adapter: the adapter to program
85   *	@addr: the register address
86   *	@mask: specifies the portion of the register to modify
87   *	@val: the new value for the register field
88   *
89   *	Sets a register field specified by the supplied mask to the
90   *	given value.
91   */
t4_set_reg_field(struct adapter * adapter,unsigned int addr,u32 mask,u32 val)92  void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93  		      u32 val)
94  {
95  	u32 v = t4_read_reg(adapter, addr) & ~mask;
96  
97  	t4_write_reg(adapter, addr, v | val);
98  	(void) t4_read_reg(adapter, addr);      /* flush */
99  }
100  
101  /**
102   *	t4_read_indirect - read indirectly addressed registers
103   *	@adap: the adapter
104   *	@addr_reg: register holding the indirect address
105   *	@data_reg: register holding the value of the indirect register
106   *	@vals: where the read register values are stored
107   *	@nregs: how many indirect registers to read
108   *	@start_idx: index of first indirect register to read
109   *
110   *	Reads registers that are accessed indirectly through an address/data
111   *	register pair.
112   */
t4_read_indirect(struct adapter * adap,unsigned int addr_reg,unsigned int data_reg,u32 * vals,unsigned int nregs,unsigned int start_idx)113  void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114  			     unsigned int data_reg, u32 *vals,
115  			     unsigned int nregs, unsigned int start_idx)
116  {
117  	while (nregs--) {
118  		t4_write_reg(adap, addr_reg, start_idx);
119  		*vals++ = t4_read_reg(adap, data_reg);
120  		start_idx++;
121  	}
122  }
123  
124  /**
125   *	t4_write_indirect - write indirectly addressed registers
126   *	@adap: the adapter
127   *	@addr_reg: register holding the indirect addresses
128   *	@data_reg: register holding the value for the indirect registers
129   *	@vals: values to write
130   *	@nregs: how many indirect registers to write
131   *	@start_idx: address of first indirect register to write
132   *
133   *	Writes a sequential block of registers that are accessed indirectly
134   *	through an address/data register pair.
135   */
t4_write_indirect(struct adapter * adap,unsigned int addr_reg,unsigned int data_reg,const u32 * vals,unsigned int nregs,unsigned int start_idx)136  void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137  		       unsigned int data_reg, const u32 *vals,
138  		       unsigned int nregs, unsigned int start_idx)
139  {
140  	while (nregs--) {
141  		t4_write_reg(adap, addr_reg, start_idx++);
142  		t4_write_reg(adap, data_reg, *vals++);
143  	}
144  }
145  
146  /*
147   * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148   * mechanism.  This guarantees that we get the real value even if we're
149   * operating within a Virtual Machine and the Hypervisor is trapping our
150   * Configuration Space accesses.
151   */
t4_hw_pci_read_cfg4(struct adapter * adap,int reg,u32 * val)152  void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153  {
154  	u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155  
156  	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157  		req |= ENABLE_F;
158  	else
159  		req |= T6_ENABLE_F;
160  
161  	if (is_t4(adap->params.chip))
162  		req |= LOCALCFG_F;
163  
164  	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165  	*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166  
167  	/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168  	 * Configuration Space read.  (None of the other fields matter when
169  	 * ENABLE is 0 so a simple register write is easier than a
170  	 * read-modify-write via t4_set_reg_field().)
171  	 */
172  	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173  }
174  
175  /*
176   * t4_report_fw_error - report firmware error
177   * @adap: the adapter
178   *
179   * The adapter firmware can indicate error conditions to the host.
180   * If the firmware has indicated an error, print out the reason for
181   * the firmware error.
182   */
t4_report_fw_error(struct adapter * adap)183  static void t4_report_fw_error(struct adapter *adap)
184  {
185  	static const char *const reason[] = {
186  		"Crash",                        /* PCIE_FW_EVAL_CRASH */
187  		"During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188  		"During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189  		"During Device Initialization", /* PCIE_FW_EVAL_INIT */
190  		"Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191  		"Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192  		"Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193  		"Reserved",                     /* reserved */
194  	};
195  	u32 pcie_fw;
196  
197  	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198  	if (pcie_fw & PCIE_FW_ERR_F) {
199  		dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200  			reason[PCIE_FW_EVAL_G(pcie_fw)]);
201  		adap->flags &= ~CXGB4_FW_OK;
202  	}
203  }
204  
205  /*
206   * Get the reply to a mailbox command and store it in @rpl in big-endian order.
207   */
get_mbox_rpl(struct adapter * adap,__be64 * rpl,int nflit,u32 mbox_addr)208  static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
209  			 u32 mbox_addr)
210  {
211  	for ( ; nflit; nflit--, mbox_addr += 8)
212  		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
213  }
214  
215  /*
216   * Handle a FW assertion reported in a mailbox.
217   */
fw_asrt(struct adapter * adap,u32 mbox_addr)218  static void fw_asrt(struct adapter *adap, u32 mbox_addr)
219  {
220  	struct fw_debug_cmd asrt;
221  
222  	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
223  	dev_alert(adap->pdev_dev,
224  		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
225  		  asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
226  		  be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
227  }
228  
229  /**
230   *	t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
231   *	@adapter: the adapter
232   *	@cmd: the Firmware Mailbox Command or Reply
233   *	@size: command length in bytes
234   *	@access: the time (ms) needed to access the Firmware Mailbox
235   *	@execute: the time (ms) the command spent being executed
236   */
t4_record_mbox(struct adapter * adapter,const __be64 * cmd,unsigned int size,int access,int execute)237  static void t4_record_mbox(struct adapter *adapter,
238  			   const __be64 *cmd, unsigned int size,
239  			   int access, int execute)
240  {
241  	struct mbox_cmd_log *log = adapter->mbox_log;
242  	struct mbox_cmd *entry;
243  	int i;
244  
245  	entry = mbox_cmd_log_entry(log, log->cursor++);
246  	if (log->cursor == log->size)
247  		log->cursor = 0;
248  
249  	for (i = 0; i < size / 8; i++)
250  		entry->cmd[i] = be64_to_cpu(cmd[i]);
251  	while (i < MBOX_LEN / 8)
252  		entry->cmd[i++] = 0;
253  	entry->timestamp = jiffies;
254  	entry->seqno = log->seqno++;
255  	entry->access = access;
256  	entry->execute = execute;
257  }
258  
259  /**
260   *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
261   *	@adap: the adapter
262   *	@mbox: index of the mailbox to use
263   *	@cmd: the command to write
264   *	@size: command length in bytes
265   *	@rpl: where to optionally store the reply
266   *	@sleep_ok: if true we may sleep while awaiting command completion
267   *	@timeout: time to wait for command to finish before timing out
268   *
269   *	Sends the given command to FW through the selected mailbox and waits
270   *	for the FW to execute the command.  If @rpl is not %NULL it is used to
271   *	store the FW's reply to the command.  The command and its optional
272   *	reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
273   *	to respond.  @sleep_ok determines whether we may sleep while awaiting
274   *	the response.  If sleeping is allowed we use progressive backoff
275   *	otherwise we spin.
276   *
277   *	The return value is 0 on success or a negative errno on failure.  A
278   *	failure can happen either because we are not able to execute the
279   *	command or FW executes it but signals an error.  In the latter case
280   *	the return value is the error code indicated by FW (negated).
281   */
t4_wr_mbox_meat_timeout(struct adapter * adap,int mbox,const void * cmd,int size,void * rpl,bool sleep_ok,int timeout)282  int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
283  			    int size, void *rpl, bool sleep_ok, int timeout)
284  {
285  	static const int delay[] = {
286  		1, 1, 3, 5, 10, 10, 20, 50, 100, 200
287  	};
288  
289  	struct mbox_list entry;
290  	u16 access = 0;
291  	u16 execute = 0;
292  	u32 v;
293  	u64 res;
294  	int i, ms, delay_idx, ret;
295  	const __be64 *p = cmd;
296  	u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
297  	u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
298  	__be64 cmd_rpl[MBOX_LEN / 8];
299  	u32 pcie_fw;
300  
301  	if ((size & 15) || size > MBOX_LEN)
302  		return -EINVAL;
303  
304  	/*
305  	 * If the device is off-line, as in EEH, commands will time out.
306  	 * Fail them early so we don't waste time waiting.
307  	 */
308  	if (adap->pdev->error_state != pci_channel_io_normal)
309  		return -EIO;
310  
311  	/* If we have a negative timeout, that implies that we can't sleep. */
312  	if (timeout < 0) {
313  		sleep_ok = false;
314  		timeout = -timeout;
315  	}
316  
317  	/* Queue ourselves onto the mailbox access list.  When our entry is at
318  	 * the front of the list, we have rights to access the mailbox.  So we
319  	 * wait [for a while] till we're at the front [or bail out with an
320  	 * EBUSY] ...
321  	 */
322  	spin_lock_bh(&adap->mbox_lock);
323  	list_add_tail(&entry.list, &adap->mlist.list);
324  	spin_unlock_bh(&adap->mbox_lock);
325  
326  	delay_idx = 0;
327  	ms = delay[0];
328  
329  	for (i = 0; ; i += ms) {
330  		/* If we've waited too long, return a busy indication.  This
331  		 * really ought to be based on our initial position in the
332  		 * mailbox access list but this is a start.  We very rarely
333  		 * contend on access to the mailbox ...
334  		 */
335  		pcie_fw = t4_read_reg(adap, PCIE_FW_A);
336  		if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
337  			spin_lock_bh(&adap->mbox_lock);
338  			list_del(&entry.list);
339  			spin_unlock_bh(&adap->mbox_lock);
340  			ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
341  			t4_record_mbox(adap, cmd, size, access, ret);
342  			return ret;
343  		}
344  
345  		/* If we're at the head, break out and start the mailbox
346  		 * protocol.
347  		 */
348  		if (list_first_entry(&adap->mlist.list, struct mbox_list,
349  				     list) == &entry)
350  			break;
351  
352  		/* Delay for a bit before checking again ... */
353  		if (sleep_ok) {
354  			ms = delay[delay_idx];  /* last element may repeat */
355  			if (delay_idx < ARRAY_SIZE(delay) - 1)
356  				delay_idx++;
357  			msleep(ms);
358  		} else {
359  			mdelay(ms);
360  		}
361  	}
362  
363  	/* Loop trying to get ownership of the mailbox.  Return an error
364  	 * if we can't gain ownership.
365  	 */
366  	v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
367  	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
368  		v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
369  	if (v != MBOX_OWNER_DRV) {
370  		spin_lock_bh(&adap->mbox_lock);
371  		list_del(&entry.list);
372  		spin_unlock_bh(&adap->mbox_lock);
373  		ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
374  		t4_record_mbox(adap, cmd, size, access, ret);
375  		return ret;
376  	}
377  
378  	/* Copy in the new mailbox command and send it on its way ... */
379  	t4_record_mbox(adap, cmd, size, access, 0);
380  	for (i = 0; i < size; i += 8)
381  		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
382  
383  	t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
384  	t4_read_reg(adap, ctl_reg);          /* flush write */
385  
386  	delay_idx = 0;
387  	ms = delay[0];
388  
389  	for (i = 0;
390  	     !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
391  	     i < timeout;
392  	     i += ms) {
393  		if (sleep_ok) {
394  			ms = delay[delay_idx];  /* last element may repeat */
395  			if (delay_idx < ARRAY_SIZE(delay) - 1)
396  				delay_idx++;
397  			msleep(ms);
398  		} else
399  			mdelay(ms);
400  
401  		v = t4_read_reg(adap, ctl_reg);
402  		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
403  			if (!(v & MBMSGVALID_F)) {
404  				t4_write_reg(adap, ctl_reg, 0);
405  				continue;
406  			}
407  
408  			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
409  			res = be64_to_cpu(cmd_rpl[0]);
410  
411  			if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
412  				fw_asrt(adap, data_reg);
413  				res = FW_CMD_RETVAL_V(EIO);
414  			} else if (rpl) {
415  				memcpy(rpl, cmd_rpl, size);
416  			}
417  
418  			t4_write_reg(adap, ctl_reg, 0);
419  
420  			execute = i + ms;
421  			t4_record_mbox(adap, cmd_rpl,
422  				       MBOX_LEN, access, execute);
423  			spin_lock_bh(&adap->mbox_lock);
424  			list_del(&entry.list);
425  			spin_unlock_bh(&adap->mbox_lock);
426  			return -FW_CMD_RETVAL_G((int)res);
427  		}
428  	}
429  
430  	ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
431  	t4_record_mbox(adap, cmd, size, access, ret);
432  	dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
433  		*(const u8 *)cmd, mbox);
434  	t4_report_fw_error(adap);
435  	spin_lock_bh(&adap->mbox_lock);
436  	list_del(&entry.list);
437  	spin_unlock_bh(&adap->mbox_lock);
438  	t4_fatal_err(adap);
439  	return ret;
440  }
441  
t4_wr_mbox_meat(struct adapter * adap,int mbox,const void * cmd,int size,void * rpl,bool sleep_ok)442  int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
443  		    void *rpl, bool sleep_ok)
444  {
445  	return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
446  				       FW_CMD_MAX_TIMEOUT);
447  }
448  
t4_edc_err_read(struct adapter * adap,int idx)449  static int t4_edc_err_read(struct adapter *adap, int idx)
450  {
451  	u32 edc_ecc_err_addr_reg;
452  	u32 rdata_reg;
453  
454  	if (is_t4(adap->params.chip)) {
455  		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
456  		return 0;
457  	}
458  	if (idx != 0 && idx != 1) {
459  		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
460  		return 0;
461  	}
462  
463  	edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
464  	rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
465  
466  	CH_WARN(adap,
467  		"edc%d err addr 0x%x: 0x%x.\n",
468  		idx, edc_ecc_err_addr_reg,
469  		t4_read_reg(adap, edc_ecc_err_addr_reg));
470  	CH_WARN(adap,
471  		"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
472  		rdata_reg,
473  		(unsigned long long)t4_read_reg64(adap, rdata_reg),
474  		(unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
475  		(unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
476  		(unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
477  		(unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
478  		(unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
479  		(unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
480  		(unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
481  		(unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
482  
483  	return 0;
484  }
485  
486  /**
487   * t4_memory_rw_init - Get memory window relative offset, base, and size.
488   * @adap: the adapter
489   * @win: PCI-E Memory Window to use
490   * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC
491   * @mem_off: memory relative offset with respect to @mtype.
492   * @mem_base: configured memory base address.
493   * @mem_aperture: configured memory window aperture.
494   *
495   * Get the configured memory window's relative offset, base, and size.
496   */
t4_memory_rw_init(struct adapter * adap,int win,int mtype,u32 * mem_off,u32 * mem_base,u32 * mem_aperture)497  int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off,
498  		      u32 *mem_base, u32 *mem_aperture)
499  {
500  	u32 edc_size, mc_size, mem_reg;
501  
502  	/* Offset into the region of memory which is being accessed
503  	 * MEM_EDC0 = 0
504  	 * MEM_EDC1 = 1
505  	 * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
506  	 * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
507  	 * MEM_HMA  = 4
508  	 */
509  	edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
510  	if (mtype == MEM_HMA) {
511  		*mem_off = 2 * (edc_size * 1024 * 1024);
512  	} else if (mtype != MEM_MC1) {
513  		*mem_off = (mtype * (edc_size * 1024 * 1024));
514  	} else {
515  		mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
516  						      MA_EXT_MEMORY0_BAR_A));
517  		*mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
518  	}
519  
520  	/* Each PCI-E Memory Window is programmed with a window size -- or
521  	 * "aperture" -- which controls the granularity of its mapping onto
522  	 * adapter memory.  We need to grab that aperture in order to know
523  	 * how to use the specified window.  The window is also programmed
524  	 * with the base address of the Memory Window in BAR0's address
525  	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
526  	 * the address is relative to BAR0.
527  	 */
528  	mem_reg = t4_read_reg(adap,
529  			      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
530  						  win));
531  	/* a dead adapter will return 0xffffffff for PIO reads */
532  	if (mem_reg == 0xffffffff)
533  		return -ENXIO;
534  
535  	*mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
536  	*mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
537  	if (is_t4(adap->params.chip))
538  		*mem_base -= adap->t4_bar0;
539  
540  	return 0;
541  }
542  
543  /**
544   * t4_memory_update_win - Move memory window to specified address.
545   * @adap: the adapter
546   * @win: PCI-E Memory Window to use
547   * @addr: location to move.
548   *
549   * Move memory window to specified address.
550   */
t4_memory_update_win(struct adapter * adap,int win,u32 addr)551  void t4_memory_update_win(struct adapter *adap, int win, u32 addr)
552  {
553  	t4_write_reg(adap,
554  		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
555  		     addr);
556  	/* Read it back to ensure that changes propagate before we
557  	 * attempt to use the new value.
558  	 */
559  	t4_read_reg(adap,
560  		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
561  }
562  
563  /**
564   * t4_memory_rw_residual - Read/Write residual data.
565   * @adap: the adapter
566   * @off: relative offset within residual to start read/write.
567   * @addr: address within indicated memory type.
568   * @buf: host memory buffer
569   * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
570   *
571   * Read/Write residual data less than 32-bits.
572   */
t4_memory_rw_residual(struct adapter * adap,u32 off,u32 addr,u8 * buf,int dir)573  void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf,
574  			   int dir)
575  {
576  	union {
577  		u32 word;
578  		char byte[4];
579  	} last;
580  	unsigned char *bp;
581  	int i;
582  
583  	if (dir == T4_MEMORY_READ) {
584  		last.word = le32_to_cpu((__force __le32)
585  					t4_read_reg(adap, addr));
586  		for (bp = (unsigned char *)buf, i = off; i < 4; i++)
587  			bp[i] = last.byte[i];
588  	} else {
589  		last.word = *buf;
590  		for (i = off; i < 4; i++)
591  			last.byte[i] = 0;
592  		t4_write_reg(adap, addr,
593  			     (__force u32)cpu_to_le32(last.word));
594  	}
595  }
596  
597  /**
598   *	t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
599   *	@adap: the adapter
600   *	@win: PCI-E Memory Window to use
601   *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
602   *	@addr: address within indicated memory type
603   *	@len: amount of memory to transfer
604   *	@hbuf: host memory buffer
605   *	@dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
606   *
607   *	Reads/writes an [almost] arbitrary memory region in the firmware: the
608   *	firmware memory address and host buffer must be aligned on 32-bit
609   *	boundaries; the length may be arbitrary.  The memory is transferred as
610   *	a raw byte sequence from/to the firmware's memory.  If this memory
611   *	contains data structures which contain multi-byte integers, it's the
612   *	caller's responsibility to perform appropriate byte order conversions.
613   */
t4_memory_rw(struct adapter * adap,int win,int mtype,u32 addr,u32 len,void * hbuf,int dir)614  int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
615  		 u32 len, void *hbuf, int dir)
616  {
617  	u32 pos, offset, resid, memoffset;
618  	u32 win_pf, mem_aperture, mem_base;
619  	u32 *buf;
620  	int ret;
621  
622  	/* Argument sanity checks ...
623  	 */
624  	if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
625  		return -EINVAL;
626  	buf = (u32 *)hbuf;
627  
628  	/* It's convenient to be able to handle lengths which aren't a
629  	 * multiple of 32-bits because we often end up transferring files to
630  	 * the firmware.  So we'll handle that by normalizing the length here
631  	 * and then handling any residual transfer at the end.
632  	 */
633  	resid = len & 0x3;
634  	len -= resid;
635  
636  	ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base,
637  				&mem_aperture);
638  	if (ret)
639  		return ret;
640  
641  	/* Determine the PCIE_MEM_ACCESS_OFFSET */
642  	addr = addr + memoffset;
643  
644  	win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
645  
646  	/* Calculate our initial PCI-E Memory Window Position and Offset into
647  	 * that Window.
648  	 */
649  	pos = addr & ~(mem_aperture - 1);
650  	offset = addr - pos;
651  
652  	/* Set up initial PCI-E Memory Window to cover the start of our
653  	 * transfer.
654  	 */
655  	t4_memory_update_win(adap, win, pos | win_pf);
656  
657  	/* Transfer data to/from the adapter as long as there's an integral
658  	 * number of 32-bit transfers to complete.
659  	 *
660  	 * A note on Endianness issues:
661  	 *
662  	 * The "register" reads and writes below from/to the PCI-E Memory
663  	 * Window invoke the standard adapter Big-Endian to PCI-E Link
664  	 * Little-Endian "swizzel."  As a result, if we have the following
665  	 * data in adapter memory:
666  	 *
667  	 *     Memory:  ... | b0 | b1 | b2 | b3 | ...
668  	 *     Address:      i+0  i+1  i+2  i+3
669  	 *
670  	 * Then a read of the adapter memory via the PCI-E Memory Window
671  	 * will yield:
672  	 *
673  	 *     x = readl(i)
674  	 *         31                  0
675  	 *         [ b3 | b2 | b1 | b0 ]
676  	 *
677  	 * If this value is stored into local memory on a Little-Endian system
678  	 * it will show up correctly in local memory as:
679  	 *
680  	 *     ( ..., b0, b1, b2, b3, ... )
681  	 *
682  	 * But on a Big-Endian system, the store will show up in memory
683  	 * incorrectly swizzled as:
684  	 *
685  	 *     ( ..., b3, b2, b1, b0, ... )
686  	 *
687  	 * So we need to account for this in the reads and writes to the
688  	 * PCI-E Memory Window below by undoing the register read/write
689  	 * swizzels.
690  	 */
691  	while (len > 0) {
692  		if (dir == T4_MEMORY_READ)
693  			*buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
694  						mem_base + offset));
695  		else
696  			t4_write_reg(adap, mem_base + offset,
697  				     (__force u32)cpu_to_le32(*buf++));
698  		offset += sizeof(__be32);
699  		len -= sizeof(__be32);
700  
701  		/* If we've reached the end of our current window aperture,
702  		 * move the PCI-E Memory Window on to the next.  Note that
703  		 * doing this here after "len" may be 0 allows us to set up
704  		 * the PCI-E Memory Window for a possible final residual
705  		 * transfer below ...
706  		 */
707  		if (offset == mem_aperture) {
708  			pos += mem_aperture;
709  			offset = 0;
710  			t4_memory_update_win(adap, win, pos | win_pf);
711  		}
712  	}
713  
714  	/* If the original transfer had a length which wasn't a multiple of
715  	 * 32-bits, now's where we need to finish off the transfer of the
716  	 * residual amount.  The PCI-E Memory Window has already been moved
717  	 * above (if necessary) to cover this final transfer.
718  	 */
719  	if (resid)
720  		t4_memory_rw_residual(adap, resid, mem_base + offset,
721  				      (u8 *)buf, dir);
722  
723  	return 0;
724  }
725  
726  /* Return the specified PCI-E Configuration Space register from our Physical
727   * Function.  We try first via a Firmware LDST Command since we prefer to let
728   * the firmware own all of these registers, but if that fails we go for it
729   * directly ourselves.
730   */
t4_read_pcie_cfg4(struct adapter * adap,int reg)731  u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
732  {
733  	u32 val, ldst_addrspace;
734  
735  	/* If fw_attach != 0, construct and send the Firmware LDST Command to
736  	 * retrieve the specified PCI-E Configuration Space register.
737  	 */
738  	struct fw_ldst_cmd ldst_cmd;
739  	int ret;
740  
741  	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
742  	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
743  	ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
744  					       FW_CMD_REQUEST_F |
745  					       FW_CMD_READ_F |
746  					       ldst_addrspace);
747  	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
748  	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
749  	ldst_cmd.u.pcie.ctrl_to_fn =
750  		(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
751  	ldst_cmd.u.pcie.r = reg;
752  
753  	/* If the LDST Command succeeds, return the result, otherwise
754  	 * fall through to reading it directly ourselves ...
755  	 */
756  	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
757  			 &ldst_cmd);
758  	if (ret == 0)
759  		val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
760  	else
761  		/* Read the desired Configuration Space register via the PCI-E
762  		 * Backdoor mechanism.
763  		 */
764  		t4_hw_pci_read_cfg4(adap, reg, &val);
765  	return val;
766  }
767  
768  /* Get the window based on base passed to it.
769   * Window aperture is currently unhandled, but there is no use case for it
770   * right now
771   */
t4_get_window(struct adapter * adap,u32 pci_base,u64 pci_mask,u32 memwin_base)772  static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
773  			 u32 memwin_base)
774  {
775  	u32 ret;
776  
777  	if (is_t4(adap->params.chip)) {
778  		u32 bar0;
779  
780  		/* Truncation intentional: we only read the bottom 32-bits of
781  		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
782  		 * mechanism to read BAR0 instead of using
783  		 * pci_resource_start() because we could be operating from
784  		 * within a Virtual Machine which is trapping our accesses to
785  		 * our Configuration Space and we need to set up the PCI-E
786  		 * Memory Window decoders with the actual addresses which will
787  		 * be coming across the PCI-E link.
788  		 */
789  		bar0 = t4_read_pcie_cfg4(adap, pci_base);
790  		bar0 &= pci_mask;
791  		adap->t4_bar0 = bar0;
792  
793  		ret = bar0 + memwin_base;
794  	} else {
795  		/* For T5, only relative offset inside the PCIe BAR is passed */
796  		ret = memwin_base;
797  	}
798  	return ret;
799  }
800  
801  /* Get the default utility window (win0) used by everyone */
t4_get_util_window(struct adapter * adap)802  u32 t4_get_util_window(struct adapter *adap)
803  {
804  	return t4_get_window(adap, PCI_BASE_ADDRESS_0,
805  			     PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
806  }
807  
808  /* Set up memory window for accessing adapter memory ranges.  (Read
809   * back MA register to ensure that changes propagate before we attempt
810   * to use the new values.)
811   */
t4_setup_memwin(struct adapter * adap,u32 memwin_base,u32 window)812  void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
813  {
814  	t4_write_reg(adap,
815  		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
816  		     memwin_base | BIR_V(0) |
817  		     WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
818  	t4_read_reg(adap,
819  		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
820  }
821  
822  /**
823   *	t4_get_regs_len - return the size of the chips register set
824   *	@adapter: the adapter
825   *
826   *	Returns the size of the chip's BAR0 register space.
827   */
t4_get_regs_len(struct adapter * adapter)828  unsigned int t4_get_regs_len(struct adapter *adapter)
829  {
830  	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
831  
832  	switch (chip_version) {
833  	case CHELSIO_T4:
834  		return T4_REGMAP_SIZE;
835  
836  	case CHELSIO_T5:
837  	case CHELSIO_T6:
838  		return T5_REGMAP_SIZE;
839  	}
840  
841  	dev_err(adapter->pdev_dev,
842  		"Unsupported chip version %d\n", chip_version);
843  	return 0;
844  }
845  
846  /**
847   *	t4_get_regs - read chip registers into provided buffer
848   *	@adap: the adapter
849   *	@buf: register buffer
850   *	@buf_size: size (in bytes) of register buffer
851   *
852   *	If the provided register buffer isn't large enough for the chip's
853   *	full register range, the register dump will be truncated to the
854   *	register buffer's size.
855   */
t4_get_regs(struct adapter * adap,void * buf,size_t buf_size)856  void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
857  {
858  	static const unsigned int t4_reg_ranges[] = {
859  		0x1008, 0x1108,
860  		0x1180, 0x1184,
861  		0x1190, 0x1194,
862  		0x11a0, 0x11a4,
863  		0x11b0, 0x11b4,
864  		0x11fc, 0x123c,
865  		0x1300, 0x173c,
866  		0x1800, 0x18fc,
867  		0x3000, 0x30d8,
868  		0x30e0, 0x30e4,
869  		0x30ec, 0x5910,
870  		0x5920, 0x5924,
871  		0x5960, 0x5960,
872  		0x5968, 0x5968,
873  		0x5970, 0x5970,
874  		0x5978, 0x5978,
875  		0x5980, 0x5980,
876  		0x5988, 0x5988,
877  		0x5990, 0x5990,
878  		0x5998, 0x5998,
879  		0x59a0, 0x59d4,
880  		0x5a00, 0x5ae0,
881  		0x5ae8, 0x5ae8,
882  		0x5af0, 0x5af0,
883  		0x5af8, 0x5af8,
884  		0x6000, 0x6098,
885  		0x6100, 0x6150,
886  		0x6200, 0x6208,
887  		0x6240, 0x6248,
888  		0x6280, 0x62b0,
889  		0x62c0, 0x6338,
890  		0x6370, 0x638c,
891  		0x6400, 0x643c,
892  		0x6500, 0x6524,
893  		0x6a00, 0x6a04,
894  		0x6a14, 0x6a38,
895  		0x6a60, 0x6a70,
896  		0x6a78, 0x6a78,
897  		0x6b00, 0x6b0c,
898  		0x6b1c, 0x6b84,
899  		0x6bf0, 0x6bf8,
900  		0x6c00, 0x6c0c,
901  		0x6c1c, 0x6c84,
902  		0x6cf0, 0x6cf8,
903  		0x6d00, 0x6d0c,
904  		0x6d1c, 0x6d84,
905  		0x6df0, 0x6df8,
906  		0x6e00, 0x6e0c,
907  		0x6e1c, 0x6e84,
908  		0x6ef0, 0x6ef8,
909  		0x6f00, 0x6f0c,
910  		0x6f1c, 0x6f84,
911  		0x6ff0, 0x6ff8,
912  		0x7000, 0x700c,
913  		0x701c, 0x7084,
914  		0x70f0, 0x70f8,
915  		0x7100, 0x710c,
916  		0x711c, 0x7184,
917  		0x71f0, 0x71f8,
918  		0x7200, 0x720c,
919  		0x721c, 0x7284,
920  		0x72f0, 0x72f8,
921  		0x7300, 0x730c,
922  		0x731c, 0x7384,
923  		0x73f0, 0x73f8,
924  		0x7400, 0x7450,
925  		0x7500, 0x7530,
926  		0x7600, 0x760c,
927  		0x7614, 0x761c,
928  		0x7680, 0x76cc,
929  		0x7700, 0x7798,
930  		0x77c0, 0x77fc,
931  		0x7900, 0x79fc,
932  		0x7b00, 0x7b58,
933  		0x7b60, 0x7b84,
934  		0x7b8c, 0x7c38,
935  		0x7d00, 0x7d38,
936  		0x7d40, 0x7d80,
937  		0x7d8c, 0x7ddc,
938  		0x7de4, 0x7e04,
939  		0x7e10, 0x7e1c,
940  		0x7e24, 0x7e38,
941  		0x7e40, 0x7e44,
942  		0x7e4c, 0x7e78,
943  		0x7e80, 0x7ea4,
944  		0x7eac, 0x7edc,
945  		0x7ee8, 0x7efc,
946  		0x8dc0, 0x8e04,
947  		0x8e10, 0x8e1c,
948  		0x8e30, 0x8e78,
949  		0x8ea0, 0x8eb8,
950  		0x8ec0, 0x8f6c,
951  		0x8fc0, 0x9008,
952  		0x9010, 0x9058,
953  		0x9060, 0x9060,
954  		0x9068, 0x9074,
955  		0x90fc, 0x90fc,
956  		0x9400, 0x9408,
957  		0x9410, 0x9458,
958  		0x9600, 0x9600,
959  		0x9608, 0x9638,
960  		0x9640, 0x96bc,
961  		0x9800, 0x9808,
962  		0x9820, 0x983c,
963  		0x9850, 0x9864,
964  		0x9c00, 0x9c6c,
965  		0x9c80, 0x9cec,
966  		0x9d00, 0x9d6c,
967  		0x9d80, 0x9dec,
968  		0x9e00, 0x9e6c,
969  		0x9e80, 0x9eec,
970  		0x9f00, 0x9f6c,
971  		0x9f80, 0x9fec,
972  		0xd004, 0xd004,
973  		0xd010, 0xd03c,
974  		0xdfc0, 0xdfe0,
975  		0xe000, 0xea7c,
976  		0xf000, 0x11110,
977  		0x11118, 0x11190,
978  		0x19040, 0x1906c,
979  		0x19078, 0x19080,
980  		0x1908c, 0x190e4,
981  		0x190f0, 0x190f8,
982  		0x19100, 0x19110,
983  		0x19120, 0x19124,
984  		0x19150, 0x19194,
985  		0x1919c, 0x191b0,
986  		0x191d0, 0x191e8,
987  		0x19238, 0x1924c,
988  		0x193f8, 0x1943c,
989  		0x1944c, 0x19474,
990  		0x19490, 0x194e0,
991  		0x194f0, 0x194f8,
992  		0x19800, 0x19c08,
993  		0x19c10, 0x19c90,
994  		0x19ca0, 0x19ce4,
995  		0x19cf0, 0x19d40,
996  		0x19d50, 0x19d94,
997  		0x19da0, 0x19de8,
998  		0x19df0, 0x19e40,
999  		0x19e50, 0x19e90,
1000  		0x19ea0, 0x19f4c,
1001  		0x1a000, 0x1a004,
1002  		0x1a010, 0x1a06c,
1003  		0x1a0b0, 0x1a0e4,
1004  		0x1a0ec, 0x1a0f4,
1005  		0x1a100, 0x1a108,
1006  		0x1a114, 0x1a120,
1007  		0x1a128, 0x1a130,
1008  		0x1a138, 0x1a138,
1009  		0x1a190, 0x1a1c4,
1010  		0x1a1fc, 0x1a1fc,
1011  		0x1e040, 0x1e04c,
1012  		0x1e284, 0x1e28c,
1013  		0x1e2c0, 0x1e2c0,
1014  		0x1e2e0, 0x1e2e0,
1015  		0x1e300, 0x1e384,
1016  		0x1e3c0, 0x1e3c8,
1017  		0x1e440, 0x1e44c,
1018  		0x1e684, 0x1e68c,
1019  		0x1e6c0, 0x1e6c0,
1020  		0x1e6e0, 0x1e6e0,
1021  		0x1e700, 0x1e784,
1022  		0x1e7c0, 0x1e7c8,
1023  		0x1e840, 0x1e84c,
1024  		0x1ea84, 0x1ea8c,
1025  		0x1eac0, 0x1eac0,
1026  		0x1eae0, 0x1eae0,
1027  		0x1eb00, 0x1eb84,
1028  		0x1ebc0, 0x1ebc8,
1029  		0x1ec40, 0x1ec4c,
1030  		0x1ee84, 0x1ee8c,
1031  		0x1eec0, 0x1eec0,
1032  		0x1eee0, 0x1eee0,
1033  		0x1ef00, 0x1ef84,
1034  		0x1efc0, 0x1efc8,
1035  		0x1f040, 0x1f04c,
1036  		0x1f284, 0x1f28c,
1037  		0x1f2c0, 0x1f2c0,
1038  		0x1f2e0, 0x1f2e0,
1039  		0x1f300, 0x1f384,
1040  		0x1f3c0, 0x1f3c8,
1041  		0x1f440, 0x1f44c,
1042  		0x1f684, 0x1f68c,
1043  		0x1f6c0, 0x1f6c0,
1044  		0x1f6e0, 0x1f6e0,
1045  		0x1f700, 0x1f784,
1046  		0x1f7c0, 0x1f7c8,
1047  		0x1f840, 0x1f84c,
1048  		0x1fa84, 0x1fa8c,
1049  		0x1fac0, 0x1fac0,
1050  		0x1fae0, 0x1fae0,
1051  		0x1fb00, 0x1fb84,
1052  		0x1fbc0, 0x1fbc8,
1053  		0x1fc40, 0x1fc4c,
1054  		0x1fe84, 0x1fe8c,
1055  		0x1fec0, 0x1fec0,
1056  		0x1fee0, 0x1fee0,
1057  		0x1ff00, 0x1ff84,
1058  		0x1ffc0, 0x1ffc8,
1059  		0x20000, 0x2002c,
1060  		0x20100, 0x2013c,
1061  		0x20190, 0x201a0,
1062  		0x201a8, 0x201b8,
1063  		0x201c4, 0x201c8,
1064  		0x20200, 0x20318,
1065  		0x20400, 0x204b4,
1066  		0x204c0, 0x20528,
1067  		0x20540, 0x20614,
1068  		0x21000, 0x21040,
1069  		0x2104c, 0x21060,
1070  		0x210c0, 0x210ec,
1071  		0x21200, 0x21268,
1072  		0x21270, 0x21284,
1073  		0x212fc, 0x21388,
1074  		0x21400, 0x21404,
1075  		0x21500, 0x21500,
1076  		0x21510, 0x21518,
1077  		0x2152c, 0x21530,
1078  		0x2153c, 0x2153c,
1079  		0x21550, 0x21554,
1080  		0x21600, 0x21600,
1081  		0x21608, 0x2161c,
1082  		0x21624, 0x21628,
1083  		0x21630, 0x21634,
1084  		0x2163c, 0x2163c,
1085  		0x21700, 0x2171c,
1086  		0x21780, 0x2178c,
1087  		0x21800, 0x21818,
1088  		0x21820, 0x21828,
1089  		0x21830, 0x21848,
1090  		0x21850, 0x21854,
1091  		0x21860, 0x21868,
1092  		0x21870, 0x21870,
1093  		0x21878, 0x21898,
1094  		0x218a0, 0x218a8,
1095  		0x218b0, 0x218c8,
1096  		0x218d0, 0x218d4,
1097  		0x218e0, 0x218e8,
1098  		0x218f0, 0x218f0,
1099  		0x218f8, 0x21a18,
1100  		0x21a20, 0x21a28,
1101  		0x21a30, 0x21a48,
1102  		0x21a50, 0x21a54,
1103  		0x21a60, 0x21a68,
1104  		0x21a70, 0x21a70,
1105  		0x21a78, 0x21a98,
1106  		0x21aa0, 0x21aa8,
1107  		0x21ab0, 0x21ac8,
1108  		0x21ad0, 0x21ad4,
1109  		0x21ae0, 0x21ae8,
1110  		0x21af0, 0x21af0,
1111  		0x21af8, 0x21c18,
1112  		0x21c20, 0x21c20,
1113  		0x21c28, 0x21c30,
1114  		0x21c38, 0x21c38,
1115  		0x21c80, 0x21c98,
1116  		0x21ca0, 0x21ca8,
1117  		0x21cb0, 0x21cc8,
1118  		0x21cd0, 0x21cd4,
1119  		0x21ce0, 0x21ce8,
1120  		0x21cf0, 0x21cf0,
1121  		0x21cf8, 0x21d7c,
1122  		0x21e00, 0x21e04,
1123  		0x22000, 0x2202c,
1124  		0x22100, 0x2213c,
1125  		0x22190, 0x221a0,
1126  		0x221a8, 0x221b8,
1127  		0x221c4, 0x221c8,
1128  		0x22200, 0x22318,
1129  		0x22400, 0x224b4,
1130  		0x224c0, 0x22528,
1131  		0x22540, 0x22614,
1132  		0x23000, 0x23040,
1133  		0x2304c, 0x23060,
1134  		0x230c0, 0x230ec,
1135  		0x23200, 0x23268,
1136  		0x23270, 0x23284,
1137  		0x232fc, 0x23388,
1138  		0x23400, 0x23404,
1139  		0x23500, 0x23500,
1140  		0x23510, 0x23518,
1141  		0x2352c, 0x23530,
1142  		0x2353c, 0x2353c,
1143  		0x23550, 0x23554,
1144  		0x23600, 0x23600,
1145  		0x23608, 0x2361c,
1146  		0x23624, 0x23628,
1147  		0x23630, 0x23634,
1148  		0x2363c, 0x2363c,
1149  		0x23700, 0x2371c,
1150  		0x23780, 0x2378c,
1151  		0x23800, 0x23818,
1152  		0x23820, 0x23828,
1153  		0x23830, 0x23848,
1154  		0x23850, 0x23854,
1155  		0x23860, 0x23868,
1156  		0x23870, 0x23870,
1157  		0x23878, 0x23898,
1158  		0x238a0, 0x238a8,
1159  		0x238b0, 0x238c8,
1160  		0x238d0, 0x238d4,
1161  		0x238e0, 0x238e8,
1162  		0x238f0, 0x238f0,
1163  		0x238f8, 0x23a18,
1164  		0x23a20, 0x23a28,
1165  		0x23a30, 0x23a48,
1166  		0x23a50, 0x23a54,
1167  		0x23a60, 0x23a68,
1168  		0x23a70, 0x23a70,
1169  		0x23a78, 0x23a98,
1170  		0x23aa0, 0x23aa8,
1171  		0x23ab0, 0x23ac8,
1172  		0x23ad0, 0x23ad4,
1173  		0x23ae0, 0x23ae8,
1174  		0x23af0, 0x23af0,
1175  		0x23af8, 0x23c18,
1176  		0x23c20, 0x23c20,
1177  		0x23c28, 0x23c30,
1178  		0x23c38, 0x23c38,
1179  		0x23c80, 0x23c98,
1180  		0x23ca0, 0x23ca8,
1181  		0x23cb0, 0x23cc8,
1182  		0x23cd0, 0x23cd4,
1183  		0x23ce0, 0x23ce8,
1184  		0x23cf0, 0x23cf0,
1185  		0x23cf8, 0x23d7c,
1186  		0x23e00, 0x23e04,
1187  		0x24000, 0x2402c,
1188  		0x24100, 0x2413c,
1189  		0x24190, 0x241a0,
1190  		0x241a8, 0x241b8,
1191  		0x241c4, 0x241c8,
1192  		0x24200, 0x24318,
1193  		0x24400, 0x244b4,
1194  		0x244c0, 0x24528,
1195  		0x24540, 0x24614,
1196  		0x25000, 0x25040,
1197  		0x2504c, 0x25060,
1198  		0x250c0, 0x250ec,
1199  		0x25200, 0x25268,
1200  		0x25270, 0x25284,
1201  		0x252fc, 0x25388,
1202  		0x25400, 0x25404,
1203  		0x25500, 0x25500,
1204  		0x25510, 0x25518,
1205  		0x2552c, 0x25530,
1206  		0x2553c, 0x2553c,
1207  		0x25550, 0x25554,
1208  		0x25600, 0x25600,
1209  		0x25608, 0x2561c,
1210  		0x25624, 0x25628,
1211  		0x25630, 0x25634,
1212  		0x2563c, 0x2563c,
1213  		0x25700, 0x2571c,
1214  		0x25780, 0x2578c,
1215  		0x25800, 0x25818,
1216  		0x25820, 0x25828,
1217  		0x25830, 0x25848,
1218  		0x25850, 0x25854,
1219  		0x25860, 0x25868,
1220  		0x25870, 0x25870,
1221  		0x25878, 0x25898,
1222  		0x258a0, 0x258a8,
1223  		0x258b0, 0x258c8,
1224  		0x258d0, 0x258d4,
1225  		0x258e0, 0x258e8,
1226  		0x258f0, 0x258f0,
1227  		0x258f8, 0x25a18,
1228  		0x25a20, 0x25a28,
1229  		0x25a30, 0x25a48,
1230  		0x25a50, 0x25a54,
1231  		0x25a60, 0x25a68,
1232  		0x25a70, 0x25a70,
1233  		0x25a78, 0x25a98,
1234  		0x25aa0, 0x25aa8,
1235  		0x25ab0, 0x25ac8,
1236  		0x25ad0, 0x25ad4,
1237  		0x25ae0, 0x25ae8,
1238  		0x25af0, 0x25af0,
1239  		0x25af8, 0x25c18,
1240  		0x25c20, 0x25c20,
1241  		0x25c28, 0x25c30,
1242  		0x25c38, 0x25c38,
1243  		0x25c80, 0x25c98,
1244  		0x25ca0, 0x25ca8,
1245  		0x25cb0, 0x25cc8,
1246  		0x25cd0, 0x25cd4,
1247  		0x25ce0, 0x25ce8,
1248  		0x25cf0, 0x25cf0,
1249  		0x25cf8, 0x25d7c,
1250  		0x25e00, 0x25e04,
1251  		0x26000, 0x2602c,
1252  		0x26100, 0x2613c,
1253  		0x26190, 0x261a0,
1254  		0x261a8, 0x261b8,
1255  		0x261c4, 0x261c8,
1256  		0x26200, 0x26318,
1257  		0x26400, 0x264b4,
1258  		0x264c0, 0x26528,
1259  		0x26540, 0x26614,
1260  		0x27000, 0x27040,
1261  		0x2704c, 0x27060,
1262  		0x270c0, 0x270ec,
1263  		0x27200, 0x27268,
1264  		0x27270, 0x27284,
1265  		0x272fc, 0x27388,
1266  		0x27400, 0x27404,
1267  		0x27500, 0x27500,
1268  		0x27510, 0x27518,
1269  		0x2752c, 0x27530,
1270  		0x2753c, 0x2753c,
1271  		0x27550, 0x27554,
1272  		0x27600, 0x27600,
1273  		0x27608, 0x2761c,
1274  		0x27624, 0x27628,
1275  		0x27630, 0x27634,
1276  		0x2763c, 0x2763c,
1277  		0x27700, 0x2771c,
1278  		0x27780, 0x2778c,
1279  		0x27800, 0x27818,
1280  		0x27820, 0x27828,
1281  		0x27830, 0x27848,
1282  		0x27850, 0x27854,
1283  		0x27860, 0x27868,
1284  		0x27870, 0x27870,
1285  		0x27878, 0x27898,
1286  		0x278a0, 0x278a8,
1287  		0x278b0, 0x278c8,
1288  		0x278d0, 0x278d4,
1289  		0x278e0, 0x278e8,
1290  		0x278f0, 0x278f0,
1291  		0x278f8, 0x27a18,
1292  		0x27a20, 0x27a28,
1293  		0x27a30, 0x27a48,
1294  		0x27a50, 0x27a54,
1295  		0x27a60, 0x27a68,
1296  		0x27a70, 0x27a70,
1297  		0x27a78, 0x27a98,
1298  		0x27aa0, 0x27aa8,
1299  		0x27ab0, 0x27ac8,
1300  		0x27ad0, 0x27ad4,
1301  		0x27ae0, 0x27ae8,
1302  		0x27af0, 0x27af0,
1303  		0x27af8, 0x27c18,
1304  		0x27c20, 0x27c20,
1305  		0x27c28, 0x27c30,
1306  		0x27c38, 0x27c38,
1307  		0x27c80, 0x27c98,
1308  		0x27ca0, 0x27ca8,
1309  		0x27cb0, 0x27cc8,
1310  		0x27cd0, 0x27cd4,
1311  		0x27ce0, 0x27ce8,
1312  		0x27cf0, 0x27cf0,
1313  		0x27cf8, 0x27d7c,
1314  		0x27e00, 0x27e04,
1315  	};
1316  
1317  	static const unsigned int t5_reg_ranges[] = {
1318  		0x1008, 0x10c0,
1319  		0x10cc, 0x10f8,
1320  		0x1100, 0x1100,
1321  		0x110c, 0x1148,
1322  		0x1180, 0x1184,
1323  		0x1190, 0x1194,
1324  		0x11a0, 0x11a4,
1325  		0x11b0, 0x11b4,
1326  		0x11fc, 0x123c,
1327  		0x1280, 0x173c,
1328  		0x1800, 0x18fc,
1329  		0x3000, 0x3028,
1330  		0x3060, 0x30b0,
1331  		0x30b8, 0x30d8,
1332  		0x30e0, 0x30fc,
1333  		0x3140, 0x357c,
1334  		0x35a8, 0x35cc,
1335  		0x35ec, 0x35ec,
1336  		0x3600, 0x5624,
1337  		0x56cc, 0x56ec,
1338  		0x56f4, 0x5720,
1339  		0x5728, 0x575c,
1340  		0x580c, 0x5814,
1341  		0x5890, 0x589c,
1342  		0x58a4, 0x58ac,
1343  		0x58b8, 0x58bc,
1344  		0x5940, 0x59c8,
1345  		0x59d0, 0x59dc,
1346  		0x59fc, 0x5a18,
1347  		0x5a60, 0x5a70,
1348  		0x5a80, 0x5a9c,
1349  		0x5b94, 0x5bfc,
1350  		0x6000, 0x6020,
1351  		0x6028, 0x6040,
1352  		0x6058, 0x609c,
1353  		0x60a8, 0x614c,
1354  		0x7700, 0x7798,
1355  		0x77c0, 0x78fc,
1356  		0x7b00, 0x7b58,
1357  		0x7b60, 0x7b84,
1358  		0x7b8c, 0x7c54,
1359  		0x7d00, 0x7d38,
1360  		0x7d40, 0x7d80,
1361  		0x7d8c, 0x7ddc,
1362  		0x7de4, 0x7e04,
1363  		0x7e10, 0x7e1c,
1364  		0x7e24, 0x7e38,
1365  		0x7e40, 0x7e44,
1366  		0x7e4c, 0x7e78,
1367  		0x7e80, 0x7edc,
1368  		0x7ee8, 0x7efc,
1369  		0x8dc0, 0x8de0,
1370  		0x8df8, 0x8e04,
1371  		0x8e10, 0x8e84,
1372  		0x8ea0, 0x8f84,
1373  		0x8fc0, 0x9058,
1374  		0x9060, 0x9060,
1375  		0x9068, 0x90f8,
1376  		0x9400, 0x9408,
1377  		0x9410, 0x9470,
1378  		0x9600, 0x9600,
1379  		0x9608, 0x9638,
1380  		0x9640, 0x96f4,
1381  		0x9800, 0x9808,
1382  		0x9810, 0x9864,
1383  		0x9c00, 0x9c6c,
1384  		0x9c80, 0x9cec,
1385  		0x9d00, 0x9d6c,
1386  		0x9d80, 0x9dec,
1387  		0x9e00, 0x9e6c,
1388  		0x9e80, 0x9eec,
1389  		0x9f00, 0x9f6c,
1390  		0x9f80, 0xa020,
1391  		0xd000, 0xd004,
1392  		0xd010, 0xd03c,
1393  		0xdfc0, 0xdfe0,
1394  		0xe000, 0x1106c,
1395  		0x11074, 0x11088,
1396  		0x1109c, 0x1117c,
1397  		0x11190, 0x11204,
1398  		0x19040, 0x1906c,
1399  		0x19078, 0x19080,
1400  		0x1908c, 0x190e8,
1401  		0x190f0, 0x190f8,
1402  		0x19100, 0x19110,
1403  		0x19120, 0x19124,
1404  		0x19150, 0x19194,
1405  		0x1919c, 0x191b0,
1406  		0x191d0, 0x191e8,
1407  		0x19238, 0x19290,
1408  		0x193f8, 0x19428,
1409  		0x19430, 0x19444,
1410  		0x1944c, 0x1946c,
1411  		0x19474, 0x19474,
1412  		0x19490, 0x194cc,
1413  		0x194f0, 0x194f8,
1414  		0x19c00, 0x19c08,
1415  		0x19c10, 0x19c60,
1416  		0x19c94, 0x19ce4,
1417  		0x19cf0, 0x19d40,
1418  		0x19d50, 0x19d94,
1419  		0x19da0, 0x19de8,
1420  		0x19df0, 0x19e10,
1421  		0x19e50, 0x19e90,
1422  		0x19ea0, 0x19f24,
1423  		0x19f34, 0x19f34,
1424  		0x19f40, 0x19f50,
1425  		0x19f90, 0x19fb4,
1426  		0x19fc4, 0x19fe4,
1427  		0x1a000, 0x1a004,
1428  		0x1a010, 0x1a06c,
1429  		0x1a0b0, 0x1a0e4,
1430  		0x1a0ec, 0x1a0f8,
1431  		0x1a100, 0x1a108,
1432  		0x1a114, 0x1a130,
1433  		0x1a138, 0x1a1c4,
1434  		0x1a1fc, 0x1a1fc,
1435  		0x1e008, 0x1e00c,
1436  		0x1e040, 0x1e044,
1437  		0x1e04c, 0x1e04c,
1438  		0x1e284, 0x1e290,
1439  		0x1e2c0, 0x1e2c0,
1440  		0x1e2e0, 0x1e2e0,
1441  		0x1e300, 0x1e384,
1442  		0x1e3c0, 0x1e3c8,
1443  		0x1e408, 0x1e40c,
1444  		0x1e440, 0x1e444,
1445  		0x1e44c, 0x1e44c,
1446  		0x1e684, 0x1e690,
1447  		0x1e6c0, 0x1e6c0,
1448  		0x1e6e0, 0x1e6e0,
1449  		0x1e700, 0x1e784,
1450  		0x1e7c0, 0x1e7c8,
1451  		0x1e808, 0x1e80c,
1452  		0x1e840, 0x1e844,
1453  		0x1e84c, 0x1e84c,
1454  		0x1ea84, 0x1ea90,
1455  		0x1eac0, 0x1eac0,
1456  		0x1eae0, 0x1eae0,
1457  		0x1eb00, 0x1eb84,
1458  		0x1ebc0, 0x1ebc8,
1459  		0x1ec08, 0x1ec0c,
1460  		0x1ec40, 0x1ec44,
1461  		0x1ec4c, 0x1ec4c,
1462  		0x1ee84, 0x1ee90,
1463  		0x1eec0, 0x1eec0,
1464  		0x1eee0, 0x1eee0,
1465  		0x1ef00, 0x1ef84,
1466  		0x1efc0, 0x1efc8,
1467  		0x1f008, 0x1f00c,
1468  		0x1f040, 0x1f044,
1469  		0x1f04c, 0x1f04c,
1470  		0x1f284, 0x1f290,
1471  		0x1f2c0, 0x1f2c0,
1472  		0x1f2e0, 0x1f2e0,
1473  		0x1f300, 0x1f384,
1474  		0x1f3c0, 0x1f3c8,
1475  		0x1f408, 0x1f40c,
1476  		0x1f440, 0x1f444,
1477  		0x1f44c, 0x1f44c,
1478  		0x1f684, 0x1f690,
1479  		0x1f6c0, 0x1f6c0,
1480  		0x1f6e0, 0x1f6e0,
1481  		0x1f700, 0x1f784,
1482  		0x1f7c0, 0x1f7c8,
1483  		0x1f808, 0x1f80c,
1484  		0x1f840, 0x1f844,
1485  		0x1f84c, 0x1f84c,
1486  		0x1fa84, 0x1fa90,
1487  		0x1fac0, 0x1fac0,
1488  		0x1fae0, 0x1fae0,
1489  		0x1fb00, 0x1fb84,
1490  		0x1fbc0, 0x1fbc8,
1491  		0x1fc08, 0x1fc0c,
1492  		0x1fc40, 0x1fc44,
1493  		0x1fc4c, 0x1fc4c,
1494  		0x1fe84, 0x1fe90,
1495  		0x1fec0, 0x1fec0,
1496  		0x1fee0, 0x1fee0,
1497  		0x1ff00, 0x1ff84,
1498  		0x1ffc0, 0x1ffc8,
1499  		0x30000, 0x30030,
1500  		0x30100, 0x30144,
1501  		0x30190, 0x301a0,
1502  		0x301a8, 0x301b8,
1503  		0x301c4, 0x301c8,
1504  		0x301d0, 0x301d0,
1505  		0x30200, 0x30318,
1506  		0x30400, 0x304b4,
1507  		0x304c0, 0x3052c,
1508  		0x30540, 0x3061c,
1509  		0x30800, 0x30828,
1510  		0x30834, 0x30834,
1511  		0x308c0, 0x30908,
1512  		0x30910, 0x309ac,
1513  		0x30a00, 0x30a14,
1514  		0x30a1c, 0x30a2c,
1515  		0x30a44, 0x30a50,
1516  		0x30a74, 0x30a74,
1517  		0x30a7c, 0x30afc,
1518  		0x30b08, 0x30c24,
1519  		0x30d00, 0x30d00,
1520  		0x30d08, 0x30d14,
1521  		0x30d1c, 0x30d20,
1522  		0x30d3c, 0x30d3c,
1523  		0x30d48, 0x30d50,
1524  		0x31200, 0x3120c,
1525  		0x31220, 0x31220,
1526  		0x31240, 0x31240,
1527  		0x31600, 0x3160c,
1528  		0x31a00, 0x31a1c,
1529  		0x31e00, 0x31e20,
1530  		0x31e38, 0x31e3c,
1531  		0x31e80, 0x31e80,
1532  		0x31e88, 0x31ea8,
1533  		0x31eb0, 0x31eb4,
1534  		0x31ec8, 0x31ed4,
1535  		0x31fb8, 0x32004,
1536  		0x32200, 0x32200,
1537  		0x32208, 0x32240,
1538  		0x32248, 0x32280,
1539  		0x32288, 0x322c0,
1540  		0x322c8, 0x322fc,
1541  		0x32600, 0x32630,
1542  		0x32a00, 0x32abc,
1543  		0x32b00, 0x32b10,
1544  		0x32b20, 0x32b30,
1545  		0x32b40, 0x32b50,
1546  		0x32b60, 0x32b70,
1547  		0x33000, 0x33028,
1548  		0x33030, 0x33048,
1549  		0x33060, 0x33068,
1550  		0x33070, 0x3309c,
1551  		0x330f0, 0x33128,
1552  		0x33130, 0x33148,
1553  		0x33160, 0x33168,
1554  		0x33170, 0x3319c,
1555  		0x331f0, 0x33238,
1556  		0x33240, 0x33240,
1557  		0x33248, 0x33250,
1558  		0x3325c, 0x33264,
1559  		0x33270, 0x332b8,
1560  		0x332c0, 0x332e4,
1561  		0x332f8, 0x33338,
1562  		0x33340, 0x33340,
1563  		0x33348, 0x33350,
1564  		0x3335c, 0x33364,
1565  		0x33370, 0x333b8,
1566  		0x333c0, 0x333e4,
1567  		0x333f8, 0x33428,
1568  		0x33430, 0x33448,
1569  		0x33460, 0x33468,
1570  		0x33470, 0x3349c,
1571  		0x334f0, 0x33528,
1572  		0x33530, 0x33548,
1573  		0x33560, 0x33568,
1574  		0x33570, 0x3359c,
1575  		0x335f0, 0x33638,
1576  		0x33640, 0x33640,
1577  		0x33648, 0x33650,
1578  		0x3365c, 0x33664,
1579  		0x33670, 0x336b8,
1580  		0x336c0, 0x336e4,
1581  		0x336f8, 0x33738,
1582  		0x33740, 0x33740,
1583  		0x33748, 0x33750,
1584  		0x3375c, 0x33764,
1585  		0x33770, 0x337b8,
1586  		0x337c0, 0x337e4,
1587  		0x337f8, 0x337fc,
1588  		0x33814, 0x33814,
1589  		0x3382c, 0x3382c,
1590  		0x33880, 0x3388c,
1591  		0x338e8, 0x338ec,
1592  		0x33900, 0x33928,
1593  		0x33930, 0x33948,
1594  		0x33960, 0x33968,
1595  		0x33970, 0x3399c,
1596  		0x339f0, 0x33a38,
1597  		0x33a40, 0x33a40,
1598  		0x33a48, 0x33a50,
1599  		0x33a5c, 0x33a64,
1600  		0x33a70, 0x33ab8,
1601  		0x33ac0, 0x33ae4,
1602  		0x33af8, 0x33b10,
1603  		0x33b28, 0x33b28,
1604  		0x33b3c, 0x33b50,
1605  		0x33bf0, 0x33c10,
1606  		0x33c28, 0x33c28,
1607  		0x33c3c, 0x33c50,
1608  		0x33cf0, 0x33cfc,
1609  		0x34000, 0x34030,
1610  		0x34100, 0x34144,
1611  		0x34190, 0x341a0,
1612  		0x341a8, 0x341b8,
1613  		0x341c4, 0x341c8,
1614  		0x341d0, 0x341d0,
1615  		0x34200, 0x34318,
1616  		0x34400, 0x344b4,
1617  		0x344c0, 0x3452c,
1618  		0x34540, 0x3461c,
1619  		0x34800, 0x34828,
1620  		0x34834, 0x34834,
1621  		0x348c0, 0x34908,
1622  		0x34910, 0x349ac,
1623  		0x34a00, 0x34a14,
1624  		0x34a1c, 0x34a2c,
1625  		0x34a44, 0x34a50,
1626  		0x34a74, 0x34a74,
1627  		0x34a7c, 0x34afc,
1628  		0x34b08, 0x34c24,
1629  		0x34d00, 0x34d00,
1630  		0x34d08, 0x34d14,
1631  		0x34d1c, 0x34d20,
1632  		0x34d3c, 0x34d3c,
1633  		0x34d48, 0x34d50,
1634  		0x35200, 0x3520c,
1635  		0x35220, 0x35220,
1636  		0x35240, 0x35240,
1637  		0x35600, 0x3560c,
1638  		0x35a00, 0x35a1c,
1639  		0x35e00, 0x35e20,
1640  		0x35e38, 0x35e3c,
1641  		0x35e80, 0x35e80,
1642  		0x35e88, 0x35ea8,
1643  		0x35eb0, 0x35eb4,
1644  		0x35ec8, 0x35ed4,
1645  		0x35fb8, 0x36004,
1646  		0x36200, 0x36200,
1647  		0x36208, 0x36240,
1648  		0x36248, 0x36280,
1649  		0x36288, 0x362c0,
1650  		0x362c8, 0x362fc,
1651  		0x36600, 0x36630,
1652  		0x36a00, 0x36abc,
1653  		0x36b00, 0x36b10,
1654  		0x36b20, 0x36b30,
1655  		0x36b40, 0x36b50,
1656  		0x36b60, 0x36b70,
1657  		0x37000, 0x37028,
1658  		0x37030, 0x37048,
1659  		0x37060, 0x37068,
1660  		0x37070, 0x3709c,
1661  		0x370f0, 0x37128,
1662  		0x37130, 0x37148,
1663  		0x37160, 0x37168,
1664  		0x37170, 0x3719c,
1665  		0x371f0, 0x37238,
1666  		0x37240, 0x37240,
1667  		0x37248, 0x37250,
1668  		0x3725c, 0x37264,
1669  		0x37270, 0x372b8,
1670  		0x372c0, 0x372e4,
1671  		0x372f8, 0x37338,
1672  		0x37340, 0x37340,
1673  		0x37348, 0x37350,
1674  		0x3735c, 0x37364,
1675  		0x37370, 0x373b8,
1676  		0x373c0, 0x373e4,
1677  		0x373f8, 0x37428,
1678  		0x37430, 0x37448,
1679  		0x37460, 0x37468,
1680  		0x37470, 0x3749c,
1681  		0x374f0, 0x37528,
1682  		0x37530, 0x37548,
1683  		0x37560, 0x37568,
1684  		0x37570, 0x3759c,
1685  		0x375f0, 0x37638,
1686  		0x37640, 0x37640,
1687  		0x37648, 0x37650,
1688  		0x3765c, 0x37664,
1689  		0x37670, 0x376b8,
1690  		0x376c0, 0x376e4,
1691  		0x376f8, 0x37738,
1692  		0x37740, 0x37740,
1693  		0x37748, 0x37750,
1694  		0x3775c, 0x37764,
1695  		0x37770, 0x377b8,
1696  		0x377c0, 0x377e4,
1697  		0x377f8, 0x377fc,
1698  		0x37814, 0x37814,
1699  		0x3782c, 0x3782c,
1700  		0x37880, 0x3788c,
1701  		0x378e8, 0x378ec,
1702  		0x37900, 0x37928,
1703  		0x37930, 0x37948,
1704  		0x37960, 0x37968,
1705  		0x37970, 0x3799c,
1706  		0x379f0, 0x37a38,
1707  		0x37a40, 0x37a40,
1708  		0x37a48, 0x37a50,
1709  		0x37a5c, 0x37a64,
1710  		0x37a70, 0x37ab8,
1711  		0x37ac0, 0x37ae4,
1712  		0x37af8, 0x37b10,
1713  		0x37b28, 0x37b28,
1714  		0x37b3c, 0x37b50,
1715  		0x37bf0, 0x37c10,
1716  		0x37c28, 0x37c28,
1717  		0x37c3c, 0x37c50,
1718  		0x37cf0, 0x37cfc,
1719  		0x38000, 0x38030,
1720  		0x38100, 0x38144,
1721  		0x38190, 0x381a0,
1722  		0x381a8, 0x381b8,
1723  		0x381c4, 0x381c8,
1724  		0x381d0, 0x381d0,
1725  		0x38200, 0x38318,
1726  		0x38400, 0x384b4,
1727  		0x384c0, 0x3852c,
1728  		0x38540, 0x3861c,
1729  		0x38800, 0x38828,
1730  		0x38834, 0x38834,
1731  		0x388c0, 0x38908,
1732  		0x38910, 0x389ac,
1733  		0x38a00, 0x38a14,
1734  		0x38a1c, 0x38a2c,
1735  		0x38a44, 0x38a50,
1736  		0x38a74, 0x38a74,
1737  		0x38a7c, 0x38afc,
1738  		0x38b08, 0x38c24,
1739  		0x38d00, 0x38d00,
1740  		0x38d08, 0x38d14,
1741  		0x38d1c, 0x38d20,
1742  		0x38d3c, 0x38d3c,
1743  		0x38d48, 0x38d50,
1744  		0x39200, 0x3920c,
1745  		0x39220, 0x39220,
1746  		0x39240, 0x39240,
1747  		0x39600, 0x3960c,
1748  		0x39a00, 0x39a1c,
1749  		0x39e00, 0x39e20,
1750  		0x39e38, 0x39e3c,
1751  		0x39e80, 0x39e80,
1752  		0x39e88, 0x39ea8,
1753  		0x39eb0, 0x39eb4,
1754  		0x39ec8, 0x39ed4,
1755  		0x39fb8, 0x3a004,
1756  		0x3a200, 0x3a200,
1757  		0x3a208, 0x3a240,
1758  		0x3a248, 0x3a280,
1759  		0x3a288, 0x3a2c0,
1760  		0x3a2c8, 0x3a2fc,
1761  		0x3a600, 0x3a630,
1762  		0x3aa00, 0x3aabc,
1763  		0x3ab00, 0x3ab10,
1764  		0x3ab20, 0x3ab30,
1765  		0x3ab40, 0x3ab50,
1766  		0x3ab60, 0x3ab70,
1767  		0x3b000, 0x3b028,
1768  		0x3b030, 0x3b048,
1769  		0x3b060, 0x3b068,
1770  		0x3b070, 0x3b09c,
1771  		0x3b0f0, 0x3b128,
1772  		0x3b130, 0x3b148,
1773  		0x3b160, 0x3b168,
1774  		0x3b170, 0x3b19c,
1775  		0x3b1f0, 0x3b238,
1776  		0x3b240, 0x3b240,
1777  		0x3b248, 0x3b250,
1778  		0x3b25c, 0x3b264,
1779  		0x3b270, 0x3b2b8,
1780  		0x3b2c0, 0x3b2e4,
1781  		0x3b2f8, 0x3b338,
1782  		0x3b340, 0x3b340,
1783  		0x3b348, 0x3b350,
1784  		0x3b35c, 0x3b364,
1785  		0x3b370, 0x3b3b8,
1786  		0x3b3c0, 0x3b3e4,
1787  		0x3b3f8, 0x3b428,
1788  		0x3b430, 0x3b448,
1789  		0x3b460, 0x3b468,
1790  		0x3b470, 0x3b49c,
1791  		0x3b4f0, 0x3b528,
1792  		0x3b530, 0x3b548,
1793  		0x3b560, 0x3b568,
1794  		0x3b570, 0x3b59c,
1795  		0x3b5f0, 0x3b638,
1796  		0x3b640, 0x3b640,
1797  		0x3b648, 0x3b650,
1798  		0x3b65c, 0x3b664,
1799  		0x3b670, 0x3b6b8,
1800  		0x3b6c0, 0x3b6e4,
1801  		0x3b6f8, 0x3b738,
1802  		0x3b740, 0x3b740,
1803  		0x3b748, 0x3b750,
1804  		0x3b75c, 0x3b764,
1805  		0x3b770, 0x3b7b8,
1806  		0x3b7c0, 0x3b7e4,
1807  		0x3b7f8, 0x3b7fc,
1808  		0x3b814, 0x3b814,
1809  		0x3b82c, 0x3b82c,
1810  		0x3b880, 0x3b88c,
1811  		0x3b8e8, 0x3b8ec,
1812  		0x3b900, 0x3b928,
1813  		0x3b930, 0x3b948,
1814  		0x3b960, 0x3b968,
1815  		0x3b970, 0x3b99c,
1816  		0x3b9f0, 0x3ba38,
1817  		0x3ba40, 0x3ba40,
1818  		0x3ba48, 0x3ba50,
1819  		0x3ba5c, 0x3ba64,
1820  		0x3ba70, 0x3bab8,
1821  		0x3bac0, 0x3bae4,
1822  		0x3baf8, 0x3bb10,
1823  		0x3bb28, 0x3bb28,
1824  		0x3bb3c, 0x3bb50,
1825  		0x3bbf0, 0x3bc10,
1826  		0x3bc28, 0x3bc28,
1827  		0x3bc3c, 0x3bc50,
1828  		0x3bcf0, 0x3bcfc,
1829  		0x3c000, 0x3c030,
1830  		0x3c100, 0x3c144,
1831  		0x3c190, 0x3c1a0,
1832  		0x3c1a8, 0x3c1b8,
1833  		0x3c1c4, 0x3c1c8,
1834  		0x3c1d0, 0x3c1d0,
1835  		0x3c200, 0x3c318,
1836  		0x3c400, 0x3c4b4,
1837  		0x3c4c0, 0x3c52c,
1838  		0x3c540, 0x3c61c,
1839  		0x3c800, 0x3c828,
1840  		0x3c834, 0x3c834,
1841  		0x3c8c0, 0x3c908,
1842  		0x3c910, 0x3c9ac,
1843  		0x3ca00, 0x3ca14,
1844  		0x3ca1c, 0x3ca2c,
1845  		0x3ca44, 0x3ca50,
1846  		0x3ca74, 0x3ca74,
1847  		0x3ca7c, 0x3cafc,
1848  		0x3cb08, 0x3cc24,
1849  		0x3cd00, 0x3cd00,
1850  		0x3cd08, 0x3cd14,
1851  		0x3cd1c, 0x3cd20,
1852  		0x3cd3c, 0x3cd3c,
1853  		0x3cd48, 0x3cd50,
1854  		0x3d200, 0x3d20c,
1855  		0x3d220, 0x3d220,
1856  		0x3d240, 0x3d240,
1857  		0x3d600, 0x3d60c,
1858  		0x3da00, 0x3da1c,
1859  		0x3de00, 0x3de20,
1860  		0x3de38, 0x3de3c,
1861  		0x3de80, 0x3de80,
1862  		0x3de88, 0x3dea8,
1863  		0x3deb0, 0x3deb4,
1864  		0x3dec8, 0x3ded4,
1865  		0x3dfb8, 0x3e004,
1866  		0x3e200, 0x3e200,
1867  		0x3e208, 0x3e240,
1868  		0x3e248, 0x3e280,
1869  		0x3e288, 0x3e2c0,
1870  		0x3e2c8, 0x3e2fc,
1871  		0x3e600, 0x3e630,
1872  		0x3ea00, 0x3eabc,
1873  		0x3eb00, 0x3eb10,
1874  		0x3eb20, 0x3eb30,
1875  		0x3eb40, 0x3eb50,
1876  		0x3eb60, 0x3eb70,
1877  		0x3f000, 0x3f028,
1878  		0x3f030, 0x3f048,
1879  		0x3f060, 0x3f068,
1880  		0x3f070, 0x3f09c,
1881  		0x3f0f0, 0x3f128,
1882  		0x3f130, 0x3f148,
1883  		0x3f160, 0x3f168,
1884  		0x3f170, 0x3f19c,
1885  		0x3f1f0, 0x3f238,
1886  		0x3f240, 0x3f240,
1887  		0x3f248, 0x3f250,
1888  		0x3f25c, 0x3f264,
1889  		0x3f270, 0x3f2b8,
1890  		0x3f2c0, 0x3f2e4,
1891  		0x3f2f8, 0x3f338,
1892  		0x3f340, 0x3f340,
1893  		0x3f348, 0x3f350,
1894  		0x3f35c, 0x3f364,
1895  		0x3f370, 0x3f3b8,
1896  		0x3f3c0, 0x3f3e4,
1897  		0x3f3f8, 0x3f428,
1898  		0x3f430, 0x3f448,
1899  		0x3f460, 0x3f468,
1900  		0x3f470, 0x3f49c,
1901  		0x3f4f0, 0x3f528,
1902  		0x3f530, 0x3f548,
1903  		0x3f560, 0x3f568,
1904  		0x3f570, 0x3f59c,
1905  		0x3f5f0, 0x3f638,
1906  		0x3f640, 0x3f640,
1907  		0x3f648, 0x3f650,
1908  		0x3f65c, 0x3f664,
1909  		0x3f670, 0x3f6b8,
1910  		0x3f6c0, 0x3f6e4,
1911  		0x3f6f8, 0x3f738,
1912  		0x3f740, 0x3f740,
1913  		0x3f748, 0x3f750,
1914  		0x3f75c, 0x3f764,
1915  		0x3f770, 0x3f7b8,
1916  		0x3f7c0, 0x3f7e4,
1917  		0x3f7f8, 0x3f7fc,
1918  		0x3f814, 0x3f814,
1919  		0x3f82c, 0x3f82c,
1920  		0x3f880, 0x3f88c,
1921  		0x3f8e8, 0x3f8ec,
1922  		0x3f900, 0x3f928,
1923  		0x3f930, 0x3f948,
1924  		0x3f960, 0x3f968,
1925  		0x3f970, 0x3f99c,
1926  		0x3f9f0, 0x3fa38,
1927  		0x3fa40, 0x3fa40,
1928  		0x3fa48, 0x3fa50,
1929  		0x3fa5c, 0x3fa64,
1930  		0x3fa70, 0x3fab8,
1931  		0x3fac0, 0x3fae4,
1932  		0x3faf8, 0x3fb10,
1933  		0x3fb28, 0x3fb28,
1934  		0x3fb3c, 0x3fb50,
1935  		0x3fbf0, 0x3fc10,
1936  		0x3fc28, 0x3fc28,
1937  		0x3fc3c, 0x3fc50,
1938  		0x3fcf0, 0x3fcfc,
1939  		0x40000, 0x4000c,
1940  		0x40040, 0x40050,
1941  		0x40060, 0x40068,
1942  		0x4007c, 0x4008c,
1943  		0x40094, 0x400b0,
1944  		0x400c0, 0x40144,
1945  		0x40180, 0x4018c,
1946  		0x40200, 0x40254,
1947  		0x40260, 0x40264,
1948  		0x40270, 0x40288,
1949  		0x40290, 0x40298,
1950  		0x402ac, 0x402c8,
1951  		0x402d0, 0x402e0,
1952  		0x402f0, 0x402f0,
1953  		0x40300, 0x4033c,
1954  		0x403f8, 0x403fc,
1955  		0x41304, 0x413c4,
1956  		0x41400, 0x4140c,
1957  		0x41414, 0x4141c,
1958  		0x41480, 0x414d0,
1959  		0x44000, 0x44054,
1960  		0x4405c, 0x44078,
1961  		0x440c0, 0x44174,
1962  		0x44180, 0x441ac,
1963  		0x441b4, 0x441b8,
1964  		0x441c0, 0x44254,
1965  		0x4425c, 0x44278,
1966  		0x442c0, 0x44374,
1967  		0x44380, 0x443ac,
1968  		0x443b4, 0x443b8,
1969  		0x443c0, 0x44454,
1970  		0x4445c, 0x44478,
1971  		0x444c0, 0x44574,
1972  		0x44580, 0x445ac,
1973  		0x445b4, 0x445b8,
1974  		0x445c0, 0x44654,
1975  		0x4465c, 0x44678,
1976  		0x446c0, 0x44774,
1977  		0x44780, 0x447ac,
1978  		0x447b4, 0x447b8,
1979  		0x447c0, 0x44854,
1980  		0x4485c, 0x44878,
1981  		0x448c0, 0x44974,
1982  		0x44980, 0x449ac,
1983  		0x449b4, 0x449b8,
1984  		0x449c0, 0x449fc,
1985  		0x45000, 0x45004,
1986  		0x45010, 0x45030,
1987  		0x45040, 0x45060,
1988  		0x45068, 0x45068,
1989  		0x45080, 0x45084,
1990  		0x450a0, 0x450b0,
1991  		0x45200, 0x45204,
1992  		0x45210, 0x45230,
1993  		0x45240, 0x45260,
1994  		0x45268, 0x45268,
1995  		0x45280, 0x45284,
1996  		0x452a0, 0x452b0,
1997  		0x460c0, 0x460e4,
1998  		0x47000, 0x4703c,
1999  		0x47044, 0x4708c,
2000  		0x47200, 0x47250,
2001  		0x47400, 0x47408,
2002  		0x47414, 0x47420,
2003  		0x47600, 0x47618,
2004  		0x47800, 0x47814,
2005  		0x48000, 0x4800c,
2006  		0x48040, 0x48050,
2007  		0x48060, 0x48068,
2008  		0x4807c, 0x4808c,
2009  		0x48094, 0x480b0,
2010  		0x480c0, 0x48144,
2011  		0x48180, 0x4818c,
2012  		0x48200, 0x48254,
2013  		0x48260, 0x48264,
2014  		0x48270, 0x48288,
2015  		0x48290, 0x48298,
2016  		0x482ac, 0x482c8,
2017  		0x482d0, 0x482e0,
2018  		0x482f0, 0x482f0,
2019  		0x48300, 0x4833c,
2020  		0x483f8, 0x483fc,
2021  		0x49304, 0x493c4,
2022  		0x49400, 0x4940c,
2023  		0x49414, 0x4941c,
2024  		0x49480, 0x494d0,
2025  		0x4c000, 0x4c054,
2026  		0x4c05c, 0x4c078,
2027  		0x4c0c0, 0x4c174,
2028  		0x4c180, 0x4c1ac,
2029  		0x4c1b4, 0x4c1b8,
2030  		0x4c1c0, 0x4c254,
2031  		0x4c25c, 0x4c278,
2032  		0x4c2c0, 0x4c374,
2033  		0x4c380, 0x4c3ac,
2034  		0x4c3b4, 0x4c3b8,
2035  		0x4c3c0, 0x4c454,
2036  		0x4c45c, 0x4c478,
2037  		0x4c4c0, 0x4c574,
2038  		0x4c580, 0x4c5ac,
2039  		0x4c5b4, 0x4c5b8,
2040  		0x4c5c0, 0x4c654,
2041  		0x4c65c, 0x4c678,
2042  		0x4c6c0, 0x4c774,
2043  		0x4c780, 0x4c7ac,
2044  		0x4c7b4, 0x4c7b8,
2045  		0x4c7c0, 0x4c854,
2046  		0x4c85c, 0x4c878,
2047  		0x4c8c0, 0x4c974,
2048  		0x4c980, 0x4c9ac,
2049  		0x4c9b4, 0x4c9b8,
2050  		0x4c9c0, 0x4c9fc,
2051  		0x4d000, 0x4d004,
2052  		0x4d010, 0x4d030,
2053  		0x4d040, 0x4d060,
2054  		0x4d068, 0x4d068,
2055  		0x4d080, 0x4d084,
2056  		0x4d0a0, 0x4d0b0,
2057  		0x4d200, 0x4d204,
2058  		0x4d210, 0x4d230,
2059  		0x4d240, 0x4d260,
2060  		0x4d268, 0x4d268,
2061  		0x4d280, 0x4d284,
2062  		0x4d2a0, 0x4d2b0,
2063  		0x4e0c0, 0x4e0e4,
2064  		0x4f000, 0x4f03c,
2065  		0x4f044, 0x4f08c,
2066  		0x4f200, 0x4f250,
2067  		0x4f400, 0x4f408,
2068  		0x4f414, 0x4f420,
2069  		0x4f600, 0x4f618,
2070  		0x4f800, 0x4f814,
2071  		0x50000, 0x50084,
2072  		0x50090, 0x500cc,
2073  		0x50400, 0x50400,
2074  		0x50800, 0x50884,
2075  		0x50890, 0x508cc,
2076  		0x50c00, 0x50c00,
2077  		0x51000, 0x5101c,
2078  		0x51300, 0x51308,
2079  	};
2080  
2081  	static const unsigned int t6_reg_ranges[] = {
2082  		0x1008, 0x101c,
2083  		0x1024, 0x10a8,
2084  		0x10b4, 0x10f8,
2085  		0x1100, 0x1114,
2086  		0x111c, 0x112c,
2087  		0x1138, 0x113c,
2088  		0x1144, 0x114c,
2089  		0x1180, 0x1184,
2090  		0x1190, 0x1194,
2091  		0x11a0, 0x11a4,
2092  		0x11b0, 0x11b4,
2093  		0x11fc, 0x123c,
2094  		0x1254, 0x1274,
2095  		0x1280, 0x133c,
2096  		0x1800, 0x18fc,
2097  		0x3000, 0x302c,
2098  		0x3060, 0x30b0,
2099  		0x30b8, 0x30d8,
2100  		0x30e0, 0x30fc,
2101  		0x3140, 0x357c,
2102  		0x35a8, 0x35cc,
2103  		0x35ec, 0x35ec,
2104  		0x3600, 0x5624,
2105  		0x56cc, 0x56ec,
2106  		0x56f4, 0x5720,
2107  		0x5728, 0x575c,
2108  		0x580c, 0x5814,
2109  		0x5890, 0x589c,
2110  		0x58a4, 0x58ac,
2111  		0x58b8, 0x58bc,
2112  		0x5940, 0x595c,
2113  		0x5980, 0x598c,
2114  		0x59b0, 0x59c8,
2115  		0x59d0, 0x59dc,
2116  		0x59fc, 0x5a18,
2117  		0x5a60, 0x5a6c,
2118  		0x5a80, 0x5a8c,
2119  		0x5a94, 0x5a9c,
2120  		0x5b94, 0x5bfc,
2121  		0x5c10, 0x5e48,
2122  		0x5e50, 0x5e94,
2123  		0x5ea0, 0x5eb0,
2124  		0x5ec0, 0x5ec0,
2125  		0x5ec8, 0x5ed0,
2126  		0x5ee0, 0x5ee0,
2127  		0x5ef0, 0x5ef0,
2128  		0x5f00, 0x5f00,
2129  		0x6000, 0x6020,
2130  		0x6028, 0x6040,
2131  		0x6058, 0x609c,
2132  		0x60a8, 0x619c,
2133  		0x7700, 0x7798,
2134  		0x77c0, 0x7880,
2135  		0x78cc, 0x78fc,
2136  		0x7b00, 0x7b58,
2137  		0x7b60, 0x7b84,
2138  		0x7b8c, 0x7c54,
2139  		0x7d00, 0x7d38,
2140  		0x7d40, 0x7d84,
2141  		0x7d8c, 0x7ddc,
2142  		0x7de4, 0x7e04,
2143  		0x7e10, 0x7e1c,
2144  		0x7e24, 0x7e38,
2145  		0x7e40, 0x7e44,
2146  		0x7e4c, 0x7e78,
2147  		0x7e80, 0x7edc,
2148  		0x7ee8, 0x7efc,
2149  		0x8dc0, 0x8de4,
2150  		0x8df8, 0x8e04,
2151  		0x8e10, 0x8e84,
2152  		0x8ea0, 0x8f88,
2153  		0x8fb8, 0x9058,
2154  		0x9060, 0x9060,
2155  		0x9068, 0x90f8,
2156  		0x9100, 0x9124,
2157  		0x9400, 0x9470,
2158  		0x9600, 0x9600,
2159  		0x9608, 0x9638,
2160  		0x9640, 0x9704,
2161  		0x9710, 0x971c,
2162  		0x9800, 0x9808,
2163  		0x9810, 0x9864,
2164  		0x9c00, 0x9c6c,
2165  		0x9c80, 0x9cec,
2166  		0x9d00, 0x9d6c,
2167  		0x9d80, 0x9dec,
2168  		0x9e00, 0x9e6c,
2169  		0x9e80, 0x9eec,
2170  		0x9f00, 0x9f6c,
2171  		0x9f80, 0xa020,
2172  		0xd000, 0xd03c,
2173  		0xd100, 0xd118,
2174  		0xd200, 0xd214,
2175  		0xd220, 0xd234,
2176  		0xd240, 0xd254,
2177  		0xd260, 0xd274,
2178  		0xd280, 0xd294,
2179  		0xd2a0, 0xd2b4,
2180  		0xd2c0, 0xd2d4,
2181  		0xd2e0, 0xd2f4,
2182  		0xd300, 0xd31c,
2183  		0xdfc0, 0xdfe0,
2184  		0xe000, 0xf008,
2185  		0xf010, 0xf018,
2186  		0xf020, 0xf028,
2187  		0x11000, 0x11014,
2188  		0x11048, 0x1106c,
2189  		0x11074, 0x11088,
2190  		0x11098, 0x11120,
2191  		0x1112c, 0x1117c,
2192  		0x11190, 0x112e0,
2193  		0x11300, 0x1130c,
2194  		0x12000, 0x1206c,
2195  		0x19040, 0x1906c,
2196  		0x19078, 0x19080,
2197  		0x1908c, 0x190e8,
2198  		0x190f0, 0x190f8,
2199  		0x19100, 0x19110,
2200  		0x19120, 0x19124,
2201  		0x19150, 0x19194,
2202  		0x1919c, 0x191b0,
2203  		0x191d0, 0x191e8,
2204  		0x19238, 0x19290,
2205  		0x192a4, 0x192b0,
2206  		0x192bc, 0x192bc,
2207  		0x19348, 0x1934c,
2208  		0x193f8, 0x19418,
2209  		0x19420, 0x19428,
2210  		0x19430, 0x19444,
2211  		0x1944c, 0x1946c,
2212  		0x19474, 0x19474,
2213  		0x19490, 0x194cc,
2214  		0x194f0, 0x194f8,
2215  		0x19c00, 0x19c48,
2216  		0x19c50, 0x19c80,
2217  		0x19c94, 0x19c98,
2218  		0x19ca0, 0x19cbc,
2219  		0x19ce4, 0x19ce4,
2220  		0x19cf0, 0x19cf8,
2221  		0x19d00, 0x19d28,
2222  		0x19d50, 0x19d78,
2223  		0x19d94, 0x19d98,
2224  		0x19da0, 0x19dc8,
2225  		0x19df0, 0x19e10,
2226  		0x19e50, 0x19e6c,
2227  		0x19ea0, 0x19ebc,
2228  		0x19ec4, 0x19ef4,
2229  		0x19f04, 0x19f2c,
2230  		0x19f34, 0x19f34,
2231  		0x19f40, 0x19f50,
2232  		0x19f90, 0x19fac,
2233  		0x19fc4, 0x19fc8,
2234  		0x19fd0, 0x19fe4,
2235  		0x1a000, 0x1a004,
2236  		0x1a010, 0x1a06c,
2237  		0x1a0b0, 0x1a0e4,
2238  		0x1a0ec, 0x1a0f8,
2239  		0x1a100, 0x1a108,
2240  		0x1a114, 0x1a130,
2241  		0x1a138, 0x1a1c4,
2242  		0x1a1fc, 0x1a1fc,
2243  		0x1e008, 0x1e00c,
2244  		0x1e040, 0x1e044,
2245  		0x1e04c, 0x1e04c,
2246  		0x1e284, 0x1e290,
2247  		0x1e2c0, 0x1e2c0,
2248  		0x1e2e0, 0x1e2e0,
2249  		0x1e300, 0x1e384,
2250  		0x1e3c0, 0x1e3c8,
2251  		0x1e408, 0x1e40c,
2252  		0x1e440, 0x1e444,
2253  		0x1e44c, 0x1e44c,
2254  		0x1e684, 0x1e690,
2255  		0x1e6c0, 0x1e6c0,
2256  		0x1e6e0, 0x1e6e0,
2257  		0x1e700, 0x1e784,
2258  		0x1e7c0, 0x1e7c8,
2259  		0x1e808, 0x1e80c,
2260  		0x1e840, 0x1e844,
2261  		0x1e84c, 0x1e84c,
2262  		0x1ea84, 0x1ea90,
2263  		0x1eac0, 0x1eac0,
2264  		0x1eae0, 0x1eae0,
2265  		0x1eb00, 0x1eb84,
2266  		0x1ebc0, 0x1ebc8,
2267  		0x1ec08, 0x1ec0c,
2268  		0x1ec40, 0x1ec44,
2269  		0x1ec4c, 0x1ec4c,
2270  		0x1ee84, 0x1ee90,
2271  		0x1eec0, 0x1eec0,
2272  		0x1eee0, 0x1eee0,
2273  		0x1ef00, 0x1ef84,
2274  		0x1efc0, 0x1efc8,
2275  		0x1f008, 0x1f00c,
2276  		0x1f040, 0x1f044,
2277  		0x1f04c, 0x1f04c,
2278  		0x1f284, 0x1f290,
2279  		0x1f2c0, 0x1f2c0,
2280  		0x1f2e0, 0x1f2e0,
2281  		0x1f300, 0x1f384,
2282  		0x1f3c0, 0x1f3c8,
2283  		0x1f408, 0x1f40c,
2284  		0x1f440, 0x1f444,
2285  		0x1f44c, 0x1f44c,
2286  		0x1f684, 0x1f690,
2287  		0x1f6c0, 0x1f6c0,
2288  		0x1f6e0, 0x1f6e0,
2289  		0x1f700, 0x1f784,
2290  		0x1f7c0, 0x1f7c8,
2291  		0x1f808, 0x1f80c,
2292  		0x1f840, 0x1f844,
2293  		0x1f84c, 0x1f84c,
2294  		0x1fa84, 0x1fa90,
2295  		0x1fac0, 0x1fac0,
2296  		0x1fae0, 0x1fae0,
2297  		0x1fb00, 0x1fb84,
2298  		0x1fbc0, 0x1fbc8,
2299  		0x1fc08, 0x1fc0c,
2300  		0x1fc40, 0x1fc44,
2301  		0x1fc4c, 0x1fc4c,
2302  		0x1fe84, 0x1fe90,
2303  		0x1fec0, 0x1fec0,
2304  		0x1fee0, 0x1fee0,
2305  		0x1ff00, 0x1ff84,
2306  		0x1ffc0, 0x1ffc8,
2307  		0x30000, 0x30030,
2308  		0x30100, 0x30168,
2309  		0x30190, 0x301a0,
2310  		0x301a8, 0x301b8,
2311  		0x301c4, 0x301c8,
2312  		0x301d0, 0x301d0,
2313  		0x30200, 0x30320,
2314  		0x30400, 0x304b4,
2315  		0x304c0, 0x3052c,
2316  		0x30540, 0x3061c,
2317  		0x30800, 0x308a0,
2318  		0x308c0, 0x30908,
2319  		0x30910, 0x309b8,
2320  		0x30a00, 0x30a04,
2321  		0x30a0c, 0x30a14,
2322  		0x30a1c, 0x30a2c,
2323  		0x30a44, 0x30a50,
2324  		0x30a74, 0x30a74,
2325  		0x30a7c, 0x30afc,
2326  		0x30b08, 0x30c24,
2327  		0x30d00, 0x30d14,
2328  		0x30d1c, 0x30d3c,
2329  		0x30d44, 0x30d4c,
2330  		0x30d54, 0x30d74,
2331  		0x30d7c, 0x30d7c,
2332  		0x30de0, 0x30de0,
2333  		0x30e00, 0x30ed4,
2334  		0x30f00, 0x30fa4,
2335  		0x30fc0, 0x30fc4,
2336  		0x31000, 0x31004,
2337  		0x31080, 0x310fc,
2338  		0x31208, 0x31220,
2339  		0x3123c, 0x31254,
2340  		0x31300, 0x31300,
2341  		0x31308, 0x3131c,
2342  		0x31338, 0x3133c,
2343  		0x31380, 0x31380,
2344  		0x31388, 0x313a8,
2345  		0x313b4, 0x313b4,
2346  		0x31400, 0x31420,
2347  		0x31438, 0x3143c,
2348  		0x31480, 0x31480,
2349  		0x314a8, 0x314a8,
2350  		0x314b0, 0x314b4,
2351  		0x314c8, 0x314d4,
2352  		0x31a40, 0x31a4c,
2353  		0x31af0, 0x31b20,
2354  		0x31b38, 0x31b3c,
2355  		0x31b80, 0x31b80,
2356  		0x31ba8, 0x31ba8,
2357  		0x31bb0, 0x31bb4,
2358  		0x31bc8, 0x31bd4,
2359  		0x32140, 0x3218c,
2360  		0x321f0, 0x321f4,
2361  		0x32200, 0x32200,
2362  		0x32218, 0x32218,
2363  		0x32400, 0x32400,
2364  		0x32408, 0x3241c,
2365  		0x32618, 0x32620,
2366  		0x32664, 0x32664,
2367  		0x326a8, 0x326a8,
2368  		0x326ec, 0x326ec,
2369  		0x32a00, 0x32abc,
2370  		0x32b00, 0x32b18,
2371  		0x32b20, 0x32b38,
2372  		0x32b40, 0x32b58,
2373  		0x32b60, 0x32b78,
2374  		0x32c00, 0x32c00,
2375  		0x32c08, 0x32c3c,
2376  		0x33000, 0x3302c,
2377  		0x33034, 0x33050,
2378  		0x33058, 0x33058,
2379  		0x33060, 0x3308c,
2380  		0x3309c, 0x330ac,
2381  		0x330c0, 0x330c0,
2382  		0x330c8, 0x330d0,
2383  		0x330d8, 0x330e0,
2384  		0x330ec, 0x3312c,
2385  		0x33134, 0x33150,
2386  		0x33158, 0x33158,
2387  		0x33160, 0x3318c,
2388  		0x3319c, 0x331ac,
2389  		0x331c0, 0x331c0,
2390  		0x331c8, 0x331d0,
2391  		0x331d8, 0x331e0,
2392  		0x331ec, 0x33290,
2393  		0x33298, 0x332c4,
2394  		0x332e4, 0x33390,
2395  		0x33398, 0x333c4,
2396  		0x333e4, 0x3342c,
2397  		0x33434, 0x33450,
2398  		0x33458, 0x33458,
2399  		0x33460, 0x3348c,
2400  		0x3349c, 0x334ac,
2401  		0x334c0, 0x334c0,
2402  		0x334c8, 0x334d0,
2403  		0x334d8, 0x334e0,
2404  		0x334ec, 0x3352c,
2405  		0x33534, 0x33550,
2406  		0x33558, 0x33558,
2407  		0x33560, 0x3358c,
2408  		0x3359c, 0x335ac,
2409  		0x335c0, 0x335c0,
2410  		0x335c8, 0x335d0,
2411  		0x335d8, 0x335e0,
2412  		0x335ec, 0x33690,
2413  		0x33698, 0x336c4,
2414  		0x336e4, 0x33790,
2415  		0x33798, 0x337c4,
2416  		0x337e4, 0x337fc,
2417  		0x33814, 0x33814,
2418  		0x33854, 0x33868,
2419  		0x33880, 0x3388c,
2420  		0x338c0, 0x338d0,
2421  		0x338e8, 0x338ec,
2422  		0x33900, 0x3392c,
2423  		0x33934, 0x33950,
2424  		0x33958, 0x33958,
2425  		0x33960, 0x3398c,
2426  		0x3399c, 0x339ac,
2427  		0x339c0, 0x339c0,
2428  		0x339c8, 0x339d0,
2429  		0x339d8, 0x339e0,
2430  		0x339ec, 0x33a90,
2431  		0x33a98, 0x33ac4,
2432  		0x33ae4, 0x33b10,
2433  		0x33b24, 0x33b28,
2434  		0x33b38, 0x33b50,
2435  		0x33bf0, 0x33c10,
2436  		0x33c24, 0x33c28,
2437  		0x33c38, 0x33c50,
2438  		0x33cf0, 0x33cfc,
2439  		0x34000, 0x34030,
2440  		0x34100, 0x34168,
2441  		0x34190, 0x341a0,
2442  		0x341a8, 0x341b8,
2443  		0x341c4, 0x341c8,
2444  		0x341d0, 0x341d0,
2445  		0x34200, 0x34320,
2446  		0x34400, 0x344b4,
2447  		0x344c0, 0x3452c,
2448  		0x34540, 0x3461c,
2449  		0x34800, 0x348a0,
2450  		0x348c0, 0x34908,
2451  		0x34910, 0x349b8,
2452  		0x34a00, 0x34a04,
2453  		0x34a0c, 0x34a14,
2454  		0x34a1c, 0x34a2c,
2455  		0x34a44, 0x34a50,
2456  		0x34a74, 0x34a74,
2457  		0x34a7c, 0x34afc,
2458  		0x34b08, 0x34c24,
2459  		0x34d00, 0x34d14,
2460  		0x34d1c, 0x34d3c,
2461  		0x34d44, 0x34d4c,
2462  		0x34d54, 0x34d74,
2463  		0x34d7c, 0x34d7c,
2464  		0x34de0, 0x34de0,
2465  		0x34e00, 0x34ed4,
2466  		0x34f00, 0x34fa4,
2467  		0x34fc0, 0x34fc4,
2468  		0x35000, 0x35004,
2469  		0x35080, 0x350fc,
2470  		0x35208, 0x35220,
2471  		0x3523c, 0x35254,
2472  		0x35300, 0x35300,
2473  		0x35308, 0x3531c,
2474  		0x35338, 0x3533c,
2475  		0x35380, 0x35380,
2476  		0x35388, 0x353a8,
2477  		0x353b4, 0x353b4,
2478  		0x35400, 0x35420,
2479  		0x35438, 0x3543c,
2480  		0x35480, 0x35480,
2481  		0x354a8, 0x354a8,
2482  		0x354b0, 0x354b4,
2483  		0x354c8, 0x354d4,
2484  		0x35a40, 0x35a4c,
2485  		0x35af0, 0x35b20,
2486  		0x35b38, 0x35b3c,
2487  		0x35b80, 0x35b80,
2488  		0x35ba8, 0x35ba8,
2489  		0x35bb0, 0x35bb4,
2490  		0x35bc8, 0x35bd4,
2491  		0x36140, 0x3618c,
2492  		0x361f0, 0x361f4,
2493  		0x36200, 0x36200,
2494  		0x36218, 0x36218,
2495  		0x36400, 0x36400,
2496  		0x36408, 0x3641c,
2497  		0x36618, 0x36620,
2498  		0x36664, 0x36664,
2499  		0x366a8, 0x366a8,
2500  		0x366ec, 0x366ec,
2501  		0x36a00, 0x36abc,
2502  		0x36b00, 0x36b18,
2503  		0x36b20, 0x36b38,
2504  		0x36b40, 0x36b58,
2505  		0x36b60, 0x36b78,
2506  		0x36c00, 0x36c00,
2507  		0x36c08, 0x36c3c,
2508  		0x37000, 0x3702c,
2509  		0x37034, 0x37050,
2510  		0x37058, 0x37058,
2511  		0x37060, 0x3708c,
2512  		0x3709c, 0x370ac,
2513  		0x370c0, 0x370c0,
2514  		0x370c8, 0x370d0,
2515  		0x370d8, 0x370e0,
2516  		0x370ec, 0x3712c,
2517  		0x37134, 0x37150,
2518  		0x37158, 0x37158,
2519  		0x37160, 0x3718c,
2520  		0x3719c, 0x371ac,
2521  		0x371c0, 0x371c0,
2522  		0x371c8, 0x371d0,
2523  		0x371d8, 0x371e0,
2524  		0x371ec, 0x37290,
2525  		0x37298, 0x372c4,
2526  		0x372e4, 0x37390,
2527  		0x37398, 0x373c4,
2528  		0x373e4, 0x3742c,
2529  		0x37434, 0x37450,
2530  		0x37458, 0x37458,
2531  		0x37460, 0x3748c,
2532  		0x3749c, 0x374ac,
2533  		0x374c0, 0x374c0,
2534  		0x374c8, 0x374d0,
2535  		0x374d8, 0x374e0,
2536  		0x374ec, 0x3752c,
2537  		0x37534, 0x37550,
2538  		0x37558, 0x37558,
2539  		0x37560, 0x3758c,
2540  		0x3759c, 0x375ac,
2541  		0x375c0, 0x375c0,
2542  		0x375c8, 0x375d0,
2543  		0x375d8, 0x375e0,
2544  		0x375ec, 0x37690,
2545  		0x37698, 0x376c4,
2546  		0x376e4, 0x37790,
2547  		0x37798, 0x377c4,
2548  		0x377e4, 0x377fc,
2549  		0x37814, 0x37814,
2550  		0x37854, 0x37868,
2551  		0x37880, 0x3788c,
2552  		0x378c0, 0x378d0,
2553  		0x378e8, 0x378ec,
2554  		0x37900, 0x3792c,
2555  		0x37934, 0x37950,
2556  		0x37958, 0x37958,
2557  		0x37960, 0x3798c,
2558  		0x3799c, 0x379ac,
2559  		0x379c0, 0x379c0,
2560  		0x379c8, 0x379d0,
2561  		0x379d8, 0x379e0,
2562  		0x379ec, 0x37a90,
2563  		0x37a98, 0x37ac4,
2564  		0x37ae4, 0x37b10,
2565  		0x37b24, 0x37b28,
2566  		0x37b38, 0x37b50,
2567  		0x37bf0, 0x37c10,
2568  		0x37c24, 0x37c28,
2569  		0x37c38, 0x37c50,
2570  		0x37cf0, 0x37cfc,
2571  		0x40040, 0x40040,
2572  		0x40080, 0x40084,
2573  		0x40100, 0x40100,
2574  		0x40140, 0x401bc,
2575  		0x40200, 0x40214,
2576  		0x40228, 0x40228,
2577  		0x40240, 0x40258,
2578  		0x40280, 0x40280,
2579  		0x40304, 0x40304,
2580  		0x40330, 0x4033c,
2581  		0x41304, 0x413c8,
2582  		0x413d0, 0x413dc,
2583  		0x413f0, 0x413f0,
2584  		0x41400, 0x4140c,
2585  		0x41414, 0x4141c,
2586  		0x41480, 0x414d0,
2587  		0x44000, 0x4407c,
2588  		0x440c0, 0x441ac,
2589  		0x441b4, 0x4427c,
2590  		0x442c0, 0x443ac,
2591  		0x443b4, 0x4447c,
2592  		0x444c0, 0x445ac,
2593  		0x445b4, 0x4467c,
2594  		0x446c0, 0x447ac,
2595  		0x447b4, 0x4487c,
2596  		0x448c0, 0x449ac,
2597  		0x449b4, 0x44a7c,
2598  		0x44ac0, 0x44bac,
2599  		0x44bb4, 0x44c7c,
2600  		0x44cc0, 0x44dac,
2601  		0x44db4, 0x44e7c,
2602  		0x44ec0, 0x44fac,
2603  		0x44fb4, 0x4507c,
2604  		0x450c0, 0x451ac,
2605  		0x451b4, 0x451fc,
2606  		0x45800, 0x45804,
2607  		0x45810, 0x45830,
2608  		0x45840, 0x45860,
2609  		0x45868, 0x45868,
2610  		0x45880, 0x45884,
2611  		0x458a0, 0x458b0,
2612  		0x45a00, 0x45a04,
2613  		0x45a10, 0x45a30,
2614  		0x45a40, 0x45a60,
2615  		0x45a68, 0x45a68,
2616  		0x45a80, 0x45a84,
2617  		0x45aa0, 0x45ab0,
2618  		0x460c0, 0x460e4,
2619  		0x47000, 0x4703c,
2620  		0x47044, 0x4708c,
2621  		0x47200, 0x47250,
2622  		0x47400, 0x47408,
2623  		0x47414, 0x47420,
2624  		0x47600, 0x47618,
2625  		0x47800, 0x47814,
2626  		0x47820, 0x4782c,
2627  		0x50000, 0x50084,
2628  		0x50090, 0x500cc,
2629  		0x50300, 0x50384,
2630  		0x50400, 0x50400,
2631  		0x50800, 0x50884,
2632  		0x50890, 0x508cc,
2633  		0x50b00, 0x50b84,
2634  		0x50c00, 0x50c00,
2635  		0x51000, 0x51020,
2636  		0x51028, 0x510b0,
2637  		0x51300, 0x51324,
2638  	};
2639  
2640  	u32 *buf_end = (u32 *)((char *)buf + buf_size);
2641  	const unsigned int *reg_ranges;
2642  	int reg_ranges_size, range;
2643  	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2644  
2645  	/* Select the right set of register ranges to dump depending on the
2646  	 * adapter chip type.
2647  	 */
2648  	switch (chip_version) {
2649  	case CHELSIO_T4:
2650  		reg_ranges = t4_reg_ranges;
2651  		reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2652  		break;
2653  
2654  	case CHELSIO_T5:
2655  		reg_ranges = t5_reg_ranges;
2656  		reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2657  		break;
2658  
2659  	case CHELSIO_T6:
2660  		reg_ranges = t6_reg_ranges;
2661  		reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2662  		break;
2663  
2664  	default:
2665  		dev_err(adap->pdev_dev,
2666  			"Unsupported chip version %d\n", chip_version);
2667  		return;
2668  	}
2669  
2670  	/* Clear the register buffer and insert the appropriate register
2671  	 * values selected by the above register ranges.
2672  	 */
2673  	memset(buf, 0, buf_size);
2674  	for (range = 0; range < reg_ranges_size; range += 2) {
2675  		unsigned int reg = reg_ranges[range];
2676  		unsigned int last_reg = reg_ranges[range + 1];
2677  		u32 *bufp = (u32 *)((char *)buf + reg);
2678  
2679  		/* Iterate across the register range filling in the register
2680  		 * buffer but don't write past the end of the register buffer.
2681  		 */
2682  		while (reg <= last_reg && bufp < buf_end) {
2683  			*bufp++ = t4_read_reg(adap, reg);
2684  			reg += sizeof(u32);
2685  		}
2686  	}
2687  }
2688  
2689  #define EEPROM_STAT_ADDR   0x7bfc
2690  #define VPD_BASE           0x400
2691  #define VPD_BASE_OLD       0
2692  #define VPD_LEN            1024
2693  
2694  /**
2695   * t4_eeprom_ptov - translate a physical EEPROM address to virtual
2696   * @phys_addr: the physical EEPROM address
2697   * @fn: the PCI function number
2698   * @sz: size of function-specific area
2699   *
2700   * Translate a physical EEPROM address to virtual.  The first 1K is
2701   * accessed through virtual addresses starting at 31K, the rest is
2702   * accessed through virtual addresses starting at 0.
2703   *
2704   * The mapping is as follows:
2705   * [0..1K) -> [31K..32K)
2706   * [1K..1K+A) -> [31K-A..31K)
2707   * [1K+A..ES) -> [0..ES-A-1K)
2708   *
2709   * where A = @fn * @sz, and ES = EEPROM size.
2710   */
t4_eeprom_ptov(unsigned int phys_addr,unsigned int fn,unsigned int sz)2711  int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2712  {
2713  	fn *= sz;
2714  	if (phys_addr < 1024)
2715  		return phys_addr + (31 << 10);
2716  	if (phys_addr < 1024 + fn)
2717  		return 31744 - fn + phys_addr - 1024;
2718  	if (phys_addr < EEPROMSIZE)
2719  		return phys_addr - 1024 - fn;
2720  	return -EINVAL;
2721  }
2722  
2723  /**
2724   *	t4_seeprom_wp - enable/disable EEPROM write protection
2725   *	@adapter: the adapter
2726   *	@enable: whether to enable or disable write protection
2727   *
2728   *	Enables or disables write protection on the serial EEPROM.
2729   */
t4_seeprom_wp(struct adapter * adapter,bool enable)2730  int t4_seeprom_wp(struct adapter *adapter, bool enable)
2731  {
2732  	unsigned int v = enable ? 0xc : 0;
2733  	int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2734  	return ret < 0 ? ret : 0;
2735  }
2736  
2737  /**
2738   *	t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2739   *	@adapter: adapter to read
2740   *	@p: where to store the parameters
2741   *
2742   *	Reads card parameters stored in VPD EEPROM.
2743   */
t4_get_raw_vpd_params(struct adapter * adapter,struct vpd_params * p)2744  int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2745  {
2746  	unsigned int id_len, pn_len, sn_len, na_len;
2747  	int id, sn, pn, na, addr, ret = 0;
2748  	u8 *vpd, base_val = 0;
2749  
2750  	vpd = vmalloc(VPD_LEN);
2751  	if (!vpd)
2752  		return -ENOMEM;
2753  
2754  	/* Card information normally starts at VPD_BASE but early cards had
2755  	 * it at 0.
2756  	 */
2757  	ret = pci_read_vpd(adapter->pdev, VPD_BASE, 1, &base_val);
2758  	if (ret < 0)
2759  		goto out;
2760  
2761  	addr = base_val == PCI_VPD_LRDT_ID_STRING ? VPD_BASE : VPD_BASE_OLD;
2762  
2763  	ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2764  	if (ret < 0)
2765  		goto out;
2766  
2767  	ret = pci_vpd_find_id_string(vpd, VPD_LEN, &id_len);
2768  	if (ret < 0)
2769  		goto out;
2770  	id = ret;
2771  
2772  	ret = pci_vpd_check_csum(vpd, VPD_LEN);
2773  	if (ret) {
2774  		dev_err(adapter->pdev_dev, "VPD checksum incorrect or missing\n");
2775  		ret = -EINVAL;
2776  		goto out;
2777  	}
2778  
2779  	ret = pci_vpd_find_ro_info_keyword(vpd, VPD_LEN,
2780  					   PCI_VPD_RO_KEYWORD_SERIALNO, &sn_len);
2781  	if (ret < 0)
2782  		goto out;
2783  	sn = ret;
2784  
2785  	ret = pci_vpd_find_ro_info_keyword(vpd, VPD_LEN,
2786  					   PCI_VPD_RO_KEYWORD_PARTNO, &pn_len);
2787  	if (ret < 0)
2788  		goto out;
2789  	pn = ret;
2790  
2791  	ret = pci_vpd_find_ro_info_keyword(vpd, VPD_LEN, "NA", &na_len);
2792  	if (ret < 0)
2793  		goto out;
2794  	na = ret;
2795  
2796  	memcpy(p->id, vpd + id, min_t(int, id_len, ID_LEN));
2797  	strim(p->id);
2798  	memcpy(p->sn, vpd + sn, min_t(int, sn_len, SERNUM_LEN));
2799  	strim(p->sn);
2800  	memcpy(p->pn, vpd + pn, min_t(int, pn_len, PN_LEN));
2801  	strim(p->pn);
2802  	memcpy(p->na, vpd + na, min_t(int, na_len, MACADDR_LEN));
2803  	strim((char *)p->na);
2804  
2805  out:
2806  	vfree(vpd);
2807  	if (ret < 0) {
2808  		dev_err(adapter->pdev_dev, "error reading VPD\n");
2809  		return ret;
2810  	}
2811  
2812  	return 0;
2813  }
2814  
2815  /**
2816   *	t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2817   *	@adapter: adapter to read
2818   *	@p: where to store the parameters
2819   *
2820   *	Reads card parameters stored in VPD EEPROM and retrieves the Core
2821   *	Clock.  This can only be called after a connection to the firmware
2822   *	is established.
2823   */
t4_get_vpd_params(struct adapter * adapter,struct vpd_params * p)2824  int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2825  {
2826  	u32 cclk_param, cclk_val;
2827  	int ret;
2828  
2829  	/* Grab the raw VPD parameters.
2830  	 */
2831  	ret = t4_get_raw_vpd_params(adapter, p);
2832  	if (ret)
2833  		return ret;
2834  
2835  	/* Ask firmware for the Core Clock since it knows how to translate the
2836  	 * Reference Clock ('V2') VPD field into a Core Clock value ...
2837  	 */
2838  	cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2839  		      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2840  	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2841  			      1, &cclk_param, &cclk_val);
2842  
2843  	if (ret)
2844  		return ret;
2845  	p->cclk = cclk_val;
2846  
2847  	return 0;
2848  }
2849  
2850  /**
2851   *	t4_get_pfres - retrieve VF resource limits
2852   *	@adapter: the adapter
2853   *
2854   *	Retrieves configured resource limits and capabilities for a physical
2855   *	function.  The results are stored in @adapter->pfres.
2856   */
t4_get_pfres(struct adapter * adapter)2857  int t4_get_pfres(struct adapter *adapter)
2858  {
2859  	struct pf_resources *pfres = &adapter->params.pfres;
2860  	struct fw_pfvf_cmd cmd, rpl;
2861  	int v;
2862  	u32 word;
2863  
2864  	/* Execute PFVF Read command to get VF resource limits; bail out early
2865  	 * with error on command failure.
2866  	 */
2867  	memset(&cmd, 0, sizeof(cmd));
2868  	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
2869  				    FW_CMD_REQUEST_F |
2870  				    FW_CMD_READ_F |
2871  				    FW_PFVF_CMD_PFN_V(adapter->pf) |
2872  				    FW_PFVF_CMD_VFN_V(0));
2873  	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
2874  	v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl);
2875  	if (v != FW_SUCCESS)
2876  		return v;
2877  
2878  	/* Extract PF resource limits and return success.
2879  	 */
2880  	word = be32_to_cpu(rpl.niqflint_niq);
2881  	pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
2882  	pfres->niq = FW_PFVF_CMD_NIQ_G(word);
2883  
2884  	word = be32_to_cpu(rpl.type_to_neq);
2885  	pfres->neq = FW_PFVF_CMD_NEQ_G(word);
2886  	pfres->pmask = FW_PFVF_CMD_PMASK_G(word);
2887  
2888  	word = be32_to_cpu(rpl.tc_to_nexactf);
2889  	pfres->tc = FW_PFVF_CMD_TC_G(word);
2890  	pfres->nvi = FW_PFVF_CMD_NVI_G(word);
2891  	pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
2892  
2893  	word = be32_to_cpu(rpl.r_caps_to_nethctrl);
2894  	pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
2895  	pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
2896  	pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
2897  
2898  	return 0;
2899  }
2900  
2901  /* serial flash and firmware constants */
2902  enum {
2903  	SF_ATTEMPTS = 10,             /* max retries for SF operations */
2904  
2905  	/* flash command opcodes */
2906  	SF_PROG_PAGE    = 2,          /* program page */
2907  	SF_WR_DISABLE   = 4,          /* disable writes */
2908  	SF_RD_STATUS    = 5,          /* read status register */
2909  	SF_WR_ENABLE    = 6,          /* enable writes */
2910  	SF_RD_DATA_FAST = 0xb,        /* read flash */
2911  	SF_RD_ID        = 0x9f,       /* read ID */
2912  	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2913  };
2914  
2915  /**
2916   *	sf1_read - read data from the serial flash
2917   *	@adapter: the adapter
2918   *	@byte_cnt: number of bytes to read
2919   *	@cont: whether another operation will be chained
2920   *	@lock: whether to lock SF for PL access only
2921   *	@valp: where to store the read data
2922   *
2923   *	Reads up to 4 bytes of data from the serial flash.  The location of
2924   *	the read needs to be specified prior to calling this by issuing the
2925   *	appropriate commands to the serial flash.
2926   */
sf1_read(struct adapter * adapter,unsigned int byte_cnt,int cont,int lock,u32 * valp)2927  static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2928  		    int lock, u32 *valp)
2929  {
2930  	int ret;
2931  
2932  	if (!byte_cnt || byte_cnt > 4)
2933  		return -EINVAL;
2934  	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2935  		return -EBUSY;
2936  	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2937  		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2938  	ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2939  	if (!ret)
2940  		*valp = t4_read_reg(adapter, SF_DATA_A);
2941  	return ret;
2942  }
2943  
2944  /**
2945   *	sf1_write - write data to the serial flash
2946   *	@adapter: the adapter
2947   *	@byte_cnt: number of bytes to write
2948   *	@cont: whether another operation will be chained
2949   *	@lock: whether to lock SF for PL access only
2950   *	@val: value to write
2951   *
2952   *	Writes up to 4 bytes of data to the serial flash.  The location of
2953   *	the write needs to be specified prior to calling this by issuing the
2954   *	appropriate commands to the serial flash.
2955   */
sf1_write(struct adapter * adapter,unsigned int byte_cnt,int cont,int lock,u32 val)2956  static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2957  		     int lock, u32 val)
2958  {
2959  	if (!byte_cnt || byte_cnt > 4)
2960  		return -EINVAL;
2961  	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2962  		return -EBUSY;
2963  	t4_write_reg(adapter, SF_DATA_A, val);
2964  	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2965  		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2966  	return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2967  }
2968  
2969  /**
2970   *	flash_wait_op - wait for a flash operation to complete
2971   *	@adapter: the adapter
2972   *	@attempts: max number of polls of the status register
2973   *	@delay: delay between polls in ms
2974   *
2975   *	Wait for a flash operation to complete by polling the status register.
2976   */
flash_wait_op(struct adapter * adapter,int attempts,int delay)2977  static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2978  {
2979  	int ret;
2980  	u32 status;
2981  
2982  	while (1) {
2983  		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
2984  		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
2985  			return ret;
2986  		if (!(status & 1))
2987  			return 0;
2988  		if (--attempts == 0)
2989  			return -EAGAIN;
2990  		if (delay)
2991  			msleep(delay);
2992  	}
2993  }
2994  
2995  /**
2996   *	t4_read_flash - read words from serial flash
2997   *	@adapter: the adapter
2998   *	@addr: the start address for the read
2999   *	@nwords: how many 32-bit words to read
3000   *	@data: where to store the read data
3001   *	@byte_oriented: whether to store data as bytes or as words
3002   *
3003   *	Read the specified number of 32-bit words from the serial flash.
3004   *	If @byte_oriented is set the read data is stored as a byte array
3005   *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3006   *	natural endianness.
3007   */
t4_read_flash(struct adapter * adapter,unsigned int addr,unsigned int nwords,u32 * data,int byte_oriented)3008  int t4_read_flash(struct adapter *adapter, unsigned int addr,
3009  		  unsigned int nwords, u32 *data, int byte_oriented)
3010  {
3011  	int ret;
3012  
3013  	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3014  		return -EINVAL;
3015  
3016  	addr = swab32(addr) | SF_RD_DATA_FAST;
3017  
3018  	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3019  	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3020  		return ret;
3021  
3022  	for ( ; nwords; nwords--, data++) {
3023  		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3024  		if (nwords == 1)
3025  			t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3026  		if (ret)
3027  			return ret;
3028  		if (byte_oriented)
3029  			*data = (__force __u32)(cpu_to_be32(*data));
3030  	}
3031  	return 0;
3032  }
3033  
3034  /**
3035   *	t4_write_flash - write up to a page of data to the serial flash
3036   *	@adapter: the adapter
3037   *	@addr: the start address to write
3038   *	@n: length of data to write in bytes
3039   *	@data: the data to write
3040   *	@byte_oriented: whether to store data as bytes or as words
3041   *
3042   *	Writes up to a page of data (256 bytes) to the serial flash starting
3043   *	at the given address.  All the data must be written to the same page.
3044   *	If @byte_oriented is set the write data is stored as byte stream
3045   *	(i.e. matches what on disk), otherwise in big-endian.
3046   */
t4_write_flash(struct adapter * adapter,unsigned int addr,unsigned int n,const u8 * data,bool byte_oriented)3047  static int t4_write_flash(struct adapter *adapter, unsigned int addr,
3048  			  unsigned int n, const u8 *data, bool byte_oriented)
3049  {
3050  	unsigned int i, c, left, val, offset = addr & 0xff;
3051  	u32 buf[64];
3052  	int ret;
3053  
3054  	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3055  		return -EINVAL;
3056  
3057  	val = swab32(addr) | SF_PROG_PAGE;
3058  
3059  	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3060  	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3061  		goto unlock;
3062  
3063  	for (left = n; left; left -= c, data += c) {
3064  		c = min(left, 4U);
3065  		for (val = 0, i = 0; i < c; ++i) {
3066  			if (byte_oriented)
3067  				val = (val << 8) + data[i];
3068  			else
3069  				val = (val << 8) + data[c - i - 1];
3070  		}
3071  
3072  		ret = sf1_write(adapter, c, c != left, 1, val);
3073  		if (ret)
3074  			goto unlock;
3075  	}
3076  	ret = flash_wait_op(adapter, 8, 1);
3077  	if (ret)
3078  		goto unlock;
3079  
3080  	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3081  
3082  	/* Read the page to verify the write succeeded */
3083  	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3084  			    byte_oriented);
3085  	if (ret)
3086  		return ret;
3087  
3088  	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3089  		dev_err(adapter->pdev_dev,
3090  			"failed to correctly write the flash page at %#x\n",
3091  			addr);
3092  		return -EIO;
3093  	}
3094  	return 0;
3095  
3096  unlock:
3097  	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3098  	return ret;
3099  }
3100  
3101  /**
3102   *	t4_get_fw_version - read the firmware version
3103   *	@adapter: the adapter
3104   *	@vers: where to place the version
3105   *
3106   *	Reads the FW version from flash.
3107   */
t4_get_fw_version(struct adapter * adapter,u32 * vers)3108  int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3109  {
3110  	return t4_read_flash(adapter, FLASH_FW_START +
3111  			     offsetof(struct fw_hdr, fw_ver), 1,
3112  			     vers, 0);
3113  }
3114  
3115  /**
3116   *	t4_get_bs_version - read the firmware bootstrap version
3117   *	@adapter: the adapter
3118   *	@vers: where to place the version
3119   *
3120   *	Reads the FW Bootstrap version from flash.
3121   */
t4_get_bs_version(struct adapter * adapter,u32 * vers)3122  int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3123  {
3124  	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3125  			     offsetof(struct fw_hdr, fw_ver), 1,
3126  			     vers, 0);
3127  }
3128  
3129  /**
3130   *	t4_get_tp_version - read the TP microcode version
3131   *	@adapter: the adapter
3132   *	@vers: where to place the version
3133   *
3134   *	Reads the TP microcode version from flash.
3135   */
t4_get_tp_version(struct adapter * adapter,u32 * vers)3136  int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3137  {
3138  	return t4_read_flash(adapter, FLASH_FW_START +
3139  			     offsetof(struct fw_hdr, tp_microcode_ver),
3140  			     1, vers, 0);
3141  }
3142  
3143  /**
3144   *	t4_get_exprom_version - return the Expansion ROM version (if any)
3145   *	@adap: the adapter
3146   *	@vers: where to place the version
3147   *
3148   *	Reads the Expansion ROM header from FLASH and returns the version
3149   *	number (if present) through the @vers return value pointer.  We return
3150   *	this in the Firmware Version Format since it's convenient.  Return
3151   *	0 on success, -ENOENT if no Expansion ROM is present.
3152   */
t4_get_exprom_version(struct adapter * adap,u32 * vers)3153  int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3154  {
3155  	struct exprom_header {
3156  		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3157  		unsigned char hdr_ver[4];	/* Expansion ROM version */
3158  	} *hdr;
3159  	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3160  					   sizeof(u32))];
3161  	int ret;
3162  
3163  	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3164  			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3165  			    0);
3166  	if (ret)
3167  		return ret;
3168  
3169  	hdr = (struct exprom_header *)exprom_header_buf;
3170  	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3171  		return -ENOENT;
3172  
3173  	*vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3174  		 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3175  		 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3176  		 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3177  	return 0;
3178  }
3179  
3180  /**
3181   *      t4_get_vpd_version - return the VPD version
3182   *      @adapter: the adapter
3183   *      @vers: where to place the version
3184   *
3185   *      Reads the VPD via the Firmware interface (thus this can only be called
3186   *      once we're ready to issue Firmware commands).  The format of the
3187   *      VPD version is adapter specific.  Returns 0 on success, an error on
3188   *      failure.
3189   *
3190   *      Note that early versions of the Firmware didn't include the ability
3191   *      to retrieve the VPD version, so we zero-out the return-value parameter
3192   *      in that case to avoid leaving it with garbage in it.
3193   *
3194   *      Also note that the Firmware will return its cached copy of the VPD
3195   *      Revision ID, not the actual Revision ID as written in the Serial
3196   *      EEPROM.  This is only an issue if a new VPD has been written and the
3197   *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3198   *      to defer calling this routine till after a FW_RESET_CMD has been issued
3199   *      if the Host Driver will be performing a full adapter initialization.
3200   */
t4_get_vpd_version(struct adapter * adapter,u32 * vers)3201  int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3202  {
3203  	u32 vpdrev_param;
3204  	int ret;
3205  
3206  	vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3207  			FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV));
3208  	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3209  			      1, &vpdrev_param, vers);
3210  	if (ret)
3211  		*vers = 0;
3212  	return ret;
3213  }
3214  
3215  /**
3216   *      t4_get_scfg_version - return the Serial Configuration version
3217   *      @adapter: the adapter
3218   *      @vers: where to place the version
3219   *
3220   *      Reads the Serial Configuration Version via the Firmware interface
3221   *      (thus this can only be called once we're ready to issue Firmware
3222   *      commands).  The format of the Serial Configuration version is
3223   *      adapter specific.  Returns 0 on success, an error on failure.
3224   *
3225   *      Note that early versions of the Firmware didn't include the ability
3226   *      to retrieve the Serial Configuration version, so we zero-out the
3227   *      return-value parameter in that case to avoid leaving it with
3228   *      garbage in it.
3229   *
3230   *      Also note that the Firmware will return its cached copy of the Serial
3231   *      Initialization Revision ID, not the actual Revision ID as written in
3232   *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3233   *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3234   *      it's best to defer calling this routine till after a FW_RESET_CMD has
3235   *      been issued if the Host Driver will be performing a full adapter
3236   *      initialization.
3237   */
t4_get_scfg_version(struct adapter * adapter,u32 * vers)3238  int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3239  {
3240  	u32 scfgrev_param;
3241  	int ret;
3242  
3243  	scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3244  			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV));
3245  	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3246  			      1, &scfgrev_param, vers);
3247  	if (ret)
3248  		*vers = 0;
3249  	return ret;
3250  }
3251  
3252  /**
3253   *      t4_get_version_info - extract various chip/firmware version information
3254   *      @adapter: the adapter
3255   *
3256   *      Reads various chip/firmware version numbers and stores them into the
3257   *      adapter Adapter Parameters structure.  If any of the efforts fails
3258   *      the first failure will be returned, but all of the version numbers
3259   *      will be read.
3260   */
t4_get_version_info(struct adapter * adapter)3261  int t4_get_version_info(struct adapter *adapter)
3262  {
3263  	int ret = 0;
3264  
3265  	#define FIRST_RET(__getvinfo) \
3266  	do { \
3267  		int __ret = __getvinfo; \
3268  		if (__ret && !ret) \
3269  			ret = __ret; \
3270  	} while (0)
3271  
3272  	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3273  	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3274  	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3275  	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3276  	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3277  	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3278  
3279  	#undef FIRST_RET
3280  	return ret;
3281  }
3282  
3283  /**
3284   *      t4_dump_version_info - dump all of the adapter configuration IDs
3285   *      @adapter: the adapter
3286   *
3287   *      Dumps all of the various bits of adapter configuration version/revision
3288   *      IDs information.  This is typically called at some point after
3289   *      t4_get_version_info() has been called.
3290   */
t4_dump_version_info(struct adapter * adapter)3291  void t4_dump_version_info(struct adapter *adapter)
3292  {
3293  	/* Device information */
3294  	dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
3295  		 adapter->params.vpd.id,
3296  		 CHELSIO_CHIP_RELEASE(adapter->params.chip));
3297  	dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
3298  		 adapter->params.vpd.sn, adapter->params.vpd.pn);
3299  
3300  	/* Firmware Version */
3301  	if (!adapter->params.fw_vers)
3302  		dev_warn(adapter->pdev_dev, "No firmware loaded\n");
3303  	else
3304  		dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
3305  			 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
3306  			 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
3307  			 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
3308  			 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
3309  
3310  	/* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
3311  	 * Firmware, so dev_info() is more appropriate here.)
3312  	 */
3313  	if (!adapter->params.bs_vers)
3314  		dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
3315  	else
3316  		dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
3317  			 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
3318  			 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
3319  			 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
3320  			 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
3321  
3322  	/* TP Microcode Version */
3323  	if (!adapter->params.tp_vers)
3324  		dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
3325  	else
3326  		dev_info(adapter->pdev_dev,
3327  			 "TP Microcode version: %u.%u.%u.%u\n",
3328  			 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
3329  			 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
3330  			 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
3331  			 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
3332  
3333  	/* Expansion ROM version */
3334  	if (!adapter->params.er_vers)
3335  		dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
3336  	else
3337  		dev_info(adapter->pdev_dev,
3338  			 "Expansion ROM version: %u.%u.%u.%u\n",
3339  			 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
3340  			 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
3341  			 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
3342  			 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
3343  
3344  	/* Serial Configuration version */
3345  	dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n",
3346  		 adapter->params.scfg_vers);
3347  
3348  	/* VPD Version */
3349  	dev_info(adapter->pdev_dev, "VPD version: %#x\n",
3350  		 adapter->params.vpd_vers);
3351  }
3352  
3353  /**
3354   *	t4_check_fw_version - check if the FW is supported with this driver
3355   *	@adap: the adapter
3356   *
3357   *	Checks if an adapter's FW is compatible with the driver.  Returns 0
3358   *	if there's exact match, a negative error if the version could not be
3359   *	read or there's a major version mismatch
3360   */
t4_check_fw_version(struct adapter * adap)3361  int t4_check_fw_version(struct adapter *adap)
3362  {
3363  	int i, ret, major, minor, micro;
3364  	int exp_major, exp_minor, exp_micro;
3365  	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3366  
3367  	ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3368  	/* Try multiple times before returning error */
3369  	for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3370  		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3371  
3372  	if (ret)
3373  		return ret;
3374  
3375  	major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3376  	minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3377  	micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3378  
3379  	switch (chip_version) {
3380  	case CHELSIO_T4:
3381  		exp_major = T4FW_MIN_VERSION_MAJOR;
3382  		exp_minor = T4FW_MIN_VERSION_MINOR;
3383  		exp_micro = T4FW_MIN_VERSION_MICRO;
3384  		break;
3385  	case CHELSIO_T5:
3386  		exp_major = T5FW_MIN_VERSION_MAJOR;
3387  		exp_minor = T5FW_MIN_VERSION_MINOR;
3388  		exp_micro = T5FW_MIN_VERSION_MICRO;
3389  		break;
3390  	case CHELSIO_T6:
3391  		exp_major = T6FW_MIN_VERSION_MAJOR;
3392  		exp_minor = T6FW_MIN_VERSION_MINOR;
3393  		exp_micro = T6FW_MIN_VERSION_MICRO;
3394  		break;
3395  	default:
3396  		dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3397  			adap->chip);
3398  		return -EINVAL;
3399  	}
3400  
3401  	if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3402  	    (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3403  		dev_err(adap->pdev_dev,
3404  			"Card has firmware version %u.%u.%u, minimum "
3405  			"supported firmware is %u.%u.%u.\n", major, minor,
3406  			micro, exp_major, exp_minor, exp_micro);
3407  		return -EFAULT;
3408  	}
3409  	return 0;
3410  }
3411  
3412  /* Is the given firmware API compatible with the one the driver was compiled
3413   * with?
3414   */
fw_compatible(const struct fw_hdr * hdr1,const struct fw_hdr * hdr2)3415  static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3416  {
3417  
3418  	/* short circuit if it's the exact same firmware version */
3419  	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3420  		return 1;
3421  
3422  #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3423  	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3424  	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3425  		return 1;
3426  #undef SAME_INTF
3427  
3428  	return 0;
3429  }
3430  
3431  /* The firmware in the filesystem is usable, but should it be installed?
3432   * This routine explains itself in detail if it indicates the filesystem
3433   * firmware should be installed.
3434   */
should_install_fs_fw(struct adapter * adap,int card_fw_usable,int k,int c)3435  static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3436  				int k, int c)
3437  {
3438  	const char *reason;
3439  
3440  	if (!card_fw_usable) {
3441  		reason = "incompatible or unusable";
3442  		goto install;
3443  	}
3444  
3445  	if (k > c) {
3446  		reason = "older than the version supported with this driver";
3447  		goto install;
3448  	}
3449  
3450  	return 0;
3451  
3452  install:
3453  	dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3454  		"installing firmware %u.%u.%u.%u on card.\n",
3455  		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3456  		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3457  		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3458  		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3459  
3460  	return 1;
3461  }
3462  
t4_prep_fw(struct adapter * adap,struct fw_info * fw_info,const u8 * fw_data,unsigned int fw_size,struct fw_hdr * card_fw,enum dev_state state,int * reset)3463  int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3464  	       const u8 *fw_data, unsigned int fw_size,
3465  	       struct fw_hdr *card_fw, enum dev_state state,
3466  	       int *reset)
3467  {
3468  	int ret, card_fw_usable, fs_fw_usable;
3469  	const struct fw_hdr *fs_fw;
3470  	const struct fw_hdr *drv_fw;
3471  
3472  	drv_fw = &fw_info->fw_hdr;
3473  
3474  	/* Read the header of the firmware on the card */
3475  	ret = t4_read_flash(adap, FLASH_FW_START,
3476  			    sizeof(*card_fw) / sizeof(uint32_t),
3477  			    (uint32_t *)card_fw, 1);
3478  	if (ret == 0) {
3479  		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3480  	} else {
3481  		dev_err(adap->pdev_dev,
3482  			"Unable to read card's firmware header: %d\n", ret);
3483  		card_fw_usable = 0;
3484  	}
3485  
3486  	if (fw_data != NULL) {
3487  		fs_fw = (const void *)fw_data;
3488  		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3489  	} else {
3490  		fs_fw = NULL;
3491  		fs_fw_usable = 0;
3492  	}
3493  
3494  	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3495  	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3496  		/* Common case: the firmware on the card is an exact match and
3497  		 * the filesystem one is an exact match too, or the filesystem
3498  		 * one is absent/incompatible.
3499  		 */
3500  	} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3501  		   should_install_fs_fw(adap, card_fw_usable,
3502  					be32_to_cpu(fs_fw->fw_ver),
3503  					be32_to_cpu(card_fw->fw_ver))) {
3504  		ret = t4_fw_upgrade(adap, adap->mbox, fw_data,
3505  				    fw_size, 0);
3506  		if (ret != 0) {
3507  			dev_err(adap->pdev_dev,
3508  				"failed to install firmware: %d\n", ret);
3509  			goto bye;
3510  		}
3511  
3512  		/* Installed successfully, update the cached header too. */
3513  		*card_fw = *fs_fw;
3514  		card_fw_usable = 1;
3515  		*reset = 0;	/* already reset as part of load_fw */
3516  	}
3517  
3518  	if (!card_fw_usable) {
3519  		uint32_t d, c, k;
3520  
3521  		d = be32_to_cpu(drv_fw->fw_ver);
3522  		c = be32_to_cpu(card_fw->fw_ver);
3523  		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3524  
3525  		dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3526  			"chip state %d, "
3527  			"driver compiled with %d.%d.%d.%d, "
3528  			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3529  			state,
3530  			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3531  			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3532  			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3533  			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3534  			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3535  			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3536  		ret = -EINVAL;
3537  		goto bye;
3538  	}
3539  
3540  	/* We're using whatever's on the card and it's known to be good. */
3541  	adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3542  	adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3543  
3544  bye:
3545  	return ret;
3546  }
3547  
3548  /**
3549   *	t4_flash_erase_sectors - erase a range of flash sectors
3550   *	@adapter: the adapter
3551   *	@start: the first sector to erase
3552   *	@end: the last sector to erase
3553   *
3554   *	Erases the sectors in the given inclusive range.
3555   */
t4_flash_erase_sectors(struct adapter * adapter,int start,int end)3556  static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3557  {
3558  	int ret = 0;
3559  
3560  	if (end >= adapter->params.sf_nsec)
3561  		return -EINVAL;
3562  
3563  	while (start <= end) {
3564  		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3565  		    (ret = sf1_write(adapter, 4, 0, 1,
3566  				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3567  		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3568  			dev_err(adapter->pdev_dev,
3569  				"erase of flash sector %d failed, error %d\n",
3570  				start, ret);
3571  			break;
3572  		}
3573  		start++;
3574  	}
3575  	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3576  	return ret;
3577  }
3578  
3579  /**
3580   *	t4_flash_cfg_addr - return the address of the flash configuration file
3581   *	@adapter: the adapter
3582   *
3583   *	Return the address within the flash where the Firmware Configuration
3584   *	File is stored.
3585   */
t4_flash_cfg_addr(struct adapter * adapter)3586  unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3587  {
3588  	if (adapter->params.sf_size == 0x100000)
3589  		return FLASH_FPGA_CFG_START;
3590  	else
3591  		return FLASH_CFG_START;
3592  }
3593  
3594  /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3595   * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3596   * and emit an error message for mismatched firmware to save our caller the
3597   * effort ...
3598   */
t4_fw_matches_chip(const struct adapter * adap,const struct fw_hdr * hdr)3599  static bool t4_fw_matches_chip(const struct adapter *adap,
3600  			       const struct fw_hdr *hdr)
3601  {
3602  	/* The expression below will return FALSE for any unsupported adapter
3603  	 * which will keep us "honest" in the future ...
3604  	 */
3605  	if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3606  	    (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3607  	    (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3608  		return true;
3609  
3610  	dev_err(adap->pdev_dev,
3611  		"FW image (%d) is not suitable for this adapter (%d)\n",
3612  		hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3613  	return false;
3614  }
3615  
3616  /**
3617   *	t4_load_fw - download firmware
3618   *	@adap: the adapter
3619   *	@fw_data: the firmware image to write
3620   *	@size: image size
3621   *
3622   *	Write the supplied firmware image to the card's serial flash.
3623   */
t4_load_fw(struct adapter * adap,const u8 * fw_data,unsigned int size)3624  int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3625  {
3626  	u32 csum;
3627  	int ret, addr;
3628  	unsigned int i;
3629  	u8 first_page[SF_PAGE_SIZE];
3630  	const __be32 *p = (const __be32 *)fw_data;
3631  	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3632  	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3633  	unsigned int fw_start_sec = FLASH_FW_START_SEC;
3634  	unsigned int fw_size = FLASH_FW_MAX_SIZE;
3635  	unsigned int fw_start = FLASH_FW_START;
3636  
3637  	if (!size) {
3638  		dev_err(adap->pdev_dev, "FW image has no data\n");
3639  		return -EINVAL;
3640  	}
3641  	if (size & 511) {
3642  		dev_err(adap->pdev_dev,
3643  			"FW image size not multiple of 512 bytes\n");
3644  		return -EINVAL;
3645  	}
3646  	if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3647  		dev_err(adap->pdev_dev,
3648  			"FW image size differs from size in FW header\n");
3649  		return -EINVAL;
3650  	}
3651  	if (size > fw_size) {
3652  		dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3653  			fw_size);
3654  		return -EFBIG;
3655  	}
3656  	if (!t4_fw_matches_chip(adap, hdr))
3657  		return -EINVAL;
3658  
3659  	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3660  		csum += be32_to_cpu(p[i]);
3661  
3662  	if (csum != 0xffffffff) {
3663  		dev_err(adap->pdev_dev,
3664  			"corrupted firmware image, checksum %#x\n", csum);
3665  		return -EINVAL;
3666  	}
3667  
3668  	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3669  	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3670  	if (ret)
3671  		goto out;
3672  
3673  	/*
3674  	 * We write the correct version at the end so the driver can see a bad
3675  	 * version if the FW write fails.  Start by writing a copy of the
3676  	 * first page with a bad version.
3677  	 */
3678  	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3679  	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3680  	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, true);
3681  	if (ret)
3682  		goto out;
3683  
3684  	addr = fw_start;
3685  	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3686  		addr += SF_PAGE_SIZE;
3687  		fw_data += SF_PAGE_SIZE;
3688  		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, true);
3689  		if (ret)
3690  			goto out;
3691  	}
3692  
3693  	ret = t4_write_flash(adap, fw_start + offsetof(struct fw_hdr, fw_ver),
3694  			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver,
3695  			     true);
3696  out:
3697  	if (ret)
3698  		dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3699  			ret);
3700  	else
3701  		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3702  	return ret;
3703  }
3704  
3705  /**
3706   *	t4_phy_fw_ver - return current PHY firmware version
3707   *	@adap: the adapter
3708   *	@phy_fw_ver: return value buffer for PHY firmware version
3709   *
3710   *	Returns the current version of external PHY firmware on the
3711   *	adapter.
3712   */
t4_phy_fw_ver(struct adapter * adap,int * phy_fw_ver)3713  int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3714  {
3715  	u32 param, val;
3716  	int ret;
3717  
3718  	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3719  		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3720  		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3721  		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3722  	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3723  			      &param, &val);
3724  	if (ret)
3725  		return ret;
3726  	*phy_fw_ver = val;
3727  	return 0;
3728  }
3729  
3730  /**
3731   *	t4_load_phy_fw - download port PHY firmware
3732   *	@adap: the adapter
3733   *	@win: the PCI-E Memory Window index to use for t4_memory_rw()
3734   *	@phy_fw_version: function to check PHY firmware versions
3735   *	@phy_fw_data: the PHY firmware image to write
3736   *	@phy_fw_size: image size
3737   *
3738   *	Transfer the specified PHY firmware to the adapter.  If a non-NULL
3739   *	@phy_fw_version is supplied, then it will be used to determine if
3740   *	it's necessary to perform the transfer by comparing the version
3741   *	of any existing adapter PHY firmware with that of the passed in
3742   *	PHY firmware image.
3743   *
3744   *	A negative error number will be returned if an error occurs.  If
3745   *	version number support is available and there's no need to upgrade
3746   *	the firmware, 0 will be returned.  If firmware is successfully
3747   *	transferred to the adapter, 1 will be returned.
3748   *
3749   *	NOTE: some adapters only have local RAM to store the PHY firmware.  As
3750   *	a result, a RESET of the adapter would cause that RAM to lose its
3751   *	contents.  Thus, loading PHY firmware on such adapters must happen
3752   *	after any FW_RESET_CMDs ...
3753   */
t4_load_phy_fw(struct adapter * adap,int win,int (* phy_fw_version)(const u8 *,size_t),const u8 * phy_fw_data,size_t phy_fw_size)3754  int t4_load_phy_fw(struct adapter *adap, int win,
3755  		   int (*phy_fw_version)(const u8 *, size_t),
3756  		   const u8 *phy_fw_data, size_t phy_fw_size)
3757  {
3758  	int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3759  	unsigned long mtype = 0, maddr = 0;
3760  	u32 param, val;
3761  	int ret;
3762  
3763  	/* If we have version number support, then check to see if the adapter
3764  	 * already has up-to-date PHY firmware loaded.
3765  	 */
3766  	if (phy_fw_version) {
3767  		new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3768  		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3769  		if (ret < 0)
3770  			return ret;
3771  
3772  		if (cur_phy_fw_ver >= new_phy_fw_vers) {
3773  			CH_WARN(adap, "PHY Firmware already up-to-date, "
3774  				"version %#x\n", cur_phy_fw_ver);
3775  			return 0;
3776  		}
3777  	}
3778  
3779  	/* Ask the firmware where it wants us to copy the PHY firmware image.
3780  	 * The size of the file requires a special version of the READ command
3781  	 * which will pass the file size via the values field in PARAMS_CMD and
3782  	 * retrieve the return value from firmware and place it in the same
3783  	 * buffer values
3784  	 */
3785  	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3786  		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3787  		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3788  		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3789  	val = phy_fw_size;
3790  	ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3791  				 &param, &val, 1, true);
3792  	if (ret < 0)
3793  		return ret;
3794  	mtype = val >> 8;
3795  	maddr = (val & 0xff) << 16;
3796  
3797  	/* Copy the supplied PHY Firmware image to the adapter memory location
3798  	 * allocated by the adapter firmware.
3799  	 */
3800  	spin_lock_bh(&adap->win0_lock);
3801  	ret = t4_memory_rw(adap, win, mtype, maddr,
3802  			   phy_fw_size, (__be32 *)phy_fw_data,
3803  			   T4_MEMORY_WRITE);
3804  	spin_unlock_bh(&adap->win0_lock);
3805  	if (ret)
3806  		return ret;
3807  
3808  	/* Tell the firmware that the PHY firmware image has been written to
3809  	 * RAM and it can now start copying it over to the PHYs.  The chip
3810  	 * firmware will RESET the affected PHYs as part of this operation
3811  	 * leaving them running the new PHY firmware image.
3812  	 */
3813  	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3814  		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3815  		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3816  		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3817  	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3818  				    &param, &val, 30000);
3819  
3820  	/* If we have version number support, then check to see that the new
3821  	 * firmware got loaded properly.
3822  	 */
3823  	if (phy_fw_version) {
3824  		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3825  		if (ret < 0)
3826  			return ret;
3827  
3828  		if (cur_phy_fw_ver != new_phy_fw_vers) {
3829  			CH_WARN(adap, "PHY Firmware did not update: "
3830  				"version on adapter %#x, "
3831  				"version flashed %#x\n",
3832  				cur_phy_fw_ver, new_phy_fw_vers);
3833  			return -ENXIO;
3834  		}
3835  	}
3836  
3837  	return 1;
3838  }
3839  
3840  /**
3841   *	t4_fwcache - firmware cache operation
3842   *	@adap: the adapter
3843   *	@op  : the operation (flush or flush and invalidate)
3844   */
t4_fwcache(struct adapter * adap,enum fw_params_param_dev_fwcache op)3845  int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3846  {
3847  	struct fw_params_cmd c;
3848  
3849  	memset(&c, 0, sizeof(c));
3850  	c.op_to_vfn =
3851  		cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3852  			    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3853  			    FW_PARAMS_CMD_PFN_V(adap->pf) |
3854  			    FW_PARAMS_CMD_VFN_V(0));
3855  	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3856  	c.param[0].mnem =
3857  		cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3858  			    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3859  	c.param[0].val = cpu_to_be32(op);
3860  
3861  	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3862  }
3863  
t4_cim_read_pif_la(struct adapter * adap,u32 * pif_req,u32 * pif_rsp,unsigned int * pif_req_wrptr,unsigned int * pif_rsp_wrptr)3864  void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3865  			unsigned int *pif_req_wrptr,
3866  			unsigned int *pif_rsp_wrptr)
3867  {
3868  	int i, j;
3869  	u32 cfg, val, req, rsp;
3870  
3871  	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3872  	if (cfg & LADBGEN_F)
3873  		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3874  
3875  	val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3876  	req = POLADBGWRPTR_G(val);
3877  	rsp = PILADBGWRPTR_G(val);
3878  	if (pif_req_wrptr)
3879  		*pif_req_wrptr = req;
3880  	if (pif_rsp_wrptr)
3881  		*pif_rsp_wrptr = rsp;
3882  
3883  	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3884  		for (j = 0; j < 6; j++) {
3885  			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3886  				     PILADBGRDPTR_V(rsp));
3887  			*pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3888  			*pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3889  			req++;
3890  			rsp++;
3891  		}
3892  		req = (req + 2) & POLADBGRDPTR_M;
3893  		rsp = (rsp + 2) & PILADBGRDPTR_M;
3894  	}
3895  	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3896  }
3897  
t4_cim_read_ma_la(struct adapter * adap,u32 * ma_req,u32 * ma_rsp)3898  void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3899  {
3900  	u32 cfg;
3901  	int i, j, idx;
3902  
3903  	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3904  	if (cfg & LADBGEN_F)
3905  		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3906  
3907  	for (i = 0; i < CIM_MALA_SIZE; i++) {
3908  		for (j = 0; j < 5; j++) {
3909  			idx = 8 * i + j;
3910  			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3911  				     PILADBGRDPTR_V(idx));
3912  			*ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3913  			*ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3914  		}
3915  	}
3916  	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3917  }
3918  
t4_ulprx_read_la(struct adapter * adap,u32 * la_buf)3919  void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3920  {
3921  	unsigned int i, j;
3922  
3923  	for (i = 0; i < 8; i++) {
3924  		u32 *p = la_buf + i;
3925  
3926  		t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3927  		j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3928  		t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3929  		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3930  			*p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3931  	}
3932  }
3933  
3934  /* The ADVERT_MASK is used to mask out all of the Advertised Firmware Port
3935   * Capabilities which we control with separate controls -- see, for instance,
3936   * Pause Frames and Forward Error Correction.  In order to determine what the
3937   * full set of Advertised Port Capabilities are, the base Advertised Port
3938   * Capabilities (masked by ADVERT_MASK) must be combined with the Advertised
3939   * Port Capabilities associated with those other controls.  See
3940   * t4_link_acaps() for how this is done.
3941   */
3942  #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
3943  		     FW_PORT_CAP32_ANEG)
3944  
3945  /**
3946   *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3947   *	@caps16: a 16-bit Port Capabilities value
3948   *
3949   *	Returns the equivalent 32-bit Port Capabilities value.
3950   */
fwcaps16_to_caps32(fw_port_cap16_t caps16)3951  static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
3952  {
3953  	fw_port_cap32_t caps32 = 0;
3954  
3955  	#define CAP16_TO_CAP32(__cap) \
3956  		do { \
3957  			if (caps16 & FW_PORT_CAP_##__cap) \
3958  				caps32 |= FW_PORT_CAP32_##__cap; \
3959  		} while (0)
3960  
3961  	CAP16_TO_CAP32(SPEED_100M);
3962  	CAP16_TO_CAP32(SPEED_1G);
3963  	CAP16_TO_CAP32(SPEED_25G);
3964  	CAP16_TO_CAP32(SPEED_10G);
3965  	CAP16_TO_CAP32(SPEED_40G);
3966  	CAP16_TO_CAP32(SPEED_100G);
3967  	CAP16_TO_CAP32(FC_RX);
3968  	CAP16_TO_CAP32(FC_TX);
3969  	CAP16_TO_CAP32(ANEG);
3970  	CAP16_TO_CAP32(FORCE_PAUSE);
3971  	CAP16_TO_CAP32(MDIAUTO);
3972  	CAP16_TO_CAP32(MDISTRAIGHT);
3973  	CAP16_TO_CAP32(FEC_RS);
3974  	CAP16_TO_CAP32(FEC_BASER_RS);
3975  	CAP16_TO_CAP32(802_3_PAUSE);
3976  	CAP16_TO_CAP32(802_3_ASM_DIR);
3977  
3978  	#undef CAP16_TO_CAP32
3979  
3980  	return caps32;
3981  }
3982  
3983  /**
3984   *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3985   *	@caps32: a 32-bit Port Capabilities value
3986   *
3987   *	Returns the equivalent 16-bit Port Capabilities value.  Note that
3988   *	not all 32-bit Port Capabilities can be represented in the 16-bit
3989   *	Port Capabilities and some fields/values may not make it.
3990   */
fwcaps32_to_caps16(fw_port_cap32_t caps32)3991  static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
3992  {
3993  	fw_port_cap16_t caps16 = 0;
3994  
3995  	#define CAP32_TO_CAP16(__cap) \
3996  		do { \
3997  			if (caps32 & FW_PORT_CAP32_##__cap) \
3998  				caps16 |= FW_PORT_CAP_##__cap; \
3999  		} while (0)
4000  
4001  	CAP32_TO_CAP16(SPEED_100M);
4002  	CAP32_TO_CAP16(SPEED_1G);
4003  	CAP32_TO_CAP16(SPEED_10G);
4004  	CAP32_TO_CAP16(SPEED_25G);
4005  	CAP32_TO_CAP16(SPEED_40G);
4006  	CAP32_TO_CAP16(SPEED_100G);
4007  	CAP32_TO_CAP16(FC_RX);
4008  	CAP32_TO_CAP16(FC_TX);
4009  	CAP32_TO_CAP16(802_3_PAUSE);
4010  	CAP32_TO_CAP16(802_3_ASM_DIR);
4011  	CAP32_TO_CAP16(ANEG);
4012  	CAP32_TO_CAP16(FORCE_PAUSE);
4013  	CAP32_TO_CAP16(MDIAUTO);
4014  	CAP32_TO_CAP16(MDISTRAIGHT);
4015  	CAP32_TO_CAP16(FEC_RS);
4016  	CAP32_TO_CAP16(FEC_BASER_RS);
4017  
4018  	#undef CAP32_TO_CAP16
4019  
4020  	return caps16;
4021  }
4022  
4023  /* Translate Firmware Port Capabilities Pause specification to Common Code */
fwcap_to_cc_pause(fw_port_cap32_t fw_pause)4024  static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
4025  {
4026  	enum cc_pause cc_pause = 0;
4027  
4028  	if (fw_pause & FW_PORT_CAP32_FC_RX)
4029  		cc_pause |= PAUSE_RX;
4030  	if (fw_pause & FW_PORT_CAP32_FC_TX)
4031  		cc_pause |= PAUSE_TX;
4032  
4033  	return cc_pause;
4034  }
4035  
4036  /* Translate Common Code Pause specification into Firmware Port Capabilities */
cc_to_fwcap_pause(enum cc_pause cc_pause)4037  static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
4038  {
4039  	/* Translate orthogonal RX/TX Pause Controls for L1 Configure
4040  	 * commands, etc.
4041  	 */
4042  	fw_port_cap32_t fw_pause = 0;
4043  
4044  	if (cc_pause & PAUSE_RX)
4045  		fw_pause |= FW_PORT_CAP32_FC_RX;
4046  	if (cc_pause & PAUSE_TX)
4047  		fw_pause |= FW_PORT_CAP32_FC_TX;
4048  	if (!(cc_pause & PAUSE_AUTONEG))
4049  		fw_pause |= FW_PORT_CAP32_FORCE_PAUSE;
4050  
4051  	/* Translate orthogonal Pause controls into IEEE 802.3 Pause,
4052  	 * Asymmetrical Pause for use in reporting to upper layer OS code, etc.
4053  	 * Note that these bits are ignored in L1 Configure commands.
4054  	 */
4055  	if (cc_pause & PAUSE_RX) {
4056  		if (cc_pause & PAUSE_TX)
4057  			fw_pause |= FW_PORT_CAP32_802_3_PAUSE;
4058  		else
4059  			fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR |
4060  				    FW_PORT_CAP32_802_3_PAUSE;
4061  	} else if (cc_pause & PAUSE_TX) {
4062  		fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR;
4063  	}
4064  
4065  	return fw_pause;
4066  }
4067  
4068  /* Translate Firmware Forward Error Correction specification to Common Code */
fwcap_to_cc_fec(fw_port_cap32_t fw_fec)4069  static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
4070  {
4071  	enum cc_fec cc_fec = 0;
4072  
4073  	if (fw_fec & FW_PORT_CAP32_FEC_RS)
4074  		cc_fec |= FEC_RS;
4075  	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
4076  		cc_fec |= FEC_BASER_RS;
4077  
4078  	return cc_fec;
4079  }
4080  
4081  /* Translate Common Code Forward Error Correction specification to Firmware */
cc_to_fwcap_fec(enum cc_fec cc_fec)4082  static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
4083  {
4084  	fw_port_cap32_t fw_fec = 0;
4085  
4086  	if (cc_fec & FEC_RS)
4087  		fw_fec |= FW_PORT_CAP32_FEC_RS;
4088  	if (cc_fec & FEC_BASER_RS)
4089  		fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
4090  
4091  	return fw_fec;
4092  }
4093  
4094  /**
4095   *	t4_link_acaps - compute Link Advertised Port Capabilities
4096   *	@adapter: the adapter
4097   *	@port: the Port ID
4098   *	@lc: the Port's Link Configuration
4099   *
4100   *	Synthesize the Advertised Port Capabilities we'll be using based on
4101   *	the base Advertised Port Capabilities (which have been filtered by
4102   *	ADVERT_MASK) plus the individual controls for things like Pause
4103   *	Frames, Forward Error Correction, MDI, etc.
4104   */
t4_link_acaps(struct adapter * adapter,unsigned int port,struct link_config * lc)4105  fw_port_cap32_t t4_link_acaps(struct adapter *adapter, unsigned int port,
4106  			      struct link_config *lc)
4107  {
4108  	fw_port_cap32_t fw_fc, fw_fec, acaps;
4109  	unsigned int fw_mdi;
4110  	char cc_fec;
4111  
4112  	fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps);
4113  
4114  	/* Convert driver coding of Pause Frame Flow Control settings into the
4115  	 * Firmware's API.
4116  	 */
4117  	fw_fc = cc_to_fwcap_pause(lc->requested_fc);
4118  
4119  	/* Convert Common Code Forward Error Control settings into the
4120  	 * Firmware's API.  If the current Requested FEC has "Automatic"
4121  	 * (IEEE 802.3) specified, then we use whatever the Firmware
4122  	 * sent us as part of its IEEE 802.3-based interpretation of
4123  	 * the Transceiver Module EPROM FEC parameters.  Otherwise we
4124  	 * use whatever is in the current Requested FEC settings.
4125  	 */
4126  	if (lc->requested_fec & FEC_AUTO)
4127  		cc_fec = fwcap_to_cc_fec(lc->def_acaps);
4128  	else
4129  		cc_fec = lc->requested_fec;
4130  	fw_fec = cc_to_fwcap_fec(cc_fec);
4131  
4132  	/* Figure out what our Requested Port Capabilities are going to be.
4133  	 * Note parallel structure in t4_handle_get_port_info() and
4134  	 * init_link_config().
4135  	 */
4136  	if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
4137  		acaps = lc->acaps | fw_fc | fw_fec;
4138  		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4139  		lc->fec = cc_fec;
4140  	} else if (lc->autoneg == AUTONEG_DISABLE) {
4141  		acaps = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
4142  		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4143  		lc->fec = cc_fec;
4144  	} else {
4145  		acaps = lc->acaps | fw_fc | fw_fec | fw_mdi;
4146  	}
4147  
4148  	/* Some Requested Port Capabilities are trivially wrong if they exceed
4149  	 * the Physical Port Capabilities.  We can check that here and provide
4150  	 * moderately useful feedback in the system log.
4151  	 *
4152  	 * Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so
4153  	 * we need to exclude this from this check in order to maintain
4154  	 * compatibility ...
4155  	 */
4156  	if ((acaps & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) {
4157  		dev_err(adapter->pdev_dev, "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n",
4158  			acaps, lc->pcaps);
4159  		return -EINVAL;
4160  	}
4161  
4162  	return acaps;
4163  }
4164  
4165  /**
4166   *	t4_link_l1cfg_core - apply link configuration to MAC/PHY
4167   *	@adapter: the adapter
4168   *	@mbox: the Firmware Mailbox to use
4169   *	@port: the Port ID
4170   *	@lc: the Port's Link Configuration
4171   *	@sleep_ok: if true we may sleep while awaiting command completion
4172   *	@timeout: time to wait for command to finish before timing out
4173   *		(negative implies @sleep_ok=false)
4174   *
4175   *	Set up a port's MAC and PHY according to a desired link configuration.
4176   *	- If the PHY can auto-negotiate first decide what to advertise, then
4177   *	  enable/disable auto-negotiation as desired, and reset.
4178   *	- If the PHY does not auto-negotiate just reset it.
4179   *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
4180   *	  otherwise do it later based on the outcome of auto-negotiation.
4181   */
t4_link_l1cfg_core(struct adapter * adapter,unsigned int mbox,unsigned int port,struct link_config * lc,u8 sleep_ok,int timeout)4182  int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox,
4183  		       unsigned int port, struct link_config *lc,
4184  		       u8 sleep_ok, int timeout)
4185  {
4186  	unsigned int fw_caps = adapter->params.fw_caps_support;
4187  	struct fw_port_cmd cmd;
4188  	fw_port_cap32_t rcap;
4189  	int ret;
4190  
4191  	if (!(lc->pcaps & FW_PORT_CAP32_ANEG) &&
4192  	    lc->autoneg == AUTONEG_ENABLE) {
4193  		return -EINVAL;
4194  	}
4195  
4196  	/* Compute our Requested Port Capabilities and send that on to the
4197  	 * Firmware.
4198  	 */
4199  	rcap = t4_link_acaps(adapter, port, lc);
4200  	memset(&cmd, 0, sizeof(cmd));
4201  	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4202  				       FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4203  				       FW_PORT_CMD_PORTID_V(port));
4204  	cmd.action_to_len16 =
4205  		cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4206  						 ? FW_PORT_ACTION_L1_CFG
4207  						 : FW_PORT_ACTION_L1_CFG32) |
4208  						 FW_LEN16(cmd));
4209  	if (fw_caps == FW_CAPS16)
4210  		cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4211  	else
4212  		cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4213  
4214  	ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL,
4215  				      sleep_ok, timeout);
4216  
4217  	/* Unfortunately, even if the Requested Port Capabilities "fit" within
4218  	 * the Physical Port Capabilities, some combinations of features may
4219  	 * still not be legal.  For example, 40Gb/s and Reed-Solomon Forward
4220  	 * Error Correction.  So if the Firmware rejects the L1 Configure
4221  	 * request, flag that here.
4222  	 */
4223  	if (ret) {
4224  		dev_err(adapter->pdev_dev,
4225  			"Requested Port Capabilities %#x rejected, error %d\n",
4226  			rcap, -ret);
4227  		return ret;
4228  	}
4229  	return 0;
4230  }
4231  
4232  /**
4233   *	t4_restart_aneg - restart autonegotiation
4234   *	@adap: the adapter
4235   *	@mbox: mbox to use for the FW command
4236   *	@port: the port id
4237   *
4238   *	Restarts autonegotiation for the selected port.
4239   */
t4_restart_aneg(struct adapter * adap,unsigned int mbox,unsigned int port)4240  int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4241  {
4242  	unsigned int fw_caps = adap->params.fw_caps_support;
4243  	struct fw_port_cmd c;
4244  
4245  	memset(&c, 0, sizeof(c));
4246  	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4247  				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4248  				     FW_PORT_CMD_PORTID_V(port));
4249  	c.action_to_len16 =
4250  		cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4251  						 ? FW_PORT_ACTION_L1_CFG
4252  						 : FW_PORT_ACTION_L1_CFG32) |
4253  			    FW_LEN16(c));
4254  	if (fw_caps == FW_CAPS16)
4255  		c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
4256  	else
4257  		c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG);
4258  	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4259  }
4260  
4261  typedef void (*int_handler_t)(struct adapter *adap);
4262  
4263  struct intr_info {
4264  	unsigned int mask;       /* bits to check in interrupt status */
4265  	const char *msg;         /* message to print or NULL */
4266  	short stat_idx;          /* stat counter to increment or -1 */
4267  	unsigned short fatal;    /* whether the condition reported is fatal */
4268  	int_handler_t int_handler; /* platform-specific int handler */
4269  };
4270  
4271  /**
4272   *	t4_handle_intr_status - table driven interrupt handler
4273   *	@adapter: the adapter that generated the interrupt
4274   *	@reg: the interrupt status register to process
4275   *	@acts: table of interrupt actions
4276   *
4277   *	A table driven interrupt handler that applies a set of masks to an
4278   *	interrupt status word and performs the corresponding actions if the
4279   *	interrupts described by the mask have occurred.  The actions include
4280   *	optionally emitting a warning or alert message.  The table is terminated
4281   *	by an entry specifying mask 0.  Returns the number of fatal interrupt
4282   *	conditions.
4283   */
t4_handle_intr_status(struct adapter * adapter,unsigned int reg,const struct intr_info * acts)4284  static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
4285  				 const struct intr_info *acts)
4286  {
4287  	int fatal = 0;
4288  	unsigned int mask = 0;
4289  	unsigned int status = t4_read_reg(adapter, reg);
4290  
4291  	for ( ; acts->mask; ++acts) {
4292  		if (!(status & acts->mask))
4293  			continue;
4294  		if (acts->fatal) {
4295  			fatal++;
4296  			dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4297  				  status & acts->mask);
4298  		} else if (acts->msg && printk_ratelimit())
4299  			dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4300  				 status & acts->mask);
4301  		if (acts->int_handler)
4302  			acts->int_handler(adapter);
4303  		mask |= acts->mask;
4304  	}
4305  	status &= mask;
4306  	if (status)                           /* clear processed interrupts */
4307  		t4_write_reg(adapter, reg, status);
4308  	return fatal;
4309  }
4310  
4311  /*
4312   * Interrupt handler for the PCIE module.
4313   */
pcie_intr_handler(struct adapter * adapter)4314  static void pcie_intr_handler(struct adapter *adapter)
4315  {
4316  	static const struct intr_info sysbus_intr_info[] = {
4317  		{ RNPP_F, "RXNP array parity error", -1, 1 },
4318  		{ RPCP_F, "RXPC array parity error", -1, 1 },
4319  		{ RCIP_F, "RXCIF array parity error", -1, 1 },
4320  		{ RCCP_F, "Rx completions control array parity error", -1, 1 },
4321  		{ RFTP_F, "RXFT array parity error", -1, 1 },
4322  		{ 0 }
4323  	};
4324  	static const struct intr_info pcie_port_intr_info[] = {
4325  		{ TPCP_F, "TXPC array parity error", -1, 1 },
4326  		{ TNPP_F, "TXNP array parity error", -1, 1 },
4327  		{ TFTP_F, "TXFT array parity error", -1, 1 },
4328  		{ TCAP_F, "TXCA array parity error", -1, 1 },
4329  		{ TCIP_F, "TXCIF array parity error", -1, 1 },
4330  		{ RCAP_F, "RXCA array parity error", -1, 1 },
4331  		{ OTDD_F, "outbound request TLP discarded", -1, 1 },
4332  		{ RDPE_F, "Rx data parity error", -1, 1 },
4333  		{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
4334  		{ 0 }
4335  	};
4336  	static const struct intr_info pcie_intr_info[] = {
4337  		{ MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
4338  		{ MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
4339  		{ MSIDATAPERR_F, "MSI data parity error", -1, 1 },
4340  		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4341  		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4342  		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4343  		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4344  		{ PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
4345  		{ PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
4346  		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4347  		{ CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
4348  		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4349  		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4350  		{ DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
4351  		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4352  		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4353  		{ HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
4354  		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4355  		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4356  		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4357  		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4358  		{ INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
4359  		{ MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
4360  		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4361  		{ RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
4362  		{ RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
4363  		{ RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
4364  		{ PCIESINT_F, "PCI core secondary fault", -1, 1 },
4365  		{ PCIEPINT_F, "PCI core primary fault", -1, 1 },
4366  		{ UNXSPLCPLERR_F, "PCI unexpected split completion error",
4367  		  -1, 0 },
4368  		{ 0 }
4369  	};
4370  
4371  	static struct intr_info t5_pcie_intr_info[] = {
4372  		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
4373  		  -1, 1 },
4374  		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
4375  		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
4376  		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4377  		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4378  		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4379  		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4380  		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
4381  		  -1, 1 },
4382  		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
4383  		  -1, 1 },
4384  		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4385  		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
4386  		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4387  		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4388  		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
4389  		  -1, 1 },
4390  		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4391  		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4392  		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
4393  		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4394  		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4395  		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4396  		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4397  		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
4398  		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
4399  		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4400  		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
4401  		  -1, 1 },
4402  		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
4403  		  -1, 1 },
4404  		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
4405  		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
4406  		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4407  		{ READRSPERR_F, "Outbound read error", -1, 0 },
4408  		{ 0 }
4409  	};
4410  
4411  	int fat;
4412  
4413  	if (is_t4(adapter->params.chip))
4414  		fat = t4_handle_intr_status(adapter,
4415  				PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
4416  				sysbus_intr_info) +
4417  			t4_handle_intr_status(adapter,
4418  					PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
4419  					pcie_port_intr_info) +
4420  			t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4421  					      pcie_intr_info);
4422  	else
4423  		fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4424  					    t5_pcie_intr_info);
4425  
4426  	if (fat)
4427  		t4_fatal_err(adapter);
4428  }
4429  
4430  /*
4431   * TP interrupt handler.
4432   */
tp_intr_handler(struct adapter * adapter)4433  static void tp_intr_handler(struct adapter *adapter)
4434  {
4435  	static const struct intr_info tp_intr_info[] = {
4436  		{ 0x3fffffff, "TP parity error", -1, 1 },
4437  		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
4438  		{ 0 }
4439  	};
4440  
4441  	if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
4442  		t4_fatal_err(adapter);
4443  }
4444  
4445  /*
4446   * SGE interrupt handler.
4447   */
sge_intr_handler(struct adapter * adapter)4448  static void sge_intr_handler(struct adapter *adapter)
4449  {
4450  	u32 v = 0, perr;
4451  	u32 err;
4452  
4453  	static const struct intr_info sge_intr_info[] = {
4454  		{ ERR_CPL_EXCEED_IQE_SIZE_F,
4455  		  "SGE received CPL exceeding IQE size", -1, 1 },
4456  		{ ERR_INVALID_CIDX_INC_F,
4457  		  "SGE GTS CIDX increment too large", -1, 0 },
4458  		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
4459  		{ DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
4460  		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
4461  		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
4462  		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
4463  		  0 },
4464  		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
4465  		  0 },
4466  		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
4467  		  0 },
4468  		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
4469  		  0 },
4470  		{ ERR_ING_CTXT_PRIO_F,
4471  		  "SGE too many priority ingress contexts", -1, 0 },
4472  		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
4473  		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
4474  		{ 0 }
4475  	};
4476  
4477  	static struct intr_info t4t5_sge_intr_info[] = {
4478  		{ ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
4479  		{ DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
4480  		{ ERR_EGR_CTXT_PRIO_F,
4481  		  "SGE too many priority egress contexts", -1, 0 },
4482  		{ 0 }
4483  	};
4484  
4485  	perr = t4_read_reg(adapter, SGE_INT_CAUSE1_A);
4486  	if (perr) {
4487  		v |= perr;
4488  		dev_alert(adapter->pdev_dev, "SGE Cause1 Parity Error %#x\n",
4489  			  perr);
4490  	}
4491  
4492  	perr = t4_read_reg(adapter, SGE_INT_CAUSE2_A);
4493  	if (perr) {
4494  		v |= perr;
4495  		dev_alert(adapter->pdev_dev, "SGE Cause2 Parity Error %#x\n",
4496  			  perr);
4497  	}
4498  
4499  	if (CHELSIO_CHIP_VERSION(adapter->params.chip) >= CHELSIO_T5) {
4500  		perr = t4_read_reg(adapter, SGE_INT_CAUSE5_A);
4501  		/* Parity error (CRC) for err_T_RxCRC is trivial, ignore it */
4502  		perr &= ~ERR_T_RXCRC_F;
4503  		if (perr) {
4504  			v |= perr;
4505  			dev_alert(adapter->pdev_dev,
4506  				  "SGE Cause5 Parity Error %#x\n", perr);
4507  		}
4508  	}
4509  
4510  	v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4511  	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4512  		v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4513  					   t4t5_sge_intr_info);
4514  
4515  	err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4516  	if (err & ERROR_QID_VALID_F) {
4517  		dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4518  			ERROR_QID_G(err));
4519  		if (err & UNCAPTURED_ERROR_F)
4520  			dev_err(adapter->pdev_dev,
4521  				"SGE UNCAPTURED_ERROR set (clearing)\n");
4522  		t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4523  			     UNCAPTURED_ERROR_F);
4524  	}
4525  
4526  	if (v != 0)
4527  		t4_fatal_err(adapter);
4528  }
4529  
4530  #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4531  		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4532  #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4533  		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4534  
4535  /*
4536   * CIM interrupt handler.
4537   */
cim_intr_handler(struct adapter * adapter)4538  static void cim_intr_handler(struct adapter *adapter)
4539  {
4540  	static const struct intr_info cim_intr_info[] = {
4541  		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4542  		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4543  		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4544  		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4545  		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4546  		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4547  		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4548  		{ TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
4549  		{ 0 }
4550  	};
4551  	static const struct intr_info cim_upintr_info[] = {
4552  		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4553  		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4554  		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
4555  		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
4556  		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4557  		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4558  		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4559  		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4560  		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4561  		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4562  		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4563  		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4564  		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4565  		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4566  		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4567  		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4568  		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4569  		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4570  		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4571  		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4572  		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4573  		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4574  		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4575  		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4576  		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4577  		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4578  		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4579  		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4580  		{ 0 }
4581  	};
4582  
4583  	u32 val, fw_err;
4584  	int fat;
4585  
4586  	fw_err = t4_read_reg(adapter, PCIE_FW_A);
4587  	if (fw_err & PCIE_FW_ERR_F)
4588  		t4_report_fw_error(adapter);
4589  
4590  	/* When the Firmware detects an internal error which normally
4591  	 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4592  	 * in order to make sure the Host sees the Firmware Crash.  So
4593  	 * if we have a Timer0 interrupt and don't see a Firmware Crash,
4594  	 * ignore the Timer0 interrupt.
4595  	 */
4596  
4597  	val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4598  	if (val & TIMER0INT_F)
4599  		if (!(fw_err & PCIE_FW_ERR_F) ||
4600  		    (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4601  			t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4602  				     TIMER0INT_F);
4603  
4604  	fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4605  				    cim_intr_info) +
4606  	      t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4607  				    cim_upintr_info);
4608  	if (fat)
4609  		t4_fatal_err(adapter);
4610  }
4611  
4612  /*
4613   * ULP RX interrupt handler.
4614   */
ulprx_intr_handler(struct adapter * adapter)4615  static void ulprx_intr_handler(struct adapter *adapter)
4616  {
4617  	static const struct intr_info ulprx_intr_info[] = {
4618  		{ 0x1800000, "ULPRX context error", -1, 1 },
4619  		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4620  		{ 0 }
4621  	};
4622  
4623  	if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4624  		t4_fatal_err(adapter);
4625  }
4626  
4627  /*
4628   * ULP TX interrupt handler.
4629   */
ulptx_intr_handler(struct adapter * adapter)4630  static void ulptx_intr_handler(struct adapter *adapter)
4631  {
4632  	static const struct intr_info ulptx_intr_info[] = {
4633  		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4634  		  0 },
4635  		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4636  		  0 },
4637  		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4638  		  0 },
4639  		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4640  		  0 },
4641  		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4642  		{ 0 }
4643  	};
4644  
4645  	if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4646  		t4_fatal_err(adapter);
4647  }
4648  
4649  /*
4650   * PM TX interrupt handler.
4651   */
pmtx_intr_handler(struct adapter * adapter)4652  static void pmtx_intr_handler(struct adapter *adapter)
4653  {
4654  	static const struct intr_info pmtx_intr_info[] = {
4655  		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4656  		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4657  		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4658  		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4659  		{ PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4660  		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4661  		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4662  		  -1, 1 },
4663  		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4664  		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4665  		{ 0 }
4666  	};
4667  
4668  	if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4669  		t4_fatal_err(adapter);
4670  }
4671  
4672  /*
4673   * PM RX interrupt handler.
4674   */
pmrx_intr_handler(struct adapter * adapter)4675  static void pmrx_intr_handler(struct adapter *adapter)
4676  {
4677  	static const struct intr_info pmrx_intr_info[] = {
4678  		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4679  		{ PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4680  		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4681  		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4682  		  -1, 1 },
4683  		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4684  		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4685  		{ 0 }
4686  	};
4687  
4688  	if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4689  		t4_fatal_err(adapter);
4690  }
4691  
4692  /*
4693   * CPL switch interrupt handler.
4694   */
cplsw_intr_handler(struct adapter * adapter)4695  static void cplsw_intr_handler(struct adapter *adapter)
4696  {
4697  	static const struct intr_info cplsw_intr_info[] = {
4698  		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4699  		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4700  		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4701  		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4702  		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4703  		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4704  		{ 0 }
4705  	};
4706  
4707  	if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4708  		t4_fatal_err(adapter);
4709  }
4710  
4711  /*
4712   * LE interrupt handler.
4713   */
le_intr_handler(struct adapter * adap)4714  static void le_intr_handler(struct adapter *adap)
4715  {
4716  	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4717  	static const struct intr_info le_intr_info[] = {
4718  		{ LIPMISS_F, "LE LIP miss", -1, 0 },
4719  		{ LIP0_F, "LE 0 LIP error", -1, 0 },
4720  		{ PARITYERR_F, "LE parity error", -1, 1 },
4721  		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4722  		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
4723  		{ 0 }
4724  	};
4725  
4726  	static struct intr_info t6_le_intr_info[] = {
4727  		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4728  		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4729  		{ CMDTIDERR_F, "LE cmd tid error", -1, 1 },
4730  		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
4731  		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4732  		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4733  		{ HASHTBLMEMCRCERR_F, "LE hash table mem crc error", -1, 0 },
4734  		{ 0 }
4735  	};
4736  
4737  	if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4738  				  (chip <= CHELSIO_T5) ?
4739  				  le_intr_info : t6_le_intr_info))
4740  		t4_fatal_err(adap);
4741  }
4742  
4743  /*
4744   * MPS interrupt handler.
4745   */
mps_intr_handler(struct adapter * adapter)4746  static void mps_intr_handler(struct adapter *adapter)
4747  {
4748  	static const struct intr_info mps_rx_intr_info[] = {
4749  		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4750  		{ 0 }
4751  	};
4752  	static const struct intr_info mps_tx_intr_info[] = {
4753  		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4754  		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4755  		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4756  		  -1, 1 },
4757  		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4758  		  -1, 1 },
4759  		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
4760  		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4761  		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4762  		{ 0 }
4763  	};
4764  	static const struct intr_info t6_mps_tx_intr_info[] = {
4765  		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4766  		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4767  		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4768  		  -1, 1 },
4769  		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4770  		  -1, 1 },
4771  		/* MPS Tx Bubble is normal for T6 */
4772  		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4773  		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4774  		{ 0 }
4775  	};
4776  	static const struct intr_info mps_trc_intr_info[] = {
4777  		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4778  		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4779  		  -1, 1 },
4780  		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4781  		{ 0 }
4782  	};
4783  	static const struct intr_info mps_stat_sram_intr_info[] = {
4784  		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4785  		{ 0 }
4786  	};
4787  	static const struct intr_info mps_stat_tx_intr_info[] = {
4788  		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4789  		{ 0 }
4790  	};
4791  	static const struct intr_info mps_stat_rx_intr_info[] = {
4792  		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4793  		{ 0 }
4794  	};
4795  	static const struct intr_info mps_cls_intr_info[] = {
4796  		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4797  		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4798  		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4799  		{ 0 }
4800  	};
4801  
4802  	int fat;
4803  
4804  	fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4805  				    mps_rx_intr_info) +
4806  	      t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4807  				    is_t6(adapter->params.chip)
4808  				    ? t6_mps_tx_intr_info
4809  				    : mps_tx_intr_info) +
4810  	      t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4811  				    mps_trc_intr_info) +
4812  	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4813  				    mps_stat_sram_intr_info) +
4814  	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4815  				    mps_stat_tx_intr_info) +
4816  	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4817  				    mps_stat_rx_intr_info) +
4818  	      t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4819  				    mps_cls_intr_info);
4820  
4821  	t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4822  	t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4823  	if (fat)
4824  		t4_fatal_err(adapter);
4825  }
4826  
4827  #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4828  		      ECC_UE_INT_CAUSE_F)
4829  
4830  /*
4831   * EDC/MC interrupt handler.
4832   */
mem_intr_handler(struct adapter * adapter,int idx)4833  static void mem_intr_handler(struct adapter *adapter, int idx)
4834  {
4835  	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4836  
4837  	unsigned int addr, cnt_addr, v;
4838  
4839  	if (idx <= MEM_EDC1) {
4840  		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4841  		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4842  	} else if (idx == MEM_MC) {
4843  		if (is_t4(adapter->params.chip)) {
4844  			addr = MC_INT_CAUSE_A;
4845  			cnt_addr = MC_ECC_STATUS_A;
4846  		} else {
4847  			addr = MC_P_INT_CAUSE_A;
4848  			cnt_addr = MC_P_ECC_STATUS_A;
4849  		}
4850  	} else {
4851  		addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4852  		cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4853  	}
4854  
4855  	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4856  	if (v & PERR_INT_CAUSE_F)
4857  		dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4858  			  name[idx]);
4859  	if (v & ECC_CE_INT_CAUSE_F) {
4860  		u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4861  
4862  		t4_edc_err_read(adapter, idx);
4863  
4864  		t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4865  		if (printk_ratelimit())
4866  			dev_warn(adapter->pdev_dev,
4867  				 "%u %s correctable ECC data error%s\n",
4868  				 cnt, name[idx], cnt > 1 ? "s" : "");
4869  	}
4870  	if (v & ECC_UE_INT_CAUSE_F)
4871  		dev_alert(adapter->pdev_dev,
4872  			  "%s uncorrectable ECC data error\n", name[idx]);
4873  
4874  	t4_write_reg(adapter, addr, v);
4875  	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4876  		t4_fatal_err(adapter);
4877  }
4878  
4879  /*
4880   * MA interrupt handler.
4881   */
ma_intr_handler(struct adapter * adap)4882  static void ma_intr_handler(struct adapter *adap)
4883  {
4884  	u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4885  
4886  	if (status & MEM_PERR_INT_CAUSE_F) {
4887  		dev_alert(adap->pdev_dev,
4888  			  "MA parity error, parity status %#x\n",
4889  			  t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4890  		if (is_t5(adap->params.chip))
4891  			dev_alert(adap->pdev_dev,
4892  				  "MA parity error, parity status %#x\n",
4893  				  t4_read_reg(adap,
4894  					      MA_PARITY_ERROR_STATUS2_A));
4895  	}
4896  	if (status & MEM_WRAP_INT_CAUSE_F) {
4897  		v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4898  		dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4899  			  "client %u to address %#x\n",
4900  			  MEM_WRAP_CLIENT_NUM_G(v),
4901  			  MEM_WRAP_ADDRESS_G(v) << 4);
4902  	}
4903  	t4_write_reg(adap, MA_INT_CAUSE_A, status);
4904  	t4_fatal_err(adap);
4905  }
4906  
4907  /*
4908   * SMB interrupt handler.
4909   */
smb_intr_handler(struct adapter * adap)4910  static void smb_intr_handler(struct adapter *adap)
4911  {
4912  	static const struct intr_info smb_intr_info[] = {
4913  		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4914  		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4915  		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4916  		{ 0 }
4917  	};
4918  
4919  	if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4920  		t4_fatal_err(adap);
4921  }
4922  
4923  /*
4924   * NC-SI interrupt handler.
4925   */
ncsi_intr_handler(struct adapter * adap)4926  static void ncsi_intr_handler(struct adapter *adap)
4927  {
4928  	static const struct intr_info ncsi_intr_info[] = {
4929  		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4930  		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4931  		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4932  		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4933  		{ 0 }
4934  	};
4935  
4936  	if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4937  		t4_fatal_err(adap);
4938  }
4939  
4940  /*
4941   * XGMAC interrupt handler.
4942   */
xgmac_intr_handler(struct adapter * adap,int port)4943  static void xgmac_intr_handler(struct adapter *adap, int port)
4944  {
4945  	u32 v, int_cause_reg;
4946  
4947  	if (is_t4(adap->params.chip))
4948  		int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4949  	else
4950  		int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4951  
4952  	v = t4_read_reg(adap, int_cause_reg);
4953  
4954  	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4955  	if (!v)
4956  		return;
4957  
4958  	if (v & TXFIFO_PRTY_ERR_F)
4959  		dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4960  			  port);
4961  	if (v & RXFIFO_PRTY_ERR_F)
4962  		dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4963  			  port);
4964  	t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4965  	t4_fatal_err(adap);
4966  }
4967  
4968  /*
4969   * PL interrupt handler.
4970   */
pl_intr_handler(struct adapter * adap)4971  static void pl_intr_handler(struct adapter *adap)
4972  {
4973  	static const struct intr_info pl_intr_info[] = {
4974  		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
4975  		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4976  		{ 0 }
4977  	};
4978  
4979  	if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4980  		t4_fatal_err(adap);
4981  }
4982  
4983  #define PF_INTR_MASK (PFSW_F)
4984  #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4985  		EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4986  		CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
4987  
4988  /**
4989   *	t4_slow_intr_handler - control path interrupt handler
4990   *	@adapter: the adapter
4991   *
4992   *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4993   *	The designation 'slow' is because it involves register reads, while
4994   *	data interrupts typically don't involve any MMIOs.
4995   */
t4_slow_intr_handler(struct adapter * adapter)4996  int t4_slow_intr_handler(struct adapter *adapter)
4997  {
4998  	/* There are rare cases where a PL_INT_CAUSE bit may end up getting
4999  	 * set when the corresponding PL_INT_ENABLE bit isn't set.  It's
5000  	 * easiest just to mask that case here.
5001  	 */
5002  	u32 raw_cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
5003  	u32 enable = t4_read_reg(adapter, PL_INT_ENABLE_A);
5004  	u32 cause = raw_cause & enable;
5005  
5006  	if (!(cause & GLBL_INTR_MASK))
5007  		return 0;
5008  	if (cause & CIM_F)
5009  		cim_intr_handler(adapter);
5010  	if (cause & MPS_F)
5011  		mps_intr_handler(adapter);
5012  	if (cause & NCSI_F)
5013  		ncsi_intr_handler(adapter);
5014  	if (cause & PL_F)
5015  		pl_intr_handler(adapter);
5016  	if (cause & SMB_F)
5017  		smb_intr_handler(adapter);
5018  	if (cause & XGMAC0_F)
5019  		xgmac_intr_handler(adapter, 0);
5020  	if (cause & XGMAC1_F)
5021  		xgmac_intr_handler(adapter, 1);
5022  	if (cause & XGMAC_KR0_F)
5023  		xgmac_intr_handler(adapter, 2);
5024  	if (cause & XGMAC_KR1_F)
5025  		xgmac_intr_handler(adapter, 3);
5026  	if (cause & PCIE_F)
5027  		pcie_intr_handler(adapter);
5028  	if (cause & MC_F)
5029  		mem_intr_handler(adapter, MEM_MC);
5030  	if (is_t5(adapter->params.chip) && (cause & MC1_F))
5031  		mem_intr_handler(adapter, MEM_MC1);
5032  	if (cause & EDC0_F)
5033  		mem_intr_handler(adapter, MEM_EDC0);
5034  	if (cause & EDC1_F)
5035  		mem_intr_handler(adapter, MEM_EDC1);
5036  	if (cause & LE_F)
5037  		le_intr_handler(adapter);
5038  	if (cause & TP_F)
5039  		tp_intr_handler(adapter);
5040  	if (cause & MA_F)
5041  		ma_intr_handler(adapter);
5042  	if (cause & PM_TX_F)
5043  		pmtx_intr_handler(adapter);
5044  	if (cause & PM_RX_F)
5045  		pmrx_intr_handler(adapter);
5046  	if (cause & ULP_RX_F)
5047  		ulprx_intr_handler(adapter);
5048  	if (cause & CPL_SWITCH_F)
5049  		cplsw_intr_handler(adapter);
5050  	if (cause & SGE_F)
5051  		sge_intr_handler(adapter);
5052  	if (cause & ULP_TX_F)
5053  		ulptx_intr_handler(adapter);
5054  
5055  	/* Clear the interrupts just processed for which we are the master. */
5056  	t4_write_reg(adapter, PL_INT_CAUSE_A, raw_cause & GLBL_INTR_MASK);
5057  	(void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
5058  	return 1;
5059  }
5060  
5061  /**
5062   *	t4_intr_enable - enable interrupts
5063   *	@adapter: the adapter whose interrupts should be enabled
5064   *
5065   *	Enable PF-specific interrupts for the calling function and the top-level
5066   *	interrupt concentrator for global interrupts.  Interrupts are already
5067   *	enabled at each module,	here we just enable the roots of the interrupt
5068   *	hierarchies.
5069   *
5070   *	Note: this function should be called only when the driver manages
5071   *	non PF-specific interrupts from the various HW modules.  Only one PCI
5072   *	function at a time should be doing this.
5073   */
t4_intr_enable(struct adapter * adapter)5074  void t4_intr_enable(struct adapter *adapter)
5075  {
5076  	u32 val = 0;
5077  	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5078  	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5079  			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5080  
5081  	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
5082  		val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
5083  	t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
5084  		     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
5085  		     ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
5086  		     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
5087  		     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
5088  		     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
5089  		     DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
5090  	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
5091  	t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
5092  }
5093  
5094  /**
5095   *	t4_intr_disable - disable interrupts
5096   *	@adapter: the adapter whose interrupts should be disabled
5097   *
5098   *	Disable interrupts.  We only disable the top-level interrupt
5099   *	concentrators.  The caller must be a PCI function managing global
5100   *	interrupts.
5101   */
t4_intr_disable(struct adapter * adapter)5102  void t4_intr_disable(struct adapter *adapter)
5103  {
5104  	u32 whoami, pf;
5105  
5106  	if (pci_channel_offline(adapter->pdev))
5107  		return;
5108  
5109  	whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5110  	pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5111  			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5112  
5113  	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
5114  	t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
5115  }
5116  
t4_chip_rss_size(struct adapter * adap)5117  unsigned int t4_chip_rss_size(struct adapter *adap)
5118  {
5119  	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
5120  		return RSS_NENTRIES;
5121  	else
5122  		return T6_RSS_NENTRIES;
5123  }
5124  
5125  /**
5126   *	t4_config_rss_range - configure a portion of the RSS mapping table
5127   *	@adapter: the adapter
5128   *	@mbox: mbox to use for the FW command
5129   *	@viid: virtual interface whose RSS subtable is to be written
5130   *	@start: start entry in the table to write
5131   *	@n: how many table entries to write
5132   *	@rspq: values for the response queue lookup table
5133   *	@nrspq: number of values in @rspq
5134   *
5135   *	Programs the selected part of the VI's RSS mapping table with the
5136   *	provided values.  If @nrspq < @n the supplied values are used repeatedly
5137   *	until the full table range is populated.
5138   *
5139   *	The caller must ensure the values in @rspq are in the range allowed for
5140   *	@viid.
5141   */
t4_config_rss_range(struct adapter * adapter,int mbox,unsigned int viid,int start,int n,const u16 * rspq,unsigned int nrspq)5142  int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5143  			int start, int n, const u16 *rspq, unsigned int nrspq)
5144  {
5145  	int ret;
5146  	const u16 *rsp = rspq;
5147  	const u16 *rsp_end = rspq + nrspq;
5148  	struct fw_rss_ind_tbl_cmd cmd;
5149  
5150  	memset(&cmd, 0, sizeof(cmd));
5151  	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
5152  			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5153  			       FW_RSS_IND_TBL_CMD_VIID_V(viid));
5154  	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5155  
5156  	/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
5157  	while (n > 0) {
5158  		int nq = min(n, 32);
5159  		__be32 *qp = &cmd.iq0_to_iq2;
5160  
5161  		cmd.niqid = cpu_to_be16(nq);
5162  		cmd.startidx = cpu_to_be16(start);
5163  
5164  		start += nq;
5165  		n -= nq;
5166  
5167  		while (nq > 0) {
5168  			unsigned int v;
5169  
5170  			v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
5171  			if (++rsp >= rsp_end)
5172  				rsp = rspq;
5173  			v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
5174  			if (++rsp >= rsp_end)
5175  				rsp = rspq;
5176  			v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
5177  			if (++rsp >= rsp_end)
5178  				rsp = rspq;
5179  
5180  			*qp++ = cpu_to_be32(v);
5181  			nq -= 3;
5182  		}
5183  
5184  		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5185  		if (ret)
5186  			return ret;
5187  	}
5188  	return 0;
5189  }
5190  
5191  /**
5192   *	t4_config_glbl_rss - configure the global RSS mode
5193   *	@adapter: the adapter
5194   *	@mbox: mbox to use for the FW command
5195   *	@mode: global RSS mode
5196   *	@flags: mode-specific flags
5197   *
5198   *	Sets the global RSS mode.
5199   */
t4_config_glbl_rss(struct adapter * adapter,int mbox,unsigned int mode,unsigned int flags)5200  int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5201  		       unsigned int flags)
5202  {
5203  	struct fw_rss_glb_config_cmd c;
5204  
5205  	memset(&c, 0, sizeof(c));
5206  	c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
5207  				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
5208  	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5209  	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5210  		c.u.manual.mode_pkd =
5211  			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5212  	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5213  		c.u.basicvirtual.mode_pkd =
5214  			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5215  		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5216  	} else
5217  		return -EINVAL;
5218  	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5219  }
5220  
5221  /**
5222   *	t4_config_vi_rss - configure per VI RSS settings
5223   *	@adapter: the adapter
5224   *	@mbox: mbox to use for the FW command
5225   *	@viid: the VI id
5226   *	@flags: RSS flags
5227   *	@defq: id of the default RSS queue for the VI.
5228   *
5229   *	Configures VI-specific RSS properties.
5230   */
t4_config_vi_rss(struct adapter * adapter,int mbox,unsigned int viid,unsigned int flags,unsigned int defq)5231  int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5232  		     unsigned int flags, unsigned int defq)
5233  {
5234  	struct fw_rss_vi_config_cmd c;
5235  
5236  	memset(&c, 0, sizeof(c));
5237  	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
5238  				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5239  				   FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
5240  	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5241  	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5242  					FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
5243  	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5244  }
5245  
5246  /* Read an RSS table row */
rd_rss_row(struct adapter * adap,int row,u32 * val)5247  static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5248  {
5249  	t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
5250  	return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
5251  				   5, 0, val);
5252  }
5253  
5254  /**
5255   *	t4_read_rss - read the contents of the RSS mapping table
5256   *	@adapter: the adapter
5257   *	@map: holds the contents of the RSS mapping table
5258   *
5259   *	Reads the contents of the RSS hash->queue mapping table.
5260   */
t4_read_rss(struct adapter * adapter,u16 * map)5261  int t4_read_rss(struct adapter *adapter, u16 *map)
5262  {
5263  	int i, ret, nentries;
5264  	u32 val;
5265  
5266  	nentries = t4_chip_rss_size(adapter);
5267  	for (i = 0; i < nentries / 2; ++i) {
5268  		ret = rd_rss_row(adapter, i, &val);
5269  		if (ret)
5270  			return ret;
5271  		*map++ = LKPTBLQUEUE0_G(val);
5272  		*map++ = LKPTBLQUEUE1_G(val);
5273  	}
5274  	return 0;
5275  }
5276  
t4_use_ldst(struct adapter * adap)5277  static unsigned int t4_use_ldst(struct adapter *adap)
5278  {
5279  	return (adap->flags & CXGB4_FW_OK) && !adap->use_bd;
5280  }
5281  
5282  /**
5283   * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5284   * @adap: the adapter
5285   * @cmd: TP fw ldst address space type
5286   * @vals: where the indirect register values are stored/written
5287   * @nregs: how many indirect registers to read/write
5288   * @start_index: index of first indirect register to read/write
5289   * @rw: Read (1) or Write (0)
5290   * @sleep_ok: if true we may sleep while awaiting command completion
5291   *
5292   * Access TP indirect registers through LDST
5293   */
t4_tp_fw_ldst_rw(struct adapter * adap,int cmd,u32 * vals,unsigned int nregs,unsigned int start_index,unsigned int rw,bool sleep_ok)5294  static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5295  			    unsigned int nregs, unsigned int start_index,
5296  			    unsigned int rw, bool sleep_ok)
5297  {
5298  	int ret = 0;
5299  	unsigned int i;
5300  	struct fw_ldst_cmd c;
5301  
5302  	for (i = 0; i < nregs; i++) {
5303  		memset(&c, 0, sizeof(c));
5304  		c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5305  						FW_CMD_REQUEST_F |
5306  						(rw ? FW_CMD_READ_F :
5307  						      FW_CMD_WRITE_F) |
5308  						FW_LDST_CMD_ADDRSPACE_V(cmd));
5309  		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5310  
5311  		c.u.addrval.addr = cpu_to_be32(start_index + i);
5312  		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5313  		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5314  				      sleep_ok);
5315  		if (ret)
5316  			return ret;
5317  
5318  		if (rw)
5319  			vals[i] = be32_to_cpu(c.u.addrval.val);
5320  	}
5321  	return 0;
5322  }
5323  
5324  /**
5325   * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5326   * @adap: the adapter
5327   * @reg_addr: Address Register
5328   * @reg_data: Data register
5329   * @buff: where the indirect register values are stored/written
5330   * @nregs: how many indirect registers to read/write
5331   * @start_index: index of first indirect register to read/write
5332   * @rw: READ(1) or WRITE(0)
5333   * @sleep_ok: if true we may sleep while awaiting command completion
5334   *
5335   * Read/Write TP indirect registers through LDST if possible.
5336   * Else, use backdoor access
5337   **/
t4_tp_indirect_rw(struct adapter * adap,u32 reg_addr,u32 reg_data,u32 * buff,u32 nregs,u32 start_index,int rw,bool sleep_ok)5338  static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5339  			      u32 *buff, u32 nregs, u32 start_index, int rw,
5340  			      bool sleep_ok)
5341  {
5342  	int rc = -EINVAL;
5343  	int cmd;
5344  
5345  	switch (reg_addr) {
5346  	case TP_PIO_ADDR_A:
5347  		cmd = FW_LDST_ADDRSPC_TP_PIO;
5348  		break;
5349  	case TP_TM_PIO_ADDR_A:
5350  		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5351  		break;
5352  	case TP_MIB_INDEX_A:
5353  		cmd = FW_LDST_ADDRSPC_TP_MIB;
5354  		break;
5355  	default:
5356  		goto indirect_access;
5357  	}
5358  
5359  	if (t4_use_ldst(adap))
5360  		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5361  				      sleep_ok);
5362  
5363  indirect_access:
5364  
5365  	if (rc) {
5366  		if (rw)
5367  			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5368  					 start_index);
5369  		else
5370  			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5371  					  start_index);
5372  	}
5373  }
5374  
5375  /**
5376   * t4_tp_pio_read - Read TP PIO registers
5377   * @adap: the adapter
5378   * @buff: where the indirect register values are written
5379   * @nregs: how many indirect registers to read
5380   * @start_index: index of first indirect register to read
5381   * @sleep_ok: if true we may sleep while awaiting command completion
5382   *
5383   * Read TP PIO Registers
5384   **/
t4_tp_pio_read(struct adapter * adap,u32 * buff,u32 nregs,u32 start_index,bool sleep_ok)5385  void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5386  		    u32 start_index, bool sleep_ok)
5387  {
5388  	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5389  			  start_index, 1, sleep_ok);
5390  }
5391  
5392  /**
5393   * t4_tp_pio_write - Write TP PIO registers
5394   * @adap: the adapter
5395   * @buff: where the indirect register values are stored
5396   * @nregs: how many indirect registers to write
5397   * @start_index: index of first indirect register to write
5398   * @sleep_ok: if true we may sleep while awaiting command completion
5399   *
5400   * Write TP PIO Registers
5401   **/
t4_tp_pio_write(struct adapter * adap,u32 * buff,u32 nregs,u32 start_index,bool sleep_ok)5402  static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs,
5403  			    u32 start_index, bool sleep_ok)
5404  {
5405  	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5406  			  start_index, 0, sleep_ok);
5407  }
5408  
5409  /**
5410   * t4_tp_tm_pio_read - Read TP TM PIO registers
5411   * @adap: the adapter
5412   * @buff: where the indirect register values are written
5413   * @nregs: how many indirect registers to read
5414   * @start_index: index of first indirect register to read
5415   * @sleep_ok: if true we may sleep while awaiting command completion
5416   *
5417   * Read TP TM PIO Registers
5418   **/
t4_tp_tm_pio_read(struct adapter * adap,u32 * buff,u32 nregs,u32 start_index,bool sleep_ok)5419  void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5420  		       u32 start_index, bool sleep_ok)
5421  {
5422  	t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff,
5423  			  nregs, start_index, 1, sleep_ok);
5424  }
5425  
5426  /**
5427   * t4_tp_mib_read - Read TP MIB registers
5428   * @adap: the adapter
5429   * @buff: where the indirect register values are written
5430   * @nregs: how many indirect registers to read
5431   * @start_index: index of first indirect register to read
5432   * @sleep_ok: if true we may sleep while awaiting command completion
5433   *
5434   * Read TP MIB Registers
5435   **/
t4_tp_mib_read(struct adapter * adap,u32 * buff,u32 nregs,u32 start_index,bool sleep_ok)5436  void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5437  		    bool sleep_ok)
5438  {
5439  	t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs,
5440  			  start_index, 1, sleep_ok);
5441  }
5442  
5443  /**
5444   *	t4_read_rss_key - read the global RSS key
5445   *	@adap: the adapter
5446   *	@key: 10-entry array holding the 320-bit RSS key
5447   *      @sleep_ok: if true we may sleep while awaiting command completion
5448   *
5449   *	Reads the global 320-bit RSS key.
5450   */
t4_read_rss_key(struct adapter * adap,u32 * key,bool sleep_ok)5451  void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5452  {
5453  	t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5454  }
5455  
5456  /**
5457   *	t4_write_rss_key - program one of the RSS keys
5458   *	@adap: the adapter
5459   *	@key: 10-entry array holding the 320-bit RSS key
5460   *	@idx: which RSS key to write
5461   *      @sleep_ok: if true we may sleep while awaiting command completion
5462   *
5463   *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5464   *	0..15 the corresponding entry in the RSS key table is written,
5465   *	otherwise the global RSS key is written.
5466   */
t4_write_rss_key(struct adapter * adap,const u32 * key,int idx,bool sleep_ok)5467  void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5468  		      bool sleep_ok)
5469  {
5470  	u8 rss_key_addr_cnt = 16;
5471  	u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
5472  
5473  	/* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5474  	 * allows access to key addresses 16-63 by using KeyWrAddrX
5475  	 * as index[5:4](upper 2) into key table
5476  	 */
5477  	if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
5478  	    (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
5479  		rss_key_addr_cnt = 32;
5480  
5481  	t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5482  
5483  	if (idx >= 0 && idx < rss_key_addr_cnt) {
5484  		if (rss_key_addr_cnt > 16)
5485  			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5486  				     KEYWRADDRX_V(idx >> 4) |
5487  				     T6_VFWRADDR_V(idx) | KEYWREN_F);
5488  		else
5489  			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5490  				     KEYWRADDR_V(idx) | KEYWREN_F);
5491  	}
5492  }
5493  
5494  /**
5495   *	t4_read_rss_pf_config - read PF RSS Configuration Table
5496   *	@adapter: the adapter
5497   *	@index: the entry in the PF RSS table to read
5498   *	@valp: where to store the returned value
5499   *      @sleep_ok: if true we may sleep while awaiting command completion
5500   *
5501   *	Reads the PF RSS Configuration Table at the specified index and returns
5502   *	the value found there.
5503   */
t4_read_rss_pf_config(struct adapter * adapter,unsigned int index,u32 * valp,bool sleep_ok)5504  void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5505  			   u32 *valp, bool sleep_ok)
5506  {
5507  	t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok);
5508  }
5509  
5510  /**
5511   *	t4_read_rss_vf_config - read VF RSS Configuration Table
5512   *	@adapter: the adapter
5513   *	@index: the entry in the VF RSS table to read
5514   *	@vfl: where to store the returned VFL
5515   *	@vfh: where to store the returned VFH
5516   *      @sleep_ok: if true we may sleep while awaiting command completion
5517   *
5518   *	Reads the VF RSS Configuration Table at the specified index and returns
5519   *	the (VFL, VFH) values found there.
5520   */
t4_read_rss_vf_config(struct adapter * adapter,unsigned int index,u32 * vfl,u32 * vfh,bool sleep_ok)5521  void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5522  			   u32 *vfl, u32 *vfh, bool sleep_ok)
5523  {
5524  	u32 vrt, mask, data;
5525  
5526  	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
5527  		mask = VFWRADDR_V(VFWRADDR_M);
5528  		data = VFWRADDR_V(index);
5529  	} else {
5530  		 mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
5531  		 data = T6_VFWRADDR_V(index);
5532  	}
5533  
5534  	/* Request that the index'th VF Table values be read into VFL/VFH.
5535  	 */
5536  	vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
5537  	vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
5538  	vrt |= data | VFRDEN_F;
5539  	t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
5540  
5541  	/* Grab the VFL/VFH values ...
5542  	 */
5543  	t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok);
5544  	t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok);
5545  }
5546  
5547  /**
5548   *	t4_read_rss_pf_map - read PF RSS Map
5549   *	@adapter: the adapter
5550   *      @sleep_ok: if true we may sleep while awaiting command completion
5551   *
5552   *	Reads the PF RSS Map register and returns its value.
5553   */
t4_read_rss_pf_map(struct adapter * adapter,bool sleep_ok)5554  u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5555  {
5556  	u32 pfmap;
5557  
5558  	t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok);
5559  	return pfmap;
5560  }
5561  
5562  /**
5563   *	t4_read_rss_pf_mask - read PF RSS Mask
5564   *	@adapter: the adapter
5565   *      @sleep_ok: if true we may sleep while awaiting command completion
5566   *
5567   *	Reads the PF RSS Mask register and returns its value.
5568   */
t4_read_rss_pf_mask(struct adapter * adapter,bool sleep_ok)5569  u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5570  {
5571  	u32 pfmask;
5572  
5573  	t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok);
5574  	return pfmask;
5575  }
5576  
5577  /**
5578   *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5579   *	@adap: the adapter
5580   *	@v4: holds the TCP/IP counter values
5581   *	@v6: holds the TCP/IPv6 counter values
5582   *      @sleep_ok: if true we may sleep while awaiting command completion
5583   *
5584   *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5585   *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5586   */
t4_tp_get_tcp_stats(struct adapter * adap,struct tp_tcp_stats * v4,struct tp_tcp_stats * v6,bool sleep_ok)5587  void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5588  			 struct tp_tcp_stats *v6, bool sleep_ok)
5589  {
5590  	u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
5591  
5592  #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
5593  #define STAT(x)     val[STAT_IDX(x)]
5594  #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5595  
5596  	if (v4) {
5597  		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5598  			       TP_MIB_TCP_OUT_RST_A, sleep_ok);
5599  		v4->tcp_out_rsts = STAT(OUT_RST);
5600  		v4->tcp_in_segs  = STAT64(IN_SEG);
5601  		v4->tcp_out_segs = STAT64(OUT_SEG);
5602  		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5603  	}
5604  	if (v6) {
5605  		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5606  			       TP_MIB_TCP_V6OUT_RST_A, sleep_ok);
5607  		v6->tcp_out_rsts = STAT(OUT_RST);
5608  		v6->tcp_in_segs  = STAT64(IN_SEG);
5609  		v6->tcp_out_segs = STAT64(OUT_SEG);
5610  		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5611  	}
5612  #undef STAT64
5613  #undef STAT
5614  #undef STAT_IDX
5615  }
5616  
5617  /**
5618   *	t4_tp_get_err_stats - read TP's error MIB counters
5619   *	@adap: the adapter
5620   *	@st: holds the counter values
5621   *      @sleep_ok: if true we may sleep while awaiting command completion
5622   *
5623   *	Returns the values of TP's error counters.
5624   */
t4_tp_get_err_stats(struct adapter * adap,struct tp_err_stats * st,bool sleep_ok)5625  void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5626  			 bool sleep_ok)
5627  {
5628  	int nchan = adap->params.arch.nchan;
5629  
5630  	t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A,
5631  		       sleep_ok);
5632  	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A,
5633  		       sleep_ok);
5634  	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A,
5635  		       sleep_ok);
5636  	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5637  		       TP_MIB_TNL_CNG_DROP_0_A, sleep_ok);
5638  	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5639  		       TP_MIB_OFD_CHN_DROP_0_A, sleep_ok);
5640  	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A,
5641  		       sleep_ok);
5642  	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5643  		       TP_MIB_OFD_VLN_DROP_0_A, sleep_ok);
5644  	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5645  		       TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok);
5646  	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A,
5647  		       sleep_ok);
5648  }
5649  
5650  /**
5651   *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5652   *	@adap: the adapter
5653   *	@st: holds the counter values
5654   *      @sleep_ok: if true we may sleep while awaiting command completion
5655   *
5656   *	Returns the values of TP's CPL counters.
5657   */
t4_tp_get_cpl_stats(struct adapter * adap,struct tp_cpl_stats * st,bool sleep_ok)5658  void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5659  			 bool sleep_ok)
5660  {
5661  	int nchan = adap->params.arch.nchan;
5662  
5663  	t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok);
5664  
5665  	t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok);
5666  }
5667  
5668  /**
5669   *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5670   *	@adap: the adapter
5671   *	@st: holds the counter values
5672   *      @sleep_ok: if true we may sleep while awaiting command completion
5673   *
5674   *	Returns the values of TP's RDMA counters.
5675   */
t4_tp_get_rdma_stats(struct adapter * adap,struct tp_rdma_stats * st,bool sleep_ok)5676  void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5677  			  bool sleep_ok)
5678  {
5679  	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A,
5680  		       sleep_ok);
5681  }
5682  
5683  /**
5684   *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5685   *	@adap: the adapter
5686   *	@idx: the port index
5687   *	@st: holds the counter values
5688   *      @sleep_ok: if true we may sleep while awaiting command completion
5689   *
5690   *	Returns the values of TP's FCoE counters for the selected port.
5691   */
t4_get_fcoe_stats(struct adapter * adap,unsigned int idx,struct tp_fcoe_stats * st,bool sleep_ok)5692  void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5693  		       struct tp_fcoe_stats *st, bool sleep_ok)
5694  {
5695  	u32 val[2];
5696  
5697  	t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx,
5698  		       sleep_ok);
5699  
5700  	t4_tp_mib_read(adap, &st->frames_drop, 1,
5701  		       TP_MIB_FCOE_DROP_0_A + idx, sleep_ok);
5702  
5703  	t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx,
5704  		       sleep_ok);
5705  
5706  	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5707  }
5708  
5709  /**
5710   *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5711   *	@adap: the adapter
5712   *	@st: holds the counter values
5713   *      @sleep_ok: if true we may sleep while awaiting command completion
5714   *
5715   *	Returns the values of TP's counters for non-TCP directly-placed packets.
5716   */
t4_get_usm_stats(struct adapter * adap,struct tp_usm_stats * st,bool sleep_ok)5717  void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5718  		      bool sleep_ok)
5719  {
5720  	u32 val[4];
5721  
5722  	t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok);
5723  	st->frames = val[0];
5724  	st->drops = val[1];
5725  	st->octets = ((u64)val[2] << 32) | val[3];
5726  }
5727  
5728  /**
5729   *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5730   *	@adap: the adapter
5731   *	@mtus: where to store the MTU values
5732   *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5733   *
5734   *	Reads the HW path MTU table.
5735   */
t4_read_mtu_tbl(struct adapter * adap,u16 * mtus,u8 * mtu_log)5736  void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5737  {
5738  	u32 v;
5739  	int i;
5740  
5741  	for (i = 0; i < NMTUS; ++i) {
5742  		t4_write_reg(adap, TP_MTU_TABLE_A,
5743  			     MTUINDEX_V(0xff) | MTUVALUE_V(i));
5744  		v = t4_read_reg(adap, TP_MTU_TABLE_A);
5745  		mtus[i] = MTUVALUE_G(v);
5746  		if (mtu_log)
5747  			mtu_log[i] = MTUWIDTH_G(v);
5748  	}
5749  }
5750  
5751  /**
5752   *	t4_read_cong_tbl - reads the congestion control table
5753   *	@adap: the adapter
5754   *	@incr: where to store the alpha values
5755   *
5756   *	Reads the additive increments programmed into the HW congestion
5757   *	control table.
5758   */
t4_read_cong_tbl(struct adapter * adap,u16 incr[NMTUS][NCCTRL_WIN])5759  void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5760  {
5761  	unsigned int mtu, w;
5762  
5763  	for (mtu = 0; mtu < NMTUS; ++mtu)
5764  		for (w = 0; w < NCCTRL_WIN; ++w) {
5765  			t4_write_reg(adap, TP_CCTRL_TABLE_A,
5766  				     ROWINDEX_V(0xffff) | (mtu << 5) | w);
5767  			incr[mtu][w] = (u16)t4_read_reg(adap,
5768  						TP_CCTRL_TABLE_A) & 0x1fff;
5769  		}
5770  }
5771  
5772  /**
5773   *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5774   *	@adap: the adapter
5775   *	@addr: the indirect TP register address
5776   *	@mask: specifies the field within the register to modify
5777   *	@val: new value for the field
5778   *
5779   *	Sets a field of an indirect TP register to the given value.
5780   */
t4_tp_wr_bits_indirect(struct adapter * adap,unsigned int addr,unsigned int mask,unsigned int val)5781  void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5782  			    unsigned int mask, unsigned int val)
5783  {
5784  	t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5785  	val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5786  	t4_write_reg(adap, TP_PIO_DATA_A, val);
5787  }
5788  
5789  /**
5790   *	init_cong_ctrl - initialize congestion control parameters
5791   *	@a: the alpha values for congestion control
5792   *	@b: the beta values for congestion control
5793   *
5794   *	Initialize the congestion control parameters.
5795   */
init_cong_ctrl(unsigned short * a,unsigned short * b)5796  static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5797  {
5798  	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5799  	a[9] = 2;
5800  	a[10] = 3;
5801  	a[11] = 4;
5802  	a[12] = 5;
5803  	a[13] = 6;
5804  	a[14] = 7;
5805  	a[15] = 8;
5806  	a[16] = 9;
5807  	a[17] = 10;
5808  	a[18] = 14;
5809  	a[19] = 17;
5810  	a[20] = 21;
5811  	a[21] = 25;
5812  	a[22] = 30;
5813  	a[23] = 35;
5814  	a[24] = 45;
5815  	a[25] = 60;
5816  	a[26] = 80;
5817  	a[27] = 100;
5818  	a[28] = 200;
5819  	a[29] = 300;
5820  	a[30] = 400;
5821  	a[31] = 500;
5822  
5823  	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5824  	b[9] = b[10] = 1;
5825  	b[11] = b[12] = 2;
5826  	b[13] = b[14] = b[15] = b[16] = 3;
5827  	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5828  	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5829  	b[28] = b[29] = 6;
5830  	b[30] = b[31] = 7;
5831  }
5832  
5833  /* The minimum additive increment value for the congestion control table */
5834  #define CC_MIN_INCR 2U
5835  
5836  /**
5837   *	t4_load_mtus - write the MTU and congestion control HW tables
5838   *	@adap: the adapter
5839   *	@mtus: the values for the MTU table
5840   *	@alpha: the values for the congestion control alpha parameter
5841   *	@beta: the values for the congestion control beta parameter
5842   *
5843   *	Write the HW MTU table with the supplied MTUs and the high-speed
5844   *	congestion control table with the supplied alpha, beta, and MTUs.
5845   *	We write the two tables together because the additive increments
5846   *	depend on the MTUs.
5847   */
t4_load_mtus(struct adapter * adap,const unsigned short * mtus,const unsigned short * alpha,const unsigned short * beta)5848  void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5849  		  const unsigned short *alpha, const unsigned short *beta)
5850  {
5851  	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5852  		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5853  		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5854  		28672, 40960, 57344, 81920, 114688, 163840, 229376
5855  	};
5856  
5857  	unsigned int i, w;
5858  
5859  	for (i = 0; i < NMTUS; ++i) {
5860  		unsigned int mtu = mtus[i];
5861  		unsigned int log2 = fls(mtu);
5862  
5863  		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5864  			log2--;
5865  		t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5866  			     MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5867  
5868  		for (w = 0; w < NCCTRL_WIN; ++w) {
5869  			unsigned int inc;
5870  
5871  			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5872  				  CC_MIN_INCR);
5873  
5874  			t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5875  				     (w << 16) | (beta[w] << 13) | inc);
5876  		}
5877  	}
5878  }
5879  
5880  /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5881   * clocks.  The formula is
5882   *
5883   * bytes/s = bytes256 * 256 * ClkFreq / 4096
5884   *
5885   * which is equivalent to
5886   *
5887   * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5888   */
chan_rate(struct adapter * adap,unsigned int bytes256)5889  static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5890  {
5891  	u64 v = bytes256 * adap->params.vpd.cclk;
5892  
5893  	return v * 62 + v / 2;
5894  }
5895  
5896  /**
5897   *	t4_get_chan_txrate - get the current per channel Tx rates
5898   *	@adap: the adapter
5899   *	@nic_rate: rates for NIC traffic
5900   *	@ofld_rate: rates for offloaded traffic
5901   *
5902   *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5903   *	for each channel.
5904   */
t4_get_chan_txrate(struct adapter * adap,u64 * nic_rate,u64 * ofld_rate)5905  void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5906  {
5907  	u32 v;
5908  
5909  	v = t4_read_reg(adap, TP_TX_TRATE_A);
5910  	nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5911  	nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5912  	if (adap->params.arch.nchan == NCHAN) {
5913  		nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5914  		nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5915  	}
5916  
5917  	v = t4_read_reg(adap, TP_TX_ORATE_A);
5918  	ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5919  	ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5920  	if (adap->params.arch.nchan == NCHAN) {
5921  		ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5922  		ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5923  	}
5924  }
5925  
5926  /**
5927   *	t4_set_trace_filter - configure one of the tracing filters
5928   *	@adap: the adapter
5929   *	@tp: the desired trace filter parameters
5930   *	@idx: which filter to configure
5931   *	@enable: whether to enable or disable the filter
5932   *
5933   *	Configures one of the tracing filters available in HW.  If @enable is
5934   *	%0 @tp is not examined and may be %NULL. The user is responsible to
5935   *	set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5936   */
t4_set_trace_filter(struct adapter * adap,const struct trace_params * tp,int idx,int enable)5937  int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5938  			int idx, int enable)
5939  {
5940  	int i, ofst = idx * 4;
5941  	u32 data_reg, mask_reg, cfg;
5942  
5943  	if (!enable) {
5944  		t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5945  		return 0;
5946  	}
5947  
5948  	cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5949  	if (cfg & TRCMULTIFILTER_F) {
5950  		/* If multiple tracers are enabled, then maximum
5951  		 * capture size is 2.5KB (FIFO size of a single channel)
5952  		 * minus 2 flits for CPL_TRACE_PKT header.
5953  		 */
5954  		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5955  			return -EINVAL;
5956  	} else {
5957  		/* If multiple tracers are disabled, to avoid deadlocks
5958  		 * maximum packet capture size of 9600 bytes is recommended.
5959  		 * Also in this mode, only trace0 can be enabled and running.
5960  		 */
5961  		if (tp->snap_len > 9600 || idx)
5962  			return -EINVAL;
5963  	}
5964  
5965  	if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5966  	    tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5967  	    tp->min_len > TFMINPKTSIZE_M)
5968  		return -EINVAL;
5969  
5970  	/* stop the tracer we'll be changing */
5971  	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5972  
5973  	idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5974  	data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5975  	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5976  
5977  	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5978  		t4_write_reg(adap, data_reg, tp->data[i]);
5979  		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5980  	}
5981  	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5982  		     TFCAPTUREMAX_V(tp->snap_len) |
5983  		     TFMINPKTSIZE_V(tp->min_len));
5984  	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5985  		     TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5986  		     (is_t4(adap->params.chip) ?
5987  		     TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5988  		     T5_TFPORT_V(tp->port) | T5_TFEN_F |
5989  		     T5_TFINVERTMATCH_V(tp->invert)));
5990  
5991  	return 0;
5992  }
5993  
5994  /**
5995   *	t4_get_trace_filter - query one of the tracing filters
5996   *	@adap: the adapter
5997   *	@tp: the current trace filter parameters
5998   *	@idx: which trace filter to query
5999   *	@enabled: non-zero if the filter is enabled
6000   *
6001   *	Returns the current settings of one of the HW tracing filters.
6002   */
t4_get_trace_filter(struct adapter * adap,struct trace_params * tp,int idx,int * enabled)6003  void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6004  			 int *enabled)
6005  {
6006  	u32 ctla, ctlb;
6007  	int i, ofst = idx * 4;
6008  	u32 data_reg, mask_reg;
6009  
6010  	ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
6011  	ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
6012  
6013  	if (is_t4(adap->params.chip)) {
6014  		*enabled = !!(ctla & TFEN_F);
6015  		tp->port =  TFPORT_G(ctla);
6016  		tp->invert = !!(ctla & TFINVERTMATCH_F);
6017  	} else {
6018  		*enabled = !!(ctla & T5_TFEN_F);
6019  		tp->port = T5_TFPORT_G(ctla);
6020  		tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
6021  	}
6022  	tp->snap_len = TFCAPTUREMAX_G(ctlb);
6023  	tp->min_len = TFMINPKTSIZE_G(ctlb);
6024  	tp->skip_ofst = TFOFFSET_G(ctla);
6025  	tp->skip_len = TFLENGTH_G(ctla);
6026  
6027  	ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
6028  	data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
6029  	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
6030  
6031  	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6032  		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6033  		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6034  	}
6035  }
6036  
6037  /**
6038   *	t4_pmtx_get_stats - returns the HW stats from PMTX
6039   *	@adap: the adapter
6040   *	@cnt: where to store the count statistics
6041   *	@cycles: where to store the cycle statistics
6042   *
6043   *	Returns performance statistics from PMTX.
6044   */
t4_pmtx_get_stats(struct adapter * adap,u32 cnt[],u64 cycles[])6045  void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6046  {
6047  	int i;
6048  	u32 data[2];
6049  
6050  	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6051  		t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
6052  		cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
6053  		if (is_t4(adap->params.chip)) {
6054  			cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
6055  		} else {
6056  			t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
6057  					 PM_TX_DBG_DATA_A, data, 2,
6058  					 PM_TX_DBG_STAT_MSB_A);
6059  			cycles[i] = (((u64)data[0] << 32) | data[1]);
6060  		}
6061  	}
6062  }
6063  
6064  /**
6065   *	t4_pmrx_get_stats - returns the HW stats from PMRX
6066   *	@adap: the adapter
6067   *	@cnt: where to store the count statistics
6068   *	@cycles: where to store the cycle statistics
6069   *
6070   *	Returns performance statistics from PMRX.
6071   */
t4_pmrx_get_stats(struct adapter * adap,u32 cnt[],u64 cycles[])6072  void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6073  {
6074  	int i;
6075  	u32 data[2];
6076  
6077  	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6078  		t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
6079  		cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
6080  		if (is_t4(adap->params.chip)) {
6081  			cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
6082  		} else {
6083  			t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
6084  					 PM_RX_DBG_DATA_A, data, 2,
6085  					 PM_RX_DBG_STAT_MSB_A);
6086  			cycles[i] = (((u64)data[0] << 32) | data[1]);
6087  		}
6088  	}
6089  }
6090  
6091  /**
6092   *	compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
6093   *	@adapter: the adapter
6094   *	@pidx: the port index
6095   *
6096   *	Computes and returns a bitmap indicating which MPS buffer groups are
6097   *	associated with the given Port.  Bit i is set if buffer group i is
6098   *	used by the Port.
6099   */
compute_mps_bg_map(struct adapter * adapter,int pidx)6100  static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
6101  					      int pidx)
6102  {
6103  	unsigned int chip_version, nports;
6104  
6105  	chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6106  	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6107  
6108  	switch (chip_version) {
6109  	case CHELSIO_T4:
6110  	case CHELSIO_T5:
6111  		switch (nports) {
6112  		case 1: return 0xf;
6113  		case 2: return 3 << (2 * pidx);
6114  		case 4: return 1 << pidx;
6115  		}
6116  		break;
6117  
6118  	case CHELSIO_T6:
6119  		switch (nports) {
6120  		case 2: return 1 << (2 * pidx);
6121  		}
6122  		break;
6123  	}
6124  
6125  	dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
6126  		chip_version, nports);
6127  
6128  	return 0;
6129  }
6130  
6131  /**
6132   *	t4_get_mps_bg_map - return the buffer groups associated with a port
6133   *	@adapter: the adapter
6134   *	@pidx: the port index
6135   *
6136   *	Returns a bitmap indicating which MPS buffer groups are associated
6137   *	with the given Port.  Bit i is set if buffer group i is used by the
6138   *	Port.
6139   */
t4_get_mps_bg_map(struct adapter * adapter,int pidx)6140  unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
6141  {
6142  	u8 *mps_bg_map;
6143  	unsigned int nports;
6144  
6145  	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6146  	if (pidx >= nports) {
6147  		CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
6148  			pidx, nports);
6149  		return 0;
6150  	}
6151  
6152  	/* If we've already retrieved/computed this, just return the result.
6153  	 */
6154  	mps_bg_map = adapter->params.mps_bg_map;
6155  	if (mps_bg_map[pidx])
6156  		return mps_bg_map[pidx];
6157  
6158  	/* Newer Firmware can tell us what the MPS Buffer Group Map is.
6159  	 * If we're talking to such Firmware, let it tell us.  If the new
6160  	 * API isn't supported, revert back to old hardcoded way.  The value
6161  	 * obtained from Firmware is encoded in below format:
6162  	 *
6163  	 * val = (( MPSBGMAP[Port 3] << 24 ) |
6164  	 *        ( MPSBGMAP[Port 2] << 16 ) |
6165  	 *        ( MPSBGMAP[Port 1] <<  8 ) |
6166  	 *        ( MPSBGMAP[Port 0] <<  0 ))
6167  	 */
6168  	if (adapter->flags & CXGB4_FW_OK) {
6169  		u32 param, val;
6170  		int ret;
6171  
6172  		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6173  			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
6174  		ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6175  					 0, 1, &param, &val);
6176  		if (!ret) {
6177  			int p;
6178  
6179  			/* Store the BG Map for all of the Ports in order to
6180  			 * avoid more calls to the Firmware in the future.
6181  			 */
6182  			for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
6183  				mps_bg_map[p] = val & 0xff;
6184  
6185  			return mps_bg_map[pidx];
6186  		}
6187  	}
6188  
6189  	/* Either we're not talking to the Firmware or we're dealing with
6190  	 * older Firmware which doesn't support the new API to get the MPS
6191  	 * Buffer Group Map.  Fall back to computing it ourselves.
6192  	 */
6193  	mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
6194  	return mps_bg_map[pidx];
6195  }
6196  
6197  /**
6198   *      t4_get_tp_e2c_map - return the E2C channel map associated with a port
6199   *      @adapter: the adapter
6200   *      @pidx: the port index
6201   */
t4_get_tp_e2c_map(struct adapter * adapter,int pidx)6202  static unsigned int t4_get_tp_e2c_map(struct adapter *adapter, int pidx)
6203  {
6204  	unsigned int nports;
6205  	u32 param, val = 0;
6206  	int ret;
6207  
6208  	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6209  	if (pidx >= nports) {
6210  		CH_WARN(adapter, "TP E2C Channel Port Index %d >= Nports %d\n",
6211  			pidx, nports);
6212  		return 0;
6213  	}
6214  
6215  	/* FW version >= 1.16.44.0 can determine E2C channel map using
6216  	 * FW_PARAMS_PARAM_DEV_TPCHMAP API.
6217  	 */
6218  	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6219  		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPCHMAP));
6220  	ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6221  				 0, 1, &param, &val);
6222  	if (!ret)
6223  		return (val >> (8 * pidx)) & 0xff;
6224  
6225  	return 0;
6226  }
6227  
6228  /**
6229   *	t4_get_tp_ch_map - return TP ingress channels associated with a port
6230   *	@adap: the adapter
6231   *	@pidx: the port index
6232   *
6233   *	Returns a bitmap indicating which TP Ingress Channels are associated
6234   *	with a given Port.  Bit i is set if TP Ingress Channel i is used by
6235   *	the Port.
6236   */
t4_get_tp_ch_map(struct adapter * adap,int pidx)6237  unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
6238  {
6239  	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
6240  	unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
6241  
6242  	if (pidx >= nports) {
6243  		dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
6244  			 pidx, nports);
6245  		return 0;
6246  	}
6247  
6248  	switch (chip_version) {
6249  	case CHELSIO_T4:
6250  	case CHELSIO_T5:
6251  		/* Note that this happens to be the same values as the MPS
6252  		 * Buffer Group Map for these Chips.  But we replicate the code
6253  		 * here because they're really separate concepts.
6254  		 */
6255  		switch (nports) {
6256  		case 1: return 0xf;
6257  		case 2: return 3 << (2 * pidx);
6258  		case 4: return 1 << pidx;
6259  		}
6260  		break;
6261  
6262  	case CHELSIO_T6:
6263  		switch (nports) {
6264  		case 1:
6265  		case 2: return 1 << pidx;
6266  		}
6267  		break;
6268  	}
6269  
6270  	dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
6271  		chip_version, nports);
6272  	return 0;
6273  }
6274  
6275  /**
6276   *      t4_get_port_type_description - return Port Type string description
6277   *      @port_type: firmware Port Type enumeration
6278   */
t4_get_port_type_description(enum fw_port_type port_type)6279  const char *t4_get_port_type_description(enum fw_port_type port_type)
6280  {
6281  	static const char *const port_type_description[] = {
6282  		"Fiber_XFI",
6283  		"Fiber_XAUI",
6284  		"BT_SGMII",
6285  		"BT_XFI",
6286  		"BT_XAUI",
6287  		"KX4",
6288  		"CX4",
6289  		"KX",
6290  		"KR",
6291  		"SFP",
6292  		"BP_AP",
6293  		"BP4_AP",
6294  		"QSFP_10G",
6295  		"QSA",
6296  		"QSFP",
6297  		"BP40_BA",
6298  		"KR4_100G",
6299  		"CR4_QSFP",
6300  		"CR_QSFP",
6301  		"CR2_QSFP",
6302  		"SFP28",
6303  		"KR_SFP28",
6304  		"KR_XLAUI"
6305  	};
6306  
6307  	if (port_type < ARRAY_SIZE(port_type_description))
6308  		return port_type_description[port_type];
6309  	return "UNKNOWN";
6310  }
6311  
6312  /**
6313   *      t4_get_port_stats_offset - collect port stats relative to a previous
6314   *                                 snapshot
6315   *      @adap: The adapter
6316   *      @idx: The port
6317   *      @stats: Current stats to fill
6318   *      @offset: Previous stats snapshot
6319   */
t4_get_port_stats_offset(struct adapter * adap,int idx,struct port_stats * stats,struct port_stats * offset)6320  void t4_get_port_stats_offset(struct adapter *adap, int idx,
6321  			      struct port_stats *stats,
6322  			      struct port_stats *offset)
6323  {
6324  	u64 *s, *o;
6325  	int i;
6326  
6327  	t4_get_port_stats(adap, idx, stats);
6328  	for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
6329  			i < (sizeof(struct port_stats) / sizeof(u64));
6330  			i++, s++, o++)
6331  		*s -= *o;
6332  }
6333  
6334  /**
6335   *	t4_get_port_stats - collect port statistics
6336   *	@adap: the adapter
6337   *	@idx: the port index
6338   *	@p: the stats structure to fill
6339   *
6340   *	Collect statistics related to the given port from HW.
6341   */
t4_get_port_stats(struct adapter * adap,int idx,struct port_stats * p)6342  void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6343  {
6344  	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6345  	u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
6346  
6347  #define GET_STAT(name) \
6348  	t4_read_reg64(adap, \
6349  	(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
6350  	T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
6351  #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6352  
6353  	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
6354  	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
6355  	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
6356  	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
6357  	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
6358  	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
6359  	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
6360  	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
6361  	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
6362  	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
6363  	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
6364  	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
6365  	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
6366  	p->tx_drop             = GET_STAT(TX_PORT_DROP);
6367  	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
6368  	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
6369  	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
6370  	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
6371  	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
6372  	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
6373  	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
6374  	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
6375  	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
6376  
6377  	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6378  		if (stat_ctl & COUNTPAUSESTATTX_F)
6379  			p->tx_frames_64 -= p->tx_pause;
6380  		if (stat_ctl & COUNTPAUSEMCTX_F)
6381  			p->tx_mcast_frames -= p->tx_pause;
6382  	}
6383  	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
6384  	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
6385  	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
6386  	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
6387  	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
6388  	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
6389  	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6390  	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
6391  	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
6392  	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
6393  	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
6394  	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
6395  	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
6396  	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
6397  	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
6398  	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
6399  	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
6400  	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
6401  	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
6402  	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
6403  	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
6404  	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
6405  	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
6406  	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
6407  	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
6408  	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
6409  	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
6410  
6411  	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6412  		if (stat_ctl & COUNTPAUSESTATRX_F)
6413  			p->rx_frames_64 -= p->rx_pause;
6414  		if (stat_ctl & COUNTPAUSEMCRX_F)
6415  			p->rx_mcast_frames -= p->rx_pause;
6416  	}
6417  
6418  	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6419  	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6420  	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6421  	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6422  	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6423  	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6424  	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6425  	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6426  
6427  #undef GET_STAT
6428  #undef GET_STAT_COM
6429  }
6430  
6431  /**
6432   *	t4_get_lb_stats - collect loopback port statistics
6433   *	@adap: the adapter
6434   *	@idx: the loopback port index
6435   *	@p: the stats structure to fill
6436   *
6437   *	Return HW statistics for the given loopback port.
6438   */
t4_get_lb_stats(struct adapter * adap,int idx,struct lb_port_stats * p)6439  void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6440  {
6441  	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6442  
6443  #define GET_STAT(name) \
6444  	t4_read_reg64(adap, \
6445  	(is_t4(adap->params.chip) ? \
6446  	PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
6447  	T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
6448  #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6449  
6450  	p->octets           = GET_STAT(BYTES);
6451  	p->frames           = GET_STAT(FRAMES);
6452  	p->bcast_frames     = GET_STAT(BCAST);
6453  	p->mcast_frames     = GET_STAT(MCAST);
6454  	p->ucast_frames     = GET_STAT(UCAST);
6455  	p->error_frames     = GET_STAT(ERROR);
6456  
6457  	p->frames_64        = GET_STAT(64B);
6458  	p->frames_65_127    = GET_STAT(65B_127B);
6459  	p->frames_128_255   = GET_STAT(128B_255B);
6460  	p->frames_256_511   = GET_STAT(256B_511B);
6461  	p->frames_512_1023  = GET_STAT(512B_1023B);
6462  	p->frames_1024_1518 = GET_STAT(1024B_1518B);
6463  	p->frames_1519_max  = GET_STAT(1519B_MAX);
6464  	p->drop             = GET_STAT(DROP_FRAMES);
6465  
6466  	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6467  	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6468  	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6469  	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6470  	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6471  	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6472  	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6473  	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6474  
6475  #undef GET_STAT
6476  #undef GET_STAT_COM
6477  }
6478  
6479  /*     t4_mk_filtdelwr - create a delete filter WR
6480   *     @ftid: the filter ID
6481   *     @wr: the filter work request to populate
6482   *     @qid: ingress queue to receive the delete notification
6483   *
6484   *     Creates a filter work request to delete the supplied filter.  If @qid is
6485   *     negative the delete notification is suppressed.
6486   */
t4_mk_filtdelwr(unsigned int ftid,struct fw_filter_wr * wr,int qid)6487  void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6488  {
6489  	memset(wr, 0, sizeof(*wr));
6490  	wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
6491  	wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
6492  	wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
6493  				    FW_FILTER_WR_NOREPLY_V(qid < 0));
6494  	wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
6495  	if (qid >= 0)
6496  		wr->rx_chan_rx_rpl_iq =
6497  			cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
6498  }
6499  
6500  #define INIT_CMD(var, cmd, rd_wr) do { \
6501  	(var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
6502  					FW_CMD_REQUEST_F | \
6503  					FW_CMD_##rd_wr##_F); \
6504  	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6505  } while (0)
6506  
t4_fwaddrspace_write(struct adapter * adap,unsigned int mbox,u32 addr,u32 val)6507  int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6508  			  u32 addr, u32 val)
6509  {
6510  	u32 ldst_addrspace;
6511  	struct fw_ldst_cmd c;
6512  
6513  	memset(&c, 0, sizeof(c));
6514  	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
6515  	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6516  					FW_CMD_REQUEST_F |
6517  					FW_CMD_WRITE_F |
6518  					ldst_addrspace);
6519  	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6520  	c.u.addrval.addr = cpu_to_be32(addr);
6521  	c.u.addrval.val = cpu_to_be32(val);
6522  
6523  	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6524  }
6525  
6526  /**
6527   *	t4_mdio_rd - read a PHY register through MDIO
6528   *	@adap: the adapter
6529   *	@mbox: mailbox to use for the FW command
6530   *	@phy_addr: the PHY address
6531   *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6532   *	@reg: the register to read
6533   *	@valp: where to store the value
6534   *
6535   *	Issues a FW command through the given mailbox to read a PHY register.
6536   */
t4_mdio_rd(struct adapter * adap,unsigned int mbox,unsigned int phy_addr,unsigned int mmd,unsigned int reg,u16 * valp)6537  int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6538  	       unsigned int mmd, unsigned int reg, u16 *valp)
6539  {
6540  	int ret;
6541  	u32 ldst_addrspace;
6542  	struct fw_ldst_cmd c;
6543  
6544  	memset(&c, 0, sizeof(c));
6545  	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6546  	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6547  					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6548  					ldst_addrspace);
6549  	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6550  	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6551  					 FW_LDST_CMD_MMD_V(mmd));
6552  	c.u.mdio.raddr = cpu_to_be16(reg);
6553  
6554  	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6555  	if (ret == 0)
6556  		*valp = be16_to_cpu(c.u.mdio.rval);
6557  	return ret;
6558  }
6559  
6560  /**
6561   *	t4_mdio_wr - write a PHY register through MDIO
6562   *	@adap: the adapter
6563   *	@mbox: mailbox to use for the FW command
6564   *	@phy_addr: the PHY address
6565   *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6566   *	@reg: the register to write
6567   *	@val: value to write
6568   *
6569   *	Issues a FW command through the given mailbox to write a PHY register.
6570   */
t4_mdio_wr(struct adapter * adap,unsigned int mbox,unsigned int phy_addr,unsigned int mmd,unsigned int reg,u16 val)6571  int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6572  	       unsigned int mmd, unsigned int reg, u16 val)
6573  {
6574  	u32 ldst_addrspace;
6575  	struct fw_ldst_cmd c;
6576  
6577  	memset(&c, 0, sizeof(c));
6578  	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6579  	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6580  					FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6581  					ldst_addrspace);
6582  	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6583  	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6584  					 FW_LDST_CMD_MMD_V(mmd));
6585  	c.u.mdio.raddr = cpu_to_be16(reg);
6586  	c.u.mdio.rval = cpu_to_be16(val);
6587  
6588  	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6589  }
6590  
6591  /**
6592   *	t4_sge_decode_idma_state - decode the idma state
6593   *	@adapter: the adapter
6594   *	@state: the state idma is stuck in
6595   */
t4_sge_decode_idma_state(struct adapter * adapter,int state)6596  void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6597  {
6598  	static const char * const t4_decode[] = {
6599  		"IDMA_IDLE",
6600  		"IDMA_PUSH_MORE_CPL_FIFO",
6601  		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6602  		"Not used",
6603  		"IDMA_PHYSADDR_SEND_PCIEHDR",
6604  		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6605  		"IDMA_PHYSADDR_SEND_PAYLOAD",
6606  		"IDMA_SEND_FIFO_TO_IMSG",
6607  		"IDMA_FL_REQ_DATA_FL_PREP",
6608  		"IDMA_FL_REQ_DATA_FL",
6609  		"IDMA_FL_DROP",
6610  		"IDMA_FL_H_REQ_HEADER_FL",
6611  		"IDMA_FL_H_SEND_PCIEHDR",
6612  		"IDMA_FL_H_PUSH_CPL_FIFO",
6613  		"IDMA_FL_H_SEND_CPL",
6614  		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6615  		"IDMA_FL_H_SEND_IP_HDR",
6616  		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6617  		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6618  		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6619  		"IDMA_FL_D_SEND_PCIEHDR",
6620  		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6621  		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6622  		"IDMA_FL_SEND_PCIEHDR",
6623  		"IDMA_FL_PUSH_CPL_FIFO",
6624  		"IDMA_FL_SEND_CPL",
6625  		"IDMA_FL_SEND_PAYLOAD_FIRST",
6626  		"IDMA_FL_SEND_PAYLOAD",
6627  		"IDMA_FL_REQ_NEXT_DATA_FL",
6628  		"IDMA_FL_SEND_NEXT_PCIEHDR",
6629  		"IDMA_FL_SEND_PADDING",
6630  		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6631  		"IDMA_FL_SEND_FIFO_TO_IMSG",
6632  		"IDMA_FL_REQ_DATAFL_DONE",
6633  		"IDMA_FL_REQ_HEADERFL_DONE",
6634  	};
6635  	static const char * const t5_decode[] = {
6636  		"IDMA_IDLE",
6637  		"IDMA_ALMOST_IDLE",
6638  		"IDMA_PUSH_MORE_CPL_FIFO",
6639  		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6640  		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6641  		"IDMA_PHYSADDR_SEND_PCIEHDR",
6642  		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6643  		"IDMA_PHYSADDR_SEND_PAYLOAD",
6644  		"IDMA_SEND_FIFO_TO_IMSG",
6645  		"IDMA_FL_REQ_DATA_FL",
6646  		"IDMA_FL_DROP",
6647  		"IDMA_FL_DROP_SEND_INC",
6648  		"IDMA_FL_H_REQ_HEADER_FL",
6649  		"IDMA_FL_H_SEND_PCIEHDR",
6650  		"IDMA_FL_H_PUSH_CPL_FIFO",
6651  		"IDMA_FL_H_SEND_CPL",
6652  		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6653  		"IDMA_FL_H_SEND_IP_HDR",
6654  		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6655  		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6656  		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6657  		"IDMA_FL_D_SEND_PCIEHDR",
6658  		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6659  		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6660  		"IDMA_FL_SEND_PCIEHDR",
6661  		"IDMA_FL_PUSH_CPL_FIFO",
6662  		"IDMA_FL_SEND_CPL",
6663  		"IDMA_FL_SEND_PAYLOAD_FIRST",
6664  		"IDMA_FL_SEND_PAYLOAD",
6665  		"IDMA_FL_REQ_NEXT_DATA_FL",
6666  		"IDMA_FL_SEND_NEXT_PCIEHDR",
6667  		"IDMA_FL_SEND_PADDING",
6668  		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6669  	};
6670  	static const char * const t6_decode[] = {
6671  		"IDMA_IDLE",
6672  		"IDMA_PUSH_MORE_CPL_FIFO",
6673  		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6674  		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6675  		"IDMA_PHYSADDR_SEND_PCIEHDR",
6676  		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6677  		"IDMA_PHYSADDR_SEND_PAYLOAD",
6678  		"IDMA_FL_REQ_DATA_FL",
6679  		"IDMA_FL_DROP",
6680  		"IDMA_FL_DROP_SEND_INC",
6681  		"IDMA_FL_H_REQ_HEADER_FL",
6682  		"IDMA_FL_H_SEND_PCIEHDR",
6683  		"IDMA_FL_H_PUSH_CPL_FIFO",
6684  		"IDMA_FL_H_SEND_CPL",
6685  		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6686  		"IDMA_FL_H_SEND_IP_HDR",
6687  		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6688  		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6689  		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6690  		"IDMA_FL_D_SEND_PCIEHDR",
6691  		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6692  		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6693  		"IDMA_FL_SEND_PCIEHDR",
6694  		"IDMA_FL_PUSH_CPL_FIFO",
6695  		"IDMA_FL_SEND_CPL",
6696  		"IDMA_FL_SEND_PAYLOAD_FIRST",
6697  		"IDMA_FL_SEND_PAYLOAD",
6698  		"IDMA_FL_REQ_NEXT_DATA_FL",
6699  		"IDMA_FL_SEND_NEXT_PCIEHDR",
6700  		"IDMA_FL_SEND_PADDING",
6701  		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6702  	};
6703  	static const u32 sge_regs[] = {
6704  		SGE_DEBUG_DATA_LOW_INDEX_2_A,
6705  		SGE_DEBUG_DATA_LOW_INDEX_3_A,
6706  		SGE_DEBUG_DATA_HIGH_INDEX_10_A,
6707  	};
6708  	const char **sge_idma_decode;
6709  	int sge_idma_decode_nstates;
6710  	int i;
6711  	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6712  
6713  	/* Select the right set of decode strings to dump depending on the
6714  	 * adapter chip type.
6715  	 */
6716  	switch (chip_version) {
6717  	case CHELSIO_T4:
6718  		sge_idma_decode = (const char **)t4_decode;
6719  		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6720  		break;
6721  
6722  	case CHELSIO_T5:
6723  		sge_idma_decode = (const char **)t5_decode;
6724  		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6725  		break;
6726  
6727  	case CHELSIO_T6:
6728  		sge_idma_decode = (const char **)t6_decode;
6729  		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6730  		break;
6731  
6732  	default:
6733  		dev_err(adapter->pdev_dev,
6734  			"Unsupported chip version %d\n", chip_version);
6735  		return;
6736  	}
6737  
6738  	if (is_t4(adapter->params.chip)) {
6739  		sge_idma_decode = (const char **)t4_decode;
6740  		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6741  	} else {
6742  		sge_idma_decode = (const char **)t5_decode;
6743  		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6744  	}
6745  
6746  	if (state < sge_idma_decode_nstates)
6747  		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6748  	else
6749  		CH_WARN(adapter, "idma state %d unknown\n", state);
6750  
6751  	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6752  		CH_WARN(adapter, "SGE register %#x value %#x\n",
6753  			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6754  }
6755  
6756  /**
6757   *      t4_sge_ctxt_flush - flush the SGE context cache
6758   *      @adap: the adapter
6759   *      @mbox: mailbox to use for the FW command
6760   *      @ctxt_type: Egress or Ingress
6761   *
6762   *      Issues a FW command through the given mailbox to flush the
6763   *      SGE context cache.
6764   */
t4_sge_ctxt_flush(struct adapter * adap,unsigned int mbox,int ctxt_type)6765  int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
6766  {
6767  	int ret;
6768  	u32 ldst_addrspace;
6769  	struct fw_ldst_cmd c;
6770  
6771  	memset(&c, 0, sizeof(c));
6772  	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ?
6773  						 FW_LDST_ADDRSPC_SGE_EGRC :
6774  						 FW_LDST_ADDRSPC_SGE_INGC);
6775  	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6776  					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6777  					ldst_addrspace);
6778  	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6779  	c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
6780  
6781  	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6782  	return ret;
6783  }
6784  
6785  /**
6786   *	t4_read_sge_dbqtimers - read SGE Doorbell Queue Timer values
6787   *	@adap: the adapter
6788   *	@ndbqtimers: size of the provided SGE Doorbell Queue Timer table
6789   *	@dbqtimers: SGE Doorbell Queue Timer table
6790   *
6791   *	Reads the SGE Doorbell Queue Timer values into the provided table.
6792   *	Returns 0 on success (Firmware and Hardware support this feature),
6793   *	an error on failure.
6794   */
t4_read_sge_dbqtimers(struct adapter * adap,unsigned int ndbqtimers,u16 * dbqtimers)6795  int t4_read_sge_dbqtimers(struct adapter *adap, unsigned int ndbqtimers,
6796  			  u16 *dbqtimers)
6797  {
6798  	int ret, dbqtimerix;
6799  
6800  	ret = 0;
6801  	dbqtimerix = 0;
6802  	while (dbqtimerix < ndbqtimers) {
6803  		int nparams, param;
6804  		u32 params[7], vals[7];
6805  
6806  		nparams = ndbqtimers - dbqtimerix;
6807  		if (nparams > ARRAY_SIZE(params))
6808  			nparams = ARRAY_SIZE(params);
6809  
6810  		for (param = 0; param < nparams; param++)
6811  			params[param] =
6812  			  (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6813  			   FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMER) |
6814  			   FW_PARAMS_PARAM_Y_V(dbqtimerix + param));
6815  		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
6816  				      nparams, params, vals);
6817  		if (ret)
6818  			break;
6819  
6820  		for (param = 0; param < nparams; param++)
6821  			dbqtimers[dbqtimerix++] = vals[param];
6822  	}
6823  	return ret;
6824  }
6825  
6826  /**
6827   *      t4_fw_hello - establish communication with FW
6828   *      @adap: the adapter
6829   *      @mbox: mailbox to use for the FW command
6830   *      @evt_mbox: mailbox to receive async FW events
6831   *      @master: specifies the caller's willingness to be the device master
6832   *	@state: returns the current device state (if non-NULL)
6833   *
6834   *	Issues a command to establish communication with FW.  Returns either
6835   *	an error (negative integer) or the mailbox of the Master PF.
6836   */
t4_fw_hello(struct adapter * adap,unsigned int mbox,unsigned int evt_mbox,enum dev_master master,enum dev_state * state)6837  int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6838  		enum dev_master master, enum dev_state *state)
6839  {
6840  	int ret;
6841  	struct fw_hello_cmd c;
6842  	u32 v;
6843  	unsigned int master_mbox;
6844  	int retries = FW_CMD_HELLO_RETRIES;
6845  
6846  retry:
6847  	memset(&c, 0, sizeof(c));
6848  	INIT_CMD(c, HELLO, WRITE);
6849  	c.err_to_clearinit = cpu_to_be32(
6850  		FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6851  		FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
6852  		FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6853  					mbox : FW_HELLO_CMD_MBMASTER_M) |
6854  		FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6855  		FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6856  		FW_HELLO_CMD_CLEARINIT_F);
6857  
6858  	/*
6859  	 * Issue the HELLO command to the firmware.  If it's not successful
6860  	 * but indicates that we got a "busy" or "timeout" condition, retry
6861  	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6862  	 * retry limit, check to see if the firmware left us any error
6863  	 * information and report that if so.
6864  	 */
6865  	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6866  	if (ret < 0) {
6867  		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6868  			goto retry;
6869  		if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
6870  			t4_report_fw_error(adap);
6871  		return ret;
6872  	}
6873  
6874  	v = be32_to_cpu(c.err_to_clearinit);
6875  	master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
6876  	if (state) {
6877  		if (v & FW_HELLO_CMD_ERR_F)
6878  			*state = DEV_STATE_ERR;
6879  		else if (v & FW_HELLO_CMD_INIT_F)
6880  			*state = DEV_STATE_INIT;
6881  		else
6882  			*state = DEV_STATE_UNINIT;
6883  	}
6884  
6885  	/*
6886  	 * If we're not the Master PF then we need to wait around for the
6887  	 * Master PF Driver to finish setting up the adapter.
6888  	 *
6889  	 * Note that we also do this wait if we're a non-Master-capable PF and
6890  	 * there is no current Master PF; a Master PF may show up momentarily
6891  	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6892  	 * OS loads lots of different drivers rapidly at the same time).  In
6893  	 * this case, the Master PF returned by the firmware will be
6894  	 * PCIE_FW_MASTER_M so the test below will work ...
6895  	 */
6896  	if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6897  	    master_mbox != mbox) {
6898  		int waiting = FW_CMD_HELLO_TIMEOUT;
6899  
6900  		/*
6901  		 * Wait for the firmware to either indicate an error or
6902  		 * initialized state.  If we see either of these we bail out
6903  		 * and report the issue to the caller.  If we exhaust the
6904  		 * "hello timeout" and we haven't exhausted our retries, try
6905  		 * again.  Otherwise bail with a timeout error.
6906  		 */
6907  		for (;;) {
6908  			u32 pcie_fw;
6909  
6910  			msleep(50);
6911  			waiting -= 50;
6912  
6913  			/*
6914  			 * If neither Error nor Initialized are indicated
6915  			 * by the firmware keep waiting till we exhaust our
6916  			 * timeout ... and then retry if we haven't exhausted
6917  			 * our retries ...
6918  			 */
6919  			pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6920  			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6921  				if (waiting <= 0) {
6922  					if (retries-- > 0)
6923  						goto retry;
6924  
6925  					return -ETIMEDOUT;
6926  				}
6927  				continue;
6928  			}
6929  
6930  			/*
6931  			 * We either have an Error or Initialized condition
6932  			 * report errors preferentially.
6933  			 */
6934  			if (state) {
6935  				if (pcie_fw & PCIE_FW_ERR_F)
6936  					*state = DEV_STATE_ERR;
6937  				else if (pcie_fw & PCIE_FW_INIT_F)
6938  					*state = DEV_STATE_INIT;
6939  			}
6940  
6941  			/*
6942  			 * If we arrived before a Master PF was selected and
6943  			 * there's not a valid Master PF, grab its identity
6944  			 * for our caller.
6945  			 */
6946  			if (master_mbox == PCIE_FW_MASTER_M &&
6947  			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
6948  				master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6949  			break;
6950  		}
6951  	}
6952  
6953  	return master_mbox;
6954  }
6955  
6956  /**
6957   *	t4_fw_bye - end communication with FW
6958   *	@adap: the adapter
6959   *	@mbox: mailbox to use for the FW command
6960   *
6961   *	Issues a command to terminate communication with FW.
6962   */
t4_fw_bye(struct adapter * adap,unsigned int mbox)6963  int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6964  {
6965  	struct fw_bye_cmd c;
6966  
6967  	memset(&c, 0, sizeof(c));
6968  	INIT_CMD(c, BYE, WRITE);
6969  	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6970  }
6971  
6972  /**
6973   *	t4_early_init - ask FW to initialize the device
6974   *	@adap: the adapter
6975   *	@mbox: mailbox to use for the FW command
6976   *
6977   *	Issues a command to FW to partially initialize the device.  This
6978   *	performs initialization that generally doesn't depend on user input.
6979   */
t4_early_init(struct adapter * adap,unsigned int mbox)6980  int t4_early_init(struct adapter *adap, unsigned int mbox)
6981  {
6982  	struct fw_initialize_cmd c;
6983  
6984  	memset(&c, 0, sizeof(c));
6985  	INIT_CMD(c, INITIALIZE, WRITE);
6986  	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6987  }
6988  
6989  /**
6990   *	t4_fw_reset - issue a reset to FW
6991   *	@adap: the adapter
6992   *	@mbox: mailbox to use for the FW command
6993   *	@reset: specifies the type of reset to perform
6994   *
6995   *	Issues a reset command of the specified type to FW.
6996   */
t4_fw_reset(struct adapter * adap,unsigned int mbox,int reset)6997  int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6998  {
6999  	struct fw_reset_cmd c;
7000  
7001  	memset(&c, 0, sizeof(c));
7002  	INIT_CMD(c, RESET, WRITE);
7003  	c.val = cpu_to_be32(reset);
7004  	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7005  }
7006  
7007  /**
7008   *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7009   *	@adap: the adapter
7010   *	@mbox: mailbox to use for the FW RESET command (if desired)
7011   *	@force: force uP into RESET even if FW RESET command fails
7012   *
7013   *	Issues a RESET command to firmware (if desired) with a HALT indication
7014   *	and then puts the microprocessor into RESET state.  The RESET command
7015   *	will only be issued if a legitimate mailbox is provided (mbox <=
7016   *	PCIE_FW_MASTER_M).
7017   *
7018   *	This is generally used in order for the host to safely manipulate the
7019   *	adapter without fear of conflicting with whatever the firmware might
7020   *	be doing.  The only way out of this state is to RESTART the firmware
7021   *	...
7022   */
t4_fw_halt(struct adapter * adap,unsigned int mbox,int force)7023  static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7024  {
7025  	int ret = 0;
7026  
7027  	/*
7028  	 * If a legitimate mailbox is provided, issue a RESET command
7029  	 * with a HALT indication.
7030  	 */
7031  	if (mbox <= PCIE_FW_MASTER_M) {
7032  		struct fw_reset_cmd c;
7033  
7034  		memset(&c, 0, sizeof(c));
7035  		INIT_CMD(c, RESET, WRITE);
7036  		c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
7037  		c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
7038  		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7039  	}
7040  
7041  	/*
7042  	 * Normally we won't complete the operation if the firmware RESET
7043  	 * command fails but if our caller insists we'll go ahead and put the
7044  	 * uP into RESET.  This can be useful if the firmware is hung or even
7045  	 * missing ...  We'll have to take the risk of putting the uP into
7046  	 * RESET without the cooperation of firmware in that case.
7047  	 *
7048  	 * We also force the firmware's HALT flag to be on in case we bypassed
7049  	 * the firmware RESET command above or we're dealing with old firmware
7050  	 * which doesn't have the HALT capability.  This will serve as a flag
7051  	 * for the incoming firmware to know that it's coming out of a HALT
7052  	 * rather than a RESET ... if it's new enough to understand that ...
7053  	 */
7054  	if (ret == 0 || force) {
7055  		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
7056  		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
7057  				 PCIE_FW_HALT_F);
7058  	}
7059  
7060  	/*
7061  	 * And we always return the result of the firmware RESET command
7062  	 * even when we force the uP into RESET ...
7063  	 */
7064  	return ret;
7065  }
7066  
7067  /**
7068   *	t4_fw_restart - restart the firmware by taking the uP out of RESET
7069   *	@adap: the adapter
7070   *	@mbox: mailbox to use for the FW command
7071   *	@reset: if we want to do a RESET to restart things
7072   *
7073   *	Restart firmware previously halted by t4_fw_halt().  On successful
7074   *	return the previous PF Master remains as the new PF Master and there
7075   *	is no need to issue a new HELLO command, etc.
7076   *
7077   *	We do this in two ways:
7078   *
7079   *	 1. If we're dealing with newer firmware we'll simply want to take
7080   *	    the chip's microprocessor out of RESET.  This will cause the
7081   *	    firmware to start up from its start vector.  And then we'll loop
7082   *	    until the firmware indicates it's started again (PCIE_FW.HALT
7083   *	    reset to 0) or we timeout.
7084   *
7085   *	 2. If we're dealing with older firmware then we'll need to RESET
7086   *	    the chip since older firmware won't recognize the PCIE_FW.HALT
7087   *	    flag and automatically RESET itself on startup.
7088   */
t4_fw_restart(struct adapter * adap,unsigned int mbox,int reset)7089  static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
7090  {
7091  	if (reset) {
7092  		/*
7093  		 * Since we're directing the RESET instead of the firmware
7094  		 * doing it automatically, we need to clear the PCIE_FW.HALT
7095  		 * bit.
7096  		 */
7097  		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
7098  
7099  		/*
7100  		 * If we've been given a valid mailbox, first try to get the
7101  		 * firmware to do the RESET.  If that works, great and we can
7102  		 * return success.  Otherwise, if we haven't been given a
7103  		 * valid mailbox or the RESET command failed, fall back to
7104  		 * hitting the chip with a hammer.
7105  		 */
7106  		if (mbox <= PCIE_FW_MASTER_M) {
7107  			t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7108  			msleep(100);
7109  			if (t4_fw_reset(adap, mbox,
7110  					PIORST_F | PIORSTMODE_F) == 0)
7111  				return 0;
7112  		}
7113  
7114  		t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
7115  		msleep(2000);
7116  	} else {
7117  		int ms;
7118  
7119  		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7120  		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7121  			if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
7122  				return 0;
7123  			msleep(100);
7124  			ms += 100;
7125  		}
7126  		return -ETIMEDOUT;
7127  	}
7128  	return 0;
7129  }
7130  
7131  /**
7132   *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7133   *	@adap: the adapter
7134   *	@mbox: mailbox to use for the FW RESET command (if desired)
7135   *	@fw_data: the firmware image to write
7136   *	@size: image size
7137   *	@force: force upgrade even if firmware doesn't cooperate
7138   *
7139   *	Perform all of the steps necessary for upgrading an adapter's
7140   *	firmware image.  Normally this requires the cooperation of the
7141   *	existing firmware in order to halt all existing activities
7142   *	but if an invalid mailbox token is passed in we skip that step
7143   *	(though we'll still put the adapter microprocessor into RESET in
7144   *	that case).
7145   *
7146   *	On successful return the new firmware will have been loaded and
7147   *	the adapter will have been fully RESET losing all previous setup
7148   *	state.  On unsuccessful return the adapter may be completely hosed ...
7149   *	positive errno indicates that the adapter is ~probably~ intact, a
7150   *	negative errno indicates that things are looking bad ...
7151   */
t4_fw_upgrade(struct adapter * adap,unsigned int mbox,const u8 * fw_data,unsigned int size,int force)7152  int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7153  		  const u8 *fw_data, unsigned int size, int force)
7154  {
7155  	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7156  	int reset, ret;
7157  
7158  	if (!t4_fw_matches_chip(adap, fw_hdr))
7159  		return -EINVAL;
7160  
7161  	/* Disable CXGB4_FW_OK flag so that mbox commands with CXGB4_FW_OK flag
7162  	 * set wont be sent when we are flashing FW.
7163  	 */
7164  	adap->flags &= ~CXGB4_FW_OK;
7165  
7166  	ret = t4_fw_halt(adap, mbox, force);
7167  	if (ret < 0 && !force)
7168  		goto out;
7169  
7170  	ret = t4_load_fw(adap, fw_data, size);
7171  	if (ret < 0)
7172  		goto out;
7173  
7174  	/*
7175  	 * If there was a Firmware Configuration File stored in FLASH,
7176  	 * there's a good chance that it won't be compatible with the new
7177  	 * Firmware.  In order to prevent difficult to diagnose adapter
7178  	 * initialization issues, we clear out the Firmware Configuration File
7179  	 * portion of the FLASH .  The user will need to re-FLASH a new
7180  	 * Firmware Configuration File which is compatible with the new
7181  	 * Firmware if that's desired.
7182  	 */
7183  	(void)t4_load_cfg(adap, NULL, 0);
7184  
7185  	/*
7186  	 * Older versions of the firmware don't understand the new
7187  	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
7188  	 * restart.  So for newly loaded older firmware we'll have to do the
7189  	 * RESET for it so it starts up on a clean slate.  We can tell if
7190  	 * the newly loaded firmware will handle this right by checking
7191  	 * its header flags to see if it advertises the capability.
7192  	 */
7193  	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
7194  	ret = t4_fw_restart(adap, mbox, reset);
7195  
7196  	/* Grab potentially new Firmware Device Log parameters so we can see
7197  	 * how healthy the new Firmware is.  It's okay to contact the new
7198  	 * Firmware for these parameters even though, as far as it's
7199  	 * concerned, we've never said "HELLO" to it ...
7200  	 */
7201  	(void)t4_init_devlog_params(adap);
7202  out:
7203  	adap->flags |= CXGB4_FW_OK;
7204  	return ret;
7205  }
7206  
7207  /**
7208   *	t4_fl_pkt_align - return the fl packet alignment
7209   *	@adap: the adapter
7210   *
7211   *	T4 has a single field to specify the packing and padding boundary.
7212   *	T5 onwards has separate fields for this and hence the alignment for
7213   *	next packet offset is maximum of these two.
7214   *
7215   */
t4_fl_pkt_align(struct adapter * adap)7216  int t4_fl_pkt_align(struct adapter *adap)
7217  {
7218  	u32 sge_control, sge_control2;
7219  	unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
7220  
7221  	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
7222  
7223  	/* T4 uses a single control field to specify both the PCIe Padding and
7224  	 * Packing Boundary.  T5 introduced the ability to specify these
7225  	 * separately.  The actual Ingress Packet Data alignment boundary
7226  	 * within Packed Buffer Mode is the maximum of these two
7227  	 * specifications.  (Note that it makes no real practical sense to
7228  	 * have the Padding Boundary be larger than the Packing Boundary but you
7229  	 * could set the chip up that way and, in fact, legacy T4 code would
7230  	 * end doing this because it would initialize the Padding Boundary and
7231  	 * leave the Packing Boundary initialized to 0 (16 bytes).)
7232  	 * Padding Boundary values in T6 starts from 8B,
7233  	 * where as it is 32B for T4 and T5.
7234  	 */
7235  	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
7236  		ingpad_shift = INGPADBOUNDARY_SHIFT_X;
7237  	else
7238  		ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
7239  
7240  	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
7241  
7242  	fl_align = ingpadboundary;
7243  	if (!is_t4(adap->params.chip)) {
7244  		/* T5 has a weird interpretation of one of the PCIe Packing
7245  		 * Boundary values.  No idea why ...
7246  		 */
7247  		sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
7248  		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
7249  		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
7250  			ingpackboundary = 16;
7251  		else
7252  			ingpackboundary = 1 << (ingpackboundary +
7253  						INGPACKBOUNDARY_SHIFT_X);
7254  
7255  		fl_align = max(ingpadboundary, ingpackboundary);
7256  	}
7257  	return fl_align;
7258  }
7259  
7260  /**
7261   *	t4_fixup_host_params - fix up host-dependent parameters
7262   *	@adap: the adapter
7263   *	@page_size: the host's Base Page Size
7264   *	@cache_line_size: the host's Cache Line Size
7265   *
7266   *	Various registers in T4 contain values which are dependent on the
7267   *	host's Base Page and Cache Line Sizes.  This function will fix all of
7268   *	those registers with the appropriate values as passed in ...
7269   */
t4_fixup_host_params(struct adapter * adap,unsigned int page_size,unsigned int cache_line_size)7270  int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
7271  			 unsigned int cache_line_size)
7272  {
7273  	unsigned int page_shift = fls(page_size) - 1;
7274  	unsigned int sge_hps = page_shift - 10;
7275  	unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
7276  	unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
7277  	unsigned int fl_align_log = fls(fl_align) - 1;
7278  
7279  	t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
7280  		     HOSTPAGESIZEPF0_V(sge_hps) |
7281  		     HOSTPAGESIZEPF1_V(sge_hps) |
7282  		     HOSTPAGESIZEPF2_V(sge_hps) |
7283  		     HOSTPAGESIZEPF3_V(sge_hps) |
7284  		     HOSTPAGESIZEPF4_V(sge_hps) |
7285  		     HOSTPAGESIZEPF5_V(sge_hps) |
7286  		     HOSTPAGESIZEPF6_V(sge_hps) |
7287  		     HOSTPAGESIZEPF7_V(sge_hps));
7288  
7289  	if (is_t4(adap->params.chip)) {
7290  		t4_set_reg_field(adap, SGE_CONTROL_A,
7291  				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7292  				 EGRSTATUSPAGESIZE_F,
7293  				 INGPADBOUNDARY_V(fl_align_log -
7294  						  INGPADBOUNDARY_SHIFT_X) |
7295  				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7296  	} else {
7297  		unsigned int pack_align;
7298  		unsigned int ingpad, ingpack;
7299  
7300  		/* T5 introduced the separation of the Free List Padding and
7301  		 * Packing Boundaries.  Thus, we can select a smaller Padding
7302  		 * Boundary to avoid uselessly chewing up PCIe Link and Memory
7303  		 * Bandwidth, and use a Packing Boundary which is large enough
7304  		 * to avoid false sharing between CPUs, etc.
7305  		 *
7306  		 * For the PCI Link, the smaller the Padding Boundary the
7307  		 * better.  For the Memory Controller, a smaller Padding
7308  		 * Boundary is better until we cross under the Memory Line
7309  		 * Size (the minimum unit of transfer to/from Memory).  If we
7310  		 * have a Padding Boundary which is smaller than the Memory
7311  		 * Line Size, that'll involve a Read-Modify-Write cycle on the
7312  		 * Memory Controller which is never good.
7313  		 */
7314  
7315  		/* We want the Packing Boundary to be based on the Cache Line
7316  		 * Size in order to help avoid False Sharing performance
7317  		 * issues between CPUs, etc.  We also want the Packing
7318  		 * Boundary to incorporate the PCI-E Maximum Payload Size.  We
7319  		 * get best performance when the Packing Boundary is a
7320  		 * multiple of the Maximum Payload Size.
7321  		 */
7322  		pack_align = fl_align;
7323  		if (pci_is_pcie(adap->pdev)) {
7324  			unsigned int mps, mps_log;
7325  			u16 devctl;
7326  
7327  			/* The PCIe Device Control Maximum Payload Size field
7328  			 * [bits 7:5] encodes sizes as powers of 2 starting at
7329  			 * 128 bytes.
7330  			 */
7331  			pcie_capability_read_word(adap->pdev, PCI_EXP_DEVCTL,
7332  						  &devctl);
7333  			mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
7334  			mps = 1 << mps_log;
7335  			if (mps > pack_align)
7336  				pack_align = mps;
7337  		}
7338  
7339  		/* N.B. T5/T6 have a crazy special interpretation of the "0"
7340  		 * value for the Packing Boundary.  This corresponds to 16
7341  		 * bytes instead of the expected 32 bytes.  So if we want 32
7342  		 * bytes, the best we can really do is 64 bytes ...
7343  		 */
7344  		if (pack_align <= 16) {
7345  			ingpack = INGPACKBOUNDARY_16B_X;
7346  			fl_align = 16;
7347  		} else if (pack_align == 32) {
7348  			ingpack = INGPACKBOUNDARY_64B_X;
7349  			fl_align = 64;
7350  		} else {
7351  			unsigned int pack_align_log = fls(pack_align) - 1;
7352  
7353  			ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
7354  			fl_align = pack_align;
7355  		}
7356  
7357  		/* Use the smallest Ingress Padding which isn't smaller than
7358  		 * the Memory Controller Read/Write Size.  We'll take that as
7359  		 * being 8 bytes since we don't know of any system with a
7360  		 * wider Memory Controller Bus Width.
7361  		 */
7362  		if (is_t5(adap->params.chip))
7363  			ingpad = INGPADBOUNDARY_32B_X;
7364  		else
7365  			ingpad = T6_INGPADBOUNDARY_8B_X;
7366  
7367  		t4_set_reg_field(adap, SGE_CONTROL_A,
7368  				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7369  				 EGRSTATUSPAGESIZE_F,
7370  				 INGPADBOUNDARY_V(ingpad) |
7371  				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7372  		t4_set_reg_field(adap, SGE_CONTROL2_A,
7373  				 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
7374  				 INGPACKBOUNDARY_V(ingpack));
7375  	}
7376  	/*
7377  	 * Adjust various SGE Free List Host Buffer Sizes.
7378  	 *
7379  	 * This is something of a crock since we're using fixed indices into
7380  	 * the array which are also known by the sge.c code and the T4
7381  	 * Firmware Configuration File.  We need to come up with a much better
7382  	 * approach to managing this array.  For now, the first four entries
7383  	 * are:
7384  	 *
7385  	 *   0: Host Page Size
7386  	 *   1: 64KB
7387  	 *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
7388  	 *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
7389  	 *
7390  	 * For the single-MTU buffers in unpacked mode we need to include
7391  	 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
7392  	 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
7393  	 * Padding boundary.  All of these are accommodated in the Factory
7394  	 * Default Firmware Configuration File but we need to adjust it for
7395  	 * this host's cache line size.
7396  	 */
7397  	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
7398  	t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
7399  		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
7400  		     & ~(fl_align-1));
7401  	t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
7402  		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
7403  		     & ~(fl_align-1));
7404  
7405  	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
7406  
7407  	return 0;
7408  }
7409  
7410  /**
7411   *	t4_fw_initialize - ask FW to initialize the device
7412   *	@adap: the adapter
7413   *	@mbox: mailbox to use for the FW command
7414   *
7415   *	Issues a command to FW to partially initialize the device.  This
7416   *	performs initialization that generally doesn't depend on user input.
7417   */
t4_fw_initialize(struct adapter * adap,unsigned int mbox)7418  int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7419  {
7420  	struct fw_initialize_cmd c;
7421  
7422  	memset(&c, 0, sizeof(c));
7423  	INIT_CMD(c, INITIALIZE, WRITE);
7424  	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7425  }
7426  
7427  /**
7428   *	t4_query_params_rw - query FW or device parameters
7429   *	@adap: the adapter
7430   *	@mbox: mailbox to use for the FW command
7431   *	@pf: the PF
7432   *	@vf: the VF
7433   *	@nparams: the number of parameters
7434   *	@params: the parameter names
7435   *	@val: the parameter values
7436   *	@rw: Write and read flag
7437   *	@sleep_ok: if true, we may sleep awaiting mbox cmd completion
7438   *
7439   *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7440   *	queried at once.
7441   */
t4_query_params_rw(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,u32 * val,int rw,bool sleep_ok)7442  int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7443  		       unsigned int vf, unsigned int nparams, const u32 *params,
7444  		       u32 *val, int rw, bool sleep_ok)
7445  {
7446  	int i, ret;
7447  	struct fw_params_cmd c;
7448  	__be32 *p = &c.param[0].mnem;
7449  
7450  	if (nparams > 7)
7451  		return -EINVAL;
7452  
7453  	memset(&c, 0, sizeof(c));
7454  	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7455  				  FW_CMD_REQUEST_F | FW_CMD_READ_F |
7456  				  FW_PARAMS_CMD_PFN_V(pf) |
7457  				  FW_PARAMS_CMD_VFN_V(vf));
7458  	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7459  
7460  	for (i = 0; i < nparams; i++) {
7461  		*p++ = cpu_to_be32(*params++);
7462  		if (rw)
7463  			*p = cpu_to_be32(*(val + i));
7464  		p++;
7465  	}
7466  
7467  	ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7468  	if (ret == 0)
7469  		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7470  			*val++ = be32_to_cpu(*p);
7471  	return ret;
7472  }
7473  
t4_query_params(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,u32 * val)7474  int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7475  		    unsigned int vf, unsigned int nparams, const u32 *params,
7476  		    u32 *val)
7477  {
7478  	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7479  				  true);
7480  }
7481  
t4_query_params_ns(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,u32 * val)7482  int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
7483  		       unsigned int vf, unsigned int nparams, const u32 *params,
7484  		       u32 *val)
7485  {
7486  	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7487  				  false);
7488  }
7489  
7490  /**
7491   *      t4_set_params_timeout - sets FW or device parameters
7492   *      @adap: the adapter
7493   *      @mbox: mailbox to use for the FW command
7494   *      @pf: the PF
7495   *      @vf: the VF
7496   *      @nparams: the number of parameters
7497   *      @params: the parameter names
7498   *      @val: the parameter values
7499   *      @timeout: the timeout time
7500   *
7501   *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7502   *      specified at once.
7503   */
t4_set_params_timeout(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,const u32 * val,int timeout)7504  int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7505  			  unsigned int pf, unsigned int vf,
7506  			  unsigned int nparams, const u32 *params,
7507  			  const u32 *val, int timeout)
7508  {
7509  	struct fw_params_cmd c;
7510  	__be32 *p = &c.param[0].mnem;
7511  
7512  	if (nparams > 7)
7513  		return -EINVAL;
7514  
7515  	memset(&c, 0, sizeof(c));
7516  	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7517  				  FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7518  				  FW_PARAMS_CMD_PFN_V(pf) |
7519  				  FW_PARAMS_CMD_VFN_V(vf));
7520  	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7521  
7522  	while (nparams--) {
7523  		*p++ = cpu_to_be32(*params++);
7524  		*p++ = cpu_to_be32(*val++);
7525  	}
7526  
7527  	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7528  }
7529  
7530  /**
7531   *	t4_set_params - sets FW or device parameters
7532   *	@adap: the adapter
7533   *	@mbox: mailbox to use for the FW command
7534   *	@pf: the PF
7535   *	@vf: the VF
7536   *	@nparams: the number of parameters
7537   *	@params: the parameter names
7538   *	@val: the parameter values
7539   *
7540   *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7541   *	specified at once.
7542   */
t4_set_params(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,const u32 * val)7543  int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7544  		  unsigned int vf, unsigned int nparams, const u32 *params,
7545  		  const u32 *val)
7546  {
7547  	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7548  				     FW_CMD_MAX_TIMEOUT);
7549  }
7550  
7551  /**
7552   *	t4_cfg_pfvf - configure PF/VF resource limits
7553   *	@adap: the adapter
7554   *	@mbox: mailbox to use for the FW command
7555   *	@pf: the PF being configured
7556   *	@vf: the VF being configured
7557   *	@txq: the max number of egress queues
7558   *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7559   *	@rxqi: the max number of interrupt-capable ingress queues
7560   *	@rxq: the max number of interruptless ingress queues
7561   *	@tc: the PCI traffic class
7562   *	@vi: the max number of virtual interfaces
7563   *	@cmask: the channel access rights mask for the PF/VF
7564   *	@pmask: the port access rights mask for the PF/VF
7565   *	@nexact: the maximum number of exact MPS filters
7566   *	@rcaps: read capabilities
7567   *	@wxcaps: write/execute capabilities
7568   *
7569   *	Configures resource limits and capabilities for a physical or virtual
7570   *	function.
7571   */
t4_cfg_pfvf(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int txq,unsigned int txq_eth_ctrl,unsigned int rxqi,unsigned int rxq,unsigned int tc,unsigned int vi,unsigned int cmask,unsigned int pmask,unsigned int nexact,unsigned int rcaps,unsigned int wxcaps)7572  int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7573  		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7574  		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7575  		unsigned int vi, unsigned int cmask, unsigned int pmask,
7576  		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7577  {
7578  	struct fw_pfvf_cmd c;
7579  
7580  	memset(&c, 0, sizeof(c));
7581  	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
7582  				  FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
7583  				  FW_PFVF_CMD_VFN_V(vf));
7584  	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7585  	c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
7586  				     FW_PFVF_CMD_NIQ_V(rxq));
7587  	c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
7588  				    FW_PFVF_CMD_PMASK_V(pmask) |
7589  				    FW_PFVF_CMD_NEQ_V(txq));
7590  	c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
7591  				      FW_PFVF_CMD_NVI_V(vi) |
7592  				      FW_PFVF_CMD_NEXACTF_V(nexact));
7593  	c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
7594  					FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
7595  					FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
7596  	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7597  }
7598  
7599  /**
7600   *	t4_alloc_vi - allocate a virtual interface
7601   *	@adap: the adapter
7602   *	@mbox: mailbox to use for the FW command
7603   *	@port: physical port associated with the VI
7604   *	@pf: the PF owning the VI
7605   *	@vf: the VF owning the VI
7606   *	@nmac: number of MAC addresses needed (1 to 5)
7607   *	@mac: the MAC addresses of the VI
7608   *	@rss_size: size of RSS table slice associated with this VI
7609   *	@vivld: the destination to store the VI Valid value.
7610   *	@vin: the destination to store the VIN value.
7611   *
7612   *	Allocates a virtual interface for the given physical port.  If @mac is
7613   *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7614   *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7615   *	stored consecutively so the space needed is @nmac * 6 bytes.
7616   *	Returns a negative error number or the non-negative VI id.
7617   */
t4_alloc_vi(struct adapter * adap,unsigned int mbox,unsigned int port,unsigned int pf,unsigned int vf,unsigned int nmac,u8 * mac,unsigned int * rss_size,u8 * vivld,u8 * vin)7618  int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7619  		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7620  		unsigned int *rss_size, u8 *vivld, u8 *vin)
7621  {
7622  	int ret;
7623  	struct fw_vi_cmd c;
7624  
7625  	memset(&c, 0, sizeof(c));
7626  	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
7627  				  FW_CMD_WRITE_F | FW_CMD_EXEC_F |
7628  				  FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
7629  	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
7630  	c.portid_pkd = FW_VI_CMD_PORTID_V(port);
7631  	c.nmac = nmac - 1;
7632  
7633  	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7634  	if (ret)
7635  		return ret;
7636  
7637  	if (mac) {
7638  		memcpy(mac, c.mac, sizeof(c.mac));
7639  		switch (nmac) {
7640  		case 5:
7641  			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7642  			fallthrough;
7643  		case 4:
7644  			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7645  			fallthrough;
7646  		case 3:
7647  			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7648  			fallthrough;
7649  		case 2:
7650  			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7651  		}
7652  	}
7653  	if (rss_size)
7654  		*rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
7655  
7656  	if (vivld)
7657  		*vivld = FW_VI_CMD_VFVLD_G(be32_to_cpu(c.alloc_to_len16));
7658  
7659  	if (vin)
7660  		*vin = FW_VI_CMD_VIN_G(be32_to_cpu(c.alloc_to_len16));
7661  
7662  	return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
7663  }
7664  
7665  /**
7666   *	t4_free_vi - free a virtual interface
7667   *	@adap: the adapter
7668   *	@mbox: mailbox to use for the FW command
7669   *	@pf: the PF owning the VI
7670   *	@vf: the VF owning the VI
7671   *	@viid: virtual interface identifiler
7672   *
7673   *	Free a previously allocated virtual interface.
7674   */
t4_free_vi(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int viid)7675  int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7676  	       unsigned int vf, unsigned int viid)
7677  {
7678  	struct fw_vi_cmd c;
7679  
7680  	memset(&c, 0, sizeof(c));
7681  	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
7682  				  FW_CMD_REQUEST_F |
7683  				  FW_CMD_EXEC_F |
7684  				  FW_VI_CMD_PFN_V(pf) |
7685  				  FW_VI_CMD_VFN_V(vf));
7686  	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
7687  	c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
7688  
7689  	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7690  }
7691  
7692  /**
7693   *	t4_set_rxmode - set Rx properties of a virtual interface
7694   *	@adap: the adapter
7695   *	@mbox: mailbox to use for the FW command
7696   *	@viid: the VI id
7697   *	@viid_mirror: the mirror VI id
7698   *	@mtu: the new MTU or -1
7699   *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7700   *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7701   *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7702   *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7703   *	@sleep_ok: if true we may sleep while awaiting command completion
7704   *
7705   *	Sets Rx properties of a virtual interface.
7706   */
t4_set_rxmode(struct adapter * adap,unsigned int mbox,unsigned int viid,unsigned int viid_mirror,int mtu,int promisc,int all_multi,int bcast,int vlanex,bool sleep_ok)7707  int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7708  		  unsigned int viid_mirror, int mtu, int promisc, int all_multi,
7709  		  int bcast, int vlanex, bool sleep_ok)
7710  {
7711  	struct fw_vi_rxmode_cmd c, c_mirror;
7712  	int ret;
7713  
7714  	/* convert to FW values */
7715  	if (mtu < 0)
7716  		mtu = FW_RXMODE_MTU_NO_CHG;
7717  	if (promisc < 0)
7718  		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
7719  	if (all_multi < 0)
7720  		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
7721  	if (bcast < 0)
7722  		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
7723  	if (vlanex < 0)
7724  		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
7725  
7726  	memset(&c, 0, sizeof(c));
7727  	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7728  				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7729  				   FW_VI_RXMODE_CMD_VIID_V(viid));
7730  	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7731  	c.mtu_to_vlanexen =
7732  		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
7733  			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
7734  			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
7735  			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
7736  			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
7737  
7738  	if (viid_mirror) {
7739  		memcpy(&c_mirror, &c, sizeof(c_mirror));
7740  		c_mirror.op_to_viid =
7741  			cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7742  				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7743  				    FW_VI_RXMODE_CMD_VIID_V(viid_mirror));
7744  	}
7745  
7746  	ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7747  	if (ret)
7748  		return ret;
7749  
7750  	if (viid_mirror)
7751  		ret = t4_wr_mbox_meat(adap, mbox, &c_mirror, sizeof(c_mirror),
7752  				      NULL, sleep_ok);
7753  
7754  	return ret;
7755  }
7756  
7757  /**
7758   *      t4_free_encap_mac_filt - frees MPS entry at given index
7759   *      @adap: the adapter
7760   *      @viid: the VI id
7761   *      @idx: index of MPS entry to be freed
7762   *      @sleep_ok: call is allowed to sleep
7763   *
7764   *      Frees the MPS entry at supplied index
7765   *
7766   *      Returns a negative error number or zero on success
7767   */
t4_free_encap_mac_filt(struct adapter * adap,unsigned int viid,int idx,bool sleep_ok)7768  int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
7769  			   int idx, bool sleep_ok)
7770  {
7771  	struct fw_vi_mac_exact *p;
7772  	struct fw_vi_mac_cmd c;
7773  	int ret = 0;
7774  	u32 exact;
7775  
7776  	memset(&c, 0, sizeof(c));
7777  	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7778  				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7779  				   FW_CMD_EXEC_V(0) |
7780  				   FW_VI_MAC_CMD_VIID_V(viid));
7781  	exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC);
7782  	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7783  					  exact |
7784  					  FW_CMD_LEN16_V(1));
7785  	p = c.u.exact;
7786  	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7787  				      FW_VI_MAC_CMD_IDX_V(idx));
7788  	eth_zero_addr(p->macaddr);
7789  	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7790  	return ret;
7791  }
7792  
7793  /**
7794   *	t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
7795   *	@adap: the adapter
7796   *	@viid: the VI id
7797   *	@addr: the MAC address
7798   *	@mask: the mask
7799   *	@idx: index of the entry in mps tcam
7800   *	@lookup_type: MAC address for inner (1) or outer (0) header
7801   *	@port_id: the port index
7802   *	@sleep_ok: call is allowed to sleep
7803   *
7804   *	Removes the mac entry at the specified index using raw mac interface.
7805   *
7806   *	Returns a negative error number on failure.
7807   */
t4_free_raw_mac_filt(struct adapter * adap,unsigned int viid,const u8 * addr,const u8 * mask,unsigned int idx,u8 lookup_type,u8 port_id,bool sleep_ok)7808  int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
7809  			 const u8 *addr, const u8 *mask, unsigned int idx,
7810  			 u8 lookup_type, u8 port_id, bool sleep_ok)
7811  {
7812  	struct fw_vi_mac_cmd c;
7813  	struct fw_vi_mac_raw *p = &c.u.raw;
7814  	u32 val;
7815  
7816  	memset(&c, 0, sizeof(c));
7817  	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7818  				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7819  				   FW_CMD_EXEC_V(0) |
7820  				   FW_VI_MAC_CMD_VIID_V(viid));
7821  	val = FW_CMD_LEN16_V(1) |
7822  	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7823  	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7824  					  FW_CMD_LEN16_V(val));
7825  
7826  	p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) |
7827  				     FW_VI_MAC_ID_BASED_FREE);
7828  
7829  	/* Lookup Type. Outer header: 0, Inner header: 1 */
7830  	p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7831  				   DATAPORTNUM_V(port_id));
7832  	/* Lookup mask and port mask */
7833  	p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7834  				    DATAPORTNUM_V(DATAPORTNUM_M));
7835  
7836  	/* Copy the address and the mask */
7837  	memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7838  	memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7839  
7840  	return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7841  }
7842  
7843  /**
7844   *      t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
7845   *      @adap: the adapter
7846   *      @viid: the VI id
7847   *      @addr: the MAC address
7848   *      @mask: the mask
7849   *      @vni: the VNI id for the tunnel protocol
7850   *      @vni_mask: mask for the VNI id
7851   *      @dip_hit: to enable DIP match for the MPS entry
7852   *      @lookup_type: MAC address for inner (1) or outer (0) header
7853   *      @sleep_ok: call is allowed to sleep
7854   *
7855   *      Allocates an MPS entry with specified MAC address and VNI value.
7856   *
7857   *      Returns a negative error number or the allocated index for this mac.
7858   */
t4_alloc_encap_mac_filt(struct adapter * adap,unsigned int viid,const u8 * addr,const u8 * mask,unsigned int vni,unsigned int vni_mask,u8 dip_hit,u8 lookup_type,bool sleep_ok)7859  int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
7860  			    const u8 *addr, const u8 *mask, unsigned int vni,
7861  			    unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
7862  			    bool sleep_ok)
7863  {
7864  	struct fw_vi_mac_cmd c;
7865  	struct fw_vi_mac_vni *p = c.u.exact_vni;
7866  	int ret = 0;
7867  	u32 val;
7868  
7869  	memset(&c, 0, sizeof(c));
7870  	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7871  				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7872  				   FW_VI_MAC_CMD_VIID_V(viid));
7873  	val = FW_CMD_LEN16_V(1) |
7874  	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI);
7875  	c.freemacs_to_len16 = cpu_to_be32(val);
7876  	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7877  				      FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
7878  	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7879  	memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
7880  
7881  	p->lookup_type_to_vni =
7882  		cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) |
7883  			    FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) |
7884  			    FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type));
7885  	p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask));
7886  	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7887  	if (ret == 0)
7888  		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7889  	return ret;
7890  }
7891  
7892  /**
7893   *	t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
7894   *	@adap: the adapter
7895   *	@viid: the VI id
7896   *	@addr: the MAC address
7897   *	@mask: the mask
7898   *	@idx: index at which to add this entry
7899   *	@lookup_type: MAC address for inner (1) or outer (0) header
7900   *	@port_id: the port index
7901   *	@sleep_ok: call is allowed to sleep
7902   *
7903   *	Adds the mac entry at the specified index using raw mac interface.
7904   *
7905   *	Returns a negative error number or the allocated index for this mac.
7906   */
t4_alloc_raw_mac_filt(struct adapter * adap,unsigned int viid,const u8 * addr,const u8 * mask,unsigned int idx,u8 lookup_type,u8 port_id,bool sleep_ok)7907  int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
7908  			  const u8 *addr, const u8 *mask, unsigned int idx,
7909  			  u8 lookup_type, u8 port_id, bool sleep_ok)
7910  {
7911  	int ret = 0;
7912  	struct fw_vi_mac_cmd c;
7913  	struct fw_vi_mac_raw *p = &c.u.raw;
7914  	u32 val;
7915  
7916  	memset(&c, 0, sizeof(c));
7917  	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7918  				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7919  				   FW_VI_MAC_CMD_VIID_V(viid));
7920  	val = FW_CMD_LEN16_V(1) |
7921  	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7922  	c.freemacs_to_len16 = cpu_to_be32(val);
7923  
7924  	/* Specify that this is an inner mac address */
7925  	p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx));
7926  
7927  	/* Lookup Type. Outer header: 0, Inner header: 1 */
7928  	p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7929  				   DATAPORTNUM_V(port_id));
7930  	/* Lookup mask and port mask */
7931  	p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7932  				    DATAPORTNUM_V(DATAPORTNUM_M));
7933  
7934  	/* Copy the address and the mask */
7935  	memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7936  	memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7937  
7938  	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7939  	if (ret == 0) {
7940  		ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd));
7941  		if (ret != idx)
7942  			ret = -ENOMEM;
7943  	}
7944  
7945  	return ret;
7946  }
7947  
7948  /**
7949   *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7950   *	@adap: the adapter
7951   *	@mbox: mailbox to use for the FW command
7952   *	@viid: the VI id
7953   *	@free: if true any existing filters for this VI id are first removed
7954   *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7955   *	@addr: the MAC address(es)
7956   *	@idx: where to store the index of each allocated filter
7957   *	@hash: pointer to hash address filter bitmap
7958   *	@sleep_ok: call is allowed to sleep
7959   *
7960   *	Allocates an exact-match filter for each of the supplied addresses and
7961   *	sets it to the corresponding address.  If @idx is not %NULL it should
7962   *	have at least @naddr entries, each of which will be set to the index of
7963   *	the filter allocated for the corresponding MAC address.  If a filter
7964   *	could not be allocated for an address its index is set to 0xffff.
7965   *	If @hash is not %NULL addresses that fail to allocate an exact filter
7966   *	are hashed and update the hash filter bitmap pointed at by @hash.
7967   *
7968   *	Returns a negative error number or the number of filters allocated.
7969   */
t4_alloc_mac_filt(struct adapter * adap,unsigned int mbox,unsigned int viid,bool free,unsigned int naddr,const u8 ** addr,u16 * idx,u64 * hash,bool sleep_ok)7970  int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7971  		      unsigned int viid, bool free, unsigned int naddr,
7972  		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7973  {
7974  	int offset, ret = 0;
7975  	struct fw_vi_mac_cmd c;
7976  	unsigned int nfilters = 0;
7977  	unsigned int max_naddr = adap->params.arch.mps_tcam_size;
7978  	unsigned int rem = naddr;
7979  
7980  	if (naddr > max_naddr)
7981  		return -EINVAL;
7982  
7983  	for (offset = 0; offset < naddr ; /**/) {
7984  		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
7985  					 rem : ARRAY_SIZE(c.u.exact));
7986  		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7987  						     u.exact[fw_naddr]), 16);
7988  		struct fw_vi_mac_exact *p;
7989  		int i;
7990  
7991  		memset(&c, 0, sizeof(c));
7992  		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7993  					   FW_CMD_REQUEST_F |
7994  					   FW_CMD_WRITE_F |
7995  					   FW_CMD_EXEC_V(free) |
7996  					   FW_VI_MAC_CMD_VIID_V(viid));
7997  		c.freemacs_to_len16 =
7998  			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
7999  				    FW_CMD_LEN16_V(len16));
8000  
8001  		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8002  			p->valid_to_idx =
8003  				cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8004  					    FW_VI_MAC_CMD_IDX_V(
8005  						    FW_VI_MAC_ADD_MAC));
8006  			memcpy(p->macaddr, addr[offset + i],
8007  			       sizeof(p->macaddr));
8008  		}
8009  
8010  		/* It's okay if we run out of space in our MAC address arena.
8011  		 * Some of the addresses we submit may get stored so we need
8012  		 * to run through the reply to see what the results were ...
8013  		 */
8014  		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8015  		if (ret && ret != -FW_ENOMEM)
8016  			break;
8017  
8018  		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8019  			u16 index = FW_VI_MAC_CMD_IDX_G(
8020  					be16_to_cpu(p->valid_to_idx));
8021  
8022  			if (idx)
8023  				idx[offset + i] = (index >= max_naddr ?
8024  						   0xffff : index);
8025  			if (index < max_naddr)
8026  				nfilters++;
8027  			else if (hash)
8028  				*hash |= (1ULL <<
8029  					  hash_mac_addr(addr[offset + i]));
8030  		}
8031  
8032  		free = false;
8033  		offset += fw_naddr;
8034  		rem -= fw_naddr;
8035  	}
8036  
8037  	if (ret == 0 || ret == -FW_ENOMEM)
8038  		ret = nfilters;
8039  	return ret;
8040  }
8041  
8042  /**
8043   *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
8044   *	@adap: the adapter
8045   *	@mbox: mailbox to use for the FW command
8046   *	@viid: the VI id
8047   *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
8048   *	@addr: the MAC address(es)
8049   *	@sleep_ok: call is allowed to sleep
8050   *
8051   *	Frees the exact-match filter for each of the supplied addresses
8052   *
8053   *	Returns a negative error number or the number of filters freed.
8054   */
t4_free_mac_filt(struct adapter * adap,unsigned int mbox,unsigned int viid,unsigned int naddr,const u8 ** addr,bool sleep_ok)8055  int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
8056  		     unsigned int viid, unsigned int naddr,
8057  		     const u8 **addr, bool sleep_ok)
8058  {
8059  	int offset, ret = 0;
8060  	struct fw_vi_mac_cmd c;
8061  	unsigned int nfilters = 0;
8062  	unsigned int max_naddr = is_t4(adap->params.chip) ?
8063  				       NUM_MPS_CLS_SRAM_L_INSTANCES :
8064  				       NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8065  	unsigned int rem = naddr;
8066  
8067  	if (naddr > max_naddr)
8068  		return -EINVAL;
8069  
8070  	for (offset = 0; offset < (int)naddr ; /**/) {
8071  		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8072  					 ? rem
8073  					 : ARRAY_SIZE(c.u.exact));
8074  		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8075  						     u.exact[fw_naddr]), 16);
8076  		struct fw_vi_mac_exact *p;
8077  		int i;
8078  
8079  		memset(&c, 0, sizeof(c));
8080  		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8081  				     FW_CMD_REQUEST_F |
8082  				     FW_CMD_WRITE_F |
8083  				     FW_CMD_EXEC_V(0) |
8084  				     FW_VI_MAC_CMD_VIID_V(viid));
8085  		c.freemacs_to_len16 =
8086  				cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
8087  					    FW_CMD_LEN16_V(len16));
8088  
8089  		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
8090  			p->valid_to_idx = cpu_to_be16(
8091  				FW_VI_MAC_CMD_VALID_F |
8092  				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
8093  			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8094  		}
8095  
8096  		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8097  		if (ret)
8098  			break;
8099  
8100  		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8101  			u16 index = FW_VI_MAC_CMD_IDX_G(
8102  						be16_to_cpu(p->valid_to_idx));
8103  
8104  			if (index < max_naddr)
8105  				nfilters++;
8106  		}
8107  
8108  		offset += fw_naddr;
8109  		rem -= fw_naddr;
8110  	}
8111  
8112  	if (ret == 0)
8113  		ret = nfilters;
8114  	return ret;
8115  }
8116  
8117  /**
8118   *	t4_change_mac - modifies the exact-match filter for a MAC address
8119   *	@adap: the adapter
8120   *	@mbox: mailbox to use for the FW command
8121   *	@viid: the VI id
8122   *	@idx: index of existing filter for old value of MAC address, or -1
8123   *	@addr: the new MAC address value
8124   *	@persist: whether a new MAC allocation should be persistent
8125   *	@smt_idx: the destination to store the new SMT index.
8126   *
8127   *	Modifies an exact-match filter and sets it to the new MAC address.
8128   *	Note that in general it is not possible to modify the value of a given
8129   *	filter so the generic way to modify an address filter is to free the one
8130   *	being used by the old address value and allocate a new filter for the
8131   *	new address value.  @idx can be -1 if the address is a new addition.
8132   *
8133   *	Returns a negative error number or the index of the filter with the new
8134   *	MAC value.
8135   */
t4_change_mac(struct adapter * adap,unsigned int mbox,unsigned int viid,int idx,const u8 * addr,bool persist,u8 * smt_idx)8136  int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8137  		  int idx, const u8 *addr, bool persist, u8 *smt_idx)
8138  {
8139  	int ret, mode;
8140  	struct fw_vi_mac_cmd c;
8141  	struct fw_vi_mac_exact *p = c.u.exact;
8142  	unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
8143  
8144  	if (idx < 0)                             /* new allocation */
8145  		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8146  	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8147  
8148  	memset(&c, 0, sizeof(c));
8149  	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8150  				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8151  				   FW_VI_MAC_CMD_VIID_V(viid));
8152  	c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
8153  	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8154  				      FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
8155  				      FW_VI_MAC_CMD_IDX_V(idx));
8156  	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8157  
8158  	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8159  	if (ret == 0) {
8160  		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
8161  		if (ret >= max_mac_addr)
8162  			ret = -ENOMEM;
8163  		if (smt_idx) {
8164  			if (adap->params.viid_smt_extn_support) {
8165  				*smt_idx = FW_VI_MAC_CMD_SMTID_G
8166  						    (be32_to_cpu(c.op_to_viid));
8167  			} else {
8168  				/* In T4/T5, SMT contains 256 SMAC entries
8169  				 * organized in 128 rows of 2 entries each.
8170  				 * In T6, SMT contains 256 SMAC entries in
8171  				 * 256 rows.
8172  				 */
8173  				if (CHELSIO_CHIP_VERSION(adap->params.chip) <=
8174  								     CHELSIO_T5)
8175  					*smt_idx = (viid & FW_VIID_VIN_M) << 1;
8176  				else
8177  					*smt_idx = (viid & FW_VIID_VIN_M);
8178  			}
8179  		}
8180  	}
8181  	return ret;
8182  }
8183  
8184  /**
8185   *	t4_set_addr_hash - program the MAC inexact-match hash filter
8186   *	@adap: the adapter
8187   *	@mbox: mailbox to use for the FW command
8188   *	@viid: the VI id
8189   *	@ucast: whether the hash filter should also match unicast addresses
8190   *	@vec: the value to be written to the hash filter
8191   *	@sleep_ok: call is allowed to sleep
8192   *
8193   *	Sets the 64-bit inexact-match hash filter for a virtual interface.
8194   */
t4_set_addr_hash(struct adapter * adap,unsigned int mbox,unsigned int viid,bool ucast,u64 vec,bool sleep_ok)8195  int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8196  		     bool ucast, u64 vec, bool sleep_ok)
8197  {
8198  	struct fw_vi_mac_cmd c;
8199  
8200  	memset(&c, 0, sizeof(c));
8201  	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8202  				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8203  				   FW_VI_ENABLE_CMD_VIID_V(viid));
8204  	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
8205  					  FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
8206  					  FW_CMD_LEN16_V(1));
8207  	c.u.hash.hashvec = cpu_to_be64(vec);
8208  	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8209  }
8210  
8211  /**
8212   *      t4_enable_vi_params - enable/disable a virtual interface
8213   *      @adap: the adapter
8214   *      @mbox: mailbox to use for the FW command
8215   *      @viid: the VI id
8216   *      @rx_en: 1=enable Rx, 0=disable Rx
8217   *      @tx_en: 1=enable Tx, 0=disable Tx
8218   *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8219   *
8220   *      Enables/disables a virtual interface.  Note that setting DCB Enable
8221   *      only makes sense when enabling a Virtual Interface ...
8222   */
t4_enable_vi_params(struct adapter * adap,unsigned int mbox,unsigned int viid,bool rx_en,bool tx_en,bool dcb_en)8223  int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8224  			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8225  {
8226  	struct fw_vi_enable_cmd c;
8227  
8228  	memset(&c, 0, sizeof(c));
8229  	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8230  				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8231  				   FW_VI_ENABLE_CMD_VIID_V(viid));
8232  	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
8233  				     FW_VI_ENABLE_CMD_EEN_V(tx_en) |
8234  				     FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
8235  				     FW_LEN16(c));
8236  	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8237  }
8238  
8239  /**
8240   *	t4_enable_vi - enable/disable a virtual interface
8241   *	@adap: the adapter
8242   *	@mbox: mailbox to use for the FW command
8243   *	@viid: the VI id
8244   *	@rx_en: 1=enable Rx, 0=disable Rx
8245   *	@tx_en: 1=enable Tx, 0=disable Tx
8246   *
8247   *	Enables/disables a virtual interface.
8248   */
t4_enable_vi(struct adapter * adap,unsigned int mbox,unsigned int viid,bool rx_en,bool tx_en)8249  int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8250  		 bool rx_en, bool tx_en)
8251  {
8252  	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8253  }
8254  
8255  /**
8256   *	t4_enable_pi_params - enable/disable a Port's Virtual Interface
8257   *      @adap: the adapter
8258   *      @mbox: mailbox to use for the FW command
8259   *      @pi: the Port Information structure
8260   *      @rx_en: 1=enable Rx, 0=disable Rx
8261   *      @tx_en: 1=enable Tx, 0=disable Tx
8262   *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8263   *
8264   *      Enables/disables a Port's Virtual Interface.  Note that setting DCB
8265   *	Enable only makes sense when enabling a Virtual Interface ...
8266   *	If the Virtual Interface enable/disable operation is successful,
8267   *	we notify the OS-specific code of a potential Link Status change
8268   *	via the OS Contract API t4_os_link_changed().
8269   */
t4_enable_pi_params(struct adapter * adap,unsigned int mbox,struct port_info * pi,bool rx_en,bool tx_en,bool dcb_en)8270  int t4_enable_pi_params(struct adapter *adap, unsigned int mbox,
8271  			struct port_info *pi,
8272  			bool rx_en, bool tx_en, bool dcb_en)
8273  {
8274  	int ret = t4_enable_vi_params(adap, mbox, pi->viid,
8275  				      rx_en, tx_en, dcb_en);
8276  	if (ret)
8277  		return ret;
8278  	t4_os_link_changed(adap, pi->port_id,
8279  			   rx_en && tx_en && pi->link_cfg.link_ok);
8280  	return 0;
8281  }
8282  
8283  /**
8284   *	t4_identify_port - identify a VI's port by blinking its LED
8285   *	@adap: the adapter
8286   *	@mbox: mailbox to use for the FW command
8287   *	@viid: the VI id
8288   *	@nblinks: how many times to blink LED at 2.5 Hz
8289   *
8290   *	Identifies a VI's port by blinking its LED.
8291   */
t4_identify_port(struct adapter * adap,unsigned int mbox,unsigned int viid,unsigned int nblinks)8292  int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8293  		     unsigned int nblinks)
8294  {
8295  	struct fw_vi_enable_cmd c;
8296  
8297  	memset(&c, 0, sizeof(c));
8298  	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8299  				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8300  				   FW_VI_ENABLE_CMD_VIID_V(viid));
8301  	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
8302  	c.blinkdur = cpu_to_be16(nblinks);
8303  	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8304  }
8305  
8306  /**
8307   *	t4_iq_stop - stop an ingress queue and its FLs
8308   *	@adap: the adapter
8309   *	@mbox: mailbox to use for the FW command
8310   *	@pf: the PF owning the queues
8311   *	@vf: the VF owning the queues
8312   *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8313   *	@iqid: ingress queue id
8314   *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8315   *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8316   *
8317   *	Stops an ingress queue and its associated FLs, if any.  This causes
8318   *	any current or future data/messages destined for these queues to be
8319   *	tossed.
8320   */
t4_iq_stop(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int iqtype,unsigned int iqid,unsigned int fl0id,unsigned int fl1id)8321  int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8322  	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8323  	       unsigned int fl0id, unsigned int fl1id)
8324  {
8325  	struct fw_iq_cmd c;
8326  
8327  	memset(&c, 0, sizeof(c));
8328  	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8329  				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8330  				  FW_IQ_CMD_VFN_V(vf));
8331  	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
8332  	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8333  	c.iqid = cpu_to_be16(iqid);
8334  	c.fl0id = cpu_to_be16(fl0id);
8335  	c.fl1id = cpu_to_be16(fl1id);
8336  	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8337  }
8338  
8339  /**
8340   *	t4_iq_free - free an ingress queue and its FLs
8341   *	@adap: the adapter
8342   *	@mbox: mailbox to use for the FW command
8343   *	@pf: the PF owning the queues
8344   *	@vf: the VF owning the queues
8345   *	@iqtype: the ingress queue type
8346   *	@iqid: ingress queue id
8347   *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8348   *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8349   *
8350   *	Frees an ingress queue and its associated FLs, if any.
8351   */
t4_iq_free(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int iqtype,unsigned int iqid,unsigned int fl0id,unsigned int fl1id)8352  int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8353  	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8354  	       unsigned int fl0id, unsigned int fl1id)
8355  {
8356  	struct fw_iq_cmd c;
8357  
8358  	memset(&c, 0, sizeof(c));
8359  	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8360  				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8361  				  FW_IQ_CMD_VFN_V(vf));
8362  	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
8363  	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8364  	c.iqid = cpu_to_be16(iqid);
8365  	c.fl0id = cpu_to_be16(fl0id);
8366  	c.fl1id = cpu_to_be16(fl1id);
8367  	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8368  }
8369  
8370  /**
8371   *	t4_eth_eq_free - free an Ethernet egress queue
8372   *	@adap: the adapter
8373   *	@mbox: mailbox to use for the FW command
8374   *	@pf: the PF owning the queue
8375   *	@vf: the VF owning the queue
8376   *	@eqid: egress queue id
8377   *
8378   *	Frees an Ethernet egress queue.
8379   */
t4_eth_eq_free(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int eqid)8380  int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8381  		   unsigned int vf, unsigned int eqid)
8382  {
8383  	struct fw_eq_eth_cmd c;
8384  
8385  	memset(&c, 0, sizeof(c));
8386  	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
8387  				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8388  				  FW_EQ_ETH_CMD_PFN_V(pf) |
8389  				  FW_EQ_ETH_CMD_VFN_V(vf));
8390  	c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
8391  	c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
8392  	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8393  }
8394  
8395  /**
8396   *	t4_ctrl_eq_free - free a control egress queue
8397   *	@adap: the adapter
8398   *	@mbox: mailbox to use for the FW command
8399   *	@pf: the PF owning the queue
8400   *	@vf: the VF owning the queue
8401   *	@eqid: egress queue id
8402   *
8403   *	Frees a control egress queue.
8404   */
t4_ctrl_eq_free(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int eqid)8405  int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8406  		    unsigned int vf, unsigned int eqid)
8407  {
8408  	struct fw_eq_ctrl_cmd c;
8409  
8410  	memset(&c, 0, sizeof(c));
8411  	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
8412  				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8413  				  FW_EQ_CTRL_CMD_PFN_V(pf) |
8414  				  FW_EQ_CTRL_CMD_VFN_V(vf));
8415  	c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
8416  	c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
8417  	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8418  }
8419  
8420  /**
8421   *	t4_ofld_eq_free - free an offload egress queue
8422   *	@adap: the adapter
8423   *	@mbox: mailbox to use for the FW command
8424   *	@pf: the PF owning the queue
8425   *	@vf: the VF owning the queue
8426   *	@eqid: egress queue id
8427   *
8428   *	Frees a control egress queue.
8429   */
t4_ofld_eq_free(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int eqid)8430  int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8431  		    unsigned int vf, unsigned int eqid)
8432  {
8433  	struct fw_eq_ofld_cmd c;
8434  
8435  	memset(&c, 0, sizeof(c));
8436  	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
8437  				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8438  				  FW_EQ_OFLD_CMD_PFN_V(pf) |
8439  				  FW_EQ_OFLD_CMD_VFN_V(vf));
8440  	c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
8441  	c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
8442  	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8443  }
8444  
8445  /**
8446   *	t4_link_down_rc_str - return a string for a Link Down Reason Code
8447   *	@link_down_rc: Link Down Reason Code
8448   *
8449   *	Returns a string representation of the Link Down Reason Code.
8450   */
t4_link_down_rc_str(unsigned char link_down_rc)8451  static const char *t4_link_down_rc_str(unsigned char link_down_rc)
8452  {
8453  	static const char * const reason[] = {
8454  		"Link Down",
8455  		"Remote Fault",
8456  		"Auto-negotiation Failure",
8457  		"Reserved",
8458  		"Insufficient Airflow",
8459  		"Unable To Determine Reason",
8460  		"No RX Signal Detected",
8461  		"Reserved",
8462  	};
8463  
8464  	if (link_down_rc >= ARRAY_SIZE(reason))
8465  		return "Bad Reason Code";
8466  
8467  	return reason[link_down_rc];
8468  }
8469  
8470  /* Return the highest speed set in the port capabilities, in Mb/s. */
fwcap_to_speed(fw_port_cap32_t caps)8471  static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
8472  {
8473  	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8474  		do { \
8475  			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8476  				return __speed; \
8477  		} while (0)
8478  
8479  	TEST_SPEED_RETURN(400G, 400000);
8480  	TEST_SPEED_RETURN(200G, 200000);
8481  	TEST_SPEED_RETURN(100G, 100000);
8482  	TEST_SPEED_RETURN(50G,   50000);
8483  	TEST_SPEED_RETURN(40G,   40000);
8484  	TEST_SPEED_RETURN(25G,   25000);
8485  	TEST_SPEED_RETURN(10G,   10000);
8486  	TEST_SPEED_RETURN(1G,     1000);
8487  	TEST_SPEED_RETURN(100M,    100);
8488  
8489  	#undef TEST_SPEED_RETURN
8490  
8491  	return 0;
8492  }
8493  
8494  /**
8495   *	fwcap_to_fwspeed - return highest speed in Port Capabilities
8496   *	@acaps: advertised Port Capabilities
8497   *
8498   *	Get the highest speed for the port from the advertised Port
8499   *	Capabilities.  It will be either the highest speed from the list of
8500   *	speeds or whatever user has set using ethtool.
8501   */
fwcap_to_fwspeed(fw_port_cap32_t acaps)8502  static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
8503  {
8504  	#define TEST_SPEED_RETURN(__caps_speed) \
8505  		do { \
8506  			if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8507  				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8508  		} while (0)
8509  
8510  	TEST_SPEED_RETURN(400G);
8511  	TEST_SPEED_RETURN(200G);
8512  	TEST_SPEED_RETURN(100G);
8513  	TEST_SPEED_RETURN(50G);
8514  	TEST_SPEED_RETURN(40G);
8515  	TEST_SPEED_RETURN(25G);
8516  	TEST_SPEED_RETURN(10G);
8517  	TEST_SPEED_RETURN(1G);
8518  	TEST_SPEED_RETURN(100M);
8519  
8520  	#undef TEST_SPEED_RETURN
8521  
8522  	return 0;
8523  }
8524  
8525  /**
8526   *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8527   *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8528   *
8529   *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8530   *	32-bit Port Capabilities value.
8531   */
lstatus_to_fwcap(u32 lstatus)8532  static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
8533  {
8534  	fw_port_cap32_t linkattr = 0;
8535  
8536  	/* Unfortunately the format of the Link Status in the old
8537  	 * 16-bit Port Information message isn't the same as the
8538  	 * 16-bit Port Capabilities bitfield used everywhere else ...
8539  	 */
8540  	if (lstatus & FW_PORT_CMD_RXPAUSE_F)
8541  		linkattr |= FW_PORT_CAP32_FC_RX;
8542  	if (lstatus & FW_PORT_CMD_TXPAUSE_F)
8543  		linkattr |= FW_PORT_CAP32_FC_TX;
8544  	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
8545  		linkattr |= FW_PORT_CAP32_SPEED_100M;
8546  	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
8547  		linkattr |= FW_PORT_CAP32_SPEED_1G;
8548  	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
8549  		linkattr |= FW_PORT_CAP32_SPEED_10G;
8550  	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
8551  		linkattr |= FW_PORT_CAP32_SPEED_25G;
8552  	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
8553  		linkattr |= FW_PORT_CAP32_SPEED_40G;
8554  	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
8555  		linkattr |= FW_PORT_CAP32_SPEED_100G;
8556  
8557  	return linkattr;
8558  }
8559  
8560  /**
8561   *	t4_handle_get_port_info - process a FW reply message
8562   *	@pi: the port info
8563   *	@rpl: start of the FW message
8564   *
8565   *	Processes a GET_PORT_INFO FW reply message.
8566   */
t4_handle_get_port_info(struct port_info * pi,const __be64 * rpl)8567  void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
8568  {
8569  	const struct fw_port_cmd *cmd = (const void *)rpl;
8570  	fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
8571  	struct link_config *lc = &pi->link_cfg;
8572  	struct adapter *adapter = pi->adapter;
8573  	unsigned int speed, fc, fec, adv_fc;
8574  	enum fw_port_module_type mod_type;
8575  	int action, link_ok, linkdnrc;
8576  	enum fw_port_type port_type;
8577  
8578  	/* Extract the various fields from the Port Information message.
8579  	 */
8580  	action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
8581  	switch (action) {
8582  	case FW_PORT_ACTION_GET_PORT_INFO: {
8583  		u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
8584  
8585  		link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
8586  		linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
8587  		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
8588  		mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
8589  		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
8590  		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
8591  		lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
8592  		linkattr = lstatus_to_fwcap(lstatus);
8593  		break;
8594  	}
8595  
8596  	case FW_PORT_ACTION_GET_PORT_INFO32: {
8597  		u32 lstatus32;
8598  
8599  		lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
8600  		link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
8601  		linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
8602  		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
8603  		mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
8604  		pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
8605  		acaps = be32_to_cpu(cmd->u.info32.acaps32);
8606  		lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
8607  		linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
8608  		break;
8609  	}
8610  
8611  	default:
8612  		dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
8613  			be32_to_cpu(cmd->action_to_len16));
8614  		return;
8615  	}
8616  
8617  	fec = fwcap_to_cc_fec(acaps);
8618  	adv_fc = fwcap_to_cc_pause(acaps);
8619  	fc = fwcap_to_cc_pause(linkattr);
8620  	speed = fwcap_to_speed(linkattr);
8621  
8622  	/* Reset state for communicating new Transceiver Module status and
8623  	 * whether the OS-dependent layer wants us to redo the current
8624  	 * "sticky" L1 Configure Link Parameters.
8625  	 */
8626  	lc->new_module = false;
8627  	lc->redo_l1cfg = false;
8628  
8629  	if (mod_type != pi->mod_type) {
8630  		/* With the newer SFP28 and QSFP28 Transceiver Module Types,
8631  		 * various fundamental Port Capabilities which used to be
8632  		 * immutable can now change radically.  We can now have
8633  		 * Speeds, Auto-Negotiation, Forward Error Correction, etc.
8634  		 * all change based on what Transceiver Module is inserted.
8635  		 * So we need to record the Physical "Port" Capabilities on
8636  		 * every Transceiver Module change.
8637  		 */
8638  		lc->pcaps = pcaps;
8639  
8640  		/* When a new Transceiver Module is inserted, the Firmware
8641  		 * will examine its i2c EPROM to determine its type and
8642  		 * general operating parameters including things like Forward
8643  		 * Error Control, etc.  Various IEEE 802.3 standards dictate
8644  		 * how to interpret these i2c values to determine default
8645  		 * "sutomatic" settings.  We record these for future use when
8646  		 * the user explicitly requests these standards-based values.
8647  		 */
8648  		lc->def_acaps = acaps;
8649  
8650  		/* Some versions of the early T6 Firmware "cheated" when
8651  		 * handling different Transceiver Modules by changing the
8652  		 * underlaying Port Type reported to the Host Drivers.  As
8653  		 * such we need to capture whatever Port Type the Firmware
8654  		 * sends us and record it in case it's different from what we
8655  		 * were told earlier.  Unfortunately, since Firmware is
8656  		 * forever, we'll need to keep this code here forever, but in
8657  		 * later T6 Firmware it should just be an assignment of the
8658  		 * same value already recorded.
8659  		 */
8660  		pi->port_type = port_type;
8661  
8662  		/* Record new Module Type information.
8663  		 */
8664  		pi->mod_type = mod_type;
8665  
8666  		/* Let the OS-dependent layer know if we have a new
8667  		 * Transceiver Module inserted.
8668  		 */
8669  		lc->new_module = t4_is_inserted_mod_type(mod_type);
8670  
8671  		t4_os_portmod_changed(adapter, pi->port_id);
8672  	}
8673  
8674  	if (link_ok != lc->link_ok || speed != lc->speed ||
8675  	    fc != lc->fc || adv_fc != lc->advertised_fc ||
8676  	    fec != lc->fec) {
8677  		/* something changed */
8678  		if (!link_ok && lc->link_ok) {
8679  			lc->link_down_rc = linkdnrc;
8680  			dev_warn_ratelimited(adapter->pdev_dev,
8681  					     "Port %d link down, reason: %s\n",
8682  					     pi->tx_chan,
8683  					     t4_link_down_rc_str(linkdnrc));
8684  		}
8685  		lc->link_ok = link_ok;
8686  		lc->speed = speed;
8687  		lc->advertised_fc = adv_fc;
8688  		lc->fc = fc;
8689  		lc->fec = fec;
8690  
8691  		lc->lpacaps = lpacaps;
8692  		lc->acaps = acaps & ADVERT_MASK;
8693  
8694  		/* If we're not physically capable of Auto-Negotiation, note
8695  		 * this as Auto-Negotiation disabled.  Otherwise, we track
8696  		 * what Auto-Negotiation settings we have.  Note parallel
8697  		 * structure in t4_link_l1cfg_core() and init_link_config().
8698  		 */
8699  		if (!(lc->acaps & FW_PORT_CAP32_ANEG)) {
8700  			lc->autoneg = AUTONEG_DISABLE;
8701  		} else if (lc->acaps & FW_PORT_CAP32_ANEG) {
8702  			lc->autoneg = AUTONEG_ENABLE;
8703  		} else {
8704  			/* When Autoneg is disabled, user needs to set
8705  			 * single speed.
8706  			 * Similar to cxgb4_ethtool.c: set_link_ksettings
8707  			 */
8708  			lc->acaps = 0;
8709  			lc->speed_caps = fwcap_to_fwspeed(acaps);
8710  			lc->autoneg = AUTONEG_DISABLE;
8711  		}
8712  
8713  		t4_os_link_changed(adapter, pi->port_id, link_ok);
8714  	}
8715  
8716  	/* If we have a new Transceiver Module and the OS-dependent code has
8717  	 * told us that it wants us to redo whatever "sticky" L1 Configuration
8718  	 * Link Parameters are set, do that now.
8719  	 */
8720  	if (lc->new_module && lc->redo_l1cfg) {
8721  		struct link_config old_lc;
8722  		int ret;
8723  
8724  		/* Save the current L1 Configuration and restore it if an
8725  		 * error occurs.  We probably should fix the l1_cfg*()
8726  		 * routines not to change the link_config when an error
8727  		 * occurs ...
8728  		 */
8729  		old_lc = *lc;
8730  		ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc);
8731  		if (ret) {
8732  			*lc = old_lc;
8733  			dev_warn(adapter->pdev_dev,
8734  				 "Attempt to update new Transceiver Module settings failed\n");
8735  		}
8736  	}
8737  	lc->new_module = false;
8738  	lc->redo_l1cfg = false;
8739  }
8740  
8741  /**
8742   *	t4_update_port_info - retrieve and update port information if changed
8743   *	@pi: the port_info
8744   *
8745   *	We issue a Get Port Information Command to the Firmware and, if
8746   *	successful, we check to see if anything is different from what we
8747   *	last recorded and update things accordingly.
8748   */
t4_update_port_info(struct port_info * pi)8749  int t4_update_port_info(struct port_info *pi)
8750  {
8751  	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8752  	struct fw_port_cmd port_cmd;
8753  	int ret;
8754  
8755  	memset(&port_cmd, 0, sizeof(port_cmd));
8756  	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8757  					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8758  					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8759  	port_cmd.action_to_len16 = cpu_to_be32(
8760  		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8761  				     ? FW_PORT_ACTION_GET_PORT_INFO
8762  				     : FW_PORT_ACTION_GET_PORT_INFO32) |
8763  		FW_LEN16(port_cmd));
8764  	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8765  			 &port_cmd, sizeof(port_cmd), &port_cmd);
8766  	if (ret)
8767  		return ret;
8768  
8769  	t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
8770  	return 0;
8771  }
8772  
8773  /**
8774   *	t4_get_link_params - retrieve basic link parameters for given port
8775   *	@pi: the port
8776   *	@link_okp: value return pointer for link up/down
8777   *	@speedp: value return pointer for speed (Mb/s)
8778   *	@mtup: value return pointer for mtu
8779   *
8780   *	Retrieves basic link parameters for a port: link up/down, speed (Mb/s),
8781   *	and MTU for a specified port.  A negative error is returned on
8782   *	failure; 0 on success.
8783   */
t4_get_link_params(struct port_info * pi,unsigned int * link_okp,unsigned int * speedp,unsigned int * mtup)8784  int t4_get_link_params(struct port_info *pi, unsigned int *link_okp,
8785  		       unsigned int *speedp, unsigned int *mtup)
8786  {
8787  	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8788  	unsigned int action, link_ok, mtu;
8789  	struct fw_port_cmd port_cmd;
8790  	fw_port_cap32_t linkattr;
8791  	int ret;
8792  
8793  	memset(&port_cmd, 0, sizeof(port_cmd));
8794  	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8795  					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8796  					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8797  	action = (fw_caps == FW_CAPS16
8798  		  ? FW_PORT_ACTION_GET_PORT_INFO
8799  		  : FW_PORT_ACTION_GET_PORT_INFO32);
8800  	port_cmd.action_to_len16 = cpu_to_be32(
8801  		FW_PORT_CMD_ACTION_V(action) |
8802  		FW_LEN16(port_cmd));
8803  	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8804  			 &port_cmd, sizeof(port_cmd), &port_cmd);
8805  	if (ret)
8806  		return ret;
8807  
8808  	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8809  		u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype);
8810  
8811  		link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F);
8812  		linkattr = lstatus_to_fwcap(lstatus);
8813  		mtu = be16_to_cpu(port_cmd.u.info.mtu);
8814  	} else {
8815  		u32 lstatus32 =
8816  			   be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32);
8817  
8818  		link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F);
8819  		linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32);
8820  		mtu = FW_PORT_CMD_MTU32_G(
8821  			be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32));
8822  	}
8823  
8824  	if (link_okp)
8825  		*link_okp = link_ok;
8826  	if (speedp)
8827  		*speedp = fwcap_to_speed(linkattr);
8828  	if (mtup)
8829  		*mtup = mtu;
8830  
8831  	return 0;
8832  }
8833  
8834  /**
8835   *      t4_handle_fw_rpl - process a FW reply message
8836   *      @adap: the adapter
8837   *      @rpl: start of the FW message
8838   *
8839   *      Processes a FW message, such as link state change messages.
8840   */
t4_handle_fw_rpl(struct adapter * adap,const __be64 * rpl)8841  int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8842  {
8843  	u8 opcode = *(const u8 *)rpl;
8844  
8845  	/* This might be a port command ... this simplifies the following
8846  	 * conditionals ...  We can get away with pre-dereferencing
8847  	 * action_to_len16 because it's in the first 16 bytes and all messages
8848  	 * will be at least that long.
8849  	 */
8850  	const struct fw_port_cmd *p = (const void *)rpl;
8851  	unsigned int action =
8852  		FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
8853  
8854  	if (opcode == FW_PORT_CMD &&
8855  	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
8856  	     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8857  		int i;
8858  		int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
8859  		struct port_info *pi = NULL;
8860  
8861  		for_each_port(adap, i) {
8862  			pi = adap2pinfo(adap, i);
8863  			if (pi->tx_chan == chan)
8864  				break;
8865  		}
8866  
8867  		t4_handle_get_port_info(pi, rpl);
8868  	} else {
8869  		dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n",
8870  			 opcode);
8871  		return -EINVAL;
8872  	}
8873  	return 0;
8874  }
8875  
get_pci_mode(struct adapter * adapter,struct pci_params * p)8876  static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
8877  {
8878  	u16 val;
8879  
8880  	if (pci_is_pcie(adapter->pdev)) {
8881  		pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
8882  		p->speed = val & PCI_EXP_LNKSTA_CLS;
8883  		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8884  	}
8885  }
8886  
8887  /**
8888   *	init_link_config - initialize a link's SW state
8889   *	@lc: pointer to structure holding the link state
8890   *	@pcaps: link Port Capabilities
8891   *	@acaps: link current Advertised Port Capabilities
8892   *
8893   *	Initializes the SW state maintained for each link, including the link's
8894   *	capabilities and default speed/flow-control/autonegotiation settings.
8895   */
init_link_config(struct link_config * lc,fw_port_cap32_t pcaps,fw_port_cap32_t acaps)8896  static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
8897  			     fw_port_cap32_t acaps)
8898  {
8899  	lc->pcaps = pcaps;
8900  	lc->def_acaps = acaps;
8901  	lc->lpacaps = 0;
8902  	lc->speed_caps = 0;
8903  	lc->speed = 0;
8904  	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
8905  
8906  	/* For Forward Error Control, we default to whatever the Firmware
8907  	 * tells us the Link is currently advertising.
8908  	 */
8909  	lc->requested_fec = FEC_AUTO;
8910  	lc->fec = fwcap_to_cc_fec(lc->def_acaps);
8911  
8912  	/* If the Port is capable of Auto-Negtotiation, initialize it as
8913  	 * "enabled" and copy over all of the Physical Port Capabilities
8914  	 * to the Advertised Port Capabilities.  Otherwise mark it as
8915  	 * Auto-Negotiate disabled and select the highest supported speed
8916  	 * for the link.  Note parallel structure in t4_link_l1cfg_core()
8917  	 * and t4_handle_get_port_info().
8918  	 */
8919  	if (lc->pcaps & FW_PORT_CAP32_ANEG) {
8920  		lc->acaps = lc->pcaps & ADVERT_MASK;
8921  		lc->autoneg = AUTONEG_ENABLE;
8922  		lc->requested_fc |= PAUSE_AUTONEG;
8923  	} else {
8924  		lc->acaps = 0;
8925  		lc->autoneg = AUTONEG_DISABLE;
8926  		lc->speed_caps = fwcap_to_fwspeed(acaps);
8927  	}
8928  }
8929  
8930  #define CIM_PF_NOACCESS 0xeeeeeeee
8931  
t4_wait_dev_ready(void __iomem * regs)8932  int t4_wait_dev_ready(void __iomem *regs)
8933  {
8934  	u32 whoami;
8935  
8936  	whoami = readl(regs + PL_WHOAMI_A);
8937  	if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
8938  		return 0;
8939  
8940  	msleep(500);
8941  	whoami = readl(regs + PL_WHOAMI_A);
8942  	return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
8943  }
8944  
8945  struct flash_desc {
8946  	u32 vendor_and_model_id;
8947  	u32 size_mb;
8948  };
8949  
t4_get_flash_params(struct adapter * adap)8950  static int t4_get_flash_params(struct adapter *adap)
8951  {
8952  	/* Table for non-Numonix supported flash parts.  Numonix parts are left
8953  	 * to the preexisting code.  All flash parts have 64KB sectors.
8954  	 */
8955  	static struct flash_desc supported_flash[] = {
8956  		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
8957  	};
8958  
8959  	unsigned int part, manufacturer;
8960  	unsigned int density, size = 0;
8961  	u32 flashid = 0;
8962  	int ret;
8963  
8964  	/* Issue a Read ID Command to the Flash part.  We decode supported
8965  	 * Flash parts and their sizes from this.  There's a newer Query
8966  	 * Command which can retrieve detailed geometry information but many
8967  	 * Flash parts don't support it.
8968  	 */
8969  
8970  	ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
8971  	if (!ret)
8972  		ret = sf1_read(adap, 3, 0, 1, &flashid);
8973  	t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
8974  	if (ret)
8975  		return ret;
8976  
8977  	/* Check to see if it's one of our non-standard supported Flash parts.
8978  	 */
8979  	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8980  		if (supported_flash[part].vendor_and_model_id == flashid) {
8981  			adap->params.sf_size = supported_flash[part].size_mb;
8982  			adap->params.sf_nsec =
8983  				adap->params.sf_size / SF_SEC_SIZE;
8984  			goto found;
8985  		}
8986  
8987  	/* Decode Flash part size.  The code below looks repetitive with
8988  	 * common encodings, but that's not guaranteed in the JEDEC
8989  	 * specification for the Read JEDEC ID command.  The only thing that
8990  	 * we're guaranteed by the JEDEC specification is where the
8991  	 * Manufacturer ID is in the returned result.  After that each
8992  	 * Manufacturer ~could~ encode things completely differently.
8993  	 * Note, all Flash parts must have 64KB sectors.
8994  	 */
8995  	manufacturer = flashid & 0xff;
8996  	switch (manufacturer) {
8997  	case 0x20: { /* Micron/Numonix */
8998  		/* This Density -> Size decoding table is taken from Micron
8999  		 * Data Sheets.
9000  		 */
9001  		density = (flashid >> 16) & 0xff;
9002  		switch (density) {
9003  		case 0x14: /* 1MB */
9004  			size = 1 << 20;
9005  			break;
9006  		case 0x15: /* 2MB */
9007  			size = 1 << 21;
9008  			break;
9009  		case 0x16: /* 4MB */
9010  			size = 1 << 22;
9011  			break;
9012  		case 0x17: /* 8MB */
9013  			size = 1 << 23;
9014  			break;
9015  		case 0x18: /* 16MB */
9016  			size = 1 << 24;
9017  			break;
9018  		case 0x19: /* 32MB */
9019  			size = 1 << 25;
9020  			break;
9021  		case 0x20: /* 64MB */
9022  			size = 1 << 26;
9023  			break;
9024  		case 0x21: /* 128MB */
9025  			size = 1 << 27;
9026  			break;
9027  		case 0x22: /* 256MB */
9028  			size = 1 << 28;
9029  			break;
9030  		}
9031  		break;
9032  	}
9033  	case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
9034  		/* This Density -> Size decoding table is taken from ISSI
9035  		 * Data Sheets.
9036  		 */
9037  		density = (flashid >> 16) & 0xff;
9038  		switch (density) {
9039  		case 0x16: /* 32 MB */
9040  			size = 1 << 25;
9041  			break;
9042  		case 0x17: /* 64MB */
9043  			size = 1 << 26;
9044  			break;
9045  		}
9046  		break;
9047  	}
9048  	case 0xc2: { /* Macronix */
9049  		/* This Density -> Size decoding table is taken from Macronix
9050  		 * Data Sheets.
9051  		 */
9052  		density = (flashid >> 16) & 0xff;
9053  		switch (density) {
9054  		case 0x17: /* 8MB */
9055  			size = 1 << 23;
9056  			break;
9057  		case 0x18: /* 16MB */
9058  			size = 1 << 24;
9059  			break;
9060  		}
9061  		break;
9062  	}
9063  	case 0xef: { /* Winbond */
9064  		/* This Density -> Size decoding table is taken from Winbond
9065  		 * Data Sheets.
9066  		 */
9067  		density = (flashid >> 16) & 0xff;
9068  		switch (density) {
9069  		case 0x17: /* 8MB */
9070  			size = 1 << 23;
9071  			break;
9072  		case 0x18: /* 16MB */
9073  			size = 1 << 24;
9074  			break;
9075  		}
9076  		break;
9077  	}
9078  	}
9079  
9080  	/* If we didn't recognize the FLASH part, that's no real issue: the
9081  	 * Hardware/Software contract says that Hardware will _*ALWAYS*_
9082  	 * use a FLASH part which is at least 4MB in size and has 64KB
9083  	 * sectors.  The unrecognized FLASH part is likely to be much larger
9084  	 * than 4MB, but that's all we really need.
9085  	 */
9086  	if (size == 0) {
9087  		dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n",
9088  			 flashid);
9089  		size = 1 << 22;
9090  	}
9091  
9092  	/* Store decoded Flash size and fall through into vetting code. */
9093  	adap->params.sf_size = size;
9094  	adap->params.sf_nsec = size / SF_SEC_SIZE;
9095  
9096  found:
9097  	if (adap->params.sf_size < FLASH_MIN_SIZE)
9098  		dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
9099  			 flashid, adap->params.sf_size, FLASH_MIN_SIZE);
9100  	return 0;
9101  }
9102  
9103  /**
9104   *	t4_prep_adapter - prepare SW and HW for operation
9105   *	@adapter: the adapter
9106   *
9107   *	Initialize adapter SW state for the various HW modules, set initial
9108   *	values for some adapter tunables, take PHYs out of reset, and
9109   *	initialize the MDIO interface.
9110   */
t4_prep_adapter(struct adapter * adapter)9111  int t4_prep_adapter(struct adapter *adapter)
9112  {
9113  	int ret, ver;
9114  	uint16_t device_id;
9115  	u32 pl_rev;
9116  
9117  	get_pci_mode(adapter, &adapter->params.pci);
9118  	pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
9119  
9120  	ret = t4_get_flash_params(adapter);
9121  	if (ret < 0) {
9122  		dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
9123  		return ret;
9124  	}
9125  
9126  	/* Retrieve adapter's device ID
9127  	 */
9128  	pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
9129  	ver = device_id >> 12;
9130  	adapter->params.chip = 0;
9131  	switch (ver) {
9132  	case CHELSIO_T4:
9133  		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
9134  		adapter->params.arch.sge_fl_db = DBPRIO_F;
9135  		adapter->params.arch.mps_tcam_size =
9136  				 NUM_MPS_CLS_SRAM_L_INSTANCES;
9137  		adapter->params.arch.mps_rplc_size = 128;
9138  		adapter->params.arch.nchan = NCHAN;
9139  		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9140  		adapter->params.arch.vfcount = 128;
9141  		/* Congestion map is for 4 channels so that
9142  		 * MPS can have 4 priority per port.
9143  		 */
9144  		adapter->params.arch.cng_ch_bits_log = 2;
9145  		break;
9146  	case CHELSIO_T5:
9147  		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
9148  		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
9149  		adapter->params.arch.mps_tcam_size =
9150  				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9151  		adapter->params.arch.mps_rplc_size = 128;
9152  		adapter->params.arch.nchan = NCHAN;
9153  		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9154  		adapter->params.arch.vfcount = 128;
9155  		adapter->params.arch.cng_ch_bits_log = 2;
9156  		break;
9157  	case CHELSIO_T6:
9158  		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
9159  		adapter->params.arch.sge_fl_db = 0;
9160  		adapter->params.arch.mps_tcam_size =
9161  				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9162  		adapter->params.arch.mps_rplc_size = 256;
9163  		adapter->params.arch.nchan = 2;
9164  		adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
9165  		adapter->params.arch.vfcount = 256;
9166  		/* Congestion map will be for 2 channels so that
9167  		 * MPS can have 8 priority per port.
9168  		 */
9169  		adapter->params.arch.cng_ch_bits_log = 3;
9170  		break;
9171  	default:
9172  		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
9173  			device_id);
9174  		return -EINVAL;
9175  	}
9176  
9177  	adapter->params.cim_la_size = CIMLA_SIZE;
9178  	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
9179  
9180  	/*
9181  	 * Default port for debugging in case we can't reach FW.
9182  	 */
9183  	adapter->params.nports = 1;
9184  	adapter->params.portvec = 1;
9185  	adapter->params.vpd.cclk = 50000;
9186  
9187  	/* Set PCIe completion timeout to 4 seconds. */
9188  	pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2,
9189  					   PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
9190  	return 0;
9191  }
9192  
9193  /**
9194   *	t4_shutdown_adapter - shut down adapter, host & wire
9195   *	@adapter: the adapter
9196   *
9197   *	Perform an emergency shutdown of the adapter and stop it from
9198   *	continuing any further communication on the ports or DMA to the
9199   *	host.  This is typically used when the adapter and/or firmware
9200   *	have crashed and we want to prevent any further accidental
9201   *	communication with the rest of the world.  This will also force
9202   *	the port Link Status to go down -- if register writes work --
9203   *	which should help our peers figure out that we're down.
9204   */
t4_shutdown_adapter(struct adapter * adapter)9205  int t4_shutdown_adapter(struct adapter *adapter)
9206  {
9207  	int port;
9208  
9209  	t4_intr_disable(adapter);
9210  	t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
9211  	for_each_port(adapter, port) {
9212  		u32 a_port_cfg = is_t4(adapter->params.chip) ?
9213  				       PORT_REG(port, XGMAC_PORT_CFG_A) :
9214  				       T5_PORT_REG(port, MAC_PORT_CFG_A);
9215  
9216  		t4_write_reg(adapter, a_port_cfg,
9217  			     t4_read_reg(adapter, a_port_cfg)
9218  			     & ~SIGNAL_DET_V(1));
9219  	}
9220  	t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
9221  
9222  	return 0;
9223  }
9224  
9225  /**
9226   *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9227   *	@adapter: the adapter
9228   *	@qid: the Queue ID
9229   *	@qtype: the Ingress or Egress type for @qid
9230   *	@user: true if this request is for a user mode queue
9231   *	@pbar2_qoffset: BAR2 Queue Offset
9232   *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9233   *
9234   *	Returns the BAR2 SGE Queue Registers information associated with the
9235   *	indicated Absolute Queue ID.  These are passed back in return value
9236   *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9237   *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9238   *
9239   *	This may return an error which indicates that BAR2 SGE Queue
9240   *	registers aren't available.  If an error is not returned, then the
9241   *	following values are returned:
9242   *
9243   *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9244   *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9245   *
9246   *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9247   *	require the "Inferred Queue ID" ability may be used.  E.g. the
9248   *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9249   *	then these "Inferred Queue ID" register may not be used.
9250   */
t4_bar2_sge_qregs(struct adapter * adapter,unsigned int qid,enum t4_bar2_qtype qtype,int user,u64 * pbar2_qoffset,unsigned int * pbar2_qid)9251  int t4_bar2_sge_qregs(struct adapter *adapter,
9252  		      unsigned int qid,
9253  		      enum t4_bar2_qtype qtype,
9254  		      int user,
9255  		      u64 *pbar2_qoffset,
9256  		      unsigned int *pbar2_qid)
9257  {
9258  	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9259  	u64 bar2_page_offset, bar2_qoffset;
9260  	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9261  
9262  	/* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
9263  	if (!user && is_t4(adapter->params.chip))
9264  		return -EINVAL;
9265  
9266  	/* Get our SGE Page Size parameters.
9267  	 */
9268  	page_shift = adapter->params.sge.hps + 10;
9269  	page_size = 1 << page_shift;
9270  
9271  	/* Get the right Queues per Page parameters for our Queue.
9272  	 */
9273  	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9274  		     ? adapter->params.sge.eq_qpp
9275  		     : adapter->params.sge.iq_qpp);
9276  	qpp_mask = (1 << qpp_shift) - 1;
9277  
9278  	/*  Calculate the basics of the BAR2 SGE Queue register area:
9279  	 *  o The BAR2 page the Queue registers will be in.
9280  	 *  o The BAR2 Queue ID.
9281  	 *  o The BAR2 Queue ID Offset into the BAR2 page.
9282  	 */
9283  	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9284  	bar2_qid = qid & qpp_mask;
9285  	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9286  
9287  	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
9288  	 * hardware will infer the Absolute Queue ID simply from the writes to
9289  	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9290  	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9291  	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9292  	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9293  	 * from the BAR2 Page and BAR2 Queue ID.
9294  	 *
9295  	 * One important censequence of this is that some BAR2 SGE registers
9296  	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9297  	 * there.  But other registers synthesize the SGE Queue ID purely
9298  	 * from the writes to the registers -- the Write Combined Doorbell
9299  	 * Buffer is a good example.  These BAR2 SGE Registers are only
9300  	 * available for those BAR2 SGE Register areas where the SGE Absolute
9301  	 * Queue ID can be inferred from simple writes.
9302  	 */
9303  	bar2_qoffset = bar2_page_offset;
9304  	bar2_qinferred = (bar2_qid_offset < page_size);
9305  	if (bar2_qinferred) {
9306  		bar2_qoffset += bar2_qid_offset;
9307  		bar2_qid = 0;
9308  	}
9309  
9310  	*pbar2_qoffset = bar2_qoffset;
9311  	*pbar2_qid = bar2_qid;
9312  	return 0;
9313  }
9314  
9315  /**
9316   *	t4_init_devlog_params - initialize adapter->params.devlog
9317   *	@adap: the adapter
9318   *
9319   *	Initialize various fields of the adapter's Firmware Device Log
9320   *	Parameters structure.
9321   */
t4_init_devlog_params(struct adapter * adap)9322  int t4_init_devlog_params(struct adapter *adap)
9323  {
9324  	struct devlog_params *dparams = &adap->params.devlog;
9325  	u32 pf_dparams;
9326  	unsigned int devlog_meminfo;
9327  	struct fw_devlog_cmd devlog_cmd;
9328  	int ret;
9329  
9330  	/* If we're dealing with newer firmware, the Device Log Parameters
9331  	 * are stored in a designated register which allows us to access the
9332  	 * Device Log even if we can't talk to the firmware.
9333  	 */
9334  	pf_dparams =
9335  		t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
9336  	if (pf_dparams) {
9337  		unsigned int nentries, nentries128;
9338  
9339  		dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
9340  		dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
9341  
9342  		nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
9343  		nentries = (nentries128 + 1) * 128;
9344  		dparams->size = nentries * sizeof(struct fw_devlog_e);
9345  
9346  		return 0;
9347  	}
9348  
9349  	/* Otherwise, ask the firmware for it's Device Log Parameters.
9350  	 */
9351  	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9352  	devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
9353  					     FW_CMD_REQUEST_F | FW_CMD_READ_F);
9354  	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9355  	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9356  			 &devlog_cmd);
9357  	if (ret)
9358  		return ret;
9359  
9360  	devlog_meminfo =
9361  		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9362  	dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
9363  	dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
9364  	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9365  
9366  	return 0;
9367  }
9368  
9369  /**
9370   *	t4_init_sge_params - initialize adap->params.sge
9371   *	@adapter: the adapter
9372   *
9373   *	Initialize various fields of the adapter's SGE Parameters structure.
9374   */
t4_init_sge_params(struct adapter * adapter)9375  int t4_init_sge_params(struct adapter *adapter)
9376  {
9377  	struct sge_params *sge_params = &adapter->params.sge;
9378  	u32 hps, qpp;
9379  	unsigned int s_hps, s_qpp;
9380  
9381  	/* Extract the SGE Page Size for our PF.
9382  	 */
9383  	hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
9384  	s_hps = (HOSTPAGESIZEPF0_S +
9385  		 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
9386  	sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
9387  
9388  	/* Extract the SGE Egress and Ingess Queues Per Page for our PF.
9389  	 */
9390  	s_qpp = (QUEUESPERPAGEPF0_S +
9391  		(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
9392  	qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
9393  	sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9394  	qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
9395  	sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9396  
9397  	return 0;
9398  }
9399  
9400  /**
9401   *      t4_init_tp_params - initialize adap->params.tp
9402   *      @adap: the adapter
9403   *      @sleep_ok: if true we may sleep while awaiting command completion
9404   *
9405   *      Initialize various fields of the adapter's TP Parameters structure.
9406   */
t4_init_tp_params(struct adapter * adap,bool sleep_ok)9407  int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9408  {
9409  	u32 param, val, v;
9410  	int chan, ret;
9411  
9412  
9413  	v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
9414  	adap->params.tp.tre = TIMERRESOLUTION_G(v);
9415  	adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
9416  
9417  	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9418  	for (chan = 0; chan < NCHAN; chan++)
9419  		adap->params.tp.tx_modq[chan] = chan;
9420  
9421  	/* Cache the adapter's Compressed Filter Mode/Mask and global Ingress
9422  	 * Configuration.
9423  	 */
9424  	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
9425  		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FILTER) |
9426  		 FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_FILTER_MODE_MASK));
9427  
9428  	/* Read current value */
9429  	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
9430  			      &param, &val);
9431  	if (ret == 0) {
9432  		dev_info(adap->pdev_dev,
9433  			 "Current filter mode/mask 0x%x:0x%x\n",
9434  			 FW_PARAMS_PARAM_FILTER_MODE_G(val),
9435  			 FW_PARAMS_PARAM_FILTER_MASK_G(val));
9436  		adap->params.tp.vlan_pri_map =
9437  			FW_PARAMS_PARAM_FILTER_MODE_G(val);
9438  		adap->params.tp.filter_mask =
9439  			FW_PARAMS_PARAM_FILTER_MASK_G(val);
9440  	} else {
9441  		dev_info(adap->pdev_dev,
9442  			 "Failed to read filter mode/mask via fw api, using indirect-reg-read\n");
9443  
9444  		/* Incase of older-fw (which doesn't expose the api
9445  		 * FW_PARAM_DEV_FILTER_MODE_MASK) and newer-driver (which uses
9446  		 * the fw api) combination, fall-back to older method of reading
9447  		 * the filter mode from indirect-register
9448  		 */
9449  		t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1,
9450  			       TP_VLAN_PRI_MAP_A, sleep_ok);
9451  
9452  		/* With the older-fw and newer-driver combination we might run
9453  		 * into an issue when user wants to use hash filter region but
9454  		 * the filter_mask is zero, in this case filter_mask validation
9455  		 * is tough. To avoid that we set the filter_mask same as filter
9456  		 * mode, which will behave exactly as the older way of ignoring
9457  		 * the filter mask validation.
9458  		 */
9459  		adap->params.tp.filter_mask = adap->params.tp.vlan_pri_map;
9460  	}
9461  
9462  	t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1,
9463  		       TP_INGRESS_CONFIG_A, sleep_ok);
9464  
9465  	/* For T6, cache the adapter's compressed error vector
9466  	 * and passing outer header info for encapsulated packets.
9467  	 */
9468  	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
9469  		v = t4_read_reg(adap, TP_OUT_CONFIG_A);
9470  		adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
9471  	}
9472  
9473  	/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9474  	 * shift positions of several elements of the Compressed Filter Tuple
9475  	 * for this adapter which we need frequently ...
9476  	 */
9477  	adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F);
9478  	adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
9479  	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
9480  	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
9481  	adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F);
9482  	adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
9483  							       PROTOCOL_F);
9484  	adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
9485  								ETHERTYPE_F);
9486  	adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
9487  							       MACMATCH_F);
9488  	adap->params.tp.matchtype_shift = t4_filter_field_shift(adap,
9489  								MPSHITTYPE_F);
9490  	adap->params.tp.frag_shift = t4_filter_field_shift(adap,
9491  							   FRAGMENTATION_F);
9492  
9493  	/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
9494  	 * represents the presence of an Outer VLAN instead of a VNIC ID.
9495  	 */
9496  	if ((adap->params.tp.ingress_config & VNIC_F) == 0)
9497  		adap->params.tp.vnic_shift = -1;
9498  
9499  	v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
9500  	adap->params.tp.hash_filter_mask = v;
9501  	v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
9502  	adap->params.tp.hash_filter_mask |= ((u64)v << 32);
9503  	return 0;
9504  }
9505  
9506  /**
9507   *      t4_filter_field_shift - calculate filter field shift
9508   *      @adap: the adapter
9509   *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9510   *
9511   *      Return the shift position of a filter field within the Compressed
9512   *      Filter Tuple.  The filter field is specified via its selection bit
9513   *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9514   */
t4_filter_field_shift(const struct adapter * adap,int filter_sel)9515  int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9516  {
9517  	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9518  	unsigned int sel;
9519  	int field_shift;
9520  
9521  	if ((filter_mode & filter_sel) == 0)
9522  		return -1;
9523  
9524  	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9525  		switch (filter_mode & sel) {
9526  		case FCOE_F:
9527  			field_shift += FT_FCOE_W;
9528  			break;
9529  		case PORT_F:
9530  			field_shift += FT_PORT_W;
9531  			break;
9532  		case VNIC_ID_F:
9533  			field_shift += FT_VNIC_ID_W;
9534  			break;
9535  		case VLAN_F:
9536  			field_shift += FT_VLAN_W;
9537  			break;
9538  		case TOS_F:
9539  			field_shift += FT_TOS_W;
9540  			break;
9541  		case PROTOCOL_F:
9542  			field_shift += FT_PROTOCOL_W;
9543  			break;
9544  		case ETHERTYPE_F:
9545  			field_shift += FT_ETHERTYPE_W;
9546  			break;
9547  		case MACMATCH_F:
9548  			field_shift += FT_MACMATCH_W;
9549  			break;
9550  		case MPSHITTYPE_F:
9551  			field_shift += FT_MPSHITTYPE_W;
9552  			break;
9553  		case FRAGMENTATION_F:
9554  			field_shift += FT_FRAGMENTATION_W;
9555  			break;
9556  		}
9557  	}
9558  	return field_shift;
9559  }
9560  
t4_init_rss_mode(struct adapter * adap,int mbox)9561  int t4_init_rss_mode(struct adapter *adap, int mbox)
9562  {
9563  	int i, ret;
9564  	struct fw_rss_vi_config_cmd rvc;
9565  
9566  	memset(&rvc, 0, sizeof(rvc));
9567  
9568  	for_each_port(adap, i) {
9569  		struct port_info *p = adap2pinfo(adap, i);
9570  
9571  		rvc.op_to_viid =
9572  			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
9573  				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
9574  				    FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
9575  		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
9576  		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
9577  		if (ret)
9578  			return ret;
9579  		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
9580  	}
9581  	return 0;
9582  }
9583  
9584  /**
9585   *	t4_init_portinfo - allocate a virtual interface and initialize port_info
9586   *	@pi: the port_info
9587   *	@mbox: mailbox to use for the FW command
9588   *	@port: physical port associated with the VI
9589   *	@pf: the PF owning the VI
9590   *	@vf: the VF owning the VI
9591   *	@mac: the MAC address of the VI
9592   *
9593   *	Allocates a virtual interface for the given physical port.  If @mac is
9594   *	not %NULL it contains the MAC address of the VI as assigned by FW.
9595   *	@mac should be large enough to hold an Ethernet address.
9596   *	Returns < 0 on error.
9597   */
t4_init_portinfo(struct port_info * pi,int mbox,int port,int pf,int vf,u8 mac[])9598  int t4_init_portinfo(struct port_info *pi, int mbox,
9599  		     int port, int pf, int vf, u8 mac[])
9600  {
9601  	struct adapter *adapter = pi->adapter;
9602  	unsigned int fw_caps = adapter->params.fw_caps_support;
9603  	struct fw_port_cmd cmd;
9604  	unsigned int rss_size;
9605  	enum fw_port_type port_type;
9606  	int mdio_addr;
9607  	fw_port_cap32_t pcaps, acaps;
9608  	u8 vivld = 0, vin = 0;
9609  	int ret;
9610  
9611  	/* If we haven't yet determined whether we're talking to Firmware
9612  	 * which knows the new 32-bit Port Capabilities, it's time to find
9613  	 * out now.  This will also tell new Firmware to send us Port Status
9614  	 * Updates using the new 32-bit Port Capabilities version of the
9615  	 * Port Information message.
9616  	 */
9617  	if (fw_caps == FW_CAPS_UNKNOWN) {
9618  		u32 param, val;
9619  
9620  		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
9621  			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
9622  		val = 1;
9623  		ret = t4_set_params(adapter, mbox, pf, vf, 1, &param, &val);
9624  		fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
9625  		adapter->params.fw_caps_support = fw_caps;
9626  	}
9627  
9628  	memset(&cmd, 0, sizeof(cmd));
9629  	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
9630  				       FW_CMD_REQUEST_F | FW_CMD_READ_F |
9631  				       FW_PORT_CMD_PORTID_V(port));
9632  	cmd.action_to_len16 = cpu_to_be32(
9633  		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
9634  				     ? FW_PORT_ACTION_GET_PORT_INFO
9635  				     : FW_PORT_ACTION_GET_PORT_INFO32) |
9636  		FW_LEN16(cmd));
9637  	ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
9638  	if (ret)
9639  		return ret;
9640  
9641  	/* Extract the various fields from the Port Information message.
9642  	 */
9643  	if (fw_caps == FW_CAPS16) {
9644  		u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype);
9645  
9646  		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
9647  		mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
9648  			     ? FW_PORT_CMD_MDIOADDR_G(lstatus)
9649  			     : -1);
9650  		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap));
9651  		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap));
9652  	} else {
9653  		u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
9654  
9655  		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
9656  		mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
9657  			     ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
9658  			     : -1);
9659  		pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
9660  		acaps = be32_to_cpu(cmd.u.info32.acaps32);
9661  	}
9662  
9663  	ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size,
9664  			  &vivld, &vin);
9665  	if (ret < 0)
9666  		return ret;
9667  
9668  	pi->viid = ret;
9669  	pi->tx_chan = port;
9670  	pi->lport = port;
9671  	pi->rss_size = rss_size;
9672  	pi->rx_cchan = t4_get_tp_e2c_map(pi->adapter, port);
9673  
9674  	/* If fw supports returning the VIN as part of FW_VI_CMD,
9675  	 * save the returned values.
9676  	 */
9677  	if (adapter->params.viid_smt_extn_support) {
9678  		pi->vivld = vivld;
9679  		pi->vin = vin;
9680  	} else {
9681  		/* Retrieve the values from VIID */
9682  		pi->vivld = FW_VIID_VIVLD_G(pi->viid);
9683  		pi->vin =  FW_VIID_VIN_G(pi->viid);
9684  	}
9685  
9686  	pi->port_type = port_type;
9687  	pi->mdio_addr = mdio_addr;
9688  	pi->mod_type = FW_PORT_MOD_TYPE_NA;
9689  
9690  	init_link_config(&pi->link_cfg, pcaps, acaps);
9691  	return 0;
9692  }
9693  
t4_port_init(struct adapter * adap,int mbox,int pf,int vf)9694  int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
9695  {
9696  	u8 addr[6];
9697  	int ret, i, j = 0;
9698  
9699  	for_each_port(adap, i) {
9700  		struct port_info *pi = adap2pinfo(adap, i);
9701  
9702  		while ((adap->params.portvec & (1 << j)) == 0)
9703  			j++;
9704  
9705  		ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
9706  		if (ret)
9707  			return ret;
9708  
9709  		memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
9710  		j++;
9711  	}
9712  	return 0;
9713  }
9714  
t4_init_port_mirror(struct port_info * pi,u8 mbox,u8 port,u8 pf,u8 vf,u16 * mirror_viid)9715  int t4_init_port_mirror(struct port_info *pi, u8 mbox, u8 port, u8 pf, u8 vf,
9716  			u16 *mirror_viid)
9717  {
9718  	int ret;
9719  
9720  	ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, NULL, NULL,
9721  			  NULL, NULL);
9722  	if (ret < 0)
9723  		return ret;
9724  
9725  	if (mirror_viid)
9726  		*mirror_viid = ret;
9727  
9728  	return 0;
9729  }
9730  
9731  /**
9732   *	t4_read_cimq_cfg - read CIM queue configuration
9733   *	@adap: the adapter
9734   *	@base: holds the queue base addresses in bytes
9735   *	@size: holds the queue sizes in bytes
9736   *	@thres: holds the queue full thresholds in bytes
9737   *
9738   *	Returns the current configuration of the CIM queues, starting with
9739   *	the IBQs, then the OBQs.
9740   */
t4_read_cimq_cfg(struct adapter * adap,u16 * base,u16 * size,u16 * thres)9741  void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9742  {
9743  	unsigned int i, v;
9744  	int cim_num_obq = is_t4(adap->params.chip) ?
9745  				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9746  
9747  	for (i = 0; i < CIM_NUM_IBQ; i++) {
9748  		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
9749  			     QUENUMSELECT_V(i));
9750  		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9751  		/* value is in 256-byte units */
9752  		*base++ = CIMQBASE_G(v) * 256;
9753  		*size++ = CIMQSIZE_G(v) * 256;
9754  		*thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
9755  	}
9756  	for (i = 0; i < cim_num_obq; i++) {
9757  		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9758  			     QUENUMSELECT_V(i));
9759  		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9760  		/* value is in 256-byte units */
9761  		*base++ = CIMQBASE_G(v) * 256;
9762  		*size++ = CIMQSIZE_G(v) * 256;
9763  	}
9764  }
9765  
9766  /**
9767   *	t4_read_cim_ibq - read the contents of a CIM inbound queue
9768   *	@adap: the adapter
9769   *	@qid: the queue index
9770   *	@data: where to store the queue contents
9771   *	@n: capacity of @data in 32-bit words
9772   *
9773   *	Reads the contents of the selected CIM queue starting at address 0 up
9774   *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9775   *	error and the number of 32-bit words actually read on success.
9776   */
t4_read_cim_ibq(struct adapter * adap,unsigned int qid,u32 * data,size_t n)9777  int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9778  {
9779  	int i, err, attempts;
9780  	unsigned int addr;
9781  	const unsigned int nwords = CIM_IBQ_SIZE * 4;
9782  
9783  	if (qid > 5 || (n & 3))
9784  		return -EINVAL;
9785  
9786  	addr = qid * nwords;
9787  	if (n > nwords)
9788  		n = nwords;
9789  
9790  	/* It might take 3-10ms before the IBQ debug read access is allowed.
9791  	 * Wait for 1 Sec with a delay of 1 usec.
9792  	 */
9793  	attempts = 1000000;
9794  
9795  	for (i = 0; i < n; i++, addr++) {
9796  		t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
9797  			     IBQDBGEN_F);
9798  		err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
9799  				      attempts, 1);
9800  		if (err)
9801  			return err;
9802  		*data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
9803  	}
9804  	t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
9805  	return i;
9806  }
9807  
9808  /**
9809   *	t4_read_cim_obq - read the contents of a CIM outbound queue
9810   *	@adap: the adapter
9811   *	@qid: the queue index
9812   *	@data: where to store the queue contents
9813   *	@n: capacity of @data in 32-bit words
9814   *
9815   *	Reads the contents of the selected CIM queue starting at address 0 up
9816   *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9817   *	error and the number of 32-bit words actually read on success.
9818   */
t4_read_cim_obq(struct adapter * adap,unsigned int qid,u32 * data,size_t n)9819  int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9820  {
9821  	int i, err;
9822  	unsigned int addr, v, nwords;
9823  	int cim_num_obq = is_t4(adap->params.chip) ?
9824  				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9825  
9826  	if ((qid > (cim_num_obq - 1)) || (n & 3))
9827  		return -EINVAL;
9828  
9829  	t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9830  		     QUENUMSELECT_V(qid));
9831  	v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9832  
9833  	addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
9834  	nwords = CIMQSIZE_G(v) * 64;  /* same */
9835  	if (n > nwords)
9836  		n = nwords;
9837  
9838  	for (i = 0; i < n; i++, addr++) {
9839  		t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
9840  			     OBQDBGEN_F);
9841  		err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
9842  				      2, 1);
9843  		if (err)
9844  			return err;
9845  		*data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
9846  	}
9847  	t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
9848  	return i;
9849  }
9850  
9851  /**
9852   *	t4_cim_read - read a block from CIM internal address space
9853   *	@adap: the adapter
9854   *	@addr: the start address within the CIM address space
9855   *	@n: number of words to read
9856   *	@valp: where to store the result
9857   *
9858   *	Reads a block of 4-byte words from the CIM intenal address space.
9859   */
t4_cim_read(struct adapter * adap,unsigned int addr,unsigned int n,unsigned int * valp)9860  int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9861  		unsigned int *valp)
9862  {
9863  	int ret = 0;
9864  
9865  	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9866  		return -EBUSY;
9867  
9868  	for ( ; !ret && n--; addr += 4) {
9869  		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
9870  		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9871  				      0, 5, 2);
9872  		if (!ret)
9873  			*valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
9874  	}
9875  	return ret;
9876  }
9877  
9878  /**
9879   *	t4_cim_write - write a block into CIM internal address space
9880   *	@adap: the adapter
9881   *	@addr: the start address within the CIM address space
9882   *	@n: number of words to write
9883   *	@valp: set of values to write
9884   *
9885   *	Writes a block of 4-byte words into the CIM intenal address space.
9886   */
t4_cim_write(struct adapter * adap,unsigned int addr,unsigned int n,const unsigned int * valp)9887  int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9888  		 const unsigned int *valp)
9889  {
9890  	int ret = 0;
9891  
9892  	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9893  		return -EBUSY;
9894  
9895  	for ( ; !ret && n--; addr += 4) {
9896  		t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
9897  		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
9898  		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9899  				      0, 5, 2);
9900  	}
9901  	return ret;
9902  }
9903  
t4_cim_write1(struct adapter * adap,unsigned int addr,unsigned int val)9904  static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9905  			 unsigned int val)
9906  {
9907  	return t4_cim_write(adap, addr, 1, &val);
9908  }
9909  
9910  /**
9911   *	t4_cim_read_la - read CIM LA capture buffer
9912   *	@adap: the adapter
9913   *	@la_buf: where to store the LA data
9914   *	@wrptr: the HW write pointer within the capture buffer
9915   *
9916   *	Reads the contents of the CIM LA buffer with the most recent entry at
9917   *	the end	of the returned data and with the entry at @wrptr first.
9918   *	We try to leave the LA in the running state we find it in.
9919   */
t4_cim_read_la(struct adapter * adap,u32 * la_buf,unsigned int * wrptr)9920  int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9921  {
9922  	int i, ret;
9923  	unsigned int cfg, val, idx;
9924  
9925  	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
9926  	if (ret)
9927  		return ret;
9928  
9929  	if (cfg & UPDBGLAEN_F) {	/* LA is running, freeze it */
9930  		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
9931  		if (ret)
9932  			return ret;
9933  	}
9934  
9935  	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9936  	if (ret)
9937  		goto restart;
9938  
9939  	idx = UPDBGLAWRPTR_G(val);
9940  	if (wrptr)
9941  		*wrptr = idx;
9942  
9943  	for (i = 0; i < adap->params.cim_la_size; i++) {
9944  		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9945  				    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
9946  		if (ret)
9947  			break;
9948  		ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9949  		if (ret)
9950  			break;
9951  		if (val & UPDBGLARDEN_F) {
9952  			ret = -ETIMEDOUT;
9953  			break;
9954  		}
9955  		ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
9956  		if (ret)
9957  			break;
9958  
9959  		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9960  		 * identify the 32-bit portion of the full 312-bit data
9961  		 */
9962  		if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
9963  			idx = (idx & 0xff0) + 0x10;
9964  		else
9965  			idx++;
9966  		/* address can't exceed 0xfff */
9967  		idx &= UPDBGLARDPTR_M;
9968  	}
9969  restart:
9970  	if (cfg & UPDBGLAEN_F) {
9971  		int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9972  				      cfg & ~UPDBGLARDEN_F);
9973  		if (!ret)
9974  			ret = r;
9975  	}
9976  	return ret;
9977  }
9978  
9979  /**
9980   *	t4_tp_read_la - read TP LA capture buffer
9981   *	@adap: the adapter
9982   *	@la_buf: where to store the LA data
9983   *	@wrptr: the HW write pointer within the capture buffer
9984   *
9985   *	Reads the contents of the TP LA buffer with the most recent entry at
9986   *	the end	of the returned data and with the entry at @wrptr first.
9987   *	We leave the LA in the running state we find it in.
9988   */
t4_tp_read_la(struct adapter * adap,u64 * la_buf,unsigned int * wrptr)9989  void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
9990  {
9991  	bool last_incomplete;
9992  	unsigned int i, cfg, val, idx;
9993  
9994  	cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
9995  	if (cfg & DBGLAENABLE_F)			/* freeze LA */
9996  		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9997  			     adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
9998  
9999  	val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
10000  	idx = DBGLAWPTR_G(val);
10001  	last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
10002  	if (last_incomplete)
10003  		idx = (idx + 1) & DBGLARPTR_M;
10004  	if (wrptr)
10005  		*wrptr = idx;
10006  
10007  	val &= 0xffff;
10008  	val &= ~DBGLARPTR_V(DBGLARPTR_M);
10009  	val |= adap->params.tp.la_mask;
10010  
10011  	for (i = 0; i < TPLA_SIZE; i++) {
10012  		t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
10013  		la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
10014  		idx = (idx + 1) & DBGLARPTR_M;
10015  	}
10016  
10017  	/* Wipe out last entry if it isn't valid */
10018  	if (last_incomplete)
10019  		la_buf[TPLA_SIZE - 1] = ~0ULL;
10020  
10021  	if (cfg & DBGLAENABLE_F)                    /* restore running state */
10022  		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
10023  			     cfg | adap->params.tp.la_mask);
10024  }
10025  
10026  /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
10027   * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
10028   * state for more than the Warning Threshold then we'll issue a warning about
10029   * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
10030   * appears to be hung every Warning Repeat second till the situation clears.
10031   * If the situation clears, we'll note that as well.
10032   */
10033  #define SGE_IDMA_WARN_THRESH 1
10034  #define SGE_IDMA_WARN_REPEAT 300
10035  
10036  /**
10037   *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
10038   *	@adapter: the adapter
10039   *	@idma: the adapter IDMA Monitor state
10040   *
10041   *	Initialize the state of an SGE Ingress DMA Monitor.
10042   */
t4_idma_monitor_init(struct adapter * adapter,struct sge_idma_monitor_state * idma)10043  void t4_idma_monitor_init(struct adapter *adapter,
10044  			  struct sge_idma_monitor_state *idma)
10045  {
10046  	/* Initialize the state variables for detecting an SGE Ingress DMA
10047  	 * hang.  The SGE has internal counters which count up on each clock
10048  	 * tick whenever the SGE finds its Ingress DMA State Engines in the
10049  	 * same state they were on the previous clock tick.  The clock used is
10050  	 * the Core Clock so we have a limit on the maximum "time" they can
10051  	 * record; typically a very small number of seconds.  For instance,
10052  	 * with a 600MHz Core Clock, we can only count up to a bit more than
10053  	 * 7s.  So we'll synthesize a larger counter in order to not run the
10054  	 * risk of having the "timers" overflow and give us the flexibility to
10055  	 * maintain a Hung SGE State Machine of our own which operates across
10056  	 * a longer time frame.
10057  	 */
10058  	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
10059  	idma->idma_stalled[0] = 0;
10060  	idma->idma_stalled[1] = 0;
10061  }
10062  
10063  /**
10064   *	t4_idma_monitor - monitor SGE Ingress DMA state
10065   *	@adapter: the adapter
10066   *	@idma: the adapter IDMA Monitor state
10067   *	@hz: number of ticks/second
10068   *	@ticks: number of ticks since the last IDMA Monitor call
10069   */
t4_idma_monitor(struct adapter * adapter,struct sge_idma_monitor_state * idma,int hz,int ticks)10070  void t4_idma_monitor(struct adapter *adapter,
10071  		     struct sge_idma_monitor_state *idma,
10072  		     int hz, int ticks)
10073  {
10074  	int i, idma_same_state_cnt[2];
10075  
10076  	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
10077  	  * are counters inside the SGE which count up on each clock when the
10078  	  * SGE finds its Ingress DMA State Engines in the same states they
10079  	  * were in the previous clock.  The counters will peg out at
10080  	  * 0xffffffff without wrapping around so once they pass the 1s
10081  	  * threshold they'll stay above that till the IDMA state changes.
10082  	  */
10083  	t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
10084  	idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
10085  	idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10086  
10087  	for (i = 0; i < 2; i++) {
10088  		u32 debug0, debug11;
10089  
10090  		/* If the Ingress DMA Same State Counter ("timer") is less
10091  		 * than 1s, then we can reset our synthesized Stall Timer and
10092  		 * continue.  If we have previously emitted warnings about a
10093  		 * potential stalled Ingress Queue, issue a note indicating
10094  		 * that the Ingress Queue has resumed forward progress.
10095  		 */
10096  		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
10097  			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
10098  				dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
10099  					 "resumed after %d seconds\n",
10100  					 i, idma->idma_qid[i],
10101  					 idma->idma_stalled[i] / hz);
10102  			idma->idma_stalled[i] = 0;
10103  			continue;
10104  		}
10105  
10106  		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
10107  		 * domain.  The first time we get here it'll be because we
10108  		 * passed the 1s Threshold; each additional time it'll be
10109  		 * because the RX Timer Callback is being fired on its regular
10110  		 * schedule.
10111  		 *
10112  		 * If the stall is below our Potential Hung Ingress Queue
10113  		 * Warning Threshold, continue.
10114  		 */
10115  		if (idma->idma_stalled[i] == 0) {
10116  			idma->idma_stalled[i] = hz;
10117  			idma->idma_warn[i] = 0;
10118  		} else {
10119  			idma->idma_stalled[i] += ticks;
10120  			idma->idma_warn[i] -= ticks;
10121  		}
10122  
10123  		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
10124  			continue;
10125  
10126  		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
10127  		 */
10128  		if (idma->idma_warn[i] > 0)
10129  			continue;
10130  		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
10131  
10132  		/* Read and save the SGE IDMA State and Queue ID information.
10133  		 * We do this every time in case it changes across time ...
10134  		 * can't be too careful ...
10135  		 */
10136  		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
10137  		debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10138  		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
10139  
10140  		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
10141  		debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10142  		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
10143  
10144  		dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
10145  			 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
10146  			 i, idma->idma_qid[i], idma->idma_state[i],
10147  			 idma->idma_stalled[i] / hz,
10148  			 debug0, debug11);
10149  		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
10150  	}
10151  }
10152  
10153  /**
10154   *	t4_load_cfg - download config file
10155   *	@adap: the adapter
10156   *	@cfg_data: the cfg text file to write
10157   *	@size: text file size
10158   *
10159   *	Write the supplied config text file to the card's serial flash.
10160   */
t4_load_cfg(struct adapter * adap,const u8 * cfg_data,unsigned int size)10161  int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10162  {
10163  	int ret, i, n, cfg_addr;
10164  	unsigned int addr;
10165  	unsigned int flash_cfg_start_sec;
10166  	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10167  
10168  	cfg_addr = t4_flash_cfg_addr(adap);
10169  	if (cfg_addr < 0)
10170  		return cfg_addr;
10171  
10172  	addr = cfg_addr;
10173  	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10174  
10175  	if (size > FLASH_CFG_MAX_SIZE) {
10176  		dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
10177  			FLASH_CFG_MAX_SIZE);
10178  		return -EFBIG;
10179  	}
10180  
10181  	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
10182  			 sf_sec_size);
10183  	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10184  				     flash_cfg_start_sec + i - 1);
10185  	/* If size == 0 then we're simply erasing the FLASH sectors associated
10186  	 * with the on-adapter Firmware Configuration File.
10187  	 */
10188  	if (ret || size == 0)
10189  		goto out;
10190  
10191  	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10192  	for (i = 0; i < size; i += SF_PAGE_SIZE) {
10193  		if ((size - i) <  SF_PAGE_SIZE)
10194  			n = size - i;
10195  		else
10196  			n = SF_PAGE_SIZE;
10197  		ret = t4_write_flash(adap, addr, n, cfg_data, true);
10198  		if (ret)
10199  			goto out;
10200  
10201  		addr += SF_PAGE_SIZE;
10202  		cfg_data += SF_PAGE_SIZE;
10203  	}
10204  
10205  out:
10206  	if (ret)
10207  		dev_err(adap->pdev_dev, "config file %s failed %d\n",
10208  			(size == 0 ? "clear" : "download"), ret);
10209  	return ret;
10210  }
10211  
10212  /**
10213   *	t4_set_vf_mac_acl - Set MAC address for the specified VF
10214   *	@adapter: The adapter
10215   *	@vf: one of the VFs instantiated by the specified PF
10216   *	@naddr: the number of MAC addresses
10217   *	@addr: the MAC address(es) to be set to the specified VF
10218   */
t4_set_vf_mac_acl(struct adapter * adapter,unsigned int vf,unsigned int naddr,u8 * addr)10219  int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
10220  		      unsigned int naddr, u8 *addr)
10221  {
10222  	struct fw_acl_mac_cmd cmd;
10223  
10224  	memset(&cmd, 0, sizeof(cmd));
10225  	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
10226  				    FW_CMD_REQUEST_F |
10227  				    FW_CMD_WRITE_F |
10228  				    FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
10229  				    FW_ACL_MAC_CMD_VFN_V(vf));
10230  
10231  	/* Note: Do not enable the ACL */
10232  	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
10233  	cmd.nmac = naddr;
10234  
10235  	switch (adapter->pf) {
10236  	case 3:
10237  		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
10238  		break;
10239  	case 2:
10240  		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
10241  		break;
10242  	case 1:
10243  		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
10244  		break;
10245  	case 0:
10246  		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
10247  		break;
10248  	}
10249  
10250  	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
10251  }
10252  
10253  /**
10254   * t4_read_pace_tbl - read the pace table
10255   * @adap: the adapter
10256   * @pace_vals: holds the returned values
10257   *
10258   * Returns the values of TP's pace table in microseconds.
10259   */
t4_read_pace_tbl(struct adapter * adap,unsigned int pace_vals[NTX_SCHED])10260  void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
10261  {
10262  	unsigned int i, v;
10263  
10264  	for (i = 0; i < NTX_SCHED; i++) {
10265  		t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i);
10266  		v = t4_read_reg(adap, TP_PACE_TABLE_A);
10267  		pace_vals[i] = dack_ticks_to_usec(adap, v);
10268  	}
10269  }
10270  
10271  /**
10272   * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10273   * @adap: the adapter
10274   * @sched: the scheduler index
10275   * @kbps: the byte rate in Kbps
10276   * @ipg: the interpacket delay in tenths of nanoseconds
10277   * @sleep_ok: if true we may sleep while awaiting command completion
10278   *
10279   * Return the current configuration of a HW Tx scheduler.
10280   */
t4_get_tx_sched(struct adapter * adap,unsigned int sched,unsigned int * kbps,unsigned int * ipg,bool sleep_ok)10281  void t4_get_tx_sched(struct adapter *adap, unsigned int sched,
10282  		     unsigned int *kbps, unsigned int *ipg, bool sleep_ok)
10283  {
10284  	unsigned int v, addr, bpt, cpt;
10285  
10286  	if (kbps) {
10287  		addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2;
10288  		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10289  		if (sched & 1)
10290  			v >>= 16;
10291  		bpt = (v >> 8) & 0xff;
10292  		cpt = v & 0xff;
10293  		if (!cpt) {
10294  			*kbps = 0;	/* scheduler disabled */
10295  		} else {
10296  			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
10297  			*kbps = (v * bpt) / 125;
10298  		}
10299  	}
10300  	if (ipg) {
10301  		addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2;
10302  		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10303  		if (sched & 1)
10304  			v >>= 16;
10305  		v &= 0xffff;
10306  		*ipg = (10000 * v) / core_ticks_per_usec(adap);
10307  	}
10308  }
10309  
10310  /* t4_sge_ctxt_rd - read an SGE context through FW
10311   * @adap: the adapter
10312   * @mbox: mailbox to use for the FW command
10313   * @cid: the context id
10314   * @ctype: the context type
10315   * @data: where to store the context data
10316   *
10317   * Issues a FW command through the given mailbox to read an SGE context.
10318   */
t4_sge_ctxt_rd(struct adapter * adap,unsigned int mbox,unsigned int cid,enum ctxt_type ctype,u32 * data)10319  int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
10320  		   enum ctxt_type ctype, u32 *data)
10321  {
10322  	struct fw_ldst_cmd c;
10323  	int ret;
10324  
10325  	if (ctype == CTXT_FLM)
10326  		ret = FW_LDST_ADDRSPC_SGE_FLMC;
10327  	else
10328  		ret = FW_LDST_ADDRSPC_SGE_CONMC;
10329  
10330  	memset(&c, 0, sizeof(c));
10331  	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10332  					FW_CMD_REQUEST_F | FW_CMD_READ_F |
10333  					FW_LDST_CMD_ADDRSPACE_V(ret));
10334  	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10335  	c.u.idctxt.physid = cpu_to_be32(cid);
10336  
10337  	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10338  	if (ret == 0) {
10339  		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10340  		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10341  		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10342  		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10343  		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10344  		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10345  	}
10346  	return ret;
10347  }
10348  
10349  /**
10350   * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10351   * @adap: the adapter
10352   * @cid: the context id
10353   * @ctype: the context type
10354   * @data: where to store the context data
10355   *
10356   * Reads an SGE context directly, bypassing FW.  This is only for
10357   * debugging when FW is unavailable.
10358   */
t4_sge_ctxt_rd_bd(struct adapter * adap,unsigned int cid,enum ctxt_type ctype,u32 * data)10359  int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid,
10360  		      enum ctxt_type ctype, u32 *data)
10361  {
10362  	int i, ret;
10363  
10364  	t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype));
10365  	ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1);
10366  	if (!ret)
10367  		for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4)
10368  			*data++ = t4_read_reg(adap, i);
10369  	return ret;
10370  }
10371  
t4_sched_params(struct adapter * adapter,u8 type,u8 level,u8 mode,u8 rateunit,u8 ratemode,u8 channel,u8 class,u32 minrate,u32 maxrate,u16 weight,u16 pktsize,u16 burstsize)10372  int t4_sched_params(struct adapter *adapter, u8 type, u8 level, u8 mode,
10373  		    u8 rateunit, u8 ratemode, u8 channel, u8 class,
10374  		    u32 minrate, u32 maxrate, u16 weight, u16 pktsize,
10375  		    u16 burstsize)
10376  {
10377  	struct fw_sched_cmd cmd;
10378  
10379  	memset(&cmd, 0, sizeof(cmd));
10380  	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
10381  				      FW_CMD_REQUEST_F |
10382  				      FW_CMD_WRITE_F);
10383  	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10384  
10385  	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10386  	cmd.u.params.type = type;
10387  	cmd.u.params.level = level;
10388  	cmd.u.params.mode = mode;
10389  	cmd.u.params.ch = channel;
10390  	cmd.u.params.cl = class;
10391  	cmd.u.params.unit = rateunit;
10392  	cmd.u.params.rate = ratemode;
10393  	cmd.u.params.min = cpu_to_be32(minrate);
10394  	cmd.u.params.max = cpu_to_be32(maxrate);
10395  	cmd.u.params.weight = cpu_to_be16(weight);
10396  	cmd.u.params.pktsize = cpu_to_be16(pktsize);
10397  	cmd.u.params.burstsize = cpu_to_be16(burstsize);
10398  
10399  	return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
10400  			       NULL, 1);
10401  }
10402  
10403  /**
10404   *	t4_i2c_rd - read I2C data from adapter
10405   *	@adap: the adapter
10406   *	@mbox: mailbox to use for the FW command
10407   *	@port: Port number if per-port device; <0 if not
10408   *	@devid: per-port device ID or absolute device ID
10409   *	@offset: byte offset into device I2C space
10410   *	@len: byte length of I2C space data
10411   *	@buf: buffer in which to return I2C data
10412   *
10413   *	Reads the I2C data from the indicated device and location.
10414   */
t4_i2c_rd(struct adapter * adap,unsigned int mbox,int port,unsigned int devid,unsigned int offset,unsigned int len,u8 * buf)10415  int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port,
10416  	      unsigned int devid, unsigned int offset,
10417  	      unsigned int len, u8 *buf)
10418  {
10419  	struct fw_ldst_cmd ldst_cmd, ldst_rpl;
10420  	unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
10421  	int ret = 0;
10422  
10423  	if (len > I2C_PAGE_SIZE)
10424  		return -EINVAL;
10425  
10426  	/* Dont allow reads that spans multiple pages */
10427  	if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
10428  		return -EINVAL;
10429  
10430  	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10431  	ldst_cmd.op_to_addrspace =
10432  		cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10433  			    FW_CMD_REQUEST_F |
10434  			    FW_CMD_READ_F |
10435  			    FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C));
10436  	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
10437  	ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
10438  	ldst_cmd.u.i2c.did = devid;
10439  
10440  	while (len > 0) {
10441  		unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
10442  
10443  		ldst_cmd.u.i2c.boffset = offset;
10444  		ldst_cmd.u.i2c.blen = i2c_len;
10445  
10446  		ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
10447  				 &ldst_rpl);
10448  		if (ret)
10449  			break;
10450  
10451  		memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
10452  		offset += i2c_len;
10453  		buf += i2c_len;
10454  		len -= i2c_len;
10455  	}
10456  
10457  	return ret;
10458  }
10459  
10460  /**
10461   *      t4_set_vlan_acl - Set a VLAN id for the specified VF
10462   *      @adap: the adapter
10463   *      @mbox: mailbox to use for the FW command
10464   *      @vf: one of the VFs instantiated by the specified PF
10465   *      @vlan: The vlanid to be set
10466   */
t4_set_vlan_acl(struct adapter * adap,unsigned int mbox,unsigned int vf,u16 vlan)10467  int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
10468  		    u16 vlan)
10469  {
10470  	struct fw_acl_vlan_cmd vlan_cmd;
10471  	unsigned int enable;
10472  
10473  	enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0);
10474  	memset(&vlan_cmd, 0, sizeof(vlan_cmd));
10475  	vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
10476  					 FW_CMD_REQUEST_F |
10477  					 FW_CMD_WRITE_F |
10478  					 FW_CMD_EXEC_F |
10479  					 FW_ACL_VLAN_CMD_PFN_V(adap->pf) |
10480  					 FW_ACL_VLAN_CMD_VFN_V(vf));
10481  	vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
10482  	/* Drop all packets that donot match vlan id */
10483  	vlan_cmd.dropnovlan_fm = (enable
10484  				  ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F |
10485  				     FW_ACL_VLAN_CMD_FM_F) : 0);
10486  	if (enable != 0) {
10487  		vlan_cmd.nvlan = 1;
10488  		vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
10489  	}
10490  
10491  	return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
10492  }
10493  
10494  /**
10495   *	modify_device_id - Modifies the device ID of the Boot BIOS image
10496   *	@device_id: the device ID to write.
10497   *	@boot_data: the boot image to modify.
10498   *
10499   *	Write the supplied device ID to the boot BIOS image.
10500   */
modify_device_id(int device_id,u8 * boot_data)10501  static void modify_device_id(int device_id, u8 *boot_data)
10502  {
10503  	struct cxgb4_pcir_data *pcir_header;
10504  	struct legacy_pci_rom_hdr *header;
10505  	u8 *cur_header = boot_data;
10506  	u16 pcir_offset;
10507  
10508  	 /* Loop through all chained images and change the device ID's */
10509  	do {
10510  		header = (struct legacy_pci_rom_hdr *)cur_header;
10511  		pcir_offset = le16_to_cpu(header->pcir_offset);
10512  		pcir_header = (struct cxgb4_pcir_data *)(cur_header +
10513  			      pcir_offset);
10514  
10515  		/**
10516  		 * Only modify the Device ID if code type is Legacy or HP.
10517  		 * 0x00: Okay to modify
10518  		 * 0x01: FCODE. Do not modify
10519  		 * 0x03: Okay to modify
10520  		 * 0x04-0xFF: Do not modify
10521  		 */
10522  		if (pcir_header->code_type == CXGB4_HDR_CODE1) {
10523  			u8 csum = 0;
10524  			int i;
10525  
10526  			/**
10527  			 * Modify Device ID to match current adatper
10528  			 */
10529  			pcir_header->device_id = cpu_to_le16(device_id);
10530  
10531  			/**
10532  			 * Set checksum temporarily to 0.
10533  			 * We will recalculate it later.
10534  			 */
10535  			header->cksum = 0x0;
10536  
10537  			/**
10538  			 * Calculate and update checksum
10539  			 */
10540  			for (i = 0; i < (header->size512 * 512); i++)
10541  				csum += cur_header[i];
10542  
10543  			/**
10544  			 * Invert summed value to create the checksum
10545  			 * Writing new checksum value directly to the boot data
10546  			 */
10547  			cur_header[7] = -csum;
10548  
10549  		} else if (pcir_header->code_type == CXGB4_HDR_CODE2) {
10550  			/**
10551  			 * Modify Device ID to match current adatper
10552  			 */
10553  			pcir_header->device_id = cpu_to_le16(device_id);
10554  		}
10555  
10556  		/**
10557  		 * Move header pointer up to the next image in the ROM.
10558  		 */
10559  		cur_header += header->size512 * 512;
10560  	} while (!(pcir_header->indicator & CXGB4_HDR_INDI));
10561  }
10562  
10563  /**
10564   *	t4_load_boot - download boot flash
10565   *	@adap: the adapter
10566   *	@boot_data: the boot image to write
10567   *	@boot_addr: offset in flash to write boot_data
10568   *	@size: image size
10569   *
10570   *	Write the supplied boot image to the card's serial flash.
10571   *	The boot image has the following sections: a 28-byte header and the
10572   *	boot image.
10573   */
t4_load_boot(struct adapter * adap,u8 * boot_data,unsigned int boot_addr,unsigned int size)10574  int t4_load_boot(struct adapter *adap, u8 *boot_data,
10575  		 unsigned int boot_addr, unsigned int size)
10576  {
10577  	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10578  	unsigned int boot_sector = (boot_addr * 1024);
10579  	struct cxgb4_pci_exp_rom_header *header;
10580  	struct cxgb4_pcir_data *pcir_header;
10581  	int pcir_offset;
10582  	unsigned int i;
10583  	u16 device_id;
10584  	int ret, addr;
10585  
10586  	/**
10587  	 * Make sure the boot image does not encroach on the firmware region
10588  	 */
10589  	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
10590  		dev_err(adap->pdev_dev, "boot image encroaching on firmware region\n");
10591  		return -EFBIG;
10592  	}
10593  
10594  	/* Get boot header */
10595  	header = (struct cxgb4_pci_exp_rom_header *)boot_data;
10596  	pcir_offset = le16_to_cpu(header->pcir_offset);
10597  	/* PCIR Data Structure */
10598  	pcir_header = (struct cxgb4_pcir_data *)&boot_data[pcir_offset];
10599  
10600  	/**
10601  	 * Perform some primitive sanity testing to avoid accidentally
10602  	 * writing garbage over the boot sectors.  We ought to check for
10603  	 * more but it's not worth it for now ...
10604  	 */
10605  	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
10606  		dev_err(adap->pdev_dev, "boot image too small/large\n");
10607  		return -EFBIG;
10608  	}
10609  
10610  	if (le16_to_cpu(header->signature) != BOOT_SIGNATURE) {
10611  		dev_err(adap->pdev_dev, "Boot image missing signature\n");
10612  		return -EINVAL;
10613  	}
10614  
10615  	/* Check PCI header signature */
10616  	if (le32_to_cpu(pcir_header->signature) != PCIR_SIGNATURE) {
10617  		dev_err(adap->pdev_dev, "PCI header missing signature\n");
10618  		return -EINVAL;
10619  	}
10620  
10621  	/* Check Vendor ID matches Chelsio ID*/
10622  	if (le16_to_cpu(pcir_header->vendor_id) != PCI_VENDOR_ID_CHELSIO) {
10623  		dev_err(adap->pdev_dev, "Vendor ID missing signature\n");
10624  		return -EINVAL;
10625  	}
10626  
10627  	/**
10628  	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
10629  	 * and Boot configuration data sections. These 3 boot sections span
10630  	 * sectors 0 to 7 in flash and live right before the FW image location.
10631  	 */
10632  	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,  sf_sec_size);
10633  	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
10634  				     (boot_sector >> 16) + i - 1);
10635  
10636  	/**
10637  	 * If size == 0 then we're simply erasing the FLASH sectors associated
10638  	 * with the on-adapter option ROM file
10639  	 */
10640  	if (ret || size == 0)
10641  		goto out;
10642  	/* Retrieve adapter's device ID */
10643  	pci_read_config_word(adap->pdev, PCI_DEVICE_ID, &device_id);
10644         /* Want to deal with PF 0 so I strip off PF 4 indicator */
10645  	device_id = device_id & 0xf0ff;
10646  
10647  	 /* Check PCIE Device ID */
10648  	if (le16_to_cpu(pcir_header->device_id) != device_id) {
10649  		/**
10650  		 * Change the device ID in the Boot BIOS image to match
10651  		 * the Device ID of the current adapter.
10652  		 */
10653  		modify_device_id(device_id, boot_data);
10654  	}
10655  
10656  	/**
10657  	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
10658  	 * we finish copying the rest of the boot image. This will ensure
10659  	 * that the BIOS boot header will only be written if the boot image
10660  	 * was written in full.
10661  	 */
10662  	addr = boot_sector;
10663  	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
10664  		addr += SF_PAGE_SIZE;
10665  		boot_data += SF_PAGE_SIZE;
10666  		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data,
10667  				     false);
10668  		if (ret)
10669  			goto out;
10670  	}
10671  
10672  	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
10673  			     (const u8 *)header, false);
10674  
10675  out:
10676  	if (ret)
10677  		dev_err(adap->pdev_dev, "boot image load failed, error %d\n",
10678  			ret);
10679  	return ret;
10680  }
10681  
10682  /**
10683   *	t4_flash_bootcfg_addr - return the address of the flash
10684   *	optionrom configuration
10685   *	@adapter: the adapter
10686   *
10687   *	Return the address within the flash where the OptionROM Configuration
10688   *	is stored, or an error if the device FLASH is too small to contain
10689   *	a OptionROM Configuration.
10690   */
t4_flash_bootcfg_addr(struct adapter * adapter)10691  static int t4_flash_bootcfg_addr(struct adapter *adapter)
10692  {
10693  	/**
10694  	 * If the device FLASH isn't large enough to hold a Firmware
10695  	 * Configuration File, return an error.
10696  	 */
10697  	if (adapter->params.sf_size <
10698  	    FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
10699  		return -ENOSPC;
10700  
10701  	return FLASH_BOOTCFG_START;
10702  }
10703  
t4_load_bootcfg(struct adapter * adap,const u8 * cfg_data,unsigned int size)10704  int t4_load_bootcfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10705  {
10706  	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10707  	struct cxgb4_bootcfg_data *header;
10708  	unsigned int flash_cfg_start_sec;
10709  	unsigned int addr, npad;
10710  	int ret, i, n, cfg_addr;
10711  
10712  	cfg_addr = t4_flash_bootcfg_addr(adap);
10713  	if (cfg_addr < 0)
10714  		return cfg_addr;
10715  
10716  	addr = cfg_addr;
10717  	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10718  
10719  	if (size > FLASH_BOOTCFG_MAX_SIZE) {
10720  		dev_err(adap->pdev_dev, "bootcfg file too large, max is %u bytes\n",
10721  			FLASH_BOOTCFG_MAX_SIZE);
10722  		return -EFBIG;
10723  	}
10724  
10725  	header = (struct cxgb4_bootcfg_data *)cfg_data;
10726  	if (le16_to_cpu(header->signature) != BOOT_CFG_SIG) {
10727  		dev_err(adap->pdev_dev, "Wrong bootcfg signature\n");
10728  		ret = -EINVAL;
10729  		goto out;
10730  	}
10731  
10732  	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,
10733  			 sf_sec_size);
10734  	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10735  				     flash_cfg_start_sec + i - 1);
10736  
10737  	/**
10738  	 * If size == 0 then we're simply erasing the FLASH sectors associated
10739  	 * with the on-adapter OptionROM Configuration File.
10740  	 */
10741  	if (ret || size == 0)
10742  		goto out;
10743  
10744  	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10745  	for (i = 0; i < size; i += SF_PAGE_SIZE) {
10746  		n = min_t(u32, size - i, SF_PAGE_SIZE);
10747  
10748  		ret = t4_write_flash(adap, addr, n, cfg_data, false);
10749  		if (ret)
10750  			goto out;
10751  
10752  		addr += SF_PAGE_SIZE;
10753  		cfg_data += SF_PAGE_SIZE;
10754  	}
10755  
10756  	npad = ((size + 4 - 1) & ~3) - size;
10757  	for (i = 0; i < npad; i++) {
10758  		u8 data = 0;
10759  
10760  		ret = t4_write_flash(adap, cfg_addr + size + i, 1, &data,
10761  				     false);
10762  		if (ret)
10763  			goto out;
10764  	}
10765  
10766  out:
10767  	if (ret)
10768  		dev_err(adap->pdev_dev, "boot config data %s failed %d\n",
10769  			(size == 0 ? "clear" : "download"), ret);
10770  	return ret;
10771  }
10772